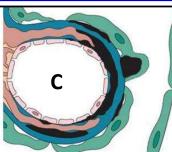
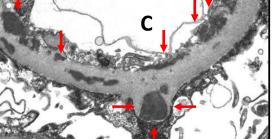

C3 Glomerulopathy: role of complement for pathogenesis and treatment

Marina Vivarelli

Division of Nephrology and Dialysis Bambino Gesù Children's Hospital, IRCCS Rome, Italy




MPGN: the old classification...

subepithelial deposits

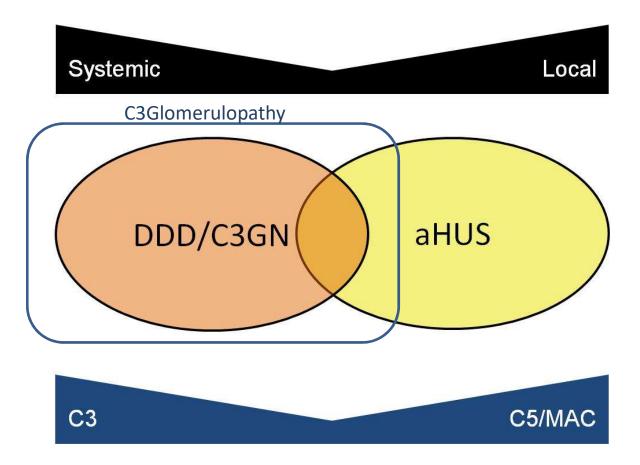
Burkholder et al, Am J Pathol 1969 Anders et al, Virchows Arch A Pathol Anat Histol 1997 Strife et al, Clin Nephrol 1984

A new disease entity: C3GN

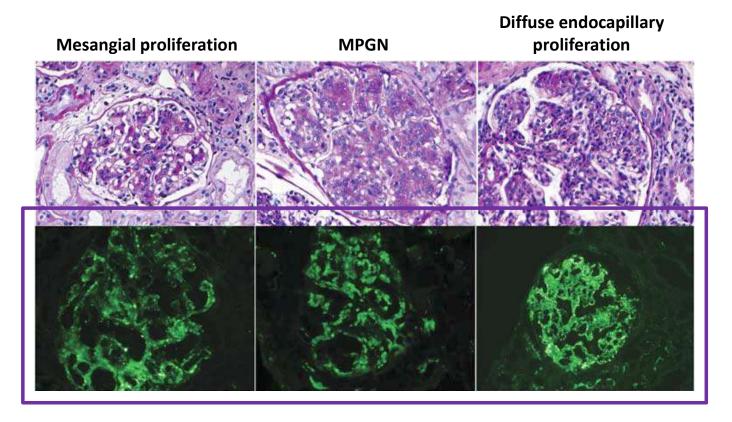
ORIGINAL ARTICLE

Primary glomerulonephritis with isolated C3 deposits: a new entity which shares common genetic risk factors with haemolytic uraemic syndrome

Aude Servais, Véronique Frémeaux-Bacchi, Moglie Lequintrec, Rémi Salomon, Jacques Blouin, Bertrand Knebelmann, Jean-Pierre Grünfeld, Philippe Lesavre, Laure-Hélène Noël, Fadi Fakhouri

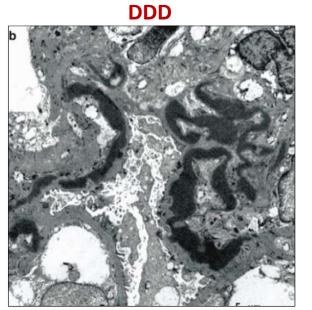

J Med Genet 2007;44:193-199. doi: 10.1136/jmg.2006.045328

19 patients with unusual glomerulonephritis and:


- C3NeF positivity (7), CFH (3), CFI (2) or MCP (1) mutations
- overt mesangial and epimembranous C3 deposits
- absence of dense intramembranous deposits (no DDD)
- no lg deposition

 \rightarrow C3GN

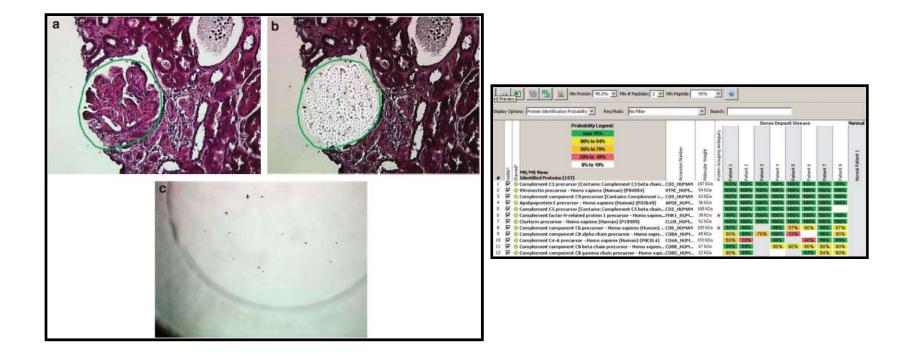
Complement AP dysregulation in kidney diseases


Renal biopsy in C3G

Pickering et al, KI 2013: C3 at least 2-fold brighter than other IF

Sethi S, Kidney International (2012) 82, 465–473

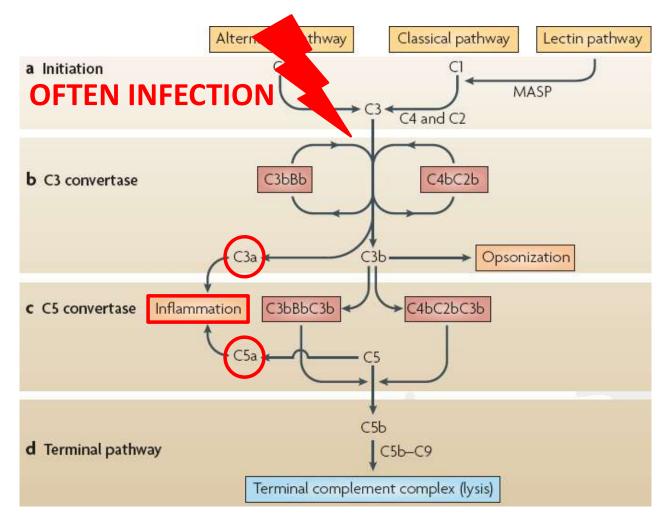
The distinction C3GN/DDD requires electron microscopy



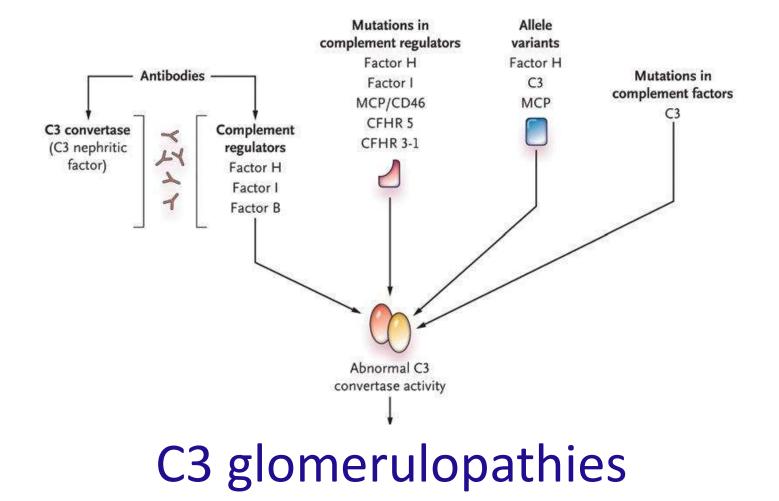
Walker PD et al, Modern Pathol 2007

C3GN

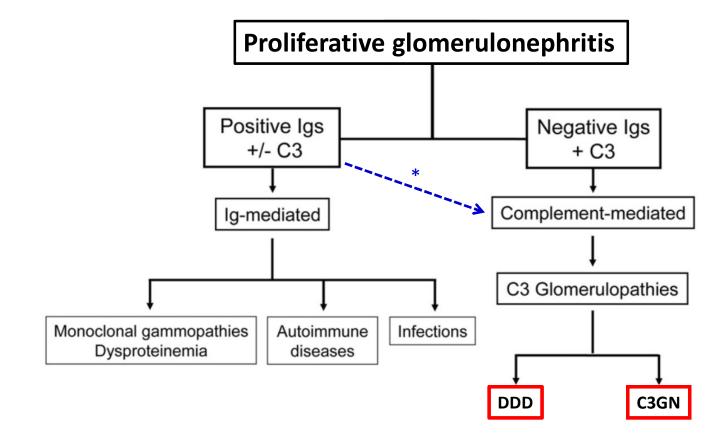
Sethi S et al, Clin J Am Soc Nephrol 2011


Evidence for a role of complement in DDD/C3GN in humans

- Proteomic profile of microdissected glomeruli: *C3, C4, C5, C6, C7, C8, CFHR1, CFHR5....*
- Very similar profile between DDD and C3GN


Sethi et al Kidney Int 2009; Sethi S et al Clin J Am Soc Nephrol 2011

A simplified view of the complement system


Zipfel and Skerka, Nat Rev Immunol 2009

Different alternative pathway alterations lead to C3 glomerulopathies

modified from Sethi S, Fervenza FC NEJM 2012

New classification of MPGN

Sethi S and Fervenza FC, Semin Nephrol 2011 Sethi S and Fervenza FC, NEJM 2012

*Servais et al, Kidney Int 2012; Dragon-Durey et al. JASN 2004; Vaziri-Sani et al. Kidney Int 2006; Leroy V et al. Ped Nephrol 2011

IC-MPGN can also be secondary to dysregulation of the complement alternative pathway: C3Nef

Table 3 | Complement component analysis and immunofluorescence study of membranoproliferative glomerulonephritis type I cases with positive C3 nephritic factor

Patient	C3 ^a (660 to 1250 mg/l)				Immunofluores- cence study
25	537 ^b	160	83	MPGN I	IgG, IgM, C3
26	512	127	50	MPGN I	IgG, IgM, IgA, C3
27	183	178	225	MPGN I	IgG, C3
28	701	233	96	MPGN I	lgG, C3
29	87	202	51	MPGN I	IgG, IgM, C3
30	847	222	71	MPGN I	IgG, IgM, C3, C1q
31	48	126	89	MPGN I	IgG, IgA, C3
32	87	309	92	MPGN I	IgG, IgM, C3
33	293	209	100	MPGN I	IgG, IgM, C3
34	180	248	123	MPGN I	IgG, IgM, C3
35	193	95	126	MPGN I	IgG, C3
36	275	225	159	MPGN I	IgG, IgM, C3, C1q
37	1110	162	186	MPGN I	ND ^c
38	475	175	155	MPGN I	IgG, IgA, C3
39	741	169	82	MPGN I	lgG, C3
40	875	273	124	MPGN I	IgG, C3, C1q
41	135	182	130	MPGN I	IgG, IgA, IgM, C3
42	129	227	64	MPGN I	IgG, C3

Abbreviations: CFB, complement factor B; Ig, immunoglobulin; MPGN I, membranoproliferative glomerulonephritis type I; ND, not done.

^aLaboratory reference values are indicated in brackets.

^bRare variant CFI *IVS* 12+5 associated.

^cBiopsy performed in 1974: lobular MPGN I, no immunofluorescence study available.

Cases with genetic abnormality are presented in Table 2.

Servais et al, Kidney Int 2012

IC-MPGN can also be secondary to dysregulation of the complement alternative pathway: genetic mutations

Table 2

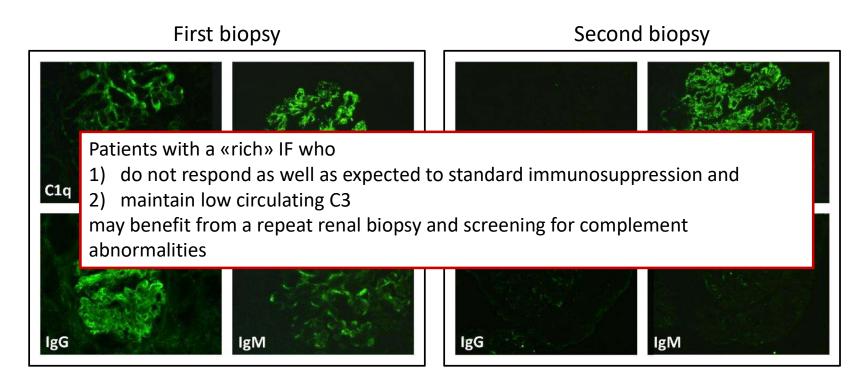
Clinical and laboratory findings in different histology groups.

	lg-MPGN	C3G		
			DDD	C3GN
N	67	73	21	52
Gender (% males)	51%	41%	38%	42%
Data at onset				
Age (y)-mean (SD)	20.1 (±15.2) ^a	15.0 (±11.9) ^a	15.9 (±11.4)	14.6 (±12.1)
Microhematuria	86%	86%	90%	84%
Gross hematuria	35%	38%	38%	38%
Proteinuria	88%	90%	86%	92%
Nephrotic syndrome	43%	29%	29%	29%
Renal impairment	27% ^b	14%	5% ^b	17%
Trigger event	31%	42%	41%	42%
C3NeFs positive	44% ^e	54%	78% ^{e,f}	44% ^r
Serum C3 (mg/dl)-Median (IQR)	45 (13-77) ^c	38 (15-73)	20 (9-46) ^{c,d}	44 (17-87) ^d
Serum C4 (mg/dl)-Median (IQR)	21 (12-29)	21 (17-27)	26 (20-29)	21 (17-25)
Low Serum C3 & normal C4	67%	74%	86%	69%
Plasma SC5b-9 (ng/ml)-Median (IQR)	515(286-1860)	417(228-1033)	353(252-623)	486(215-1140)
Mutation carriers	17%	18%	14%	20%
Mutation carriers and/or C3NeFs*	56%	65%	83%	58%
Familiarity for nephropathy	11%	14%	10%	16%

Nephrotic syndrome was defined as: 24-h proteinuria exceeding 3.5 g in adults or 40 mg/h/m2 in children together with albuminemia $\leq 3 \text{ g/L}$. Renal impairment was defined as abnormal serum creatinine levels. Familiarity for nephropathy was defined as the presence of at least one relative (up to 3rd degree) with biopsy-proven Ig-MPGN/C3G, or proteinuria and/or renal impairment without other apparent cause.

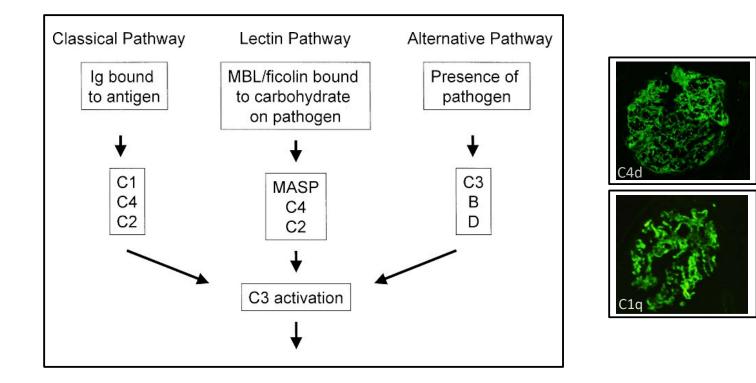
IC-MPGN can also be secondary to dysregulation of the complement alternative pathway: anti-FB and anti-C3b

Anti-Factor B and Anti-C3b Autoantibodies in C3 Glomerulopathy and Ig-Associated Membranoproliferative GN

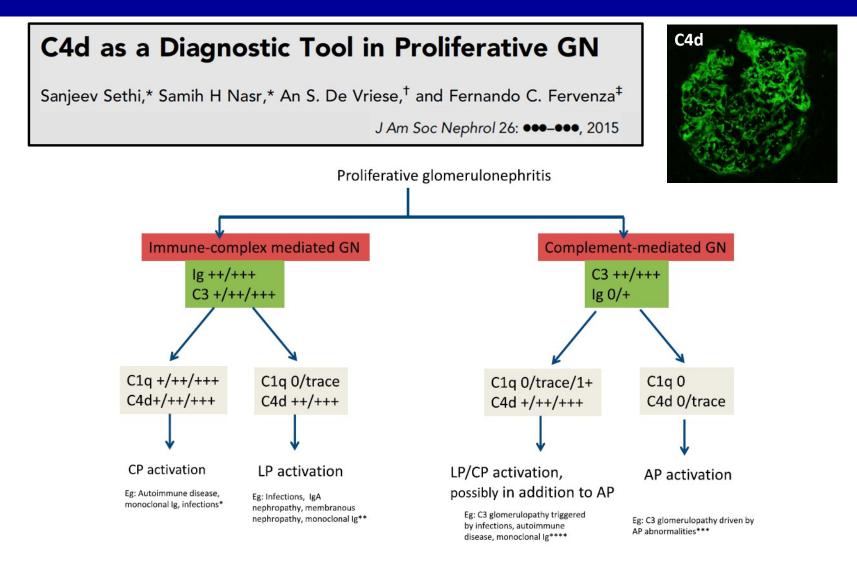

Maria Chiara Marinozzi,*[†] Lubka T. Roumenina,*^{‡§} Sophie Chauvet,* Alexandre Hertig,[∥] Dominique Bertrand,[¶] Jérome Olagne,** Marie Frimat,^{††} Tim Ulinski,^{‡‡} Georges Deschênes,^{§§} Stephane Burtey,[∭] Michel Delahousse,^{¶¶} Bruno Moulin,** Christophe Legendre,*** Véronique Frémeaux-Bacchi,*[†] and Moglie Le Quintrec*^{¶¶}

Tal	ole 1.	Summary	of the clinica	al characteristic	s of the pa
Pt	Sex	Age at Onset, yr	Background	lg-MPGN/C3G	Infectious Trigger
1	M	31	Drug/HBV	lg-MPGN	Yes
2	F	34	Anorexia	Ig-MPGN	Yes
3	F	66		C3G	No
4	M	40	Myelofibrosis	Ig-MPGN	Yes
5	M	49		Ig-MPGN	No
6	M	32		C3G	No
7	M	7		C3G	Yes
8	M	63	Alcohol/HBV	lg-MPGN/C3G	Yes
9	F	9		C3G	No
10	M	55		Ig-MPGN	Yes
11	M	34		Ig-MPGN	Na
12	M	38	Drug	Ig-MPGN	Yes
13	M	55	Crohn/B	Ig-MPGN	Yes
			lymphoma		
14	F	32	Sectorement ·	Ig-MPGN	Na
15	M	18		C3G	Na
The	CKD et:	ages are define	d by the level of kin	dney function accordi	na to the Kidne

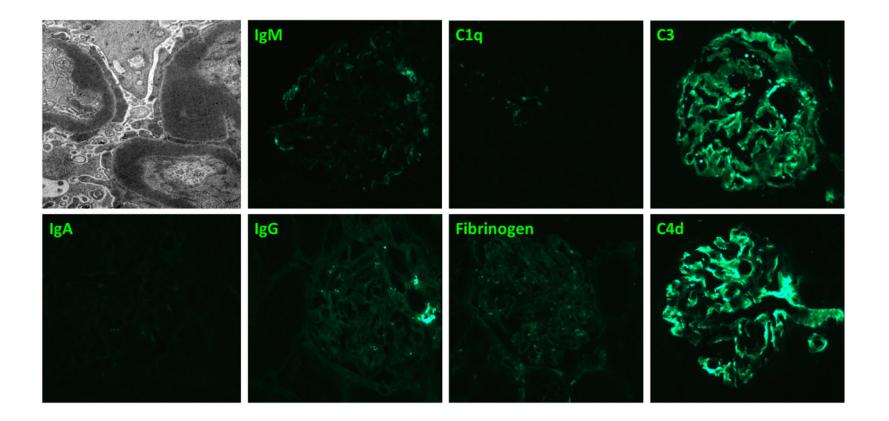
The CKD stages are defined by the level of kidney function according to the Kidney 1.73 m²; stage 3, GFR between 30 and 59 ml/min per 1.73 m²; stage 4, GFR between Pt, patient; NS, nephrotic syndrome; IS, immunosuppressive treatment; M, male;


Marinozzi et al, JASN 2017

The value of repeat biopsies



Positive C3Nef Elevated C5b9 MCP mutation

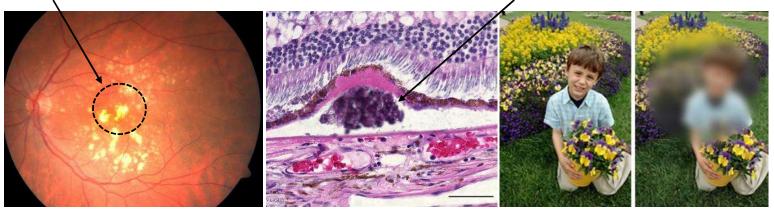

Does C1q and C4d staining help?

What can we learn from the renal biopsy?

C4d staining does not exclude C3G

Courtesy of Dr Diomedi-Camassei

Extrarenal features of C3G


Partial lipodystrophy

Macula

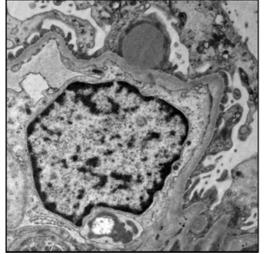
Drusen

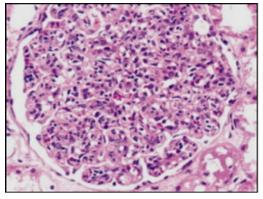
Lipids & proteins

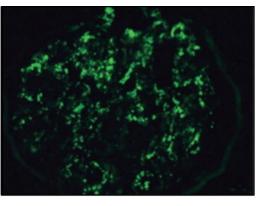
C3G: clinical presentation is heterogenous

- Post-infectious glomerulonephritis with low C3
- Infection triggering macrohematuria, as in IgA nephropathy
- Nephrotic syndrome
- Accidental finding of non-nephrotic proteinuria, microhematuria
- Atypical

C3G presenting as acute PIGN


- Post-infectious glomerulonephritis with
- 1) low C3 that persists > 12 weeks or with
- 2) recurrent macrohematuria


Patient	CFH	CFHR5	FH antibodies ^a	Hemolytic assay ^b	APFA ^c	C3NeF	sMAC ^d
1	c.2171delC, p.Thr724fsX, 725	No mutations	Negative	ND	ND	Negative	0.24 mg/l
2	No mutations	c.646-647, AA > TT, p.Asn216Phe	Negative	0%, Normal	63%, Abnormal	Negative	0.21 mg/l
3	No mutations	No mutations	Negative	1%, Normal	63%, Abnormal	Positive (C3CSAP ^e)	ND
4	No mutations	No mutations	Negative	0%, Normal	1% Abnormal	Positive (IFE)	1.23 mg/l
5	No mutations	No mutations	Negative	12% Abnormal	34% Abnormal	Positive (IFE)	0.48 mg/l
6	No mutations	No mutations	Negative	0%, Normal	14% Abnormal	Positive (both assays)	ND
7	c.3350A>G, p.Asn1117Ser	No mutations	Negative	0% Normal	80%	Negative	ND
8	No mutations	No mutations	Negative	0% Normal	123%	Negative	0.13 mg/l
9	No mutations	No mutations	Negative	9% Abnormal	77%	Positive (both assays)	ND
10	c.1699A > G, p.Arg567Gly	No mutations	Negative	0%, Normal	0% Abnormal	Positive (both assays)	2.03 mg/l
11	No mutations	No mutations	Negative	0%, Normal	130%	Positive (C3CSAP)	0.21 mg/l


Table 3 | Complement abnormalities

Sethi, Kidney International 2012

Atypical PIGN is a form of C3G

Light microscopy

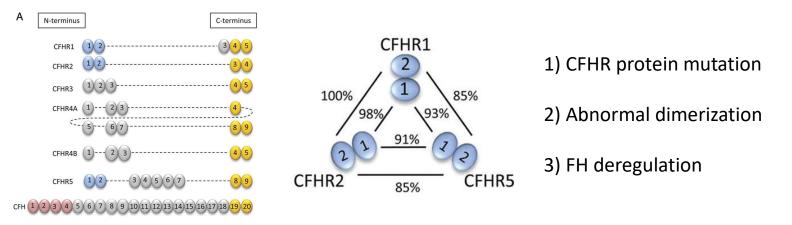
	PIGN	aPIGN	C3 GN
Diff. prol.	+++	+++	-
Mes. prol.	+	+	++
MPGN	-	-	+++
Crescentic	+	+	-

Immunofluorescence

	PIGN	aPIGN	C3GN
C3 capill.	+++	+++	+++
C3 mesang.	+++	+++	+++
lgG	++	+	+/-

Electron microscopy

	PIGN	aPIGN	C3GN
Humps	+++	+++	+
Mesangial	+/-	++	+++
Sub-endoth.	+/-	++	+++

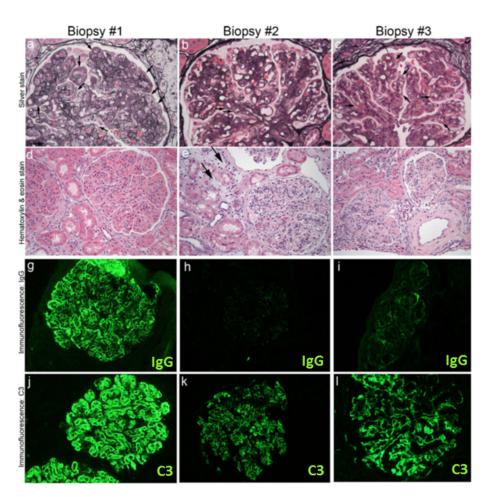

Adapted from Sethi et al, Kidney International 2013

C3G presenting as "IgA nephropathy": CFHR glomerulopathy

Infection-triggered macrohematuria, proteinuria

Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis

Daniel P Gale*, Elena Goicoechea de Jorge*, H Terence Cook, Rubén Martinez-Barricarte, Andreas Hadjisavvas, Adam G McLean, Charles D Pusey, Alkis Pierides, Kyriacos Kyriacou, Yiannis Athanasiou, Konstantinos Voskarides, Constantinos Deltas, Andrew Palmer, Véronique Frémeaux-Bacchi, Santiago Rodriguez de Cordoba, Patrick H Maxwell†, and Matthew C Pickering† Lancet 2010


Thomas D. Barbour et al. Nephrol. Dial. Transplant. 2014

C3G can present as nephrotic syndrome

- Post-infectious glomerulonephritis with low C3
- Infection triggering macrohematuria, as in IgA nephropathy
- Nephrotic syndrome

A difficult case

- 13-year-old boy
- nephrotic syndrome & hematuria
- markedly low C3 and C4
- <u>initial renal biopsy:</u> MPGN with strong C3 deposition strong immunoglobulin deposition
- <u>follow-up biopsies (1 and 3 years)</u>: MPGN with strong C3 deposition <u>± no immunoglobulin deposition</u>
- Elevated SC5b-9 treated with eculizumab: decrease in proteinuria

Kerns et al, Ped Nephrol 2013

C3G can be found on routine urinalysis

- Post-infectious glomerulonephritis with low C3
- Infection triggering macrohematuria, as in IgA nephropathy
- Nephrotic syndrome
- Accidental finding of non-nephrotic proteinuria, microhematuria

C3G can present as aHUS

- Post-infectious glomerulonephritis with low C3
- Infection triggering macrohematuria, as in IgA nephropathy
- Nephrotic syndrome
- Accidental finding of non-nephrotic proteinuria, microhematuria
- Atypical

INITIAL PRESENTATION: aHUS

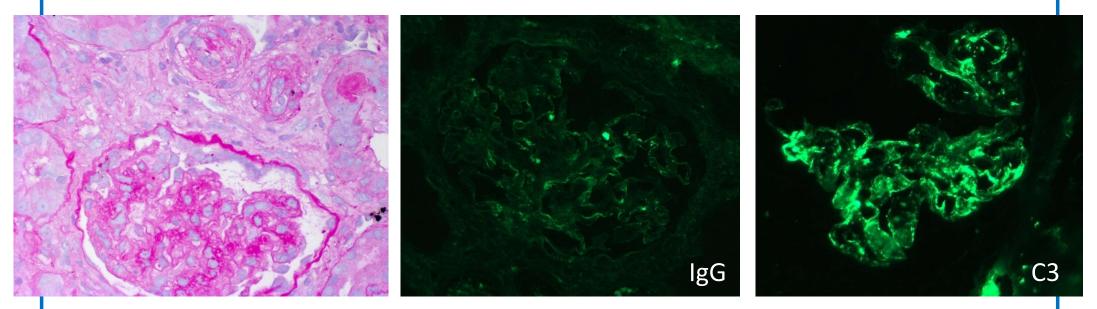
A 5-year old child was transfered in May 2014 from the Cosenza Pediatric Department with HUS,

requiring hemodialysis.

UPON ARRIVAL

He presented with slight confusion, severely hypertensive

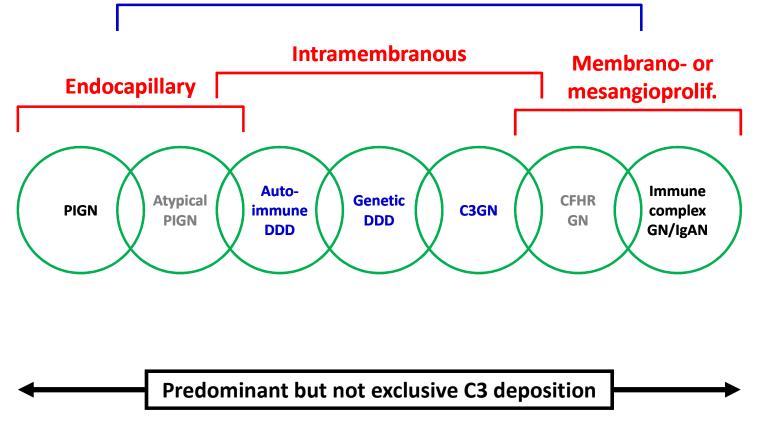
- Hb 8.4 g/dl and 66.000 platelets/mmc
- terminal renal failure
- low C3 (51 mg/dl, normal range 90-180 mg/dl), with normal C4
- nephrotic-range proteinuria with red blood cells and casts in the urinary sediment
- stool culture and serum antibodies were negative for VTEC
- ADAMTS13 levels were slightly reduced (40%)


1) a full workup of complement mutations was performed

2) therapy with eculizumab was started

Following start of eculizumab, platelets rapidly increased and after 10 days hemodialysis was discontinued.

However, renal function remained abnormal with proteinuria in the nephrotic range and persistently low circulating C3.


Therefore, a renal biopsy was performed, which showed:

Courtesy of Dr Diomedi-Camassei

Clinical, histological and molecular overlaps

C3 glomerulopathies

Adapted from Zipfel et al, Molecular Immunology (2015)

C3G: OPBG experience on 32 pediatric patients

Clinical presentation	Urine	Bio	psy			Therap	y		Outo	ome
(number of patients)	M.E.	C3GN	DDD	None	ACEi	PDN	MMF/CsA	ECUL.	PR NoR	CR
Acute PIGN (13)	100%	92%	8%	31%	62%	77%	0%	0%	0%	100%
Nephrotic syndr. (11)	18%	91%	9%	0%	100%	100%	82%	18%	45%	55%
Random urine (8)	0%	50%	50%	13%	88%	50%	13%	0%	13%	88%

C3 glomerulopathy outcome: Servais

Table 1 | Clinical and biological data according to histological type

	All	MPGN 1	DDD	GNC3	P-value
N	134	49	29	56	
Sex (M/F)	81/53 (60.4%)	32/17 (65.3%)	17/12 (58.6%)	33/24 (58.9%)	NS
Children ^a /adults	52/82 (38.8%)	21/28 (42.8%)	17/12 (58.6%)	14/42 (25.0%)	NS
Age at diagnosis (years)	24.3 ± 18.6	20.7 ± 16.8	18.9 ± 17.7	30.3 ± 19.3	<0.05 ^c and <0.01 ^d
Proteinuria (g/day)	4.9 ± 4.1	6.9 ± 4.4	5.6 ± 4.5	3.6 ± 3.3	< 0.05 ^c
Nephrotic syndrome	58 (41.1%)	32 (65.3%)	11 (37.9%)	15 (26.8%)	< 0.0001 ^c and 0.02 ^e
Microhematuria	83 (58.8%)	25 (51.0%)	22 (75.8%)	36 (64.3%)	NS
HBP	43 (30.5%)	16 (32.6%)	6 (20.7%)	21 (37.5%)	NS
eGFR (ml/min per 1.73 m ²)	69.3 ± 36.6	73.7 ± 33.7	75.5 ± 38.8	65.9 ± 37.4	NS
ACE inhibitor/ARB treatment	64 (45.4%)	27 (55.1%)	10 (34.5%)	27 (48.2%)	NS
Immunosuppressive treatment	61 (43.2%)	28 (57.1%)	14 (48.3%)	19 (33.9%)	0.02 ^c
Follow-up (years)	11.2±11.2	11.7 ± 12.0	12.0 ± 12.1	10.2 ± 10.1	NS
At last follow-up					
eGFR (ml/min per 1.73 m ²)	50.4 ± 39.5	47.7 ± 40.3	53.8 ± 40.3	50.9 ± 37.1	NS
Proteinuria (g/day)	2.2 ± 2.7	2.4 ± 3.5	1.4 ± 1.6	2.1 ± 2.4	NS
Nephrotic syndrome	19 (14.1%)	8 (16.3%)	2 (6.9%)	9 (16.1%)	NS
Duration of evolution until ESRD ^b (years)	10.3 ± 10.2	10.1 ± 9.8	9.8 ± 11.6	10.8 ± 10.0	NS
Dialysis	49 (36.6%)	20 (40.8%)	12 (41.4%)	17 (30.3%)	NS
Age at dialysis (years)	35.6±17.6	30.3 ± 17.2	36.9 ± 18.1	40.8 ± 16.9	NS
Renal transplantation	35 (26.1%)	14 (28.6%)	11 (37.9%)	10 (17.8%)	NS
Recurrence	18 (51.4%)	6 (42.8%)	6 (54.5%)	6 (60%)	NS
 Thrombotic microanglopathy 	6 (17.1%)	2 (14.3%)	3 (27.3%)	1 (10.0%)	NS
 Vascular rejection 	2 (5.8%)	1 (7.1%)	0 (0%)	1 (10.0%)	NS

Risk factors of poor long-term outcome in C3G

Multivariate analysis of the association of long-term renal outcome with clinical, laboratory and genetic features.

	All patients				
	HR	HR 95%CI	р		
Absence of mutations or C3NeFs	7.1	1.9-26.3	0.004		
Sclerotic glomeruli (% of glomeruli)	69.3	3.1-1553	0.008		
Crescents (% of glomeruli)	39.7	3.3-481	0.004		
Nephrotic syndrome at onset	10.9	2.5-47	0.002		

HR: hazard ratio calculated by Multivariate Cox proportional-Hazards analysis. CI: confidence Interval.nc: not calculable. Nephrotic syndrome was defined as: 24-h proteinuria exceeding 3.5 g in adults or 40 mg/h/m2 in children together with albuminemia \leq 3 g/dL. Intensified immunosuppression was also included in multivariate Cox Regression analysis but was not significantly associated with progress to ESRD (HR = 3.9, 95%CI 0.65–23.9, p = 0.138).

latropoulos et al, Mol Immunol 2016

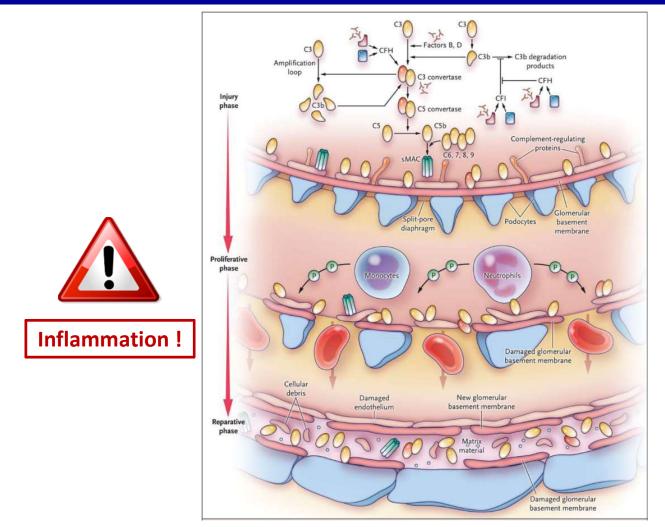
Autoimmune forms of C3G

C3 nephritic factor (C3NeF):

- Differences in the stabilization of the C3 convertase
- May disappear spontaneously

CFH (mini-)antibody

CFB autoantibody

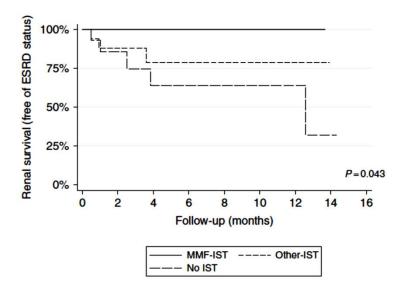

C3b autoantibody

Genetic forms of C3G

Courtesy of Christoph Licht

Gene / Protein	Mutation / Variant	Function	Phenotype	Reference
CFH	Mutations: - homo- / compound heterozygous - SCRs 1-4 (regulatory domain) - Cys residues (tertiary structure)	 Intact surface binding Reduced C3b binding Loss of CFH cofactor and decay accelerating activity 	DDD C3GN	Levy, Kidney Int 1986 Meri, J Exp Med 1992 Vogt, Pediatr Nephrol 1995 Ault, J Biol Chem 1997 Dragon-Durey, J Am Soc Nephrol 2004 Licht, Kidney Int 2006 Habbig, Kidney Int 2009
CFH	Polymorphisms: - Y402H (SCR 7)	 Impaired C3b / heparin binding Impaired CFH cofactor activity 	DDD	Hageman, Proc Nat Acad Sci 2005 Abrera-Abeleda, J Med Genet 2006 Abrera-Abeleda, J Am Soc Nephrol 2011
CFHR3-1	CNV: - CFHR3-1 hybrid gene	Not testedPominant negative effect	C3GN	Malik, J Am Soc Nephrol 2012
CFHR5	CNV: - Duplication within CFHR5 exons 2/3	Not tested?Dominant negative effect	CHFR-GN	Gale, The Lancet 2010
CFHR5	Polymorphisms	- Not tested	DDD	Abrera-Abeleda, J Med Genet 2006 Abrera-Abeleda, J Am Soc Nephrol 2011
C3	Mutations: - Heterozygous deletion	 C3_{mut} resistant to cleavage by C3bBb C3_{mut} convertase – resistant to CFH inactivation 	DDD	Martinez-Barricarte, J Clin Invest 2010
C3	Polymorphisms	- Not tested	DDD	Smith, J Am Soc Nephrol 2007 Abrera-Abeleda, J Am Soc Nephrol 2011

How to treat C3G?



Sethi S, Fervenza FC NEJM 2012

Treatment of C3G: mycophenolate

Effectiveness of mycophenolate mofetil in C3 glomerulonephritis

Cristina Rabasco¹, Teresa Cavero¹, Elena Román², Jorge Rojas-Rivera³, Teresa Olea⁴, Mario Espinosa⁵, Virginia Cabello⁶, Gema Fernández-Juarez⁷, Fayna González⁸, Ana Ávila⁹, José María Baltar¹⁰, Montserrat Díaz¹¹, Raquel Alegre³, Sandra Elías¹², Monserrat Antón¹³, Miguel Angel Frutos¹⁴, Alfonso Pobes¹⁵, Miguel Blasco¹⁶, Francisco Martín¹⁷, Carmen Bernis¹⁸, Manuel Macías¹⁹, Sergio Barroso²⁰, Alberto de Lorenzo²¹, Gema Ariceta²², Manuel López-Mendoza⁶, Begoña Rivas⁴, Katia López-Revuelta⁷, José María Campistol¹⁶, Santiago Mendizábal², Santiago Rodríguez de Córdoba²³ and Manuel Praga^{1,24} for the Spanish Group for the Study of Glomerular Diseases (GLOSEN) KI 2015; 88(5):1153-60

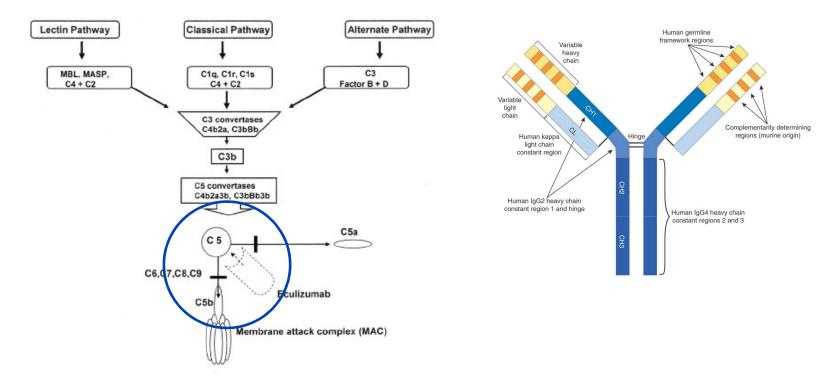
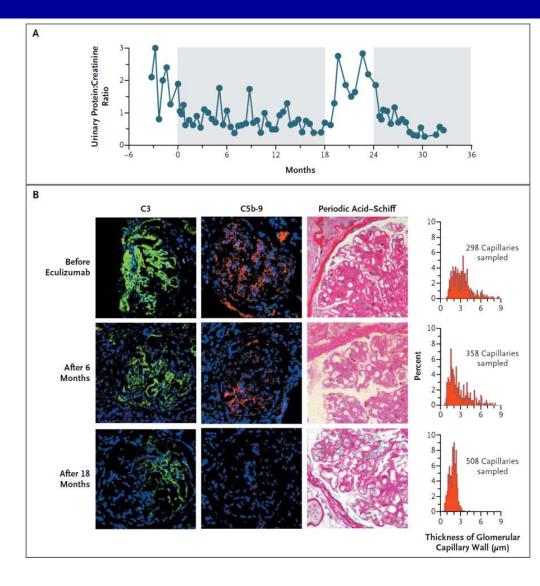

F	Patie	nts at	risk ac	cordir	ng to n	nonths	of foll	ow-up)
Group of treatment	0	2	4	6	8	10	12	14	16
MMF-IST	22	15	10	5	4	4	2	1	1
Other-IST	18	13	10	6	4	2	2	1	1
No IST	20	14	11	7	6	6	5	4	3

Figure 1 Renal survival (defined by a status free of end-stage renal disease) in patients treated with MMF (MMF-IST), other IST (other-IST), and no IST (non-IST). ESRD, end-stage renal disease; IST, immunosuppressive treatments; MMF, mycophenolate mofetil.

Treatment of C3G: KDIGO guidelines



Complement-targeting therapies: anti-C5 blocks the terminal complement pathway

Rother et al. Nature Biotechnology 2007

Treatment of DDD with anti-C5 (eculizumab)

ATTENTION:

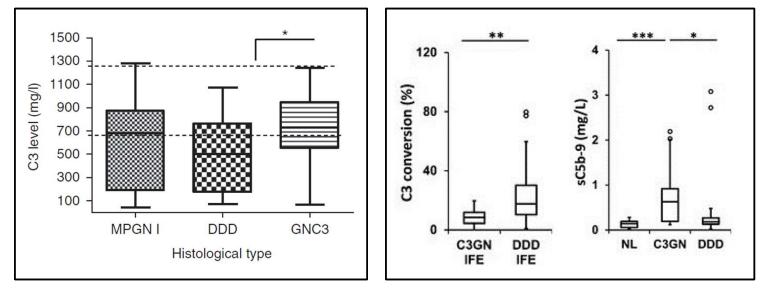
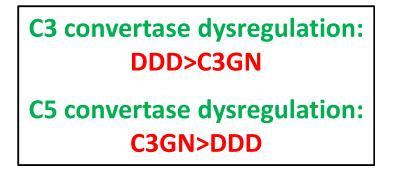
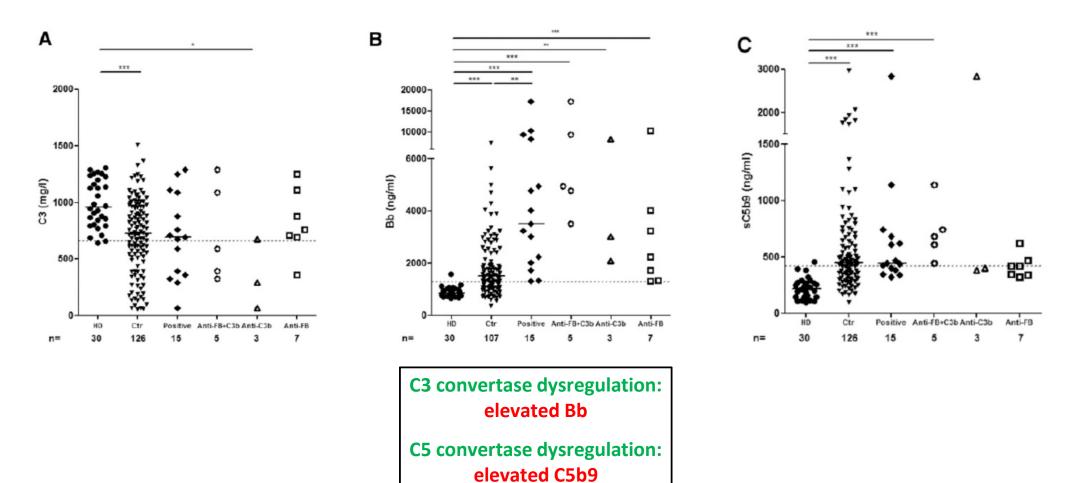

- not all patients respond so well
- it may work better in those with elevated sC5b9
- expensive and there is a risk of meningococcal infection

Figure 1. Change in the Patient's Urinary Protein:Creatinine Ratio, the Glomerular Deposition of C3 and C5b-9, and the Thickness of Glomerular Capillary Walls before Treatment and after 6 and 18 Months of Treatment.

Panel A shows the changes in the patient's urinary proteinscreatinine ratio (mg/mg), starting 6 weeks before the first eculizumab infusion. The shaded areas represent the time during which the patient was undergoing treatment with eculizumab and the white areas the time before therapy began and the period during which therapy was discontinued Panel B shows stained specimens from renal biopsies performed before treatment with eculizumab and a 4 and 18 months during the first treatment period. During this period, the clearance of C3 and C5b deposition is nearly complete (C3 is shown in green fluorescence and C5b-9 in red fluorescence; nuclei are stained in blue); histologic improvement is revealed with periodic acid–Schiff staining. The far right column shows the progressive reduction in the thickness of the glomerular capillary walls in response to treatment. Capillary thickness was estimated by observing the width of positive periodic acid–Schiff staining in all peripheral capillary loops of analyzed glomerule; the number of capillaries sampled at the time of each biopsy is provided.

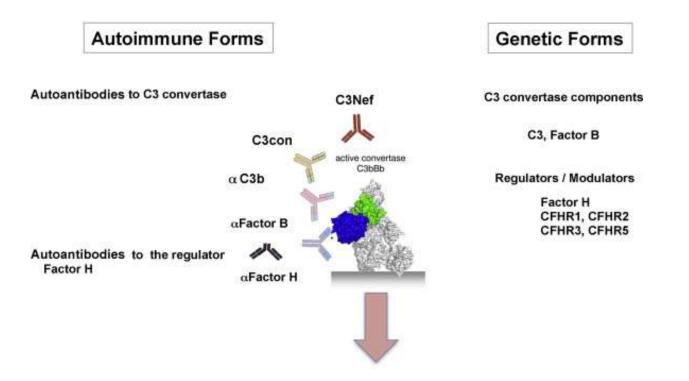

Vivarelli et al, New England J Med 2012

Circulating C3 and C5b-9 according to renal histology

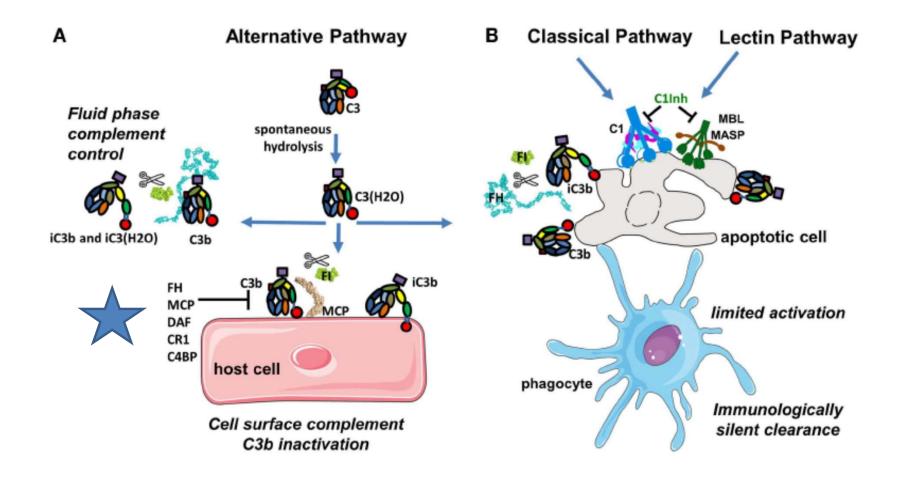


Servais et al, Kidney Int 2012

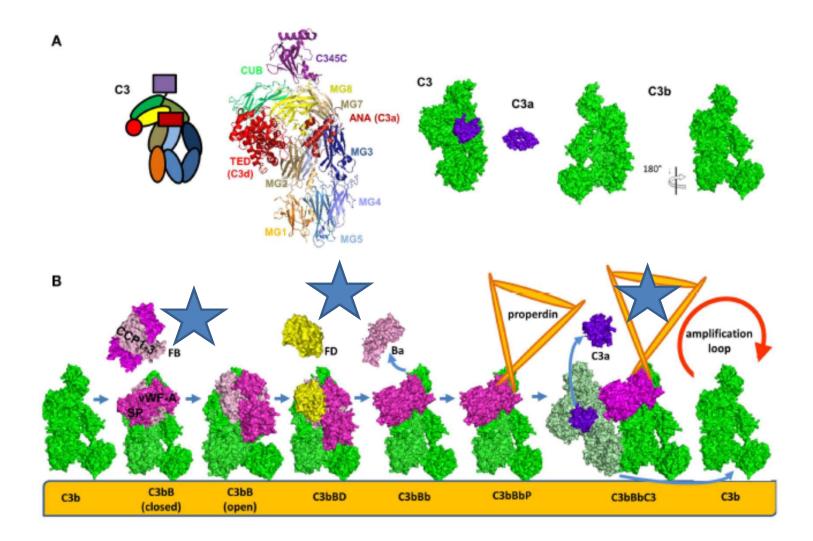
Yuzhou Zhang et al. CJASN 2014


Circulating C3, C5b-9 and Bb according to anti-C3b and anti-FB

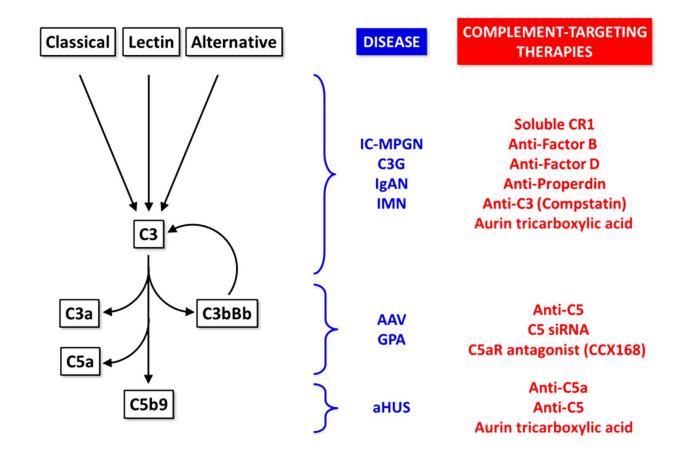
Marinozzi et al, JASN 2017


Different mechanisms of disease in different patients with C3G

Zipfel PF Molecular Immunology, 2015



Alternative pathway of complement dysregulation


Targeting the alternative pathway

Targeting the alternative pathway

Complement-targeting therapies on the horizon

Courtesy Christoph Licht

Take-home messages

1) C3 glomerulopathy is not a single disease entity but rather a disease spectrum due to AP dysregulated activation which may be

- Permanent (genetic) as in genetic C3G
- Transitory (infectious trigger) as in atypical PIGN
- Concomitant to an immune-mediated mechanism such as in antibody-mediated C3G, IC MPGN

2) C3G is extremely heterogenous and less rare than we thought. Some cases may spontaneously improve. Some patients have a relapsing course.

3) Treatment of C3G should be tailored on a pathogenetic basis to target the involved mediator. Immunosuppressive drugs (PDN, MMF) may be beneficial both to treat the immune-mediated mechanism, if present, and if there is evidence of renal inflammation

4) Anti-C5 therapy may be beneficial in some, but not in all patients

THANK YOU

- Prof Joshua Thurman
- Prof Carla Nester
- Prof Christoph Licht
- Prof Matthew Pickering
- Dr Marina Noris
- Dr Elena Bresin
- Dr Veronique Fremeaux-Bacchi
- Dr Andrea Pasini
- Dr Domenico Sperlì
- Prof Francesco Emma

The patients and their families

