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Abstract. Machine Learning (ML) achievements enabled automatic
extraction of actionable information from data in a wide range of decision-
making scenarios. This demands for improving both ML technical aspects
(e.g., design and automation) and human-related metrics (e.g., fairness,
robustness, privacy, and explainability), with performance guarantees at
both levels. The aforementioned scenario posed three main challenges: (i)
Learning from Complex Data (i.e., sequence, tree, and graph data), (ii)
Learning Trustworthily, and (iii) Learning Automatically with Guarantees.
The focus of this special session is on addressing one or more of these
challenges with the final goal of Learning Trustworthily, Automatically,
and with Guarantees from Complex Data.

1 Context

The use of Machine Learning (ML) for extracting actionable information from
data has recorded unprecedented success in a wide range of decision-making sce-
narios, ranging from healthcare to education and cybersecurity. However, the
increasing digitalization and datification of all aspects of people’s daily life, and
the consequent growth in the use of personal data, are increasingly challenging
the current development and adoption of ML algorithms. First, the increasing
complexity and amount of data available in these applications strongly demands
for ML models that can be trained directly on complex structures. Indeed,
Graphs inherently capture information about entities, attributes, and relation-
ships between them, rather than requiring domain experts and data scientists to
face the challenging and time-consuming problem of designing a suitable vector-
based data representation. Second, ML algorithms should not only be designed
to achieve high technical and functional standards. As the automated deci-
sions provided by these algorithms can have a relevant impact on the people’s
life, their behavior has to be aligned with the values and principles of individ-
uals and society. This demands for designing automated algorithms that we,
as humans, can trust, fulfilling the requirements of fairness, robustness, privacy,
and explainability. Third, designing effective ML algorithms requires skills and
expertise developed at different levels. This substantially hinders the democrati-
zation and widespread availability of such technology for society at large, which
in turn demands for improving the level of automatization and systematization
of their design process, while also providing guarantees on their performance.
In summary, the next generation of ML algorithms should not only be able to
learn from graph data but it should also be automatic, guaranteed, and trust-
worthy. To this end, there is a need to simultaneously tackle the aforementioned
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challenges of (i) learning from graphs, (ii) learning trustworthily, and (iii) learn-
ing automatically with guarantees, within a cutting-edge unified theoretical yet
practical framework.

2 State-Of-The-Art

The field of learning from graphs has a long history but yet fast evolving [1, 2].
Kernel-based ML methods constitute a reliable approach for many learning tasks
obtaining state-of-the-art performance in multiple applications [3]. They are
based on the idea of defining (possibly implicitly) substructures as features. In
parallel, neural-based models were developed to efficiently and automatically
learn these features, with approaches based on recursion [4] or on deep graph
convolutions [5] that started the research field. The underlying idea is to com-
pute a representation for each element that depends on its local neighborhood,
iterating this process to let information flow across the structure. Reservoir
computing [6], graph generative models [7], and Bayesian methods [8, 9] are just
a few of the most effective further directions of the field. Still, learning from
graphs poses many open research challenges like further improving efficiency by
reservoir computing [6] or incremental approaches [5], analyzing in depth the
properties related to the informative content of layers [10], studying long-term
dependencies issues [11], and understanding causal factors encoded in the lay-
ers [12]. Cross contamination between different approaches is also needed by
data-dependent representations kernel definition [13] via multiple kernel learn-
ing [14] or by incorporating priors provided by graph kernels in graph neural
networks [15, 16]. Finally, enriching these methods with trustworthiness and
automatization into a unified framework with guarantees on both technical and
human-relevant metrics remains an open problem.

The field of learning trustworthily is no less fast evolving albeit much younger.
It focuses on incorporating the human-relevant requirements of fairness, robust-
ness, privacy, and interpretability into ML [17, 18]. Fairness concerns were raised
by society when ML started to show human biases (e.g., gender or race bi-
ases) requiring the development of formal fairness metrics and mitigation strate-
gies [19, 20]. Robustness requires ML models to be neither misled by carefully-
crafted malicious input data nor induced into unexpected errors by poisoned
training data [21]. Privacy-preserving ML addresses the self-contradictory prob-
lem of keeping private information about individual observations while learning
useful information about a population. Current solutions [22–24] include cor-
rupting data or models outcomes when data need to be centralized (e.g., via
differential privacy) or keeping the learning procedure decentralized (e.g., via
distributed protocols). Finally, explainability aims to provide model/outcome
explanations for black-box ML (e.g., deep networks) engendering trust in their
users. In fact, especially on graphs where glass-box ML tends to perform
poorly [25], black-box ML often provides good performance. Recent research
has unveiled that, not surprisingly, ML algorithms trained on graphs may suffer
even more from untrustworthiness [26–29]. This highlights the need of addressing
the problem of learning trustworthily on graphs by providing suitable definitions
of robustness, fairness, privacy and interpretability and ways to optimize them.
Moreover, most of the current works, with very few exceptions [30–32], are fo-
cused on a single aspect of trustworthiness, without considering the problem
from an holistic perspective.

The third research field, learning automatically with guarantees, focuses on
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the problem of tuning and assessing the ML performance trained on graphs by
means of both technical and human-relevant metrics. Tuning the performance
of a learning algorithm (e.g., optimal architecture and hyperparameter configu-
ration) is a key problem for which effective and theoretically-grounded solutions
have not been found yet [33]. The problem is even more challenging when the
architectural hyperparameters are large in number, discrete, and non-linearly
related. Gradient-based, gradient-free, and game-theoretic-based methods are
the state-of-the-art solutions [34–36]. Nevertheless, when multiple metrics need
to be optimized, multiple optimal solutions exist and finding the best compro-
mise introduces an additional level of complexity. Guaranteeing the performance
is closely related to theoretically characterizing the computational capabilities
and the approximation abilities [37–40], the worst-case behavior [41, 42], and the
asymptotic and finite sample behavior [33, 43] using different metrics of accuracy
and trustworthiness. While some attempts to optimize and bound performance
by specific metrics have been pursued [44–48], a unified theoretically-grounded
approach for the graph domain is not yet available.

3 Future Perspectives

The problem of Learning Trustworthily, Automatically, and with Guarantees
from Complex Data is to simultaneously face its three main challenges, (i) Learn-
ing from Graphs, (ii) Learning Trustworthily, and (iii) Learning Automatically
with Guarantees, proposing a unifying framework to review, generalize, and ad-
vance the state of the art.

The first challenge needs to be tackled along four lines: Kernel-, Neural
Network-, Incremental/Randomized-, and Hybrid-based approaches for graphs.

Kernel-based ML for graphs usually resorts to a convex learning problem,
even though the kernel must be defined before seeing the data either implicitly
(i.e., via kernel trick) or explicitly (i.e., via feature map). While implicit kernels
can consider a combinatorial number of features, explicit kernels can be defined
to be very efficient. Nevertheless, in both cases, the problem is to simultane-
ously define a rich and expressive feature space developing efficient and effective
kernels. To this end, it is required to design kernel methods able to induce a
data-dependent representation via incremental or multiple kernel learning. Ker-
nels allow one to directly include constraints of fairness (fair kernels), robustness
(including differentiability with respect to the original space), privacy (includ-
ing noise injection in the feature design), explainability (leveraging convexity to
evaluate the quality of the approximation performed by the interpretable mod-
els), and automatization (designing kernels for graphs that are differentiable
with respect to the hyperparameters).

Graph Neural Networks - GNNs aim at learning a data-dependent repre-
sentation from scratch using a layered approach in which each layer encodes
a particular view of the structure. Some of the challenges of this field are re-
lated to the intrinsic difficulty in optimizing GNNs. A possible solution is the
definition of GNNs of quasi-linear complexity in the size of the structure (e.g.,
via subsampling) and to exploit the minimum number of layers to effectively
propagate contextual information. Other compelling challenges are the need for
developing more expressive convolutional layers (e.g., via attention mechanisms),
understanding and leveraging the effect of long-term dependencies in arbitrarily
complex structures, fully exploiting hierarchy and compositionality of the fea-
ture spaces, and studying the dynamical properties of recurrent architectures.
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GNNs also allow for graph generation, which has the potential of being used in
many applications or to extend small datasets. The generation of graphs using
a hierarchical strategy, e.g., by generating a graph at different resolution levels,
may potentially enable generation of larger graphs, overcoming the main limita-
tion of current methods. These ideas can be instrumental towards the design of
representation learning methods for graphs with fairness constraints, leveraging
subsampling to enforce privacy, and exploiting attention in convolutional GNNs
to facilitate and improve visual explanation. Finally, it is possible to define graph
deterministic or probabilistic aggregators suited to federated learning (e.g., not
requiring the synchronization of messages).

Incremental and randomized models for graphs address fundamental open
issues concerning the design of efficient models. Indeed, graph ML models of-
ten incur a significant computational burden that prevents scalability to large
datasets and structures in contemporary real-world applications. To this aim,
it is possible to develop GNNs and Bayesian methods with randomized, incre-
mental, and online approaches. Randomization via reservoir computing leads
to efficient design of recurrent GNNs by keeping the recursive part untrained.
Combined with the study of the properties of these systems (e.g., contractiv-
ity of the state dynamics), it is possible to further develop extremely efficient
novel methodologies for graphs. Incremental approaches rely on the idea that
the layers and their units can be incrementally trained and tuned by optimizing
a metric of interest (including the human-relevant ones). Efficiency is obtained
thanks to this layer-wise training strategy, which also enables an adaptive de-
composition of the learning task in sub-tasks. Exploiting this idea in GNNs
will also allow their self-design. Online learning enables one to learn a model
on-the-fly using a possibly-infinite data stream (which can be easily enriched
with adversarial streams to increase robustness) dealing also with concept drift
(e.g., societal shift in fairness definitions). Strong time and memory constraints
are present in this problem that can be faced via dynamic feature selection and
model approximation techniques.

Hybrid approaches deal with the challenge of cross-contaminating the ap-
proaches just described. While in most applications there is a clear winner in
the zoo of all the ML models (e.g., convolution on image recognition) when it
comes to dealing with graphs it is unclear whether kernels or GNNs will pro-
vide the best solution. This motivates the effort of trying to take the best from
the different approaches to derive new methods that can outperform the exist-
ing ones. It is then required to combine the flexibility and efficiency of GNNs
with the probabilistic formulation of Bayesian networks. This will produce novel
graph ML methods that can model the generation of latent causal factors in the
structure by approximating intractable probability distributions via neural mod-
ules. Another possibility is to generate kernels from the representation learned
by probabilistic models and GNNs, or vice-versa.

The second challenge, namely to learn trustworthily is exacerbated and de-
mand for specific solutions when dealing with graphs.

First there is a need to focus on ensuring that ML models do not discrimi-
nate subgroups in the populations (e.g., based on gender, ethnicity, and politi-
cal/sexual orientations). While many approaches have been proposed for vector-
based ML, a unifying framework that summarizes and generalizes them is still
missing. Moreover, their extension to the graph domain is largely unexplored. In
particular, two fundamental questions must be addressed: (i) how to design no-
tions of fairness that also account for the relations among entities and (ii) how to
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impose them via pre-, in-, and post-processing methods. For (i) fairness metrics
for graphs should be able to capture unfair behaviour which is not simply direct
(e.g., discriminate someone based on its political orientation) but also indirect
(e.g., favour someone based on connection with powerful people). These met-
rics can be then used for optimization and assessment of fairness requirements.
For (ii) pre-processing methods require modification of data, which in the graph
domain demands for the development of suitable methods to learn fair repre-
sentations from discrete and complex structures, removing sensitive information
via data unbiasing. In-processing methods require to further constrain the learn-
ing process with non-linear, non-convex, and non-differentiable constraints that
need to be approximated or relaxed to be efficiently imposed during the learning
phase (of both shallow or layered approaches learning fair representations) while
maintaining their cognitive meaning. Finally, post-processing methods are less
affected by the input structure as they simply require to trick the model out-
come (e.g., via histogram matching), thus allowing one to easily exploit classical
approaches even on graphs.

Understanding and improving adversarial robustness of ML algorithms trained
on graphs poses three main issues: (i) a systematization of the threats that may
affect these algorithms; (ii) a proper methodology and evaluation framework to
assess their adversarial robustness under the envisioned threat models; and (iii)
suitable countermeasures to mitigate the impact of adversarial attacks as well
as the impact of natural concept drift that may occur during operation of such
systems. For (i), there is a need for planning to extend existing threat models,
including test-time (evasion) and training-time (poisoning) attacks, to graphs
and discrete structures by enumerating feasible and practical data manipulation
techniques (e.g., node injection or removal in graphs). For (ii), there is a need
for using the identified perturbation models and threats to propose a systematic
evaluation framework. This framework will provide a definition of adversarial
robustness depending on the given perturbation model, and protocols and al-
gorithms to evaluate it, either via empirical attack simulations or theoretical
worst-case analyses. For (iii), there is a need for working on countermeasures to
mitigate the impact of the envisioned attacks by leveraging two main research
directions. The first countermeasure that can be developed is game-theoretical
to model the interaction between the learning process and the considered at-
tacks. The second can be to develop techniques to detect and reject samples
that are out of the training distribution and cannot be thus classified with suf-
ficient reliability from the ML algorithm.

In order to ensure that ML models preserve the privacy of the individuals
while learning actionable information from graph data it is possible to picture
two main scenarios: (i) when data must/need to be centralized and (ii) when
data can/must be kept distributed. In scenario (i) data or outcomes of an
ML model need to be corrupted with noise to keep the individual observations
private while learning useful and actionable information. This process is more
challenging in graphs where information is scattered in entities, attributes, and
relations among entities. Hence, it is required to define novel privacy notions
and noise injection methods able to preserve the privacy of the individuals both
directly (e.g., differential attacks to the features of a single node in the graph)
and indirectly (e.g., differential attacks to the structure of the graph). In scenario
(ii) federating the learning process to guarantee privacy using also cooperative
game-theoretic approaches where nodes are actors aiming to learn an optimal
model can be a good solution. However, an honest-but-curious curator (server)
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may still infer clients’ information by examining their contributions to learning.
To overcome this issue, it is possible to complement federated learning with
secure aggregation. Moreover, by adding further synchronization/encryption
steps, privacy can be guaranteed also against an active adversary. Finally, hybrid
scenarios where data are partially centralized and partially distributed will also
be investigated.

Finally there is a need for developing explainability techniques customized for
graph domains. To this end, it is required to consider two main research direc-
tions: (i) to introduce notions/definitions of explainability suited to graphs, and
(ii) to make black-box models more explainable by adapting and developing novel
methods to graphs. For (i), the problem is how to define explainability to under-
stand how attributes, entities and relationships contribute to the decisions of the
model. For (ii), it is required to adopt different strategies, based on either local
model/outcome explanation or global inspection methods. The first strategy is
to define ML models whose inherent architectural properties ease the inspection
of the model adapting current explainability methods (e.g., relying on an atten-
tion mechanism to automatically identify only the most relevant substructures).
The second strategy is to leverage ML models which intrinsically exhibit model
outcome explainability properties (e.g., exploit self-organizing maps, or their
probabilistic counterparts, to identify relationships between different but func-
tionally similar patterns, or using Bayesian methods to identify the latent causal
factors in the data). The third strategy aims to design new explainable graph
generation algorithms, using iterative algorithms whose decisions are controlled
by explainable GNNs.

The third challenge, Learning Automatically and with Guarantees, requires
the solution of fundamental theoretical and practical problems which become
even more challenging when dealing with graphs.

First it is required to focus on automated learning of architectures and hy-
perparameters. No-free-lunch theorems state that there is no way of building an
ML algorithm able to perform better than others on a reasonably large range
of applications. For this reason, tuning the performance of an ML algorithm,
i.e., finding the optimal values of the hyperparameters or the right architecture
for an ML model, is mandatory to reach satisfying accuracies. This problem,
even if crucial, has very few theoretically-grounded solutions and researchers
still largely rely on grid, random, or gradient-(free)-based search. In GNNs or
multiple kernel learning, the number of hyperparameters or architecture config-
urations is so huge that gradient-based methods are becoming the only viable
choice. However, the gradient may be available for some hyperparameters but
not for others, requiring the design of efficient gradient-free and hybrid optimiza-
tion methods. Another promising research direction is to exploit cooperative
transferable-utility mathematical games where an objective (expressed, e.g., in
terms of multiple metrics to optimize) and an utility (expressed, e.g., in terms
of hyperparameters or architectural configurations) can be transferred from one
player to another without any loss. Moreover, multiple objectives (e.g., accu-
racy, fairness, robustness, explainability) need to be simultaneously optimized to
meet the previously mentioned trustworthy requirements. This makes the prob-
lem even more challenging as it requires constructing the corresponding Pareto
Frontier to identify the best compromise solutions. It is thus crucial to consider
that the architecture and hyperparameters of new ML models for graphs will
need to be tuned with respect to both technical (e.g., accuracy and efficiency)
and human-related metrics (e.g., trust-related metrics).
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For what concerns the problem of learning with guarantees it is required to
deliver theoretical analysis in terms of approximation, computational, statistical,
and worst-case behaviour. For what concerns the computational and approx-
imation capabilities, studying the topological characteristics of input–output
functions is probably the most promising research direction. Another research
direction focuses on networks for graphs extending two existing theories (i.e.,
Weisfeiler-Lehman test and unfolding equivalence), which separately provide
only few suggestions about the relationship between the characteristics and the
capabilities of the networks. In this way, it is possible to gain insights on how to
overcome the limits of current architectures (e.g., many GNNs are not universal
approximators) and how to design new ones. The choice of a suitable GNN
architecture can be investigated by introducing an application-specific proba-
bility distribution on a set of classification functions and then estimating the
expected correlation between functions sampled from this distribution and net-
work input-output mappings. The effects of graph size (e.g., number of nodes
or connections) on these correlations can be analysed by exploiting geometrical
properties of high-dimensional spaces. ML model sparsity with respect to dif-
ferent measures can be estimated by introducing norms defined in the spaces
of input-output mappings computable by a given ML model and expressed via
convex hulls of sets of the ML sub-modules (e.g., graph convolutional layers).
Statistical performance can be estimated via both asymptotic and finite sam-
ple bounds on the ML models generalization ability. Doing it for complex ML
architectures is challenging as it requires rethinking generalization (e.g., over-
fitting does not imply poor generalization in deep networks). The problem is
exacerbated when dealing with multiple technical and human-relevant metrics
(e.g., accuracy, efficiency, privacy, fairness, explainability, and robustness) which
suffer from poor statistical and mathematical properties (they are non-smooth,
non-linear, and ill-defined). Moreover, some of these metrics have proven to be
incompatible with each other and therefore, suitable approaches able to relax
and combine these metrics while maintaining their compatibility for deriving
asymptotic and finite sample bounds need to be designed. Studying the worst-
case behavior is also a challenging task for which effective solutions exist only
for small networks. The first problem is to find suitable abstractions for net-
works working on graphs. Abstraction-refinement has proven to be effective for
software verification and, as the complexity of ML models increases, over approx-
imation by computable abstraction is promising. Second problem is dealing with
properties whose semantics are not given in terms of convex and compact data
sets. Non-convex and non-compact data sets can be handled as unions of convex
sets, but research is needed to make these representations practical. Finally,
scalability is a crucial problem in worst-case methods and it is possible to lever-
age on algorithmic (e.g., abstraction) and computational (e.g., parallelization)
approaches to make graph ML models amenable to verification.

The three challenges identified above are deeply interconnected and offer
ideas for contamination and unification. However, these challenges are currently
mostly faced independently because of their complexity. Consequently it is re-
quired to put them under a common framework in the effort of delivering a
holistic approach to the problem of learning trustworthily, automatically, and
with guarantees from graph data. Given a specific problem equipped with (i) a
dataset, (ii) technical requirements (e.g., minimum satisfying accuracy, no cen-
tralized data collection, limited computational requirements), and (iii) human-
relevant metrics (e.g., no discrimination against needy people or ensuring right of
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explanation), it is required to automatically build an ML model able to address
the problem by leveraging the information present in the database, automati-
cally selecting the best technical solution (e.g., noise injection, encryption, or
federation for the privacy requirements), the best architecture (e.g., Bayesian or
convolutional networks or kernels), the best hyperparameters (e.g., number of
units or kernel hyperparameters), and guaranteeing the final performance both
in terms of technical and human-relevant metrics.

4 The contributions of the ESANN special session

A total of four studies were accepted in the special session.
In The Benefits of Adversarial Defense in Generalisation [49], authors ob-

served how recent researches have shown that models induced by ML, in partic-
ular by deep learning, can be easily fooled by an adversary who carefully crafts
imperceptible, at least from the human perspective, or physically plausible mod-
ifications of the input data. This discovery gave birth to a new field of research,
the adversarial ML, where new methods of attacks and defense are developed
continuously, mimicking what is happening from a long time in cybersecurity.
In this paper authors have shown that the drawbacks of inducing models from
data less prone to be misled actually provides some benefits when it comes to
assessing their generalisation abilities.

In Boundary-Based Fairness Constraints in Decision Trees and Random Fo-
rests [50], authors recall how popular Decision Trees and Random Forests are for
practitioners in order to solve real-world problems. However, Decision Trees may
sometimes learn rules that treat different groups of people unfairly, by paying
attention to sensitive features like for example gender, age, income, language,
etc. Even if several solutions have been proposed to reduce the unfairness for
different ML algorithms, few of them apply to Decision Trees. This work aims
to transpose a successful state-of-the-art method to reduce the unfairness in
boundary based ML models [51] to Decision Trees.

In Robust Malware Classification via Deep Graph Networks on Call Graph
Topologies [52], authors propose a malware classification system that is shown to
be robust to some common intraprocedural obfuscation techniques. Indeed, by
training the Contextual Graph Markov Model on the call graph representation
of a program, authors classify it using only topological information, which is
unaffected by such obfuscations. In particular, authors show that the structure of
the call graph is sufficient to achieve good accuracy on a multi-class classification
benchmark.

In Slope: A First-order Approach for Measuring Gradient Obfuscation [53],
authors observe how evaluating adversarial robustness is a challenging problem.
Many defences have been shown to provide a false sense of security by uninten-
tionally obfuscating gradients, hindering the optimisation process of gradient-
based attacks. Such defences have been subsequently shown to fail against adap-
tive attacks crafted to circumvent gradient obfuscation. In this work, authors
present Slope, a metric that detects obfuscated gradients by comparing the ex-
pected and the actual increase of the attack loss after one iteration. Authors
show that their metric can detect the presence of obfuscated gradients in many
documented cases, providing a useful debugging tool towards improving adver-
sarial robustness evaluations.
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