
June 2012

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

Roel PEETERS

Beveiligingsarchitectuur voor Intelligente Objecten

Security Architecture for Things That Think

Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering
Department of Electrical Engineering (ESAT)

June 2012

Jury:
Prof. dr. ir. Yves Willems, chair
Prof. dr. ir. Bart Preneel, promotor
Prof. dr. ir. Vincent Rĳmen
Prof. dr. ir. Patrick Wambacq
Prof. dr. Frank Stajano

(University of Cambridge, United Kingdom)
Prof. dr. Hervé Chabanne

(Morpho/Télécom ParisTech, France)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
of Engineering

Roel PEETERS

Beveiligingsarchitectuur voor Intelligente Objecten

Security Architecture for Things That Think

© Katholieke Universiteit Leuven – Faculty of Engineering
Kasteelpark Arenberg 1, B-3001 Heverlee(Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wĳze ook zonder voorafgaande schriftelĳke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2012/7515/47
ISBN 978-94-6018-511-3

Greetings, my friend.

We are all interested in the future,

for that is where you and I are going to spend the rest of our lives.

And remember my friend,

future events such as these will affect you in the future.

You are interested in the unknown . . . the mysterious . . . the unexplainable.

That is why you are here.

Plan 9 from Outer Space.

Acknowledgements

In de eerste plaats wil ik Prof. Bart Preneel bedanken voor de geweldige kans om
een doctoraat te starten, voor zĳn wĳze raad en tips in verband met presenteren.
Verder ben ik hem ook dankbaar voor zĳn steun aan mĳn plan om een half jaar
onderzoek te gaan doen in Denemarken. I would also like to thank Prof. Ivan
Damgård for hosting my research visit and assuming the role of advisor during
my stay in Denmark.

I am grateful to Prof. Vincent Rĳmen, Prof. Patrick Wambacq, Prof. Frank
Stajano and Prof. Hervé Chabanne for serving as jury members; and to Prof.
Yves Willems for chairing the jury. Special thanks go to Prof. Frank Stajano for
reading this thesis very thoroughly, providing lots of suggestions and correcting
my English grammar mistakes.

Ik wil de KU Leuven, het agentschap voor Innovatie door Wetenschap en
Technologie (IWT) en Aarhus Universitet bedanken om mĳn onderzoek financieel
mogelĳk te maken.

Thanks to all my co-authors and discussion partners for research related topics.
Bedankt Dave, om mĳn voorbeeld te zĳn. Dankjewel Koen, om me keer
op keer te overtuigen dat het onmogelĳke toch mogelĳk is (onder bepaalde
veronderstellingen) en al je hulp om mĳn schrĳfstĳl te verbeteren. Bedankt Fré,
voor alle wiskundige achtergrond en je ongebreideld enthousiasme telkens we nog
enkele dagen voor een deadline plots met een wiskundig probleem aankwamen.
Bedankt Jens1 om me te overtuigen van de kracht van bewĳzen voor protocols
en alle discussies. Bedankt Nicky om me te helpen bĳ het opzetten van een
gebruikersevaluatie, het was een zeer leerrĳke ervaring. Bedankt Roel, Anthony
en Ingrid voor een beetje inzicht in de hardwaregerelateerde kant van protocollen.
Thank you Junfeng for answering all questions about hardware specifications.
Thank you Dave, Stefaan, Jens and Andreas for proofreading this text.

1Thank you Filipe for volunteering your chair during my discussions with Jens.

iii

iv ACKNOWLEDGEMENTS

A big thanks to all my colleagues, without you it would have been boring.
Bedankt Elke en Wim voor de gezellige babbels in ’t lab, waarbĳ de
besjestheorie [5] mĳ zeker zal bĳblĳven. Bedankt Sebastiaan voor alle zotte
plannen die we uiteindelĳk toch nooit uitvoerden. Bedankt Stefan en Elmar om
jullie liefde voor eten en drinken met mĳ te delen. Ne dikke merci aan de bende
van het zwart hemd en rode das: Karel, Yoni, Stefaan, Dave en Dries voor al
het plezier, RAAK. A special thanks to all my office mates, of whom Li is the
constant during all the internal moves in the building. Thank you everyone for
the nice atmosphere, the BBQ’s, the weekends and the friday beers.

Tusind tak til krypto-gruppen i Århus, min forskning besøg var meget hyggelig!
During my stay I learnt a lot and had very interesting discussions with most of
you, especially Ivan, Carmit, Jesper, Thomas and Nik. I also learnt that Danes
are weird, but a very friendly people once you get to know them. Thanks for
all good times everyone and I hope to see you all in Belgium one day for some
nice “stoofvlees”2 with french fries.

Péla is de geweldigste secretaresse bĳ wie ik altĳd terechtkan voor een babbel
en allerlei vragen. Dankjewel voor de impulsen aan sociale activiteiten en je
enthousiasme. Bedankt Saartje, voor het beheren van de projecten die mĳ toe-
lieten om ook na het verlopen van mĳn beurs te blĳven op COSIC. Tusind tak
til Sara og Dorthe på Århus Universitet for hjælpen. Dankjewel Elsy, dankzĳ
jou kregen we snel al onze gemaakte kosten terugbetaald. Graag bedank ik ook
Elvira voor alles en om me nooit mĳn eerste dag op COSIC te laten vergeten.

Het afgelopen jaar was voor mĳ een emotionele achtbaan. Mama, ik ben er zeker
van dat je enerzĳds ongelofelĳk trots zou zĳn op mĳn doctoraat. Daarom draag
ik het in blĳe herinnering aan jou op. Anderzĳds zou je minstens even gelukkig
zĳn dat ik nu met Birgit de liefde ben tegengekomen. Ik wil alle vrienden en
familie bedanken voor hun steun in de moeilĳkere momenten en de gedeelde
vreugde op andere momenten, in het bĳzonder papa, Angela en Karen. Angela,
grazie mille per tutti i bei momenti! Dankjewel Birgit voor je steun, begrip en
je liefde voor mĳ.

Roel Peeters

Juni 2012

PS: If you don’t like to go into the technical details, please skip the next 153
pages and go right ahead to page 142 ,.

2According to Dorthe, who is also a language expert, this is related to the danish “stole".

Abstract

The observation that people already carry lots of personal devices (e.g., a smart
phone, an electronic identity card, an access badge, an electronic car key, a
laptop, . . .), serves as starting point for this thesis. Furthermore, with the
arrival of smart objects, the number of things that think one carries is expected
to grow. Sensors will be built into clothing and attached to the body to monitor
our health. It is clear that these devices need to be protected. However, due
to the vast amount of devices involved, the traditional approach of protecting
each device on its own, results in a usability nightmare.

We investigate how to tap into the potential that arises from cooperation
between these devices. This is done by deploying threshold cryptography on
personal devices. Threshold cryptography has the benefit of increased overall
security, since an adversary can compromise a number (up to the threshold
number) of devices without gaining any advantage towards breaking the overall
security. Furthermore, the end-user does not need to carry all his personal
devices, any subset of size at least the threshold number is sufficient to make
use of the threshold security system.

We propose technical solutions to tackle some of the practical issues related
to this approach, paving the road for real world implementations. First, we
show how one can include devices that do not have the necessary (secure)
storage capabilities needed to store shares (e.g., car keys) in our threshold
scheme. Second, we investigate how the end-user can add or remove devices
from his set of personal devices used in this threshold scheme. Finally, in
order to get user acceptance, the (location) privacy of consumers should not
be disregarded. Towards this goal we examine how to achieve private and
secure device authentication over an open channel. This is done specifically for
RFID tags, which are the least powerful devices that can be included in our
threshold system. Hence, the location of the end-user can be kept private, while
all communication between his personal devices, that arises from our threshold
solution, goes over an open channel.

v

Beknopte samenvatting

Het uitgangspunt van dit proefschrift is de observatie dat veel mensen al
een behoorlĳk aantal persoonlĳke toestellen met zich meedragen, bĳvoorbeeld
een smartphone, een elektronische identiteitskaart, een toegangsbadge, een
elektronische autosleutel of een laptop. Door de technologische vooruitgang
duiken allerlei nieuwe intelligente objecten op. Dit aantal wordt verwacht
nog te groeien met allerlei sensoren die zowel op kledĳ als op het lichaam
worden aangebracht om onze gezondheid op te volgen. Het is belangrĳk dat
deze intelligente objecten afdoende beschermd worden. Door het grote aantal
toestellen dreigt de traditionele aanpak om elk toestel op zich te beschermen,
al vlug te ontaarden in een nachtmerrie voor de gebruiker.

We onderzoeken hoe we kunnen profiteren van de samenwerking tussen
deze intelligente objecten. Hiertoe gebruiken we drempelcryptografie op de
persoonlĳke toestellen. Door drempelbeveiliging te gebruiken kan een aantal
(kleiner dan de drempelwaarde) toestellen gestolen worden zonder dat de beoogde
bescherming in het gedrang komt. Bovendien laat dit ook toe dat de gebruiker
het beveiligingssysteem kan gebruiken zolang hĳ minstens de drempelwaarde
aan toestellen bĳ zich heeft, met andere woorden niet alle toestellen moeten
aanwezig zĳn.

We bieden technische oplossingen voor enkele van de praktische problemen
gerelateerd aan deze aanpak, waardoor we een stap dichter komen bĳ de realisatie
van drempelbeveiliging op intelligente persoonlĳke objecten. In de eerste plaats
tonen we hoe men toestellen die niet over extra (veilige) opslag beschikken,
zoals bĳvoorbeeld een elektronische autosleutel, toch kunnen toevoegen aan
het drempelbeveiligingssysteem. Ten tweede gaan we ook na hoe de gebruiker
toestellen kan toevoegen of verwĳderen uit de groep van persoonlĳke toestellen
die hĳ gebruikt voor zĳn drempelbeveiligingssyteem. Ten slotte mogen we de
persoonlĳke levenssfeer van de gebruikers niet negeren. Er moet voor gezorgd
worden dat alle communicatie tussen de persoonlĳke toestellen de locatie van de
gebruiker niet prĳsgeeft. Om dit doel te bereiken gaan we na hoe we een veilige

vii

viii BEKNOPTE SAMENVATTING

en private authenticatie kunnen bekomen over een open kanaal. We bekĳken
dit specifiek vanuit het standpunt van RFID-tags, de minst krachtige apparaten
die kunnen deelnemen in het voorgestelde drempelbeveiligingssysteem.

Contents

Abstract v

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Things That Think . 1

1.1.1 Personal Devices . 2

1.2 Protecting Things That Think 4

1.3 Summary of Contributions . 5

1.4 Thesis Outline . 6

1.5 Mathematical Background . 7

1.5.1 Elliptic Curves . 7

1.5.2 Pairings . 8

1.5.3 Number-Theoretic Assumptions 9

1.5.4 Cryptographic Primitives 12

ix

x CONTENTS

2 Threshold Cryptography 15

2.1 Introduction . 15

2.2 Threshold Cryptography . 16

2.3 From Secret Sharing to Distributed Key Generation 17

2.3.1 Secret Sharing . 17

2.3.2 Verifiable Secret Sharing 19

2.3.3 Publicly Verifiable Secret Sharing 21

2.3.4 Distributed Key Generation 21

2.4 Threshold Cryptography on Personal Devices 23

2.4.1 Communication and Adversarial Model 24

2.4.2 Threshold . 24

2.5 Conclusion . 25

3 Threshold Cryptography on Less Powerful Devices 27

3.1 Introduction . 27

3.2 Protecting Shares . 28

3.2.1 Pre-Setup . 28

3.2.2 Setup . 29

3.3 Distributed Key Generation . 30

3.3.1 Publicly Verifiable Secret Sharing 31

3.3.2 Distributed Key Generation 35

3.3.3 Extended Distributed Key Generation 43

3.4 Threshold Applications . 44

3.4.1 ElGamal . 44

3.4.2 Cramer-Shoup . 46

3.4.3 Schnorr Signatures . 49

3.5 Conclusion . 50

CONTENTS xi

4 Proactive Threshold Cryptography 53

4.1 Introduction . 53

4.2 Resharing . 54

4.3 Absent Parties . 57

4.3.1 Hand Out Shares Afterwards 57

4.3.2 Fix Shares . 60

4.4 Authorisation . 61

4.4.1 Automatic . 62

4.4.2 Manual . 64

4.4.3 Usability Evaluation . 70

4.5 Conclusion . 79

5 Private RF IDentification 81

5.1 Introduction . 81

5.2 Previously Proposed Models . 83

5.2.1 Vaudenay . 84

5.2.2 Canard et al. 88

5.2.3 Juels-Weis . 89

5.2.4 Bohli-Pashalidis . 90

5.3 A New Model . 91

5.3.1 Privacy . 94

5.3.2 Security . 95

5.3.3 Modelling details . 96

5.4 Previously Proposed Protocols 97

5.4.1 Zero Knowledge Based Protocols 98

5.4.2 Public Key Encryption Based Protocols 100

5.5 A New Protocol . 101

xii CONTENTS

5.5.1 Analysis . 103

5.5.2 Efficiency Optimisation 106

5.6 Implementation Considerations 107

5.6.1 (Non-)Sense of Coupons 107

5.6.2 Comparison . 109

5.7 Mutual Authentication . 111

5.7.1 Model . 112

5.7.2 Protocol . 113

5.8 Private Threshold Things That Think 116

5.9 Conclusion . 117

6 Conclusion 119

6.1 Conclusion . 119

6.2 Directions for Future Research 120

6.2.1 General Secret Sharing 120

6.2.2 Usability . 121

6.2.3 Context . 121

Bibliography 123

A Treshold Things That Think in Pictures 141

List of Figures

1.1 Example of an Elliptic Curve 7

2.1 Secret Sharing Schemes . 18

3.1 Publicly Verifiable Secret Sharing with Protected Shares 32

3.2 DKG with Protected Shares . 37

3.3 Distributed Generation of Protected Shares 37

3.4 Public Key Extraction . 38

3.5 Alternative Public Key Extraction 42

3.6 Extended DKG . 45

3.7 DKG with Protected Shares for Cramer-Shoup 47

3.8 Distributed Generation of Protected Shares for Cramer-Shoup . 48

3.9 Public Key Extraction for Cramer-Shoup 49

4.1 Resharing Protocol Proposed by Wong et al. 55

4.2 Sigma Protocol . 58

4.3 Protocol for Automatic Authorisation 64

4.4 Protocol for Manual Authorisation 65

4.5 SAS-GMA Proposed by Laur and Pasini 67

4.6 Protocol for Manually Authorisation: Adding a Device 68

xiii

xiv LIST OF FIGURES

4.7 Web-based Interface . 71

4.8 Starting Display . 72

4.9 Request Displayed in User Friendly Way 72

4.10 MANA Protocol to Add a New Device 73

4.11 Example of Support Information 73

4.12 Screens at the End of the Protocol 73

4.13 Additional Information from Logging 75

4.14 Additional Information from ASQ 77

5.1 Privacy Experiment from Juels-Weis 89

5.2 Randomised Schnorr . 98

5.3 Randomised Hashed GPS . 99

5.4 Vaudenay’s Public Key Protocol 100

5.5 Hash ElGamal-Based Protocol 101

5.6 Private RFID Identification Protocol 102

5.7 Optimised Private RFID identification protocol 106

5.8 Mutual Authentication Randomised Schnorr 114

5.9 IBIHOP . 115

A.1 Access Control Nowadays . 142

A.2 Access Control with Threshold Things That Think 143

A.3 Data Protection Nowadays . 144

A.4 Data Protection with Threshold Things That Think 145

List of Tables

4.1 Security Overview Resharing 70

5.1 Overview Private RFID Identification Protocols 110

xv

Chapter 1

Introduction

1.1 Things That Think

Things That Think or Smart Devices are networked devices with computational
capabilities. Typically these devices are mobile, hence constrained by the
capacity of their batteries or by the amount of energy that can be drawn
from the environment. Mobility also means that communication between these
devices is wireless.

In the context of sensing, one refers to Wireless Sensor Networks (WSN) [49, 153].
These networks consist of autonomous sensors and can be deployed to monitor
a wide range of physical phenomena such as light, noise, temperature, energy
consumption, traffic, etcetera. The term Smart Dust [98, 165] is used for
sensor networks that consist only of very small sensors (dimensions in the
order of millimetres or smaller). Sensor networks can also be deployed to
monitor the health of an individual, in this context the term Body Area Network
(BAN) [39, 159] is used. Sensors in the human body (or embedded into clothing)
will allow to constantly monitor a patient’s health status. This is particularly
beneficial for people with a high risk factor for heart attacks and patients
who suffer from chronic diseases such as diabetes and asthma. Nowadays,
these sensor networks are becoming bi-directional, besides from sensing the
environment one can also influence it by directing actuators.

In the Internet of Things (IoT) [7, 93], each thing (object) has a unique
identifier and is interconnected in an internet-like structure. Radio Frequency
IDentification (RFID) is often considered to be a prerequisite for the Internet of
Things, as RFID tags allow to transform everyday objects into smart objects.

1

2 INTRODUCTION

The processing of information, i.e. computing, has become ever more integrated
into everyday objects and the environment. Consumers engage many things
that think and may not even be aware of doing so. This paradigm is also
referred to as Ubiquitous Computing [167, 168], Pervasive Computing [79] and
Ambient Intelligence [1]. A popular scenario is the one of the smart refrigerator
that is aware of its contents. The end-user is thus able to plan menus from the
available food, and will be warned when goods are close to their expiry date.
This would mean that every food item needs to be labelled in an appropriate
way. In the same way, smart shelving can be deployed in shops, alerting the
shop owner when items need to be restocked on the shelves or when to remove
goods that have gone bad. Similarly, clothing could contain appropriate labels
with washing instructions, making smart washing machines possible. Although
these scenarios seem futuristic, ubiquitous computing is already around us in our
daily lives in many ways. Think for instance of smart phones, RFID tags, GPS
systems, the possibilities to stream digital audio and video across devices, home
automation and interactive displays. Some car models allow to identify the
driver (e.g., through a specific key) and adjust the seat and mirrors according
to his preferences.

At the end of 2008, the European Commission published a roadmap for the
future of the Internet of Things [93]. This report states current trends in
technology, applications and society. An outlook for the future, towards 2020,
is given. It is projected that RFID tags will be all around us, ubiquitously
integrated with wireless sensor networks by 2015. Real smart objects and truly
ubiquitous computing are expected in the period between 2015 and 2020. This
document also lists privacy and security as possible barriers towards widespread
adoption. In other words, there is a need for technical solutions to address the
privacy and security needs of the end-users.

1.1.1 Personal Devices

This thesis primarily focusses on personal devices, i.e. things that think that
end-users carry on a regular basis. Nowadays, one typically always carries a
phone, a car key and a wallet, containing one or more smart cards. On top
of that, many people carry some sort of access token, needed to get access to
restricted areas in the company they work for. Other examples of personal
devices include a passport, a laptop, a digital camera, an mp3-player, a GPS
receiver, a digital watch, a tablet, a heart rate monitor. Future BANs and
things that think, which are woven into clothing, are also considered to be
personal devices.

THINGS THAT THINK 3

We develop a security architecture for things that think that aims to protect
both the individual devices as well as the data these host. First, the individual
devices will be protected against stealing or accidental loss, by making their
functionality unavailable when the adversary only has access to a single device.
More concretely, this means that an adversary that obtained your car key has
not automatically access to your car, an access token alone is not sufficient for
accessing restricted zones, a mobile phone will not be able to make calls that
will be charged to the rightful owner. Second, also the data on these devices
need to be protected, by deploying an encryption scheme.

For many years, sensitive information has been protected by a corporate shield
set up by administrators maintaining firewalls, intrusion detection systems,
anti-virus programs, etcetera.. However, this responsibility is shifting towards
the end user, who also retrieves sensitive information through his mobile devices
such as laptops and smart phones. By accessing the information, it gets copied
onto the mobile device where it remains unprotected. For example, anyone who
has physical access to an unprotected smart phone can:

• read stored emails, possibly containing confidential information;

• know your meeting schedule;

• get a list of your friends or business contacts and the corresponding phone
numbers, addresses, pictures;

• read your stored text messages;

• have a look at your personal pictures.

From a corporate point of view, mobile devices also have a big security impact.
Each year, the Computer Security Institute gathers data, on a voluntary basis,
from security practitioners in the US who report the experienced security related
incidents in their companies. The 2011 survey [41] shows that 34% of their
respondents experienced theft or loss of laptops or mobile hardware. This theft
or loss of mobile devices resulted in theft or unauthorised access to: (1) private
identifiable information or private health information (claimed by 5% of the
respondents); (2) intellectual property (again 5%).

Both security objectives rely on how one authenticates the consumer towards
his personal devices.

4 INTRODUCTION

1.2 Protecting Things That Think

User authentication is tradionally based on one of three things:

• Something you are, e.g., your fingerprint.

• Something you have, e.g., your access card.

• Something you know, e.g., your password.

Today, passwords and PINs are widely used. However, with a multitude of
accounts and devices to secure, passwords become ever more unmanageable for
consumers. Passwords should be different for every application, hard to guess
and never written down. However, reliability and convenience are often more
important to consumers than security. For this reason, one should try to steer
away from all related trade-offs between memory and security [4]. Different
solutions for passwords were proposed in the context of online application,
ranging from password managers to Single Sign On applications. Apart from
the issues related to these solutions, it does not help in protecting offline
applications. To rid the end-user of all passwords, Stajano [156] proposed the
use of an additional device called Pico. Herley and van Oorschot [83] argued that
research should, instead of focussing on replacing all passwords, acknowledge
that passwords will be around for quite some time and that these are the
best solution for many cases. To deal with an untrusted computer (no key-
logging) and to provide transaction integrity (no phishing or session-hĳacking),
Mannan and van Oorschot [114] came up with the MP-Auth protocol. Instead
of providing his password on the untrusted host, the user inputs his password
on a trusted personal device, e.g. mobile phone. Pashalidis [125] came up with
another approach to deal with untrusted computers, with the a service named
Keep Your Password Secret that allows the end-user to logon to web services
by using only one time passwords.

Some applications also use two-factor authentication. The most prominent
examples can be found in payments systems and online banking, for which both
a bank card and a PIN are needed. Another example that is worth mentioning
is the optional two-factor authentication process for Google applications [75],
that requires a mobile phone and a password.

With the multitude of personal devices, multi-factor authentication is possible.
Instead of securing each device separately, we will make use of their ability to
interconnect and offer a global solution. This general solution should also be
able to cope with situations where some devices are absent, to avoid hurting
the reliability. Threshold cryptography [50] can be used to provide this solution.
Stajano [156] also suggests this approach as a means to secure the Pico. In this
context, these devices are referred to as Picosiblings.

SUMMARY OF CONTRIBUTIONS 5

1.3 Summary of Contributions

The observation that people already carry lots of personal devices, serves as
starting point for this thesis. Furthermore, with the arrival of smart objects,
the number of things that think one carries is expected to grow. Instead of
protecting each device on its own, we investigate how to tap into the potential
that arises from cooperation between these devices. This is done by deploying
threshold cryptography on personal devices. We propose technical solutions to
tackle some of the practical issues related to this approach, paving the road
for real world implementations. In order to get user acceptance, the (location)
privacy of consumers should not be disregarded. Towards this goal we examine
how to achieve private and secure device authentication over an open channel.
This is done specifically for RFID tags, which are the least powerful devices that
can be included in our threshold system. Hence, the location of the end-user
can be kept private, while all communication between his personal devices, that
arises from our threshold solution, goes over an open channel. More specifically
our contributions are:

• A new way of securely storing shares, i.e. in a protected format, such that
these shares can be made public. This enables us to include devices that do
not have the necessary (secure) storage capabilities needed to store shares.
We propose a Verifiable Secret Sharing (VSS) and a Distributed Key
Generation(DKG) protocol to set up these protected shares and show how
to transform some existing cryptosystems and signature schemes [151].

• We discuss possible approaches to deal with absent devices while
redistributing the shared secret (resharing) among the personal devices.

• A study of how to authorise resharing, possibly altering the group of
personal devices. We propose a protocol that allows us to authorise a
request for resharing [128] and evaluate the usability of this protocol [129].

• An existing RFID privacy model is extended to allow for private
authentication towards multiple independent readers, a stepping stone
for device-to-device authentication. This extended model also captures
recently proposed insider attacks. We also provide a definition for mutual
authentication in this context.

• An efficient, secure and private RFID protocol is proposed. We prove
both the security and privacy properties of this protocol in our extended
RFID privacy model. Furthermore, we provide a mutual authentication
protocol that is efficient and privacy-preserving.

6 INTRODUCTION

We worked on other research publications that have not been included in this
doctoral thesis:

• In [131, 132, 133], we combine the concept of threshold cryptography on
personal devices with cryptographic distance bounding protocols, in order
to achieve a resilient proximity-based physical access control system.

• In [111], we design a lightweight authentication protocol for RFID tags,
by using Physical Unclonable Functions (PUF). We propose a new
construction to deal with the noisy output of the PUF, the reverse fuzzy
extractor. This construction allows us to shift some of the computational
effort towards the verifier.

• In [85], we model private RFID yoking proofs. A private RFID yoking proof
attests that two tags were scanned simultaniously, while the identities
of the RFID tags can only be learnt by the verifier. We evaluate an
existing protocol and propose a new provable secure and private protocol
to generate such a proof.

• In [130], we study cross-context delegation through identity federation.
More specifically we look at how one issues credentials for certain privileges
to another person (mandate), accepts a mandate, revokes the issued
mandate and passes on a mandate. We approach delegation from the
perspective of individuals as well as companies.

1.4 Thesis Outline

Chapter 1 provides a general introduction and introduces the necessary
mathematical background.

Chapter 2 gives an introduction to threshold cryptography. Furthermore we
discuss the benefits of deploying threshold cryptography on personal devices.
The communication and adversarial model is introduced for the context of
threshold cryptography on personal devices.

Chapter 3 proposes a threshold scheme that can also include less powerful
devices, making the overall system more reliable. The shares are blinded and
publicly available. By also introducing public verifiability in the setup, not all
devices need to be present at that time.

Chapter 4 examines how to transform a threshold system into a proactive
threshold system by means of resharing. Resharing also allows one to change
the set of personal devices and the threshold number. This chapter takes

MATHEMATICAL BACKGROUND 7

into account that not all devices might be present at the time of resharing.
Furthermore we examine how to involve the user, especially to authorise changes
in the set of personal devices.

Chapter 5 deals with private authentication in the context of RFID tags. To
ensure that the end user cannot be tracked easily by all the communication
between his personal devices and the environment, an important building block
is a protocol that enables private authentication over an open channel. More
specifically, we look into this from the point of view of the least powerful devices,
namely RFID tags. Since these tags do not have any user interface, these
respond to any valid query. We show how we can use this private authentication
in our threshold scheme in order to keep the end-user’s location private.

Chapter 6 concludes this thesis and gives directions for future research.

1.5 Mathematical Background

1.5.1 Elliptic Curves

Elliptic curves over a finite field are an alternative to directly using finite fields
in cryptography. An example of an elliptic curve is given in Fig. 1.1. For a
comprehensive overview of elliptic curve cryptography we refer the reader to [9].

R

P

Q

Figure 1.1: Example of an Elliptic Curve.

An elliptic curve E can be specified using the Weierstrass equation:

y2 = x3 + ax+ b,

where all variables and constants are elements of the finite field. All solutions
(x, y) to the above equation are (rational) points on the elliptic curve, i.e.

8 INTRODUCTION

(x, y) ∈ E. Besides these points, the point at infinity O is added to the set
of points. This point will serve as the identity element. Curves are typically
defined over Fp (prime curves) or over F2n (binary curves).

Let E` be an elliptic curve with prime order ` over Fp. Points on the elliptic
curve are denoted by capital letters, while scalars are denoted by lower case
letters. We make use of additive notation. A point Q on the elliptic curve can
be represented as {qx, qy} with qx, qy ∈ [0 . . . p− 1].

The group law (point addition) is defined by taking two elliptic curve points
P,Q and constructing a straight line through these points. There is always a
third intersection point R = (rx, ry) on the curve. The result of the addition is
−R = (rx,−ry). Note that P +Q+ R = O. In case P = Q (point doubling)
the tangent line to the curve at P is considered to determine R.

We now consider scalar multiplication, i.e. given an a ∈ Z` and a point P ∈ E`,
compute aP =

∑a
i=1 P . Scalar multiplication can be computed efficiently by

the double-and-add algorithm, which requires at most log2 a point additions
and doublings.

The xcoord(·) function is the ECDSA conversion function [29], which is almost-
invertible. The function xcoord(Q) maps a point Q to the scalar qx mod `.

1.5.2 Pairings

Pairings are bilinear maps and are usually defined over elliptic curve
groups. A comprehensive overview of pairings for cryptographers is given
by Galbraith et al. [65].

Let G1, G2 and GT be cyclic groups of order ` and let ê be a non-degenerate
bilinear pairing

ê : G1 ×G2 → GT .

A pairing is non-degenerate if for each element P in G1 there is a Q in G2 such
that ê(P,Q) 6= 1 and vice versa for each element Q in G2. A pairing is bilinear
if ê(P + P ′, Q) = ê(P,Q)ê(P ′, Q), thus ê(aP,Q) = ê(P,Q)a with a ∈ Z`, and
vice versa for elements in G2. We will use multiplicative notation for GT and
additive notation for G1 and G2.

MATHEMATICAL BACKGROUND 9

1.5.3 Number-Theoretic Assumptions

Security in public-key cryptography usually depends on the intractability of
some number-theoretic problem. This means that a protocol or scheme is secure
under the condition that certain number-theoretic assumptions hold. We review
some relevant assumptions and refer the reader to Mao’s [115] book on modern
cryptography and to the paper of Smart and Vercauteren [152] on asymmetric
pairings for more details.

The security parameter measures the input size of the problem. Both the
resource requirements of the cryptographic algorithm or protocol as well as the
adversary’s probability of breaking security are expressed in terms of the security
parameter. The security parameter is usually expressed in unary representation,
i.e. 1k for a k-long string of bits.

A function f : N → R is called ‘polynomial’ in the security parameter k ∈ Z
if f(k) = O(kn), with n ∈ N. It is called ‘negligible’ if, for every c ∈ N there
exists an integer kc such that f(k) ≤ k−c for all k > kc.

Discrete Logarithm. Let P be a generator of a group G` of order ` and let A
be a given arbitrary element of G`. The discrete logarithm (DL) problem is to
find the unique integer a ∈ Z` such that A = aP . The DL assumption states
that it is computationally hard to solve the DL problem.

One More Discrete Logarithm. The one more discrete logarithm (OMDL)
problem was introduced by Bellare et al. [18]. Let P be a generator of a group
G` of order `. Let O1 be an oracle that returns random elements Ai = aiP of
G`. Let O2(·) be an oracle that returns the discrete logarithm of a given input
base P . The OMDL problem is to return the discrete logarithms for each of the
elements obtained from the m queries to O1, while making strictly less than m
queries to O2(·).

x-Logarithm. Brown and Gjøsteen [30] introduced the x-Logarithm (XL)
problem: given an elliptic curve point, determine whether its discrete logarithm
is congruent to the x-coordinate of an elliptic curve point. The XL assumption
states that it is computationally hard to solve the XL problem. Brown and
Gjøsteen also provided some evidence that the XL problem is almost as hard as
the DDH problem.

10 INTRODUCTION

Diffie-Hellman. Let P be a generator of a group G` of order ` and let aP, bP
be two given arbitrary elements of G`, with a, b ∈ Z`. The computational
Diffie-Hellman (CDH) problem is, given P, aP and bP , to find abP . The tuple
〈P, aP, bP, abP 〉 is called a Diffie-Hellman tuple. Given a fourth element cP ∈ G`,
the decisional Diffie-Hellman (DDH) problem is to determine if 〈P, aP, bP, cP 〉
is a valid Diffie-Hellman tuple or not. The DDH assumption states that it is
computationally hard to solve the DDH problem.

Obviously, if one can solve the DL problem then one can also solve the CDH
problem. The opposite does not necessarily hold and, therefore, the CDH
assumption is said to be a stronger assumption than the DL assumption.

A divisional variant of the DDH problem [12], which is considered to be
equivalent, is to determine if 〈P, aP, cP, abP 〉 is a valid DH tuple or not, i.e., if
c = b

Oracle Diffie-Hellman. Abdalla et al. [2] introduced the ODH assumption:

Definition 1. Oracle Diffie-Hellman (ODH) Given A = aP,B = bP , a function
H and an adversary A, consider the following experiments:

Experiment ExpodhE,H,A :

• O1(Z) = H(bZ) for Z 6= ±A
• O2() = H(C)
• g = AO1(·),O2()(A,B)
• Return g

The value C is equal to abP for the Expodh−realE,H,A experiment, chosen
at random in G` for the Expodh−randomE,H,A experiment.

The advantage of A violating the ODH assumption is defined as:∣∣∣Pr
[
Expodh−realE,H,A = 1

]
− Pr

[
Expodh−randomE,H,A = 1

]∣∣∣ .
The ODH assumption consists of the plain DDH assumption combined with an
additional assumption on the function H(·). The idea is to give the adversary
access to an oracle O1 that computes bZ, without giving the adversary the
ability to compute bA, which can then be compared with C. To achieve this
one restricts the oracle to Z 6= ±A, and moreover, only H(bZ) instead of bZ is

MATHEMATICAL BACKGROUND 11

released, to prevent the adversary from exploiting the self-reducibility of the
DL problem1.

The crucial property that is required for H(·) is one-wayness. In Chapter 5, we
use a one-way function based on the DL assumption. We define the function
H(Z) := xcoord(Z)P .

Theorem 1. The function H(·) is a one-way function under the DL assumption.

Co-Bilinear Diffie-Hellman (coBDH). For asymmetric pairings, i.e., G1 6= G2,
where there is no known efficiently computable isomorphism ψ : G2 → G1 the
following problem can be defined. The coBDH-2 problem is defined as given
P ∈ G1 and Q, aQ, bQ ∈ G2, find ê(P,Q)ab. We denote the decisional variant
as coDBDH-2. A divisional variant of the coDBDH-2 problem is to determine
whether 〈P,Q, aQ, abQ, gc〉 is a valid coBDH-2 tuple.

Inversion Problems. Galbraith et al. [64] studied several inversion problems
for pairings. They concluded that these problems are hard enough to rely
upon. The most intuitive argument is that if one can solve a particular pairing
inversion in polynomial time then one can also solve a related Diffie-Hellman
problem in one of the domains or the co-domain.

The following problems were defined:

• The Fixed Argument Pairing Inversion 1 (FAPI-1) problem is:
Given P1 ∈ G1 and z ∈ GT , find P2 ∈ G2 such that ê(P1, P2) = z.

• The Fixed Argument Pairing Inversion 2 (FAPI-2) problem is:
Given P2 ∈ G2 and z ∈ GT , find P1 ∈ G1 such that ê(P1, P2) = z.

• The Generalised Pairing Inversion (GPI) problem is: Given a value
z ∈ GT , find a P1 ∈ G1 and a P2 ∈ G2 such that ê(P1, P2) = z.

Strong RSA. The RSA problem is to find, given an RSA public key (e,N)
and a ciphertext c = me mod N , the corresponding plaintext m. The public
RSA key consist of a modulus N , which is the product of two large primes p
and q, and the exponent 2 < e < N , which is coprime to ϕ(N) = (p− 1)(q − 1).
The strong RSA assumption was introduced by Niko Barić and Pfitzmann [13]
and Fujisaki and Okamoto [62].This assumption states that it is hard to solve
the RSA problem, even when one can choose the public exponent e.

1The adversary can set Z = rA for a known r and compute r−1(bZ) = bA.

12 INTRODUCTION

1.5.4 Cryptographic Primitives

Commitment Scheme. A cryptographic commitment scheme allows to commit
to a value without revealing it. Moreover, once committed to this value, one
cannot open the commitment to any other value. The first property is the hiding
property, the second is the binding. Both properties can be computational or
perfect. The property is said to be computational when it holds in presence of
adversaries that only have finite amounts of computational power, perfect does
not put this limitation on the adversary. A commitment scheme can never be
perfect hiding and perfect binding.

There exist schemes that are computational hiding and perfect binding, e.g.,
Feldmann commitments [54]. For this specific scheme, one commits to a value
a by hiding it away in the exponent of a generator g of a group in which
the DL assumption holds: c = ga. The DL assumption does not hold for
adversaries with unlimited computational power: the scheme is not perfectly
hiding. However, even this adversary cannot produce another value a′ for which
it holds that c = ga

′ : the scheme is perfectly binding.

Vice versa, perfect hiding and computational binding commitments exist, e.g.,
Pedersen commitments [127]. To commit to a value a, one first chooses a
random value b and computes the commitment as follows: c = gahb, for g and h
generators of the same group in which the DL assumption holds and for which
the discrete logarithm of g base h, and vice versa, is unknown. An unbounded
adversary can compute the discrete logarithm of g = hi base h and produce
any pair (a′, b′) as long as the equation a′i+ b′ = ai+ b holds: the scheme is
only computationally binding. However, even this adversary cannot produce
the value a, given a commitment c: the scheme is perfectly hiding.

Hash Function. A cryptographic hash function H(·) is a one-way function,
that takes an arbitrary block of data, the message m, and returns a fixed-size
bit string, the hash value h = H(m), such that changes to the data will (with
very high probability) result in changes to the hash value. A cryptographic
hash function has the following properties:

• Pre-image resistance: Given a hash value h, it is hard to find any
message m, such that h = H(m);

• Second pre-image resistance: Given a message m1, it is hard to find
another message m2 6= m1, such that H(m1) = H(m2);

• Collision resistance: It is hard to find two different messages m1 and
m2, such that H(m1) = H(m2).

MATHEMATICAL BACKGROUND 13

Cryptographic hash functions can be used for protecting the integrity of the
message.

MAC Algorithm. Message Authentication Code (MAC) algorithms are keyed
hash functions. The input is a secret key and an arbitrary-length message,
the output is the fixed-length MAC value. The MAC value protects both a
message’s integrity as well as its authenticity, by allowing the verifier (who also
possesses the secret key) to detect any changes to the message.

Chapter 2

Threshold Cryptography

Threshold cryptography can be used to secure data and control access by
sharing a private cryptographic key over multiple personal devices. This means
that a minimum number of these devices, the threshold number t + 1, need
to be present to use the key. Threshold cryptography has several benefits: (1)
increased overall security, since an adversary can compromise up to t devices
without gaining any knowledge on the private key; (2) higher resilience, since
any subset of t+ 1 devices is sufficient for decryption and/or authorised access.

2.1 Introduction

Today, there are only a few real-world applications of threshold cryptography,
for example the root certification key for MasterCard/VISA’s Secure Electronic
Transaction (SET) is a 3-out-of-5 shared RSA key. Blom’s scheme [23] is a
symmetric threshold key exchange protocol, that is used in the HDCP protocol1,
intended to protect copyright of high definition content between the source,
i.e. Blu-ray Disc player, and the receiver, e.g. HD television. The most recent
example is the fair auction of sugar beets between farmers and the only sugar
producing company in Denmark [24].

The idea of “Threshold Things That Think” was already put forward by
Desmedt [51]. But only recently, personal devices are becoming powerful

1In Version 1.1, the intended protection could be circumvented by a conspiracy attack:
obtaining the keys of at least 40 devices and reconstructing the secret symmetrical master
matrix that was used to compute them [44]. Version 1.3 is also reported to be broken [110].

15

16 THRESHOLD CRYPTOGRAPHY

and interconnected enough to enable the deployment of threshold cryptography
for securing personal devices.

This chapter first gives a general overview on how to setup a threshold
cryptography scheme. Next we will discuss how to deploy threshold cryptography
specifically for personal devices.

2.2 Threshold Cryptography

The aim of threshold cryptography is to protect a private key by sharing it
amongst a number of entities in such a way that each subset of minimal size,
namely the threshold number t + 1, can use the key. No information about
the key can be learnt from t or less shares. For cryptographic operations that
use the private key, such as generating signatures or decrypting ciphertexts,
the secret key is not reconstructed. Instead, each player contributes a partial
signature or partial decryption, for which t+ 1 of these can be combined into a
signature or a decrypted plaintext.

Threshold cryptography typically involves routines related to setting up the
group, encryption and signatures. We define the following set of routines
(threshold routines are indicated with the prefix T):

Pre-setup

• Init: Initialise the system parameters.

• KeyGen: Generate key material for a device.

Setup

• ConstructGroup: Given a set of n devices and their public keys, create
and share a key pair for the group with a subset of the devices.

The setup of a threshold scheme involves either a trusted dealer or a Distributed
Key Generation (DKG) protocol. The trusted dealer simply runs an instance of
a secret sharing protocol. In a DKG protocol a group of entities cooperate to
jointly generate a key pair and obtain shares of the private key. In this way, no
single party will know the value of the shared secret. Both secret sharing and
DKG are explained in full detail in the next section.

FROM SECRET SHARING TO DISTRIBUTED KEY GENERATION 17

The shares, constructed during setup, can then be used to sign or decrypt on
behalf of the group.

Signatures

• T-Sign: At least t+ 1 devices collaborate to generate a signature on a
message that is verifiable under the group’s public key.

• Verify: Using the group’s public key a signature is verified.

Encryption

• Encrypt: Encrypt a message under the group’s public key.

• T-Decrypt: At least t+1 devices collaborate to decrypt a given ciphertext
that was encrypted under the group’s public key.

2.3 From Secret Sharing to Distributed Key
Generation

2.3.1 Secret Sharing

Blakley [21] and Shamir [148]2 both proposed a t+ 1-out-of-n-secret sharing
scheme. The total number of shares is n and t + 1 is the threshold number,
as this is the minimal number of shares needed to reconstruct the secret. In
Blakley’s secret sharing scheme, for which a conceptual drawing is given in
Fig. 2.1(a), each share is a hyperplane of dimension t that contains the point
representing the secret. The intersection of any t + 1 of these hyperplanes
uniquely defines the secret. In Shamir’s secret sharing scheme, shares are points
on a polynomial of degree t, for which the secret is defined as the free term of
this polynomial. Any t+ 1 of these points uniquely define this polynomial and
hence the secret. Figure 2.1(b) is a conceptual representation of Shamir’s secret
sharing scheme. Both Blakley’s and Shamir’s scheme are defined over finite
fields, respectively (F`)t+1 and F`.

2Shamir noted that secret sharing is a more elegant solution to Liu’s problem [109] of
having 11 scientists work on a secret project of which at least 6 need to be present to handle
the documents. For the classical approach with padlocks and keys, it can be shown that the
minimal solution requires 462 locks in total and 252 keys per scientist.

18 THRESHOLD CRYPTOGRAPHY

(a) Blakley Secret Sharing. Shares
are hyperplanes of dimension t,
containing the the secret.

(b) Shamir Secret Sharing. Shares are
points on a polynomial of degree t with
the secret as its free term.

Figure 2.1: Conceptual representation of secret sharing schemes for t+ 1 = 3.

Both schemes are perfect secret sharing schemes, i.e. knowledge of up to t
shares does not result in any information about the secret. This can be seen in
Fig. 2.1, where for both schemes t+1 = 3. For Blakley’s scheme, the intersection
of two hyperplanes of dimension two results in a line that contains ` points, and
hence ` possible secrets. For Shamir’s scheme, one can draw ` polynomials of
degree two through two points, resulting in porder possible free terms, which
define the secret. The dotted lines only represent a few possible polynomials of
degree two through two shares.

Later on, two other threshold secret sharing schemes were proposed by
Mignotte [116] and Asmuth and Bloom [8], based on the Chinese remainder
theorem3. However, these schemes are not perfect, since a set of less than t+ 1
shares contains information about the secret.

The Shamir secret sharing scheme is minimal, i.e. the size of the shares is equal
to the size of the secret. In contrast, the size of the shares grows with the
threshold number in Blakley’s scheme. Another advantage of Shamir’s scheme
over Blakley’s4 is its dynamic ability, that allows us to enhance security, without
changing the secret, by handing out new shares of another polynomial through
the same point at the origin. This dynamic ability is crucial for proactive
security that will be discussed in Chapter 4.

In practice, the polynomial will not explicitly be reconstructed: the secret will
be learnt by interpolation of the shares. Any point on a polynomial of degree t

3This theorem was first described by Sun Zi in his book Suanjing – The Mathematical
Classic (third-century AD).

4Shares in Blakley’s scheme contain the shared secret.

FROM SECRET SHARING TO DISTRIBUTED KEY GENERATION 19

can be reconstructed by constructing the Lagrange form5 in t+ 1 points of this
polynomial. Let f(z) be the generated polynomial, the secret x = f(0) and the
shares xi = f(i). This secret can be reconstructed using a set S of t+ 1 shares
as follows:

x =
∑
i∈S

λi(0)xi for λi(k) =
∏

j∈S,j 6=i

j − k
j − i

.

In the remainder of this thesis the shorter notation λi will be used for λi(0).

2.3.2 Verifiable Secret Sharing

Verifiable secret sharing (VSS) was introduced by Chor et al. [40]. A VSS
allows the receivers of the shares to verify that the dealer properly shared a
secret, i.e. that all shares are evaluations of the same polynomial of degree
t. More formally, we briefly rephrase the requirements of a secure VSS (see
Pedersen [127] and Gennaro et al. [69, Lemma 1]).

Definition 2 (Secure VSS). A VSS protocol is secure if it satisfies the following
conditions:

1. Correctness. If the dealer is not disqualified then any subset of t+1 honest
players can recover the unique secret.

2. Verifiability. Incorrect shares can be detected at reconstruction time by
using the output of the protocol.

3. Secrecy. The view of an adversary A is independent of the secret.

Note that t+ 1 honest players are required for correctness. Honest participants
do not deviate from the protocol. It might very well be that an honest player is
under the influence of the adversary.

The first efficient scheme is due to Feldman [54], building upon Shamir secret
sharing. First a polynomial f(z) of degree t is generated and shares xi = f(i)
are handed out to each of the n players over private channels:

f(z) = a0 + a1 · z + . . .+ at · zt with a0 = x .

Second perfect binding, computational hiding commitmentsci to the coefficients
of this polynomial are broadcasted. To construct these commitments, the

5Although named after Joseph Louis Lagrange, it was first discovered in 1779 by Edward
Waring and rediscovered in 1783 by Leonhard Euler.

20 THRESHOLD CRYPTOGRAPHY

coefficients are hidden in the exponent of the generator g for a group in which
the discrete-log assumption holds:

ci = gai for i = 0 . . . t− 1 .

These commitments allow the shareholders to verify the validity of their share
as follows:

gxi =
t∏
j=0

(cj)i
j

.

If this verification fails, the shareholder rejects the dealer as faulty.

Pedersen [127] made Feldman’s VSS scheme information-theoretically secure,
in the sense that the scheme leaks no information on the shared secret, by
generating two polynomials

f(z) = a0 + a1 · z + . . .+ at · zt with a0 = x

f ′(z) = a′0 + a′1 · z + . . .+ a′t · zt

and handing out shares xi = f(i) and x′i = f ′(i). The corresponding
coefficients are broadcasted as paired commitments, which are known as Pedersen
commitments. Let g be a generator for a group in which the discrete-log
assumption holds. Let h be another generator of this group for which the
discrete logarithm to the base g, and vice versa, is unknown:

ci = gai · ha
′
i for i = 0 . . . t− 1 .

These commitments still allow the shareholders to verify their shares:

gxi · hx
′
i =

t∏
j=0

(cj)i
j

,

while no information about the shares can be gained from the commitments, as
these are perfectly hiding. The binding property is only computational, i.e. it
requires the discrete logarithm assumption.

VSS in the asynchronous setting was studied by Cachin et al. [32]. Later
Zhou et al. [175] and Schultz et al. [145] also proposed a VSS in this setting.

The above VSS schemes are computational. Unconditional VSS schemes (e.g.
proposal Canetti [34]) also exist, however these can only be constructed for
n ≥ 3t+ 1 [53] as opposed to n ≥ 2t+ 1 for computational VSS.

Recently, Backes et al. [11] proposed the first computational VSS scheme that
can use any cryptographic commitment scheme. All previously proposed VSS
schemes rely on the homomorphic properties of the underlying commitment
schemes.

FROM SECRET SHARING TO DISTRIBUTED KEY GENERATION 21

2.3.3 Publicly Verifiable Secret Sharing

In a VSS protocol, each receiver can only verify the correctness of his own
share. A Publicly Verifiable Secret Sharing (PVSS) protocol allows any (third)
party to verify the correctness of all the shares. This also means that complaint
procedures or dispute resolution mechanisms are no longer required to disqualify
a dishonest dealer.

Stadler [154] was the first to propose a PVSS protocol. In addition to the
Feldman commitments, shares are broadcasted in encrypted form and verified
using a non-interactive proof of equality of (double) discrete logarithms.

A more efficient protocol was presented by Fujisaki and Okamoto [63], which is
secure under a modified RSA assumption.

The first PVSS shown secure under the Decisional Diffie-Hellman assumption
was given by Schoenmakers [144]. The shares are broadcasted in encrypted form
by hiding them in the exponent of each player’s individual public key, which has
a different base (another generator) than the Feldman commitments. The dealer
then uses non-interactive proofs of discrete-logarithm equality. Furthermore,
correct behaviour of the players is verified by extending the secret reconstruction
phase with additional proofs of correctness.

Based on Schoenmakers’ result Heidarvand and Villar [81] presented the first
PVSS protocol where verifiability is obtained from bilinear pairings over elliptic
curves; in this approach proofs are no longer needed.

2.3.4 Distributed Key Generation

The drawback of VSS is that a single party knows the secret. This issue can be
avoided by generating and sharing the key in a distributed way. The correctness
and secrecy requirements for Distributed Key Generation (DKG) protocol were
defined by Gennaro et al. [71].

Definition 3 (Secure DKG). A Distributed Key Generation protocol is secure
if it satisfies the following conditions:
Correctness is guaranteed if:
(C1) All subsets of t + 1 shares provided by honest players define the same
private key.
(C2) All honest parties know the same public key corresponding to the unique
private key as defined by (C1).
(C3) The private key (and thus also the public key) is uniformly distributed.
Secrecy is guaranteed if an adversary can learn no information about the private

22 THRESHOLD CRYPTOGRAPHY

key beyond what can be learnt from the public key. This requirement can be
further enhanced with a simulation argument: for any adversary there should be
a simulator that, given a public key, simulates a run of the protocol for which the
output is indistinguishable of the adversary’s view of a real run of the protocol
that ended with the given public key.

Pedersen [126] used Feldman’s VSS to construct the first DKG protocol,
sometimes referred to as Joint Feldman, by having each player in a group
run an instance of Feldman’s protocol in parallel.

Gennaro et al. [69] pointed out that the uniformity of the key produced by
Pedersen’s DKG protocol cannot be guaranteed in the context of a rushing
adversary. A rushing adversary can wait in each communication round to send
messages on behalf of the corrupted devices until he has received the messages
from all uncorrupted devices. They constructed a new DKG protocol by first
running Pedersen’s VSS in parallel (Joint Pedersen). Since Pedersen VSS does
not produce a public key, an extra round of communication, namely an instance
of Joint Feldman on the first polynomial, has to be added to compute the public
key. They proved their protocol secure against a static adversary by means
of a simulation argument. Interestingly, Gennaro et al. showed later [70] that,
despite the biased distribution of the key, certain discrete-log schemes that use
Pedersen DKG can still be proved secure at the cost of an increased security
parameter.

Canetti et al. [36] used interactive knowledge proofs and erasures, i.e., players
erase private data before commitments or public values are broadcasted, in the
key construction phase of the DKG of [69] to make the protocol secure against
adaptive adversaries. Comparable adaptively secure threshold schemes were
presented by Frankel et al. [59].

In the protocols discussed so far, it is assumed that there are private channels
between each pair of players. Both [36] and [59] suggest that these channels can
still be established even with an adaptive adversary using the non-committing
encryption technique of Beaver and Haber [15], which assumes erasures. Jarecki
and Lysyanskaya [92] criticised this erasure model and pointed out that the
protocols presented in [36] and [59] are not secure in the concurrent setting,
i.e., two instances of the same scheme cannot be run at the same time. They
solved this by introducing a “committed proof”, i.e., a zero-knowledge proof
where the statement that is being proved is not revealed until the end of
the proof. To implement the secure channels without erasures they use an
encryption scheme that is non-committing to the receiver. Abe and Fehr [3]
later proposed an adaptively-secure (Feldman-based) DKG and applications
with complete security proofs in the Universal Composability framework of
Canetti [35]. They demonstrated that a discrete-log DKG protocol can be

THRESHOLD CRYPTOGRAPHY ON PERSONAL DEVICES 23

achieved without interactive zero-knowledge proofs. However, they still need
a single inconsistent player and a secure message transmission functionality
(private channels), which can be realised using a receiver non-committing
transmission protocol based on [92].

The first DKG that does not require private channels was given by Fouque and
Stern [56]. The main buildings blocks for their construction are the Paillier
cryptosystem and a new non-interactive zero-knowledge proof. To deal with
a rushing adversary it is simply assumed that communication is completely
synchronous. For participants not present during the DKG the amount of
information that needs to be stored, i.e., the subshares that need to be decrypted,
is linear in the number of participants that are active in the DKG.

Kate and Goldberg [100] were the first to study DKG in an asynchronous setting
and proposed a DKG that is deployable over the internet.

2.4 Threshold Cryptography on Personal Devices

The mobility of personal devices is usually considered as a major benefit.
However, this mobility is a weakness in terms of security and reliability. Mobile
devices are susceptible to theft, they can easily be forgotten or lost, or simply
run out of battery power. These weaknesses can be mitigated by introducing
threshold cryptography on personal devices.

For access control scenarios, access will only be granted when at least the
threshold number of personal devices is present. One can also encrypt the
sensitive data on one’s personal devices, and only allow decryption when the
threshold number of personal devices is present. The first case will offer some
protection (the adversary needs to compromise at least the threshold number of
devices) against the theft of credentials, while the second case offers protection
against data theft. This is the security property.

For access control scenarios, the end-user can still gain access as long as he
carries any subset of his personal devices, of size at least the threshold number.
Similarly he will still be able to decrypt his sensitive data on his personal
devices. We define resilience as the number of absent devices that the system
can tolerate while remaining functional.

24 THRESHOLD CRYPTOGRAPHY

2.4.1 Communication and Adversarial Model

We assume that devices communicate over a dedicated broadcast channel6. By
dedicated we mean that if a device broadcasts a message, then it is received
by all other devices within communication range. For communication between
personal devices, which form a small local network, this assumption is not
unreasonable. There are no private channels: all communication goes over
the broadcast channel. Communication is round-synchronous, protocols run in
rounds and there is a time bound on each round.

In certain cases, the user forms an Out-Of-Band (OOB) channel between the
devices. This channel has the benefit of being authentic, but the downside is
that this channel has only limited bandwidth.

A distinction is commonly made between static and adaptive adversaries. Static
means that the adversary corrupts the devices before the protocol starts, whereas
adaptive means that a device can become corrupt before or at any time during
execution of the protocol. We assume a malicious computationally bounded
static adversary that can corrupt up to t out of n devices. The adversary has
access to all information stored by the corrupted devices and can manipulate
their behaviour during the execution of a protocol in any way. The round-
synchronous communication implies that the adversary could be rushing.

2.4.2 Threshold

When considering how to set the threshold, we need to take into account the
adversary that compromises τ devices. As long as the adversary corrupts
fewer than the threshold number of devices, the adversary will not learn any
information on the shared private key (apart from the information that is
contained in the corresponding public key). This results in the condition on
overall security:

τ < t+ 1 . (2.1)

The overall system needs to remain functional in presence of adversaries. To
prevent a permanent Denial of Service (DoS) attack, enough uncompromised
devices should remain active to allow reconstruction the private key (or use the
private key implicitly, e.g., to decrypt a ciphertext or place a signature). This
results in the condition on overall resilience:

n− τ ≥ t+ 1 or τ < n− t . (2.2)
6We abstract from the actual implementation of the dedicated broadcast channel.

CONCLUSION 25

Our adversarial model assumes that the adversary can compromise up to t out
of n devices. To prevent a worst case adversary, that compromises τmax = t
devices, from mounting a permanent DoS attack, the following boundary on
the threshold is obtained:

n ≥ 2t+ 1 or t+ 1 ≤ n+ 1
2

. (2.3)

This corresponds with the intuitive feeling that, given an honest majority,
overall security and resilience can be achieved. From a security point of view
the threshold should be as close to this boundary as possible. Meaning that for
an even number of devices, the threshold consists of exactly half the devices.
For an odd number of devices, the threshold represents the smallest majority.

2.5 Conclusion

This chapter gave an overview of the general constructs related to threshold
cryptography, including how to set up a secret sharing scheme and how to
subsequently use the shared secret for cooperative decryption or generation of
signatures. We introduced the benefits of threshold cryptography for the
protection of personal devices. In this context, we introduced a general
communication and adversarial model and discussed the optimal choice for
the threshold number. The communication and adversarial model will be used
in the subsequent chapters.

Chapter 3

Threshold Cryptography on
Less Powerful Devices

Many personal devices are not suitable to be included in threshold schemes,
because these do not offer (secure) storage, which is needed to store shares of the
private key. This chapter presents a novel way of storing shares and shows how to
transform several cryptographic protocols accordingly. Following this approach,
threshold schemes can also include low-cost devices with a factory-embedded
key, e.g., car keys and access cards.

3.1 Introduction

In the previous chapter we introduced the concept of threshold cryptography
and its benefits when deployed on personal devices. The benefits are increased
security, because an adversary needs to compromise multiple personal devices;
and resilience, since for an end-user a subset of his personal devices is sufficient.
This chapter focusses on resilience. The system can tolerate the absence of
up to n− t− 1 personal devices1. By increasing the number of parties in the
threshold scheme, the system’s overall resilience increases. This means that
more personal devices can be forgotten, broken, stolen, . . . , while the end-user
still enjoys a functional security system.

However, the number of personal devices suitable for threshold schemes is
limited because many of these do not incorporate (secure) storage, which is

1Recall that n is the total number of personal devices and t+ 1 the threshold number.

27

28 THRESHOLD CRYPTOGRAPHY ON LESS POWERFUL DEVICES

needed to store shares of the private key. We enlarge the group of high-end
devices, e.g., tablets or smart phones, by also considering small devices with
public-key functionality, e.g., car keys or access cards. Typically, these small
devices have a factory-embedded private key, which cannot be updated and
is the only object that resides in tamper-proof secure storage2. Furthermore,
these devices only have limited computational power.

We propose to store shares in protected form. In this form, these can be stored
can be as well on the device as externally. This is a desirable property for
devices that do not even have writeable memory, as is the case for most car keys.
These protected shares are generated through a run of our new Distributed Key
Generation (DKG) protocol, which is publicly verifiable. Public verifiability
implies that the correctness of any device’s contribution can be verified by all
participants and any third party. As such, not every device needs to be present
during the DKG. Moreover, shares can be used implicitly, as these are never
needed in unprotected form. Furthermore, some devices can be completely
ignorant of the underlying threshold scheme and only serve as partial decryption
oracles. We demonstrate how protected shares can easily be used in discrete-log
based cryptosystems and signature schemes. More specifically, we demonstrate
this for the ElGamal [66] and the Cramer-Shoup [43] cryptosystems, and the
Schnorr signature scheme [142].

3.2 Protecting Shares

For the group’s private key x ∈ Z` to be shared, each device receives a share
xi ∈ Z` that has to be (securely) stored. Since not all devices provide (secure)
storage, there is a need for an alternative approach. We propose to store these
shares in protected form.

Before discussing how to construct the protected shares (Setup), we first give a
formalisation of the public parameters and describe how the devices generate
their public/private key pairs (Pre-Setup).

3.2.1 Pre-Setup

• Init(1k): The input is a security parameter k. Let G1, G2 and GT be
finite cyclic groups of prime order ` with P , Q and g = ê(P,Q) generators
of the respective groups. It is assumed that there is no known efficiently

2Private keys can be securely stored in hardware by making use of Physically Unclonable
Functions (PUF) [77]. Small differences during the fabrication process allows us to derive a
unique private key with only a slightly higher fabrication cost.

PROTECTING SHARES 29

computable isomorphism ψ : G2 → G1. Let P ′ be another generator of
G1 for which the discrete logarithm relative to the base P , and vice versa,
is unknown and let g1 = g, g2 = ê(P ′, Q) .
The initialisation procedure outputs the description of the groups
(G1,G2,GT) and the pairing (ê) along with the public system parameters

PubPar = (P, P ′, Q) ∈ G2
1 ×G2 .

For some protocols, an additional generator P ′′ ∈ G1 is required for which
the discrete logarithms relative to the base P and P ′, and vice versa, are
unknown. In this case we also define g3 = ê(P ′′, Q).

• KeyGen(PubPar,Di): For the given device Di a random si ∈R Z∗` is
chosen as private key. The corresponding public key is Si = siQ. The key
generation procedure outputs Di’s key pair

(si, Si) ∈ Z∗` ×G2 .

Note that the key generation procedure is executed only once in the lifetime
of each device Di and that si is the only secret that has to be securely stored.
Typically, this routine is executed during production or personalisation of the
device. Another public key can easily be computed for a different set of system
parameters if this is required.

3.2.2 Setup

These key pairs (si, Si) will be used to protect the shares for the devices. An
obvious answer would be to store a share encrypted under the device’s public
key. At some point the share will need to be decrypted and appear in the clear
in unprotected memory, which is undesirable. Furthermore this would involve a
costly decryption operation every time a device wants to use its share. Another
option is to store the share as the product xisi. The obvious disadvantage is
that t+ 1 devices can collaborate to compute another device’s private key si.

As we do not want a device’s private key si ever to be revealed, we will combine
shares with the device’s public key Ci = xiSi ∈ G2. These will be denoted
as public correction factors. A similar idea was used by Schoenmakers [144].
However, here we use bilinear pairings to achieve public verifiability and easy
integration of our scheme in existing discrete-log cryptosystems and signature
schemes, without ever having to reveal the shares (see Sect. 3.4). We define3 the

3Note that we could use the notation X and Xi for the private key and its shares. However,
to compute the correction factor Ci, elements of Z` will be combined with Si, but by definition,
private key material is in G2.

30 THRESHOLD CRYPTOGRAPHY ON LESS POWERFUL DEVICES

group’s private key as xQ ∈ G2 and its public key as y = gx = ê(P, xQ) ∈ GT .
Hence, the share of a device is xiQ = s−1

i Ci ∈ G2. The construct group routine
is formally defined as follows:

• ConstructGroup(PubPar,{Di, Si},t): A subset of the devices Di
generates the group’s public key gx and shares the private key xQ in
the form of public correction factors Ci = xiSi for all n devices. The
procedure outputs the group’s public key

y = gx = ê(P, xQ) ∈ GT

and the public correction factors which are added to the public parameters

PubPar = (P, P ′, Q, y, {Ci}i=1,...,n) ∈ G2
1 ×G2 ×GT ×Gn2 .

ConstructGroup can be implemented either by a trusted dealer or in a distributed
manner. When choosing for a trusted dealer, implementation of this routine is
straight-forward. To construct the public correction factors, the trusted dealer
runs an instance of Shamir’s secret sharing with appropriate parameters to
obtain the shares xi and then multiply these with the corresponding public keys
Si. In the next section, we present how the ConstructGroup can be implemented
in a distributed manner by using our proposed DKG protocol.

3.3 Distributed Key Generation

In this section, we present a new distributed key generation (DKG) protocol.
Recall that we want to set up a threshold construction without the devices
having to (securely) store their share.

Since a DKG usually requires intensive computations from all devices involved, it
is desirable that the less powerful devices do not need to contribute. This can be
achieved by only using public channels and introducing public verifiability. An
added bonus of public verifiability is that our DKG does not need a complaint
procedure or dispute resolution mechanism.

Our DKG consists of two phases. First, a private key is jointly generated and
shared through the parallel execution of a new publicly verifiable secret sharing
(PVSS) protocol. This PVSS protocol is described in Sect. 3.3.1. Second, the
corresponding public key is extracted. Together, these two phases make up our
new DKG protocol, which is presented in Sect. 3.3.2.

DISTRIBUTED KEY GENERATION 31

3.3.1 Publicly Verifiable Secret Sharing

The main building block to construct our DKG protocol is a new PVSS protocol.
In this protocol, a dealer generates shares of a secret and distributes them in
protected form. Any party observing the output of the protocol can verify that
the dealer behaved correctly. Our proposed PVSS protocol can be described as
follows.

The dealer chooses uniformly at random x ∈R Z`. The actual secret that will be
shared at the end of the protocol is xQ. Similar to Pedersen’s VSS scheme [127],
the dealer chooses two random polynomials f and f ′ of degree t, sets the constant
term of the first polynomial to x and broadcasts pairwise commitments Ak ∈ G1
to the coefficients of the polynomials. Evaluations of both polynomials will be
combined with the public keys of the devices and broadcasted in protected form.
Each device then verifies that all broadcasted shares are correct by applying
the pairing to check them against the commitments. The details of the protocol
are given in Fig. 3.1.

Private channels are avoided because the shares xiQ are broadcasted in protected
form xiSi. Each device could recover its share by using its private key. However,
the shares are never needed in unprotected form. The protected form allows for
public verifiability, since for any device Di the correctness of xiSi and x′iSi can
be verified by pairing the commitments Ak with Di’s public key Si. The dealer
is disqualified, if for any Di this verification fails. As a consequence, there is no
need for a cumbersome complaint procedure. Moreover, not all devices need to
be present during the execution of the protocol to get and verify their received
shares. The broadcasted protected shares can be stored as such by the present
devices.

In the next theorem we will demonstrate that our new PVSS protocol satisfies
the requirements of secure VSS protocol as given by Def. 2.

Theorem 2. Our new PVSS protocol is a secure VSS protocol (Def. 2) under
the divisional variant of the DDH assumption in G2.

Correctness. It follows directly from Pedersen’s result [127] that each subset of
t+1 devices can reconstruct the coefficients ckQ, c′kQ of the polynomials F (z) =
f(z)Q and F ′(z) = f ′(z)Q from their shares. If the dealer is not disqualified
then Eqn. (3.1) holds for all devices and the coefficients will successfully be
verified against the commitments Ak. Hence, it can be verified that all shares
are on the same (respective) polynomial and each subset of t+ 1 devices can
compute the same secret xQ = F (0) .

32 THRESHOLD CRYPTOGRAPHY ON LESS POWERFUL DEVICES

Input: PubPar, the set of participating devices Di and public keys Si, t+ 1
Output: Protected shares xiSi, such that xiQ is the share of device Di

The dealer shares the secret xQ, for which he chooses x ∈R Z` :

1. The dealer constructs two polynomials f(z) and f ′(z) of degree t by
choosing random coefficients ck, c′k ∈R Z∗` for k = 0 . . . t , except for
c0, which is c0 = x :

f(z) = c0 + c1z + · · ·+ ctz
t , f ′(z) = c′0 + c′1z + · · ·+ c′tz

t .

The dealer broadcasts commitments

Ak = ckP + c′kP
′ , k = 0 . . . t .

2. For each device Di, the dealer computes and broadcasts

xiSi , x
′
iSi with xi = f(i) , x′i = f ′(i) , i = 1 . . . n .

3. Each device verifies the broadcasted shares for all Di by checking that

ê(P, xiSi) · ê(P ′, x′iSi) =
t∏
k=0

ê(Ak, Si)i
k

. (3.1)

If any of these checks fails, the dealer is disqualified.

Figure 3.1: Publicly Verifiable Secret Sharing with Protected Shares.

Verifiability. During reconstruction Di provides xiQ and x′iQ, and it can be
verified that

ê(P, xiQ) · ê(P ′, x′iQ) =
t∏
k=0

ê(Ak, Q)i
k

.

Secrecy. Consider a worst-case static adversary A , i.e., an adversary that
corrupts t devices before the protocol starts. The protocol is semantically secure
against A, if A chooses two values x0Q, x1Q ∈ G2 and cannot determine which
of these two was shared with negligible advantage over random guessing, given
the output of a run of the protocol that shared either the secret x0Q or x1Q.
We prove the semantic security by showing that no such adversary can exist.

DISTRIBUTED KEY GENERATION 33

If there exists an A that has a non-negligible advantage in attacking the semantic
security of our protocol, then we can build a simulator SIM that uses A to solve
an instance of the divisional DDH problem in G2 (see Sect. 1.5.3). Since this is
assumed to be a hard problem we conclude that no such adversary can exist.

We now describe this simulator. The simulator SIM is given a tuple
〈Q, aQ, cQ, abQ〉 and has to decide if this is a valid DH tuple, i.e., if cQ = bQ.

1. The simulator SIM does the pre-setup. He chooses the system parameters
PubPar, which contain P and P ′ = ηP , with η known to SIM. He constructs
a set of devices Di, of which one will be the designated device, denoted as
Dd. For each Di 6= Dd, SIM generates a random key pair. The public key
of Dd is set to Sd = cQ.

2. The adversary A receives PubPar and the set of devices along with their
public keys. He announces the subset of corrupted devices, which will be
denoted by Dj for j = 1 . . . t .

3. The simulator SIM gives the private keys sj of the corrupted devices to
A. Device Dd is corrupted with a worst-case probability of roughly 1/2,
in which case the simulation fails.

4. A outputs two values x0Q and x1Q, of which one has to be shared.

5. Without loss of generality, we assume SIM chooses x0Q. The output of
the VSS protocol is generated as follows.

• SIM chooses k random values zk ∈R Z∗` and broadcasts commitments
Ak = zkP .

• SIM constructs a random polynomial F (z) of degree t subject to
F (0) = x0Q and F (d) = aQ . For Eqn. (3.1) to hold, future shares
xiQ and x′iQ will have to satisfy

αiQ = xiQ+ ηx′iQ with αi =
t∑
k=0

zki
k . (3.2)

SIM evaluates the polynomial F (z) and sets the shares xjQ = F (j)
for each corrupted Dj . For the non-corrupted Di 6= Dd, SIM chooses
random shares xiQ ∈R G2 . For i 6= j, the shares on the second
polynomial x′iQ and x′jQ are determined by Eqn. (3.2).

• With the private keys si and sj , SIM computes the protected shares
xiSi, x

′
iSi and xjSj , x

′
jSj .

• For the designated device, SIM sets xdSd = abQ and x′dSd =
η−1(αdSd − abQ).

34 THRESHOLD CRYPTOGRAPHY ON LESS POWERFUL DEVICES

• All protected shares are broadcasted by SIM.

6. The adversary outputs a guess to which of the secrets was shared. If A
has a non-negligible advantage in determining which secret was shared
then SIM concludes that 〈Q, aQ, cQ, abQ〉 must be a valid DH tuple.

The view of A consists of the commitments Ak, all public keys, the private keys
of the corrupted devices, all protected shares and the shares of the corrupted
devices. The adversary A can only gain an advantage in guessing which key
was shared from values, other than his own shares, which were not chosen at
random. This leaves him with only his shares xjQ and the values xdSd and Sd.
The adversary’s problem of deciding which secret was shared is equivalent to
deciding whether xdQ = x0Q−

∑
λjxjQ or xdQ = x1Q−

∑
λjxjQ. Because we

assume SIM chose x0Q, A has to decide whether 〈Q, x0Q−
∑
λjxjQ,Sd, xdSd〉

is a valid DH tuple or not.

We note that given the specific form in which the shares are broadcasted, our
PVSS protocol cannot be proved secure against an adaptive adversary by means
of a simulation argument, which does not imply that it is insecure. Indeed,
it was already suggested by Canetti et al. [36] and Frankel et al. [59] that to
maintain private transmission of shares some form of non-committing encryption
should be used. We insist on storing shares as xiSi in order to maintain the
nice properties of this form, which will allow us to integrate our construction in
other threshold applications, as shown in Sect. 3.4.

A somewhat related4 PVSS scheme was presented by Heidarvand and Villar [81].
Our PVSS scheme differs from theirs by putting the secret in G2, instead of
GT , and thus allowing it to be a building block for DKG and discrete-log
constructions. Moreover, our protocol is semantically secure while the scheme
in [81] is only proved to be secure under a weaker security definition, because
the adversary is not allowed to choose the secrets that it has to distinguish.

4Note that we use an asymmetric pairing which is more standard (e.g., see [65]) than the
symmetric form used in [81].

DISTRIBUTED KEY GENERATION 35

3.3.2 Distributed Key Generation

We now establish a new DKG protocol that outputs protected shares and is
publicly verifiable. Inspired by Gennaro et al. [69] and Canetti et al. [36] the
protocol consists of two phases. In the first phase, the group’s private key is
generated distributively and shared through a joint PVSS. In the second phase,
the group’s public key is computed. This phase follows to a large extent the
result of Canetti et al. [36]. The protocols proceeds as follows.

Each participating device runs an instance of our new PVSS protocol. It
chooses a secret ci,0 ∈R Z` and broadcasts shares of that secret in protected
form. These will be denoted as protected subshares. Each device, acting as a
dealer, that is not disqualified is added to a set of qualified devices, denoted
as QUAL. Each participating device constructs this set using public data that
is available to all participating devices, which results in identical sets across
the participating devices. As long as the cardinality of QUAL is smaller than
t+ 1, the qualified devices wait for more qualified devices or abort the protocol
eventually. The group’s private key, although never computed explicitly, is
defined as xQ =

∑
i∈QUAL ci,0Q . A device’s protected share Ci = xiSi is

computed as the sum of the protected subshares that were received from the
devices in QUAL.

To recover the group’s public key y = gx, the qualified devices will expose
gxi = ê(s−1

i P,Ci) from which y can easily be computed through Lagrange
interpolation. Opposed to [36], we do not expose gci,0 , which avoids the costly
reconstruction of the gcj,0 of the qualified devices that no longer participate in
the second phase. Each device will prove in zero-knowledge that the exponent
of gxi matches the share xiQ hidden in Ci, without revealing it. The technique
used in our protocol is a committed proof as proposed by Cramer et al. [42].
An earlier version of our work was based on interactive zero-knowledge proofs
in which the uniformly distributed challenges were generated by another run of
our Joint PVSS. This alternative key extraction will be discussed later on.

Cramer et al. [42] proposed a very efficient method of extending Σ-protocols,
which are used for zero-knowledge proofs. They make use of a committed proof,
a zero-knowledge protocol where the statement that is being proved is not
revealed until the end of the proof. To create the (almost) random common
challenge with multiple parties, each party contributes a random string. The
concatenation of these strings will contain at least one input from parties that
are not under the influence of the adverary and therefore contain randomness.
At the time of creating the challenge, all parties already committed to the
statement they want to prove, without other parties having knowledge about
the statement.

36 THRESHOLD CRYPTOGRAPHY ON LESS POWERFUL DEVICES

The details of the protocol are given in Fig. 3.2. Note that, since no explicit
private channels are required, only a minimum of t + 1 honest devices must
participate in the DKG.

Our DKG protocol withstands the attack of a rushing adversary that can
influence the distribution of the group’s key as described by Gennaro et al. [71].
In this attack an adversary is able to compute a deterministic function of the
private key from the broadcasts, before sending out his contributions. He can
influence the set of qualified devices by choosing whether or not to send out
proper contributions. This allows influencing the outcome of the deterministic
function by at most t bits and thus the distribution of the private key. Since no
mapping from the search space for the public key to the search space for the
private key is known, this attack is more of theoretical nature. However, the
non-uniformity of the private key is a problem for most signature schemes and
cryptosystems, since their security depends partly on the uniform sampling of
a private key. In our protocol, no such function can be computed before the
second phase. But, because the private key and thus also the correction factors
are fixed after the first phase and determined by QUAL, the adversary can no
longer influence the group’s key. As long as t + 1 honest devices participate,
the public key can be recovered in the second phase.

We now prove that our new DKG protocol is a secure DKG protocol according
to the requirements specified in Def. 3.
Theorem 3. Our new DKG protocol is a secure DKG protocol (Def. 3) under
the divisional variant of the coDBDH-2 assumption.

Correctness. All honest devices construct the same set of qualified devices
QUAL since this is determined by public broadcasted information.

• (C1) Each Di that is in QUAL at the end of phase 1 has successfully
shared ci,0Q through a run of our PVSS protocol. Any set of t+ 1 honest
devices Di that combine correct shares xjQ can reconstruct the same
secret xQ since

xQ =
∑

i∈QUAL
ci,0Q =

∑
i∈QUAL

∑
j

λjxijQ

 =
∑
j

λj
∑

i∈QUAL
xijQ

=
∑
j

λjxjQ .

In the key extraction phase of our protocol at least t+ 1 values gxi have
been exposed and thus, by interpolation, gxj can be computed for any Dj .
This allows us to tell apart correct shares from incorrect ones.

DISTRIBUTED KEY GENERATION 37

Input: PubPar, the set of participating devices Di and public keys Si, t+ 1
Output: Protected shares Ci = xiSi , the group’s public key y = gx

1. Distributed generation of protected shares. See Fig. 3.3.

2. Public key extraction. See Fig. 3.4.

Figure 3.2: DKG with Protected Shares.

All participating devices Di run the PVSS protocol simultaneously, the
protected subshares are only broadcasted after receiving all commitments
from all participating devices.

(a) Each Di constructs two polynomials fi(z) and f ′i(z) of degree t by
choosing random coefficients ci,k, c′i,k ∈R Z∗` for k = 0 . . . t:

fi(z) = ci,0 + ci,1z + · · ·+ ci,tz
t , f ′i(z) = c′i,0 + c′i,1z + · · ·+ c′i,tz

t ,

and broadcasts commitments

Ai,k = ci,kP + c′i,kP
′ for k = 0 . . . t .

(b) For each device Dj , each Di computes and broadcasts

xijSj , x
′
ijSj with xij = fi(j) , x′ij = f ′i(j) .

(c) Each device verifies the broadcasted shares for all Di by checking that

ê(P, xijSj) · ê(P ′, x′ijSj) =
t∏
k=0

ê(Ai,k, Sj)j
k

.

Each Di that is not disqualified as a dealer is added to the list of qualified
devices, denoted by QUAL. The protocol halts until|QUAL|≥ t+ 1. The
group’s private key is defined as xQ =

∑
i∈QUAL ci,0Q . For each Di its

protected share is computed as

Ci = xiSi =
∑

j∈QUAL
xjiSi .

Figure 3.3: Distributed Generation of Protected Shares.

38 THRESHOLD CRYPTOGRAPHY ON LESS POWERFUL DEVICES

The qualified devices expose gxi to compute the public key y = gx.

(a) Each Di in QUAL computes αi = gxi = ê(s−1
i P,Ci) and Ai = siP

′′.
In addition, Di chooses a random ri ∈R Z∗` and computes βi = gri and
Bi = riSi.

• Commit to the values αi, βi, Ai, Bi. First these values are
converted to binary strings and concatenated. A hash function is
used to get an element of Z∗l . For a random d′i ∈R Z∗` :

Di = diP + d′iP
′ with di = H(αi ‖ βi ‖ Ai ‖ Bi) .

• Provide randomness for the challenge ei ∈R Z∗` .

Di in QUAL broadcasts the values Di and ei.

(b) Generation of the challenge e. All broadcasted ei are concatenated
and put through a hash function to get an element of Z∗l .

(c) All Di in QUAL open their commitments by broadcasting
αi, βi, Ai, Bi, d

′
i. Additionally they broadcast Zi = s−1

i (riSi + eCi) =
(ri + exi)Q which completes the zero knowledge protocol.

(d) Any device can verify that

Di = diP + d′iP
′ with di = H(αi ‖ βi ‖ Ai ‖ Bi) and

ê(Ai, Q) = ê(P ′′, Si), ê(P,Zi) = αeiβi, ê(Ai, Zi) = ê(P ′′, Bi+eCi) .

(e) The public key y is computed from t+ 1 correctly verified αi = gxi as

y =
∏

αλii .

Figure 3.4: Public Key Extraction.

DISTRIBUTED KEY GENERATION 39

• (C2) This property follows immediately from the key extraction phase and
the relation between the ci,0Q and the shares xiQ given for the previous
property (C1).

• (C3) The private key is defined as xQ =
∑
i∈QUAL ci,0Q and each ci,0Q

was shared through an instance of our PVSS. Since we proved that a
static adversary cannot learn any information about the shared secret, the
private key is uniformly distributed as long as one non-corrupted device
successfully contributed to the sum that defines xQ.

Secrecy. We describe a simulator SIM that, given a public key y, simulates a
run of the protocol and produces an output that is indistinguishable from the
adversary’s view of a real run of the protocol that ended with the given public
key. We assume that SIM knows η ∈ Z∗` for which P ′ = ηP .

• The first phase of the DKG is run as in the real protocol. Since SIM
knows the private keys si of at least t+ 1 non-corrupted devices, he knows
at least t+ 1 shares xiQ = s−1

i Ci. By interpolation of these shares, SIM
learns the shares of the corrupted devices. This also allows SIM by pairing
to compute gxi for all devices.

• In the second phase of the DKG protocol SIM sets gx∗i for the non-corrupted
Di, such that the public key will be y. The gx∗i for the non-corrupted Di
are calculated by interpolation of the gxj of the corrupted Dj and y = gx.

(a) SIM broadcasts Di = d′iP and ei for each non-corrupted Di.
(b) The challenge for the zero knowledge proof e is constructed.
(c) For all non-corruptedDi, SIM sets α∗i = gx

∗
i , Ai = siP

′′ and computes
β∗i = α−ei gzi , B∗i = ziSi − eCi and Z∗i = ziQ for a random zi ∈R
Z∗` . The new value d′∗i is computed as η−1(d′i − d∗i) with d∗i =
H(α∗i ‖ β∗i ‖ Ai ‖ B∗i) such that Di = d∗iP + d′∗i P

′. SIM broadcasts
(α∗i , β∗i , Ai, B∗i , d∗i , Z∗i) for each non-corrupted Di.

(d) All values verify.

ê(P,Z∗i) = gzi and α∗ei β
∗
i = α∗ei α

∗−e
i gzi = gzi ,

ê(Ai, Zi) = gsizi and ê(P ′′, B∗i + eCi) = ê(P ′′, ziSi) = gsizi .

(e) At the end of the protocol the public key is computed as the given y.

40 THRESHOLD CRYPTOGRAPHY ON LESS POWERFUL DEVICES

To prevent an adversary from being able to distinguish between a real run of
the protocol and a simulation, the output distribution must be identical. The
first phase, i.e., the Joint PVSS, is identical in both cases. The data that are
output in the second phase and that have a potentially different distribution in
a real run and simulation are given in the following table. We show that all
data in this table have a uniform distribution.

REAL SIM
1. gxi gx

∗
i

2. gri , riSi β∗i , B
∗
i

3. d′i d′∗i
4. Zi Z∗i

1. The values xi are evaluations of a polynomial of degree t with uniformly
random coefficients. The values x∗i are evaluations of a polynomial that
goes through t evaluations of the first polynomial, namely the xj of the
corrupted participants, and through the discrete logarithm of y. Since
the protocol is assumed to generate a uniformly random key, the new
polynomial’s distribution is indistinguishable from the distribution of the
first.

2. The value ri was chosen uniformly at random. In the simulation β∗i =
gzi(gx∗i)−e and B∗i = ziSi − eCi. The value zi is uniformly random.

3. In the simulation d′∗i = (d′i − d∗i)η−1, the value d′i was chosen uniformly
at random.

4. We have that Zi = riQ + ηxiQ and Z∗i = ziQ. The values ri, d and zi
were chosen uniformly at random.

Even if the modified gx
∗
i have the right output distribution, it is important to

note that by broadcasting the modified gx
∗
i we introduce a new assumption.

Namely that an adversary cannot distinguish between 〈P,Q, xisiQ, siQ, gxi〉
and 〈P,Q, xisiQ, siQ, gx

∗
i 〉. This is the divisional variant of the coDBDH-2

assumption, as defined in Sect. 1.5.3.

Alternative Public Key Extraction

An alternative version of our DKG protocol uses interactive zero-knowledge
proofs to prove the validity of the values gxi exposed by the devices in the key

DISTRIBUTED KEY GENERATION 41

extraction phase. These proofs require uniformly distributed and unpredictable
challenges. Please note that this challenge can be the same for all proofs. The
devices distributively generate a proper challenge as follows.

A uniformly distributed challenge is generated through another run of our
joint PVSS. By distributed generation of the challenge, at least one honest
device contributes. This guarantees that the challenge will be unpredictable and
uniformly distributed. All devices receive protected shares diSi and d′iSi. After
open reconstruction, for which each device uses its private key to broadcast
the unprotected shares diQ and d′iQ, we have a uniformly distributed element
dQ ∈ G2 . However, the challenge needs to be some element d̃ ∈ Z`. This
implies a bĳective (not necessarily homomorphic) mapping ψ : G2 → Z` . An
example of such a mapping is to take the x-coordinate of dQ modulo `, as is used
in ECDSA signatures. Several issues have been reported with this mapping and
alternatives, e.g., taking the sum of the x and the y-coordinates modulo ` [112],
have been proposed. We refer the reader to [29] for an in-depth treatment of
this subject. The alternative public key extraction phase is shown in Fig. 3.5.

The security proof for this DKG protocol with alternative key extraction phase
is very similar to the previous proof. Instead of giving the full proof, we highlight
the differences:

• The simulator sets the gx∗i for the non-corrupted devices such that the
public key will be y. For the zero knowledge proof to hold, SIM chooses
a random d∗ ∈R Z∗` and forces the outcome of the open reconstruction
of the challenge to d∗Q. For each non-corrupted Di, SIM computes
the commitments β∗i = gzi(gx∗i)−d̃ and B∗i = ziSi − d̃xiSi, for random
zi ∈R Z∗` and d̃ = ψ(d∗Q).

(a) SIM broadcasts 〈gx∗i , siP ′′, β∗i , B∗i 〉 for each non-corrupted Di.
(b) All devices run the Joint PVSS and hold shares diQ and d′iQ. SIM

forces the outcome of the open reconstruction of the challenge to
d∗Q.

– SIM computes the djQ from the corrupted devices by interpola-
tion of t+ 1 shares diQ of the non-corrupted devices.

– SIM sets the d∗iQ for the non-corrupted devices by interpolation
of the djQ of the corrupted devices and d∗Q.

– By knowing η, SIM will compute d′∗i Q such that diQ+ ηd′iQ =
d∗iQ+ ηd′∗i Q . As such, the broadcasted shares d∗iQ, d′∗i Q, will
verify against the commitments.

(c) All Z∗i = ziQ are broadcasted and correctly verified.
(d) At the end of the protocol the public key is computed as the given y.

42 THRESHOLD CRYPTOGRAPHY ON LESS POWERFUL DEVICES

The qualified devices expose gxi to compute the public key y = gx.

(a) Each Di in QUAL broadcasts gxi = ê(s−1
i P,Ci) and siP

′′. It is easily
verified that ê(siP ′′, Q) = ê(P ′′, Si) . In addition, Di chooses a random
ri ∈R Z∗` and broadcasts commitments gri and riSi.

(b) Generation of the uniform challenge, needed in the zero-knowledge
proof.

• Devices in QUAL run a Joint PVSS and obtain protected shares
diSi and d′iSi, which are broadcasted and verified. We denote the
commitments of this Joint PVSS as Bi,k.

• Open reconstruction of dQ. Devices in QUAL broadcast diQ and
d′iQ. These are verified by checking that

ê(P, diQ) · ê(P ′, d′iQ) =
t∏
k=0

ê(Bk, Q)j
k

with Bk =
∑

i∈QUAL
Bi,k .

• dQ is mapped to the challenge d̃ = ψ(dQ), where ψ is a bĳective
map from G2 to Z`.

(c) Each Di broadcasts Zi = s−1
i (riSi+ d̃Ci) = (ri+ d̃xi)Q and any device

can verify that

ê(P,Zi) = gri(gxi)d̃ and ê(siP ′′, Zi) = ê(P ′′, riSi) · ê(P ′′, Ci)d̃ .

(d) The public key y is computed from t+ 1 correctly verified αi = gxi as

y =
∏

αλii .

Figure 3.5: Alternative Public Key Extraction.

DISTRIBUTED KEY GENERATION 43

• To prevent an adversary from being able to distinguish between a real
run of the protocol and a simulation, the output distribution must be
identical.

REAL SIM
2. gri , riSi β∗i , B

∗
i

3. diQ, d
′
iQ d∗iQ, d

′∗
i Q

2. The value ri was chosen uniformly at random. In the simulation
β∗i = gzi(gx∗i)−d̃ and B∗i = ziSi − d̃xiSi. The value zi is uniformly
random and d̃ = ψ(d∗Q) is derived from the uniformly random d∗.

3. Since the following relation holds, diQ + ηd′iQ = d∗iQ + ηd′∗i Q, it
suffices to show that both diQ and d∗iQ have identical distributions.
The value d was chosen uniformly at random.

• By broadcasting the modified d∗iQ, we introduce a new assumption.
An adversary cannot distinguish 〈Q,Si, diQ, diSi〉 from 〈Q,Si, d∗iQ, diSi〉.
This is the divisional variant of the DDH assumption, which is a weaker
assumption than the coDBDH-2 assumption, meaning that if one could
not solve the coDBDH-2 problem, one can also not solve the DDH problem.
Knowledge of P allows to calculate gdi and gd

∗
i and to transform this to

the divisional variant of the coDBDH-2 assumption.

3.3.3 Extended Distributed Key Generation

Uniformity of the group’s private key is already guaranteed by the basic DKG
protocol. The aim of this extension is to guarantee the uniformity of each
participant’s share. A rushing adversary could conduct the attack as described
by Gennaro [71]5 for biasing the group’s private key, to influence the value of
one correction factor. A worst case adversary, having corrupted t participants,
gains an advantage towards breaking the scheme, by knowing t shares and
having information about an additional share. We introduce an extra round in
the DKG protocol.

Each participant Pi will broadcast additional values Bi, B′i and an ordered pair
〈Vi,Wi〉. The first element of the pair can be seen as a vote for either fi(z)
or f ′i(z). The vote determines if xijSj or x′ijSj will be used to determine the
correction factor Cj . The vote is unknown to the other participants, since they
cannot distinguish the order of the ordered pair. However, the broadcasted
values Bi, B′i commit Pi to his vote. The commitment can be publicly verified.
If the verification fails, Pi is not added to the set of qualified participants QUAL.

5This attack is briefly discussed in Sect. 3.3.2.

44 THRESHOLD CRYPTOGRAPHY ON LESS POWERFUL DEVICES

Since the correction factors depend on the votes of the qualified participants,
all votes have to be opened. The votes of qualified participants that did not
open their votes, can be calculated by any set of (t + 1) honest participants.
Each collaborating participant Pi broadcasts helper values for each participant
Pj whose vote is not opened yet. The public key is computed as in the original
protocol. The protocol is shown in Fig. 3.6.

3.4 Threshold Applications

In this section our construction is used to turn discrete-log schemes into threshold
variants with protected shares. It is not our intention to give a rigorous proof of
security of these variants. We rather want to demonstrate the ease with which
our construction fits into existing schemes. We do this for the ElGamal [66]
and the Cramer-Shoup [43] cryptosystems, where we show how pairings allow
implicit use of the shares, i.e., without having to reveal them explicitly, and the
Schnorr [142] signature scheme.

Devices that combines partial decryptions or signatures to output decryptions
or signature are referred to as combining devices. In priciple this can be any
personal device, provided it stores or has access to all protected shares.

3.4.1 ElGamal

Basic Scheme. We define the ElGamal [66] scheme in GT with some minor
modifications; the randomness is moved from GT to G1 and the private key is an
element of G2 instead of Z∗` , i.e., xQ ∈ G2 for some x ∈R Z∗` . Let y = ê(P,Q)x
be the corresponding public key. Encryption and decryption are then defined
as follows.

• Encrypt(PubPar,y,m): To encrypt a message m ∈ GT under the public
key y, choose a random k ∈R Z∗` and output the ciphertext

(R, e) = (kP,myk) ∈ G1 ×GT .

• Decrypt(PubPar,xQ,(R, e)): To decrypt the given ciphertext (R, e)
output the plaintext

m = e

ê(R, xQ)
∈ GT .

THRESHOLD APPLICATIONS 45

1. All participants run an instance of PVSS protocol. In addition to
step 1(a) of the original DKG, each participant Pi commits to a vote
bi for one of his two randomly generated polynomials. This vote is
validated in step 1(c). If validation fails Pi is not added to QUAL.

(a) Participant Pi chooses random values bi ∈R {0, 1}, ri, r′i ∈R Z∗`
and broadcasts Bi = ci,0Q + riQ , B′i = c′i,0Q + r′iQ . Then Pi
computes riP and r′iP

′ and broadcasts 〈Vi,Wi〉 = 〈riP, r′iP ′〉 if
bi = 1. Otherwise, if bi = 0, 〈Vi,Wi〉 = 〈r′iP ′, riP 〉.

(c) For each Pi it is verified that

ê(P,Bi) · ê(P ′, B′i) = ê(Vi, Q) · ê(Wi, Q) · ê(Ai,0, Q) .

2. Before the correction factors can be computed in step 2 of the DKG
protocol, the votes have to be opened. Any subset of t + 1 honest
participants can open the votes so no corrupt party can refuse to open
his vote once he has committed to it.

(a) Each Pi broadcasts bi and gci,0 , and it is verified that

gci,0 · ê(Zi, Q) = ê(P,Bi) with Zi = biVi+(1−bi)Wi . (3.3)

(b) Any subset of t honest participants can open the votes of the
qualified participants whose votes have not been opened. For
any such participant Pj , Pi will broadcast s−1

i riP and r−1
i xjiSi.

It is verified that

ê(s−1
i riP, Si) = ê(Vi, Q) and ê(Vi, r−1

i xjiSi) = ê(P, xjiSi) .

If the verification succeeds, the helper values allow to compute

gcj,0 =
∏

ê(s−1
i riP, r

−1
i xjiSi)λi

and thus to open the vote of Pj by means of (3.3).
(c) Based on the votes, the correction factors are computed as

Cj =
∏

QUAL
bi xijSj + (1− bi)x′ijSj .

3. The public key is computed as in the original protocol.

Figure 3.6: Extended DKG to prevent bias of public correction factors.

46 THRESHOLD CRYPTOGRAPHY ON LESS POWERFUL DEVICES

Threshold Variant. Encryption in the threshold variant is the same as in the
basic scheme. To decrypt a given ciphertext we have to combine the randomness
kP with t+ 1 shares xiQ, which are stored as xiSi. If the shares were stored as
gxisi , it would have been impossible to combine them with the randomiser or
the ElGamal encryption and for each device Di the ciphertext would contain
something like gxisik. By taking advantage of the bilinearity of the pairing, the
size of the ciphertext remains constant. Note that Di never reveals its share
explicitly; its private key is combined with the randomness from the ciphertext
and then paired with the correction factor. The cost of providing a partial
decryption is minimal, namely one elliptic-curve point multiplication. In this
way we can use small devices as partial decryption oracles. The decryption
procedure goes as follows.

• T-Decrypt(PubPar,{Di , Si},(R, e)): To decrypt the ciphertext (R, e)
each device Di provides a partial decryption

Di = s−1
i R = s−1

i kP ∈ G1 .

The combining device receives the contributions Di and verifies that
ê(Di, Si) = ê(R,Q). It then combines t+ 1 contributions to output the
plaintext

m = e

d
with d =

∏
ê(Di, Ci)λi .

3.4.2 Cramer-Shoup

Basic Scheme. Cramer and Shoup [43] presented an ElGamal based
cryptosystem in the standard model that provides ciphertext indistinguishability
under adaptive chosen ciphertext attacks (IND-CCA2). We define their scheme
in GT with the same modifications as in the ElGamal scheme; the first two
(random) elements in the ciphertext are moved from GT to G1 and the private
key is a tuple from G5

2 instead of (Z∗`)5. Let H : G1 × G1 × GT → Z` be an
element of a family of universal one-way hash functions. The private key is

privK = (x1Q, x2Q, y1Q, y2Q, zQ) ∈R G5
2

and the public key is

pubK = (c, d, h) = (gx1
1 gx2

2 , gy1
1 gy2

2 , gz1) ∈ G3
T .

Encryption and decryption are defined as follows.

• Encrypt(PubPar,pubK,m): To encrypt a message m ∈ GT under pubK,
choose a random k ∈R Z` and output the ciphertext

(U1, U2, e, v) = (kP, kP ′,mhk, ckdkα) ∈ G2
1×G2

T with α = H(U1, U2, e) .

THRESHOLD APPLICATIONS 47

• Decrypt(PubPar,privK,(U1, U2, e, v)): To decrypt the given ciphertext
(U1, U2, e, v), first compute α = H(U1, U2, e) and validate the ciphertext
by testing if

ê(U1, x1Q+ y1αQ) · ê(U2, x2Q+ y2αQ) = v .

If the test fails, the ciphertext is rejected, otherwise output the plaintext

m = e

ê(U1, zQ)
∈ GT .

Threshold Variant. It is clear that the Cramer-Shoup public key is not
immediately established from running five instances of our DKG protocol.
The decomposition of c = gx1

1 gx2
2 and d = gy1

1 gy2
2 should not be known. We can

solve this problem by introducing a DKG variant with a third polynomial f ′′(z)
to generate the public keys c and d. The key generation is thereby reduced to
two runs of the variant DKG protocol and one run of the basic DKG protocol.
This results in five protected shares Cx1

i , C
x2
i , C

y1
i , C

y2
i and Czi for each device.

We will now describe this variant.

Without loss of generality, we will describe this variant for the generation of
the public key c = gx1

1 gx2
2 and the shares Cx1

i , C
x2
i . Each device now receives

three instead of two shares. The public key is extracted by revealing the third
share and by proving the discrete log equality of gx

′′
i

3 and x′′i Si. The two parts
of the private keys that are shared are x1Q and x2Q, where x1 =

∑
i∈QUAL ci,0

and x2 =
∑
i∈QUAL c

′
i,0 are the respective sums of the private inputs ci,0 and

c′i,0 of the qualified dealers Di . The corresponding part of the public key is
c = gx1

1 gx2
2 . The details of the protocol are shown in Fig. 3.7.

Input: PubPar, the set of participating devices Di and their public keys
Si, and the threshold t
Output: Protected shares Ci = xiSi and C ′i = x′iSi, , with xiQ and x′iQ

shares of Di, and the group’s public key y = gx1g
x′

2

1. All participating devices Di run a modified PVSS protocol
simultaneously, the subshares are only broadcasted after receiving all
commitments from all participating devices. See Fig. 3.8.

2. Extraction of the public key. See Fig. 3.9.

Figure 3.7: DKG with Protected Shares for Cramer-Shoup.

48 THRESHOLD CRYPTOGRAPHY ON LESS POWERFUL DEVICES

All participating devices Di run a modified PVSS protocol simultaneously,
the subshares are only broadcasted after receiving all commitments from
all participating devices.

(a) Each Di constructs three polynomials fi(z), f ′i(z) and f ′′i (z) of degree
t by choosing random coefficients ci,k, c′i,k, c′′i,k ∈R Z∗` for k = 0 . . . t:

fi(z) = ci,0 + · · ·+ ci,tz
t , f ′i(z) = c′i,0 + · · ·+ c′i,tz

t ,

f ′′i (z) = c′′i,0 + · · ·+ c′′i,tz
t

and broadcasts commitments

Ai,k = ci,kP + c′i,kP
′ + c′′i,kP

′′ for k = 0 . . . t .

(b) For each device Dj , each Di computes and broadcasts

xijSj , x
′
ijSj , x

′′
ijSj with xij = fi(j) , x′ij = f ′i(j) , x′′ij = f ′′i (j) .

(c) Each device verifies the broadcasted shares for all Di by checking that

ê(P, xijSj) · ê(P ′, x′ijSj) · ê(P ′′, x′′ijSj) =
t∏
k=0

ê(Ai,k, Sj)j
k

.

Each Di that performed a valid PVSS is added to the list of qualified devices,
denoted by QUAL. For each Di the public correction factors are computed

Ci = xiSi =
∑

j∈QUAL
xjiSi , C ′i = x′iSi =

∑
j∈QUAL

x′jiSi .

Figure 3.8: Distributed Generation of Protected Shares for Cramer-Shoup.

THRESHOLD APPLICATIONS 49

Extraction of the public key y = gx1g
x′

2 .

(a) Each Di in QUAL chooses a random ri ∈R Z∗` and broadcasts x′′iQ,
siriP

′′ and riP
′′. It is easily verified that

ê(siriP ′′, Q) = ê(riP ′′, Si) and

ê(siriP ′′, x′′iQ) = ê(riP ′′,
∑

j∈QUAL
x′′jiSi) .

(b) The public key y is computed from t+ 1 correctly verified x′′iQ, as

y = gx1g
x′

2 = ê(A0, Q)∏
ê(P ′′, x′′iQ)λi

with A0 =
∑

j∈QUAL
Aj,0 .

Figure 3.9: Public Key Extraction for Cramer-Shoup.

Encryption is the same as in the basic scheme. The decryption routine, which
applies the same ideas as in the threshold ElGamal scheme, goes as follows.
Note that the cost of providing a partial decryption is minimal, namely two
elliptic-curve point multiplications.

• T-Decrypt(PubPar,{Di, Si},(U1, U2, e, v)): To decrypt the given cipher-
text (U1, U2, e, v) each device Di provides Di = s−1

i U1 and D′i = s−1
i U2.

The combining device verifies that ê(Di, Si) = ê(U1, Q) and ê(D′i, Si) =
ê(U2, Q). It then computes

vi = ê(Di, Cx1
i + αCy1

i) · ê(D′i, C
x2
i + αCy2

i) .

and combines t + 1 values vi to validate the ciphertext by testing that
v =

∏
vλii . If validation fails, the ciphertext is rejected. The combining

device combines t+ 1 contributions to output the plaintext

m = e

d
with d =

∏
ê(Di, Czi)λi .

3.4.3 Schnorr Signatures

The Schnorr signature scheme [142] is an example of a scheme that provides
existential unforgeability under an adaptive chosen-message attack in the random
oracle model [135] and has been used many times to create a threshold signature
scheme, e.g., in [71, 3]. We will define the signature scheme in GT and then
extend it to a threshold variant.

50 THRESHOLD CRYPTOGRAPHY ON LESS POWERFUL DEVICES

Basic Scheme. Let H ′ : {0, 1}∗ ×GT → Z` be a cryptographic hash function.
Let the private key be xQ ∈ G2 for some x ∈R Z∗` and let y = gx ∈ GT be the
public key.

• Sign(PubPar,xQ,m): To sign a message m ∈ {0, 1}∗ with the private key
xQ choose a random k ∈R Z`, compute r = ê(P, kQ) and c = H ′(m, r),
and output the signature

(c, σ) = (H ′(m, r), kQ+ c xQ) ∈ Z` ×G2 .

• Verify(PubPar,y,(c, σ),m): To verify the signature (c, σ) on a message
m compute r̃ = ê(P, σ)y−c and verify equality of c = H ′(m, r̃) .

Threshold Variant. The basic scheme naturally extends to a threshold variant.
As opposed to the encryption schemes, the bilinearity of the pairing is not really
needed. However, the signing devices need to share some randomness and will,
therefore, run the DKG protocol of Sect. 3.3.2. Signature verification is the
same as in the basic scheme. Signing goes as follows.

• T-Sign(PubPar,{Di},m): To sign a message m ∈ {0, 1}∗ with the group’s
private key the devices Di will run an instance of the DKG protocol of
Sect. 3.3.2. Each device then holds a share kiSi in protected form of
kQ ∈ G2. Because the value r = ê(P, kQ) ∈ GT is publicly computed
at the end of the protocol, each device can compute c = H ′(m, r) and
σi = s−1

i (kiSi+ cCi) = (ki+ c xi)Q, which is sent to the combining device.
Note that these partial signatures can be verified since the output of the
DKG protocols contained gki and gxi . Values that were not in the output
can be computed through interpolation. The combining device computes
the signing equation σ =

∑
σiλi and outputs the signature

(c, σ) = (H ′(m, r), kQ+ c xQ) ∈ Z` ×G2 .

3.5 Conclusion

In this chapter, we have shown how to increase resilience when deploying
threshold cryptography on things that think by including small devices with
limited or no secure writeable storage capabilities. Assuming these devices have
some support for public-key functionality and stored unique private key, shares
can be stored in protected form. By using bilinear pairings, this particular
form yields some advantages. The most important feature is public verifiability,

CONCLUSION 51

which makes explicit private channels and cumbersome complaint procedures
obsolete. Moreover, not all devices need to be present during group setup. The
bilinearity of the pairings also leads to constant size ciphertexts, independant
of the devices part of the threshold scheme.

We have demonstrated how to adopt the protected shares in existing discrete-log
based signature schemes and cryptosystems. Because shares are never needed in
unprotected form, small devices can be used as decryption oracles at a minimal
cost.

Chapter 4

Proactive Threshold
Cryptography

Security can be enhanced without changing the secret, by distributed generation
of new shares for the participants. Furthermore, by handing out new shares,
the set of devices can be altered, i.e. devices can be added or removed. In this
chapter we deal with devices that are not present during the share update process
and the authorisation for this process. Device management is user-centric, hence
the usability of the proposed authorisation protocol is evaluated.

4.1 Introduction

Threshold cryptography can be made more robust by making it proactive.
Proactive security allows the overall system to recover from partial compromises,
for example, a device’s share that is compromised by the adversary while the
device is left unattended (lunch time attack). With the periodic updates of the
devices’ shares, each device gets a new share and erases its old one. Given the
dynamic ability of the Shamir secret sharing scheme (see Sect. 2.3.1), the shares
that the adversary already collected are rendered useless. Hence, the adversary
only has a limited time frame in which it needs to compromise t+ 1 devices to
break security of the threshold system. Several Proactive Secret Sharing (PSS)
protocols [58, 60, 61, 86, 87, 136] have been proposed. However, these protocols
only allow to refresh the shares within the existing threshold structure, i.e. the
set of shareholders and the threshold number are fixed.

53

54 PROACTIVE THRESHOLD CRYPTOGRAPHY

Secret Redistribution or Resharing protocols [52, 57, 172] also allow to move
from a (t+ 1, n)-secret sharing to a (t′ + 1, n′)-secret sharing. Hence, resharing
protocols not only allow to change the threshold number, but also the number
of devices. By running an instance of a resharing protocol, devices can be added
or removed from the set of personal devices. Thus, the end-user can discard
broken devices, use new devices or even sell devices without reducing the overall
security level.

Even though good protocols exist to achieve these goals, before deploying these
protocols on personal devices, two aspects need to be explored further in detail.
First, we investigate how to deal with absent devices. Second, we study the
following question: How will the end-user authorise his personal devices to run
an instance of the reshare protocol, taking into account the new set of personal
devices and threshold?

4.2 Resharing

Resharing protocols are very similar to distributed key generation protocols. For
both, each player acts as a dealer in a verifiable secret sharing scheme. Upon
successfully completing the protocol, each device holds a share that is equal
to the sum of the subshares sent to that device. The objective of a resharing
protocol is to distribute new threshold shares of the existing private key, while
the objective of a DKG protocol is the joint generation of a threshold shared
private key and the corresponding public key. The difference between resharing
and DKG protocols is that for resharing, instead of each party sharing a random
value, the current share is shared with the other parties.

The private key does not change during a resharing protocol. The free term
of the polynomial containing all shares does not change. This means that
compared to a DKG protocol, no special precautions need to be taken to
make sure that the private key is uniformly distributed1. Hence, we can use
the resharing protocol as proposed by Wong et al. [172] (see Fig. 4.1), for
which the commitments to the subshares are not perfectly hiding (instead,
the commitments are only computationally hiding). These perfectly binding
commitments allow for efficient verification. To ensure correctness, i.e. the
new shares to be valid, the old shares (cf. Eqn. (4.1)) and the subshares (cf.
Eqn. (4.2)) need to be valid. Please note that, unlike in the previous chapter, the
shares need to be kept secret and pair-wise private channels between the devices
are necessary. These private channels can be constructed using encryption over

1The need to guarantee a uniformly distributed key during a distributed key generation
protocol, was pointed out by Gennaro [71].

RESHARING 55

the broadcast channel. As a consequence, all devices need to be present at each
instance of the resharing protocol. In the next section, this constraint is relaxed.
We propose some strategies to deal with absent devices.

Given the public key y = gx, to reshare the secret x from a (t+ 1, n) to a
(t′ + 1, n′) scheme:

1. Each device Di in the set S, a subset of size greater than t devices
that are part of the original scheme, constructs one polynomial fi(z)
of degree t′ by choosing random coefficients ai,k ∈R Z∗q for k = 1 . . . t′
and setting ai,0 to its old share si:

fi(z) = ai,0 + · · ·+ ai,t′z
t′

and broadcasts commitments (for g a generator of subgroup of Zp
with order q)

bi,k = gai,k mod p for k = 0 . . . t′ .

2. For each device Dj in the new scheme, each Di computes and sends
over a private channel

sij = fi(j) mod q .

3. Each device Dj verifies that

y =
∏
i∈S

(bi,0)λi mod p (4.1)

and
gsij =

t′∏
k=0

(bi,k)j
k

mod p ∀ i ∈ S . (4.2)

If the verification succeeds a “commit” is broadcast.
4. If all Dj agree to commit, the new shares are generated and stored

s′j =
∑
i∈S

si,jλimod q .

Figure 4.1: Resharing Protocol Proposed by Wong et al. [172].

Let τ denote the number of devices that are compromised by the adversary.
Let τa ≤ τ denote the number of actively compromised devices. These devices
are controlled by the adversary during the resharing protocol and will remain

56 PROACTIVE THRESHOLD CRYPTOGRAPHY

compromised after resharing. All other (not actively) compromised devices will
be recovered, the adversary will not know their new shares. The number of
compromised devices after resharing is τ ′ and is equal to τa if the threshold
sharing structure is not changed. In this case, the adversary does not gain from
resharing.

Adding or Removing Devices. When allowing a user to add or remove devices
while resharing we introduce a possible advantage for the adversary. Let a
denote the number of added devices and r the number of removed devices.
The number of devices after resharing is n′ = n + a − r. When removing an
uncompromised device, the total number of devices decreases while the number
of actively compromised devices remains the same. When adding an actively
compromised device, both the total number of devices and the total number of
actively compromised devices increase. For a worst case adversary, the number
of compromised devices after resharing is τ ′ = τa + a.

One can calculate bounds on the number of devices the adversary can actively
compromise, preventing the adversary from learning the shared private key
(Eqn. (2.1)) and mounting a Denial of Service attack (Eqn. (2.2)):

τa < t′ + 1− a τa < n− r − t′ .

We assume that the threshold is set automatically t′ + 1 = dn
′

2 e to maintain the
highest possible security while the scheme remains functional (see Sect. 2.4.2).
This results in the following bound:

τa <

⌈
n− a− r

2

⌉
.

For the strongest security guarantees, it is assumed that the number of actively
compromised devices, τa, is as close as possible to the maximum number of
devices the adversary is allowed to compromise, τmax. Hence, the end-user can
only add or remove one device at the time.

τa ≤ τmax for n even
< τmax for n odd .

The difference between the cases for the number of devices before resharing, n,
to be even or odd, is a direct consequence of the way the threshold number is
set. For an even number of devices, τa can be equal τmax, meaning that the
adversary gains nothing by resharing. Adding one device results in an increase
of the threshold number, removing one device does not change it. For an odd
number of devices, τa must be smaller than τmax, since adding a device has no
effect on the threshold number, while removing one device lowers it.

ABSENT PARTIES 57

4.3 Absent Parties

Although the resharing protocol proposed by Wong et al. [172] does not require
all the devices in the current scheme to be present (any honest subset of size
t + 1 or bigger is sufficient), it requires all devices in the new scheme to be
present and participating in the verification. However, these personal mobile
devices are not always available, for example, empty batteries or devices left
at home. Given this constraint, we still want to be able to reshare without
excluding the absent devices from the threshold secret sharing. In this section,
we will only discuss the case where the set of devices and threshold number
do not change during resharing. However, it is possible to alter the threshold
number, add or remove devices. In the following, we assume that only m > t
out of n devices are present.

An obvious solution would be to run an instance of the reshare protocol from a
(t+ 1, n) to a (t′+ 1,m) scheme and at a later point in time, when all n devices
are present, run another instance going from a (t′ + 1,m) to a (t+ 1, n) scheme.
This solution is not desirable, first of all since it requires at least two (all n
devices might never be available at the same time) instances of the resharing
protocol. Second there is the trade-off between security and reliability. By
changing the threshold t′ + 1 dynamically with the number of available devices
m, the overall security is lowered since the adversary can break the security
of the scheme by compromising a smaller number than the original threshold
number of devices. When fixing the threshold t′ + 1 = t+ 1, the reliability of
the scheme is affected since only m− t− 1 instead of n− t− 1 devices can be
absent. Even worse, since the adversary is allowed to compromise t devices, he
can perform a permanent denial of service attack if m ≤ 2t.

Two more promising approaches are to make sure the absent devices get their
new shares afterwards or to fix the shares of the absent devices. These will each
be discussed in the following sections.

4.3.1 Hand Out Shares Afterwards

A resharing protocol is run among all parties and the shares of the absent devices
are stored, such that they can be sent later on when these devices are available.
Verification of the subshares for the absent devices implies public verifiability.
Unfortunately, we cannot reuse the public verifiability techniques that were
introduced in the previous chapter. Recall that we constructed shares in a
protected form. However these protected shares are publicly available. In such
a setting, one cannot assume that shares are erased and thus the adversary is
not restricted to a limited time frame for compromising the threshold number of

58 PROACTIVE THRESHOLD CRYPTOGRAPHY

devices. Moreover, it is impossible to remove devices in that setting. Resharing
requires private channels.

We take a closer look at the private channels between devices. To construct
private channels over the broadcast channel, we use encryption. Public
verifiability can be achieved by carefully selecting an appropriate cryptosystem,
in this case a homomorphic one. The Paillier cryptosystem [123], later extended
by Damgård and Jurick [45, 97], allows us to compute the encryption of the
sum of two plaintexts: E(m1, r1) ·E(m2, r2) = E(m1 +m2, r1r2). Each device
Dj has a public/private Paillier key pair of the form ({Nj , gj}, dj).

Each dealer Di will commit to the coefficients of its polynomial bi,k and broadcast
subshares encrypted (under the recipients’ public keys) to the other devices. The
encrypted subshare for device Dj is eij = Ej(sij , rij) = (gj)sij (rij)Nj mod N2

j .
The dealer has to prove that the encrypted value corresponds to the value that
is committed to cij = gsij =

∑t
k=0 b

jk

i,k mod p. The sigma protocol, depicted in
Fig. 4.2, allows to prove this.

Given e = E(s, r), c = C(s) and the private input (s, r) of the prover:

1. The prover chooses s′, r′ and broadcasts

e′ = E(s′, r′) and c′ = C(s) .

2. The verifier broadcasts the challenge h ∈ {0, 1}l.

3. The prover broadcasts

s′′ = s′ + hs mod q and r′′ = r′(r)h mod q .

4. The verifier verifies

e′(e)h = E(s′′, r′′) and c′(c)h = C(s′′) .

Figure 4.2: Sigma Protocol.

Theorem 4. The proposed sigma protocol is complete and sound.

Completeness.

• e′(e)h = E(s′, r′)E(s, r)h = E(s′ + hs, r′(r)h) = E(s′′, r′′).

• c′(c)h = C(s′)C(s)h = C(s′ + hs) = C(s′′).

ABSENT PARTIES 59

Special soundness. From any pair of accepting conversations (e′, c′, h, s′′, r′′),
(e′, c′, h̄, s̄′′, r̄′′), we can compute s, r such that e = E(s, r) and c = C(s).

eh−h̄ = gs
′′−s̄′′
j

(
r′′

r̄′′

)Nj
mod N2

j .

For 2l smaller than the smallest prime factor of Nj , (h− h̄) is co-prime with
Nj . Euclid’s algorithm2 allows to find α, β such that α(h− h̄) + βNj = 1.

e = g
(s′′−s̄′′)α
j

((
r′′

r̄′′

)α
eβ
)Nj

mod N2
j .

ch−h̄ = gs
′′−s̄′′ mod p .

Since the order of the subgroup of the exponent q is known, (h− h̄)−1 mod q
can be calculated.

c = g
s′′−s̄′′
h−h̄ mod p .

(h− h̄) divides (s′′ − s̄′′)

e = g
s′′−s̄′′
h−h̄ α(h−h̄)
j

((
r′′

r̄′′

)α
eβ
)Nj

mod N2
j

= g
s′′−s̄′′
h−h̄ (1−βNj)
j

((
r′′

r̄′′

)α
eβ
)Nj

mod N2
j

= g
s′′−s̄′′
h−h̄
j

(r′′
r̄′′

)α(
eg
s̄′′−s′′
h−h̄
j

)βNj mod N2
j

= Ej

 s′′−s̄′′
h−h̄ ,

(
r′′

r̄′′

)α(
eg
s̄′′−s′′
h−h̄
j

)β .

2Euclid’s algorithm is described in book VII and X of Elements (circa 300 BC), written
by the Greek mathematician Euclid, making it one of the oldest numerical algorithms still
commonly in use.

60 PROACTIVE THRESHOLD CRYPTOGRAPHY

We found the values s and r

s = s′′ − s̄′′

h− h̄
mod q r =

(
r′′

r̄′′

)α(
eg
s̄′′−s′′
h−h̄
j

)β
mod q .

This sigma protocol can be transformed into a non-interactive proof by applying
the Fiat-Shamir heuristic [55]. Let H() be a cryptographic hash function with
output length l. The challenge h is replaced by H(e, e′, c, c′).

Each subshare can be publicly verified. The encrypted subshares for the absent
devices can be added to their encrypted new shares and be stored by the present
devices. The resulting encrypted share is signed by the present parties, indicating
to the absent device that the encrypted new share was verified and deemed
correct by at least one honest party. To prevent the reuse of previously signed
values, the message to be signed is extended with the commitment to the present
share of the intended device. Note that this commitment can be computed as
in Eqn. (4.3). At a later time, the absent device gets its encrypted new share
and the signatures. This device has to compute the commitment to its present
share and verify the signatures. If the signatures verify, the device decrypts
its new share and updates its share. To compute and verify these signatures,
each device needs an additional public/private (verification/signature) keypair
for signing purposes. Alternatively, if the devices share a signature key (for
which the corresponding verification key is known), one threshold signature can
be placed on the message. In this case, absent devices only need to verify one
signature.

4.3.2 Fix Shares

The shares of the absent devices can be fixed, meaning that the absent device’s
current share equals its new share after resharing took place. This is only
possible as long as the number of absent devices is smaller than the degree of
the polynomial n −m < t (to have at least one degree of freedom) and the
number of present devices is at least the threshold m ≥ t+ 1. For each of the
m present devices Di in the set S, for each absent device Dj , the following
constraint on the polynomial is added (on top of ai,0 = si):

fi(j) = si
λi(j)
λi(0)

= si
∏

k∈S,k 6=i

k − j
k

.

To verify the correctness, we also need to make sure that the shares of the
absent devices did not change. The following additional equations need to be

AUTHORISATION 61

verified (on top of Eqn. (4.1) and (4.2)):

(bi,0)
λi(j)
λi =

∏
k∈S

(bk,0)λk(j) = gsj ∀ i ∈ S, j ∈ {1, . . . , n}/S . (4.3)

Following this approach, a limited number of devices with publicly available
protected shares (see previous chapter) can be used along devices that securely
store their own shares in unprotected form. The publicly available protected
shares can obviously not be updated and will remain fixed. However, devices
that cannot store their shares can be removed in this hybrid setting.

4.4 Authorisation

Little attention has been paid to the problem of authorisation for resharing.
Proper authorisation is necessary to prevent an adversary from altering the set
of devices part of the threshold secret sharing in such a way that he would be
able to break the scheme or mount a Denial of Service attack.

Due to the specific setting, a group of at least t + 1 agreeing devices can
act as a trusted entity, that decides if resharing is authorised or not. Hence,
authentication for resharing is related to voting algorithms in distributed systems,
such as the algorithms proposed by Castro [38] and Hardekopf [80].

To achieve user authorisation, the end user has to transfer data between the
devices. Hence the user forms an authenticated out-of-band-channel. This is
similar to the setting of pairing protocols, for which solutions exist. Pairing
protocols allow two devices to securely exchange keys that can be used later
on to establish secure communication. Germann et al. [67] proposed MANual
Authentication (MANA) protocols, Laur et al. [104] presented to exchange Short
Authenticated Strings (SAS) between two devices. Saxena et al. [141] discussed a
method for pairing two devices in a more secure and user-friendly way by using an
auxiliary third device. Laur et al. [105], Nguyen et al. [121] and Wang et al. [164]
also proposed group manual authentication protocols. Gehrmann et al. [68]
introduced the concept of a Personal Certification Authority. This can reduce
the number of MANA protocols that need be carried out by devices with limited
storage capabilities. Devices with limited storage capabilities cannot store the
public keys of the other devices in the threshold secret sharing. After performing
a MANA protocol, a personal certificate, containing the public key of the other
device, is constructed. This certificate is then broadcasted and stored by devices
with greater storage capabilities.

62 PROACTIVE THRESHOLD CRYPTOGRAPHY

The end-user plays a critical role and has already been named the “weakest
link” in security systems [170]. With the arrival of the ubiquitous society,
users are less and less aware of the underlying technologies. Furthermore,
the responsibility of protecting personal information is shifting towards the
end user, for whom convenience is often more important than security. A
usable security scheme will prevent the user from resorting to workarounds or
short-cuts that render the system vulnerable. Usability principles for designing
secure authentication systems have been continuously gaining importance. It is
generally acknowledged that security systems offering a poor user experience
result in a substantial gap between the theoretical and actual levels of protection.

We consider the following problem: design a secure and user-friendly [4] protocol
to authorise resharing. We solve this problem by introducing two ways to
authorise the resharing process: automatic and manual.

The automatic authorisation for resharing requires no user interventions and
leaves the user free of any cognitive workload, respecting the principle of
psychological acceptability [140] which also states that users must be able to
routinely and automatically apply protection mechanisms.

Manual authorisation provides the user with the flexibility needed to alter
the set of devices that participate in the threshold secret sharing, e.g., to add
or remove a device. It avoids confronting the user with the manual input of
passwords, steering away from all related trade-offs between memorability and
security [4]. Nevertheless, the manual authorisation process still entails a great
deal of user interaction bringing along all the possible pitfalls.

The usability of our proposed protocol is evaluated. The main goal of this
evaluation is to uncover interaction flaws, but it is also meant to uncover real
security defects.

4.4.1 Automatic

Shares of the private key of each device will be periodically updated. Since
no reliable global clock exists within the system, the number of performed
decryptions/signatures will be used as an approximation for time. Each device
has a local counter, counting the number of performed decryptions/signatures
since the last (re)sharing of the private key. We define c as the number of
decryptions/signatures after which resharing is recommended. The number
of decryptions/signatures after which resharing is necessary is C > c. After
successful resharing all devices reset their local counter c = 0.

AUTHORISATION 63

If the local counter of one device reaches c, this device requests automatic
authorisation for resharing. If this request is denied, the device augments its
local counter with a step ∆, c = c+ ∆. If the local counter of one device reaches
C, several attempts to get automatic authorisation for resharing failed. However,
at this moment resharing is necessary. In this case the user is alerted by his
devices that have a Graphic User Interface (GUI) that manual authorisation
for resharing is needed.

Resharing is only authorised if all n devices are present3 and at least t + 1
devices agree to reshare. A device agrees to reshare if its local counter is equal
to or greater than c′, defined as follows:

c′ =
⌊

t

n− 1
c

⌋
.

This value is based on two assumptions. First, that for each decryption/signature
generation only the minimal number of devices co-operates. Second, that
all devices, except the one that triggered the automatic resharing protocol,
participated in an equal number of decryptions/signature generations. The
choice of c′ is optimal to stop DoS attacks. The adversary, with the goal of
draining the mobile devices’ batteries, will not succeed in getting the devices
to constantly reshare. Furthermore he cannot stop automatic resharing from
taking place.

Replay of the request and/or granting of the request for automatic authorisation
needs to be prevented. This is prevented by the introduction of nonces.
Figure 4.3 shows the protocol for automatic authorisation.

Instead of each device placing a signature with its private key, a threshold
signature protocol can be deployed. Each device puts a partial signature on the
request; these partial signatures are then combined to construct the signature
on the request. When using a threshold signature only one signature needs to
be verified. However, in the case of dishonest parties this can result in many
combinations and verifications.

3When deploying mechanisms to deal with absent parties (as discussed in previous section),
this requirement can be relaxed.

64 PROACTIVE THRESHOLD CRYPTOGRAPHY

1. Device Dj (cj > c) broadcasts a session identifier sessid.

2. Each device Di broadcasts a nonce noncei.

3. After receiving all other (n − 1) nonces, each device Di, if its local
counter ci > c′, constructs the request for automatic authorisation
and broadcasts its approval.

SIGNi(request) request = (sessid, nonce1, . . . , noncen) .

If after a certain time a device did not receive all other (n−1) nonces,
this device aborts. Device Dj updates c = c+ ∆ when it aborts.

4. After verifying the signatures of t other approvals, each device that has
given its approval concludes that automatic resharing is authorised.

Figure 4.3: Protocol for Automatic Authorisation.

4.4.2 Manual

Resharing can be authorised by the user, possibly altering the set of participating
devices, e.g. adding or removing one device. The user can also be requested by
GUI-enabled devices to manually authorise resharing. This will be the case if
the local counter of one device reaches C or the resharing protocol failed.

We distinguish three types of devices: participating, non-participating and new
devices. Participating devices refer to devices that are part of the threshold
secret sharing both before and after resharing. Devices no longer part of
threshold secret sharing after resharing are referred to as non-participating
devices; these are the devices that will be removed from the threshold secret
sharing. New devices are only part of the threshold secret sharing after resharing;
these are the devices that will be added to the threshold secret sharing. The
proxy refers to the first device the user interacts with by entering his request
for manual authorisation for resharing.

The problem of the user authenticating his request is similar to the “What
You See Is What You Sign” problem [103], also known as the “Trusted Path
Problem”. The user cannot be sure that what is displayed on the screen (his
request) is what the device broadcasts on his behalf. The adversary, when
controlling the device, could display another request than the one the user

AUTHORISATION 65

authenticates. Furthermore, the adversary should not be able to reproduce
and/or replay the user’s authentication of a request. The user can manifest
himself towards his devices by interaction with the threshold number of these.
This allows us to detect cheating devices.

Since we require explicit interaction of the user before resharing takes place, we
do not need to put safeguards in place to prevent DoS attacks, as is the case
with automatic resharing.

The proposed solution consists of two steps: first the user enters his request at
the proxy which broadcasts the request; and second he confirms his request at
other devices. Figure 4.4 shows the protocol for manual authorisation. Adding
a device is a special case and is discussed afterwards.

1. The user selects device Dj as the proxy and enters his request. The
proxy broadcasts the user’s request:

request = (sessid,IDproxy, IDi, IDj , . . .) SIGNproxy(request) .

2. a) Each device verifies that it is a participating device and verifies
the approval from the proxy. If correct, the request is displayed for
the user to confirm in a user-friendly way.
b) When the user approves the request at device Di the request is
signed by this device and the approval is broadcast:

SIGNi(request) .

3. After verifying the signatures of t other approvals, each device that
has broadcasted the user’s approval concludes that manual resharing
is authorised and the protocol for resharing can be executed.

Figure 4.4: Protocol for Manual Authorisation.

The user utilises one of his GUI-enabled devices as a proxy to get a list of
devices in the neighbourhood. From this list of devices he can select the devices
that will participate in the resharing. The proxy broadcasts the user’s request
to authorise resharing. The request consists of the identities of the participating
devices. The request is signed by the proxy with its own signature key.

66 PROACTIVE THRESHOLD CRYPTOGRAPHY

Each device checks if it is a participating device and verifies the signature on the
request. If the signature on the request is correct, the request is displayed for
the user to confirm. When a user confirms the request on a device, the request
is signed by this device and this signature is broadcast. The user confirms his
request on at least t participating devices; in total the user needs to interact
with at least t+ 1 participating devices. Before confirming, a user can verify
his request at all GUI-enabled devices. Verifying his request before confirming
reduces the adversary’s chance of tampering with the request, as discussed later
on.

Each participating device verifies the correctness of the signatures and checks
whether the request is signed by a participating device. After t + 1 valid
signatures from participating devices, resharing is authorised and takes place.

Adding a device

When adding a new device, this device is not yet known to the participating
devices. The user needs to verify that the device he intends to add is the device
that will be added, hence this device first needs to be authenticated to the
group of participating devices and vice versa. For this goal we need a way of
authenticating new information, in this case public keys. We considered three
possible approaches:

1. We only need a manual authentication protocol between the new device
and this trusted entity. When performing standard manual authentication
protocols between two parties, at least t+ 1 instances of this protocol are
required, which is not user-friendly.

2. Another approach could be to only perform a manual authentication
protocol between the new device and the proxy and add a verification
step during the resharing protocol. It is only at this point that the user
can verify if the device he intended to add is the newly added device.
The user is requested to check if the intended device indicates resharing
in progress. After confirming this on t + 1 of the participating devices,
the participating devices commit to the resharing and the key shares are
overwritten. The additional verification step puts a burden on the user.

3. Group manual authentication protocols, allow authentication to all devices
at once and do not require more effort from the user.

To exchange public keys between the new device and the participating devices,
we use the Group Message Authentication (GMA) protocol that exchanges

AUTHORISATION 67

Short Authenticated Strings (SAS) by Laur and Pasini [105], shown in Fig. 4.5.
The ordered vectors G, m̂i and r̂i represent respectively all identities IDj ,
messages mj and random values rj as received by device Di from devices Dj .
The commitment in the first phase of the protocol commits a device to the final
hash value. Because the commitments are only opened in the second phase, no
device can force the hash result to a specific value.

1. R1: each participating device Di broadcasts a message and a
commitment to a random value ri:

mi ci = commit(ri) .

2. R2: all devices open their commitments and verify the correctness of
the other commitments. Abort if abnormal behaviour.

ri .

3. SAS: each device Di calculates the SAS value. The user forms the
authenticated channel to compare these SAS values.

SASi = h((G, m̂i), r̂i) .

Figure 4.5: SAS-GMA Proposed by Laur and Pasini [105]

The new device starts by sending a session identifier, its identity and its public
key as the message in the SAS-GMA protocol with the participating devices.
The message of the participating devices in the SAS-GMA protocol consists
of the session identifier, the public state and their public key. The public
state consists of the identities of all participating and new devices, and the
threshold t+ 1. In the second round of the SAS-GMA protocol an additional
check is required to detect abnormal behaviour. The new device verifies that
all received messages contain the same public state. A single SAS value needs
to be broadcasted over the authenticated channel: the user needs to compare
the displayed values between his mobile devices.

The comparison of this SAS value is combined with the user’s consent for adding
this device. The new device will display its SAS value, and the participating
devices will ask the user if he wants to add a new device displaying the calculated
SAS value. When the user confirms at device Di, this device constructs and
signs the request and broadcasts the approval. After t+ 1 valid signatures from

68 PROACTIVE THRESHOLD CRYPTOGRAPHY

participating devices, resharing is authorised and takes place. Figure 4.6 gives
an overview of the protocol to manually authorise adding a device.

1. SAS-GMA R1:

(a) The new device sends the session identifier, its identity and its
public key as message.

mNEW = sessid || IDNEW ||PKNEW .

(b) In response, each participating device Di sends the session
identifier, the public state and its public key as message.

mi = sessid ||G || t+1 ||PKi G = {ID1, . . . , IDn, IDNEW} .

2. SAS-GMA R2: Abort if abnormal behaviour, additional check:
the new device verifies that all received messages contain the same
public state.

3. SAS-GMA SAS: A single SAS message needs to be broadcasted over
the authenticated channel. The user is requested by all participating
devices if he wants to add the new device and if it displays the same
SAS value.

SASNEW .

When the user approves at participating device Di, the request is
constructed and signed by this device, and the approval is broadcast.

SIGNi(request) with request = (sessid, G, SASi) .

4. After verifying the signatures of t other approvals, each device that
has broadcasted the user’s approval concludes that manual resharing
is authorised and resharing takes place.

Figure 4.6: Protocol for Manually Authorisation: Adding a Device

Other applications. The protocol for adding a device can also be used to
authorise signatures or decryptions. This authorisation can be necessary to
place signatures on documents or to decrypt very sensitive data. In either case
the proxy has some data, unknown to the other participating devices. This

AUTHORISATION 69

unknown data is a digest of the data to be signed or an encapsulated symmetric
key that needs to be decrypted to decrypt the data.

The SAS-GMA protocol provides authentic data exchange between the
participating devices. The proxy’s message consists of a session identifier,
its identity and the data to be signed or decrypted. Other participating devices
just send the session identifier as message. In round two of the SAS-GMA
protocol the proxy verifies that the session identifier matches. The request
consists of the identity of the proxy, the data to be signed or decrypted, the
session identifier and the SAS value.

Verifying request

The end-user could pick as proxy a device that has been actively compromised
by the adversary. In this case, the adversary can send an alternate request. A
user will be unaware of this cheating proxy unless he verifies his request before
confirming it on his devices. Other devices with a graphic interface that are
under the control of the adversary can display the original request (as entered
by the end-user), making it harder for the end-user to detect the cheating proxy.

The probability of an adversary cheating successfully decreases with each device
on which a user verifies his request. The factor by which this probability
decreases depends on the number of participating devices, t + 1 ≤ p ≤ n.
For each device on which the user verifies his request, the adversary’s success
probability is reduced by a factor fp, as defined in Eqn. (4.4). This factor takes
into account the worst case adversary: one that controls (actively compromises)
the maximum number of devices, and having all these devices participate.

fp = p− 1
(τa)max − 1

. (4.4)

In order to reduce the adversary’s success probability to 0 ≤ success ≤ 1, an
end-user should verify his request at Qp(success) randomly chosen devices:

Qp(success) = d−logfp(success)e . (4.5)

By verifying his request at one randomly chosen device, cheating behaviour
is identified in more than 50% of the cases for typical values of the number
of personal devices and allowing only one device to be removed at the time.
Table 4.1 gives an overview for these values. The values fn and Qn are applicable
when all devices participate in the resharing. The number of devices Qn where a
user needs to verify his request, are provided for the case where the adversary’s
success probability is reduced to 10% or less.

70 PROACTIVE THRESHOLD CRYPTOGRAPHY

Table 4.1: Security Overview Resharing.

n t+ 1 max τ max τa fn Qn(.1)
3 2 1 0 - -
4 2 1 1 ∞ 1
5 3 2 1 ∞ 1
6 3 2 2 5 2
7 4 3 2 6 2
8 4 3 3 3.5 2
9 5 4 3 4 2

10 5 4 4 3 3

4.4.3 Usability Evaluation

Automatic authorisation for resharing requires no interaction with the user,
hence only manual authorisation will be evaluated. This evaluation investigates
how end-users perceive the proposed protocol for authorising resharing on
personal devices.

Methodology

First the test subjects need to be introduced to the concept of threshold things
that think, before we can evaluate the usability of the more complex concept
of resharing. Towards this end, a series of cartoons (see was developed. These
cartoons can be found in Appendix A.

To simulate user interactions and the devices’ screens, a web-based interface
was built. This web-based interface facilitated field studies, as only a laptop
was required. In the mock-up interface for the devices, the user is only given a
limited number of choices: reshare the secret, remove or add a device. A user
can authorise a resharing instance without changing the devices in the threshold
secret sharing. He can also authorise a resharing in which one device is added
or removed.

Three scenarios are considered to test the usability of the protocol:

1. “It has been a while since the last resharing of the secret. Please reshare
the secret in your network of trusted devices”.

2. “You want to sell your laptop, but first remove it from your network of
trusted devices”.

3. “You bought an mp3-player and would like to add it to your network of
trusted devices”.

AUTHORISATION 71

In order to evaluate the user interface we recruited two experts in the field of
Human Computer Interface (HCI) to do an expert evaluation. Before doing
user observation the designed interface was altered according to suggestions in
the expert review.

During the preliminary test, test subjects were asked to think aloud in order
to identify possible problems with the user interface. The satisfaction of the
usability was measured by the After Scenario Questionnaire (ASQ), based
on the work of Lewis [108]. While the user completed the different scenarios,
additional logging was executed to measure other usability factors such as
effectiveness and efficiency [89].

Web-based interface

Figure 4.7 depicts the web-based interface for our user experiments. The devices
around the user are part of the threshold secret sharing. The devices below
represent devices in the neighbourhood, not part of the threshold secret sharing.

Figure 4.7: Web-based Interface.

72 PROACTIVE THRESHOLD CRYPTOGRAPHY

To simulate the real world situation where the user needs to get his mobile
phone out of his pocket before he can see its display, he is required to click on
a device before its display is shown. Additionally this allows us to know with
which devices’ interfaces the test subject is interacting.

Mock-up interface

The protocol needs to be extended with a graphical user interface for the end-
user to know what is going on. We implemented a minimalistic interface where
we assumed that each device display is identical and only has a relatively low
resolution. The starting screen for each device is given in Fig. 4.8.

Figure 4.8: Starting Display for Devices Part of the Threshold Secret Sharing.

As soon as the end-user selects one of the options on any device, this device
will act as the proxy and the request will displayed on all other devices in
a user-friendly way (step 2a of the protocol), as depicted in Fig. 4.9. This
displayed request allows the user to visually confirm his request. To avoid abuse,
it contains the proxy and the request. Buttons to confirm or deny the request
are provided.

Figure 4.9: Request Displayed in User Friendly Way.

When a new device, e.g., an mp3-player is added a MANA protocol needs to be
carried out. Figure 4.10 displays our design.

AUTHORISATION 73

Figure 4.10: MANA Protocol to Add a New Device.

After confirming, if the request needs to be confirmed on more devices,
supporting information is displayed (see Fig. 4.11).

Figure 4.11: Example of Support Information.

After the user confirmed his request at t devices (step 2c of the protocol), the
actual resharing protocol is executed and the following screens (see Fig. 4.12)
are displayed. Each screen is displayed for 3 seconds. The first delay simulates
the time it takes to do all calculations and communication necessary to complete
the protocol. The second delay allows the end-user to see that his request was
processed successfully.

Figure 4.12: Screens at the End of the Protocol.

74 PROACTIVE THRESHOLD CRYPTOGRAPHY

No screens to indicate failure of the resharing protocol were included in this
preliminary study. None of the devices behaved maliciously, as this might
further confuse the test subjects. However, the way the end-user handles this
malicious behaviour is very important to the overall security. Future tests would
benefit from having test subjects returning at a later point in time, when they
are already familiar with the system, to do a similar test that includes devices
behaving maliciously with a certain probability.

Expert review

Before conducting any user observations we subjected the system interface
to an expert review to expose the most obvious usability issues in an early
design phase. The two HCI experts have no specific knowledge of the domain of
security systems. In this case, the lack of domain experience is not considered
to be a drawback since managing or configuring security systems is usually
not a primary goal for most people [171]; it is only secondary to achieving real
goals such as accessing some documents. The expert study took place in the
reviewers’ own office environment, on an individual basis after which results
were compared.

As a guideline, the expert reviewers followed Nielsen’s ten usability heuris-
tics [117] and Yee’s key principles for secure interaction design [174]. Although
the interface is somewhat limited in the amount of functionalities offered, the
review indicated some potential usability obstacles:

• Match between system and the real world [117]. A significant usability
problem was located at the very first point-of-contact between the system
and the user. People with a security background might not be the typical
end users of the proposed security scheme. In this light, it is undesirable
to confront your end users with any technical details about the algorithms
behind the security system. To explain the scheme, the reviewers rewrote
system-oriented terms, e.g., “threshold secret sharing” to match more
familiar concepts, e.g., “network of trusted devices”.

• Visibility of system status [117]. When a user is performing a MANA
protocol, it is often necessary to switch between mobile devices to
successfully complete the process. However, this was not clearly
represented in the GUI. Now, whenever the user needs to switch devices,
the revised system will list all appropriate devices as well as light up their
graphical representations in the GUI.

• User control and freedom [117]. Some MANA protocols can be rather
tedious, which may cause the user to feel lost at certain points. As a
consequence undo-functions going one step back in the process are required,
next to the already provided “reset” functionality.

AUTHORISATION 75

• Explicit authorisation [174]. Users granting or removing authorisations
to/from other actors must unambiguously know the consequences of their
actions. On that account, many labels (buttons, titles, etc.) have been
revised, e.g., when adding a new device to the threshold the button “next”
has become “add” to prevent users from assuming there will be another
step in a wizard-like setting.

Other heuristics were applied but are not mentioned here as they only resulted
in some minor additional changes.

Preliminary study

The preliminary study was conducted among eight students4 from different
backgrounds (technical as well as non-technical). The test subjects were recruited
on a voluntary basis in public study-oriented areas of different faculties. The
motivation behind the choice for a student population, was their openness to
new concepts. Especially since the concept of threshold personal devices needed
to be explained first, before being able to conduct this study. This study was
too limited to draw conclusions, but gave some good indications about what
needed to be changed and directions for further studies.

Data from the additional logging. Figure 4.13 gives an overview in the form of
a box-plots of the time and number of clicks it took the test subjects to complete
the three scenarios. The minimum number of clicks required to complete each
scenario successfully are: four for resharing the secret, five for removing a device
and seven for adding a device. None of the user’s succeeded in adding a device
with the minimum number of clicks, this points to a discrepancy between our
designed interface and the user’s mental model.

(a) Time. (b) Number of clicks.

Figure 4.13: Additional Information from Logging.

4A special thanks to Alexander, Charissa, Elke, Koen, Iris, Johan, Lotte and Pieter for
their participation.

76 PROACTIVE THRESHOLD CRYPTOGRAPHY

Data from the ASQ. The After Scenario Questionnaire (ASQ) consists of
three statements:

• Overall, I am satisfied with the ease of completing the tasks in this
scenario;

• Overall, I am satisfied with the amount of time it took to complete the
tasks in this scenario;

• Overall, I am satisfied with the support information (messages) when
completing the tasks.

The test subjects responded to these statements on a seven point Likert scale,
from strongly disagree (1) to strongly agree (7). These statements are presented
to the test subject right after completing each individual scenario. The results
are shown in Fig. 4.14.

Findings. The three scenarios are ranked in the order these were presented to
the test subject. Data clearly show the confusion among the test subjects for
the first scenario. Note that this was also the first time they were confronted
with the web-based interface. The small informative text on how to interact
with the devices was not sufficient for most test subjects to get started. Future
tests would benefit of first having the test subjects to get familiar with the
interface, e.g., by showing typical device-specific screens when opening displays.
This would allows to get rid of the bias.

Scenario 1: Reshare. All test subjects were confused and did not know what
to do. This can only partly be attributed to the fact that it was the first
time that they interacted the web-based interface. However, the test subjects
also had grave difficulties with the resharing scenario. These difficulties came
somewhat as a surprise, since resharing is the most simple of the three scenarios
from the security point of view. From a usability point of view, this scenario
has the smallest number of required interactions with the user. However, it is
hard for the user to picture resharing. Most test subjects indicated not to know
what they just did. A typical user will not authorise a resharing because this
can be authorised automatically. The option to authorise resharing is included
for more advanced users. The devices GUI reflects this, see Fig. 4.8. As this
is intended for more advanced users, this scenario should have been the last
scenario. The goal of resharing (without adding or removing a device), to renew
the shared key, can be made more explicit by abstracting away from resharing
and introducing the “refreshing” of a shared key.

AUTHORISATION 77

(a) . . . the ease of completing the tasks in this scenario".

(b) . . . the amount of time it took to complete the tasks in this scenario".

(c) . . . the support information (messages) when completing the tasks".

Figure 4.14: Additional Information from ASQ. Test subjects responded to the
following statements: “Overall, I am satisfied with . . .

Scenario 2: Remove a device. Removing a device was generally considered
an easy and straightforward scenario.

When removing a specific device, more or less half of the test subjects tend
to use this device as the proxy. In general, other scenarios exist in which one
should also remove a device from the set of trusted devices, e.g., lost or broken
devices. In these cases the device to be removed cannot be used as a proxy. We
did not allow for the proxy to remove itself because it did not seem sensible to
help authorise a resharing where this device will not be part of. However, when
selling a device, one wants to make sure that this device is indeed removed
from the set of trusted devices. Another possible explanation was given by one
of the test subjects: “When you want to disconnect your external hard drive
from your computer, you first need to safely remove it by clicking on the icon

78 PROACTIVE THRESHOLD CRYPTOGRAPHY

representing that hard drive”. For future testing, the interface is updated to
allow for the device that is to be removed to act as a proxy.

Scenario 3: Add a device. Adding a device proved more difficult. The actions
for adding a device used to consist of: a manual authentication step between
the new device and one of the personal devices; a confirmation step on the
threshold number of personal devices; and finally a verification step on the
threshold number of personal devices. This clearly put quite a high burden on
the user. We redesigned the protocol for authorisation to make use of a group
authentication protocol. Therefore, we got rid of the verification step.

The user could only start adding a device from a personal device, but all test
subjects wanted to be able to start from the device to be added.

We also learnt that the values for a user to compare in the manual authentication
step should not be displayed in two groups on one display, e.g. in two consecutive
lines (see Fig. 4.10). Some thought that they needed to compare these two
values instead of comparing the values across displays. Most of the confused test
subjects did not look at the display of the new device at the time of confusion.
One possible solution is to put both check values as one string, possibly using
an alternative encoding to keep the string short.

General remarks. The variation in the number of clicks can be partially
attributed to test subjects who wanted to open or close more displays.

Several test subjects indicated that the support information in the form of
messages really helped them by pointing out the right devices. One subject was
a bit confused by the message displayed in Fig. 4.11. He was not sure whether
he was supposed to confirm his request on one device or on all suggested devices.

After completion of the manual authorisation for removing this device, the
GUI of participating devices displays “Resharing in progress” and “Resharing
successful”. One test subject asked why the GUI indicated resharing when
he had removed a device. Although only one remarked this, later questions
on the mental model revealed that the majority of the test subjects think of
simply resharing the key, adding devices and removing devices as three different
operations. This also clarified that there should be a clear distinction between
the underlying protocol, resharing, and the provided options that caused the
resharing. The interface is updated accordingly, now showing “refreshing shared
key”, “removing X from set of trusted devices” or “adding X to set of trusted
devices”.

CONCLUSION 79

Most test subjects did not see why one should add an mp3-player. They deemed
Threshold Things That Think useful as a means of protecting data, but they
would only deploy it with the devices that contain sensitive data, like for instance
a mobile phone, PDA or laptop. One question of one of the test subjects “What
if one of the devices breaks down?” is another example showing that the user
does not grasp the underlying mechanism, threshold cryptography.

Further usability studies would benefit from a broader context, e.g., just
introducing the concept of threshold personal devices that can be used to
log on to a website and comparing this with traditional means of logging in.
With RFID-stickers, test subjects can transform any personal object into a
smart object.

4.5 Conclusion

In this chapter, we have stressed the need for resharing protocols for things that
think. These protocols do not only allow for periodic updates all devices’ shares,
hence limiting the time frame for attackers. Moreover, resharing protocols
also enable one to add or remove devices from the set of personal devices. We
showed how to reshare a secret-shared secret with devices that are absent at
the moment of resharing. Furthermore, we proposed a protocol that allows
the end-user to authorise resharing and hence be really in control of his overall
security system. We designed a secure and user-friendly protocol. We took the
opportunity to create one possible interface for simulating the protocol and
conducted a preliminary usability study on it.

Chapter 5

Private RF IDentification

To ensure that the end-user cannot be tracked easily by all the communication
between his personal devices and the environment, enabling private authenti-
cation over an open channel is important. More specifically, we look into this
problem from the point of view of the least powerful devices, namely RFID
tags. This chapter introduces a new RFID model that supports multiple readers
and mutual authentication. We also propose an efficient wide-strong RFID
identification protocol that is based on zero-knowledge. Subsequently we modify
this protocol such that it also achieves efficient mutual authentication.

5.1 Introduction

Radio Frequency Identification (RFID) systems are becoming more common.
RFID tags are deployed in various consumer applications such as physical access
tokens, car keys, contactless payment systems and electronic passports. For these
applications, it is crucial that the underlying protocols protect not only security
but also protect the (location) privacy of the end user (see Weis et al. [166]).
Yet, all communication with RFID tags can easily be eavesdropped or modified,
tags respond to any query and RFID tags can be corrupted, which renders
these vulnerable to attacks. On top of this, an adversary can typically learn the
outcome of the identification protocol. Successful identifications result in an
unlocked door, unlocked car or processed payment, while failure has no outcome.
Since RFID tags are primarily used for authentication purposes, security in
this context means that it should be infeasible to impersonate a legitimate tag.

81

82 PRIVATE RF IDENTIFICATION

Privacy, on the other hand, means that unauthorised parties should not be able
to identify, trace, or link tag appearances.

Several models for privacy and security in the context of RFID systems have
been proposed in the literature. We only consider the general models. For
some of these models it is shown that, despite their intended generality, it
remains unclear how to apply them to protocols other than the protocol in the
context of which they were proposed. Other existing models do not allow for
adversaries that can tamper with tags. However, considering such adversaries
is important because, as low-cost devices, tags are hardly protected against
physical tampering. In particular, it has been shown that side-channel attacks
may enable an adversary to extract secrets from the tag [88, 99, 134, 113], and
so-called ‘reset’ attacks force the tag to re-use old randomness [17, 37, 76]. The
adversary can mount reset attacks by inducing power drops or by otherwise
influencing the physical environment of the tag. Adversaries that can tamper
with tags are therefore realistic.

So far, little attention has been paid to supporting multiple readers. Most RFID
models and protocols only take into account the limited setting of one reader.
Multiple readers occur for example when using a single RFID card to access
multiple disjoint security systems (e.g., multiple buildings, printer systems,
vending machines). Supporting multiple readers, however severely complicates
the setup since it is more likely that one of the readers will be compromised.
This should not affect the security and passive privacy of other readers and
the tags. Hence, sharing secrets among readers is impossible. In this setting
mutual authentication between tag and reader is a desirable property. Moreover,
supporting multiple readers is a stepping stone to providing device-to-device
authentication.

Our new model is an extension of the model of Hermans et al. [84], to support
multiple readers and mutual authentication. We believe that this extension
preserves the benefits of the original: general, robust and easily applicable.
Using this new model as a reference we design and evaluate a new wide-strong
private RFID identification protocol that supports mutual authentication and
can handle multiple readers.

We design and evaluate an efficient RFID identification protocol with the
strongest possible privacy guarantees, i.e. wide-strong. The notion of strong
privacy means that no adversary actively interacting with the tags and the reader,
is able to infer any information on a tag’s identity from tag communication,
even when given all secrets stored on the tag. The notion of wide-strong privacy
corresponds to strong privacy against adversaries that also learn the outcome
of the protocol. This privacy notion cannot be achieved when considering
only symmetric identification protocols, where some cryptographic secret is

PREVIOUSLY PROPOSED MODELS 83

shared between tag and reader. Examples of such protocols can be found
in [20, 72, 94]. The main reason behind using symmetric identification protocols
is the perception that public-key cryptography requires either too much time,
power or circuit area to implement on low-cost devices. However, Lee et al. [106]
and Hein et al. [82] showed that public key cryptography, in particular Elliptic
Curve Cryptography (ECC), can be realised on RFID tags. Previously, wide-
strong privacy has only been achieved by schemes relying on an IND-CCA2
encryption scheme (or variants of such schemes) [33, 162]. Our scheme only
needs an ECC architecture without additional components typically required
for IND-CCA2 encryption (e.g. hash function), resulting in a smaller hardware
footprint, which is a substantial improvement. We also propose a modification
of this protocol that provides mutual authentication.

5.2 Previously Proposed Models

This section discusses certain existing RFID privacy models. These models
usually consist of a correctness (no false negatives), security (no false positives)
and privacy definition.

We use a common model for RFID systems, similar to the definitions introduced
by Vaudenay [162] and Canard et al. [33]. For our model, we extend these
definitions to allow for multiple readers, unlike previously proposed models. An
RFID system consists of a set of tags T and a set of readers R. Each tag is
identified by an identifier ID. The memory of the tags contains a state S, which
may change during the lifetime of the tag. The tag’s ID may or may not be
stored in S. Each tag is a transponder with limited memory and computation
capability.

Tags can also be corrupted: the adversary has the capability to extract secrets
and other parts of the internal state from the tags it chooses. A reader Ri
consists of one or more transceivers and a database. A reader’s task is to identify
legitimate tags (i.e. to recover their IDs), and to reject all other incoming
communication. A tag is ‘registered’ with a reader if the reader database
contains an entry for that tag and can successfully authenticate it.

An RFID system requires several algorithms and protocols for setting up the
readers, tags, registering tags with readers or even unregistering tags. These
routines are highly dependent on the specific architecture of the RFID system
and can even take place offline. The privacy and security of these setup and
registration algorithms and protocols is outside of the scope of this thesis.
Therefore, we will only discuss the main protocol used for tag identification and
none of the auxiliary setup and registration routines.

84 PRIVATE RF IDENTIFICATION

Many models, including the ones introduced in [10, 31, 46, 78, 95, 161] do not
allow corrupted tags to be traced. We have selected one such model [95] for
further discussion, in addition to the stronger models of Vaudenay [162] and
Canard et al. [33].

5.2.1 Vaudenay

Several concepts from the privacy model introduced by Vaudenay [162] are used
in our model. We therefore present Vaudenay’s model in detail.

Adversarial model

The adversary of the Vaudenay model has the ability to influence all
communication between a tag and the reader and can therefore perform man-in-
the-middle attacks on any tag that is within its range. It may also obtain the
result of the authentication of a tag, i.e. whether the reader accepts or rejects
the tag. The adversary may also “draw” (at random) tags and then “free” them
again, moving them inside and outside its range. During these interactions the
adversary has to use a virtual identifier (not the tag’s real ID) in order to refer
to the tags that are inside its range. Finally the adversary may corrupt tags,
thereby learning their entire internal state.

The above interactions take place over eight oracles that the adversary may
invoke: CreateTag(ID), DrawTag(distr) → (vtag) , Free(vtag), Launch →
π, SendReader(m,π) → m′, SendTag(m, vtag) → m′, Result(π) → x and
Corrupt(vtag). vtag denotes a virtual tag reference, π a protocol instance,
distr a polynomially bounded sampling algorithm, m and m′ messages and ID
a tag ID. For a complete definition of the oracles the reader is referred to [162].

The Vaudenay model divides adversaries into different classes, depending on
restrictions regarding their use of the above the oracles. In particular, a strong
adversary may use all eight oracles without any restrictions. A destructive
adversary is not allowed to use a tag after it has been corrupted. This models
situations where corrupting a tag leads to the destruction of the tag. A forward
adversary can only do other corruptions after the first corruption. That is, no
protocol interactions are allowed after the first corrupt. A weak adversary does
not have the ability to corrupt tags. Orthogonal to these four attacker classes
there is the notion of wide and narrow adversary. A wide adversary has access
to the result of the verification by the server while a narrow adversary does not.

PREVIOUSLY PROPOSED MODELS 85

Due to their generality, the above restrictions can be used perfectly in other
privacy models. Throughout this chapter we will frequently refer to strong,
destructive, forward, weak and wide/narrow adversaries.
The equations below show the most important relations between the above
privacy notions:

wide-strong ⇒ wide-destructive ⇒ wide-forward ⇒ wide-weak
⇓ ⇓ ⇓ ⇓

narrow-strong ⇒ narrow-destructive ⇒ narrow-forward ⇒ narrow-weak .

In this case A ⇒ B means that if the protocol is A-private it implies that
the protocol is B-private. A protocol that is wide-strong private, for example,
obviously also belongs to all other privacy classes, that only allow weaker
adversaries.

Privacy, security and correctness

In general, an RFID protocol should satisfy (a) correctness (a real tag is always
accepted), (b) security (fake tags are rejected) and (c) privacy (tags cannot be
identified or traced). Privacy is defined by means of the notion of a ‘trivial’
adversary.

Definition 4 (Blinder, trivial adversary - Simplified version of Definition 7
from [162]). A Blinder B for an adversary A is a polynomial-time algorithm
which sees the messages that A sends and receives, and simulates the Launch,
SendReader, SendTag and Result oracles to A. The blinder does not have
access to the reader tapes. A blinded adversary AB is an adversary that does
not use the Launch, SendReader, SendTag and Result oracles.

An adversary A is trivial if there exists a blinder B such that |Pr(Awins) −
Pr(AB wins)| is negligible.

Intuitively, an adversary is called trivial if, even when blinded, it still produces
the same output. Such an adversary does not ‘use’ the communication captured
during the protocol run in order to determine its output. Note that a blinded
adversary is not the same as a simulator typically found in security proofs: the
blinder is independent of the adversary and has no access to the adversary’s
tape. The blinder just receives incoming queries from the adversary and has to
respond either by itself or by forwarding the queries to the system.

We are now ready to present the privacy definition.

86 PRIVATE RF IDENTIFICATION

Definition 5 (Privacy - Simplified version of Definition 6 from [162]). The
privacy game between the challenger and the adversary consists of two phases:

1. Attack phase: the adversary issues oracle queries according to applicable
restrictions;

2. Analysis phase: the adversary receives the table that maps every vtag to a
real tag ID. Then it outputs true or false.

The adversary wins if it outputs true. A protocol is called P-private, where
P is an adversary class (strong, destructive, . . .), if and only if all winning
adversaries belong to the class P are trivial.

Besides privacy the protocol should also offer authentication of the tag. We
refer to this property as the security of the protocol.

Definition 6 (Security - Simplified version of Definition 4 from [162]). We
consider any adversary in the class strong. The adversary wins if the reader
identifies an uncorrupted legitimate tag, but the tag and the reader did not
have a matching conversation. The RFID scheme is called secure if the success
probability of any such adversary is negligible.

Definition 7 (Correctness - Definition 1 from [162]). An RFID scheme is correct
if its output is correct except with negligible probability for any polynomial-time
experiment which can be described as follows:

1. Set up the reader;

2. Create a number of tags including a subject one named ID;

3. Execute a complete protocol between reader and tag ID.

The output is correct if and only if Output =⊥ and tag ID is not legitimate or
Output = ID and tag ID is legitimate.

Discussion

The paper of Vaudenay inspired many authors to formulate derived RFID privacy
models or to evaluate the Vaudenay model [28, 33, 47, 48, 119, 120, 124, 139, 138].
Although Vaudenay’s privacy model is perhaps the strongest and most complete,
it contains some flaws with respect to strong privacy.

PREVIOUSLY PROPOSED MODELS 87

Vaudenay’s proof of the statement that ‘strong privacy is impossible’ uncovers
some of these shortcomings. This proof assumes a destructive private protocol.
By definition, for every destructive adversary, there exists a blinder. This
includes the adversary that (a) creates one real tag, (b) corrupts this tag right
away, (c) starts a protocol using either the state from the corrupted tag or
from another fake tag. In the end, the blinder has to answer the Result oracle.
Obviously, the adversary knows which tag was selected and knows which result
to expect. However, since the blinder has no access to this random coin of the
adversary, it must be able to distinguish a real and a fake tag just by looking at
the protocol run from the side of the reader. The proof then uses this blinder to
construct a strong adversary. Since all strong adversaries are also destructive,
this proves the impossibility of strong privacy.

Obviously, this proof only works because the blinder is separated from the
adversary. In later work [163], Vaudenay corrects the inconsistency in the model
and shows that strong privacy is indeed possible. In this new approach, the
blinder is given access to the random coin flips of the adversary. The issue
with a separate blinder is exploited multiple times by Armknecht et al. in [6].
Using this property the authors show the impossibility of reader authentication
combined with respectively narrow forward privacy (if Corrupt reveals the
temporary state of tags) and narrow strong privacy (if Corrupt only reveals
the permanent state of tags).

Independent from this correction, Ng et al. [119] also identified the problems
with strong privacy. They propose a solution, based on the concept of a ‘wise’
adversary that does not make any ‘irrelevant’ queries to the oracles i.e. queries
to which it already knows the answer. The authors claim that, if the protocol
does not generate false negatives, then a wise adversary never calls the Result
oracle. Given the vague definition of wise adversaries it is hard to verify these
claims. The existence of attacks which exploit false positives [22] however,
suggests that the general claim that Result is not used by a wise adversary is
incorrect. Based on this questionable general claim, the authors further identify
an IND-CPA-based protocol as being strong private, without giving a formal
proof1.

1Note that the original security proof (i.e. no false positives) by Vaudenay requires IND-
CCA2 encryption, so using only IND-CPA encryption would require a new security proof.
The Result may therefore serve as a decryption oracle.

88 PRIVATE RF IDENTIFICATION

5.2.2 Canard et al.

Model

The model of Canard et al. [33] builds on the work of Vaudenay, so the definition
of oracles is quite similar. For the privacy definition the model requires the
adversary to produce a non-obvious link between virtual tags.

Definition 8. (vtagi, vtagj) is a non-obvious link if vtagi and vtagj refer to
the same ID and if a ‘dummy’ adversary, who only has access to CreateTag,
Draw, Free, Corrupt, is not able to output this link with a probability better
than 1/22.

One major difference with respect to Vaudenay’s model is that a ‘dummy’
adversary is used instead of a blinded adversary. This avoids some of the issues
surrounding the use of a blinder, because a ‘dummy’ adversary can also access
its own random tape, while a blinder cannot access the adversary’s random
tape.

The definition requires the adversary to output a non-obvious link. A protocol
is said to be untraceable if, for every adversary A, it is possible to construct a
‘dummy’ adversary Ad such that |SuccUntA (1k)− SuccUntAd (1k)| ≤ ε(k).

Discussion

While the work certainly has its merit in formalizing and fixing the Vaudenay
model (by using a dummy adversary instead of a blinder), the model of Canard
et al. lacks generality because it focuses on non-trivial links. Other relevant
properties, which do not imply the leakage of a non-trivial link, are not
considered a privacy breach. For example, the cardinality of the set of active
tags can be leaked without leaking a non-trivial link. Because of the limited
scope of untraceability, we are not using this model.

2It is unclear why the authors use the probability threshold 1/2, since one would expect some
dependency on the total number of non-obvious links. One slightly different interpretation
is that a ‘dummy’ adversary cannot determine if a given non-obvious candidate link vtagi,
vtagj is a link in reality or not.

PREVIOUSLY PROPOSED MODELS 89

5.2.3 Juels-Weis

Model

The Juels-Weis model [95] (see also [96]) is based on the notion of
indistinguishability. The model does not feature a DrawTag query and the
Corrupt query is replaced by a SetKey query, which returns the current secret
of the tag and allows the adversary to set a new secret. Figure 5.1 shows a
simplified version of the privacy game. The protocol is considered private if
∀A, Pr

[
ExpprivA,S guesses b correctly

]
≤ 1

2 + ε.

Experiment ExpprivA,S :

1. Setup:

• Generate n random keys keyi.
• Initialise the reader with the random keyi.
• Create n tags, each with a keyi.

2. Phase (1): Learning

• A can interact with a polynomial number of calls to the system,
but can only issue SetKey on n − 2 tags, leaving at least 2
uncorrupted tags.

3. Phase (2): Challenge

• A selects two uncorrupted tags T0 and T1. Both are removed
from the set of tags.

• One of these tags (Tb, the challenge tag) will be selected at
random by the challenger.

• A can make a polynomial number of calls to the system, but
cannot corrupt the challenge tag Tb.

• A outputs a guess bit g ∈ {0, 1}.

Figure 5.1: Privacy Experiment from Juels-Weis[95].

Discussion

The Juels-Weis model is one of the few models based on a simple indistinguisha-
bility game instead of the notion of simulatability. The model is limited by
the fact that the challenge tags cannot be corrupted. In terms of the model

90 PRIVATE RF IDENTIFICATION

of Vaudenay [162], it would be a Weak adversary with regard to the challenge
tags. However, the Juels-Weis model is slightly stronger with regard to insider
attackers, and corresponds to Weak-Insider as defined in the new model (see
next Sect. 5.3). For example, attacks in which the adversary links together
executions of a tag that have taken place prior to its corruption are not possible
in the Juels-Weis model, but the adversary can use a corrupted tag to link other
uncorrupted tags.

The model from [78] is very similar, with the difference that the privacy is
defined as distinguishing the reply from a real tag from a random reply.

5.2.4 Bohli-Pashalidis

Model

Unlike the previous models, the Bohli-Pashalidis model [25] is not an RFID-
specific model. Unfortunately, it captures only privacy properties; properties
such as security and correctness are not covered. The model considers a set of
users (with unique identifiers) U , whose size is at least polynomial in a security
parameter. There is no formal difference between different types of players, like
there is with tag and reader in most RFID models. The system S can be invoked
with input batches (u1, α1), (u2, α2), . . . , (uc, αc) ∈ (U , A)c, consisting of pairs
of user identifiers and ‘parameters’ and will output a batch ((e1, . . . ec), β), with
the outputs ei from each system invocation and a general output β, applying
to the batch as a whole. Users can also be corrupted, revealing their internal
state to the adversary.

The authors investigate the properties of the function f ∈ F , where F = {f :
{1, 2, . . . , n} → U} is the space of functions that map the serial number of each
output element to the user it corresponds to. In the Strong Anonymity (SA)
setting, no information should be revealed to the adversary about the function
f , guaranteeing the highest level of privacy. Several weaker notions (which
reveal some information on f) are defined and the relations among notions are
examined.

In the RFID setting the batch properties are currently not considered, although
this would be an interesting extension, since some localization protocols are
based on batch invocations of a large set of RFID tags. For simplicity we restrict
ourselves to the Bohli-Pashalidis model for online systems. For these systems,
where all batches have size one (i.e. the system never waits for multiple inputs
until it produces some output), the only two applicable distinct notions are
Strong Anonymity (SA) and Pseudonymity (PS).

A NEW MODEL 91

The adversarial model is based on indistinguishability. The adversary can cause
different users to invoke the system using different parameters (e.g. messages) in
both a left and right world with the Input((u0, α0), (u1, α1)) oracle. Based on a
bit b, selected by the challenger, the system will be invoked with the user-data
pair (ub, αb). That is, the adversary itself defines the functions f0, f1 ∈ F , for
respectively the left and right world. The adversary can also corrupt users. At
the end of the game the adversary has to output a guess bit g. The adversary
wins the game if g = b. By imposing restrictions on f0 and f1, the authors
investigate different levels of privacy.

Definition 9. A privacy protecting system S is said to unconditionally provide
privacy notion X, if and only if the adversary A is restricted to invocations
(u0, α0) and (u1, α1) such that f0 and f1 are X-indistinguishable for all
invocations and for all such adversaries A, it holds that AdvXS,A(k) = 0.

Similar definitions for computational (A is polytime in k and AdvXS,A(k) ≤ ε(k))
and statistical privacy are available.

Discussion

As it is general and not meant to cover security properties, the Bohli-Pashalidis
model needs non-trivial adaptations in order to apply to the RFID setting. In its
current form, the model does not support multi-pass protocols, where linking two
messages from the same protocol run is not a privacy breach. Moreover there is
no distinction between tags that need to be protected, and the reader for which
privacy is not an issue. An interesting question is whether the strictly binary
distinguishing game (only one bit of randomness in the challenge) provides
enough flexibility compared to other models, like Vaudenay’s, where there are
multiple bits of randomness that are to be guessed.

5.3 A New Model

Our proposed model is an extension of the privacy model of Hermans et al. [84],
hence this model is not discussed separately. This model was selected since
it is based on the well-studied notion of (left-or-right) indistinguishability.
This avoids the issues with less well-studied concepts such as blinders
that the Vaudenay model suffers from (see Sect. 5.2.1). Moreover, since
several cryptographic schemes have proven security properties based on
indistinguishability games (e.g., IND-CPA, IND-CCA, IND-CCA2), this is likely
to simplify the proofs when using these schemes as building blocks. Note that

92 PRIVATE RF IDENTIFICATION

the Juels-Weis model from Sect. 5.2.3 also uses a traditional indistinguishability
setup. However, the model requires the adversary to distinguish one out of two
selected tags in the final phase. The disadvantage of this approach is that it does
not take into account other properties that might leak privacy (e.g. cardinality)
and that it limits the use of tag corruption. The Vaudenay model did introduce
some crucial tools such as virtual tag references and the corruption types that
are still required.

This extended model allows for a more general setting where a tag can privately
authenticate to multiple (independent) readers. By incorporating the creation of
insider tags (valid tags that are under the control of an adversary), our extended
model also captures insider attacks, as introduced by Van Deursen et al. [160].
For protocols that are vulnerable to these kind of attacks, the adversary can
link other legitimate tags, using its insider tag and the Result oracle.

We assume a set of readers R = {R1, R2, . . . , Rj} and a set of tags T =
{T1, T2, . . . , Ti}. R and T are initially empty, and readers and tags are added
dynamically by the adversary. Each reader maintains a database of tuples
(IDi,Ki), one for every tag Ti ∈ T that is registered with that reader. Moreover,
every tag Ti stores an internal state Si.

Let A denote the adversary, which can adaptively control the system S. The
adversary interacts with the system through a set of oracles:

• CreateReader() → Rj : this oracle creates a new reader. A reference Rj
to the new reader is returned.

• CreateTag(ID) → Ti: on input a tag identifier ID, this oracle creates a
tag with the given identifier and corresponding secrets. A reference Ti to
the new tag is returned. Note that this does not reject duplicate IDs.

• RegisterTag(Ti,Rj): register the tag Ti with the server Rj . The
registration of the tag with the reader can be done in several ways (e.g.
using a specific protocol that involves both the tag and reader, between
readers or using some offline process).

• Launch(Rj) → π: this oracle launches a new protocol run on the reader
Rj , according to the protocol specification. It returns a session identifier π,
generated by the reader.

A NEW MODEL 93

• DrawTag(Ti,Tj) → vtag: on input a pair of tag references, this oracle
generates a virtual tag reference, as a monotonic counter, vtag and stores
the triple (vtag, Ti, Tj) in a table D. Depending on the value of b, vtag
either refers to Ti or Tj . If one of the two tags Ti or Tj is in the table
I, ⊥ is returned and no entry is added to D. If Ti is registered with a
different set of readers than Tj , ⊥ is returned. If Ti is already references
as the left-side tag in D or Tj as the right-side tag, then this oracle also
returns ⊥ and adds no entry to D. Otherwise, it returns vtag.

• Free(vtag)b: on input vtag, this oracle retrieves the triple (vtag, Ti, Tj)
from the table D. If b = 0, it resets the tag Ti. Otherwise, it resets the tag
Tj . Then it removes the entry (vtag, Ti, Tj) from D. When a tag is reset,
its volatile memory is erased. The non-volatile memory, which contains
the state S, is preserved.

• SendTag(vtag,m)b → m′: on input vtag, this oracle retrieves the triple
(vtag, Ti, Tj) from the table D and sends the message m to either Ti (if
b = 0) or Tj (if b = 1). It returns the reply from the tag (m′). If the
above triple is not found in D, it returns ⊥.

• SendReader(Rj, π, m) → m′: on input π,m this oracle sends the
message m to the reader Rj in session π and returns the reply m′ from
the reader (if any) is returned by the oracle3.

• Result(Rj,π): on input π, this oracle returns a bit indicating whether
or not the reader accepted session π as a protocol run that resulted in
successful authentication of a tag. If the session with identifier π is not
finished yet, or there exists no session with identifier π, ⊥ is returned.

• Corrupt(Ti): on input a tag reference Ti, this oracle returns the complete
internal state of Ti4. Note that the adversary is not given control over Ti.

• CreateInsider(ID) → Ti, S: create an insider tag Ti. This runs
CreateTag to create a new tag Ti and Corrupt on the newly created
tag. The tag Ti is added to the list I of insider tags.

• CorruptReader(Rj): corrupt the reader Rj , which returns the full
database of the reader and all secrets of the reader. Note that in the
default privacy game this oracle is not used.

3If no active session π exists, the reader is likely to return ⊥.
4Both the volatile and non-volatile state is returned. For multi-pass protocols it might be

necessary to relax this to only the non-volatile state; to force the adversary to only corrupt
tags Ti that are currently not drawn; or to use the concept of X+ privacy, as discussed in
Sect. 5.3.3.

94 PRIVATE RF IDENTIFICATION

The experiment that the challenger sets up for A (after the security parameter k
is fixed) proceeds as follows:

ExpS,A(k):

1. b ∈R {0, 1}
2. g ← AOS ()
3. Return g == b.

At the beginning of the experiment, the challenger picks a random bit b.
The adversary A subsequently interacts with the challenger by means of the
following oracles OS = {CreateReader, CreateTag, RegisterTag, Launch,
DrawTag, Free, SendTag, SendReader, Result, Corrupt, CreateInsider} and
outputs a guess bit g.

According to the above experiment description, the challenger presents to the
adversary the system where either the ‘left’ tags Ti (if b = 0) or the ‘right’
tags Tj (if b = 1) are selected when returning a virtual tag reference in DrawTag.
The function f0 ∈ F (where F = {f : {1, 2, . . . , n} → T }, see Sect. 5.2.4)
maps the DrawTag invocations (referenced by an index k) to the tag Ti, which
was passed as first argument to DrawTag. Similarly, f1 maps invocation serial
numbers to the second argument to DrawTag. f0 and f1 therefore describe the
‘left’ and the ‘right’ world, respectively.

A queries the oracles a number of times and, subsequently, outputs a guess bit g.
We say that A wins the privacy game if and only if g = b, i.e. if it correctly
identifies which of the worlds was active. The advantage of the adversary is
defined as

AdvS,A(k) =
∣∣∣Pr [Expb=0

S,A(k) = 1
]

+ Pr
[
Expb=1

S,A(k) = 1
]
− 1
∣∣∣ . (5.1)

5.3.1 Privacy

The adversary restrictions, as defined in Sect. 5.2.1, also apply to our privacy
definition. Depending on the acceptable usage of the Corrupt oracle, an
adversary in our model is either strong, destructive (Corrupt destroys a tag),
forward (after the first Corrupt only further corruptions are allowed), or weak
(no Corrupt oracle) adversaries. Depending on the allowed usage of the Result
oracle, there exist narrow (no Result oracle) and wide adversaries.

If an adversary is allowed to call CreateInsider the privacy notion is called
‘...-insider’, so we can speak of forward-insider and weak-insider adversaries. For

A NEW MODEL 95

wide-strong and wide-destructive the CreateInsider can be simulated using
the normal CreateTag and Corrupt oracles, i.e. strong-insider and destructive-
insider are equivalent to wide-strong and wide-destructive respectively.

forward-insider ⇒ weak-insider

⇒ ⇓ ⇓
wide-strong ⇒ wide-destructive ⇒ wide-forward ⇒ wide-weak

⇓ ⇓ ⇓ ⇓
narrow-strong ⇒ narrow-destructive ⇒ narrow-forward ⇒ narrow-weak

Definition 10 (Privacy). An RFID system S, is said to unconditionally provide
privacy notion X, if and only if for all adversaries A of type X, it holds
that AdvXS,A(k) = 0. Similarly, we speak of computational privacy if for all
polynomial time adversaries, AdvXS,A(k) ≤ ε(k).

We also define X+ privacy notion variants, where X refers to the basic privacy
notion and + to the notion that arises when the corruption abilities of the
adversary are further restricted with respect to the DrawTag oracle (see [25]).
Formally, an RFID system is said to be X+ private if it is X private and if,
for all adversaries, f0 ≈T̂ f1. Here, f0 ≈T̂ f1 means that for all i such that
f0(i) ∈ T̂ or f1(i) ∈ T̂ , it holds that f0(i) = f1(i), where T̂ denotes the set of
corrupted tags. This implies that, whenever a tag is corrupted at some point
during the privacy game, it always has to be drawn simultaneously in both the
left and the right world using a DrawTag(Ti, Ti) query with identical arguments.

Similarly, we define theX∗ privacy notion variants that arise when the corruption
abilities of the adversary are further restricted with respect to the Corrupt
oracle. The restricted Corrupt oracle will only return the non-volatile state of
the tag.

5.3.2 Security

Correctness ensures that a legitimate tag is always accepted by a reader.

Definition 11. Correctness. A scheme is correct if the identification of a
legitimate tag only fails with negligible probability.

Soundness is the property that a fake tag is not accepted by the server. We only
consider adversaries that cannot interact with the tag they try to impersonate
during the identification protocol (i.e. we do not consider relay or concurrent
attacks). To avoid relay attacks, distance bounding protocols can be deployed.

96 PRIVATE RF IDENTIFICATION

Rasmussen et al. [137] proposed an implementation of such a protocol with
analog components that is suitable for RFID tags. The following definition
differs from most models as we do not require matching conversations, but
impersonation resistance as in [28] is sufficient.

Definition 12. Soundness. A scheme is resistant against impersonation attacks
if any polynomially bounded strong adversary cannot be identified by a verifier
as the tag it impersonates, except with negligible probability. Adversaries may
interact with the tag they want to impersonate prior to, and with all other
tags prior to and during the protocol run. Nevertheless, the resulting protocol
transcript must not lead to the identification of a corrupted tag. The adversary
has no access to the CorruptReader oracle.

Definition 13. Extended Soundness. Identical to Def. 12, but the adversary is
given access to the CorruptReader oracle.

5.3.3 Modelling details

There are certain notable differences between our model and other models
discussed in the previous section:

• The introduction of CreateTag(·): since the set of tags is not predefined
we allow the adversary to dynamically create new tags.

• DrawTag(·, ·) and Free(·) are used to introduce the concept of virtual
tags. This concept is needed since otherwise SendTag(·, ·) would have to
accept two tag/message pairs (and select one of them based on the value
of b). In this case it would be trivial to determine the bit b for multi-pass
protocols, simply by using different tags for each pass of the protocol if
b = 0 and the same tag if b = 1. The protocol would only succeed if
b = 1, thus allowing detection of b. Hence, it is crucial that the same tag
is always used within a certain protocol run, which can be ensured by
using virtual tag identifiers.

• A separate communication oracle for tags and reader is used, since the
reader is not considered as an entity whose privacy can be compromised.

• Corrupt(·): corruption is done with respect to a tag, not a virtual tag.
If Corrupt(·) would accept a vtag, then determining the bit b becomes
trivial by performing the following attack:

PREVIOUSLY PROPOSED PROTOCOLS 97

– vtaga ← DrawTag(T1,T2)

– Ca ← Corrupt(vtaga)

– Free(vtaga)

– vtagb ← DrawTag(T1,T3)

– Cb ← Corrupt(vtagb)

If Ca = Cb then b = 0, otherwise b = 1.
We believe that it is realistic to assume that one has the tag identifier Ti
when corrupting a tag, since corruption implies having physical access to
a tag.
Note that stateful protocols (which update their state after a protocol run)
do not satisfy our privacy definition. By issuing a Corrupt(Ti) query
before and after a protocol run, one can always identify whether or not
the tag has been active. For such protocols, one could use the significantly
weaker X+ privacy notions.

• In the current setup Corrupt(Ti) reveals the full internal state of the tag,
i.e. both its volatile and non-volatile parts. This follows from [6], where it
is shown that, if corruptions reveal the volatile state, then the resulting
privacy notions are stronger. Single-pass protocols (e.g. challenge-response)
do not suffer from any issues, since the volatile memory is typically erased
after sending the reply, and hence all computations are confined to the
invocation of the SendTag oracle. Multi-pass protocols on the contrary,
typically require storage of data in between SendTag invocations. Because
corruption yields the entire internal state, one could make additional
assumptions on the corruption abilities of the adversary by restricting
corruption to the non-volatile state, using the use the X∗ privacy notions.
An even stronger restriction would be to allow only corruption of tags
that are not drawn in either the left or right world; or use the X+ privacy
notions.

5.4 Previously Proposed Protocols

In this section, we give an overview of previously proposed protocols that are
based on public key cryptography. Each of these protocols is correct, sound and
achieves narrow-strong privacy.

98 PRIVATE RF IDENTIFICATION

5.4.1 Zero Knowledge Based Protocols

The zero knowledge based protocols are proofs of knowledge for a specific verifier
(reader) with public key Y = yP . The prover (tag) proves knowledge of the
private key x ∈ Z`, which is the discrete logarithm of the corresponding public
key X = xP , for P a publicly agreed-on generator of G`. The public key X of
the tag will serve as its identity and has been registered with the reader.

Zero knowledge based protocols are somewhat related to designated verifier
proofs [91], where one proves that either some statement is true or one is the
designated verifier. This setting is clearly different from private identification
where one wants to protect the privacy of tags identifying to one reader (verifier).
Laguillaumie and Vergnaud [102] proposed strong designated verifier signatures,
based on the privacy of the signer’s identity. In this setting any non-designated
verifier cannot tell apart signatures from different signers to the same designated
verifier. However, the designated verifier needs the identity of the signer to
verify the signature.

Randomised Schnorr: was proposed by Bringer et al. [27] (see Fig. 5.2). It
achieves extended soundness and narrow-strong* privacy. This protocol requires
only two scalar-EC point multiplications at the tag side.

State: x, Y

Tag T

Secrets: y DB : {Xi}

Reader R

r1, r2 ∈R Zℓ

R1 = r1P, R2 = r2Y

e ∈R Zℓ

e

s = ex + r1 + r2

Ẋ = e−1(sP − R1 − y−1R2)

verify: Ẋ ∈ DB.

Figure 5.2: Randomised Schnorr [27].

PREVIOUSLY PROPOSED PROTOCOLS 99

Randomised Hashed GPS: was later proposed by Bringer et al. [28] (see
Fig. 5.3). The protocol has extended soundness and narrow-strong* privacy.
The authors also claim wide-PI-forward* privacy, i.e. wide-forward* privacy
even when the list of registered tags’ identities is known. This approach requires
two scalar-EC point multiplications and the evaluation of a hash function, for
which additional hardware will be needed.

State: x, Y

Tag T

Secrets: y DB : {Xi}

Reader R

r1, r2 ∈R Zℓ

R1 = r1P, R2 = r2Y

z = H(R1, R2)

e ∈R Zℓ

e

R1, R2, s = ex + r1 + r2

Ẋ = e−1(sP − R1 − y−1R2)

Verify: z = H(R1, R2), Ẋ ∈ DB.

Figure 5.3: Randomised Hashed GPS [28].

Privacy-wise, both protocols suffer from the adversary having complete freedom
over the exam e it sends to the tag and the fact that the final message from the
tag s contains a term that is linearly dependent on this exam and the secret of
the tag x. For this reason these protocols cannot be wide-strong private5.

Furthermore, there exist a linear relation between the commitments (R1, R2)
and the answer s. This, together with the above, makes that Randomised
Schnorr cannot be wide-weak private6. Both protocols are also vulnerable to
insider-attacks7.

5An attacker in the middle sends e− 1 to the virtual tag and responds to the reader with
s+ x. For a correct guess of the tag’s identity with known internal state x, the result oracle
returns 1.

6For an observed protocol run π0, an adversary can test, using the result oracle, that the
current virtual tag is the tag of π0. The adversary mounts a man-in-the-middle attack, sends
to the reader (R1 +R1,0, R2 +R2,0), challenges the tag with e− e0 and returns to the reader
s+ s0.

7Similar to the above. The attacker sends the exam e0 to the virtual tag in protocol run
π1. When subtracting the answers s0 − s1, the tag specific part should cancel out. The
attacker starts a protocol run π2 between its insider tag (with private key x′) and the reader.
The attacker sets R1 = R1,0 −R1,1, R2 = R2,0 −R2,1 and replies with s′ = s0 − s1 + e2x′.

100 PRIVATE RF IDENTIFICATION

5.4.2 Public Key Encryption Based Protocols

For these protocols, the reader has a public/private key pair (PK, pk). The
identities ID of tags that registered, are stored in the reader’s database. The
tag and reader share a symmetric key K.

Vaudenay’s Public Key Protocol: [162] (see Fig. 5.4) requires the tag to
compute the public key encryption of one message. This cryptosystem needs
to be secure against adaptive chosen ciphertext attacks (IND-CCA2) to have
a secure identification scheme that achieves narrow-strong and wide-forward
privacy. As shown by Hermans et al. [84], this protocol achieves wide-strong
privacy. One of the most efficient IND-CCA2 cryptosystems in the standard
model is the Cramer-Shoup cryptosystem [43]. This cryptosystem requires five
scalar-EC point multiplications, two EC point additions and one evaluation of
a hash function for one encryption.

State: ID, K, PK

Tag T

Secrets: pk, KM DB : {IDi}

Reader R

a ∈R {0, 1}α

a

c = EncP K(ID||K||a)

˙ID||K̇||ȧ = Decpk(c)
Verify: a = ȧ,

K̇ = FKM
(˙ID),

˙ID ∈ DB.

Figure 5.4: Vaudenay’s Public Key Protocol [162].

Hash ElGamal-Based Protocol was proposed by Canard et al. [33] (see
Fig. 5.5). This protocol is secure, narrow-strong private and future untraceable.
It is unclear how future untraceability (as defined by Canard et al. [33]) and
wide-strong privacy relate to each other; however, these seem to be closely
related. This protocol is more efficient than Vaudenay’s public key protocol. It
uses a cryptosystem that is secure against chosen plaintext attacks (IND-CPA),
Hash ElGamal, and a MAC algorithm. This scheme is more efficient than
Vaudenay’s public key scheme since the underlying encryption does not need to
be IND-CCA2. Note that the combination of a MAC and IND-CPA encryption

A NEW PROTOCOL 101

used in this specific protocol in fact provides IND-CCA2 encryption for the
type of plaintext messages used [101]. The tag is required to compute two
scalar-EC point multiplications, one evaluation of a hash function and one
evaluation of a MAC algorithm.

State: ID, K, Y

Tag T

Secrets: y DB : {IDi, Ki}

Reader R

a ∈R Zℓ

a

b, r ∈R Zℓ

T0 = MAC(a||b, K)
T1 = (T0||ID||b)⊕ H(rY)
T2 = rP

T1, T2

Ṫ0|| ˙ID||ḃ = T1 ⊕ H(yT2)

Get K̇ from DB(˙ID)

Verify: Ṫ0 = MAC(a||ḃ, K̇).

Figure 5.5: Hash ElGamal-Based Protocol [33].

Neither protocol achieves extended soundness. The tag and the reader need
to store some shared (secret) data. These shared data consist of an identifier
ID and a shared secret key K. Both protocols achieve wide-strong privacy
and soundness can also be proven under the more strict definition of matching
conversations. Wide-strong privacy also rules out insider attacks on privacy.

5.5 A New Protocol

Our proposed protocol is a modified version of the Schnorr identification
protocol [143]. The original protocol is proven secure by Bellare [19] under
the One More Discrete Logarithm assumption (cf. Sect. 1.5.3). This protocol
consists three passes: commit, exam and response. A consequence of having a
three pass protocol is that only the X* privacy notions can be reached.

Our starting point is a variant of the Schnorr identification protocol, where the
exam of the reader is applied to the tag’s randomness instead of its secret. This
variant is equivalent to the original protocol, except for the case e = 0. In the
original Schnorr identification protocol this results in the adversary learning the

102 PRIVATE RF IDENTIFICATION

tag’s randomness while in the variant the adversary will learn the tag’s secret.
This situation can easily be avoided by having the tag check that e 6= 0.

Privacy is ensured by introducing a blinding factor d that can only be computed
by the tag and the reader. The blinding factor is applied to the secret x of the
tag in its response. This blinding factor only depends on input of the tag and
the public key of the reader, which is known to the tag. Hence an adversary
cannot influence the value of this blinding factor. In contrast to previously
proposed zero-knowledge based protocols (see Sect. 5.4.1), the factor applied to
the secret cannot be influenced by an adversary.

An overview of the proposed protocol is given in Fig. 5.6. The tag generates two
random numbers r1 and r2, where the former is needed for extended soundness
and the latter is used to ensure privacy. The tag commits to its randomness
by sending R1, R2 to the reader. The reader verifies that R2 6= O, the point
at infinity. The tag’s response is s = dx + er1, with d the blinding factor as
computed by the tag. The reader verifies by checking that a tag with public key
Ẋ = ḋ−1(sP − eR1), with ḋ the blinding factor as computed by the reader, has
been registered. The reader keeps a list of all incomplete sessions. If a session
timeout occurs or the tag fails to identify for a given challenge, the session is
also considered to be completed.

State: x, Y

Tag T

Secrets: y DB : {Xi}

Reader R

r1, r2 ∈R Zℓ

R1 = r1P, R2 = r2P

e ∈R Zℓ

e

d = xcoord(xcoord(r2Y)P)

s = dx + er1

ḋ = xcoord(xcoord(yR2)P)

Ẋ = ḋ−1(sP − eR1) ∈ DB ?

Figure 5.6: Private RFID Identification Protocol.

The blinding factor contains r2Y = yR2. Given the Compuational Diffie-
Hellman assumption (cf. Sect. 1.5.3), this value can only be computed when
given either r2 or y. To prevent an adversary of exploiting the self-reduciblity of
the Discrete Logarithm problem (cf. Sect. 1.5.3), this value is encapsulated by
applying a one-way function. An obvious one-way function is a cryptographic
hash function. However, to implement a cryptographic hash function on an
RFID tag, additional logic is required. Current hash functions [147] require at

A NEW PROTOCOL 103

least 50% of the circuit area of the most compact ECC implementation. For
this reason we propose the following one-way function, that is built using only
EC operations H(r2Y) = xcoord(r2Y)P . The value d is set to the x-coordinate
of the EC point.

5.5.1 Analysis

The first two theorems deal with the security properties, correctness and
extended soundness, of the proposed protocol. The last theorem covers the
protocol’s privacy properties.

Theorem 5. The proposed protocol is correct according to Def. 11.

Proof. Since d = xcoord(xcoord(r2Y)P) = xcoord(xcoord(r2yP)P)
= xcoord(xcoord(yR2)P) = ḋ,

it follows that Ẋ = ḋ−1(sP − eR1) = d−1((dx+ er1)P − er1P) = X.

Theorem 6. The proposed protocol has extended soundness according to Def. 12
under the OMDL assumption.

Proof. Assume an adversary A that can break the extended soundness with
non-negligible probability, i.e. that can perform a fresh, valid authentication
with the verifier. Without loss of generality we will assume the target tag is
known at the start of the game8. We construct an adversary B that wins the
OMDL game as follows:

• Set X = O2(). X will be used as the public key of the target tag.

• B executes A. During the first phase of A, B simulates the SendTag
oracles for the target tag as follows (all other oracles are simulated as per
protocol specification):

– On the first SendTag(vtag) query of the i’th protocol run:
return R2,i = r2,iP with r2,i ∈R Z` and R1,i = O2().

– On the second SendTag(vtag, ei) query of the i’th protocol run:
set di = xcoord(xcoord(r2,iY)P) and return si = O1(diX + eiR1,i).

8Otherwise, the proof can be adapted by choosing the public key of the first tag as
X1 = O2() and for all following tags Xi = riX1 with ri ∈R Z`.

104 PRIVATE RF IDENTIFICATION

• During the second phase of A, B proceeds as follows:

– On the first call to Result(π), compute d = xcoord(xcoord(yR2)P)
and store (s, d). Next, rewind A until right before the call to
SendReader(π,R1, R2). On the next call to SendReader(π,R1, R2),
return a new random e′.

– On the next call to Result(π): compute r1 = s−s′/e−e′ and
x = d−1(s− r1) return (x, e−1

1 (s1 − d1x), . . . , e−1
k (sk − dkx)).

The simulation by B is perfect during both phases. At the end of the game B
will successfully win the OMDL with non-negligible probability, unless s = s′,
which happens with negligible probability since both e and e′ are randomly
chosen after R2 6= O is fixed.

Privacy of the protocol is proven under the Oracle Diffie-Hellman (ODH) and
x-Logarithm (XL) assumptions (cf. Sect. 1.5.3).

Theorem 7. The proposed protocol is wide-strong* private according to Def. 10
under the ODH and the XL assumption.

Proof. Assume an adversary A that wins the privacy game with non-negligible
advantage. Using a standard hybrid argument [173, 74], we construct an
adversary that breaks the ODH-assumption. We set Y = B. Bi plays the
privacy game with A. Bi selects a random bit b̃ that indicates which world is
simulated to A. All oracles are simulated in the regular way, with the exception
of the SendTag and Result oracle for the target tag:

• SendTag(vtag):

– j 6= i: Generate r1, r2 ∈R Z`. Take R1 = r1P,R2 = r2P . Return R1
and R2.

– j = i: Generate r1 ∈R Z`.Take R1 = r1P,R2 = A. Return R1 and
R2.

• SendTag(vtag, e), j’th query: retrieve the tuple (vtag, T0, T1) from the
table D. Take the key x for tag Tb̃.

– j < i: Generate r ∈R Z`. Take d = xcoord(H(rP)). Return
s = dx+ er1.

– j = i: Take d = xcoord(O2()). Return s = dx+ er1.
– j > i: Take d = xcoord(H(r2Y)). Return s = dx+ er1.

A NEW PROTOCOL 105

• Result(π): If the received R2 in session π matches A from the ODH
problem take ḋ = xcoord(O2()). If not, check if R2 matches any of the
R2’s generated during the first i − 1 SendTag queries. If so, use the r
generated in that query and compute ḋ = xcoord(H(rP)). Otherwise,
take ḋ = xcoord(O1(R2)). Finally, compute Ẋ = ḋ−1(sP − eR1). Check
Ẋ with the database, return true if Ẋ is found, false otherwise.

At the end of the game A outputs its guess g for the privacy game. Bi outputs
(b̃ == g).

The above simulation to A is perfect, since validation is done in the same way as
the protocol specification. If R2 = A, the oracle O1(·) cannot be used. However,
in this case we know the corresponding value of d by directly calling the O2()
oracle, which gives the same result.

We use Ai (with i ∈ [1 . . . k]) to denote the case that A runs with the first i
SendTag queries random instances, and the other queries real instances. This is
the case when Bi+1 runs with a real ODH instance, or Bi with a random ODH
instance.

By the hybrid argument we get:

‖Pr
[
A0wins

]
− Pr

[
Akwins

]
‖ ≤

∑
AdvBi .

Note that Ai wins if b̃ == g. In the case of A0, Pr
[
A0wins

]
= Pr [Awins].

In the case of Ak however, the output from SendTag is always random and
independent of x: note that d = xcoord(xcoord(rP)P) with r ∈R Z`. Under
the XL assumption it follows that d is uniformly random and independent of
R1, R2 and e. Since s = dx+ er1, s is also uniformly random and independent
of R1, R2, e and x. So Ak has probability 1/2 of winning the privacy game,
since it obtains no information at all from a tag.

‖Pr
[
A0 wins

]
− Pr

[
Ak wins

]
‖ = ‖Pr [Awins]− 1

2
‖

= 1
2

AdvprivacyA

≤
∑

AdvBi .

It follows that at least one of the Bi has non-negligible probability to win the
ODH game.

106 PRIVATE RF IDENTIFICATION

5.5.2 Efficiency Optimisation

Only one random value r is generated by the tag (r1 = r2). Hence, the tag has
to compute one less scalar-EC point multiplication and has to transmit one
less element. The blinding factor is changed to d = xcoord(r2Y). This reduces
the computational effort required from the tag with another scalar-EC point
multiplication. The function to compute the blinding factor is no longer one-way
for r2Y , however, the response s is. An overview of the protocol is given in
Fig. 5.7

State: x, Y

Tag T

Secrets: y DB : {Xi}

Reader R

r ∈R Zℓ

R = rP

e ∈R Zℓ

e

d = xcoord(rY)

s = dx + er

ḋ = xcoord(yR)

Ẋ = ḋ−1(sP − eR) ∈ DB ?

Figure 5.7: Optimised Private RFID identification protocol.

Theorem 8. The optimised protocol has extended soundness according to
Def. 13 under the OMDL assumption.

Proof. The proof is the same as the proof for the basic version of the protocol,
except that d = xcoord(rY) and R = R1 = R2.

For privacy an extended ODH variant is required with some additional oracles.
The original ODH variant from Def. 1 gives direct access to an oracle for
computing the blinding factor d. This is no longer possible since d = xcoord(C)
does not involve a one-way function and allows recovery of C.
Theorem 9. The optimised protocol is wide-strong* private according to Def. 10
under an extended ODH assumption.

The privacy of the optimised protocol can be shown under a modified ODH
assumption featuring the following oracles:

IMPLEMENTATION CONSIDERATIONS 107

• O1(Z1, Z2) = xcoord(bZ1)−1Z2 with Z1 6= ±A

• O2(Z) = xcoord(C)−1Z

• O3(z) = xcoord(C)z + a (can only be invoked once)

The adversary is given access to these three oracles and A = aP,B = bP . Note
that O3 can only be called once during the ODH game to prevent the value a
from being leaked, while the other oracles can be called multiple times.

A similar privacy proof as in Sect. 5.5.1 can be used, with different oracle calls
in the SendTag and Result simulation. In this case e · O3(e−1x) is used in
SendTag for generating a reply (if i = j) and O1 and O2 are used in the Result
oracle to replace the computation of d−1Q with Q = sP − eR1.

5.6 Implementation Considerations

Our protocols require the evaluation of scalar-EC point multiplications and
the generation of a random number. For 80-bit security, we need an elliptic
curve over a field that is approximately 160 bits in size. The protocol can
be implemented on the architecture proposed by Lee et al. [107]. Their ECC
coprocessor can be built with less than 15 kGEs (Gate Equivalent), consumes
about 13.8 µW and takes around 85 ms for one scalar-EC point multiplication.
More recently, Wenger and Hutter [169] proposed an ECC coprocessor that
only requires 9 kGEs, consumes about 32.3 µW and takes around 286 ms for
one scalar-EC point multiplication. Aside from the ECC coprocessor, circuit
area is required for the ROM (Read Only Memory), RAM (Random Access
Memory) and RNG (Random Number Generator).

5.6.1 (Non-)Sense of Coupons
Several papers [28, 33] proposed to optimise their private RFID authentication
protocols by means of precomputation. The protocol is split into an off-line
and on-line phase, for which less computational effort is required in the on-line
phase. Hence, the protocol can be executed faster. The precomputed values
are stored in the form of coupons. There are two ways of implementing these
coupons: either these coupons are precomputed externally and pushed on the
tag or the tag generates these coupons itself.

First we will discuss the former. This way has the additional benefit that for
most protocols, less logic needs to be implemented on the tag. Protocols that

108 PRIVATE RF IDENTIFICATION

only need EC point additions in the on-line phase, compared to a full fledged
EC coprocessor, allow to save a lot of circuit area9. The most striking example
is the case of Randomised Hashed GPS [28] for which, when using coupons,
the only required logic is a hardware implementation of scalar arithmetic. This
in contrast to the original protocol, that requires additional logic to compute
scalar-EC point multiplications and evaluate a hash function. The downside
of the tag not being able itself to do these necessary computations is that an
adversary can quite easily mount a Denial of Service (DoS) attack, by tricking
the tag into authenticating over and over again until it has no coupons left.
This can be prevented by introducing mutual authentication, more specifically
have the reader first authenticate to the tag. Ironically (as shown in Sect. 5.7.2),
the only efficient way to achieve authentication of the reader to a yet-unknown
tag, is by using zero knowledge proofs, which in turn require a full fledged EC
coprocessor on the tag to verify these. How to securely push these coupons
onto the tag is an additional issue.

Having the tag precompute coupons can speed up the identification process, or
alternatively make it possible to use a smaller but slower EC coprocessor. The
tag computes these coupons whenever energy is available; tags can draw energy
as long as these are in the electromagnetic field around any reader. Since the
tag can do all the necessary computations itself, one only needs limited storage
for coupons, namely a buffer of size b.

The disadvantage of coupons is that these need to be stored on the tag. When
making abstraction of the control logic needed to access this storage, one still
needs about one floating gate per bit10. As introduced by Girault et al. [73], the
size of the coupons can be minimised when not storing the used randomness and
instead implementing a pseudo-random function with a seed to generate random
numbers on the tag. Taking this optimisation into account, the protocols
discussed in this chapter still require coupons that consist of two elements.
This means that, for the same circuit area, one can either implement the EC
coprosessor (as proposed by Wenger and Hutter) or storage that allows for 20-30
coupons.

In general it can be argued that strong privacy is not achievable when using
coupons or when using a pseudo-random function instead of a true random
number generator. By making a query to the Corrupt oracle, the adversary
learns the complete internal state of the tag, which also comprises coupons
and/or the seed of the pseudo-random function. When the coupons are generated
by the tag itself, b-strong privacy is possible, meaning that the tag becomes

9From Batina et al. [14], the hardware required for computing EC point additions is
expected to take a few thousand GEs.

10This means that one can only store 6-7 elements for a circuit area equivalent to 1 kGE.

IMPLEMENTATION CONSIDERATIONS 109

unlinkable again after the first b conversations from the moment the tag was
freed after corruption.

Part of the coupons is reader specific. This puts an additional burden on tag
storage requirements in the multi-reader setting, making the use of coupons
completely impractical. For all these reasons, we do not consider coupons.

5.6.2 Comparison
Now we will compare our protocol and its optimised variant to previously
proposed protocols, described in Sect. 5.4. A general overview of the protocols
is given in Table 5.1.

Both the Randomised Schnorr and our proposed protocol benefit from a compact
hardware design, only an ECC coprocessor is needed. The other protocols require
additional hardware to evaluate a cryptographic hash function, which makes
the design substantially larger11.

The scalar-EC point multiplication is the most complex operation, followed
by an EC point addition, and lastly the evaluation of a hash/MAC algorithm.
For a fair comparison between the performance of protocols that require the
evaluation of a hash/MAC and protocols that do not, we assume the same total
available circuit size. This means that our protocol can be implemented using a
larger but faster ECC processor.

When also considering the more general setting, where a single tag can identify
the end-user privately to multiple readers, the tags not only need to store an
extra public key for every reader but also corresponding shared data, if any.
In this setting there is a clear advantage for protocols that provide extended
soundness, since the tag can use the same private/public key pair to identify to
each reader.

11Recall that current cryptographic hash functions [147] require at least 50% of the circuit
area of the most compact ECC implementation.

110 PRIVATE RF IDENTIFICATION

Table
5.1:

O
verview

Private
R

FID
Identification

Protocols.

P
rotocol

Strongest
P

rivacy
Insider

P
rivate

E
xtended

Soundness
R
i -specific

state
O

perations
R

andom
ised

Schnorr
[27]

narrow
-strong*

no
yes

Y
i

2
E

C
m

ult
R

andom
ised

H
ashed

G
P

S
[28]

narrow
-strong*

no
yes

Y
i

2
E

C
m

ult
w

ide-forw
ard*

1
hash

V
audenay

[162]
w

ide-strong
yes

no
K
i

5
E

C
m

ult
+

C
ram

er-Shoup
[43]

C
i ,D

i ,H
i

2
E

C
add

1
hash

H
ash

E
lG

am
al[33]

w
ide-strong

yes
no

K
i

2
E

C
m

ult
Y
i

1
hash

1
M

A
C

P
roposed

P
rotocol(Sect.5.5)

w
ide-strong*

yes
yes

Y
i

4
E

C
m

ult

-
O

ptim
ised

version
(Sect.5.5.2)

w
ide-strong*

yes
yes

Y
i

2
E

C
m

ult

MUTUAL AUTHENTICATION 111

5.7 Mutual Authentication

One can wonder if mutual authentication is a useful feature for private RFID
authentication protocols. This raises the following question: Will the additional
effort required from the tag result safer or more private protocols? At first
glance, yes. One of the issues of RFID tags is that these will respond to any
query. When an RFID tag only responds to authorised queries, the attacker’s
power is reduced. Mutual authentication is also a prerequisite to establish a
secure connection, which in term allows to exchange data privately.

Paise and Vaudenay [124] proposed the only existing private RFID mutual
authentication model, which is an extension of Vaudenay’s private RFID
authentication model [162]. Their motivation for this model is to solve the issue
mentioned above, that can be fixed by requiring that “a tag must be confident
of the reader’s identity before sending any information or its ID.” However,
mutual authentication is modelled in the complete opposite way, i.e. by enriching
protocols with an extra message from the reader to the tag. Technically mutual
authentication is achieved, but by having the tag first authenticate to the reader,
before the reader authenticates to the tag, the problem remains. RFID tags will
still respond with identifiable information to unauthorised queries. A second
problem with this way of modelling is that the tag is expected to output a bit,
indicating whether or not mutual authentication was successful. Oddly enough,
the adversary is not given access to an oracle that allows to learn this outcome.
Furthermore, the assumption that the tag outputs this bit is not realistic as
most RFID tags, even smart cards, do not have a user interface. This means
that it is impossible for the end-user of the RFID tag to spot the difference
between a successful mutual authentication or the protocol being aborted by
the tag. We can conclude that private RFID mutual authentication under this
model, requires additional effort from the RFID tag and does not result in
stronger security or privacy guarantees when the goal is merely authentication.

An exception is the class of private RFID authentication protocols that rely on
the tag and server to keep a synchronised state, which is updated after every
instance of the authentication protocol. The tag will update his state and send
some information allowing the server to compute the same state. To avoid
desynchronisation attacks, the server first confirms the new state to the tag (and
as a consequence, implicitly authenticates to the tag), before the tag updates
its state. For these protocols, mutual authentication results in stronger security
guarantees. However, this class is explicitly excluded in the Paise-Vaudenay
model [124] as they only consider enriched protocols where “the final message
from the reader to the tag does not modify the tag state.”

112 PRIVATE RF IDENTIFICATION

When the reader authenticates first to the tag, tag privacy might be enhanced.
A good example is the class of private search protocols [176], sometimes also
referred to as private interrogation protocols [26]. In these protocols, the reader
wants to know if a certain RFID tag is in the neighbourhood in a privacy-
preserving way. These protocols are designed such that only the target RFID
responds. Having the server first authenticate to the tag prevents adversaries
from tracing tags. However, these protocols only provide mutual authentication
for one specific tag and do not consider the more general setting, where the
reader needs to prove its identity to non-designated verifier.

We extend our model to include mutual authentication. We explicitly define
mutual authentication as the reader first authenticating to the yet-unknown tag,
the tag authenticating to the reader and the coupling between them. By doing
authentication in this order it is easier to achieve private protocols: the tag is
certain of the identity of the reader before revealing its own identity. Moreover
it allows for narrow protocols, where the reader does not give any output on
success or failure of the tag authentication, whereas this would be impossible if
tag authentication preceeds reader authentication. As an additional benefit of
preceeding tag authentication with reader authentiation, the end-user of the
RFID tag to learn the outcome of the protocol, since the reader, in contrast
to the tag, has a user interface. When mutual authentication is only intended
to set up secure communication, the order of authentication between tag and
reader is less important.

One can construct RFID tags that are only to be used for a limited number
of authentication instances, by only storing this number of coupons (see
Sect. 5.6.1). Without mutual authentication (where the server authenticates
first), an adversary can mount a very simple DoS attack.

5.7.1 Model

Tag-authentication is defined by tag-correctness and tag-soundness. Similarly,
reader-authentication is defined by reader-correctness and reader-soundness.
Mutual authentication is achieved when both tag-authentication and reader-
authentication took place in one and the same session. Towards this goal we
define mutual authentication by redefining tag-authentication.

Definition 14. Mutual Authentication. Tag authentication implies that reader
authentication was achieved in the same session, otherwise the tag will abort.

MUTUAL AUTHENTICATION 113

5.7.2 Protocol

Since the reader needs to authenticate to a non-designated party, authentication
based on a mutual secret is ruled out. Instead the reader needs to provide a
proof of knowledge of its secret key when challenged by the yet-unknown tag.

Since we only consider tag-privacy and not the reader’s, mutual authentication
can be achieved by prepending an existing private RFID authentication with
an instance of the generic Schnorr identification [143] and binding these two
authentications. Alternatively the reader can sign his challenge together with
the input of the tag. Both general approaches result in additional computation
effort required from the tag of at least two scalar-EC point multiplications.

To achieve mutual authentication, the protocol needs at least three rounds,
where the tag needs to store information from the first round to be used later on
in the third round. This means that, in order to achieve privacy notions where
the adversary is allowed to query the corrupt oracle (i.e. forward and strong),
restrictions need to be imposed on this oracle such that only the non-volatile
state is returned. Instead of prepending existing two-round protocols where
this restriction on the corrupt is not needed, we look at how to improve the
more efficient three-round protocols, where this restriction already applied.

By having the reader sign its exam and the previous message in the Randomised
Schnorr protocol, mutual authentication is achieved. Furthermore, the resulting
protocol (as depicted in Fig. 5.8) is wide-forward private. This follows from
Vaudenay’s lemma [162, Lemma 8] stating that for a secure scheme, narrow-
forward privacy implies wide-forward privacy. His definition of security, namely
the tag should only be accepted for a matching conversation between tag and
reader, is more strict than ours. However, by having an authenticated challenge,
we also meet this more strict definition of security. Even though the attacks
as described in Sect. 5.4.1 are precluded by requiring matching conversations,
the insider-attacks described by van Deursen and Radomirović [160] are still
possible. This means that wide-forward privacy is the strongest attainable
privacy notion.

To achieve efficient mutual authentication and wide-strong* privacy, we
transform our proposed protocol into a new protocol, IBIHOP. As such, we
keep the strategy of hiding away the exam from unauthorised parties.

114 PRIVATE RF IDENTIFICATION

State: (x, X = xP)

Tag T

(y, Y = yP), Db: . . . , Xi, . . .

Reader R

r1, r2 ∈R Zℓ

R1 = r1P, R2 = r2Y

e ∈R Zℓ

e, σ = signy(R1, R2, e)

verifyY (σ, R1, R2, e)

s = ex + r1 + r2

Ẋ = e−1(sP −R1 − y−1R2) ∈ DB?

Figure 5.8: Mutual Authentication Randomised Schnorr.

IBIHOP

Our proposed mutual authentication wide-strong* private protocol, IBIHOP,
is shown in Fig. 5.9. This proposal is very efficient as it only requires three
scalar-EC point multiplications from the tag. Compared to our most efficient
variant that required two scalar-EC point multiplications and one EC point
addition, mutual authentication is achieved for only a slight increase in the
required tag’s effort.

The most crucial design decision for mutual authentication protocols is how
to link two uni-directional authentication instances. Recall that one of our
design criteria is to have a small hardware footprint, as such, a hash function
is ruled out. In practice this also rules out signature schemes, as the message
to be signed is hashed. We opted to interleave two interactive authentication
protocols, resulting in a four pass protocol. Tag authentication is very similar
to the optimised protocol. However, since only the tag can compute the exam e,
which is known to the reader, from the broadcasted messages, there is no need
for an additional blinding factor. For reader authentication, we have the reader
first commit to the exam and then challenge it to prove knowledge of this value.
This is a zero-knowledge proof under the CDH assumption, making it possible
for the tag, having knowledge of r, to extract e. As such reader-authentication
is achieved at the same time as providing the crucial coupling between the two
authentication instances.

For the security proof, a computational variant of the oracle Diffie-Hellman
assumption,denoted by OCDH, is required.

MUTUAL AUTHENTICATION 115

State: (x, X = xP)

Tag T

(y, Y = yP), Db: . . . , Xi, . . .

Reader R

e ∈R Zℓ

E = e−1P

r ∈R Zℓ

R = rP

f = xcoord(yR)⊕ e

e = f ⊕ xcoord(rY)

verify: E = e−1P

s = x + er

Ẋ = sP − eR ∈ DB?

Figure 5.9: IBIHOP.

Theorem 10. IBIHOP achieves mutual authentication according to Def. 14
under the OCDH and the OMDL assumptions.

Reader-authentication12 of IBIHOP can be shown under a modified OCDH
assumption.

An adversary has to ouput a pair {E, f} for which E = (f ⊕ xcoord(abP))−1P
holds, given A = aP,B = bP and the following oracles:

• O1 = h (a handle h is returned to the value eh ∈R Z`)

• O2(Z, h) = xcoord(bZ)⊕ eh with Z 6= ±A(only to be invoked once per h)

• O3(Z, h) = e−1
h Z

From the reader-authentication one learns the value e, that is used as exam for
the tag-authentication in the same session. At this point, only tag-authentication
on its own remains to be shown. This can be be shown under the OMDL
assumption.

12We only consider soundness, as correctness is trivial.

116 PRIVATE RF IDENTIFICATION

Theorem 11. IBIHOP is wide-strong* private according to Def. 10 under an
extended ODH assumption.

Wide-strong* privacy of IBIHOP can be shown under an extended ODH
assumption featuring the following oracles:

• O1 = h (a handle h is returned to the value eh ∈R Z`)

• O2(Z, h) = (only to be invoked once per h)

– O2a : xcoord(bZ)⊕ eh for Z 6= ±A
– O2b : xcoord(C)⊕ eh for Z = ±A

• O3(Z, h) = e−1
h Z

• O4(z1, z2, Z) = (can only be invoked once)

– (xcoord(C)⊕ z1)z2 + a, if Z = (xcoord(C)⊕ z1)−1P

– ⊥, otherwise

A similar privacy proof as for Theorem 7 can be used.

Note that O4 can only be called once during the ODH game, to prevent the
value a from being leaked.

5.8 Private Threshold Things That Think

To protect the (location) privacy of the end-user, we need to make sure that
all communication, and not merely the identification process, between his
personal devices does not leak information about the identities of the personal
devices. The provided partial decryptions or partial signatures (see Sect. 3.4)
leak information, due to the homomorphic properties, about the originating
device. To keep this information private, one can construct a private channel
between the originating device and the combining device.13 Furthermore, private
channels are required at each instance of resharing (see Sect. 4.2). A mutual
authentication protocol can be used to set up these private channels. Since we
want to authenticate devices to devices, the support for multiple readers in our
new model makes it applicable.

13Recall that a combining device collects all partial decryptions or partial signatures and
computes the full decryption or full signature.

CONCLUSION 117

The proposed private mutual authentication protocol of the previous section,
still leaks the identity of one of communicating devices. However, keep in mind
that this protocol was designed for the general setting in which devices have no
prior knowledge about the communication partners. Given the rather limited
number of personal devices (and the even fewer number of possible combing
devices among those), the approach of Paise-Vaudenay [124] is better suited.
We need to append our private RFID authentication protocol with one extra
message that will authenticate the reader directly to the tag.

5.9 Conclusion

In this chapter RFID privacy was approached from both the modelling and
protocol point of view. Several RFID privacy models were critically examined
with respect to their assumptions, practical usability and other issues that
arise when applying their privacy definition to concrete protocols. Some
models are based on unrealistic assumptions, others are impractical to apply.
The privacy model of Hermans et al. [84], based on the classic notion of
indistinguishability, combines the benefits of previous models while avoiding their
identified drawbacks. Since this privacy model is based on an indistinguishability
game, one can rely on a wide range of existing proof techniques, making the
model quite straightforward to use in practice. We extended this model to allow
for a more general setting where a tag can privately authenticate to multiple
(independent) readers. Our extended model also incorporates the creation of
insider tags, in order to also capture insider attacks. Finally we extended the
model with a definition for mutual authentication.

From the protocol side, we examined several protocols towards their security
and privacy properties. We proposed a new wide-strong private zero-knowledge
RFID identification protocol. Previously, this notion was only achieved by
protocols making use of an IND-CCA2 encryption scheme. Security and privacy
of our protocol and all its optimised variant are proven in the standard model.
Our protocol is the most efficient in its kind and can be implemented on
RFID tags, using only Elliptic Curve Cryptography. This allows for a compact
hardware design and requires minimal computational effort from the tag, namely
two scalar-EC point multiplications. As an additional benefit, our protocols
do not require any shared secrets between readers and tags. This makes these
protocols very suitable for our extended setting with multiple readers. We
also proposed the first efficient mutual authentication protocol that achieves
wide-strong privacy.

Chapter 6

Conclusion

6.1 Conclusion

The main contribution of this thesis is the design of a security architecture
that enables the use of threshold cryptography on personal devices. In this
way, personal devices can be adequately secured, while steering away from
the security-memorability trade-off. This solution takes into account that not
all devices will be present constantly, i.e. the security system is resilient. An
important parameter of this system is the threshold number. We discussed how
to select the threshold number, with the total number of devices, to have an
optimal balance between security and resilience.

We showed how to increase the resilience by making it possible to include
small devices with limited, or even no (secure) storage capabilities. The only
requirement for these devices is support for public-key functionality, more
particularly Elliptic Curve Cryptography (ECC). Shares are stored in protected
form and can be used implicitly, which makes it possible to store these externally.
These protected shares can be generated in a distributed manner when at least
the threshold number of devices is present. This means that not all devices
need to participate in the group setup. In this way, the computational load for
the resource constraint devices is reduced.

To make threshold cryptography on personal devices more practical, the end-
user needs to be able to configure and update his set of personal devices. This
is a necessary condition for the deployment of threshold cryptography on a set
of personal devices over a longer time, e.g., a couple of years. More specifically,
to ensure long-term security and to allow to recover from devices that are

119

120 CONCLUSION

lost, stolen or forgotten, there should be a mechanism to replace devices or
simply remove unused devices and add new devices. Although the underlying
mechanism of resharing has already been studied, the question of how the
end-user authorises these changes to his set of personal devices was yet unsolved.
We designed a secure and user-friendly protocol that allows the consumer to
authorise resharing and hence be in full control of his overall security system.
We took the opportunity to create a graphical user interface for the protocol
and conducted a preliminary usability study on it. How to deal with devices
that are absent at the time of resharing was also discussed.

To protect the consumers’ privacy, this thesis studied how to authenticate
devices privately over an open channel. The exchanged messages, resulting from
authentication protocol instances, do not allow any third party to track the end-
user. We approached this challenge from the perspective of the smallest devices,
namely RFID tags. Several RFID privacy models were critically examined and
one was selected to extend. This extension allows to model private authentication
to multiple readers, which is necessary for device to device authentication. It
also models insider tags and provides modelling for mutual authentication. We
proposed a new wide-strong private RFID identification protocol, the first of
its kind that is based on zero-knowledge. Furthermore, our protocol can be
implemented with a compact hardware design (only using an ECC coprocessor)
and requires minimal computational effort from the tags. As an additional
benefit, our protocols do not require any shared secrets between readers and
tags. This makes these protocols very suitable for our extended setting with
multiple readers. We also proposed the first efficient mutual authentication
protocol that achieves wide-strong privacy.

6.2 Directions for Future Research

6.2.1 General Secret Sharing

In this thesis the focus was mainly on a threshold secret sharing scheme, in
which all personal devices are treated equally. This is in shear contrast with
reality where personal devices are quite different. The justification to opt for a
threshold sharing scheme, despite the big differences among personal devices,
was the following. One might be inclined to give a more important role to the
more powerful personal devices since these usually come with better protection
mechanisms against all sorts of attacks (e.g., physical attacks, side channel
attacks). Yet, exactly these devices are of highest interest to adversaries. The
more powerful devices are more expensive, i.e. have a higher direct value, and
possibly contain (confidential) information of interest. This raises the question

DIRECTIONS FOR FUTURE RESEARCH 121

if it is not possible to come up with a more general secret scheme providing the
flexibility to differentiate between devices.

Any monotone access structure can be transformed into a secret sharing
scheme [90]. General models of secret sharing are given in [150, 157]. Specific
relevant examples include weighted secret sharing [16, 118], hierarchical secret
sharing [158] and multilevel secret sharing [122]. How to deploy these secret
sharing schemes on things that think and comparing these with the case of
threshold secret sharing is an interesting research question.

6.2.2 Usability

Threshold things that think has been proposed as another means of
authenticating the end-user towards his personal devices. However, the general
usability of threshold things that think versus other authentication mechanisms
needs to be evaluated. Can we get the end-user to understand how it works?
Which objects would the end-user pick to be part of this scheme? How would
they carry those smart objects? At each time the end-user wants to authenticate,
how many and which personal devices carry? How practical is this solution over
time?

When comparing different secret sharing schemes, usability is an important
factor. For example with the weighted secret sharing: How will the user assign
weights? And what impact will this have on security?

6.2.3 Context

By taking context into account, user authentication can be enhanced and a
more fine grained logical access control becomes possible without requiring
additional effort from the end user. The context can be deduced from sensory
data and the patterns in this data. So far, context has been studied for the
one device scenario. Siewiorek et al. [149] created a mobile phone that is aware
of its context, called SenSay. Stajano [155] pointed out that data on PDAs
should be accessible according to the context the user is in, the user has different
‘hats’ and can decide which one to wear. Seifert et al. [146] implemented and
evaluated the usability of mobile phone with three spheres: home, work and
closed. Depending on the sphere the phone is in, different data are accessible.
Their implementation supports locations and actions to switch between these
spheres. Several research questions arise. What is the best way to assess the
context in which personal devices are in? How can one prevent an adversary

122 CONCLUSION

from tricking devices into thinking that these are in a different context? Which
impact will this have on the privacy of the end-user?

Bibliography

[1] Aarts, E., and Wichert, R. Ambient Intelligence. In Technology
Guide, H.-J. Bullinger, Ed. Springer, 2009, pp. 244–249. pages 2

[2] Abdalla, M., Bellare, M., and Rogaway, P. DHIES: An encryption
scheme based on the Diffie-Hellman Problem. Micro 2020 (2001), 1–30.
pages 10

[3] Abe, M., and Fehr, S. Adaptively Secure Feldman VSS and
Applications to Universally-Composable Threshold Cryptography. In
Advances in Cryptology – CRYPTO 2004 (2004), M. K. Franklin, Ed.,
vol. 3152 of Lecture Notes in Computer Science, Springer, pp. 317–334.
pages 22, 49

[4] Adams, A., and Sasse, M. A. Users are not the enemy. Communications
of the ACM 42, 12 (1999), 40–46. pages 4, 62

[5] Aerts, W. Application Specificities of Array Antennas: Satellite
Communication and Electromagnetic Side Channel Analysis. PhD thesis,
Katholieke Universiteit Leuven, 2009. pages iv

[6] Armknecht, F., Sadeghi, A.-R., Scafuro, A., Visconti, I., and
Wachsmann, C. Impossibility Results for RFID Privacy Notions. In
Transactions on Computational Science XI, M. Gavrilova, C. Tan, and
E. Moreno, Eds., vol. 6480 of Lecture Notes in Computer Science. Springer,
2010, pp. 39–63. pages 87, 97

[7] Ashton, K. That ‘Internet of Things’ Thing. RFID Journal article 4986,
June 2009. pages 1

[8] Asmuth, C., and Bloom, J. A Modular Approach to Key Safeguarding.
IEEE Transactions on Information Theory 29, 2 (1983), 208–210. pages
18

123

124 BIBLIOGRAPHY

[9] Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen,
K., and Vercauteren, F. Handbook of Elliptic and Hyperelliptic Curve
Cryptography, vol. 34 of Discrete Mathematics And Its Applications. CRC
Press, 2005. pages 7

[10] Avoine, G., Dysli, E., and Oechslin, P. Reducing Time Complexity
in RFID Systems. In Selected Areas in Cryptography (2005), B. Preneel
and S. E. Tavares, Eds., vol. 3897 of Lecture Notes in Computer Science,
Springer, pp. 291–306. pages 84

[11] Backes, M., Kate, A., and Patra, A. Computational Verifiable Secret
Sharing Revisited. In Advances in Cryptology – ASIACRYPT ’11 (2011),
D. H. Lee and X. Wang, Eds., vol. 7073 of Lecture Notes in Computer
Science, Springer, pp. 590–609. pages 20

[12] Bao, F., Deng, R. H., and Zhu, H. Variations of Diffie-Hellman
Problem. In Information and Communications Security – ICICS 2003
(2003), S. Qing, D. Gollmann, and J. Zhou, Eds., vol. 2836 of Lecture
Notes in Computer Science, Springer, pp. 301–312. pages 10

[13] Barić, N., and Pfitzmann, B. Collision-Free Accumulators
and Fail-Stop Signature Schemes without Trees. In International
Conference on Theory and Application of Cryptographic Techniques (1997),
EUROCRYPT’97, Springer, pp. 480–494. pages 11

[14] Batina, L., Guajardo, J., Kerins, T., Mentens, N., Tuyls, P.,
and Verbauwhede, I. An Elliptic Curve Processor Suitable For RFID-
Tags. In Benelux Workshop on Information and System Security – WISSec
2006 (2006), 14 pages. pages 108

[15] Beaver, D., and Haber, S. Cryptographic Protocols Provably Secure
Against Dynamic Adversaries. In Advances in Cryptology – EUROCRYPT
’92 (1992), R. A. Rueppel, Ed., vol. 658 of Lecture Notes in Computer
Science, Springer, pp. 307–323. pages 22

[16] Beimel, A., Tassa, T., and Weinreb, E. Characterizing Ideal
Weighted Threshold Secret Sharing. In Theory of Cryptography – TCC
’05 (2005), J. Kilian, Ed., vol. 3378 of Lecture Notes in Computer Science,
Springer, pp. 600–619. pages 121

[17] Bellare, M., Fischlin, M., Goldwasser, S., and Micali, S.
Identification Protocols Secure against Reset Attacks. In Advances in
Cryptology – EUROCRYPT ’01 (2001), B. Pfitzmann, Ed., vol. 2045 of
Lecture Notes in Computer Science, Springer, pp. 495–511. pages 82

BIBLIOGRAPHY 125

[18] Bellare, M., Namprempre, C., Pointcheval, D., and Semanko,
M. The One-More-RSA-Inversion Problems and the Security of Chaum’s
Blind Signature Scheme. Journal of Cryptology 16 (2003), 185–215. pages
9

[19] Bellare, M., and Palacio, A. GQ and Schnorr Identification Schemes:
Proofs of Security against Impersonation under Active and Concurrent
Attacks. In Advances in Cryptology - CRYPTO 2002 (2002), vol. 2442 of
Lecture Notes in Computer Science, Springer, pp. 162–177. pages 101

[20] Billet, O., Etrog, J., and Gilbert, H. Lightweight Privacy
Preserving Authentication for RFID Using a Stream Cipher. In
International Workshop on Fast Software Encryption – FSE 2010 (2010),
S. Hong and T. Itawa, Eds., vol. 6147 of Lecture Notes in Computer
Science, Springer, pp. 55–74. pages 83

[21] Blakley, G. Safeguarding Cryptographic Keys. In AFIPS National
Computer Conference (1979), AFIPS Press, pp. 313–317. pages 17

[22] Bleichenbacher, D. Chosen Ciphertext Attacks Against Protocols
Based on the RSA Encryption Standard PKCS #1. In Advances in
Cryptology – CRYPTO ’98 (1998), H. Krawczyk, Ed., vol. 1462 of Lecture
Notes in Computer Science, Springer, pp. 1–12. pages 87

[23] Blom, R. Non-Public Key Distribution. In Advances in Cryptology –
CRYPTO ’82 (1982), D. Chaum, R. L. Rivest, and A. T. Sherman, Eds.,
Plenum Press, pp. 231–236. pages 15

[24] Bogetoft, P., Christensen, D. L., Damgård, I., Geisler, M.,
Jakobsen, T., Krøigaard, M., Nielsen, J. D., Nielsen, J. B.,
Nielsen, K., Pagter, J., Schwartzbach, M., and Toft, T. Secure
Multiparty Computation Goes Live. R. Dingledine and P. Golle, Eds.,
vol. 5628 of Lecture Notes in Computer Science, Springer, pp. 325–343.
pages 15

[25] Bohli, J.-M., and Pashalidis, A. Relations Among Privacy Notions. In
Financial Cryptography and Data Security – FC ’09 (2009), R. Dingledine
and P. Golle, Eds., vol. 5628 of Lecture Notes in Computer Science,
Springer, pp. 362–380. pages 90, 95

[26] Bringer, J., Chabanne, H., Cohen, G. D., and Kindarji, B.
Private Interrogation of Devices via Identification Codes. In Progress in
Cryptology – INDOCRYPT 2009 (2009), B. K. Roy and N. Sendrier, Eds.,
vol. 5922 of Lecture Notes in Computer Science, Springer, pp. 272–289.
pages 112

126 BIBLIOGRAPHY

[27] Bringer, J., Chabanne, H., and Icart, T. Cryptanalysis of EC-RAC,
a RFID Identification Protocol. In International Conference on Cryptology
and Network Security – CANS 2008 (2008), vol. 5339 of Lecture Notes in
Computer Science, Springer, pp. 149–161. pages 98, 110

[28] Bringer, J., Chabanne, H., and Icart, T. Efficient Zero-
Knowledge Identification Schemes which respect Privacy. In Symposium on
Information, Computer, and Communications Security (2009), ASIACCS
’09, ACM, pp. 195–205. pages 86, 96, 99, 107, 108, 110

[29] Brown, D. R. L. Generic Groups, Collision Resistance, and ECDSA.
Designs, Codes and Cryptography 35, 1 (2005), 119–152. pages 8, 41

[30] Brown, D. R. L., and Gjøsteen, K. A Security Analysis of the NIST
SP 800-90 Elliptic Curve Random Number Generator. In Advances in
cryptology – CRYPTO ’07 (2007), A. Menezes, Ed., vol. 4622 of Lecture
Notes in Computer Science, Springer, pp. 466–481. pages 9

[31] Burmester, M., Le, T., and Medeiros, B. Provably secure ubiquitous
systems: Universally composable RFID authentication protocols. In
International Conference on Security and Privacy in Communication
Networks – SECURECOMM (2006), IEEE Press. pages 84

[32] Cachin, C., Kursawe, K., Lysyanskaya, A., and Strobl, R.
Asynchronous verifiable secret sharing and proactive cryptosystems. In
ACM conference on Computer and Communications Security – CCS ’02
(2002), ACM, pp. 88–97. pages 20

[33] Canard, S., Coisel, I., Etrog, J., and Girault, M. Privacy-
Preserving RFID Systems: Model and Constructions. Cryptology ePrint
Archive, Report 2010/405, 2010. http://eprint.iacr.org/. pages 83,
84, 86, 88, 100, 101, 107, 110

[34] Canetti, R. Studies in Secure Multiparty Computation and Applications.
PhD thesis, The Weizmann Institute of Science, 1996. pages 20

[35] Canetti, R. Universally Composable Security: A New Paradigm for
Cryptographic Protocols. In Foundations of Computer Science – FOCS
2001 (2001), IEEE Computer Society, pp. 136–145. pages 22

[36] Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., and Rabin,
T. Adaptive Security for Threshold Cryptosystems. In Advances in
Cryptology – CRYPTO 1999 (1999), M. J. Wiener, Ed., vol. 1666 of
Lecture Notes in Computer Science, Springer, pp. 98–115. pages 22, 34,
35

http://eprint.iacr.org/

BIBLIOGRAPHY 127

[37] Canetti, R., Goldreich, O., Goldwasser, S., and Micali, S.
Resettable zero-knowledge (extended abstract). In Symposium on Theory
of Computing – STOC ’00 (2000), F. F. Yao and E. M. Luks, Eds., ACM,
pp. 235–244. pages 82

[38] Castro, M., and Liskov, B. Practical Byzantine Fault Tolerance. In
Third Symposium on Operating Systems Design and Implementation (New
Orleans, USA, 1999). pages 61

[39] Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., and Leung, V.
Body Area Networks: A Survey. Mobile Networks and Applications 16
(2011), 171–193. pages 1

[40] Chor, B., Goldwasser, S., Micali, S., and Awerbuch, B. Verifiable
secret sharing and achieving simultaneity in the presence of faults. In
Symposium on Foundations of Computer Science – FOCS ’85 (1985),
IEEE Computer Society, pp. 383–395. pages 19

[41] Computer Security Institute. Computer Crime and Security Survey
2010/2011. 2011. pages 3

[42] Cramer, R., Damgård, I., and Nielsen, J. B. Multiparty
Computation from Threshold Homomorphic Encryption. In Advances in
Cryptology – EUROCRYPT 2001 (2001), B. Pfitzmann, Ed., vol. 2045 of
Lecture Notes in Computer Science, Springer, pp. 280–299. pages 35

[43] Cramer, R., and Shoup, V. A Practical Public Key Cryptosystem
Provably Secure Against Adaptive Chosen Ciphertext Attack. In Advances
in Cryptology – CRYPTO 1998 (1998), H. Krawczyk, Ed., vol. 1462 of
Lecture Notes in Computer Science, Springer, pp. 13–25. pages 28, 44, 46,
100, 110

[44] Crosby, S. A., Goldberg, I., Johnson, R., Song, D. X., and
Wagner, D. A Cryptanalysis of the High-Bandwidth Digital Content
Protection System. In Digital Rights Management Workshop (2001),
T. Sander, Ed., vol. 2320 of Lecture Notes in Computer Science, Springer,
pp. 192–200. pages 15

[45] Damgård, I., and Jurik, M. A Generalisation, a Simplification and
some Applications of Paillier’s Probabilistic Public-Key System. In
Public Key Cryptography – PKC ’01 (2001), vol. 1992 of Lecture Notes in
Computer Science, Springer, pp. 119–136. pages 58

[46] Damgård, I., and Østergaard, M. RFID Security: Tradeoffs between
Security and Efficiency. Cryptology ePrint Archive, Report 2006/234,
2006. http://eprint.iacr.org/. pages 84

http://eprint.iacr.org/

128 BIBLIOGRAPHY

[47] D’Arco, P., Scafuro, A., and Visconti, I. Revisiting DoS Attacks
and Privacy in RFID-Enabled Networks. In Algorithmic Aspects of
Wireless Sensor Networks – ALGOSENSORS ’09 (2009), S. Dolev, Ed.,
vol. 5804 of Lecture Notes in Computer Science, Springer, pp. 76–87.
pages 86

[48] D’Arco, P., Scafuro, A., and Visconti, I. Semi-Destructive Privacy
in RFID systems. In Workshop on RFID Security – RFIDSec’09 (2009).
pages 86

[49] Dargie, W., and Poellabauer, C. Fundamentals of Wireless Sensor
Networks: Theory and Practice. Wireless Communications and Mobile
Computing. Wiley, 2010. pages 1

[50] Desmedt, Y. Some Recent Research Aspects of Threshold Cryptography.
In Information Security Workshop – ISW 1997 (1997), M. Mambo,
E. Okamoto, and E. Davida, Eds., vol. 1196 of Lecture Notes in Computer
Science, Springer, pp. 158–173. pages 4

[51] Desmedt, Y., Burmester, M., Safavi-Naini, R., and Wang, H.
Threshold Things That Think (T4): Security Requirements to Cope
with Theft of Handheld/Handless Internet Devices. In Symposium on
Requirements Engineering for Information Security (2001). pages 15

[52] Desmedt, Y., and Jajodia, S. Redistributing Secret Shares to New
Access Structures and its Applications. Tech. Rep. ISSE-TR-97-01, George
Mason University, 1997. pages 54

[53] Dolev, D., Dwork, C., Waarts, O., and Yung, M. Perfectly Secure
Message Transmission. J. ACM 40 (January 1993), 17–47. pages 20

[54] Feldman, P. A Practical Scheme for Non-interactive Verifiable Secret
Sharing. In Foundations of Computer Science – FOCS 1987 (1987), IEEE
Computer Society, pp. 427–437. pages 12, 19

[55] Fiat, A., and Shamir, A. How to Prove Yourself: Practical Solutions
to Identification and Signature Problems. In Advances in Cryptology –
CRYPTO ’86 (1986), A. M. Odlyzko, Ed., vol. 263 of Lecture Notes in
Computer Science, Springer, pp. 186–194. pages 60

[56] Fouque, P.-A., and Stern, J. One Round Threshold Discrete-Log
Key Generation without Private Channels. In Public Key Cryptography –
PKC 2001 (2001), K. Kim, Ed., vol. 1992 of Lecture Notes in Computer
Science, Springer, pp. 300–316. pages 23

BIBLIOGRAPHY 129

[57] Frankel, Y., Gemmell, P., MacKenzie, P. D., and Yung, M.
Optimal Resilience Proactive Public-Key Cryptosystems. In Symposium
on Foundations of Computer Science – FOCS ’97 (1997), vol. 1294, IEEE,
pp. 384–393. pages 54

[58] Frankel, Y., Gemmell, P., MacKenzie, P. D., and Yung, M.
Proactive RSA. In Advances in Cryptology – CRYPTO ’97 (1997), B. S.
Kaliski, Ed., vol. 1294 of Lecture Notes in Computer Science, Springer,
pp. 440–454. pages 53

[59] Frankel, Y., MacKenzie, P. D., and Yung, M. Adaptively-Secure
Distributed Public-Key Systems. In Algorithms – ESA 1999 (1999),
J. Nesetril, Ed., vol. 1643 of Lecture Notes in Computer Science, Springer,
pp. 4–27. pages 22, 34

[60] Frankel, Y., MacKenzie, P. D., and Yung, M. Adaptively-
Secure Optimal-Resilience Proactive RSA. In Advances in Cryptology
– ASIACRYPT ’99 (1999), E. O. Kwok-Yan Lam and C. Xing, Eds.,
vol. 1716 of Lecture Notes in Computer Science, Springer, pp. 180–194.
pages 53

[61] Frankel, Y., MacKenzie, P. D., and Yung, M. Adaptive Security
for the Additive-Sharing Based Proactive RSA. In Workshop on Practice
and Theory in Public Key Cryptography - PKC (2001), K. Kim, Ed.,
vol. 1992 of Lecture Notes in Computer Science, Springer, pp. 240–263.
pages 53

[62] Fujisaki, E., and Okamoto, T. Statistical zero knowledge protocols
to prove modular polynomial relations. In Proceedings of the 17th Annual
International Cryptology Conference on Advances in Cryptology (1997),
CRYPTO ’97, Springer, pp. 16–30. pages 11

[63] Fujisaki, E., and Okamoto, T. A Practical and Provably Secure
Scheme for Publicly Verifiable Secret Sharing and Its Applications. In
Advances in Cryptology – EUROCRYPT 1998 (1998), K. Nyberg, Ed.,
vol. 1403 of Lecture Notes in Computer Science, Springer, pp. 32–46.
pages 21

[64] Galbraith, S., Hess, F., and Vercauteren, F. Aspects of Pairing
Inversion. IEEE Transactions on Information Theory 54, 12 (2008),
5719–5728. pages 11

[65] Galbraith, S., Paterson, K., and Smart, N. Pairings for
Cryptographers. Cryptology ePrint Archive, Report 2006/165, 2006.
http://eprint.iacr.org/. pages 8, 34

http://eprint.iacr.org/

130 BIBLIOGRAPHY

[66] Gamal, T. E. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Advances in Cryptology – CRYPTO 1984
(1984), G. R. Blakley and D. Chaum, Eds., vol. 196 of Lecture Notes in
Computer Science, Springer, pp. 10–18. pages 28, 44

[67] Gehrmann, C., Mitchell, C., and Nyberg, K. Manual
Authentication for Wireless Devices. RSA Cryptobytes 7, 1 (2004), 29–37.
pages 61

[68] Gehrmann, C., Nyberg, K., and Mitchell, C. The personal CA–
PKI for Personal Area Network. In Information Society Technologies
Mobile and Wireless Communications Summit (2002), pp. 31–35. pages
61

[69] Gennaro, R., Jarecki, S., Krawczyk, H., and Rabin, T. Secure
Distributed Key Generation for Discrete-Log Based Cryptosystems. In
Advances in Cryptology – EUROCRYPT 1999 (1999), J. Stern, Ed.,
vol. 1592 of Lecture Notes in Computer Science, Springer, pp. 295–310.
pages 19, 22, 35

[70] Gennaro, R., Jarecki, S., Krawczyk, H., and Rabin, T. Secure
Applications of Pedersen’s Distributed Key Generation Protocol. In Topics
in Cryptology – CT-RSA 2003 (2003), M. Joye, Ed., vol. 2612 of Lecture
Notes in Computer Science, Springer, pp. 373–390. pages 22

[71] Gennaro, R., Jarecki, S., Krawczyk, H., and Rabin, T. Secure
Distributed Key Generation for Discrete-Log Based Cryptosystems.
Journal of Cryptology 20, 1 (2007), 51–83. pages 21, 36, 43, 49, 54

[72] Gilbert, H., Robshaw, M. J., and Seurin, Y. HB#: Increasing
the Security and Efficiency of HB+. In Advances in Cryptology –
EUROCRYPT 2008 (2008), vol. 4965 of Lecture Notes in Computer
Science, Springer, pp. 361–378. pages 83

[73] Girault, M., Poupard, G., and Stern, J. On the Fly Authentication
and Signature Schemes Based on Groups of Unknown Order. J. Cryptology
19 (2006), 463–487. pages 108

[74] Goldreich, O. Foundations of Cryptography: Volume 1, Basic Tools.
Cambridge University Press, 2001. pages 104

[75] Google. Getting started with 2-step verification.
http://support.google.com/accounts/bin/static.py?hl=en&page=
guide.cs&guide=1056283. pages 4

http://support.google.com/accounts/bin/static.py?hl=en&page=guide.cs&guide=1056283
http://support.google.com/accounts/bin/static.py?hl=en&page=guide.cs&guide=1056283

BIBLIOGRAPHY 131

[76] Goyal, V., and Sahai, A. Resettably Secure Computation. In Advances
in Cryptology – EUROCRYPT ’09 (2009), A. Joux, Ed., vol. 5479 of
Lecture Notes in Computer Science, Springer, pp. 54–71. pages 82

[77] Guajardo, J., Škorić, B., Tuyls, P., Kumar, S. S., Bel, T., Blom,
A. H., and Schrĳen, G.-J. Anti-Counterfeiting, Key Distribution, and
Key Storage in an Ambient World via Physical Unclonable Functions.
Information Systems Frontiers 11, 1 (2009), 19–41. pages 28

[78] Ha, J., Moon, S.-J., Zhou, J., and Ha, J. A New Formal Proof
Model for RFID Location Privacy. In European Symposium on Research
in Computer Security – ESORICS ’08 (2008), S. Jajodia and J. López,
Eds., vol. Lecture Notes in Computer Science, Springer, pp. 267–281.
pages 84, 90

[79] Hansmann, U. Pervasive Computing: the Mobile World. Springer, 2003.
pages 2

[80] Hardekopf, B., Kwiat, K., and Upadhyaya, S. A Decentralized
Voting Algorithm for Increasing Dependability. In Systemic, Cybernetics
and Informatics (SCI2001) (2001). pages 61

[81] Heidarvand, S., and Villar, J. L. Public Verifiability from Pairings
in Secret Sharing Schemes. In Selected Areas in Cryptography – SAC 2008
(2009), R. Avanzi, L. Keliher, and F. Sica, Eds., vol. 5381 of Lecture Notes
in Computer Science, Springer, pp. 294–308. pages 21, 34

[82] Hein, D., Wolkerstorfer, J., and Felber, N. ECC Is Ready for
RFID — A Proof in Silicon. In Selected Areas in Cryptography – SAC ’08
(2008), R. Avanzi, L. Keliher, and F. Si, Eds., vol. 5381 of Lecture Notes
in Computer Science, Springer, pp. 401–413. pages 83

[83] Herley, C., and van Oorschot, P. C. A Research Agenda
Acknowledging the Persistence of Passwords. IEEE Security & Privacy
10, 1 (2012), 28–36. pages 4

[84] Hermans, J., Pashalidis, A., Vercauteren, F., and Preneel, B.
A New RFID Privacy Model. In ESORICS 2011 (2011), V. Atluri and
C. Diaz, Eds., vol. 6879 of Lecture Notes in Computer Science, Spri,
pp. 568–587. pages 82, 91, 100, 117

[85] Hermans, J., and Peeters, R. Private Yoking Proofs: Attacks, Models
and new Provable Constructions. In Workshop on RFID Security 2012
(Nĳmegen,NL, 2012), J.-H. Hoepman and I. Verbauwhede, Eds., Lecture
Notes in Computer Science, Springer, 14 pages. pages 6

132 BIBLIOGRAPHY

[86] Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., and
Yung, M. Proactive Public Key and Signature Systems. In ACM
Conference on Computer and Communications Security (1997), ACM,
pp. 100–110. pages 53

[87] Herzberg, A., Jarecki, S., Krawczyk, H., and Yung, M. Proactive
Secret Sharing Or: How to Cope With Perpetual Leakage. In Advances
in Cryptology – CRYPTO ’95 (1995), D. Coppersmith, Ed., vol. 963 of
Lecture Notes in Computer Science, Springer, pp. 339–352. pages 53

[88] Hutter, M., Schmidt, J.-M., and Plos, T. RFID and Its Vulnerability
to Faults. In Cryptographic Hardware and Embedded Systems – CHES
’08 (2008), E. Oswald and P. Rohatgi, Eds., vol. 5154 of Lecture Notes in
Computer Science, Springer, pp. 363–379. pages 82

[89] ISO 9241-11. Guidance on Usability. International Organization for
Standardization, 1998. pages 71

[90] Itoh, M., Saito, A., and Nishizeki, T. Secret sharing scheme realizing
general access structure. In IEEE Globecom (1987), pp. 99–102. pages
121

[91] Jakobsson, M., Sako, K., and Impagliazzo, R. Designated Verifier
Proofs and Their Applications. In Advances in Cryptology – EUROCRYPT
1996 (1996), U. Maurer, Ed., vol. 1070 of Lecture Notes in Computer
Science, Springer, pp. 143–154. pages 98

[92] Jarecki, S., and Lysyanskaya, A. Adaptively Secure Threshold
Cryptography: Introducing Concurrency, Removing Erasures. In Advances
in Cryptology - EUROCRYPT 2000 (2000), B. Preneel, Ed., vol. 1807 of
Lecture Notes in Computer Science, Springer, pp. 221–242. pages 22, 23

[93] Joint European Commission / EPoSS Expert Workshop. Internet
of Things in 2020. Tech. rep., 2008. pages 1, 2

[94] Juels, A., and Weis, S. A. Authenticating Pervasive Devices with
Human Protocols. In Advances in Cryptology – CRYPTO 2005 (2005),
V. Shoup, Ed., vol. 3621 of Lecture Notes in Computer Science, Springer,
pp. 293–308. pages 83

[95] Juels, A., and Weis, S. A. Defining Strong Privacy for RFID. In
International Conference on Pervasive Computing and Communications -
Workshops (PerCom Workshops 2007) (2007), IEEE Computer Society,
pp. 342–347. pages 84, 89

[96] Juels, A., and Weis, S. A. Defining Strong Privacy for RFID. ACM
Trans. Inf. Syst. Secur. 13 (November 2009), 7:1–7:23. pages 89

BIBLIOGRAPHY 133

[97] Jurik, M. J. Extensions to the Paillier Cryptosystem with Applications
to Cryptological Protocols. PhD thesis, BRICS, Department of Computer
Science, University of Aarhus, 2004. pages 58

[98] Kahn, J. M., Katz, R. H., Katz, Y. H., and Pister, K. S. J.
Emerging Challenges: Mobile Networking for "Smart Dust". Journal of
Communications and Networks 2 (2000), 188–196. pages 1

[99] Kasper, T., Oswald, D., and Paar, C. New Methods for Cost-
Effective Side-Channel Attacks on Cryptographic RFIDs. In Workshop
on RFID Security – RFIDSec’09 (2009, 15 pages). pages 82

[100] Kate, A., and Goldberg, I. Distributed Key Generation for the
Internet. In IEEE International Conference on Distributed Computing
Systems (2009), IEEE Computer Society, pp. 119–128. pages 23

[101] Krawczyk, H. The Order of Encryption and Authentication for
Protecting Communications (or: How Secure Is SSL?). In Advances
in Cryptology - CRYPTO 2001 (2001), J. Kilian, Ed., vol. 2139 of Lecture
Notes in Computer Science, Springer, pp. 310–331. pages 101

[102] Laguillaumie, F., and Vergnaud, D. Designated Verifier Signatures:
Anonymity and Efficient Construction from Any Bilinear Map. In Security
in Communication Networks (2004), C. Blundo and S. Cimato, Eds.,
vol. 3352 of Lecture Notes in Computer Science, Springer, pp. 105–119.
pages 98

[103] Landrock, P., and Pedersen, T. WYSIWYS? – What You See Is
What You Sign? Information Security Technical Report 3, 2 (1998), 55 –
61. pages 64

[104] Laur, S., Asokan, N., and Nyberg, K. Efficient Mutual Data
Authentication Using Manually Authenticated Strings. Cryptology ePrint
Archive, Report 2005/424, 2005. pages 61

[105] Laur, S., and Pasini, S. SAS-Based Group Authentication and Key
Agreement Protocols. In 11th International Workshop on Practice and
Theory in Public-Key Cryptography – PKC ’08 (2008), R. Cramer, Ed.,
vol. 4939 of Lecture Notes in Computer Science, Springer, pp. 197–213.
pages 61, 67

[106] Lee, Y. K., Batina, L., Sakiyama, K., and Verbauwhede, I.
Elliptic Curve Based Security Processor for RFID. IEEE Transactions on
Computers 57, 11 (2008), 1514–1527. pages 83

134 BIBLIOGRAPHY

[107] Lee, Y. K., Batina, L., Singelée, D., and Verbauwhede, I. Low-
Cost Untraceable Authentication Protocols for RFID. In ACM conference
on Wireless Network Security – WiSec ’10 (2010), C. Nita-Rotaru and
F. Stajano, Eds., ACM, pp. 55–64. pages 107

[108] Lewis, J. R. IBM Computer Usability Satisfaction Questionnaires:
Psychometric Evaluation and Instructions for Use. International Journal
of Human-Computer Interaction 7, 1 (1995), 57–78. pages 71

[109] Liu, C. L. Introduction to Combinatorial Mathematics. McGraw-Hill,
1968. pages 17

[110] Lomb, B., and Güneysu, T. Decrypting HDCP-protected Video
Streams Using Reconfigurable Hardware. In ReConFig (2011), IEEE
Computer Society, pp. 249–254. pages 15

[111] Maes, R., Peeters, R., Van Herrewege, A., Wachsmann, C.,
Katzenbeisser, S., Sadeghi, A.-R., and Verbauwhede, I. Reverse
Fuzzy Extractors: Enabling Lightweight Mutual Authentication for PUF-
enabled RFIDs. In International Conference on Financial Cryptography
and Data Security – FC ’12 (2012), Lecture Notes in Computer Science,
Springer, 16 pages. pages 6

[112] Malone-Lee, J., and Smart, N. P. Modifications of ECDSA. In
Selected Areas in Cryptography – SAC 2002 (2002), K. Nyberg and H. M.
Heys, Eds., vol. 2595 of Lecture Notes in Computer Science, Springer,
pp. 1–12. pages 41

[113] Mangard, S., Oswald, E., and Popp, T. Power analysis attacks -
revealing the secrets of smart cards. Springer, 2007. pages 82

[114] Mannan, M., and van Oorschot, P. C. Leveraging personal devices
for stronger password authentication from untrusted computers. Journal
of Computer Security 19 (2011), 703–750. pages 4

[115] Mao, W. Modern Cryptography: Theory and Practice. Prentice Hall,
2003. pages 9

[116] Mignotte, M. How to Share a Secret. In Proceedings of the Workshop on
Cryptography (1982), T. Beth, Ed., vol. 149 of Lecture Notes in Computer
Science, pp. 371–375. pages 18

[117] Molich, R., and Nielsen, J. Improving a Human-Computer Dialogue.
Communications of the ACM 33, 3 (1990), 338–348. pages 74

BIBLIOGRAPHY 135

[118] Morillo, P., Padró, C., Sáez, G., and Villar, J. Weighted
Threshold Secret Sharing Schemes. Information Processing Letters 70, 5
(1999), 211 – 216. pages 121

[119] Ng, C. Y., Susilo, W., Mu, Y., and Safavi-Naini, R. RFID Privacy
Models Revisited. In European Symposium on Research in Computer
Security – ESORICS ’08 (2008), S. Jajodia and J. López, Eds., vol. 5283
of Lecture Notes in Computer Science, Springer, pp. 251–266. pages 86,
87

[120] Ng, C. Y., Susilo, W., Mu, Y., and Safavi-Naini, R. New Privacy
Results on Synchronized RFID Authentication Protocols against Tag
Tracing. In European Symposium on Research in Computer Security –
ESORICS ’09 (2009), M. Backes and P. Ning, Eds., vol. 5789 of Lecture
Notes in Computer Science, Springer, pp. 321–336. pages 86

[121] Nguyen, L. H., and Roscoe, A. W. Efficient group authentication
protocols based on human interaction. Cryptology ePrint Archive, Report
2009/150, 2009. http://eprint.iacr.org/. pages 61

[122] Padro, C., and Saez, G. Secret sharing schemes with bipartite access
structure. Information Theory, IEEE Transactions on 46, 7 (nov 2000),
2596 –2604. pages 121

[123] Paillier, P. Public-Key Cryptosystems based on Composite Degree
Residue Classes. In Advances in Cryptology – EUROCRYPT ’99 (1999),
vol. 1592 of Lecture Notes in Computer Science, Springer, pp. 223–238.
pages 58

[124] Paise, R.-I., and Vaudenay, S. Mutual Authentication in RFID:
Security and Privacy. In ASIACCS’08 (2008), ACM Press, pp. 292–299.
pages 86, 111, 117

[125] Pashalidis, A. Accessing Password-Protected Resources without the
Password. In Congress on Computer Science and Information Engineering
– CSIE ’09 (2009), M. Burgin, M. H. Chowdhury, C. H. Ham, S. A. Ludwig,
W. Su, and S. Yenduri, Eds., IEEE Computer Society, pp. 66–70. pages 4

[126] Pedersen, T. P. A Threshold Cryptosystem without a Trusted Party.
In Advances in Cryptology - EUROCRYPT ’91 (1991), vol. 547 of Lecture
Notes in Computer Science, Springer, pp. 522–526. pages 22

[127] Pedersen, T. P. Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing. In Advances in Cryptology - CRYPTO ’91
(1992), J. Feigenbaum, Ed., vol. 576 of Lecture Notes in Computer Science,
Springer, pp. 129–140. pages 12, 19, 20, 31

http://eprint.iacr.org/

136 BIBLIOGRAPHY

[128] Peeters, R., Kohlweiss, M., and Preneel, B. Threshold Things
That Think: Authorisation for Resharing. In Proceedings of iNetSec
2009 – Open Research Problems in Network Security (2009), J. Camenisch
and D. Kesdogan, Eds., vol. 309 of IFIP Advances in Information and
Communication Technology, pp. 111–124. pages 5

[129] Peeters, R., Kohlweiss, M., Preneel, B., and Sulmon, N.
Threshold Things That Think: Usable Authorisation for Resharing. In
Symposium on Usable Privacy and Security - SOUPS 2009 (2009), L. F.
Cranor, Ed., ACM, p. 2. pages 5

[130] Peeters, R., Simoens, K., De Cock, D., and Preneel, B. Cross-
Context Delegation through Identity Federation. In Proceedings of the
Special Interest Group on Biometrics and Electronic Signatures (2008),
A. Brömme, C. Busch, and D. Hühnlein, Eds., vol. P-137 of Lecture Notes
in Informatics (LNI), Bonner Köllen Verlag, pp. 79–92. pages 6

[131] Peeters, R., Singelée, D., and Preneel, B. Threshold-Based
Distance Bounding. In International Workshop on Security and Privacy
in Spontaneous Interaction and Mobile Phone Use 2010 (2010), ACM,
pp. 24–30. pages 6

[132] Peeters, R., Singelée, D., and Preneel, B. Threshold-Based
Location-Aware Access Control. International Journal of Handheld
Computing Research 2, 3 (2011), 22–37. pages 6

[133] Peeters, R., Singelée, D., and Preneel, B. Towards More Secure
and Reliable Access Control. IEEE Pervasive Computing 11, 3 (July–
September 2012), 76–83. pages 6

[134] Plos, T. Evaluation of the Detached Power Supply as Side-Channel
Analysis Countermeasure for Passive UHF RFID Tags. In Topics in
Cryptology – CT-RSA ’09 (2009), M. Fischlin, Ed., vol. 5473 of Lecture
Notes in Computer Science, Springer, pp. 444–458. pages 82

[135] Pointcheval, D., and Stern, J. Security Arguments for Digital
Signatures and Blind Signatures. Journal of Cryptology 13, 3 (2000),
361–396. pages 49

[136] Rabin, T. A Simplified Approach to Threshold and Proactive RSA.
In Advances in Cryptology – CRYPTO ’98 (1998), H. Krawczyk, Ed.,
vol. 1462 of Lecture Notes in Computer Science, Springer, pp. 89–104.
pages 53

[137] Rasmussen, K. B., and Čapkun, S. Realization of RF Distance
Bounding. In USENIX Security Symposium ’10 (2010), USENIX, pp. 389–
402. pages 96

BIBLIOGRAPHY 137

[138] Sadeghi, A.-R., Visconti, I., and Wachsmann, C. Anonymizer-
Enabled Security and Privacy for RFID. In Cryptology and Network
Security – CANS ’09 (2009), J. A. Garay, A. Miyaji, and A. Otsuka, Eds.,
vol. 5888 of Lecture Notes in Computer Science, Springer, pp. 134–153.
pages 86

[139] Sadeghi, A.-R., Visconti, I., and Wachsmann, C. Efficient RFID
security and privacy with anonymizers. In Workshop on RFID Security –
RFIDSec’09 (2009). pages 86

[140] Saltzer, J., and Schroeder, M. The protection of Information in
Computer Systems. Proceedings of the IEEE 63, 9 (1975), 1278–1308.
pages 62

[141] Saxena, N., Uddin, M. B., and Voris, J. Universal Device Pairing
using an Auxiliary Device. In Symposium on Usable Privacy and Security
– SOUPS 2008 (2008), ACM, pp. 56–67. pages 61

[142] Schnorr, C.-P. Efficient Identification and Signatures for Smart Cards.
In Advances in Cryptology – CRYPTO 1989 (1989), G. Brassard, Ed.,
vol. 435 of Lecture Notes in Computer Science, Springer, pp. 239–252.
pages 28, 44, 49

[143] Schnorr, C.-P. Efficient Signature Generation by Smart Cards. Journal
of Cryptology 4, 3 (1991), 161–174. pages 101, 113

[144] Schoenmakers, B. A Simple Publicly Verifiable Secret Sharing Scheme
and Its Application to Electronic Voting. In Advances in Cryptology –
CRYPTO 1999 (1999), M. J. Wiener, Ed., vol. 1666 of Lecture Notes in
Computer Science, Springer, pp. 148–164. pages 21, 29

[145] Schultz, D., Liskov, B., and Liskov, M. MPSS: Mobile Proactive
Secret Sharing. ACM Trans. Inf. Syst. Secur. 13 (December 2010), 34:1–
34:32. pages 20

[146] Seifert, J., De Luca, A., Conradi, B., and Hussmann, H.
TreasurePhone: Context-Sensitive User Data Protection on Mobile Phones.
In Pervasive 2010 (2010), P. Floréen, A. Krüger, and M. Spasojevic, Eds.,
vol. 6030 of Lecture Notes of Computer Science, Springer, pp. 130–137.
pages 121

[147] SHA-3 Zoo. Overview of all candidates for the current SHA-3 hash
competition organized by NIST. http://ehash.iaik.tugraz.at/wiki/
The_SHA-3_Zoo. pages 102, 109

[148] Shamir, A. How to Share a Secret. Communications of the ACM 22, 11
(1979), 612–613. pages 17

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

138 BIBLIOGRAPHY

[149] Siewiorek, D., Smailagic, A., Furukawa, J., Krause, A.,
Moraveji, N., Reiger, K., Shaffer, J., and Wong, F. L. SenSay:
A Context-Aware Mobile Phone. In International Symposium on Wearable
Computers – ISWC ’03 (2003), IEEE Computer Society, pp. 248–249.
pages 121

[150] Simmons, G. J. How to (Really) Share a Secret. In Advances in Cryptology
- CRYPTO ’88 (1988), S. Goldwasser, Ed., vol. 403 of Lecture Notes in
Computer Science, Springer, pp. 390–448. pages 121

[151] Simoens, K., Peeters, R., and Preneel, B. Increased Resilience in
Threshold Cryptography: Sharing a Secret with Devices That Cannot
Store Shares. In Pairing-Based Cryptography - Pairing 2010 (2010),
M. Joye, A. Miyaji, and A. Otsuka, Eds., vol. 6487 of Lecture Notes in
Computer Science, Springer, pp. 116–135. pages 5

[152] Smart, N. P., and Vercauteren, F. On Computable Isomorphisms
in Efficient Asymmetric Pairing-Based Systems. Discrete Applied
Mathematics 155, 4 (2007), 538–547. pages 9

[153] Sohraby, K., Minoli, D., and Znati, T. Wireless Sensor Networks:
Technology, Protocols and Applications. Wiley-Interscience, 2007. pages 1

[154] Stadler, M. Publicly Verifiable Secret Sharing. In Advances in
Cryptology – EUROCRYPT 1996 (1996), U. M. Maurer, Ed., vol. 1070 of
Lecture Notes in Computer Science, Springer, pp. 190–199. pages 21

[155] Stajano, F. One User, Many Hats; and, Sometimes, No Hat: Towards a
Secure yet Usable PDA. In International conference on Security Protocols
(2004), J. A. M. Bruce Christianson, Bruno Crispo and M. Roe, Eds.,
vol. 3957 of Lecture Notes in Computer Science, Springer, pp. 51–64.
pages 121

[156] Stajano, F. Pico: No More Passwords! In Security Protocols Workshop
(2011), B. Christianson, B. Crispo, J. A. Malcolm, and F. Stajano, Eds.,
vol. 7114 of Lecture Notes in Computer Science, Springer, pp. 49–81.
pages 4

[157] Stinson, D. R. An Explication of Secret Sharing Schemes. Des. Codes
Cryptography 2, 4 (1992), 357–390. pages 121

[158] Tassa, T. Hierarchical Threshold Secret Sharing. J. Cryptology 20, 2
(2007), 237–264. pages 121

[159] Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C.,
Moerman, I., Saleem, S., Rahman, Z., and Kwak, K. A

BIBLIOGRAPHY 139

Comprehensive Survey of Wireless Body Area Networks. Journal of
Medical Systems (2010), 1–30. 10.1007/s10916-010-9571-3. pages 1

[160] Van Deursen, T., and Radomirović, S. Insider attacks and privacy
of RFID protocols. In EuroPKI 2011 (2011), Lecture Notes in Computer
Science, Springer, pp. 65–80. To appear. pages 92, 113

[161] Van Le, T., Burmester, M., and de Medeiros, B. Universally
composable and forward-secure RFID authentication and authenticated
key exchange. In ACM Symposium on Information, Computer and
Communications Security – ASIACSS ’07 (New York, NY, USA, 2007),
ACM, pp. 242–252. pages 84

[162] Vaudenay, S. On Privacy Models for RFID. In Advances in Cryptology
- ASIACRYPT 2007 (2007), K. Kurosawa, Ed., vol. 4833 of Lecture Notes
in Computer Science, Springer, pp. 68–87. pages 83, 84, 85, 86, 90, 100,
110, 111, 113

[163] Vaudenay, S. Invited talk at RFIDSec 2010, 2010. pages 87

[164] Wang, S., and Safavi-Naini, R. New Results on Unconditionally Secure
Multi-receiver Manual Authentication. In 2nd International Conference
on Information Theoretic Security - ICITS 2007 (2007), Lecture Notes
in Computer Science, Springer. pages 61

[165] Warneke, B., Last, M., Liebowitz, B., and Pister, K. Smart
Dust: Communicating with a Cubic-Millimeter Computer. Computer 34,
1 (January 2001), 44 –51. pages 1

[166] Weis, S. A., Sarma, S. E., Rivest, R. L., and Engels, D. W.
Security and Privacy Aspects of Low-Cost Radio Frequency Identification
Systems. In Security in Pervasive Computing – SPC ’03 (2003), D. Hutter,
G. Müller, W. Stephan, and M. Ullmann, Eds., vol. 2802 of Lecture Notes
in Computer Science, Springer, pp. 201–212. pages 81

[167] Weiser, M. The Computer for the 21st Century. Scientific American 3,
3 (1991), 3–11. pages 2

[168] Weiser, M., Gold, R., and Brown, J. S. The Origins of Ubiquitous
Computing Research at PARC in the Late 1980s. IBM Systems Journal
38, 4 (1999), 693–696. pages 2

[169] Wenger, E., and Hutter, M. A Hardware Processor Supporting
Elliptic Curve Cryptography for Less Than 9 kGEs. In Smart Card
Research and Advanced Applications – CARDIS 2011 (2011), E. Prouff,
Ed., vol. 7079 of Lecture Notes in Computer Science, Springer, pp. 182–199.
pages 107

140 BIBLIOGRAPHY

[170] Whitten, A., and Tygar, J. D. Usability of security: A case study.
Tech. rep., CMU-CS-98-155, 1998. pages 62

[171] Whitten, A., and Tygar, J. D. Why Johnny Can’t Encrypt: a
Usability Evaluation of PGP 5.0. In 8th USENIX Security Symposium
(1999), USENIX Association, pp. 14–14. pages 74

[172] Wong, T. M., Wang, C., and Wing, J. M. Verifiable Secret
Redistribution for Threshold Sharing Schemes. Tech. Rep. CMU-CS-
02-114, Carnegie Mellon University, 2002. pages 54, 55, 57

[173] Yao, A. C.-C. Theory and Applications of Trapdoor Functions (Extended
Abstract). In Foundations of Computer Science – FOCS 1982 (1982),
IEEE Computer Society, pp. 80–91. pages 104

[174] Yee, K.-P. User Interaction Design for Secure Systems. In International
Conference on Information and Communications Security – ICICS 2002
(2002), R. H. Deng, S. Qing, F. Bao, and J. Zhou, Eds., vol. 2513 of
Lecture Notes in Computer Science, Springer, pp. 278–290. pages 74, 75

[175] Zhou, L., Schneider, F. B., and Van Renesse, R. APSS: Proactive
Secret Sharing in Asynchronous Systems. ACM Trans. Inf. Syst. Secur. 8
(August 2005), 259–286. pages 20

[176] Zuo, Y. Secure and Private Search Protocols for RFID Systems.
Information Systems Frontiers 12, 5 (2010), 507–519. pages 112

Appendix A

Treshold Things That Think
in Pictures

These cartoons were developped to introduce the concept of Threshold Things
That Think to the general public in the context of the conducted usubility study
(Sect. 4.4.3). Figures A.1 and A.2 focus on the scenario of access control to a
building. Figures A.3 and A.4 consider data protection on a laptop.

141

142 TRESHOLD THINGS THAT THINK IN PICTURES

(a) You have an access card and with it you
can access restricted parts of the company
you are working in.

(b) If you leave your access card on the
bench in the park where you had lunch ...

(c) ... you can no longer access restricted
parts and not get to your working place.

(d) However, someone finding your access
card is granted access.

Figure A.1: Access Control Nowadays.

TRESHOLD THINGS THAT THINK IN PICTURES 143

(a) Multiple personal devices together
allow you access to restricted parts of the
company you are working in.

(b) If you leave your access card on the
bench in the park where you had lunch ...

(c) ... you can still access restricted parts
and get to your working place.

(d) Someone finding only your access card
is not granted access.

Figure A.2: Access Control with Threshold Things That Think Technology.

144 TRESHOLD THINGS THAT THINK IN PICTURES

TOP

SECR
ET

(a) Your laptop contains sensitive data. (b) A burglar breaks in after midnight ...

(c) ... and steals your laptop.

TOP

SECR
ET

$$

(d) Not only he has your laptop, he also
has access to your sensitive data.

Figure A.3: Data Protection Nowadays.

TRESHOLD THINGS THAT THINK IN PICTURES 145

TOP

SECR
ET

(a) Your laptop contains sensitive data. If
you want to view/work on this data you
need multiple personal devices together.

(b) A burglar breaks in after midnight ...

(c) ... and steals your laptop

? ??
?

? ??

(d) He has your laptop, but he has no access
to your sensitive data.

Figure A.4: Data Protection with Threshold Things That Think Technology.

Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering

Department of Electrical Engineering (ESAT)
Computer Security and Industrial Cryptography (COSIC)

Kasteelpark Arenberg 10 bus 2446
B-3001 Heverlee

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Things That Think
	Personal Devices

	Protecting Things That Think
	Summary of Contributions
	Thesis Outline
	Mathematical Background
	Elliptic Curves
	Pairings
	Number-Theoretic Assumptions
	Cryptographic Primitives

	Threshold Cryptography
	Introduction
	Threshold Cryptography
	From Secret Sharing to Distributed Key Generation
	Secret Sharing
	Verifiable Secret Sharing
	Publicly Verifiable Secret Sharing
	Distributed Key Generation

	Threshold Cryptography on Personal Devices
	Communication and Adversarial Model
	Threshold

	Conclusion

	Threshold Cryptography on Less Powerful Devices
	Introduction
	Protecting Shares
	Pre-Setup
	Setup

	Distributed Key Generation
	Publicly Verifiable Secret Sharing
	Distributed Key Generation
	Extended Distributed Key Generation

	Threshold Applications
	ElGamal
	Cramer-Shoup
	Schnorr Signatures

	Conclusion

	Proactive Threshold Cryptography
	Introduction
	Resharing
	Absent Parties
	Hand Out Shares Afterwards
	Fix Shares

	Authorisation
	Automatic
	Manual
	Usability Evaluation

	Conclusion

	Private RF IDentification
	Introduction
	Previously Proposed Models
	Vaudenay
	Canard et al.
	Juels-Weis
	Bohli-Pashalidis

	A New Model
	Privacy
	Security
	Modelling details

	Previously Proposed Protocols
	Zero Knowledge Based Protocols
	Public Key Encryption Based Protocols

	A New Protocol
	Analysis
	Efficiency Optimisation

	Implementation Considerations
	(Non-)Sense of Coupons
	Comparison

	Mutual Authentication
	Model
	Protocol

	Private Threshold Things That Think
	Conclusion

	Conclusion
	Conclusion
	Directions for Future Research
	General Secret Sharing
	Usability
	Context

	Bibliography
	Treshold Things That Think in Pictures

