
rt, said Picasso, is a lie that makes us realize the truth. So is 

a map. We don’t usually associate the precise craft of the 

mapmaker with the fanciful realm of art. Yet a map has 

many of the ingredients of a painting or a poem. It is truth 

compressed in a symbolic way, holding meanings that it 

doesn’t express on the surface. And, like any work of art, 

it requires imaginative reading.

Map reading involves determining what the map-

maker has depicted, how he or she has gone about it, and 

what artifacts of the cartographic method deserve special 

attention. To read a map, you translate its features into a 

mental image of the environment. The first step is to iden-

tify map symbols. The process is usually intuitive, espe-

cially if the symbols are self-evident and the map is well 

designed. As obvious as this step might seem, however, 

you should look first at the map and its marginalia (legend, 

text boxes, and so on), both to confirm the meaning of 

familiar symbols and to make sure that you understand 

the logic that underlies unfamiliar or poorly designed 

ones. This explanation is usually found in the legend, but 

sometimes explanatory labels are found on the map itself 

or in text boxes that provide the missing information. Too 

many people look for the symbol explanation only after 

becoming confused. Such a habit is not only inefficient but 

potentially dangerous. A better approach is to first check 

the marginalia, and then attempt to interpret the map.

In addition to clarifying symbols, the map margina-

lia contains other information, such as scale, orientation, 

and data sources that are important to reading the map; 

and the marginalia sometimes includes unexpectedly 

revealing facts. But the marginalia is still only a starting 

point. The map reader must make a creative effort to 

translate the world that is represented on the map into 

A
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an image of the real world, for there is often a large gap 

between the two. Much of what exists in the environ-

ment is left off the map, whereas many things on the 

map do not occur in reality but are instead interpreta-

tions of characteristics of the environment, such as popu-

lation density or average streamflow.

Thus, map and reality are not — and cannot be — iden-

tical. No aspect of map use is so obvious and yet so often 

overlooked. Most map reading mistakes occur because the 

user forgets this vital fact and expects a one-to-one cor-

respondence between the map and reality.

Because the exact duplication of a geographic area is 

impossible, a map is actually a metaphor. The mapmaker 

asks the map reader to believe that an arrangement of 

points, lines, and areas on a flat sheet of paper or a com-

puter screen is equivalent to some facet of the real world 

in space and time. To gain a fuller understanding, the map 

reader must go beyond the graphic representation and 

study carefully what the symbols refer to in the real world.

A map, like a painting, is just one interpreter’s ver-

sion of reality. To understand a painting, you must have 

some idea of the techniques used by the interpreter — that 

is, the artist. You don’t expect a watercolor to look any-

thing like an acrylic painting or a charcoal drawing, even 

if the subject matter of all three is identical, because the 

three media are different. Therefore, the artistic tech-

niques are varied. In the same way, the techniques used to 

create maps greatly influence the final portrayal. As a map 

reader, you must always be aware of the mapmaker’s invis-

ible hand. Never use a map without asking yourself how it 

is biased by the methods that were used to make it.

If the mapping process operates at its full potential, 

communication of environmental information takes place 

between the cartographer and the map reader. The map-

maker translates reality into the clearest possible picture 

that the map can give, and the map reader converts this 

picture back into a useful mental image of the environ-

ment. For such translation to occur, the map reader must 

know something about how maps are created.

The complexities of mapping are easier to study if we 

break them up into simpler parts. Thus, we have divided 

part 1, “Map Reading,” into 11 chapters, each dealing with 

a different aspect of mapping. Chapter  1 examines geo-

graphic coordinate systems for the earth as a sphere, an 

oblate ellipsoid, and a geoid. Chapter 2 looks at ways of 

expressing and determining map scale. Chapter  3 intro-

duces different map projections and the types of geomet-

ric distortions that occur with each projection. Chapter 4 

focuses on different grid coordinate systems used in maps. 

Chapter 5 looks at land partitioning systems and how they 

are mapped. Chapter  6 is an introduction to how maps 

are designed. Chapter  7 examines various methods for 

mapping qualitative information, and chapter 8 does the 

same for quantitative information. Chapter 9 is devoted to 

the different methods of relief portrayal found on maps. 

Chapter 10 is an overview of image maps. Finally, for part 1, 

chapter 11 explores various aspects of map accuracy.

These 11 chapters should give you an appreciation 

of all that goes into mapping and the ways that different 

aspects of the environment are shown in maps. As a result, 

you’ll better understand the large and varied amount of 

geographic information that you can glean from a map. 

In addition, once you realize how intricate the mapping 

process is, you won’t be able to help but view even the 

crudest map with more respect, and your map reading skill 

will naturally grow.

Part I
Map reading
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1
The earth and earth coordinates

Of all the jobs that maps do for you, one stands out — they tell you where things are and allow you to 
communicate this information efficiently to others. This, more than any other factor, accounts for the 
widespread use of maps. Maps give you a superb positional reference system — a way to pinpoint the 
locations of things in space.

There are many ways to determine the position of a feature shown on a map. All begin with defining a 
geometric figure that approximates the true shape and size of the earth. This figure is either a sphere 
(a three-dimensional solid in which all points on the surface are the same distance from the center) or 
an oblate ellipsoid (a slightly flattened sphere), or an ellipsoid for short, of precisely known dimensions. 
Once the dimensions of the sphere or ellipsoid are defined, a graticule of east – west lines called parallels 
and north – south lines called meridians is draped over the sphere or ellipsoid. The angular distance of a 
parallel from the equator and of a meridian from what we call the prime meridian (the zero meridian used 
as the reference line from which east and west are measured) gives us the latitude and longitude coordi-
nates of a feature. The locations of elevations measured relative to an average gravity or sea level surface 
called the geoid can then be defined by three-dimensional (latitude, longitude, elevation) coordinates. 
Next, we look at these concepts in more detail.
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 26 Chapter 1 THE EARTH AND EARTH COORDINATES 

THE EARTH AS A SPHERE

We have known for over 2,000 years that the earth 
is spherical in shape. We owe this knowledge to sev-
eral ancient Greek philosophers, particularly Aristotle 
(fourth century BC), who believed that the earth’s sphe-
ricity could be proven by careful visual observation. Aris-
totle noticed that as he moved north or south, the stars 
were not stationary — new stars appeared in the northern 
horizon while familiar stars disappeared to the south. 
He reasoned that this could occur only if the earth was 
curved north to south. He also observed that depart-
ing sailing ships, regardless of their direction of travel, 
always disappeared from view by their hull (bottom and 
sides) first. If the earth was flat, the ships would simply 
get smaller as they sailed away. Only on a sphere do hulls 
always disappear first. His third observation was that a 
circular shadow is always cast by the earth on the moon 
during a lunar eclipse, something that occurs only if the 
earth is spherical. These arguments entered the Greek lit-
erature and persuaded scholars over the succeeding cen-
turies that the earth must be spherical in shape.

Determining the size of our spherical earth was a daunt-
ing task for our ancestors. The Greek scholar Eratosthenes, 
head of the then-famous library and museum in Alexandria, 
Egypt, around 250 BC, made the first scientifically based 

estimate of the earth’s circumference. The story that has 
come down to us is of Eratosthenes reading an account of 
a deep well at Syene near modern Aswan, about 500 miles 
(800 kilometers) south of Alexandria. The well’s bottom 
was illuminated by the sun only on June 21, the day of 
the summer solstice. He concluded that the sun must be 
directly overhead on this day, with rays perpendicular to 
the level ground (figure 1.1). Then he reasoned brilliantly 
that if the sun’s rays are parallel and the earth is spherical, 
a vertical column such as an obelisk should cast a shadow 
in Alexandria on the same day. Knowing the angle of the 
shadow would allow the earth’s circumference to be mea-
sured if the north – south distance from Alexandria to 
Syene could be determined. The simple geometry involved 
here is that if two parallel lines are intersected by a third 
line, the alternate interior angles are equal. From this sup-
position, he reasoned that the shadow angle at Alexandria 
equals the angular difference (7°12´) at the earth’s center 
between the two places.

The story continues that on the next summer solstice, 
Eratosthenes measured the shadow angle from an obelisk 
in Alexandria, finding it to be 7°12 ,́ or 1/50th of a circle. 
Hence, the distance between Alexandria and Syene is 
1/50th of the earth’s circumference. He was told that 
Syene must be about 5,000 stadia south of Alexandria 
because camel caravans traveling at 100 stadia per day 
took 50 days to make the trip between the two cities. 
From this distance estimate, he computed the earth’s 
circumference as 50 × 5,000 stadia, or 250,000 stadia. A 
stadion is an ancient Greek unit of measurement based 
on the length of a sports stadium at the time. A stadion 
varied from 200 to 210 modern yards (182 to 192 meters), 
so his computed circumference was somewhere between 
28,400 and 29,800 modern statute miles (45,700 and 
47,960 kilometers), 14 percent to 19 percent greater than 
the currently accepted circumference distance of 24,874 
statute miles (40,030 kilometers).

We now know that Eratosthenes’ error was because of 
an underestimate of the distance between Alexandria and 
Syene, and because the two cities are not exactly north – south 
of each other. However, his method is sound mathemati-
cally and was the best circumference measurement until the 
1600s. Equally important, Eratosthenes had the idea that 
careful observations of the sun allowed him to determine 
angular differences between places on earth, an idea that 
you shall see was expanded to other stars and recently to the 
Global Navigation Satellite System (GNSS), commonly 
known as the Global Positioning System (GPS). GPS is 
a “constellation” of earth-orbiting satellites that make it 

Figure 1.1. Eratosthenes’ method for measuring the 

earth’s circumference.

MAPUSE_ed8.indb   26 8/1/16   3:06 PM

Copyright © 2016 Esri. All rights reserved.



 The graticule 27

possible for people to pinpoint geographic location and 
elevation with a high degree of accuracy. GPS uses ground 
receivers that digitally process electronic signals from the 
satellite constellation to provide the position and exact time 
at a location (see chapter 14 for more on GPS).

THE GRATICULE

Once the shape and size of the earth were known, map-
makers required a system for defining locations on the 
surface. We are again indebted to ancient Greek schol-
ars for devising a system for placing reference lines on the 
spherical earth. 

Parallels and meridians
Astronomers before Eratosthenes placed horizontal lines 
on maps to mark the equator (forming the circle around 
the earth that is equidistant from the North and South 
Poles) and the Tropics of Cancer and Capricorn (lines 
that mark the northernmost and southernmost positions 
in which the sun is directly overhead on the summer and 
winter solstices, respectively. (As we mentioned earlier, 
Syene is located almost on the Tropic of Cancer.) Later, the 
astronomer and mathematician Hipparchus (190 – 125 
BC) proposed that a set of equally spaced east – west lines 
called parallels be drawn on maps (figure 1.2). To these 

lines, he added a set of north – south lines called merid-
ians that are equally spaced at the equator and converge 
at the North and South Poles. We now call this arrange-
ment of parallels and meridians the graticule. Hippar-
chus’s numbering system for parallels and meridians was, 
and still is, called latitude and longitude. We now look 
at latitude and longitude on a sphere, sometimes called 
geocentric latitude and longitude. Later in this chapter, we 
explain how geocentric latitude and longitude differ from 
geodetic latitude and longitude on an oblate ellipsoid.

Latitude and longitude
Latitude on the spherical earth is the north – south angu-
lar distance from the equator to the place of interest 
(figure 1.3). The numerical range of latitude is from 0° at 
the equator to 90° at the poles. The letters N and S, such 
as 45° N for Fossil, Oregon, are used to indicate north and 
south latitudes, respectively. Instead of the letter S, you 
may see a minus sign (−) for south latitudes; however, a 
plus sign (+) is not used for north latitudes. 

Longitude is the angle, measured along the equator, 
between the intersection of the reference meridian, called 
the prime meridian, and the point at which the meridian for 
the feature of interest intersects the equator. The numeric 
range of longitude is from 0° to 180° east and west of the 
prime meridian, twice as long as parallels. East and west 
longitudes are labeled E and W, so that Fossil, Oregon, 
has a longitude of 120° W. As with south latitude, west 

Figure 1.2. Parallels and meridians.
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longitude may also be indicated by a minus sign, but a plus 
sign is not used for east longitude.

Putting latitude and longitude together into what is 
called a geographic coordinate (such as 45° N, 120° W or 
45°, −120°) pinpoints a place on the earth’s surface. There 
are several ways to write latitude and longitude values. The 
oldest is the Babylonian sexagesimal system of degrees (°), 
minutes (́ ), and seconds (̋ ), where there are 60 minutes 
in a degree and 60 seconds in a minute. For example, the 
latitude and longitude of the capitol dome in Salem, Oregon, 
is 44°56́ 18˝ N, 123°01́ 47˝ W (or 44°56́ 18 ,̋ −123°01́ 47˝). 

Latitude and longitude can also be expressed in decimal 
degrees (DD) through equation (1.1):

DD = dd + mm / 60 + ss / 3600,  (1.1)

where dd is the number of whole degrees, mm is the 
number of minutes, and ss is the number of seconds. For 
example, in equation (1.2): 

44°56́ 18˝ = 44 + 56 / 60 + 18 / 3600 = 44.9381°.
 (1.2)

Decimal degrees are often rounded to two decimal places, 
so the location of the Oregon state capitol dome is written 
in decimal degrees as 44.94, −123.03. If you can accurately 
define a location to the nearest one second of latitude and 
longitude, you can specify its location to within 100 feet 
(30 meters) of its true location on the earth.

Prime meridians 
The choice of prime meridian (the 0° meridian used as the 
reference from which longitude east and west are mea-
sured) is entirely arbitrary, because there is no physically 
definable starting point like the equator. In the fourth 
century BC, Eratosthenes selected Alexandria, Egypt, 
as the starting meridian for longitude; and in medieval 
times, the Canary Islands off the west coast of Africa were 
used because they were then the westernmost outpost of 
western civilization. In the 18th and 19th centuries, many 
countries used their capital city as the prime meridian for 
their national maps (see appendix B, table B.6 for a listing 
of historic prime meridians). You can imagine the confu-
sion that must have existed when trying to locate places 
on maps from other countries. The problem was elimi-
nated in 1884 when the International Meridian Con-
ference selected as the international standard the British 
prime meridian, defined by the north – south optical axis 
of a telescope at the Royal Observatory in Greenwich, a 
suburb of London. This standard is called the Greenwich 
meridian.

You may occasionally come across a historical map that 
uses one of the prime meridians listed in appendix B, at 
which time knowing the angular difference between the 
prime meridian used on the map and the Greenwich merid-
ian becomes useful information. As an example, you might 
see in an old Turkish atlas that the longitude of Seattle, 
Washington, is 151°16́  W (based on the Istanbul meridian), 
and you know that the Greenwich longitude of Seattle is 
122°17´ W. You can determine the Greenwich longitude 
of Istanbul through subtraction, in equation (1.3): 

151°16́  W − 122°17´ W = 28°59´ E. (1.3)

The computation is done more easily in decimal degrees, 
as described earlier, in equation (1.4):

122.17° W − 151.16° W = − 122.17° − −151.16°  
= 28.99°, or 28.99° E. (1.4)

Figure 1.3. Latitude and longitude on the sphere allow 

explicit identification of the positions of features on the 

earth.
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THE EARTH AS AN OBLATE 
ELLIPSOID

Scholars assumed that the earth was a perfect sphere until 
the 1660s, when Sir Isaac Newton developed the theory 
of gravity. Newton thought that gravity should produce 
a perfectly spherical earth if it was not rotating about its 
polar axis. The earth’s 24-hour rotation, however, intro-
duces outward centrifugal forces that are perpendicular 
to the axis of rotation, or the equatorial axis. The amount 
of force varies from zero at each pole to a maximum at the 
equator.

Newton noted that these outward centrifugal forces 
counteract the inward pull of gravity, so the net inward 
force decreases progressively from the pole to the equator 
causing the earth to be slightly flattened. Slicing the earth 
in half from pole to pole would then reveal an ellipse with 
a slightly longer equatorial radius and slightly shorter polar 
radius; we call these radii the semimajor and semiminor 
axes, respectively (figure 1.4). If we rotate this ellipse 180° 
about its polar axis, we obtain a three-dimensional solid 
that we call an oblate ellipsoid. 

The oblate ellipsoid is important because parallels are not 
spaced equally as they are on a sphere but decrease slightly 
in spacing from the pole to the equator. This variation in 
the spacing of parallels is shown in figure 1.5, a cross sec-
tion of a greatly flattened oblate ellipsoid. We say that on 
an oblate ellipsoid the radius of curvature (the measure of 
how curved the surface is) is largest at the pole and small-
est at the equator. Near the pole, the ellipse is flatter than 
near the equator. You can see that there is less curvature 
on the ellipse with a larger radius of curvature and more 
curvature with a smaller radius of curvature.

The north – south distance between two points on the 
ellipsoidal surface equals the radius of curvature times the 
angular difference between the points. Because the radius 
of curvature on an oblate ellipsoid is largest at the pole and 
smallest at the equator, the north – south distance between 
points that are a degree apart in latitude should be greater 
near the pole than at the equator. In the 1730s, scientific 
expeditions to Ecuador and Finland measured the length 
of a degree of latitude at the equator and near the Arctic 
Circle, proving Newton to be correct. These and additional 
measurements in the following decades for other parts of 
the world allowed the semimajor and semiminor axes of 
the oblate ellipsoid to be computed by the early 1800s, 
giving about a 13-mile (21-kilometer) difference between 
the two, only one-third of 1 percent.

Different ellipsoids 
During the 19th century, better surveying equipment 
was used to measure the length of a degree of latitude on 
different continents. From these measurements, slightly 

Figure 1.4. The form of the oblate ellipsoid was 

determined by measurements of degrees at different 

latitudes, beginning in the 1730s. Its equatorial radius was 

about 13 miles (21 kilometers) longer than its polar radius. 

This figure is true to scale, but our eye cannot see the 

flattening because the difference between the north – south 

and east – west axis is so small.

Figure 1.5. This north – south cross section through the 

center of a greatly flattened oblate ellipsoid shows that 

a larger radius of curvature at the pole results in a larger 

ground distance per degree of latitude relative to the 

equator.
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different oblate ellipsoids, varying by only a few hundred 
meters in axis length, best fit the measurements. Table 1.1 
is a list of these ellipsoids, along with their areas of usage. 
Note the changes in ellipsoid use over time. For example, 
the Clarke 1866 ellipsoid was the best fit for North 
America in the 19th century and was used as the basis for 
latitude and longitude on topographic and other maps 
produced in Canada, Mexico, and the United States from 
the late 1800s to about the late 1970s. By the 1980s, vastly 
superior surveying equipment, coupled with millions of 
observations of satellite orbits, allowed us to determine 
oblate ellipsoids that are excellent average fits for the 
entire earth. Satellite data is important because the ellipti-
cal shape of each orbit monitored at ground receiving sta-
tions mirrors the earth’s shape. The most recent of these 
ellipsoids, called the World Geodetic System of 1984 
(WGS84), replaced the Clarke 1866 ellipsoid in North 
America and is used as the basis for latitude and longitude 
on maps throughout the world. In table 1.1, the WGS84 
ellipsoid has an equatorial radius of 6,378.137 kilometers 
(3,963.191 miles) and a polar radius of 6,356.752 kilo-
meters (3,949.903 miles). On this ellipsoid, the distance 
between two points that are one degree apart in latitude 
between 0° and 1° at the equator is 110.567 kilome-
ters (68.703 miles), shorter than the 111.699-kilometer 
(69.407-mile) distance between two points at 89° and 90° 
north latitude. Hence, on equatorial- and polar-area maps 
of the same scale, the spacing between parallels is not the 
same, but the difference is small.

Geodetic latitude
Geodetic latitude is defined as the angle made by the 
horizontal equator line and a line perpendicular to the 
ellipsoidal surface at the parallel of interest (figure 1.6). 
Geodetic latitude differs from latitude on a sphere 
because of the unequal spacing of parallels on the ellip-
soid. Lines perpendicular to the ellipsoidal surface pass 
through the center of the earth only at the poles and the 
equator, but all lines perpendicular to the surface of a 
sphere pass through its center. This centricity is why the 
latitude defined by these lines on a sphere is called geo-
centric latitude.

Figure 1.6. Geocentric and geodetic latitudes of 45°. On 

a sphere, circular arc distance b – c is the same as circular 

arc distance c – d. On the greatly flattened oblate ellipsoid, 

elliptical arc distance b – c is less than elliptical arc distance 

c – d. On the WGS84 oblate ellipsoid, arc distance b – c is 

4,984.94 kilometers (3,097.50 miles) and arc distance c – d is 

5,017.02 kilometers (3,117.43 miles), a difference of about 

32 kilometers (20 miles).

Table 1.1 Historical and current oblate ellipsoids

Name Date Equatorial radius (km) Polar radius (km) Areas of use

WGS84 1984 6,378.137 6,356.75231 Worldwide

GRS80 1980 6,378.137 6,356.7523 Worldwide (NAD83)

Australian 1965 6,378.160 6,356.7747 Australia 

Krasovsky 1940 6,378.245 6,356.863 Soviet Union 

International 1924 6,378.388 6,356.9119 Remainder of the world not covered by older ellipsoids 
(European Datum 1950)

Clarke 1880 6,378.2491 6,356.5149 France; most of Africa

Clarke 1866 6,378.2064 6,356.5838 North America (NAD27)

Bessel 1841 6,377.3972 6,356.079 Central Europe, Sweden, Chile, Switzerland, Indonesia

Airy 1830 6,377.5634 6,356.2569 Great Britain, Ireland

Everest 1830 6,377.2763 6,356.0754 India and the rest of South Asia
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Geodetic longitude 
There is no need to make a distinction between geocen-
tric longitude on the sphere and geodetic longitude 
on the ellipsoid. Both types of longitude are defined as 
the angular distance between the prime meridian and 
another meridian passing through a point on the earth’s 
surface, with the center of the earth as the vertex of the 
angle. Because of the geometric nature of the ellipsoid, 
the angular distance turns out to be the same as for geo-
centric longitude on the sphere.

DETERMINING GEODETIC 
LATITUDE AND LONGITUDE 

The oldest way to determine geodetic latitude is with 
instruments for observing the positions of celestial 
bodies. The essence of the technique is to establish celes-
tial lines of position (east – west and north – south) by 
comparing the predicted positions of celestial bodies with 
their observed positions. A handheld instrument, called 
a sextant, was the tool historically used to measure the 
angle (or altitude) of a celestial body above the earth’s 
horizon (figure 1.7). Before GPS, it was the tool that nau-
tical navigators used to find their way using the moon, 
planets, and stars, including the sun.

Astronomers study and tabulate information on the 
actual motion of the celestial bodies that help pinpoint 
latitude. Because the earth rotates on an axis defined by the 
North and South Poles, stars in the Northern Hemisphere’s 
night sky appear to move slowly in a circle centered on 

Polaris (the North Star), which lies almost directly above 
the North Pole. A navigator needs only to locate Polaris 
to find the approximate North Polar axis. In addition, 
because the star is so far away from the earth, the angle 
from the horizon to Polaris is approximately the same as 
the latitude (figure 1.8).

However, Polaris is actually 0.75 degrees from directly 
above the North Pole, circling the pole in a small circle that 
is 1.5 degrees in diameter. Precisely determining the spot 
near Polaris that is directly above the North Pole requires 
accurately knowing the time and using Polaris position 
data from the Astronomical Almanac, published jointly 
by the US Naval Observatory and Her Majesty’s Nautical 
Almanac Office in the United Kingdom. Errors in deter-
mining latitude can otherwise approach three-quarters of 
a degree, which translates into a ground position error of 
around 50 miles (80 kilometers).

In the Southern Hemisphere, latitude is harder to deter-
mine by celestial measurement because there is no equiva-
lent to Polaris directly above the South Pole. Navigators 
instead use a small constellation called Crux Australis (the 
Southern Cross) to serve the same function (figure 1.9). 
Finding south is more complicated because the South-
ern Cross is a collection of five stars that are part of the 

Figure 1.7. A sextant is used at sea to find latitude from 

the vertical angle between the horizon and a celestial body 

such as the sun, planet, or star. Courtesy of Dr. Bernie Bernard.

Figure 1.8. In the Northern Hemisphere, it is easy to 

determine your approximate latitude by observing 

the height of Polaris above your northern horizon. For 

example, at 50° N latitude, you will see Polaris at 50 

degrees above the north horizon.
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constellation Centaurus. The four outer stars form a cross, 
while the fifth, much dimmer star (Epsilon) is offset about 
30 degrees below the center of the cross. 

Longitude can be determined on land or sea by care-
ful observation of time. In previous centuries, accurately 
determining longitude was a major problem in both sea 
navigation and mapmaking. It was not until 1762 that 
a clock that was accurate enough for longitude finding 
was invented by Englishman John Harrison. This clock, 
called a chronometer, was set to the time at Greenwich, 
England, now called Greenwich Mean Time (GMT), 
before departing on a long voyage. As you saw earlier, the 
prime meridian at 0° longitude passes through Greenwich, 
England. Therefore, each hour difference between your 
time and that of Greenwich is equivalent to 15 degrees 
of longitude from Greenwich. The longitude of a distant 
locale was found by noting the GMT at local noon (the 
highest point of the sun in the sky, found with a sextant). 
The time difference was simply multiplied by 15 to find 
the longitude.

Today, you can find your longitude in the field simply by 
looking at the value computed by your GPS receiver or GPS 
unit in your smartphone. The details of how GPS receivers 
find your latitude and longitude are found in chapter 14, 
but you can rest assured that the GPS coordinates are more 
accurate than the most carefully measured time differences 
made in the past using Harrison and similar chronometers.

PROPERTIES OF THE GRATICULE 

Circumference of the authalic sphere 
When determining latitude and longitude, we some-
times use the spherical approximation to the earth’s 
shape rather than the oblate ellipsoid. Using a sphere 
leads to simpler calculations, especially when working 
with small-scale maps of countries, continents, or the 
entire earth (see chapter 2 for more on small-scale maps). 
On these maps, differences between locations on the 
sphere and the ellipsoid are negligible. Cartographers use 
a value of the earth’s spherical circumference called an 
authalic sphere. The authalic (meaning “area preserv-
ing”) sphere is a sphere that has the same surface area as 
the oblate ellipsoid being used. The equatorial and polar 
radii of the WGS84 ellipsoid are what we use to calcu-
late the radius and circumference of the authalic sphere 
that is equal to the surface area of the WGS84 ellipsoid. 
The computations involved are moderately complex and 

best left to a short computer program, but the result is 
a sphere of radius of 3,958.76 miles (6,371.017 kilome-
ters) and circumference of 24,873.62 miles (40,030.22 
kilometers). 

Spacing of parallels
As you saw earlier, on a spherical earth the north – south 
ground distance between equal increments of latitude 
does not vary. However, it is important to know how you 
want to define that distance. As you will see next, there 
are different definitions for terms that you may take for 
granted, such as a “mile.”

Using the authalic sphere circumference based on the 
WGS84 ellipsoid, latitude spacing is always 24,873.62 miles 
÷ 360°, or 69.09 statute miles per degree. Statute miles of 
5,280 feet in length are used for land distances in the United 
States, whereas nautical miles are used around the world 
for maritime and aviation purposes. The original nauti-
cal mile was defined as one minute of latitude measured 
north – south along a meridian. The current international 
standard for a nautical mile is 6,076.1 feet (about 1.15 
statute miles) so that there are 60.04 nautical miles per 
degree of latitude on the authalic sphere.

The metric system is used to express distances in coun-
tries other than the United States. The kilometer (1,000 
meters) is, like the nautical mile, closely tied to distances 
along meridians, because the meter was initially defined 

Figure 1.9. The Southern Cross is used for navigation in 

the Southern Hemisphere. To approximately locate the 

point in the sky directly above the South Pole, extend 

the long (Gacrux to Acrux) axis of the Southern Cross 4.5 

times the length of the axis, and then draw in the sky a 

line perpendicular from the end of this line to the left that 

is the length of the short (Becrux to Delta) axis. Courtesy of  

Dr. Yuri Beletsky.
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as one 10-millionth of the distance along a meridian from 
the equator to the North or South Pole. There are exactly 
1,609.344 meters in a statute mile and 1,852 meters in a 
nautical mile (see table B.1 in appendix B for these and 
additional metric and English unit distance equivalents). 
Expressed in metric units, there are 111.20 kilometers per 
degree of latitude on the authalic sphere.

You have seen that parallels on an oblate ellipsoid are 
not spaced equally as they are on the authalic sphere, but 
instead decrease slightly from the pole to the equator. You 
can see in table B.2 in appendix B the variation in the 
length of a degree of latitude for the WGS84 ellipsoid, 
measured along a meridian at one-degree increments from 
the equator to the pole. The distance per degree of latitude 
ranges from 69.407 statute miles (111.699 kilometers) at 
the pole to 68.703 statute miles (110.567 kilometers) at 
the equator. The graph in figure 1.10 shows how these 
distances differ from the constant value of 69.09 statute 
miles (111.20 kilometers) per degree for the authalic sphere. 
The WGS84 ellipsoid distances per degree are about 0.3 
miles (0.48 kilometers) greater than the sphere at the pole 
and 0.4 miles (0.64 kilometers) less at the equator. The 
ellipsoidal and spherical distances are almost the same in 
the mid-latitudes, somewhere between 45 and 50 degrees.

Converging meridians
A quick glance at any world globe (or figure 1.2) shows 
converging meridians — that is, the meridians progres-
sively converge from the equator to a point at the North 
and South Poles. You will also see that the length of a 
degree of longitude, measured east – west along paral-
lels, decreases from the equator to the pole. The spacing 

of meridians on the authalic sphere at a given latitude is 
found by using equation (1.5): 

69.09 miles (or 111.20 kilometers) / degrees ×  
cos(latitude).  (1.5)

For example, at 45 degrees north or south of the equator, 
cosine(45°) = 0.7071. Therefore, the length of a degree of 
longitude is found in equation (1.6):

69.09 × 0.7071, or 48.85 statute miles  
(111.20 × 0.7071, or 78.63 kilometers).  (1.6)

This spacing of meridians is roughly 20 miles (32 kilo-
meters) shorter than the 69.09-mile (111.20-kilometer) 
spacing at the equator.

Quadrilaterals 
Many navigational maps cover quadrilaterals, which 
are bounded by equal increments of latitude and longi-
tude. Because meridians converge toward the poles, the 
shapes of the quadrilaterals vary from a square on the 
sphere at the equator to a narrow spherical triangle at the 
pole, such as the 15° × 15° quadrilaterals from equator to 
pole in figure 1.11. The equation cosine of center latitude, 
or cos(center latitude), gives the aspect ratio (width to 

Figure 1.10. Distances along the meridian for one-degree 

increments of latitude from the equator to the pole on the 

WGS84 ellipsoid and authalic sphere.

Figure 1.11. Aspect ratios for 15° × 15° quadrilaterals on 

the earth from the equator to the North Pole. The cosine of 

the mid-latitude for each quadrilateral gives its aspect ratio.
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height) of a quadrilateral. A quadrilateral centered at the 
equator has an aspect ratio of 1.0, whereas a quadrilat-
eral at 60° N has an aspect ratio of 0.5. A map that covers 
1° × 1° or any other quadrilateral extent looks long and 
narrow at this high latitude, whereas a quadrilateral map 
at the equator is essentially square in shape.

Great and small circles 
A great circle is the largest possible circle that can be 
drawn on the surface of the spherical earth and also the 
shortest distance between two points on the earth’s sur-
face. Its circumference is that of the sphere and its center 
is the center of the earth, so that all great circles divide 
the earth into halves. Notice in figure 1.3 that the equator 
is a great circle that divides the earth into the Northern 
and Southern Hemispheres. Similarly, the prime merid-
ian and its antipodal meridian, situated at the opposite 
side of the earth at 180°, form a great circle that divides 
the earth into the Eastern and Western Hemispheres. All 
other pairs of meridians and their antipodal meridians 
are also great circles. Because a great circle is the shortest 
route between any two points on the earth, great circle 
routes are fundamental to long-distance navigation, as 
you will see in chapter 14.

Any circle on the earth’s surface that intersects the inte-
rior of the sphere at any location other than the center is 
called a small circle, and its circumference is smaller than a 
great circle. You can see in figure 1.3 that all parallels other 
than the equator are small circles. The circumference of a 
particular parallel is given by equation (1.7): 

24,874 miles (or 40,030 kilometers) × cos(latitude). 
 (1.7)

For example, the circumference of the 45th parallel is 

24,874 × 0.7071, or 17,588 statute miles  
(40,030 × 0.7071, or 28,305 kilometers).

GRATICULE APPEARANCE ON 
MAPS 

Small-scale maps 
Small-scale world or continental maps such as globes 
and world atlas sheets normally use geocentric latitude-
longitude coordinates based on an authalic sphere. There 

are several reasons for using the authalic sphere. Prior 
to using digital computers to make these types of maps 
numerically, it was much easier to construct them from 
spherical coordinates. Equally important, the differences 
in the plotted positions of geocentric and corresponding 
geodetic parallels become negligible on maps that cover 
so much area on a small page.

For example, mathematicians have computed the maxi-
mum difference between geocentric and geodetic latitude 
as 0.128 degrees at the 45th parallel. If you draw parallels 
at 45° and 45.128° on a map scaled at one inch per degree 
of latitude, the two parallels are drawn a very noticeable 
0.128 inches (0.325 centimeters) apart. Now imagine draw-
ing the parallels on a map scaled at one inch per 10 degrees 
of latitude, a scale that corresponds to a world wall map 
approximately 18 inches (46 centimeters) high and 36 
inches (92 centimeters) wide. The two parallels are now 
drawn 0.013 inches (0.033 centimeters) apart, a difference 
that is not even noticeable considering the width of a line 
on a piece of paper.

Large-scale maps 
Parallels and meridians are shown in different ways on 
large-scale maps that show small areas in great detail 
(see chapter 2 for more on large-scale maps). Large-scale 
topographic maps, which show elevations and landforms 
as well as other ground features, use tick marks to show 

Figure 1.12 Graticule ticks on the Corvallis, Oregon, 7.5-

minute topographic map.
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the location of the graticule (see chapters 2, 9, and 19 for 
more on topographic maps). For example, all US Geolog-
ical Survey 7.5-minute topographic maps have graticule 
ticks at 2.5-minute intervals of latitude and longitude 
(figure 1.12). The latitude and longitude coordinates are 
printed in each corner, but only the minutes and seconds 
of the intermediate edge ticks are shown. Note the four 
plus sign symbols used for the interior 2.5-minute grati-
cule ticks in the figure.

The graticule is shown in a different way on nauti-
cal charts for marine navigation. The chart segment in 
figure 1.13 shows that alternating white and dark bars 
spaced at the same increment of latitude and longitude 
line the edge of the chart, along with ticks at one-minute 
increments. These ticks are used to find the latitude and 
longitude of mapped features to within a fraction of a 
minute. Because of the convergence of meridians, the spac-
ing between ticks, which shows equal increments of latitude, 
is longer within the vertical bars on the left and right edges 
of the chart than the spacing between ticks within the 
horizontal bars at the top and bottom. The one exception 

is charts of areas along the equator, in which the spacing 
between ticks is the same on all edges. The more closely 
spaced ticks beside each horizontal bar are placed every 
10th of a minute. 

Aeronautical charts display the graticule in yet another 
way. The chart segment for a portion of the Aleutian Islands 
in Alaska (figure 1.14) shows that parallels and meridians 
are drawn at 30-minute latitude and longitude intervals. 
Ticks are placed at one-minute increments along each grati-
cule line, allowing features to be located easily to within 
a fraction of a minute.

GEODETIC LATITUDE AND 
LONGITUDE ON LARGE-SCALE 
MAPS 

You will often find parallels and meridians of geodetic 
latitude and longitude on detailed maps of small areas. 

Figure 1.13. Graticule bars with ticks on the edges of a 

nautical chart segment. Reproduced with permission of the Canadian 

Hydrographic Service.

Figure 1.14. Graticule ticks on a small segment of an 

aeronautical chart. Courtesy of the National Aeronautical Charting Office.
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Geodetic coordinates are used to make the map a close 
approximation to the size and shape of the part of the 
ellipsoidal earth that it represents. To see the perils of not 
doing this step, you need only examine one-degree quad-
rilaterals at the equator (from 0° to 1° in latitude) and at 
the North or South Poles (from 89° to 90° in latitude).

You can see in table B.2 in appendix B that the ground 
distance between these pairs of parallels on the WGS84 
ellipsoid is 68.703 and 69.407 miles (110.567 and 111.699 
kilometers), respectively. If the equatorial quadrilateral is 
mapped at a scale so that it is 100 inches (254 centimeters) 
high, the polar quadrilateral mapped at the same scale is 
101 inches (256.5 centimeters) high. If both quadrilater-
als are mapped using the authalic sphere with 69.09 miles 
(111.20 kilometers) per degree, both quadrilaterals are 
100.6 inches (255.5 centimeters) high. Having both maps 
several 10ths of an inch (or around a centimeter) longer or 
shorter than they should be seems a small error, but it can 
be an unacceptably large error for maps that are used to 
make accurate measurements of distance, direction, or area. 
Yet you can see in figure 1.10 that the height differences at 
the equator and the poles are the extremes and that there 
is little difference at mid-latitudes.

Horizontal reference datums 
To further understand the use of different types of coor-
dinates on detailed maps of smaller extents, you must 
first look at datums — the collection of accurate con-
trol points (points with known positional accuracy) 
that surveyors and others use to georeference map data 
so that it aligns with the geodetic latitude and longitude 
coordinate system (see chapter  5 for more on control 
points and georeferencing). Surveyors determine the 
precise geodetic latitude and longitude of horizontal 
control points spread across the landscape. You may 
have seen a horizontal control point monument (also 
called a survey marker, survey mark, or sometimes a 
geodetic mark), a fixed object established by surveyors 
when they determine the exact position of a point. 
Monuments, such as the one in figure  1.15, may be 
placed in the ground on top of a hill or other prominent 
feature, but in less prominent locations such as a road or 
sidewalk, they may be buried so that they will not be hit 
by a car or bicycle.

From the 1920s to the early 1980s, these control 
points were surveyed relative to the Clarke 1866 ellipsoid, 
together forming what was called the North American 
Datum of 1927 (NAD27). Topographic maps, nauti-
cal and aeronautical charts, and many other large-scale 

maps of this period have graticule lines or ticks based 
on this datum. For example, the southeast corner of the 
Corvallis, Oregon, topographic map first published in 
1969 (figure 1.16) has a NAD27 latitude and longitude 
of 44°30´N, 123°15́  W.

By the early 1980s, better knowledge of the earth’s 
shape and size and far better surveying methods led to the 
creation of a new horizontal reference datum, the North 
American Datum of 1983 (NAD83). The NAD27 control 
points were corrected for surveying errors where appar-
ent, and then were added to thousands of more recently 
acquired points. The geodetic latitudes and longitudes of 
all these points were determined relative to the Geodetic 
Reference System of 1980 (GRS80) ellipsoid, which was 
essentially identical to the WGS84 ellipsoid when GRS80 
was devised.

Figure 1.15 Horizontal control point marker cemented in 

the ground. Courtesy of the National Oceanic and Atmospheric 

Administration.

Figure 1.16 Southeast corner of the Corvallis, Oregon, 

topographic map showing the difference between its NAD27 

and NAD83 positions. Courtesy of the US Geological Survey.
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The change of horizontal reference datum from NAD27 
to NAD83 meant that the geodetic coordinates for control 
points across the continent changed slightly in 1983, and 
this change had to be shown on large-scale maps published 
earlier but still in use. On topographic maps, the NAD83 
position of the map corner is shown by a dashed plus sign, 
as in figure 1.16. Often, the shift is in the 100-meter range 
and must be taken into account when plotting on older 
maps the geodetic latitudes and longitudes obtained from 
GPS receivers and other modern position-finding devices.

Europe in the early 1900s faced another problem —  
separate datums for different countries that did not mesh 
into a single system for the continent. Military map users 
in World War II found different latitudes and longitudes 
for the same ground locations on topographic maps along 
the borders of France, Belgium, the Netherlands, Spain, 
and other countries in which major battles were fought. 
The European Datum of 1950 (ED50) was created after 
World War II as a consistent reference datum for most of 
western Europe; although Belgium, France, Great Brit-
ain, Ireland, Sweden, Switzerland, and the Netherlands 
continue to retain and use their own national datums. 
Latitudes and longitudes for ED50 were based on the Inter-
national Ellipsoid of 1924. Users of GPS receivers will 
find that, moving westward through Europe from north-
western Russia, the newer European Terrestrial Reference 
System 1989 (ETRS89) longitude coordinates based on 
the WGS84 ellipsoid gradually shift to the west of those 
based on the 1924 International Ellipsoid. In Portugal and 
western Spain, the WGS84 longitudes are approximately 
100 meters to the west of those found on topographic maps 
based on ED50. Moving southward, WGS84 latitudes 
gradually shift northward from those based on ED50, 
reaching a maximum difference of around 100 meters in 
the Mediterranean Sea.

As noted, Great Britain and Ireland are examples of 
countries that continue to use datums based on ellipsoids 
defined in the 19th century to best fit that region. Topo-
graphic maps in both nations use the Airy 1830 ellipsoid 
as the basis for the Ordnance Survey Great Britain 1936 
(OSGB36) datum for geodetic latitude and longitude 
coordinates. Along the south coast of England, WGS84 
latitudes are about 70 meters to the south of those based 
on OSGB36. This southward shift gradually diminishes to 
zero near the Scottish border, and then becomes a northerly 
difference that reaches a maximum value of around 50 
meters at the northern extremes of Scotland. In Ireland, 
WGS84 longitudes are around 50 meters to the east of their 
OSGB36 equivalents and gradually increase to a maximum 

difference of around 120 meters along the southeast coast 
of England (go to http://www.colorado.edu/geography/
gcraft/notes/datum/datum_f.html for a detailed list of 
horizontal datums and reference ellipsoids used in foreign 
countries throughout the world).

THE EARTH AS A GEOID 

When the earth is treated as an authalic sphere or oblate 
ellipsoid, mountain ranges, ocean trenches, and other sur-
face features that have vertical relief are neglected. There 
is justification for this treatment, as the earth’s surface is 
truly smooth when you compare the surface undulations 
to the 7,918-mile (12,742-kilometer) diameter of the earth 
based on the authalic sphere. The greatest relief variation 
is the approximately 12.3-mile (19.8-kilometer) difference 
between the summit of Mount Everest (29,035 feet or 
8,852 meters) and the deepest point in the Mariana Trench 
(36,192 feet or 11,034 meters). This vertical difference is 
immense on the human scale, but it is only 1/640th of 
the earth’s diameter. If you look at the difference between 
the earth’s average land height (2,755 feet or 840 meters) 
and ocean depth (12,450 feet or 3,795 meters), the aver-
age roughness is only 1/2,750th of the diameter. In fact, if 
the earth was reduced to the diameter of a bowling ball, it 
would be smoother than the bowling ball.

The earth’s global-scale smoothness aside, knowing 
the elevations and depths of features is important to us. 
Defining locations by their geodetic latitude, longitude, and 
elevation gives you a simple way to collect elevation data and 
display this information on maps. The top of Mount Everest, 
for example, is located at 27°59´ N, 86°56́  E, 29,035 feet 
(8,852 meters), but what is this elevation relative to? This 
question leads us to another approximation of the earth 
called the geoid, which is a surface of equal gravity used as 
the reference datum for elevations.

Vertical reference datums 
Elevations and depths are measured relative to what is 
called a vertical reference datum, an arbitrary surface 
with an elevation of zero. The traditional datum used for 
land elevations is mean sea level (MSL) (see chapter  9 
for more on mean sea level). Surveyors define MSL as the 
average of all low and high tides at a particular starting 
location over a Metonic cycle (a period of approximately 
19 years or 235 lunar months, at the end of which the 
phases of the moon begin to occur in the same order and 
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on the same days as in the previous cycle). Early surveyors 
chose this datum because of the measurement technology 
of the day. Surveyors first used the method of leveling, 
in which elevations are determined relative to the point 
at which mean sea level is defined, using horizontally 
aligned telescopes and vertically aligned leveling rods. 
A small circular monument was placed in the ground at 
each surveyed benchmark elevation point. A benchmark 
is a permanent monument that establishes the exact ele-
vation of a place.

Later, surveyors could determine elevation by making 
gravity measurements at different locations on the ground 
and relating them to the strength of gravity at the point 
used to define MSL. Gravity differences translate into 
elevation differences because the strength of gravity changes 
with elevation.

MSL is easy to determine along coastlines, but what 
about inland locations? It requires extending mean sea level 
across the land. Imagine that mean sea level is extended 
across the continental land masses on the ellipsoidal surface, 
which is the same thing as extending a surface that has the 
same strength of gravity as mean sea level (figure 1.17). 
However, this imaginary equal-gravity surface doesn’t form 
a perfect ellipsoid, because differences in topography and 
earth density affect gravity’s pull at different locations, and 
thus the shape of the surface.

The slightly undulating, nearly ellipsoidal surface that 
best fits mean sea level for all the earth’s oceans is called a 
global geoid. The global geoid varies approximately 100 
meters above and below the oblate ellipsoid surface in an 
irregular fashion. World maps that show land topography 

and ocean bathymetry use land heights and water depths 
relative to the global geoid surface. In the conterminous 
United States, geoid heights range from a low of −51.6 
meters in the Atlantic Ocean to a high of −7.2 meters in 
the Rocky Mountains (figure 1.18). Worldwide, geoid 
heights vary from −105 meters just south of Sri Lanka to 
85 meters in Indonesia.

The mean sea level datum based on the geoid is so con-
venient that it is used to determine elevations around the 
world and is the basis for the elevation data found on nearly 
all topographic maps and nautical charts. But be aware that 

Figure 1.17 The geoid is the surface at which gravity is 

the same as at mean sea level. Elevations on maps are 

measured relative to the global geoid, but modern GPS-

determined heights are relative to the WGS84 ellipsoid.

Figure 1.18 Geoid heights in the United States and vicinity. Courtesy of the National Geodetic Survey GEOID2009 model.
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the local geoid used in your area is probably slightly above 
or below (usually within two meters of) the global geoid 
used for world maps. This difference is because the mean 
sea level at one or more nearby locations is being used as 
the vertical reference datum for your nation or continent, 
rather than the average sea level for all the oceans.

In the United States, for example, you may see elevations 
relative to the National Geodetic Vertical Datum of 1929 
(NGVD29) on older topographic maps. This datum was 
defined by the observed heights of mean sea level at 26 
tide gauges, 21 in the United States and 5 in Canada. It 
also was defined by the set of elevations of all benchmarks 
resulting from over 60,000 miles (96,560 kilometers) of 
leveling across the continent, totaling over 500,000 vertical 
control points. In the late 1980s, surveyors adjusted the 
1929 datum with new data to create the North American 
Vertical Datum of 1988 (NAVD88). Topographic maps, 
nautical charts, and other cartographic products for the 
United States, Canada, Mexico, and Central America made 
from this time forward use elevations based on NAVD88. 
Mean sea level for the continent was defined at one tidal 
station on the Saint Lawrence River at Rimouski, Quebec, 
Canada. NAVD88 was a necessary update of the 1929 
vertical datum because about 400,000 miles (650,000 
kilometers) of leveling was added to the NGVD since 
1929. Additionally, numerous benchmarks were lost over 
the decades, and the elevations at others were affected, by 
vertical changes because of rising land elevations since the 
retreat of glaciers at the end of the last ice age or subsid-
ence from the extraction of natural resources such as oil 
and water.

GPS has created a second option for measuring eleva-
tion rather than basing elevation on a vertical datum (see 
chapter 14 for more on GPS). GPS receivers calculate what 
is called the ellipsoidal height h, the distance above or 
below the surface of the WGS84 ellipsoid along a line 
from the surface to the center of the earth (see figure 1.17). 
An ellipsoidal height is not an elevation, because it is not 
measured relative to the mean sea level datum for your local 
geoid. Therefore, you must convert GPS ellipsoidal height 
values to mean sea level datum elevations H before you can 
use them with existing maps. You do this by subtracting 
the geoid height N at each point from the ellipsoid height 
h measured by the GPS receiver using equation (1.8):

H = h − N.  (1.8)

Ellipsoidal height is the same thing as height above the 
ellipsoid (HAE), and this is the elevation most often found 
by GPS receivers. The lookup table to make this conversion 
is usually stored in your GPS receiver’s computer. 
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