
VIIII (185

Vattenfall's Climate Map

Brussels 2008-03-03 Lars G. Josefsson, President & CEO Vattenfall AB

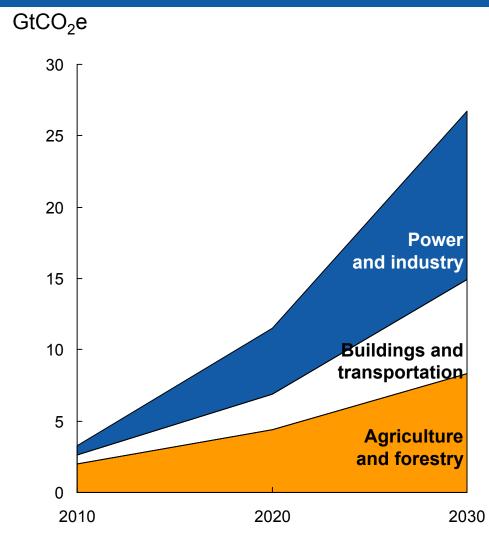
Stabilization is possible at limited costs – markets can supply

All sectors and regions will have to contribute to emissions reductions global cooperation is key to the low carbon economy

e, 2030	Regions						
Sector	US + Canada	OECD Europe	Eastern Europe (incl. Russia)	Other Industrial*	China	Rest of world**	Total
Power	1.3	0.8	0.3	0.7	1.7	1.0	5.9
Industrial	0.8	0.6	0.7	0.8	1.5	1.5	6.0
Transportation	1.2	0.5	0.1	0.4	0.3	0.4	2.8
Buildings	0.8	0.5	0.4	0.5	0.7	0.8	3.7
Forestry	0.2	0	0	0	0	6.5	6.7
Agriculture	0.2	0.1	0.1	0.1	0.3	0.8	1.5
Total	4.4	2.5	1.6	2.5	4.6	11.1	26.7

* Australia, New Zealand, Japan, Singapore, South Korea, Taiwan, UAE, Saudi Arabia, Qatar, Oman, Kuwait, Israel, Bahrain, Mexico ** Africa, South and Central America excl. Mexico, Asia excl. China and countries included in "Other industrialized" (see previous note)

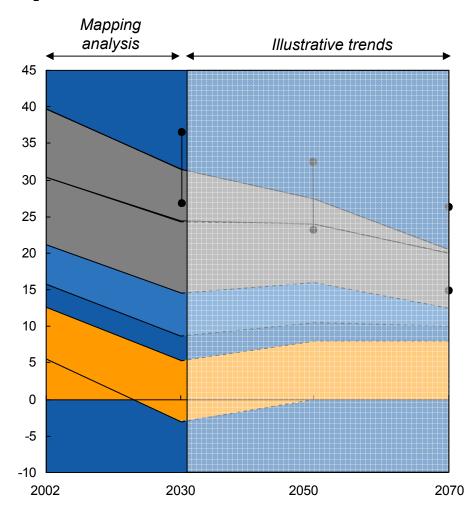
Split of opportunities according to abatement cost


GtCO₂e, 2030

	Regions							
Abatement cost EUR/t CO ₂ e	US + Canada	OECD Europe	Other Industrial*	Eastern Europe (incl. Russia)	China	Rest of World**	Total	
≤0	1.5	1.1	1.0	0.7	1.0	1.8	7.1	
0–20	1.2	0.5	0.5	0.3	1.2	3.4	7.1	
20–40	1.6	0.9	1.1	0.6	2.4	5.9	12.5	
Total	4.3	2.5	2.6	1.6	4.6	11.1	26.7	

- ~50% of negative cost opportunities are in
 - industrialized world (buildings, transportation)
- ~40 % of 20–40 EUR/ton opportunities are in Rest of the World, largely driven by forestry opportunities

* Australia, New Zealand, Japan, Singapore, South Korea, Taiwan, UAE, Saudi Arabia, Qatar, Oman, Kuwait, Israel, Bahrain, Mexico ** Africa, South and Central America excl. Mexico, Asia excl. China and countries included in "Other industrialized" (see previous note)


Development of abatement potential over time

- Smallest relative potential in 2010, largest 2030
- Lead-time driven by stock turnover and technological development
- Annual growth rate 20% in 2010–20 and 10% in 2020–30
- 20–25% of total potential from 2010 to 2030
- Lead time driven by stock turnover
- Annual growth rate 15% in 2010–20 and 10% in 2020–2030
- Large initial potential from forestry no stock turnover required
- Low growth rate, in particular in agriculture
- Annual growth rate of 6-8% in 2010–30

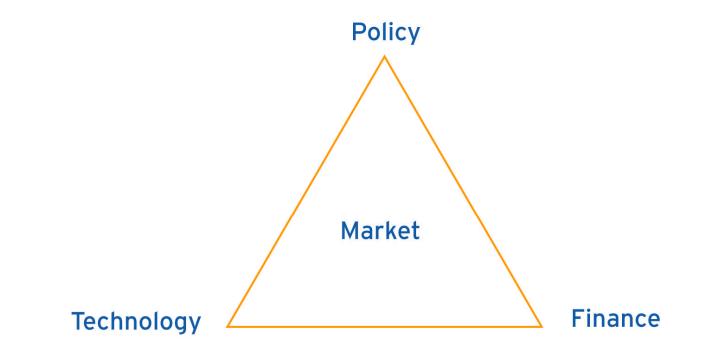
Possible long-term development of emissions per sector – illustrative trends

GtCO₂e per year

Emissions to maintain 450 ppm CO₂, Gt CO₂e

Potential long term trends

- **Power: Zero;** long term if all fossil fuel plants are equipped with CCS
- Industry: stable; reduction at large emitters (e.g., via CCS) balanced by new, small emitters
- **Transport: stable/decreasing;** more bio fuels, hybrids and plug-ins balance increased transportation need
- **Buildings: stable;** efficiency improvements balance population growth, further reduction through electrification
- Agriculture/Waste: stable; improvements in carbon efficiency balance population increase
 - **Forestry: zero;** deforestation and forestation reaches equilibrium


Conclusions

- •Emissions can be reduced substantially
- •The abatement potential is well distributed over sectors and regions
- Global cooperation needed to realize potentials
- •Price signals are of crucial importance
- •"Lubricating measures" needed in some sectors
- Total cost limited
- Speed up learning curves

Implementation - Leadership is key

