OUR PRODUCT RANGE CONSTRUCTION WITH CLT

BIM ONLINE PORTAL

SOLID TIMBER CONSTRUCTION

WOOD CONNECTORS

CONSTRUCTIVE FASTENING

SPECIAL COMPONENTS

SOLID TIMBER CONSTRUCTION

Product finder	$4-5$
Eurotec BIM online portal	$6-7$
CLT Basics	$8-11$
Wood connectors	$12-63$
Constructive fastening	$64-125$
Furrher products	$126-169$
Special components	$170-174$

PRODUCT FINDER

	Sill plate	Wall-Concrete	Wall-Wall	Beam	Wall-Ceiling
Wood connectors					
CLT system inside corner	x	x	\checkmark	x	\checkmark
CLT system angle	x	x	\checkmark	x	\checkmark
Shearing angle	x	\checkmark	\checkmark	x	\checkmark
HB flat shearing angle	x	\checkmark	x	x	x
HH flat shearing angle	x	x	x	x	x
Shearing plate	x	\checkmark	\checkmark	x	x
Tension strap HB60/70	\checkmark	\checkmark	x	x	x
Tension strap HH60/70	x	x	\checkmark	x	\checkmark
Shear wall connector	x	x	\checkmark	x	x
Assembly connector	x	x	\checkmark	x	x
Magnus hook connector	x	x	x	\checkmark	x
T-profile	x	x	x	\checkmark	x
Constructive fastening					
Rock concrete screw	\checkmark	\checkmark	x	x	x
KonstruX fully threaded screw	x	x	\checkmark	\checkmark	\checkmark
Angle-bracket screw	x	\checkmark	\checkmark	x	\checkmark
Panelwwistec	x	x	\checkmark	\checkmark	\checkmark
SawTec	x	x	\checkmark	\checkmark	\checkmark
Topduo	x	x	x	x	x

Furher products

Lifting anchor, ball supporting bolt	x	x	x	x	x
IdeeFix	x	\checkmark	x	\checkmark	\checkmark
SonoTec sound insulation cork	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Bolt anchor	\checkmark	x	x	x	x
Silent EPDM decoupling profile	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ecktec	x	x	x	x	x

\checkmark Usable
X Not Usable
- Irrelevant

Ceiling-Ceiling	Wall-Floor	Roof	Stairs	Insulation	Handling	Page
x	\checkmark	-	-	-	-	14-17
x	\checkmark	-	-	-	-	18-20
x	\checkmark	-	-	-	-	22-25
x	x	-	-	-	-	26-27
x	\checkmark	-	-	-	-	26-27
x	x	-	-	-	-	28-31
x	x	-	-	-	-	32-33
x	\checkmark	-	-	-	-	34-35
x	x	-	-	-	-	36-37
x	x	-	-	-	\checkmark	38-39
x	x	-	-	-	-	40-59
x	x	-	-	-	-	60-61

x	x	x	x	x	-	66-71
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	72-97
\checkmark	\checkmark	x	x	x	-	98-99
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	100-115
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	116-119
x	x	x	x	\checkmark	-	120-125
x	x	x	x	x	\checkmark	128-139
x	\checkmark	x	x	x	-	140-147
\checkmark	\checkmark	\checkmark	x	x	-	150-161
x	x	x	x	x	-	162-165
\checkmark	\checkmark	x	\checkmark	x	-	166-167
x	x	x	x	x	x	168-169

OUR EUROTEC BIM-ONLINEPORTAL ALL DATA AT ONE SIGHT

THE EUROTEC BIM PORTAL FOR YOUR CONSTRUCTION PLANNING!

Building information modelling (BIM) has become an indispensable part of modern planning. On our userfriendly plafform, you will find product specifications as BIM-enabled data for use in your construction project. Some of the versatile file formats include 3D/CAD objects, DWG and PDF files, along with notes about our ETA certifications.

CLT (Cross Laminated Timber) panels consist of several layers of wooden boards stacked crosswise (typically at an angle of 90 degrees). They are glued together on their broad faces and sometimes also on the narrow faces.

A cross-section of a CLT element has at least three bonded sheet layers arranged in an alternating way and orthogonal to the adjacent layers. In special configurations, successive layers can be arranged in the same direction, creating a double layer (for example, double longitudinal layers on the outer surfaces and/or additional double layers at the core of the panel) to achieve specific structural capacities.

CLT products will typically be manufactured with an odd number of layers. Gluing three to seven layers together is common. The thickness of the individual layers of wood can vary from 16 mm to 51 mm , while the width can vary from about 60 mm to 240 mm .

The panel sizes vary depending on the manufacturer. Typical widths are $0.6 \mathrm{~m}, 1.2 \mathrm{~m}, 2.4 \mathrm{~m}$, and 3 m . The length can be up to 18 m . In special cases, the thickness can be up to 500 mm . Typical thicknesses are between 60 and 300 mm , however.
(Transport regulations may limit the CLT panel sizes).
The timber in the outer layers of the CLT panels that are used as walls are aligned up and down, parallel to the gravity loads, to maximise the vertical loading capacity of the wall. Similarly, in floor and roof systems, the outer layers run parallel to the main tension direction.

ADVANTAGES OF BUIILDING WITH CLT

- CLT allows screw connection in any direction, irrespective of the grain direction, as the layering of the boards means that no grain direction has to be observed.

Reduced construction time due to prefabrication of the elements
Enables almost film-free construction due to the diffusion-open properties of the CLT elements.

CLT has both sound and heat insulating properties.

- A wide range of architectural design options.
- All components of a house (walls, ceilings, and roof) can be made of CIT.
- Lower weight compared to concrete and bricks
- No construction waste when demolishing buildings. CLT is completely ecologically recyclable.

PRODUCTION OF CLT

The boards are sorted after the soffwood boards have gone through a drying process (more than 48 hours). Growth deviations in the wood that would reduce the strength, or are simply unsightly, are marked. The sections that have such defects are cut out.

The boards of different lengths are joined together to create an almost endless strand of wooden boards, which is necessary for CLT production. This is done by means of finger joints. The resulting boards are then planed to eliminate thickness deviations between the boards.

The manufactured boards are applied manually or mechanically to form a layer. Adhesive is applied to the resulting surface after a layer has been completely applied. The most common method here is a glue curtain through which the layer is passed.

Another layer is placed on top of the glued layer. This is aligned so that the fibre direction of the new layer runs at an angle of 90° to the fibres of the board below. Glue is then applied to the new layer also. This process is repeated until the desired number of board layers is achieved.

Once the desired number of layers is reached, the glued lamellas are pressed. The size of the press bed determines the possible panel size. As soon as the adhesive has cured, the CLT panel is reworked to remove any dirt, adhesive residues, or protruding wood. This is done by planing and grinding the CLT panel.

BUILDING WITH CROSS LAMINATED TIMBER

The construction phases of modern timber construction methods, such as building with cross laminated fimber, are very different from that of the conventional solid construction method. Whereas with solid construction most of the work takes place on the building site, with timber construction much of the work has now shifted from the construction site to the factory.

The keyword here is prefabrication. All wall, ceiling, and roof elements are delivered to the construction site not as unprocessed CLT panels and thus raw material. They are prepared in special joinery centres for later assembly.

In the CNC joinery centres, the manufactured CLT panels are further processed into individual elements. All necessary work that is required on the construction site for fasteners of all kinds and/or for geometries that would be too difficult to realise on the construction site, is carried out here. Common joinery work carried out in the factory includes:

- Windows and door cut-outs
- Angled cuts in the gable area
- Cuts and notches
- Milling of folding systems (for example: joint deck board fold, fier fold)
- Special geometries for special connectors

Such complex processing steps, especially through the use of computer-controlled processing machines, increase the amount of upfront planning work. Positions for connectors and installations within the house (electrical/water) must be able to be provided with the necessary information. Furthermore, care is taken to ensure that all components are matched to each other to the millimetre in the final assembly, so that there are no problems in the final assembly.

A NEW ERA OF WOOD CONNECTORS

We offer a solution for every load case occurring in solid wood and timber frame construction in the form of brackets, straps, hook connectors or beam girders. We are currently working flat out on unique solutions for system connectors. This solution is a system of all kinds of connections in modular and system design. Our optimised screw patterns enable absorption of high tensile and shearing forces, so fewer connectors are required.

Versatility is very important to us. One of our new products is the CLT system inside corner. A strong connection of wall nodes is achieved when it is used in combination. The inside corner is also an unbeatable solution for timber-timber connections at corner points.

CLT SYSTEM INSIDE CORNER

Developed for modern timber construction

CLT system inside corner

Art. no.	Dimensions $[\mathrm{mm}]^{\text {a }}$	Material	Material thickness $[\mathrm{mm}]$	PU
954188 a) Lenght \times Width \times Height	$120 \times 120 \times 120$	S250 Galvanised	4	1

The CLT system inside corner can be used to connect internal corners with each other. It can be used both individually and in combination with several CLT system inside corners. A hexagon head screw can be led from one element, through the wall, to the other element, for this purpose. If this is applied in all possible directions, a stable construction for wall nodes is created. This can also be achieved with the combination of our IdeeFix. Although the individual corners are not directly connected to each other, it results in a very secure connection between the wall and ceiling or floor elements.

ADVANTAGES

- Combining several CLT system inside corners, an effective connection of different elements with each other is created
- Fewer connectors required
- Versatile applications

With KonstruX and Hexagon head screw M16

With KonstruX and IdeeFix

CLT SYSTEM INSIDE CORNER - COMBINATION

The CLT system inside corner is an extremely combinable connector. Wall nodes can be connected in a number of different ways.

A construction can be extremely strengthened by connecting several interior corners of a system through the wood. This can be achieved with our Ideefix or also hexagonal bolts, for example. There are numerous possibilities.

In contrast to using the connector individually (see examples), the most force can be absorbed and distributed when the internal corners of the system are positioned opposite each other.

Common combination example

Gurotec
 Wood connector

POSSIBLE APPLICATIONS

WALL JUNCTION - VIIIBLE SOLID WOOD CEILING

CANTILEVER STRUCTURES

CLT SYSTEM ANGLE

Developed for modern timber construction

CLT system angle

Art. no.	Dimensions [mm] $]^{\text {a }}$	Material	Material thickness $[\mathrm{mm}]$	PU
954180	$230 \times 80 \times 120$	S250 Galvanised	4	1

a) Lenght x Width x Height

The CLT system angle is ideally suited for use in solid timber construction. The scope of application is limited to the use of CLT (cross-laminated timber). The solid construction allows it to transmit major forces. In contrast to the standard angles (on the following pages), the system angle CLT can be combined with our IdeeFix. This makes it possible to construct complex connections.

ADVANTAGES

- High load bearing capacity
- Versatile applications
- Compatible with SK04

INSTRUCTIONS FOR USE
Either $5 \times 60 \mathrm{~mm}$ angle fitting screws in combination with the KonstruX SK $10 \times 125 \mathrm{~mm}$, are used for the CLT system angle. When used with Ideefix, only 4 IdeeFix and 4 KonstruX are needed - see application picture. It is also possible to combine Ideefix and screw bolts through a wall. The load values of the ETA must be observed.
For further information, please contact our technical department technik@eurotec.team.

CLT SYSTEM ANGLE - STATIC VALUES

Slip Modulus				
$\mathrm{K}_{1, \text { ser }}$	$\mathrm{K}_{23, \text { ser }}$	$\mathrm{K}_{4, \text { esr }}$	$\mathrm{K}_{5, \text { eer }}$	
$\mathrm{F}_{\mathrm{l}, \text { Rk }} / 6 \mathrm{~mm}$	$\mathrm{~F}_{23, \mathrm{Rk}} / 2 \mathrm{~mm}$	$\mathrm{~F}_{4, \text { Rkk }} / 2,5 \mathrm{~mm}$	$\mathrm{~F}_{1, \mathrm{Rk}} / 2,5 \mathrm{~mm}$	

Lood direction F1; F2/F3; F4; F5												
Veritial leg connection Angle-bracket screw $05 \mathrm{~mm} \mathrm{n}=43$	5,0x 40	5,0x50	5,0×60	5,0 $\times 70$	5,0x 40	5,0x50	5,0×60	5,0x70	5,0 $\times 40$	5,0 50	5,0 60	5,0×70
Horizontal leg comnection	$\begin{gathered} \text { Angle brackesestrem } \\ 5,0 \times 40 \\ \mathrm{n}=43 \end{gathered}$	$\begin{gathered} \text { ngebebrackestser } \\ 5,0 \times 50 \\ n=43 \end{gathered}$	$\begin{aligned} & \text { gelebracketsan } \\ & 5,0 \times 60 \\ & \mathrm{n}=43 \end{aligned}$	$\begin{gathered} \text { ngebercatestreem } \\ 5,0 \times 700 \\ n=43 \end{gathered}$	$\underset{\substack{\text { Ideefix } \\ n=3 \\ \hline}}{ }$	$\underset{\substack{\text { Idefix } \\ n=3 \\ \hline}}{ }$	$\underset{\substack{\text { Ideefix } \\ n=3 \\ \hline}}{ }$	$\underset{\substack{\text { Idefix } \\ n=3 \\ \hline}}{ }$	$\begin{gathered} \text { M16 } 6.8 \\ n=3 \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { M168.8 } \\ \mathrm{n}=3 \end{array} \end{gathered}$	$\begin{gathered} \text { M168.8 } \\ \mathrm{n}=3 \end{gathered}$	$\begin{gathered} M 168.8 \\ \mathrm{n}=3 \end{gathered}$
Konstrux $10 \times 125 \mathrm{n}=4$												
$F_{1, \text { Rk pul }}$	55,8 kN	62,4kN	69, 1 kN	75,7 kN	43, lN	$43,1 \mathrm{kN}$	43, kN	43, 1 kN	43, lN	43,1 kN	43, 1 kN	43, kN
F23, 裸	49, 1 kV	58,3kN	62, l kN	66, kN	49, 1 kN	55,9 kN	55,9 kN	55,9 kV	49, 1 kN	58,3kN	$\begin{aligned} & 62,1 \mathrm{kN} \\ & 60,5 \mathrm{kN} \end{aligned}$	$66,0 \mathrm{kN}$ 60,5 kN
F_{4}, Rk	54kV				54kV				54kV			
F5, Rkpull \perp on CII	6,9 kN											

Lood direction F1; F2/F3; F4; F5												
Veritial leg comnection	$\underset{\substack{\text { Ideefix } \\ \mathrm{n}=3 \\ \hline 0}}{\substack{0}}$			$\begin{gathered} \text { Ideefix } 840 \\ n=2 \end{gathered}$			$\underset{\substack{M 168.8 \\ n=3}}{ }$			$\underset{\substack{M 168.8 \\ \mathrm{n}=2}}{ }$		
Konstrux 10x $125 \mathrm{n}=4$												
Horizontal leg comection	Angle-bracketescrew $05,0 ; n=43$	$\underset{\substack{\text { Ideefix } \varnothing \\ n=3}}{ }$	$\underset{\substack{M 168.8 \\ n=3}}{\substack{\text { n }}}$	Anglebracket screw $05,0 ; n=43$	$\begin{gathered} \text { Ideefix } \varnothing 40 \\ n=3 \\ \hline \end{gathered}$	$\underset{\substack{\text { M16 } \\ \mathrm{n}=2 \\ \hline}}{ }$	Angle-bracket screw $05,0 ; n=43$	$\underset{\substack{\text { Ideefix } 840 \\ n=3}}{\substack{\text { and }}}$	$\underset{\substack{\text { M16 } \\ \mathrm{n}=3}}{ }$	Angle-bracket screw 05,$0 ; n=43$	$\underset{\substack{\text { Ideefix } \varnothing 40 \\ n=3}}{ }$	$\begin{gathered} M 168.8 \\ \mathrm{n}=3 \end{gathered}$
F_{1}, Rk pull		43, 1 kN			29,9 kN			43, 1 kN			43, 1 kN	
F23, Rk		26, lN			22, 3 kN			$\begin{aligned} & 34,4 \mathrm{kN} \\ & 29,3 \mathrm{kN} \end{aligned}$			$\begin{aligned} & 29,6 \mathrm{kN} \\ & 25,2 \mathrm{kN} \end{aligned}$	
F4, Rk		54,0 kV			54, kN			54,0 kN			54,0 kN	
F5, Rk poll \perp on ClI		4,8 kN										

$F 4$, Rk $=54 \mathrm{kN}$ Druck \perp on CLI ; independent of connections.
For connections with M16 8.8 if bolt head or nut is not located on CLI: Washer with $\mathrm{d}_{0}=40 \mathrm{~mm}$.
$\rho_{\mathrm{k}}=350 \mathrm{~kg} / \mathrm{m}^{3}$ conservative for some approved cross-laminated timber, increase of load-bearing capacities according to $E A A-19 / 0020$ with $\mathrm{kdens}=\left(\frac{\rho \mathrm{k}}{\left.350 \mathrm{~kg} / \mathrm{m}^{3}\right)}\right)$ possible.
he construction of the supporting structure should prevent the twisting of the cross laminated timber components.
In case of connection with CLI system angles on both sides, the values of this table may be applied for each of the two angles. The values for $F 23$, Rk only change for the connection with M16 screws.
In other words, the values in italics must be used if CLI system brackets are fitted to the top and bottom of the ceiling.

Gurotec
 Wood connector

EXAMPLES OF COMBINATIONS

KonstruX + Angle-bracket screw $5 \times 60 \mathrm{~mm}$
KonstruX + IdeeFix

KonstruX + Angle-bracket screw + IdeeFix

SHEARING ANGLE

Connector developed for modern timber construction to absorb shear forces

Shearing angle

Suitable for use with: Bolt anchor, Rock concrete screw, Angle-bracket screw Paneltwistec, Anchor nails, Pressure plate

Art. no.	Dimensions $[\mathrm{mm}]$	Material	Material thickness $[\mathrm{mm}]$	PU
954112	230×120	S250 Galvanised	3	1

ADVANTAGES Suitable for use with:

- Many different fields of application
- For installation in timber-concrete, as well as timber-timber connections
- Very high shear load-bearing capacity
- Fewer connectors required
- In combination with the pressure plate, the following tensile forces can be absorbed when fixing in concrete.

INSTRUCTIONS FOR USE

6 slanted screw connection holes and 41 holes, which are optionally intended for angle-bracket screws (ABSs) or anchor nails, are provided for anchoring in wood.
Depending on the application, we have provided two additional partial utilisations of the fixing holes which are also available as static-type calculations. Anchoring in concrete is carried out using the holes ($\varnothing 14 \mathrm{~mm})$ provided for this purpose with our rock concrete screw $\varnothing 12,5 \mathrm{~mm}$ or bolt anchors $\varnothing 12 \mathrm{~mm}$.

Art. no.	Dimensions [mm]	Material	Material thickness [mm]	PU
954111	230×70	S235 Gavanised	12	1

Shearing angle for fixing a wall to the concrete foundation.

SHEARING ANGLE - STATIC FULL UTILISATION VALUES

Lood direction F2/F3						
Connection Timber-Timber						
Vertical leg connection	Anchor nails $04 \times 40 \mathrm{n}=41$	Anchor nails $¢ 4 \times 50 \mathrm{n}=41$	Anchor nails $04 \times 60 \mathrm{n}=41$	Angle-bracket screw $05 \times 40 \mathrm{n}=41$	Angle-bracket screw $05 \times 50 \mathrm{n}=41$	Angle-bracket screw $05 \times 60 n=41$
	Paneltwistec CH $05 \times 120 \mathrm{n}=6$					
Horizontal leg connection	Anchor nails $04 \times 40 \mathrm{n}=41$	Anchor nails $04 \times 50 \mathrm{n}=41$	Anchor nails $04 \times 60 \mathrm{n}=41$	Angle-bracket screw $05 \times 40 \mathrm{n}=41$	Angle-bracket screw $05 \times 50 \mathrm{n}=41$	Angle-bracket screw $05 \times 60 n=41$
	Paneltwistec $\mathrm{CH} 05 \times 120 \mathrm{n}=6$					
Char. Shear carrying capacity [kN]	37,3	44,3	47,9	41,9	44,6	47,6
Char. Shear carrying capacity [KN] (Use of Sonotec SK04)	28,9	34,4	37,4	32,7	34,8	37,1

The load-bearing capacities were determined based on ETA-19/0020 Characteristic load-bearing capacity in kN , wood strength class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. Gross density.
The minimum distances between the connectors and the edges according to EC5 must be complied with.

Lood direction F2/F3												
Connection Timber-Concrete												
Vertical leg connection	$\begin{aligned} & \text { Anchor nails } \\ & 04 \times 40 \mathrm{n}=41 \end{aligned}$	Anchor noils $04 \times 40 n=41$	Anchor nails $04 \times 50 \mathrm{n}=41$	$\begin{aligned} & \text { Anchor nails } \\ & 04 \times 50 \mathrm{n}=41 \end{aligned}$	Anchor nails $04 \times 60 \mathrm{n}=41$	$\begin{aligned} & \text { Anchor nails } \\ & 04 \times 60 \mathrm{n}=41 \end{aligned}$	Angle-bracket screw $05 \times 40 n=41$	Angle-bracket screw $05 \times 40 n=41$	Angle-bracket screw $05 \times 50 \mathrm{n}=41$	Angle-bracket screw $05 \times 50 \mathrm{n}=41$	Angle-bracket screw $05 \times 60 n=41$	Angle-bracket screw $05 \times 60 n=41$
	Paneltwistec $\mathrm{CH} 05 \times 120 \mathrm{n}=6$											
Horizontal leg connection	Rock concrete screws $012,5 \times 120 \mathrm{n}=2$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 n=2 \end{gathered}$	Rock concrete screws $012,5 \times 120 \mathrm{n}=2$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 n=2 \end{gathered}$	$\begin{gathered} \text { Rock } \\ \text { concrete screws } \\ 012,5 \times 120 \mathrm{n}=2 \end{gathered}$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 110 n=2 \end{aligned}$	Rock concrete screws $012,5 \times 120 \mathrm{n}=2$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 n=2 \end{gathered}$	Rock concrete screws $012,5 \times 120 \mathrm{n}=2$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 n=2 \end{gathered}$	Rock concrete screws $012,5 \times 120 \mathrm{n}=2$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 110 \mathrm{n}=2 \end{aligned}$
	incl. pressure plate 230×70											
Char. Shear carrying capacity [kN]	37,3	23,4	44,3	23,4	47,9	23,4	41,9	23,4	44,6	23,4	47,6	23,4

The lood-bearing capacities were determined based on ETA-19/0020. Characterisic load-bearing capacity in kN, wood strength class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. Gross density.
The minimum distances between the connectors and the edges according to EC5 must be complied with.
Please note: Verity the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBuuO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

PARTIAL UTIIISATION 1

Lood direction F2/F3						
Connection Timber-Iimber						
Vericial leg connection	Anclor nils $84 \times 40 \mathrm{n}=34$	Anchor nails $04 \times 50 \mathrm{n}=34$	Anchor nails $04 \times 60 \mathrm{n}=34$	Angle-bracket screw $05 \times 40 n=34$	Angle-bracket screw $05 \times 50 n=34$	Angle-bracket screw $05 x 60 \mathrm{n}=34$
Paneltwistec CH $05 \times 120 \mathrm{n}=6$						
Horizontal leg comection	Anchor nails $84 \times 40 \mathrm{n}=34$	Anchor nails $04 \times 50 \mathrm{n}=34$	Anchor nails $04 \times 60 \mathrm{n}=34$	Angle-bracket screw $05 \times 40 n=34$	Angle-bracket screw $05 \times 50 n=34$	Angle-bracket screw $05 \times 60 \mathrm{n}=34$
Panelwistec CH $05 \times 120 \mathrm{n}=6$						
Chor:Shearing capaity [KN]	29,1	34,6	37,4	32,7	34,9	37,2
Char:-shearing capacity [k]) (Use Sonotes SS04)	22,6	26,9	29,4	25,5	27,2	29

Lood direction F2/F3												
Connection Timber-Iimber												
Verical leg connection	$\begin{gathered} \text { Anchor nails } \\ 04 \times 40 \\ n=34 \end{gathered}$	Anchor nails 04×40 n=34	$\begin{gathered} \text { Anchor nails } \\ 04 \times 50 \\ n=34 \end{gathered}$	$\begin{aligned} & \text { Anthor nils } \\ & 04 \times 50 \\ & n=34 \end{aligned}$	$\begin{aligned} & \text { Anthor nils } \\ & 04 \times 60 \\ & n=34 \end{aligned}$	Anchor nails 04×60 n=34	Angle-bracker screw 05×40 $n=34$	$\begin{gathered} \text { Angleb-bracket } \\ \text { screw } \\ 05 \times 40 \\ n=34 \end{gathered}$	$\begin{gathered} \text { Angle-hracket } \\ \text { strew } \\ 05 \times 50 \\ n=34 \end{gathered}$	$\begin{gathered} \text { Angle-bracket } \\ \text { strew } \\ 05 \times 50 \\ n=34 \end{gathered}$	Angle-bracker screw 05×60 $n=34$	
Paneltwistec CH $05 \times 120 \mathrm{n}=6$												
Horizontal leg comenecion	Rock concrete $012,5 \times 120$ $012,5 \times 120$ n=2	$\begin{aligned} & \text { Bolt anthor } \\ & 012 \times \times 10 \\ & n=2 \end{aligned}$	Rock concrete screw $012,5 \times 120$ n=2	$\begin{aligned} & \text { Bolt anthor } \\ & 012 \times 10 \\ & n=2 \end{aligned}$	Rock concrete screw $012,5 \times 120$ n=2	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times \times 10 \\ & n=2 \end{aligned}$	Rock concrete -125 $012,5 \times 12$ $\mathrm{n}=2$	$\begin{aligned} & \text { Bot anchor } \\ & 012 \times 110 \\ & n=2 \end{aligned}$	Rock concrete screw $012,5 \times 120$ $\mathrm{n}=2$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \\ \mathrm{n}=2 \end{gathered}$	Rock concrete 012,5 $012,5 \times 120$ $\mathrm{n}=2$	$\begin{aligned} & \text { Bolt anthor } \\ & 012 \times \times 10 \\ & n=2 \end{aligned}$
inc. pressure plate $230 \times 70 \mathrm{~mm}$												
Char:shearing capacity [kN]	29,1	23,4	34,6	23,4	37,4	23,4	32,	23,4	34,9	23,4	37,2	23,4

The load-bearing capactities were determined based on ETA-19/O020. Characterisic load-bearing capacity in KN , wood strenght class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. Gross density. The minimum distances between the connectors and the edges according to E(5 must be complied with.
Please note: Verify the assumptions made. The stated values, und type and number of joining devices are based on preiminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance wihh the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Note

All values given refer to the drilling pattern shown. We recommend using this as it has a considerably higher shear carrying capacity compared to the rear holes.

PARTIAL UTILISATION 2

Lood direction F2/F3												
Connection Timber-Iimber												
Verital leg connection			Anctor noils $94 x$	40n=29 Anchor	hor nails $9 \times 50 \mathrm{n}=29$	Anchor nails	$1504 \times 60 \mathrm{n}=29$	Angle-brackele $05 \times 40 n=$		$\begin{gathered} \text { Angle-bracket screw } \\ 05 \times 50 \mathrm{n}=29 \end{gathered}$		$\begin{aligned} & \text { bracketescrew } \\ & \times 60 n=29 \end{aligned}$
			Panelwistec CH $05 \times 120 \mathrm{n}=4$									
Horizontal leg comnection			Anctor noils 94	40n=29 Anchor	hor nails $9 \times 50 \mathrm{n}=29$	Anctor nails	$1504 \times 60 \mathrm{n}=29$	$\begin{aligned} & \text { Angle-hrackenten } \\ & 05 \times 40 \text { n } \end{aligned}$		$\begin{gathered} \text { Angle-bracket screw } \\ 05 \times 50 n=29 \end{gathered}$		$\begin{aligned} & \text { bracketescrew } \\ & \times 60 n=29 \end{aligned}$
			Panelwisitec CH05x 120n=4									
Char. Shear carrying capaity [KN]			23,6		28,0	30,4		26,5		28,3		30,1
Char. Shear carrying capaciy [KN] (Use of Sonotes SK04)			18,3		21,8	23,9		20,7		22,1	23,5	
Lood direction F2/F3												
Comenetion Timber-Conceite												
Verical leg connection	$\begin{gathered} \text { Anchor nails } \\ 04 \times 40 \mathrm{n}=29 \end{gathered}$	$\begin{gathered} \text { Anchor nails } \\ 04 \times 40 \mathrm{n}=29 \end{gathered}$	$\begin{gathered} \text { Anchor nails } \\ 04 \times 50 \mathrm{n}=29 \end{gathered}$	$\begin{gathered} \text { Anchor nails } \\ 04 \times 50 \mathrm{n}=29 \end{gathered}$	$\begin{aligned} & \text { Anchor nails } \\ & 04 \times 60 \mathrm{n}=29 \end{aligned}$	Anchor nails $4 \times 60 \mathrm{n}=29$	$\begin{aligned} & \text { Angle-bracket } \\ & \text { screw } \\ & 05 \times 40 \mathrm{n}=29 \end{aligned}$	$\begin{gathered} \text { Angle-bracket } \\ \text { strew } \\ 05 \times 40 \mathrm{n}=29 \end{gathered}$	Angle-bracket screw $05 \times 50 n=29$	$\begin{gathered} \text { Angle-bracket } \\ \text { screw } \\ 05 \times 50 \mathrm{n}=29 \end{gathered}$	Angle-bracket screw $05 \times 60 n=29$	$\begin{gathered} \text { Angle-hracket } \\ \text { screw } \\ 05 \times 60 \mathrm{n}=29 \end{gathered}$
	Panelwistec $\mathrm{CH} 05 \times 120 \mathrm{n}=4$											
Horiontal leg comnection	$\begin{gathered} \text { Rock } \\ \text { concefe screws } \\ 012,5 \times 120 \mathrm{n}=2 \end{gathered}$	$\begin{aligned} & \text { Boltanthor } \\ & 012 \times 110 n=2 \end{aligned}$	Rock concret screws 012,5 $\times 120 \mathrm{n}=2$	$\begin{aligned} & \text { Boltantior } \\ & 012 \times 110 \mathrm{n}=2 \end{aligned}$	$\begin{gathered} \text { Rock } \\ 2 \begin{array}{c} \text { concete screves } \\ \otimes 12,5 \times 120 \mathrm{n}=2 \end{array} \end{gathered}$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 110 \mathrm{n}=2 \end{aligned}$	Rock conceies screws $0125 \times 120 \mathrm{n}=2$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 n=2 \end{gathered}$	Rock concrete screws $012,5 \times 120 \mathrm{n}=2$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \mathrm{n}=2 \end{gathered}$	Rock concrete screws $012,5 \times 120 \mathrm{n}=2$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 110 \mathrm{n}=2 \end{gathered}$
	ind. pressure plate 330×70											
Char:Shering copacity [kN]	23,6	19,3	28,0	22,8	30,4	23,4	26,5	23,4	28,3	23,4	30,1	23,4

The load-bearing capacities were determined based on ETA-19/0020. Characterisic load-bearing capacity in KN, wood strength class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. Gross density.
The minimum distances between the connectors and the edges according to EC 5 must be complied with.
Please note: Verity the assumptions made. The stated values, and type and number of joining devices are bassed on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

HB/HH FLAT SHEARING ANGLE

ADVANTAGES

- For assembly on concrete
- Very high shear load-bearing capacity
- Fewer connectors required
- In combination with the pressure plate, the following tensile forces can be absorbed when fixing in concrete.

Art no.	Dimensions [mm] ${ }^{\text {a/ }}$	Material	Material thickness [mm]	PU
954087	$230 \times 100 \times 70$	5250 Gavanised	3	1
Pressure plate				
954111	230×68	S233 Gavanised	12	1
a) Length x				

The HB flat shearing angle (wood-concrete) is a bracket connector for absorbing shearing forces that was specifically developed for modern timber construction. Its low height means it is ideally suited to use in timber frame construction. The pressure plate allows the occurring loads to be optimally conducted into the concrete.

Art. no.	Dimensions $[\mathrm{mm}]^{\text {a) }}$	Material	Material thickness $[\mathrm{mm}]$	PU
954088	230×70	$S 250$ Galvanised	3	1

a) Length x Width

The HH flat shearing angle (wood-wood) is a bracket connector for absorbing shearing forces that was specifically developed for modern timber construction. Its low height means it is ideally suited to use in timber frame construction.

ADVANTAGES

- For assembly on timber
- Very high shear load-bearing capacity
- Fewer connectors required
- Especially high tensile forces can be absorbed in combination with the KonstruX

HB FLAT SHEARING ANGLE - STATIC VALUES

The load-bearing capacities were determined based on ETA-19/O02O. Characterisicic load-bearing capacity in kN , wood strenght class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. Gross density. The minimum distances between the connectors and the edges according to EC5 must be complied with.
Attention: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

HH FLAT SHEARING ANGLE - STATIC VALUES

Lood direction F2/F3/F4	
Connection Wood-Wood	
Vericicl leg connection	Angle-bracket screw $05 \times 25 n=3$ Panelwistec CH 05×120 n $=12$
Horizontid leg comnection	Angle-bracketescrew $55 \times 25 \mathrm{n}=3$ Panelwisisec CH $05 \times 120 \mathrm{n}=12$
Char:shering capacity $\mathrm{F}_{23}[\mathrm{KN}]$	40,0
Char:-shearing capacity $F_{23}[\mathrm{KN}]$ (Use Sonotec SKO4)	36,0
Char: load.bearing capacity F4 [KN]	40,0
Char:- lood.beering cppacity $F_{23}[\mathrm{KN}]$ (Use Sonotec SKO4)	36,0

The lood-bearing capacities were determined based on ETA-19/0020. Characterisicic load-bearing capacity in KN , wood strength class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. Gross density. The minimum distances between the connectiors and the edges according to FC 5 must be complied with.
Attention: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary meassurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

SHEARING PLATE

Connector developed for modern timber construction to absorb shear forces

Shearing plate

Suitable for use with:
Paneltwistec CH $5 \times 120 \mathrm{~mm}$,
Rock concrete screw, Bolt anchor,
Anchor nails and
Angle-bracket screw

Art. no.	Dimensions $[\mathrm{mm}]$	Material	Material thickness $[\mathrm{mm}]$	PU
954113	230×240	S250 Galvanised	3	1

INSTRUCTIONS FOR USE
6 slanted screw connection holes and 41 holes each side, which are optionally intended for angle-bracket screws
(ABSs) or anchor nails, are provided for anchoring in wood. Depending on the application, we have provided two additional partial utilisations of the fixing holes which are also available as static-type calculations. Anchoring in concrete is carried out using the holes ($\varnothing 14 \mathrm{~mm}$) provided for this purpose with our Rock concrete screw $\varnothing 12,5 \mathrm{~mm}$ or bolt anchors $\varnothing 12 \mathrm{~mm}$.

ADVANTAGES

- Very high shear load-bearing capacity
- Many different fields of application
- For installation in wood-concrete, and wood-wood connections
- Fewer connectors required

Lood direction F2/3								
Timber/Timber	Fixing in the sole plate and solid timber ceiling							Steel
	Fixing in the sole plate and solid fimber ceiling							
	Anchor noils			Angle-bracket screw			Paneltwistec CH	5250
Dimensions [mm]	4×40	4×50	4×60	5×40	5×50	5×60	5×120	
Quantity (n)		41			41		6	
Char. shearing capacity [KN]	37,3	44,3	47,9	41,9	44,6	47,6	-	156

Load direction F2/3										
Timber / Concrete	Fixing in the sole plate							Fixing in the concrete ceiling		Steel
	Joining devices									
	Anchor noils			Angle-bracket screw			Paneltwistec CH	Rock concrete screws	Bolt anchor	5250
Dimensions [mm]	4×40	4×50	4×60	5×40	5×50	5×60	5×120	012,5	012	
Quantity (n)		41			41		6	2	2	
Char. shearing capacity [kN]	37,3	44,3	47,9	41,9	44,6	47,6	-	21,8	12,2	156

The lood-bearing capaciities were determined on the basis of ETA-19/0020. Characterisic load-bearing capacity in kN , wood strength class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. gross density.
The minimum distances between the connectors and the edges according to $E C 5$ must be complied with. Boundary bearing force according to $E\left(3: F_{b}, R_{k} 014 \mathrm{~mm}=93,75 \mathrm{kN}\right.$
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

| Art. no. | Dimensions | Material | PU |
| :--- | :--- | :--- | :--- | :--- |
| 200240 | $4,0 \times 40$ | Galvanised | 250 |
| 200241 | $4,0 \times 50$ | Galvanised | 250 |
| 200242 | $4,0 \times 60$ | Galvanised | 250 |

[^0]
PARTIAL UTIIISATION 1

			directio					
Timber/Timber	Fixing in the sole plate and solid timber ceiling							Steel
	Joining devices							
	Anchor nails			Angle-bracket screw			Paneltwistec CH	S250
Dimensions [mm]	4×40	4×50	4×60	5×40	5×50	5×60	5×120	
Quantity (n)		34			34		6	
Char. shearing capacity [KN]	29,1	34,6	37,4	32,7	34,9	37,2	-	156

				Lood	F2/3					
Timber / Concrete	Fixing in the sole plate							Fixing in the	te ceiling	Steel
	Joining devices									
	Anchor nails			Angle-bracket screw			Paneltwistec CH	Rock-concrete screws	Bolt anchor	S250
Dimensions [mm]	4×40	4×50	4×60	5×40	5×50	5×60	5×120	012,5	012	
Quantity (n)	34			34			6	2	2	
Char. shearing capacity [KN]	29,1	34,6	37,4	32,7	34,9	37,2	-	20,5	11,6	156

The lood-bearing capacities were determined on the basis of ETA-19/0020. Characteristic load-bearing capacity in kN , wood strength class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. gross density. The minimum edge distances for joining devices according to E(5 must be observed.

PARTIAL UTILISATION 2

Load direction F2/3								
Timber/Timber	Fixing in the sole plate and solid timber ceiling							Steel
	Joining devices							
	Anchor nails			Angle-bracket screw			Paneltwistec CH	5250
Dimensions [mm]	4×40	4×50	4×60	5×40	5×50	5×60	5×120	
Quantity (n)		29					4	
Char. shearing capacity [KN]	23,6	28,0	30,4	26,5	28,3	30,1	-	156

				oad dire						
Timber / Concrete	Fixing in the sole plate							Fixing in the concrete ceiling		Steel
	Joining devices									
	Anchor nails			Angle-bracket screw			Paneltwistec SK	Rock concrete screws	Bolt anchor	5250
Dimensions [mm)	4×40	4×50	4×60	5×40	5×50	5×60	5×120	012,5	012	
Quantity (n)	29			29			4	2	2	
Char. shearing capacity [kN]	23,6	28,0	30,4	26,5	28,3	30,1	-	14,4	11,2	156

The lood-bearing capacities were determined on the basis of EIA-19/0020. Characteristic lood-bearing capacity in kN , wood strength class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. gross density. The minimum edge distances for joining devices according to EC 5 must be observed.
Please note: Verity the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by outhorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

TENSION STRAP HB60/70

Connector developed for modern timber construction to absorb tensile- and shear forces

Tension strap HB60 / HB70

Art. no.	Dimensions [mm]	Material	Material thickness[mm]	PU
954095	506×60	S250 Gavavised	3	1
954097	506×70	S250 Gavanaised	3	1

ADVANTAGES

- Many different fields of application
- For installation in wood and concrete
- Very high shear load-bearing capacity
- Fewer connectors required

INSTRUCTIONS FOR USE

Anchoring in wood is carried out using $5 \times 120 \mathrm{~mm}$ countersunk-head screws at an angle of 45°. A non-positive connection is created between the screw head and draw shackle thanks to the speciically designed holes, which can also be used as screw guides.
The tension strap HB 70 also has 2 holes $(\varnothing 5 \mathrm{~mm})$ which are provided for a 90° screw connection. Anchoring in concrete is carried out using the holes ($\varnothing 14 \mathrm{~mm})$ provided for this purpose with our rock concrete screw or bolt anchors. Detailed installation instructions can be found in the corresponding product data sheets.

Loaddirection Fl														
Connection Timber-Concrete														
Wood side connection	Panelwwistec CH $05 \times 120 \mathrm{n}=9$				Anchor noils $84 \times 40 \mathrm{n}=6$				Anctor noils $84 \times 50 \mathrm{n}=6$				Anctor nili $54 \times 60 \mathrm{n}=6$	
Concrete side conection	Rock concrete screws $012,5 \times 120$ $\mathrm{n}=1$	$\begin{gathered} \text { Rock } \\ \text { concrete scews } \\ 012,5 \times 120 \\ n=2 \end{gathered}$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 110 \\ & n=1 \end{aligned}$	$\begin{aligned} & \text { Bolt anthor } \\ & 012 \times 10 \\ & n=2 \end{aligned}$	$\begin{gathered} \text { Rock } \\ \text { concretes sfews } \\ \emptyset 12,5 \times 120 \\ n=1 \end{gathered}$	$\begin{gathered} \text { Rock } \\ \text { concrete screws } \\ 012,5 \times 120 \\ n=2 \end{gathered}$	$\begin{aligned} & \text { Botit anchor } \\ & 012 \times \times 10 \\ & n=1 \end{aligned}$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times 10 \\ \mathrm{n}=2 \end{gathered}$	Rock concrete scevens $012,5 \times 120$ $\mathrm{n}=1$	$\begin{gathered} \text { Rock } \\ \text { concretes screws } \\ \emptyset 12,5 \times 120 \\ n=2 \end{gathered}$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 10 \\ & n=1 \end{aligned}$	$\begin{aligned} & \text { Bolt anchor } \\ & 0 \mid 12 \times 110 \\ & n=2 \end{aligned}$	$\begin{gathered} \text { Rock } \\ \text { concretes scews } \\ 012,5 \times 120 \\ n=1 \end{gathered}$	Rock concefe screws $012,5 \times 120$ $\mathrm{n}=2$
Char. Shear carrying capacity [KN]	20, 8^{*}	20,8*	12,6	20,8*	9,3	9,3	9,3	9,3	11,0	11,0	11,0	11,0	11,4	11,4

Loaddirection Fl														
Connection Timber-Concrete														
Wood side connection	Anchor nais $94 \times 60 \mathrm{n}=6$		Angle-hracket screw $05 \times 40 \mathrm{n}=6$				Angle-hracket screw $05 \times 50 \mathrm{n}=6$				Angle-bracket screw $05 \times 60 \mathrm{n}=6$			
Concrete side connection	$\begin{aligned} & \text { Botanchor } \\ & 012 \times 10 \\ & \mathrm{n}=10 \end{aligned}$	$\begin{gathered} \text { Boltanchor } \\ 012 \times 10 \\ n=2 \end{gathered}$		Rock concrete screws $012,5 \times 120$ $\mathrm{n}=2$	$\begin{aligned} & \text { Bolit anchor } \\ & 012 \times 110 \\ & n=1 \end{aligned}$	$\begin{gathered} \text { Bolt anchor or } \\ 0012 \times 110 \\ \mathrm{n}=2 \end{gathered}$	Rock concretes stews $012,5 \times 120$ $\mathrm{n}=1$	Rock concrefe screws $012,5 \times 120$ $\mathrm{n}=2$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 110 \\ & n=1 \end{aligned}$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 10 \\ & n=2 \end{aligned}$	$\begin{gathered} \text { Rock } \\ \text { concrefes screws } \\ 012,5 \times 120 \\ n=1 \end{gathered}$	Rock concefes stews $012,5 \times 120$ n=2	$\begin{aligned} & \text { Bolit anchor } \\ & 012 \times 110 \\ & n=1 \end{aligned}$	$\begin{aligned} & \text { Bolit anthor } \\ & 0.12 \times 110 \\ & n=2 \end{aligned}$
Char. Shear carrying capacity $[k N]$	11,4	11,4	10,9	10,9	10,9	10,9	12,0	12,0	12,0	12,0	13,1	13,1	12,6	13,1

* Concrete edgg brackout for racked concrefe

The lood-bearing capaciifes were determined bused on EA-19/0020. Charateresticic load.bearing capacity in KN , wood strenght clas $350 \mathrm{~kg} / \mathrm{m}^{3}$ char: Gross density.
The minimum distoneses between the coonnectors and the edges cccording to $E(5$ mus be complied with.

As per BuuO, plesse contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

TENSION STRAP HB7O - STATIC VALUES

Lood direction Fl														
Connection Timber-Concrete														
Wood side connection	Panelwistec $\mathrm{CH} 05 \times 120 \mathrm{n}=12$				Anthor nils $84 \times 40 \mathrm{n}=8$				Anchor noils $84 \times 50 \mathrm{n}=8$				Anthor niils $64 \times 60 \mathrm{n}=8$	
Concrete side comection	$\begin{gathered} \text { Rock } \\ \text { concrete screws } \\ 012,5 \times 120 \\ n=1 \end{gathered}$	$\begin{gathered} \text { Rock } \\ \text { concrete screws } \\ 012,5 \times 120 \\ n=2 \end{gathered}$	$\begin{aligned} & \text { Bolt anthor } \\ & 012 \times 110 \\ & \mathrm{n}=1 \end{aligned}$	$\begin{gathered} \text { Bolt anchor } \\ 012 \times \times 10 \\ n=2 \end{gathered}$	Rock concrete sceurs $012,5 \times 120$ $\mathrm{n}=1$	Rock concrete screws $012,5 \times 120$ $\mathrm{n}=2$	$\begin{aligned} & \text { Bolt anhor } \\ & 012 \times 110 \\ & \mathrm{n}=1 \end{aligned}$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times \times 10 \\ & n=2 \end{aligned}$	Rock concrete screws $012,5 \times 120$ $\mathrm{n}=1$	Rock concrete sceuvs $012,5 \times 120$ $\mathrm{n}=2$	$\begin{aligned} & \text { Bolt andor } \\ & 012 \times 110 \\ & n=1 \end{aligned}$	$\begin{aligned} & \text { Bolt anhor } \\ & 012 \times 110 \\ & \mathrm{n}=2 \end{aligned}$	$\begin{gathered} \text { Rock } \\ \text { concrete scews } \\ 012,5 \times 120 \\ \mathrm{n}=1 \end{gathered}$	Rock concreie screws $012,5 \times 120$ $\mathrm{n}=2$
Char. Sherer carning capaciry[kN]	20,8*	20,8*	12,6	20,8*	12,5	12,5	12,5	12,5	14,7	14,7	12,6	14,7	15,2	15,2

Lood direction Fl														
Connection Timber-Concrete														
Wood side connection	Anchor nails $94 \times 60 \mathrm{n}=8$		Angle-bracket screw $05 \times 40 \mathrm{n}=8$				Angle-bracket scree $05 \times 50 \mathrm{n}=8$				Angle-hracket screw $05 \times 60 \mathrm{n}=8$			
Concrete side connetion	$\begin{aligned} & \text { Bolit anchor } \\ & 0012 \times 110 \\ & \mathrm{n}=1 \end{aligned}$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 110 \\ & \mathrm{n}=2 \end{aligned}$	$\begin{gathered} \text { Rock } \\ \text { concrefes screvs } \\ 012,5 \times 120 \\ n=1 \end{gathered}$	Rock concete screws $012,5 \times 120$ $n=2$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 110 \\ & \mathrm{n}=1 \end{aligned}$	$\begin{aligned} & \text { Bolit anchor } \\ & 012 \times 110 \\ & n=2 \end{aligned}$	$\begin{gathered} \text { Rock } \\ \text { concretescews } \\ 012,5 \times 120 \\ \mathrm{n}=1 \end{gathered}$	Rock concrete screws $012,5 \times 120$ $\mathrm{n}=2$	$\begin{aligned} & \text { Botitanhor } \\ & 012 \times 10 \\ & n=1 \end{aligned}$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 110 \\ & n=2 \end{aligned}$	Rock concrete scews $012,5 \times 120$ $\mathrm{n}=1$	$\begin{gathered}\text { Rock } \\ \text { concciet sceuws } \\ 012,5 \times 120 \\ n=2\end{gathered}$ $=2$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times 110 \\ & \mathrm{n}=1 \end{aligned}$	$\begin{aligned} & \text { Bolt anchor } \\ & 012 \times \times 10 \\ & n=2 \end{aligned}$
Char. Shear carrying capacity [kN]	12,6	15,2	17,2	17,1	12,6	17,1	18,2	18,2	12,6	18,2	19,0	19,0	12,6	19,0
* Concrete edge bradkout for cracked concrete														
The lood-bearing capacities were determined based on EA--19/0020. Characterisicic lood-bearing capacity in kN , wood 5 stenght closs $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. Gross density. The minimum distances between the connectors and the edges according to E 55 mus be complied with.														
As per BBu0, plesse cortacta qualified structural engineer for a paid proof of stabilit. We vill be happy to refer you to someone.														

TENSION STRAP HH60/70

For absorbing tensile forces and shearing forces developed for modern timber construction

Tension strap HH6O / HH7O

Tension straps HH 6 O / HH 70 for fastening wall- and ceiling elements.

TENSION STRAP HH6O - STATIC VALUES

Lood direction Fl								
Connection Timber-Timber								
Leg connection 1	$\begin{gathered} \text { Paneltwistec } \mathrm{CH} \varnothing 5 \times 120 \\ n=9 \end{gathered}$	$\begin{gathered} \text { Anchor nails } \wp 4 \times 40 \\ n=6 \end{gathered}$	$\begin{gathered} \text { Anchor nails } \emptyset 4 \times 50 \\ n=6 \end{gathered}$	$\begin{gathered} \text { Anchor nails } \varnothing 4 \times 60 \\ n=6 \end{gathered}$	Angle-bracket screw $05 \times 40 ; n=6$	Angle-bracket screw $05 \times 50 ; n=6$	Angle-bracket screw $05 \times 60 ; n=6$	Steel
Leg connection 2	$\begin{gathered} \text { Panelwwistec CH } \varnothing 5 \times 120 \\ n=9 \end{gathered}$	$\underset{n=6}{\text { Anchor nails } \oslash 4 \times 40}$	$\begin{gathered} \text { Anchor noils } \oint 4 \times 50 \\ n=6 \end{gathered}$	$\begin{gathered} \text { Anchor nails } \wp 4 \times 60 \\ n=6 \end{gathered}$	Angle-bracket screw $05 \times 40 ; n=6$	Angle-bracket screw $05 \times 50 ; n=6$	Angle-bracket screw $05 \times 60 ; n=6$	S250
Char. tensile capacity [kN]	27	9,4	11	11,4	10,9	12	13,1	28,5

The load-bearing capacities were determined based on ETA-19/0020. Characterisicic load-bearing capacity in kN , wood strength lass $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. Gross density. The minimum distances between the connectors and the edges according to EC 5 must be complied with.

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary meassurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

TENSION STRAP HH7O - STATIC VALUES

Lood direction Fl								
Connection Timber-Timber								
Leg connection 1	$\begin{gathered} \text { Paneltwistec } \mathrm{CH} \varnothing 5 \times 120 \\ n=12 \end{gathered}$	$\begin{gathered} \text { Anchor nails } \oint 4 \times 40 \\ n=8 \end{gathered}$	$\begin{gathered} \text { Anchor nails } \oint 4 \times 50 \\ n=8 \end{gathered}$	$\begin{gathered} \text { Anchor nails } 04 \times 60 \\ n=8 \end{gathered}$	Angle-bracket screw $05 \times 40 ; n=8$	Angle-bracket screw $05 \times 50 ; n=8$	Angle-bracket screw $05 \times 60 ; n=8$	Steel
Leg connection 2	$\begin{gathered} \text { Panethwistec } \mathrm{CH} \varnothing 5 \times 120 \\ n=12 \end{gathered}$	Anchor nails $\emptyset 4 \times 40$ $\mathrm{n}=8$	$\begin{gathered} \text { Anchor nails } \emptyset 4 \times 50 \\ n=8 \end{gathered}$	Anchor noils 04×60 $\mathrm{n}=8$	Angle-bracket screw 05×4 $\mathrm{n}=8$	0 Angle-bracket screw 05 x $\mathrm{n}=8$	Angle-bracket screw 05×60 $\mathrm{n}=8$	5250
Char. tensile capacity [kN]	35	12,5	14,7	15,2	17,1	18,2	19,4	37,4

The load-bearing capacities were determined based on ETA-19/0020. Characterisicic load-bearing capacity in kN , wood strength class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. Gross density. The minimum distances between the connectors and the edges according to EC 5 must be complied with.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are hassed on preliminary meassurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

SHEAR WALL CONNECTOR

For the compensation of uneveness in construction elements

Shear wall connector

Art. no.	Dimensions $[\mathrm{mm}]$	Material	PU*
800312	$100 \times 19 \times 80$	Cass steel	1
*Scope of delivery includes screws			

ADVANTAGES

- Allows high shear force transmission between the wall elements
- Compensates for unevenness between building elements
- Does not protrude from the wall

INSTRUCTIONS FOR USE
To install the shear wall connector, first cut a groove in each wall at the same height. The shear wall connector is then inserted into the milling and fixed with two screws. The flatress of the connector helps compensate for slight differences in height between the walls. The screw connection also pulls both walls horizontally to the connector, thus straightening out slight unevenness here as well.

ASSEMBIY CONNECTOR

For connecting two timber construction elements in systems building

Assembly connector

Art. no.	Dimensions $[\mathrm{mm}]^{0}$	Material	PU*
800272	$32,7 \times 175 \times 29,7$	GFK Polyamid	50

a) Lenght x Width x Height
*incl. 150 screw per PU
The Eurotec assembly connector consists of two individual components that interlock during assembly. It serves as a preparatory element in system construction.

ADVANTAGES

- Can be used regardless of weather conditions
- Easy assembly
- Quick and easy element positioning

INSTRUCTIONS FOR USE

We recommend our Paneltwistec AG CH $6 \times 80 \mathrm{~mm}$ for the use of the assembly connector. It is flush-mounted in a groove positioned at any chosen location on the construction elements. Once the elements have been inserted, the assembly connector is hidden inside the wall. The assembly connector must have a screw inserted in every screw hole. Our assembly connector is designed purely for guidance purposes. It cannot be used to absorb forces.

Note

The assembly connector is not a connector that should be exposed to large, permanent load -
it is only a mounting tool!

MAGNUS HOOK CONNECTOR

Timber connector for main-secondary beam joints

Magnus hook connector

Art. no.	Name	Dimensions [mm] ${ }^{\text {a/ }}$	PU
944874	Magnus XS 30×30	$30 \times 30 \times 9$	20
944875	Magnus 50×60	$50 \times 60 \times 13$	10
944876	Magnus 50×80	$50 \times 80 \times 13$	10
944877	Magnus 550×100	$50 \times 100 \times 13$	10
944878	Magnus M70x 120	$70 \times 120 \times 17$	10
944879	Magnus M70x 140	$70 \times 140 \times 17$	10
944880	Magnus M70x 160	$70 \times 160 \times 17$	10
944881	Magnus M 70x 180	$70 \times 180 \times 17$	10
944882	Magnus L110 220	$110 \times 220 \times 19$	4
944883	Magnus LIIO 260	$110 \times 260 \times 19$	4
944884	Magnus LIIO 300	$110 \times 300 \times 19$	4
944887	Magnus 1110×340	$110 \times 340 \times 19$	4
948888	Magnus L110x 380	$110 \times 380 \times 19$	4
944889	MagnusL110x 580	$110 \times 580 \times 19$	4

1 comnetor consists of 2 individual parts
a) $\mathrm{F}=$ Assembly thickness

ADVANTAGES

- Easy assembly
- High level of prefabrication
- Suitable for high joints
- Visible and hidden loads
- Milling cutter and milling and assembly iig available
- ECS calculation software for free preliminary calculation

INSTRUCTIONS FOR USE

The Magnus hook connector should always be fully unscrewed to ensure an easy and safe installation. Whether surface-mounted or recessed, the milling and mounting iig shows the connector where to fit. Sides and end grain surfaces must be flat to avoid any deformation of the connector during the assembly.

1 Insert 90° fully threaded screws and fix Magnus to the wood

2
Insert 45° screws

3
Mount the secondary beam on the main beam;
use fixing screws to secure the joint against lifting out

4
Joint complete

Fully threaded screws

OVERVIEW OF MAGNUS HOOK CONNECTORS

Magnus XS
Magnus S

Magnus M

Magnus L

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$		Fixing screws ${ }^{\text {b) }}$		Main beam		Secondary beam surface-mounted		Secondary beam flush-mounted				characterisic load-bearing capacity Frke)			
		WxHx ${ }^{\text {a) }}$		Dimension	$n_{j e}$ Ver-	Dimension	$n_{\text {per }}$	min. WMB	min. НMB	min. WSB	min. HSB	$\begin{aligned} & \min . \\ & W_{S B}() \end{aligned}$	min. HSB	W_{F}	$\mathrm{DM}^{\mathrm{d})}$	$\mathrm{F} 1, \mathrm{Rk}$	F2,Rk	F3,Rk	F4,Rk
		[mm]		[mm]	der	[mm]	connector	[mm]	[kN]	[kN]	[kN]	[kN]							
944874	Magnus $\times 530 \times 30$	$30 \times 30 \times 9$	20	$4,0 \times 30$	6	4,2×26	1	40	40	40	40	40	40	30	9	1,2	1,57	1,70	1,19
944875	Magnus 550×60	$50 \times 60 \times 13$	10	$4,0 \times 60$	8	$4,2 \times 26$	2	60	80	60	80	80	80	50	13	3,73	7,25	5,00	1,92
944876	Magnus 550×80	$50 \times 80 \times 13$	10	$4,0 \times 60$	12	$4,2 \times 26$	2	60	100	60	100	80	100	50	13	3,73	14,50	5,00	2,80
944877	Magnus 550×100	$50 \times 100 \times 13$	10	$4,0 \times 60$	18	$4,2 \times 26$	2	60	120	60	120	80	120	50	13	7,46	21,75	5,00	4,41
944878	Magnus M 70×120	$70 \times 120 \times 17$	10	5,0×80	13	$4,8 \times 60$	2	80	140	80	140	100	140	70	17	5,49	21,34	13,00	5,17
944879	Magnus M 70×140	$70 \times 140 \times 17$	10	$5,0 \times 80$	16	$4,8 \times 60$	2	80	160	80	160	100	160	70	17	5,49	32,00	13,00	6,09
944880	Magnus M70 160	$70 \times 160 \times 17$	10	5,0×80	21	$4,8 \times 60$	2	80	180	80	180	100	180	70	17	10,98	37,34	13,00	8,27
944881	Magnus M 70×180	$70 \times 180 \times 17$	10	5,0 $\times 80$	24	$4,8 \times 60$	2	80	200	80	200	100	200	70	17	10,98	42,67	13,00	9,32
944882	Magnus 1110×220	$110 \times 220 \times 19$	4	8,0×120	13	$4,8 \times 60$	2	120	240	120	240	140	240	110	19	9,29	36,10	23,00	13,96
944883	Magnus L110 $\times 260$	$110 \times 260 \times 19$	4	8,0×120	17	$4,8 \times 60$	2	120	280	120	280	140	280	110	19	13,93	45,13	23,00	17,98
944884	MagnusL110x 300	$110 \times 300 \times 19$	4	$8,0 \times 120$	20	$4,8 \times 60$	2	120	320	120	320	140	320	110	19	13,93	54,15	23,00	20,56
944887	MagnusL110x 340	$110 \times 340 \times 19$	4	8,0 $\times 120$	22	$4,8 \times 60$	2	120	360	120	360	140	360	110	19	13,93	63,18	23,00	24,67
944888	MagnusL110x 380	$110 \times 380 \times 19$	4	$8,0 \times 120$	25	$4,8 \times 60$	2	120	400	120	400	140	400	110	19	9,29	72,20	23,00	26,96
944889	Magnus 1110×580	$110 \times 580 \times 19$	4	$8,0 \times 120$	38	$4,8 \times 60$	2	120	600	120	600	140	600	110	19	9,29	126,35	23,00	43,29

* 1 connector consists of 2 individual parts
a) $\mathrm{I}=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation eassier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both heams softwood with a gross density of $\mathrm{p}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisicic values of the load-bearing capacity Frk apply to the specified timber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to EAA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characcerisici values of the load-bearing capacity $F_{\text {Rks }}$ should not be treated as equivalent to the max. possible load (the max. force). The characteristic values of the load-bearing capacity $\mathrm{F}_{\text {Rk }}$ should be reduced to the design values $\mathrm{F}_{\text {Rd }}$ in terms of the service class and the lood duration class: $F_{R d}=F_{R k} \times k$ mod $/ \gamma M$.
Please note: These are planning cids. Projects must only be calculated by authorised persons.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

INSTALLATION ACCESSORIES

Milling and assembly iig For Magnus hook connector

Art. no.	Suitable for	PU
944867	Magnus XS	1
944894	Magnus S	1
944895	Magnus M	1
944870	Magnus L 220/260/300	1
944903	Magnus L340/380/420	1
944904	Magnus L 460/500/540/580	1

DESCRIPTION

- Insertion aid for surface-mounted installation
- Milling jig for flush-mounted installation

Art. no.	Suitable for	Shaft diameter [mm]	PU
944936	Magnus XS	6,35	1
29686	Magnus S	8	1
29696	Magnus M und L	8	1

THE FOLLOWING MUST BE OBSERVED IN THE EVENT OF FLUSH-MOUNTED INSTALLATION IN THE SECONDARY BEAM

- The beam's minimum width must be increased so that there is enough surrounding wood remaining at the side for the milling work
- The beam must be milled out at full height

THE FOLLOWING MUST BE OBSERVED IN THE EVENT OF FLUSH-MOUNTED INSTALLATION IN THE MAIN BEAM

- The main beam's load-bearing cross-section is reduced by the connector's assembly thickness
- The beam's minimum width must be adjusted (screw length)

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		WxHx $\mathrm{D}^{\text {a }}$		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	144 ${ }^{\circ}$	n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	[mm]	
94887	Magnus XS 30×30	$30 \times 30 \times 9$	20	4,0x 30	6	3	-	3	-	$4,2 \times 26$	1

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Main beam		Secondary beam sufface-mounted		Secondary beam flush-mounted				characterisicic lood-bearing (cppacity FRk ${ }^{\text {d }}$			
		WxHx ${ }^{\text {dol }}$			min. WSB	min. Hs	min. WS ${ }_{\text {b }}{ }^{\text {b }}$	min. Hsb	WM	DM ${ }^{\text {c }}$	$\mathrm{F}_{1, \mathrm{Rk}}$	F2,Rk	,Rk	F4,Rk
		[mm]		[mm]	[kN]	[kN]	[kN]	[kN]						
14874	Magus $\times 530 \mathrm{x}$	0x30x9	40	40	40	40	40	40	30	9	1,12	1,57	1,0	1,19

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation eassier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisicic values of the load-bearing capacity FRk apply to the specified timber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculctions.
All values are calculated minimum valves and are subject to typographical and printing errors.
The characterisicic values of the load-bearing capacity FRk should not be treated as equivalent to the max. possible load (the max. force). The charocterisicic values of the lood-bearing capacity FRk should be redveed to the design values FRd in terms of the service class and the load duration class: FRd $=$ FRk x mod $/ \gamma \mathrm{M}$.
Please note: These are planning aids. Projects must only be calculated by authorised persons.

MAGNUS S 50×60

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$	
		WxHx ${ }^{\text {a }}$		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	[mm]	
944875	Magnus 50×60	$50 \times 60 \times 13$	10	4,0×60	8	2	2	2	2	$4,2 \times 26$	2

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Moin beam		Secondary beam surface-mounted		Secondory beum flush-mounted				characterisisic lood -bearing (cpacity $F_{\text {Rk }}(1)$			
		WxHx ${ }^{\text {a }}$			min. WSB	min. HSB	min. W(S $^{\text {b }}$	min. HSB	WM	DM ${ }^{\text {c }}$	Fl,Rk	F2,Rk	$\mathrm{F}_{3, \mathrm{R} k}$	F4,Rk
		[mm]	[kN]	[kN]	[kN]	[kN]								
44875	Mogus	$50 \times 60 \times 13$	60	80	60	80	80	80	50	13	3,73	7,25	5,00	1,92

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisicic values of the load-bearing capacity FRk apply to the specified timber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA 15/0761. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characteristic values of the load-bearing capacity FRk should not be treated as equivalent to the max. possible lood (the max. force). The characterisic values of the load-bearing capacity FRk should be reduced to the design valves Frd in terms of the service class and the lood duration class: FRd= FRk x mod $/ \gamma \mathrm{M}$.
Please note: These are planning ciids. Projects must only be calculated by authorised persons.

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions			Secondary beam sufface-mounted		Secondary beam flush-mounted			characterisicil lood-bearing (capacity Frk ${ }^{\text {d }}$			
		WxHx ${ }^{\text {o }}$)	min. WMB	min. HMB	min. WSB	min. HSB	min. Ws ${ }^{\text {b }}$)	min. HSB	WM $\mathrm{D}_{\text {M }}{ }^{\text {d }}$	F/,Rk	F2,Rk	$\mathrm{F}_{3, \mathrm{Rk}}$	F4, Rk
		[mm] [mm]	[kN]	[kN]	[kN]	[kN]							
94876	Hagus 550×80	$50 \times 80 \times 13$	60	100	60	100	80	100	$50 \quad 13$	3,73	14,50	5,00	280

a) $D=$ assembly thickness

b) Incuded in delivery

c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisic values of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective heam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to EAA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typoographical and printing errors.
The characteristic values of the load-bearing capacity FRk should not be treated as equivalent to the max. possible load (the max. force). The characteristic values of the load-bearing capacity FRk should be reduced to the design values Frd in terms of the service class and the load duration class: FRd= FRk x $\mathrm{kmod}^{\mathrm{m}} / \gamma \mathrm{M}$.
Please note: These are planning aids. Projects must only be calculated by authorised persons.

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$						Fixing screws ${ }^{\text {b }}$)	
		WxHx $\mathrm{D}^{\text {a }}$		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	[mm]	
94887	Magnus 50×100	$50 \times 100 \times 13$	10	4,0×60	18	2	6	4	6	$4,2 \times 26$	2

* 1 connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Main heam		Secondary beam surface-mounted		Secondory beam flush-mounted				characterisitic lood-bearing capacity FRk ${ }^{\text {d }}$			
		WxHx ${ }^{0}$)			min. Wsb	min. H SB	min. WSs ${ }^{\text {b/ }}$	min. HSB	WM	DM ${ }^{\text {c }}$	Fl,Rk	F2,Rk	$\mathrm{F}_{3,1 \mathrm{Rk}}$	F4,Rk
		[mm]		[mm]	[kN]	[kN]	[kN]	[kN]						
94887	S50x 10	$\times 100 \times$	60	120	60	120	80	120	50	13	7.46	21,75	500	441

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisic values of the load-bearing capacity FRk apply to the specified timber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA 15/0761. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characterisicic values of the load-bearing capacity Frk should not be trected as equivalent to the max. possible lood (the max. force). The characterisicic values of the load-bearing capacity FRk should be recuved to the design values Frd in terms of the service class and the load duration class: $\mathrm{FRd}=\mathrm{FRk} \mathrm{x}$ kmod $/ \gamma \mathrm{M}$.
Please note: These are planning ciids. Projects must only be calculated by outhorised persons.

Symbolic illustrations: f.l.t.r. Main beam, secondary beam surface-mounted, secondary beam flush-mounted, connector dimensions

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		WxHx ${ }^{\text {a) }}$		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	145 ${ }^{\circ}$	[mm]	
944878	Magus M 70×120	$70 \times 120 \times 17$	10	$5,0 \times 80$	13	2	4	2	5	4,8×60	2

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions			Secondar	suface-	Secondary beam flush-mounted				characterisisic lood bearing (cpacity F Fkk ${ }^{\text {d }}$			
		WxHx00)	min. WMB min. HMB		min. Wsb	min. HSB	min. W(Sb ${ }^{\text {b }}$	min. HSB	Wm	DM ${ }^{\text {c }}$	Fl,Rk	F2,Rk	Rk	F4,Rk
		[mm]	[kN]	[kN]	[kN]	[kN]								
44878	M70 120	$70 \times 120 \times 17$	80	140	80	140	100	140	70	17	5,49	21,34	13,0	5.17

a) $D=$ assembly thickness

b) Incuded in delivery

c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisic values of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective heam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to EAA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characteristic values of the load-bearing capacity Frk should not be treated as equivalent to the max. possible load (the max. force). The characterisicic values of the lood-bearing capacity FRk should be reduced to the design values Frd in terms of the service class and the load duration class: FRd= FRk x $\mathrm{kmod}^{\mathrm{m}} / \gamma \mathrm{M}$.
Please note: These are planning aids. Projects must only be calculated by authorised persons.

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		WxHx D ${ }^{\text {a) }}$		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	[mm]	
948879	Magnu M 70×140	$70 \times 140 \times 17$	10	5,0×80	16	2	6	2	6	4,8×60	2

* 1 connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	$\begin{aligned} & \text { Dimensions } \\ & \text { WxH } \times \text { Dol }^{0} \end{aligned}$	Moin beam		Secondary beam sufface-mounted		Secondary beam flush-mounted				characterisicic load-bearing capacity FRk)			
			min. WMB	min. HMB $^{\text {S }}$	min. Wsb	min. HSB	min. Wsb ${ }^{\text {b }}$	min. HSB	WM	DM ${ }^{\text {c }}$	F1,Rk	F2,Rk	$\mathrm{F}_{3, \mathrm{Rk}}$	F4,Rk
		[mm]		[kN]	[kN]	[kN]	[kN]							
94879	nus 170×140	10x10x 17	80	160	80	160	100	160	70		5,49	32,0	13,00	69

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisicic values of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characteristic values of the load-bearing capacity Frk should not be trected as equivalent to the max. possible load (the max. force). The characterisicic values of the lood-bearing capacity FRk should be reduced to the design values Frd in terms of the service class and the load duration class: $\mathrm{FRd}=\mathrm{FRk} \mathrm{x}$ kmod $/ \gamma \mathrm{M}$.
Please note: These are planning ciids. Projects must only be calculated by outhorised persons.

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		WxHx D ${ }^{\text {a) }}$		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	1445	n90 ${ }^{\circ}$	1445	[mm]	
948880	Mognu M 70×160	70×160 17	10	5,0×80	21	2	8	4	7	4,8×60	2

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Moin beammin. WMB min. HMB		Secondary beam suffac--mounted		Secondary beam flush-mounted				characterisisil load-bearing (capaity FRx d)			
		WxHx ${ }^{\text {a }}$			min. WSB	min. HSb	min. WS ${ }^{\text {b }}$ b	min. HSB	WM	DM ${ }^{\text {c }}$	$\mathrm{Fl}_{1, \mathrm{kk}}$	F2,Rk	$\mathrm{F}_{3, \mathrm{Rk}}$	F4,Rk
		[mm]		[mm]	[kN]	[kN]	[kN]	[kN]						
14880	mus 170×160	$70 \times 160 \times 17$	80	180	80	180	100	180	70	17	10,98	37,34	13,00	8,7

a) $D=$ assembly thicknes

b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\rho \mathrm{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisicic values of the load-bearing capacity Fpk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characteristic values of the load-bearing capacity FFks should not be treated as equivalent to the max. possible load (the max. force). The characterisic values of the lood-bearing capacity Frks should be reduced to the design values Frd in terms of the
service class and the load duration class: Frd $=$ FRk \times kmod $/ \gamma \mathrm{m}$.
Please note: These are planning aids. Projects must only be calculated by outhorised persons.

MAGNUS M 70×180

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		W xHx Da)		Dimensions	$n_{\text {notal }}$	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	1445	[mm]	
94881	Magus M 70×180	$70 \times 180 \times 17$	10	5,0×80	24	,	10	4	8	4,8×60	2

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Main beam		Secondary beam suffac--mounted		Secondary beam flush-mounted				characterisitic lood-bearing (capacity FRk			
		WxHx ${ }^{0}$ (min. WSB	min. HSB	min. WSs ${ }^{\text {b/ }}$	min. HSB	WM	DM ${ }^{\text {c }}$	F1,Rk	F2,Rk	$\mathrm{F}_{3, \mathrm{Rk}}$	F4,Rk
		[mm]	[kN]	[kN]	[kN]	[kN]								
44881	Mgnus M70x	$70 \times 180 \times 17$	80	200	80	200	100	200	70	17	10,98	42,67	13,00	${ }^{32}$

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation eassier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characteristic valves of the load-bearing capacity FRk apply to the specified timber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA 15/0761. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characterisici values of the load-bearing capacity FRk should not be treated as equivalent to the max. possible load (the max. force). The characterisic values of the load bearing capacity FRk should be reduced to the design valves Frd in terms of the service class and the load duration dass: Frd= Frk x kmod / $\gamma \mathrm{M}$.
Please note: These are planning cids. Projects must only be calculated by authorised persons.

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		WxHx ${ }^{\text {a) }}$		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	1445	[mm]	
948882	Magnus 1110×220	$110 \times 220 \times 19$	4	$8,0 \times 120$	13	2	4	2	5	4,8×60	2

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incudeded in delivery

Art. no.	Name	Dimensions	Moin beam		Secondory beam sufface-mounted		Secondary beam flush-mounted				characterisicil load-bearing (capacity FRk ${ }^{\text {d }}$)			
		WxHx ${ }^{0}$ (min. WSB	min. Hsb	min. W(S $^{\text {b }}$)	min. HSB	WM	DM ${ }^{\text {c }}$	F1,Rk	F2,Rk	$\mathrm{F}_{3,1 \mathrm{Rk}}$	F4,Rk
		[mm]		[mm]	[kN]	[kN]	[kN]	[kN]						
4482	L110x20	$10 \times 220 \times 1$	120	240	120	240	140	240	110	19	9,29	36,10	23,00	13,96

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisicic values of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characteristic values of the load-bearing capacity FFks should not be treated as equivalent to the max. possible load (the max. force). The characterisic values of the lood-bearing capacity. FRk should be reduced to the design values Fed in terms of the
service class and the lood duration class: Frd= FRk x kmod $/ \gamma \mathrm{M}$.
The characterisicic load-bearing capacities for the L series were determined vsing 8×120 VG screws. Higher capacities can be achieved with longer screws (however, the minimum cross-sections of the supports also change)
Please note: These are planning aids. Projects must only be calculated by authorised persons.

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		WxHx D ${ }^{\text {a }}$		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	1445	[mm]	
94888	Magnus 1110×260	$110 \times 260 \times 19$	4	8,0 $\times 120$	17	\bigcirc	5	J	6	$4,8 \times 60$	2

* 1 connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Included in delivery

Art. no.	Name	Dimensions	Main beammin. WMB min. HMB		Secondary beam sufface-mounted		Secondary heum flush-mounted				choracterisisic lood-bearing capacity Frk ()			
		WxHx ${ }^{\text {a }}$			min. WSB	min. H SB	min. W(Sb)	min. HSB	WM	$\mathrm{DM}^{\text {c }}$	$\mathrm{F}_{1, \mathrm{Rk}}$	F2,Rk	$\mathrm{F}_{3, \mathrm{Rk}}$	F4,k
		[mm]	[kN]	[kN]	[kN]	[kN]								
4483	IIgus 110×200	$110 \times 260 \times 19$	120	280	120	280	140	280	110	19	13,93	45,13	23,00	17,98

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation eassier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characteristic values of the load-bearing capacity Fpk apply to the specified timber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA 15/0761. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characterisicic valves of the load-bearing capacity Frk should not be treated as equivalent to the max. possible load (the max. force). The characterisic values of the load-bearing capacity. FRk should be reduced to the design values Frd in terms of the service class and the lood duration class: $\mathrm{Frd}=\mathrm{FRk} \mathrm{x} \mathrm{kmod} / \gamma \mathrm{M}$.
The characterisic load-bearing capacities for the 1 series were determined using 8×120 VG screws. Figher capacities can be achieved with longer screws (however, the minimum cross-sections of the supports also change)
Please note: These are planning aids. Projects must only be calculated by authorised persons.

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		W x H x Da)		Dimensions	$n_{\text {notal }}$	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	[mm]	
94884	Magnus 1110×300	$110 \times 300 \times 19$	4	8,0 $\times 120$	20	4	6	3	7	4,8×60	2

* 1 connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Included in delivery

Art. no.	Name	Dimensions	manin WMB min. HMB		Secondory beam suffac-mounted		Secondary beam flush-mounted				characterisicil load-bearing (cpacity FRk ${ }^{\text {d }}$			
		WxHxD0)			min. WSB	min. Hsb	min. W(Sb)	min. HSB	WM	DM ${ }^{\text {c }}$	$\mathrm{F}_{1, \mathrm{Rk}}$	F2,Rk	$\mathrm{F}_{3,1 \mathrm{k}}$	F4,Rk
		[mm]		[kN]	[kN]	[kN]	[kN]							
44884	Henus 110×300	$110 \times 300 \times 19$	120	320	120	320	140	320	110	19	13,93	54,15	23,00	20,56

a) $D=$ assembly thickness

b) Included in delivery

c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\rho \mathrm{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characteristic values of the load-bearing capacity FRk apply to the specified timber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to EAA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characteristic values of the load-bearing capacity FRks should not be treated as equivalent to the max. possible load (the max. force). The characteristic values of the lood-bearing capacity Frks should be reduced to the design values Frd in terms of the
service class and the load duration class: Frd $=$ FRk \times kmod $/ \gamma \mathrm{m}$.
The characterisicic lood-bearing capacities for the L series were determined using 8×120 VG screws. Higher capacities can be achieved with longer screws (however, the minimum cross-sections of the supports also change)
Please note: These are planning aids. Projects must only be calculated by authorised persons.

MAGNUS L 110×340

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		WxHx D ${ }^{\text {a) }}$		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	1445	n90 ${ }^{\circ}$	145 ${ }^{\circ}$	[mm]	
94887	Magns L110x 340	$110 \times 340 \times 19$	4	$8,0 \times 120$	22	3	7	3	9	4,8×60	2

* 1 connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Moin heam		Secondary beam suffac--mounted		Secondary beam flush-mounted				characterisicic load. -bering (apacity Frk ${ }^{\text {d }}$			
		Wx			min. Wsb	min. HSB	min. WS ${ }^{\text {b }}$]	min. HSB	WM	DM ${ }^{\text {()I }}$	$\mathrm{F}_{1, \mathrm{Rk}}$	F2,Rk	$\mathrm{F}_{3, \mathrm{Rk}}$	F4,Rk
		[mm]		[kN]	[kN]	[kN]	[kN]							
4887	Mogus 110×330	$110 \times 340 \times 19$	120	360	120	360	140	360	110	19	13,93	63,18	23,00	24,67

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, itis advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both heams softwood with a gross density of $p \mathrm{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisicic values of the load-bearing capacity Fpk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions hat have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characteristic values of the load-bearing capacity Frk should not be treated as equivalent to the max. possible load (the max. force). The characterisicic values of the load-bearing capacity FRk should be reduced to the design values Frd in terms of the
service class and the load duration class: $\mathrm{Frd}=\mathrm{Frk} \mathrm{x}$ mod $/ \gamma \mathrm{M}$.
The characteristic load-bearing capacities for the L series were determined using 8×120 VG screws. Higher capacities can be achieved with longer screws (however, the minimum cross-sections of the supports also change)
Please note: These are planning cidds. Projects must only be calculated by authorised persons.

Symbolic illustrations: f.l.t.r. Main beam, secondary beam surface-mounted, secondary beam flush-mounted, connector dimensions

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$	
		Wx $\mathrm{Hx}^{\text {d }}$)		Dimensions	ntotal	In the main beam		In the secondary beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	1445	n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	[mm]	
94888	Magnus 1110×380	$110 \times 380 \times 19$	4	8,0 $\times 120$	25	4	8	2	11	$4,8 \times 60$	2

* 1 connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Included in delivery

Art. no.	Name	Dimensions	Main heam		Secondary beam surface-mounted		Secondary beam flush-mounted				characterisicil lood beering (cppacity FRk d)			
		WxHx ${ }^{0}$)			min. WSB	min. HSB	min. W(S 6)	min. HSb	WM	DM ${ }^{\text {c }}$	Fl,Rk	F2,Rk	$\mathrm{F}_{3,1 \mathrm{k}}$	F4,Rk
		[mm]	[kN]	[kN]	[kN]	[kN]								
94888	10x	$10 \times 388 \times 19$	120	400	120	400	140	400	110	19	9,29	72,20	23,00	26,96

a) $D=$ assembly thickness

b) Incudued in delivery

c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation easier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\rho \mathrm{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisic valves of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to EAA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characteristic values of the load-bearing capacity FRks should not be treated as equivalent to the max. possible load (the max. force). The characteristic values of the lood-bearing capacity Frks should be reduced to the design values Frd in terms of the
service class and the load duration class: Frd= $=$ Rk x mod $/ \gamma \mathrm{M}$.
The characterisicic lood-bearing capacities for the L series were determined using 8×120 VG screws. Higher capacities can be achieved with longer screws (however, the minimum cross-sections of the supports also change)
Please note: These are planning aids. Projects must only be calculated by authorised persons.

Art. no.	Name	Dimensions	PU*	Fully threaded screws ${ }^{\text {b }}$)						Fixing screws ${ }^{\text {b }}$)	
		Wx $\mathrm{Hx} \mathrm{Da}^{\text {a }}$		Dimensions	$n_{\text {notal }}$	In the main beam		In the secondory beam		Dimensions	n
		[mm]		[mm]		n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	n90 ${ }^{\circ}$	n45 ${ }^{\circ}$	[mm]	
948889	y 1110×580	$110 \times 580 \times 19$	4	8,0 $\times 120$	38	4	14	2	18	4,8×60	2

${ }^{*} 1$ connector consists of 2 individual parts
a) $D=$ assembly thickness
b) Incuded in delivery

Art. no.	Name	Dimensions	Main beam		Secondary beam surface-mounted		Secondary beam flush-mounted				characteristic load-bearing capacity Frk ${ }^{\text {d) }}$			
		WxHx Da)	min. WMB	min. НMB	min. WSB	min. HSB	min. WS ${ }^{\text {b }}{ }^{\text {b }}$	min. HSB	WM	DM ${ }^{\text {c) }}$	F1,Rk	F2,Rk	F3,Rk	F4,Rk
		[mm]		[mm]	[kN]	[kN]	[kN]	[kN]						
94889	Magnus 1110×580	$110 \times 580 \times 19$	120	600	120	600	140	600	110	19	9,29	126,35	23,00	43,29

a) $D=$ assembly thickness
b) Incuded in delivery
c) Recommended minimum width of the secondary beam with the connector flush-mounted
d) To make installation eassier, it is advantageous to reduce the milling depth slightly, especially for larger wood dimensions.
e) Both beams softwood with a gross density of $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$.

The specified characterisicic values of the load-bearing capacity FRk apply to the specified fimber cross-sections, centred force application along the respective beam axis as well as connector installation flush with the top edge of the main and secondary beams.
Calculation according to ETA $15 / 0761$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
The characterisici values of the load-bearing capacity FRk should not be treated as equivalent to the max. possible lood (the max. force). The characterisicic values of the lood-bearing capacity FRk should be reduced to the design values Frd in terms of the service class and the load duration class: Frd= Frk x kmod $/ \gamma \mathrm{M}$.
The characteristic load-bearing capacities for the L series were determined using 8×120 VG screws. Higher capacities can be achieved with longer screws (however, the minimum cross-sections of the supports also change)
Please note: These are planning aids. Projects must only be calculated by authorised persons.

Eurotec | Wood connector

EuroTec calculation service

Magnus Hook Connector according to ETA-15/0761

by phone 02331 6245-444 • by fax 02331 6245-200 • by e-mail technik@eurotec.team

Please contact our technical department or use the free calculation services in the service section of our website.
Contact

Trader:

Contact Person: \qquad
email: \qquad
Project: \qquad

Project details

Main Beam

Width:	$\quad \mathrm{mm}$
Heigh:	mm

Strength class: (e.g. C24, GL24h etc.)

Secondary Beam

Width: \qquad mm

Height: \qquad mm

Strength class: (e.g. C24, GL24h etc.)

Loads (Characteristic values)

Load duration classPermanentLongMediumShort

Installation

$\square \quad$ Surface assembly
$\square \quad$ Embedded in secondary beam
$\square \quad$ Embedded in main beam
mm

Contractor:

Contact Person:

Phone: \qquad
email:
\qquad
\qquad
\qquad

T-PROFILE

For hidden aluminium connections

Art. no.	Dimensions $\left.[\mathrm{mm}]]^{0}\right)$	Material	Material thickness	PU
975652 $115 \times 2000 \times 80$ Aluninium	6	1		
a) Height x Lenght \times Width				

ADVANTAGES/PROPERTY

- Hole pattern specially for Angle-bracket screw $\varnothing 5,0 \times 50 \mathrm{~mm}$
- Ideal for the timber-concrete connection with the

Rock concrete screw $\varnothing 7,5$

- Creates a hidden connection
- No need of predrilling in combination
with the EST dowel bar

INSTRUCTIONS FOR USE

The self-drilling EST-Dowel bar $\varnothing 7,5$ can be connected to the T-profile without predrilling. The T-profile has a hole pattern for the Angle-brackets screw $5,0 \times 5,0 \mathrm{~mm}$. It can also be used together with the Rock concrete screw $\varnothing 7,5$ for the timber-concrete connection. Can be used in service classes 1 and 2 according to DIN EN 1995.

[^1]

Individual cutting of the profile to length

No need of predrilling with the EST dowel bar

Hole pattern with the Angle-bracket screw

Hole pattern with the Rock concrete screw

EST DOWEL BAR

Double-threaded screw with cylinder head
Eurotec's self-drilling EST dowel bar is a double-threaded screw with an innovative arrow drill and a specifically developed chip-removing groove. Ideally suited for hidden connections in combination with our T-profile. The double-threaded screw has a cylinder head with TX drive. The special geometry of the arrow drill ensures a lower splitting effect when screwing in. The chip-removing groove ensures optimised screwing-in behaviour.

EST dowel bar

Suitable for T-profile	Art. no.	Dimensions [mm]	Thread length [mm]	Drive	PU	
	800291	$7,5 \times 73$	$27 / 0$	TX40	TX40	50
	800305	$7,5 \times 93$	$27 / 8,5$	TX40	50	
	800306	$7,5 \times 113$	$36 / 12,5$	TX40	50	
	800307	$7,5 \times 133$	$36 / 12,5$	TX40	50	
	800287	$7,5 \times 153$	$36 / 12,5$	TX40	50	
	800288	$7,5 \times 173$	$36 / 12,5$	TX40	50	
	800289	$7,5 \times 193$	$36 / 12,5$	TX40	50	
	800290	$7,5 \times 213$	$36 / 12,5$	TX40	50	

ADVANTAGES / PROPERTIES
Corrosion resistance
Can be used in service classes 1 and 2 according to DIN EN 1991

TECHNICAL DRAWING

स tuluill

Good resistance to mechanical stresses
No pilot-drilling necessary
With innovative arrow drill
No hammering of the screws thanks to TX-drive

Optimum chip-removing groove in the thread
Suitable for timber and aluminum

DOWEL BAR

The rod dowel is a cylindrical bolt that has a phase at both ends for easier insertion. The rod dowel is suitable for both timber-timber joints and timbersteel joints. It is ideal for combination with our T-profile. The rod dowel is available in different diameters and lengths for an extremely wide range of applications. Please note the product table for this purpose.

Dowel bar	Suitable	Art. no.	Dimensions [mm]	PU
		800212	12×98	50
		800213	12×118	50
		800214	12×138	50
		800215	12×158	50
		800216	12×178	50
		800217	12×198	50
		800218	12×218	50
		800219	12x238	50
		800220	12×258	50
		800221	12×278	50
		800222	12×298	50
		800223	16×138	50
		800224	16×158	50
		800225	16×178	50
		800226	16×198	50
		800227	16×218	50
		800228	16×238	50
		800229	16×258	50
		800230	16×278	50
		800231	16×298	50
		800241	16×340	50
		800243	16×480	25
ADVANTAGES		800232	16×500	25
Easy to use		800242	16×588	25
		${ }^{800233}$	20×158	50
Can be combined with the Eurotec T-profile and all		800234	20×178	50
common T-profiles		800235	20× 198	50
Can be used in service classes 1 and 2		800236	20x218	50
		800237	20×238	50
		800238	20×258	50
INSTRUCTIONS FOR USE		800239	20×278	50
		800240	20×298	50

CONSTRUCTVE FASTENERS

Rock concrete screw	$66-71$
Konstrux fully threaded screw	$72-97$
Angle-bracket screw	$98-99$
Panelwwistec	$100-115$
SawTec	$116-119$
Topduo roofing screw	$120-125$

Gurotec | Constructive fastening

ROCK CONCRETE SCREW

For fastening to concrete without plugs

The rock-concrete screw is screwed directly into the drill hole without inserting dowels or other additional components. Thanks to the short axial and edge distances in the installation, they also have no spreading effect. Besides being very simple, this type of installation is also impressively time-saving and offers maximum cost savings.

The high-strength bolt steel and the complex hardening process ensure reliable use in both cracked and non-cracked concrete of class $\mathrm{C} 20 / 25$ to C50/60.

Rock concrete screw Hexagonal, galvanised steel	(iv) CE	Art. no.	Dimensions [mm]	Head	PU
		110338*	7,5 $\times 40$	SWI3	100
		110339*	7,5 $\times 50$	SWI3	100
T		110340	7,5 $\times 60$	SWI3	100
11		110341	7,5 $\times 80$	SWI3	100
11		110342*	$10,5 \times 60$	SW15	100
		110343	$10,5 \times 80$	SW15	100
		110344	10,5 $\times 100$	SW15	100
		110345	$10,5 \times 120$	SW15	100
		110346	$10,5 \times 140$	SW15	100
		110347	$10,5 \times 160$	SW15	100
		110336*	$12,5 \times 60$	SWI7	100
		110337	$12,5 \times 80$	SWI7	100
		110327	12,5 $\times 100$	SW17	100
		110328	$12,5 \times 120$	SWI7	100
		110329	12,5x 140	SW17	100
		110330	$12,5 \times 160$	SWI7	50
		110331	12,5 $\times 180$	SWI7	50
		110332	$12,5 \times 200$	SW17	50
		110333	$12,5 \times 240$	SWI7	50
		110334	$12,5 \times 280$	SWI7	50
		110335	$12,5 \times 320$	SWI7	50
		* Screws n			
Rock concrete screw Countersunk head, galvanised steel		Art. no.	Dimensions [mm]	Drive	PU
	$\frac{5 \pi}{50 \cdot 15 / 6 \sin }$	110348*	7,5 $\times 40$	TX40 -	100
		110349	7,5 $\times 60$	TX40 -	100
N.		110350	7,5×80	TX40 -	100
		110351	7,5 5100	TX40	100
		110352	7,5×120	TX40 -	100
		110353	7,5×140	TX40 -	100
		110354	7,5×160	TX40 ${ }^{\circ}$	100
		*Screws			

USING THE ROCK CONCRETE SCREW

Create drill hole (hammer drill).

Clean drill hole.

Mount attachment.

Done!

The rock-concrete screw in a wood-concrete combination.

The rock-concrete screw in stair railings (steel-concrete combination).

TECHNICAL INFORMATION ROCK CONCRETE SCREW

Rock, hexagonol with flange

$\begin{aligned} & 7,5 \times 60 \\ & 1,5 \times 80 \end{aligned}$	SW13	16,5	100	5 25	55	6,0	3,0	11,0	19,0	6	70	9	40
10,5x80				5									
10,5 $\times 100$				25									
10,5 $\times 120$	SW15	17,5	160	45	75	6,0	3,0	22,0	51,0	9	90	12	55
10,5 140				65									
10,5 $\times 160$				85									
16,5x $\times 15$				5									
16,5x 135	SW18	30,5	175	25	110	40,0	30,0	57,9	235,9	14	130	18	100
16,5 $\times 160$				50									

Rock, hexagonal

$\begin{aligned} & 7,5 \times 60 \\ & 7,5 \times 80 \end{aligned}$	SW13	n/a	100	$\begin{gathered} 5 \\ 25 \end{gathered}$	55	6,0	3,0	11,0	19,0	6	70	9	40
$10,5 \times 80$				5									
$10,5 \times 100$				25									
$10,5 \times 120$	SW15	n/a	160	45	75	6,0	3,0	22,0	51,0	9	90	12	55
$10,5 \times 140$				65									
$10,5 \times 160$				85									
12,5 $\times 80$	SWI7	n/a	200	5	75	25,0	12,0	35,0	98,0	10	90	14	65
$12,5 \times 100$				5									
$12,5 \times 120$				25									
12,5 $\times 140$				45									
$12,5 \times 160$				65									
$12,5 \times 180$	SWI7	n/a	200	85	95	25,0	12,0	35,0	98,0	10	110	14	65
$12,5 \times 200$				105									
$12,5 \times 240$				145									
12,5 $\times 280$				185									
12,5 $\times 320$				225									

Setting tool: Electrical tangential impact wrench, max. power rating Tmax according to manvfacturer's data, recommended $\mathrm{T}_{\text {max }}: 250 \mathrm{Nm}$ for Rock $7,5 \times \mathrm{L} ; 450 \mathrm{Nm}$ for Rock $10,5 \times \mathrm{L}$. and $12,5 \mathrm{~L}$. and $16,5 \mathrm{~L}$. Note: A higher max. torque of the setting tool can lead to destruction of the drilling hole or damage to the screw.

Assembly with torque wrench: Recommended installation torgue Tinst: 20 Nm for Rock $7,5 \mathrm{xL} ; 40 \mathrm{Nm}$ for Rock $10,5 \mathrm{~L} .60 \mathrm{Nm}$ for Rock $12,5 \mathrm{x}$. and 120 Nm for $16,5 \mathrm{xL}$.
a) The calculation for a joint is to be performed according to EAAG-001 Annex C. b) Partial sofefy factors: $\gamma \mathrm{Mms}_{s}, \mathrm{~V}=1,5 ; \gamma \mathrm{Ms}, \mathrm{M}=1,5$.

Please note: These are planning dids. Projects must only be calculated by authorised persons.

EuroTec calculation service

Rock concrete screw according to ETA-15/0886

by phone 02331 6245-444 • by fax 02331 6245-200 • by e-mail technik@eurotec.team

Please contact our technical department or use the free calculation services in the service section of our website.

Contact

Trader:
Contact Person: \qquad
e-mail: \qquad
Project: \qquad

Project details

Concrete

Strength category:
(if known; min. C20/25)
Construction component:
(e.g. strip footing, floor slab, wall, ceiling, etc.)

Component thickness h: \qquad mm

Attachment

\square Steel

Screw selection

Contractor:

Contact Person: \qquad
Phone: \qquad
e-mail: \qquad

A detailed sketch of the joint must be enclosed with the inquiry, stating the following details:

- Geometry of concrete and attachment
- Edge and centre distances C and S
- Position of attachment relative to concrete component
- Position (and angle, where applicable) of force application point on the attachment

\square	$\varnothing 7,5 \mathrm{~mm}$ countersunk head	
\square	$\varnothing 7,5 \mathrm{~mm}$ hex head, flange $\quad \square \quad \varnothing 7,5 \mathrm{~mm}$ hex head	\square

$\varnothing 7,5 \mathrm{~mm}$ hex head
$\varnothing 10,5 \mathrm{~mm}$ hex head
$\varnothing 12,5 \mathrm{~mm}$ hex, flange
\varnothing 12,5 hex head, flange

KONSTRUX FULLY THREADED SCREW

The high-performance solution for new construction and refurbishment

Konstrux fully threaded screws maximize the load-bearing capacity of a connection due to the high thread extraction resistance in both components. When using partially threaded screws, the significantly lower head pull-through resistance in the attachment partl limits the load-bearing capacity of the connection. KonstruX fully threaded screwn provide a cost-saving alternative to traditional connectors or timber connectors such as joist shoes and joist girders.

KonstruX in order to connect a wall with a sill plate.

Gurotec | Constructive fastening

KonstruX threaded screw	$C E$	Art. no.	Dimensions [mm]	Drive	PU
Cylinder head, drill point, A4		944780	6,5 5140	TX30 -	100
		944781	6,5 $\times 160$	TX30	100
		944782	6,5 195	TX30 -	100
1.		944783	8,0 $\times 155$	TX40 -	50
1.		944784	8,0 195	TX40 -	50
F		944785	8,00220	TX40	50
		944786	8,00245	TX40 -	50
1		944787	8,0 $\times 270$	TX40	50
		944788	8,0 2295	TX40 -	50
7		944789	8,0 $\times 330$	TX40 -	50
,		944790	$8,0 \times 375$	TX40 -	50
		94479	$8,0 \times 400$	TX40 ${ }^{\circ}$	50

KonstruX ST fully threaded screw
 Countersunk head, drill point, galvanised

Art. no.	Dimensions [mm]	Drive	PU
908857	6,5x80	TX30	100
90858	6,5×100	TX30	100
908859	6,5×120	TX30	100
908860	$6,5 \times 140$	TX30	100
904790	8,0 $\times 95$	TX40 -	50
90479	$8,0 \times 125$	TX40 -	50
90479	$8,0 \times 155$	TX40	50
904793	$8,0 \times 195$	TX40 -	50
90479	8,0 220	TX40 -	50
904795	8,0 245	TX40 -	50
90479	8,0 272	TX40	50
90479	$8,0 \times 295$	TX40 -	50
904798	8,0×330	TX40 -	50
90479	8,0x375	TX40 -	50
90880	$8,0 \times 400$	TX40 -	50
908801	$8,0 \times 430$	TX40	50
908802	$8,0 \times 480$	TX40	50
908803	8,0x545	TX40 -	50
90470	$10,0 \times 125$	TX50 -	25
90477	$10,0 \times 155$	TX50 -	25
904772	10,0 $\times 195$	TX50 -	25
90473	$10,0 \times 220$	TX50	25
90477	10,0 245	TX50 -	25
90475	10,0 $\times 270$	TX50 -	25
90476	10,0 $\times 300$	TX50 -	25
90477	$10,0 \times 330$	TX50 -	25
904778	$10,0 \times 360$	TX50 -	25
90479	10,0 $\times 400$	TX50	25
904780	$10,0 \times 450$	TX50 -	25
904781	10,0 $\times 500$	TX50 -	25
90478	10,0x550	TX50 -	25
904783	$10,0 \times 600$	TX50 -	25

KonstruX ST fully threaded screw	迷:	Art. no.	Dimensions [mm]	Drive	PU
Countersunk head, galvanised		905737	11,3x300	TX50 -	20
		905738	11,3x340	TX50 -	20
1		905739	11,3x380	TX50 -	20
1		905740	11,3x420	TX50 -	20
1		90574	$11,3 \times 460$	TX50 -	20
1		905742	11,3x500	TX50 -	20
1		905743	11,3x540	TX50 -	20
1		90574	$11,3 \times 580$	TX50 -	20
1		905745	$11,3 \times 620$	TX50 -	20
1		905746	11,3x660	TX50 -	20
1		90574	11,3x700	TX50	20
1		905748	$11,3 \times 750$	TX50 -	20
1		905749	11,3x800	TX50 -	20
1		904750	11,3x900	TX50 -	20
1		90475	$11,3 \times 1000$	TX50	20

KonstruX fully threaded screw	M $7 M$	Art. no.	Dimensions [mm]	Drive	PU
TX head, galvanised	to our protut range	90883	$13,0 \times 200$	TX50 -	20
㬉		908836	$13,0 \times 220$	TX50	20
	CE	904837	$13,0 \times 240$	TX50 -	20
	Applied for	90438	$13,0 \times 260$	TX50 -	20
11.		90833	$13,0 \times 280$	TX50 -	20
		908840	$13,0 \times 300$	TX50 -	20
		90884	$13,0 \times 320$	TX50 -	20
		908842	$13,0 \times 340$	TX50 -	20
		908843	$13,0 \times 360$	TX50 -	20
-		90884	$13,0 \times 380$	TX50 -	20
		908845	$13,0 \times 420$	TX50 -	20
		908846	$13,0 \times 460$	TX50 -	20
		90884	$13,0 \times 500$	TX50 -	20
		904848	$13,0 \times 540$	TX50 -	20
		90849	$13,0 \times 580$	TX50 -	20
1		908850	$13,0 \times 620$	TX50 -	20
		90485	$13,0 \times 660$	TX50 -	20
		90855	$13,0 \times 700$	TX50 -	20
		90855	$13,0 \times 750$	TX50 -	20
F		90855	$13,0 \times 800$	TX50 -	20
F		90885	$13,0 \times 900$	TX50 -	20
		90855	$13,0 \times 1000$	TX50 -	20
1		90886	$13,0 \times 1200$	TX50 -	20
1:		90862	$13,0 \times 1400$	TX50 -	20

KONSTRUX DUO

Fully threaded screw with compressive effect

The KonstruX DUO combines the strengths of fully threaded and partially threaded screws: Maximisation of the connection's load-bearing capacity through equally high pull-out resistance in both structural elements and compression effect achieved by having different thread pitches in the section underneath the head and in the driving thread.

KonstruX DUO
Cylinder head, drill point, galvanised

滑	Art. no.	Dimensions [mm]	Drive	PU
	100606	6,5 590	TX30	100
	10060	6,5×130	TX30	100
	10060	6,5×160	TX30 -	100
	100609	6,5×190	TX30	100
	100610	6,5 $\times 220$	TX30 -	100
	100611	$8,0 \times 160$	TX40	100
	100612	$8,0 \times 190$	TX40 -	100
	100613	8,0×220	TX40	100
	100614	8,0×245	TX40 -	100
	100615	8,0×280	TX40 -	100
	100616	8,0× 300	TX40 ${ }^{\circ}$	100
	100617	8,0×330	TX40	100
	100618	8,0×400	TX40	100

Gurotec | Constructive fastening

EXAMPLE APPLCATIONS: CEILING ELEMENTS

EXAMPLE APPLCATIONS: WALL ELEMENTS

Gurotec | Constructive fastening

EXAMPLE APPLCATIONS: ROOF ELEMENTS

Mitred roof panels, screw connection with ridge purlin.

Mitred roof panels, diagonal screw connection.

Roof panels on butt joint, diagonal screw connection.

EXAMPLE APPLICATIONS: STAIRCASE CONSTRUCTION WITH CLT

Attach the tier end frontal to the tier support.

Gurotec | Constructive fastening

THE FAST AND SECURE TIMBER-JOINT SYSTEM KONSTRUX CYLINDER-HEAD/COUNTERSUNK-HEAD SCREWS

Appliction examples	Cylinder head			Countersunk head			
	$\begin{gathered} 06,5 \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & 08,0 \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{aligned} & 010,0 \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{aligned} & 06,5 \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{aligned} & 98,0 \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{aligned} & 010,0 \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{gathered} 011,3 \\ {[\mathrm{~mm}]} \end{gathered}$
	X	X	X	X	X	X	x
	X	X	x	X	x	X	x
	-	-	-	X	X	X	X
	-	-	-	X	x	X	x
Main-secondary beam connection	X	X	x	X	x	X	-
	X	X	x	X	x	X	X
	X	X	X	X	X	X	x
	-	X	X	-	X	X	X

Transverse-shear reinforcement of building trusses

KONSTRUX FULLY THREADED SCREW

Technical information

KONSTRUX ST WITH CYLINDER HEAD AND DRILL POINT
6,5 BIS 10,0 MM: TIMBER-TIMBER JOINTS

[^2]Example:
Characterisic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow lood) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}=0,9 \cdot \gamma M=1,3$.
\rightarrow Dimensioning value of the load $\mathrm{E}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The lood-bearing capacity of the joint is therefore considered to have been demonstrated if $R_{d} \geq \mathrm{E}_{d} \rightarrow \min R_{k}=R_{d} \cdot \gamma_{M} / k_{\text {mod }}$
i.e. the characteristic minimum value is calculated based on: $\min \mathrm{Rk}=\mathrm{Rd}_{\mathrm{d}} \cdot \gamma \mathrm{M}_{\mathrm{M}} / \mathrm{kmod} \rightarrow \mathrm{Rk}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning ciids. Projects must only be calculated by outhorised persons.

KONSTRUX ST WITH CYLINDER HEAD AND DRILL POINT 6,5 BIS 10,0 MM: TIMBER-TIMBER JOINTS

Dimensions Tension comnection

Calculation according to $\mathrm{EA}-\mathrm{II} / 0024$. Wood density $\rho \mathrm{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characterisic values of the lood-bearing capacity R_{k} cannot be treated as equivalent to the max. possible load (the max. force). Characterisicic values of the load-bearing capacity R_{k} should be reduced to dimensioning values
R_{d} with regard to the usage class and dass of the load duration: $R_{d}=R_{k} \cdot k m o d / \gamma M$. The dimensioning values of the lood- bearing capacity R_{d} should be contrasted with the dimensioning values of the loods $\left(R_{d} \geq E_{d}\right)$.
Example:
Characteristic value for constant lood (dead weight) $G \mathrm{Gk}=2,00 \mathrm{kN}$ and variable load (e. g. snow load) $\mathrm{Qk}=3,00 \mathrm{kN}$. kmod= $=0,9 . \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the load $\mathrm{Ed}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The lood-bearing capacity of the joint is therefore considered to have been demonstrated if Rd $\geq \mathrm{Ed} . \rightarrow \min \mathrm{Rk}=\mathrm{Rd} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
i.e. the characteristic minimum value is calculated based on: $\min \mathrm{Rk}=\mathrm{Rd} \cdot \gamma \mathrm{M} / \mathrm{kmod} \rightarrow \mathrm{Rk}=7,2 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculated by authorised persons.

KONSTRUX ST WITH COUNTERSUNK HEAD AND DRILL POINT 6,5 BIS 10,0 MM: TIMBER-TIMBER JOINTS

[^3]KONSTRUX ST WITH COUNTERSUNK HEAD AND DRILL POINT 8,0 AND 10,0 MM: TIMBER-TIMBER JOINTS

Characterisicic value of the join's loadbearing capacity Rax,k bzw. Rk acc. to ETA-II/0024

dl xL [mm]	A[mm]	B [mm]		$\mathrm{Rk}^{\text {a) }} \cdot[\mathrm{KN}]$	$\mathrm{Rax}_{\text {a }} \mathrm{k}^{\text {a) }}$-[kN]	$\mathrm{Rk}^{\text {a) }}$-[kN]	$\mathrm{Raxa}_{\text {a }} \mathrm{k}^{\text {a) }}$-[kN]	$\mathrm{Rk}^{\text {a) }} \cdot[\mathrm{kN}]$	$\mathrm{Rax}_{\mathrm{ax}} \mathrm{K}^{\text {a) }} \cdot[\mathrm{KN}]$	$\mathrm{Rk}^{\text {a) }} \cdot[\mathrm{kN}]$
			$\alpha=45^{\circ}$		$\begin{aligned} & \alpha A=90^{\circ} \\ & \alpha B=45^{\circ} \end{aligned}$		$\begin{aligned} & \alpha_{A}=90^{\circ} \\ & \alpha_{B}=90^{\circ} \end{aligned}$		$\begin{aligned} & \alpha A=45^{\circ} \\ & \alpha B=90^{\circ} \end{aligned}$	
8,0 155	60	60	6,65	4,70	6,65	4,70	6,65	4,70	6,65	4,70
$8,0 \times 195$	80	80	7,76	5,49	7,76	5,49	7,16	5,49	7,76	5,49
8,0 220	80	100	10,13	7,17	10,13	7,17	10,13	7,17	10,13	7,17
8, 0245	100	100	9,82	6,95	9,82	6,95	9,82	6,95	9,82	6,95
8,0 $\times 270$	100	120	12,19	8,62	12,19	8,62	12,19	8,62	12,19	8,62
8, $\times 295$	120	100	11,88	8,40	11,88	8,40	11,88	8,40	11,88	8,40
8,0 3330	120	140	15,20	10,75	15,20	10,75	15,20	10,75	15,20	10,75
8,0x 375	140	140	16,79	11,87	16,79	11,87	16,79	11,87	16,79	11,87
$8,0 \times 400$	160	140	16,48	11,65	16,48	11,65	16,48	11,65	16,48	11,65
$8,0 \times 430$	160	160	19,32	13,66	19,32	13,66	19,32	13,66	19,32	13,66
$8,0 \times 480$	180	180	21,38	15,12	21,38	15,12	21,38	15,12	21,38	15,12
$10,0 \times 220$	80	100	12,33	8,72	12,33	8,72	12,33	8,72	12,33	8,72
10,0 245	100	100	11,95	8,45	11,95	8,45	11,95	8,45	11,95	8,45
$10,0 \times 270$	100	120	14,83	10,49	14,83	10,49	14,83	10,49	14,83	10,49
$10,0 \times 300$	120	120	15,03	10,63	15,03	10,63	15,03	10,63	15,03	10,63
$10,0 \times 330$	120	140	18,49	13,07	18,49	13,07	18,49	13,07	18,49	13,07
$10,0 \times 360$	140	140	18,69	13,21	18,69	13,21	18,69	13,21	18,69	13,21
$10,0 \times 400$	160	140	20,04	14,17	20,04	14,17	20,04	14,17	20,04	14,17
$10,0 \times 450$	160	180	25,81	18,25	25,81	18,25	25,81	18,25	25,81	18,25
$10,0 \times 500$	180	200	28,31	20,02	28,31	20,02	28,31	20,02	28,31	20,02
10,0 $\times 550$	200	200	30,82	21,79	30,82	21,79	30,82	21,79	30,82	21,79
$10,0 \times 600$	220	220	33,00	23,33	33,00	23,33	33,00	23,33	33,00	23,33

Calculation according to ETA- $1 \mathrm{l} / 0024$. Wood density $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible lood (the max. force). Characterisicic values of the lood-bearing capacity Rk should be reduced to dimensioning values Rd
with regard to the usage class and class of the load duration: $R_{d}=R_{k} \cdot k_{m o d} / \gamma M$. The dimensioning values of the load-bearing capacity R_{d} should be contrasted with the dimensioning values of the loads ($\left.R_{d} \geq E_{d}\right)$.
Example:
Characteristic value for constant load (dead weight) $G \mathrm{~K}=2,00 \mathrm{kN}$ and variable load (e. g. snow load) $\mathrm{Qk}=3,00 \mathrm{kN} . \mathrm{kmod}=0,9 . \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the load $\mathrm{Ed}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $R_{d} \geq \mathrm{E}_{d} \rightarrow \min R_{k}=R_{d} \cdot \gamma M / k_{\text {mod }}$
i.e. the characterisicic minimum value is calculated based on: $\min \mathrm{Rk}=\mathrm{Rd}_{\mathrm{d}} \cdot \gamma \mathrm{M} / \mathrm{kmod} \rightarrow \mathrm{Rk}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning cids. Projects must only be calculated by authorised persons.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary meassurements. Projects are to be dimensioned exclusively by cuthorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

KONSTRUX WITH COUNTERSUNK HEAD AND DRILL POINT OR AG TIP 11,3 MM: TIMBER-TIMBER CONNECTION

Dimensions			Extraction resistance	Shearing			
			Characterisicic valve of the join's's loadbearing capacity Rax,k acc. to EAA-11/0024	$V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ \square $V\left(\alpha=90^{\circ}\right)$ \qquad $V\left(\alpha=90^{\circ}\right)$	Characterersic loadbearing capacit	$V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=90^{\circ}\right)$ $V\left(\alpha=90^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ of the joint's . to ETA-II/0024	
$\mathrm{dl} \times \mathrm{L}$ [mm]	A [mm]	B [mm]	$\mathrm{Rax}, \mathrm{k}^{\text {a) }}$ [$[\mathrm{kN}]$	$R_{k}{ }^{(a)}-[k N]$	$\mathrm{R}^{\text {a) }}$-[kN]	$R_{k}{ }^{\text {a) }}-[k N]$	$R_{k}{ }^{\text {a) }}-[k N]$
				$\alpha=0^{\circ}$	$\alpha=90^{\circ}$	$\begin{aligned} & \alpha A=0^{\circ} \\ & \alpha B=90^{\circ} \end{aligned}$	$\begin{aligned} & \alpha A=90^{\circ} \\ & \alpha B=0^{\circ} \end{aligned}$
$11,3 \times 300$	160	160	18,25	12,17	10,73	10,73	12,17
$11,3 \times 340$	180	180	20,85	12,82	11,38	11,38	12,82
$11,3 \times 380$	200	200	23,46	13,47	12,03	12,03	13,47
$11,3 \times 420$	220	220	26,07	14,12	12,34	12,34	14,12
$11,3 \times 460$	240	240	26,67	14,77	12,34	12,34	14,77
$11,3 \times 500$	260	260	31,28	15,21	12,34	12,34	15,21
$11,3 \times 540$	280	280	33,89	15,21	12,34	12,34	15,21
$11,3 \times 580$	300	300	36,49	15,21	12,34	12,34	15,21
$11,3 \times 620$	320	320	39,10	15,21	12,34	12,34	15,21
$11,3 \times 660$	340	340	41,71	15,21	12,34	12,34	15,21
11,3x700	360	360	44,32	15,21	12,34	12,34	15,21
11,3x750	380	380	48,23	15,21	12,34	12,34	15,21
$11,3 \times 800$	400	420	50,00	15,21	12,34	15,21	12,34
$11,3 \times 900$	460	460	50,00	15,21	12,34	12,34	15,21
$11,3 \times 1000$	500	520	50,00	15,21	12,34	15,21	12,34

Calculation according to $\mathrm{ETA}-\mathrm{II} / 0024$. Wood density $\rho \mathrm{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the lood-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characterisicic values of the load-bearing capacity Rk should be reduced to dimensioning valves $R d$ with regard to the usage class and class of the load duration: $\mathrm{Rd}=\mathrm{Rk} \cdot \mathrm{kmod} / \gamma M$. The dimensioning values of the load- bearing capacity Rd_{d} should be contrasted with the dimensioning values of the loads ($\mathrm{Rd} \geq \mathrm{Ed}$).

Example:
Characteristic value for constant load (dead weight) Gk= $2,00 \mathrm{kN}$ and variable load (e. g. snow load) $\mathrm{Qk}=3,00 \mathrm{kN} . \mathrm{kmod}=0,9 . \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the load $E d=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The lood-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{Rd}_{\mathrm{d}} \geq \mathrm{Ed}_{\mathrm{d}} \rightarrow \mathrm{min} \mathrm{Rk}_{k}=\mathrm{Rd}_{d} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
i.e. the characterisicic minimum value is calculated based on: $\min \mathrm{Rk}=\mathrm{R}_{\mathrm{d}} \cdot \gamma \mathrm{M} / \mathrm{kmod} \rightarrow \mathrm{Rk}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculated by authorised persons.

KONSTRUX WITH COUNTERSUNK HEAD AND DRILL POINT OR AG TIP 11,3 MM: TIMBER-TIMBER CONNECTION

Calculation according to EA- $11 / 0024$. Wood density $\rho \mathrm{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic valves of the load-bearing capacity Rk cannot be treated os equivalent to the max. possible load (the max. force). Characterisicic values of the load-bearing capacity Rk should be reduced to dimensioning values R_{d}
with regard to the usage class and dlass of the load duration: $R_{d}=R_{k} \cdot k_{m o d} / \gamma M$. The dimensioning values of the load-bearing capacity R_{d} should be contrasted with the dimensioning values of the loads (Rd $\left.\geq E_{d}\right)$.
Example:
Characterisicic value for constant load (dead weight) Gk= $2,00 \mathrm{kN}$ and variable lood (e. g. snow load) $\mathrm{Qk}=3,00 \mathrm{kN} . \mathrm{kmod}=0,9 . \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the load $\mathrm{Ed}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{Rd}_{d} \geq \mathrm{Ed}_{\mathrm{d}} \rightarrow \min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{d} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
i.e. the characterisitic minimum value is calculated based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{d}} \cdot \gamma \mathrm{M} / \mathrm{kmod} \rightarrow \mathrm{R}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculated by authorised persons.

KONSTRUX ST WITH COUNTERSUNK HEAD AND DRILL POINT 6,5 TO 10,0 MM: STEEL-TIMBER JOINTS

Dimensions				Extraction resistance	Tension connection				Shearing	
				 Charocterisicic value of the pion's loodhbering capacity Rax, a acc. 10 EAA-II/0024			\qquad $R_{k}\left(\alpha=90^{\circ}\right)$ int's loadbearing ca 0 ETA-II/0024			\square - ejoint's to ETA-Il/0024
dl xL[mm]	t[mm]	B [mm]	$\mathrm{B} 45^{\circ}$ [mm]	$\mathrm{Rax}, \mathrm{k}^{\text {(1) }}$.[kN]	$\mathrm{Rax}, \mathrm{k}^{\text {a }}$) $[\mathrm{FkN}]$	$\mathrm{Rax}, 1^{1} \mathrm{l}^{\text {a) }}$ [[kN]	$\mathrm{Rk}^{\text {a) }}$. [kN]	$\mathrm{Rk}^{\text {a) }}$. [kN]	$\mathrm{Rk}^{(0)} \cdot[\mathrm{kN}]$	$\mathrm{Rk}^{\text {a) }}$-[kN]
					$\alpha=45^{\circ}$	$\alpha=90^{\circ}$	$\alpha=45^{\circ}$	$\alpha=90^{\circ}$	$\alpha=0^{\circ}$	$\alpha=90^{\circ}$
6,5x80	15	80	60	5,14	4,65	4,65	3,29	3,29	4,17	3,52
6,5 5100	15	100	80	6,73	6,24	6,24	4,41	4,41	4,17	3,52
6,5 120	15	120	80	8,31	1,82	7,82	5,53	5,53	4,17	3,52
6,5 140	15	140	100	9,89	9,40	9,40	6,65	6,65	4,17	3,52
$8,0 \times 95$	15	100	80	1,59	1,00	1,00	4,95	4,95	6,18	5,22
8,0 125	15	120	100	10,43	9,84	9,84	6,\%	6,96	6,18	5,22
$8,0 \times 155$	15	160	120	13,28	12,69	12,69	8,97	8,97	6,18	5,22
8, 10195	15	200	140	17,07	16,48	16,48	11,65	11,65	6,18	5,22
8,0 220	15	220	160	19,44	18,85	18,85	13,33	13,33	6,18	5,22
8,0 245	15	240	180	21,81	21,22	21,22	15,01	15,01	6,18	5,22
8, $\times 270$	15	280	200	24,18	23,59	23,59	16,68	16,68	6,18	5,22
8,0 295	15	300	220	25,00	25,00	25,00	17,68	17,68	6,18	5,22
8,0x 330	15	340	240	25,00	25,00	25,00	17,68	17,68	6,18	5,22
8,0x 375	15	380	280	25,00	25,00	25,00	17,68	17,68	6,18	5,22
8,0x 400	15	400	280	25,00	25,00	25,00	17,68	17,68	6,18	5,22
$8,0 \times 430$	15	440	300	25,00	25,00	25,00	17,68	17,68	6,18	5,22
8,0x 480	15	480	340	25,00	25,00	25,00	17,68	17,68	6,18	5,22
10,0 $\times 125$	15	120	100	12,69	11,97	11,97	8,46	8,46	8,72	1,30
10,0 $\times 155$	15	160	120	16,15	15,43	15,43	10,91	10,91	8,72	1,30
10,0 195	15	200	140	20,76	20,05	20,05	14,17	14,17	8,72	1,30
$10,0 \times 220$	15	220	160	23,65	22,93	22,93	16,21	16,21	8,72	1,30
10,0 245	15	240	180	26,53	25,81	25,81	18,25	18,25	8,72	1,30
$10,0 \times 270$	15	280	200	29,41	28,70	28,70	20,29	20,29	8,72	1,30
$10,0 \times 300$	15	300	220	32,87	32,16	32,16	22,74	22,74	8,72	1,30
10,0 $\times 330$	15	340	240	33,00	33,00	33,00	23,33	23,33	8,72	1,30
10,0 $\times 360$	15	360	260	33,00	33,00	33,00	23,33	23,33	8,72	1,30
$10,0 \times 400$	15	400	280	33,00	33,00	33,00	23,33	23,33	8,72	1,30
10,0x 450	15	460	320	33,00	33,00	33,00	23,33	23,33	8,72	1,30
$10,0 \times 500$	15	500	360	33,00	33,00	33,00	23,33	23,33	8,72	1,30
10,0 $\times 550$	15	560	400	33,00	33,00	33,00	23,33	23,33	8,72	1,30
10,0 600	15	600	420	33,00	33,00	33,00	23,33	23,33	8,72	1,30

Calculation according to $E A-11 / 0024$. Wood density $\rho \mathrm{k}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characterisitic valves of the lood-bearing capacity Rk cannot be treated as equivalent to the max. possible lood (the max. force). Characterersisic values of the load-bearing capacity Rk should be reduced to dimensioning values Rd
with regard to the usage class and dlass of the load duration: $R_{d}=R_{k} \cdot \mathcal{k}_{\text {mod }} / \gamma M$. The dimensioning values of the load-bearing capacity \mathbb{R}_{d} should be contrasted with the dimensioning values of the loads ($\left.\mathbb{R}_{d} \geq \mathbb{E}_{d}\right)$.

Example:

Characteristic valve for constant load (dead weight) $\mathrm{Gk}=2,00 \mathrm{kN}$ and variable load (e. g. snow load) $\mathrm{Qk}=3,00 \mathrm{kN}$. $\mathrm{kmod}=0,9 \cdot \gamma \mathrm{M}=1,3 . \rightarrow$ Dimensioning valve of the load $\mathrm{Ed}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$. The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{R}_{d} \geq \mathrm{Ed}_{\mathrm{d}} \rightarrow \min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{d} \cdot \gamma \mathrm{M} / \mathrm{kmod}$. i.e. the characteristic minimum value is calculcated based on: $\min \mathrm{R}_{k}=\mathrm{R}_{d} \cdot \gamma \mathrm{M} / \mathrm{kmod} \rightarrow \mathrm{R}_{k}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.
Please note: These are planning aids. Projects must only be calculated by authorised persons.

KONSTRUX WITH COUNTERSUNK HEAD AND DRILL POINT OR AG TIP 11,3 MM: STEEL/TIMBER CONNECTION

Dimensions				Exiraction resistance	Tension connection				Shearing	
				 Characterisic value of the joint's loadbearing capacity Rax, a acc. to EAA-11/0024		erisic value of the joint sity Rax,k or Rk acc. to EI				 of the join's acc. to EA-11/0024
$\mathrm{dl} \mathrm{xL}[\mathrm{mm}]$	\dagger [mm]	B [mm]	$\mathrm{B} 45^{\circ}[\mathrm{mm}]$	${\mathrm{Rax}, \mathrm{k}^{\text {(}} \text {) }}^{\text {[kN] }}$	${\mathrm{Rax}, \mathrm{K}^{\text {a }}}^{\text {a) }} \cdot[\mathrm{kN}]$	$\mathrm{Rax}, 1^{\text {a }}$ (${ }^{\text {a }}$ [kN]	$\mathrm{Rk}^{\text {a) }}$.[kN]	$\mathrm{Rk}^{\text {a) }}$-[kN]	$R_{k}{ }^{\text {a) }}$.[kN]	$\mathrm{Rk}^{\text {a) }}$. $[\mathrm{kN}]$
					$\alpha=45^{\circ}$	$\alpha=90^{\circ}$	$\alpha=45^{\circ}$	$\alpha=90^{\circ}$	$\alpha=0^{\circ}$	$\alpha=90^{\circ}$
11,3x300	20	300	220	36,49	35,42	35,42	25,04	25,04	11,79	9,76
$11,3 \times 340$	20	340	240	41,71	40,63	40,63	28,73	28,73	11,79	9,76
11,3x 380	20	380	260	46,92	45,84	45,84	32,42	32,42	11,79	9,76
$11,3 \times 420$	20	420	300	50,00	50,0	50,00	35,36	35,36	11,79	9,76
$11,3 \times 460$	20	460	320	50,00	50,00	50,00	35,36	35,36	11,79	9,76
11,3x500	20	500	360	50,0	50,0	50,0	35,36	35,36	11,79	9,76
11,3x540	20	540	380	50,0	50,00	50,0	35,36	35,36	11,79	9,76
11,3x580	20	580	420	50,0	50,0	50,0	35,36	35,36	11,79	9,76
$11,3 \times 620$	20	620	440	50,00	50,00	50,00	35,36	35,36	11,79	9,76
$11,3 \times 660$	20	660	460	50,00	50,00	50,00	35,36	35,36	11,79	9,76
$11,3 \times 700$	20	700	500	50,00	50,00	50,00	35,36	35,36	11,79	9,76
$11,3 \times 750$	20	740	540	50,00	50,00	50,00	35,36	35,36	11,79	9,76
$11,3 \times 800$	20	800	560	50,00	50,00	50,00	35,36	35,36	11,79	9,76
11,3x900	20	900	640	50,00	50,00	50,00	35,36	35,36	11,79	9,76
11,3x 1000	20	1000	700	50,00	50,0	50,0	35,36	35,36	11,79	9,76

Calculation according to EAA- $1 / / 0024$. Wood density $\rho \mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the lood-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characteristic values of the load-bearing capacity Rk should be reduced to dimensioning valves

Rd with regard to the usage class and class of the load duration: $\mathrm{Rd}_{d}=\mathrm{Rk}_{k} \cdot \mathrm{kmod}_{\bmod } / \gamma \mathrm{M}$. The dimensioning values of the lood-bearing capacity Rd_{d} should be contrasted with the dimensioning values of the loads ($\left.\mathrm{R}_{\mathrm{d}} \geq \mathrm{Ed}_{\mathrm{d}}\right)$.
Example:
Characteristic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow load) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}=0,9 . \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the lood $\mathrm{E}_{\mathrm{d}}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The lood-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{Rd}_{\mathrm{d}} \geq \mathrm{Ed} . \rightarrow \min \mathrm{Rk}=\mathrm{Rd}_{d} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
i.e. the characteristic minimum value is calculated based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{d}} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}_{\bmod } \rightarrow \mathrm{R}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning cids. Projects must only be calculated by authorised persons.

KONSTRUX ST WITH CYLINDER HEAD AND DRILL POINT 6,5 MM: MAIN/SECONDARY BEAM JOINTS

Calculation according to $\mathrm{ETA}-\mathrm{ll} / \mathrm{OO24}$. Wood density $\rho \mathrm{\rho k}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic valves of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characterisicic values of the load bearing capacity Rk should be reduced to dimensioning values Rd with regard to the usage class and dlass of the load duration: $\mathrm{Rd}=\mathrm{Rk} \cdot \mathrm{Kmod} / \gamma \mathrm{m}$. The dimensioning values of the load- bearing capacity Rd should be contrasted with the dimensioning values of the loads ($\mathbb{R d} \geq \mathrm{Ed}$).
Example:
Characterisic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow lood) $\mathrm{Qk}_{\mathrm{k}}=3,00 \mathrm{kN}$. $\mathrm{kmod}=0,9 . \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning valve of the lood $E_{d}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
\rightarrow The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{Rd} \geq \mathrm{Ed} . \rightarrow \min \mathrm{Rk}=\mathrm{Rd} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
i.e. the characteristic minimum value is calculated based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{d} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod} \rightarrow \mathrm{R}_{k}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.
b) Estimated with an efficient quantity of pairs of screws: n,, .

Please note: These are planning aids. Projects must only be calculated by authorised persons.

KONSTRUX ST WITH CYLINDER HEAD AND DRILL POINT 8,0 MM: MAIN/ SECONDARY BEAM JOINTS

Characterisic value of the joint's
$\mathrm{a}_{2}=\min .40 \mathrm{~mm}, \mathrm{a}_{2},=\min .24 \mathrm{~mm}, \mathrm{k}=\min .12 \mathrm{~mm}$ loadbearing capacity Ry,k acc. to ETA-II/0024

$\mathrm{dl} \times \mathrm{L}[\mathrm{mm}]$	min. WSB [mm]	min. HsB [mm]	$\min . W_{M B}[\mathrm{~mm}]$	min. $\mathrm{H}_{M B}$ [mm]	$\mathrm{m}[\mathrm{mm}]$	β°	$\left.R_{v,}, a^{\prime}, \mathrm{b}\right)$ - [kN]	Pair (n)
$8,0 \times 245$	80	200	100	200	87	45	16,43	1
	100						30,66	2
	140						44,16	3
	180						57,21	4
$8,0 \times 295$	80	220	120	220	104	45	17,44	1
	100						32,55	2
	140						46,88	3
	180						60,74	4
$8,0 \times 330$	80	260	140	260	117	45	17,44	1
	100						32,55	2
	140						46,88	3
	180						60,74	4
$8,0 \times 375$	80	280	160	280	133	45	17,44	1
	100						32,55	2
	140						46,88	3
	180						60,74	4
$8,0 \times 400$	80	300	160	300	141	45	17,44	1
	100						32,55	2
	140						46,88	3
	180						60,74	4
$8,0 \times 430$	80	320	180	320	152	45	17,44	1
	100						32,55	2
	140						46,88	3
	180						60,74	4
$8,0 \times 480$	80	360	180	360	170	45	17,44	1
	100						32,55	2
	140						46,88	3
	180						60,74	4

Calculation according to $\mathrm{EAA}-\mathrm{II} / 0024$. Wood density $\mathrm{\rho k}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic valves of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible lood (the max. force). Characteristic values of the load-bearing capacity Rk should be reduced to dimensioning values Rd with regard to the usage class and class of the load duration: $\mathbb{R d}_{d}=\mathbb{R}_{k} \cdot \mathrm{kmod}_{\mathrm{mod}} / \gamma$. The dimensioning values of the load-bearing capacity \mathbb{R}_{d} should be contrasted with the dimensioning values of the loads ($\left.\mathbb{R}_{d} \geq \mathrm{F}_{d}\right)$.
Example:
Characteristic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variabble load (e. g. snow load) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}=0,9 \cdot \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the lood $\mathrm{Ed}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{R}_{\mathrm{d}} \geq \mathrm{Ed}_{\mathrm{d}} \rightarrow \min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{d}} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}_{\bmod }$
i.e. the characteristic minimum value is calculated based on: $\min \mathrm{Rk}=\mathrm{Rd}_{\mathrm{d}} \cdot \gamma \mathrm{M} / \mathrm{kmod} \rightarrow \mathrm{Rk}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.
b) Estimated with on efficient quantity of pairs of screws: n^{0}, .

Please note: These are planning cids. Projects must only be calculated by authorised persons.

KONSTRUX ST WITH CYLINDER HEAD AND DRILL POINT 10,0 MM: MAIN/SECONDARY BEAM JOINTS

Calculation according to $\mathrm{EA}-\mathrm{II} / 0024$. Wood density $\rho_{\mathrm{k}}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumpions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typoographical and printing errors.
a) The characteristic values of the load-bearing capacity Rk cannot be treated os equivalent to the max. possible load (the max. force). Characterisic values of the load-bearing capacity Rk should be reduced to dimensioning values Rd with regard to the usage class and class of the load duration: $R d=R_{k} \cdot K_{m o d} / \gamma \mathrm{m}$. The dimensioning values of the load-bearing capacity Rd should be contrasted with the dimensioning values of the loads ($\left.R_{d} \geq E_{d}\right)$.
Example:
Characterisic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow load) $\mathrm{Qk}_{\mathrm{k}}=3,00 \mathrm{kN}$. $\mathrm{kmod}=0,9 \cdot \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the lood $\mathrm{Ed}=2,00 \cdot 1,35+3,00 \cdot 1,5=1,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{Rd} \geq \mathrm{Ed} . \rightarrow \mathrm{min} \mathrm{Rk}=\mathrm{Rd} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
i.e. the characterisicic minimum value is calculated based on: $\min \mathrm{R}_{k}=\mathrm{R}_{d} \cdot \gamma \mathrm{~m} / \mathrm{k}_{\mathrm{mod}} \rightarrow \mathrm{R}_{k}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.
b) Estimated with an efficient quantity of pairs of screws: $\mathrm{n} 0,9$.

Please note: These are planning aids. Projects must only be calculated by authorised persons.

KONSTRUX ST WITH CYLINDER HEAD 6,5 MM

GEOMETRY AND MECHANICAL PROPERTIES

KonstruX ST-CH 06, 5xL -TX30								
Art. no.	$\begin{gathered} ⿺ \\ {[\mathrm{~mm}]} \end{gathered}$	Lg, eff [mm]	PU	Pre-drilling diameter $0 \mathrm{~d}_{v}$ [mm]	Characteristic pull-out resistance value $\mathrm{f}_{\mathrm{ax}, \mathrm{k}}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	Characteristic tensile strength value fiens,,$[\mathrm{kN}]$	Characteristic yield moment $M_{y, k}[\mathrm{Nmm}]$	Characteristic yield strength $f_{y, k}\left[\mathrm{~N} / \mathrm{mm}^{2}\right]$
904808	80	71	100	4,5	11,4	17,0	1500	1000
908809	100	91	100	4,5	11,4	17,0	1500	1000
904810	120	11	100	4,5	11,4	17,0	1500	1000
908811	140	131	100	4,5	11,4	17,0	1500	1000
90812	160	151	100	4,5	11,4	17,0	1500	1000
904813	195	186	100	4,5	11,4	17,0	1500	1000

Axial and edge distances

The minimum distances for KonstruX loaded exclusively in the axial direction in pre-drilled and non-pre-drilled holes in components measuring min. $t=65$ thick and min. 60 mm wide must be selected as follows

Axial distance parallel to the direction of the grain	al	[mm]	5.d	33
Axial distance perpendicular to the direction of the grain	a2	[mm]	5.d	33
Distance from the centre of gravity of the screw area driven into the wood from the end grain surface	al, 1	[mm]	5.d	33
Distance from the centre of gravity of the screw area driven into the wood from the side grain sufface	02, 6	[mm]	3.d	20
Axill distance between a crossing pair of screws	a2,k	[mm]	1,5•d	10
Reduced axial distance a2 perpendicular to the direction of the grain, if al $\cdot 02 \geq 25 \cdot \mathrm{~d}^{2}$	a2, red	[mm]	2,5•d	16

The axial and edge distances are minimum distances according to DIN EN 1995:2014 (EC5) and generally apply to fasteners subjected to transverse loads
al
Distance from the fasteners within a row in the direction of the grain

02
Distance from the fasteners perpendicular to the direction of the grain
a3,
Distance between the fastener and the unloaded end of the end grain $90^{\circ} \leq \alpha \leq 270^{\circ}$

03,1
Distance between the fastener and the loaded end of the end grain $-90^{\circ} \leq \alpha \leq 90^{\circ}$

Eurotec | Constructive fastening

When analysed, the minimum distances for Konstrux screws in predrililed holes that are looded in a crosswise direction
ure as follows according to the position of the direction of the grain

Minimum distances for KonstruX screws in pre-drilled holes that ree loaded in a crosswise direction with a force/fibre angle of 0° and 90°

			Force/fibre angle $\alpha=0^{\circ}$		Force/fibre angle $\alpha=90^{\circ}$	
Axial distance parallel to the direction of the grain	al	[mm]	5.d	33	4.d	33
Axial distance perpendicular to the direction of the grain	02	[mm]	3.d	20	4.d	33
Distance from the centre of gravity of the screw area driven into the wood from the unloaded end of the end grain	03, 6	[mm]	7.d	46	7.d	46
Distance from the centre of gravity of the screw area driven into the wood from the loaded end of the end groin	03, ${ }^{\text {t }}$	[mm]	12.d	78	7.d	46
Axial distance perpendicular to the unloaded edge	04,	[mm]	3.d	20	3.d	20
Axial distance from the looded dedge	04, ${ }^{\text {t }}$	[mm]	3.d	20	7.d	46

When analysed, the minimum distances for KonstruX in non-pre-drilled holes, loaded in a crosswise direction, are as follows according to the position of the direction of the grain

KONSTRUX ST WITH CYLINDER HEAD AND DRILL POINT 6,5 MM: SHEARING STRENGTH RATIO WITHOUT PRE-DRILLING

Dimensions			Axial pull-out load capacity	Shearing strength ratio without pre-drilling			
				$\xrightarrow{V\left(a=0^{\circ}\right)}$		$\xrightarrow{\mathrm{V}\left(\mathrm{a}=0^{\circ}\right)}$	A
				$V\left(\mathrm{a}=0^{\circ}\right)$	- ${ }^{\text {® }}$	$\underline{V\left(a=90^{\circ}\right)}$	B
				$\underbrace{V\left(a=90^{\circ}\right)}$		$\xrightarrow{\mathrm{V}\left(\mathrm{a}=90^{\circ}\right)}$	${ }^{\text {A }}$
			Characterisicic value of the joint's loadbearing capacity Rax,k acc. to ETA-11/0024		Characterisicic value of the joint's loadbearing capacity Rk occ. to ETA-II/0024		
Odl x L[mm]	A [mm]	B [mm]	$\mathrm{R}_{\mathrm{ax}, \mathrm{k}} \mathrm{l}^{\text {a) }}$ [[KN]	$\mathrm{Rk}^{\text {a) }}$-[kN]	$\mathrm{R}_{\mathrm{k}}{ }^{\text {a) }}$-[kN]	$\mathrm{Rk}^{\text {a) }}$-[kN]	$\mathrm{Rk}^{\text {a) }}$-[kN]
				$\alpha=0^{\circ}$	$\alpha=90^{\circ}$	$\alpha_{A}=0^{\circ}$	$\alpha_{A}=90^{\circ}$
						$\alpha B=90^{\circ}$	$\alpha B=0^{\circ}$
6,5x 120	60	80	4,35	3,83	3,37	3,83	3,37
6,5 140	80	80	4,43	3,85	3,39	3,39	3,85
6,5 5160	80	100	5,94	4,22	3,76	4,22	3,76
6,5× 195	100	100	7,20	4,54	4,08	4,8	4,54

[^4]
Gurotec | Constructive fastening

ANGLE-BRACKET SCREW (ABS)

For quick and easy screwing in

The Eurotec Angle-bracket screw (ABS) is made of hardened carbon steel and is specially designed for joints between steel sheet and wood. The spliting effect in the wood is reduced by the geometry of the screw tip. In addition, the screw is characterized, among other things, by the smooth shank under the head, which allows load transfer during shearing.

- Ensures quick and easy screwing in

Angle-bracket mounted in CLT system angle.

Angle-bracket screw
Blue, galvanised steel

N	Art. no.	Dimensions [mm]	Drive	PU
	945343	$5,0 \times 25$	TX20	250
[4.11/0084	945232	$5,0 \times 35$	TX20	250
	945241	$5,0 \times 40$	TX20	250
	945233	$5,0 \times 50$	TX20	250
	945344	$5,0 \times 60$	TX20	250
	945345	$5,0 \times 70$	TX20	250

TECHNICAL INFORMATIONS

ANGLE-BRACKET SCREW, STEEL BLUE GALVANISED

| Dimensions | Extraction resistance | Shearing Steel-Timber |
| :---: | :---: | :---: | :---: |

$\begin{aligned} & \mathrm{dl} \times \mathrm{L} \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{gathered} d k \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \lg \\ {[\mathrm{mm}]} \end{gathered}$	$F_{a x, 90, R k}$ [kN]	$\begin{gathered} t \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} R_{k} \\ {[k N]} \end{gathered}$	$\begin{gathered} t \\ {[\mathrm{~mm}]} \end{gathered}$	R_{k} [kN]	$\begin{gathered} \dagger \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} R_{k} \\ {[k N]} \end{gathered}$	$\begin{gathered} t \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} R_{k} \\ {[k N]} \end{gathered}$	$\begin{gathered} \dagger \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} R_{k} \\ {[k N]} \end{gathered}$
			$t \leq 9,0[\mathrm{~mm}]$		$\alpha=0^{\circ}$								
					$\alpha=90^{\circ}$								
5, 0×25	7,2	16	0,97	1,5	0,89	2,0	0,87	2,5	0,85	3,0	0,\%	4,0	1,18
5,0 $\times 35$		26	1,57		1,27		1,25		1,23		1,35		1,59
5,0 $\times 40$		31	1,88		1,46		1,44		1,42		1,55		1,81
5,0x50		41	2,48		1,84		1,82		1,80		1,89		2,10
5,0×60		51	3,09		1,99		1,99		1,99		2,09		2,29
5,0x70		61	3,69		2,14		2,14		2,14		2,24		2,4

[^5]Example:
Characterisicic value for constant load (dead load) $G_{k}=2,00 \mathrm{kN}$ and variable load (e.g. snow load) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}=0,9 \cdot \gamma \mathrm{M}=1,3$.
\rightarrow Rated value of the load $\mathrm{E}_{\mathrm{d}}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
Lood-bearing capacity of the connection is proved if $\mathrm{Rd} \geq \mathrm{Ed} . \rightarrow \mathrm{min} \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{d} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}$
That is, the characteristic minimum valve of the lood-bearing capacity is calculated as: $\min R_{k}=R_{d} \cdot \gamma \mathrm{M} / \mathrm{kmod}_{\mathrm{mod}} \rightarrow \mathrm{R}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ Aligned with table values.
Please note: These are planning aids. Projects must only be calculated by authorised persons.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by cuthorised persons in accordance with the State Building Code. As per LBuoO, please contact a qualified structural engineer for a poid proof of sability. We will be happy to refer you to someone.

PANELTWISTEC

Paneltwistec wood construction screws may generally be installed in CLT without predrilling. The Paneltwistec is a wood construction screw with a special screw tip and milling ribs above the thread. The cutting notch on the screw tip ensures fast gripping and less splitting effect when screwing in. The Paneltwistec AG instead features a folded-down thread, which reduces the screw-in torque. Paneltwistec wood construction screws are available in both countersunk head and Washer head variants, as well as made of coated carbon steels and various stainless steels.

PANELTWISTEC AG

Blue galvanised

Paneltwistec AG
Countersunk head, blue galvanised

ADVANTAGES

- Quick and easy screwing-in
- Reduced spliting effect
- National and international approvals
- Free of chromium (VI) oxide
- No hammering of the screws when screwing in due to TX-Drive

空:	Art. no.	Dimensions [mm]	Drive	PU
	945436	3,5×30	TX15	1000
	945838	3,5×35	TX15	1000
	945437	3,5440	TX15	1000
	945490	3,5 $\times 50$	TX15	500
	945491	4,0 $\times 30$	TX20	1000
	945836	4,0×35	TX20	1000
	945492	4,0 40	TX20	1000
	945493	4,0x 45	TX20	500
	945494	4,0 $\times 50$	TX20	500
	945495	4,0x60	TX20	200
	945446	4,0×70	TX20	200
	945497	4,0x80	TX20	200
	945498	4,5 $\times 40$	TX25	500
	945588	4,5 45	TX25	500
	945499	4,5 $\times 50$	TX25	500
	945567	4,5660	TX25	200
	94568	4,5 $\times 70$	TX25	200
	94556	4,5 80	TX25	200
	945574	$5,0 \times 40$	TX25	200
	945837	$5,0 \times 45$	TX25	200
	94575	5,0x50	TX25	200
	945576	$5,0 \times 60$	TX25	200
	945577	5,0×70	TX25	200
	945578	5,0x80	TX25	200
	945579	5,0×90	TX25	200
	945580	5,0× 100	TX25	200
	945581	$5,0 \times 120$	TX25	200
	94583	6,0×60	TX30	200
	945584	6,0×70	TX30	200
	945632	6,0x80	TX30	200
	945633	$6,0 \times 90$	TX30	100
	945634	6,0 $\times 100$	TX30	100
	945635	$6,0 \times 110$	TX30	100
	945636	$6,0 \times 120$	TX30	100
	945637	6,0x 130	TX30	100
	945638	6,0x 140	TX30	100
	945639	6,0x 150	TX30	100
	945640	$6,0 \times 160$	TX30	100
	945641	6,0×180	TX30	100
	945642	$6,0 \times 200$	TX30	100
	945643	6,0x 220	TX30	100
	945644	6,0x 240	TX30	100
	945645	6,0×260	TX30	100
	945646	6,0x 280	TX30	100
	945647	6,0x 300	TX30	100

Paneltwistec AG
Countersunk head, blue galvanised

ADVANTAGES

- Quick and easy screwing-in
- Reduced splitting effect
- National and international approvals
- Free of chromium (VI) oxide
- No hammering of the screws when screwing
in due to TX-Drive

Art. no.	Dimensions [mm]	Drive	PU
944715	$8,0 \times 80$	TX40 •	50
944716	8,0 $\times 100$	TX40 -	50
944717	8,0 $\times 120$	TX40 -	50
944718	$8,0 \times 140$	TX40 -	50
944719	$8,0 \times 160$	TX40 -	50
944720	8,0x 180	TX40 -	50
944721	$8,0 \times 200$	TX40 -	50
944722	8,0 $\times 220$	TX40 -	50
944723	8,0 $\times 240$	TX40 -	50
944724	8,0 $\times 260$	TX40 -	50
944725	8,0 $\times 280$	TX40 -	50
944726	8,00300	TX40 -	50
944727	8,0x 320	TX40 -	50
944728	8,0x 340	TX40 -	50
944729	8,0 $\times 360$	TX40 -	50
944730	8,0 $\times 380$	TX40 -	50
944731	8,0 0400	TX40 -	50
944732	8,0x 420	TX40 -	25
944733	8,0x440	TX40 -	25
944734	8,0 $\times 460$	TX40 -	25
944735	8,0x 480	TX40 -	25
944736	8,0x 500	TX40 -	25
944737	$8,0 \times 550$	TX40 -	25
944739	8,00600	TX40 -	25
945687	10×100	TX50 •	50
945688	10×120	TX50 •	50
945689	10×140	TX50 •	50
945690	10×160	TX50 •	50
945691	10×180	TX50 •	50
945692	10×200	TX50 •	50
945693	10×220	TX50 •	50
945694	10×240	TX50 •	50
945695	10×260	TX50 •	50
945696	10×280	TX50 •	50
945697	10×300	TX50 •	50
945698	10×320	TX50 •	50
945699	10×340	TX50 •	50
945703	10×360	TX50 •	50
945709	10×380	TX50 •	50
945711	10×400	TX50 •	50

TECHNICAL INFORMATION

PANELTWISTEC AG, COUNTERSUNK-HEAD, BLUE GALVANISED

Calculation according to $\mathrm{ETA}-\mathrm{II} / 0024$. Wood density $\rho \mathrm{k}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characterisicic values of the lood-bearing capacity Rk cannot be trected as equivalent to the max. possible load (the max. force). Characterisisic values of the load-bearing capacity Rk should be reduced to dimensioning values
R_{d} with regard to the usage class and class of the load duration: $R_{d}=R_{k} \cdot k_{m o d} / \gamma M$. The dimensioning values of the load-bearing capacity R_{d} should be contrasted with the dimensioning values of the loads $\left(R_{d} \geq E_{d}\right)$.
Example:
Characterisic valve for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow lood) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}=0,9 \cdot \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the lood $\mathrm{E} d=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $R_{d} \geq \mathrm{E}_{\mathrm{d}} \rightarrow \min \mathrm{R}_{k}=\mathrm{R}_{\mathrm{d}} \cdot \gamma_{M} / \mathrm{kmod}_{\text {mod }}$
I.e. the characteristic minimum value is calculated based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{d}} \cdot \gamma \mathrm{M} / \mathrm{kmod}_{\bmod } \rightarrow \mathrm{R}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning dids. Projects must only be calculated by authorised persons.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised
persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Calculation according to $\mathrm{EA}-11 / 0024$. Wood density $\rho_{\mathrm{k}}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characterisic values of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characteristic values of the load-bearing capacity Rk should be reduced to dimensioning values
R_{d} with regard to the usage class and dlass of the load duration: $R_{d}=R_{k} \cdot k_{m o d} / \gamma M$. The dimensioning values of the load-bearing capacity R_{d} should be contrasted with the dimensioning values of the loads $\left(R_{d} \geq E_{d}\right)$.
Example:
Characterisic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow lood) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}=0,9 . \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the lood $E d=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{R}_{\mathrm{d}} \geq \mathrm{Ed} . \rightarrow \mathrm{min} \mathrm{Rk}_{\mathrm{k}}=\mathrm{Rd}_{d} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}$
I.e. the characteristic minimum value is calculcted based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{d} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod} \rightarrow \mathrm{R}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning ciids. Proiects must only be calculated by authorised persons.

Calculation according to $\mathrm{EA}-\mathrm{II} / 0024$. Wood density $\rho_{\mathrm{k}}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the lood-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characterisicic values of the lood-bearing capacity Pk should be reduced to dimensioning values
R_{d} with regard to the usage class and class of the load duration: $R_{d}=R_{k} \cdot k_{m o d} / \gamma M$. The dimensioning values of the load-bearing capacity $R d$ should be contrasted with the dimensioning values of the loads ($\left.R_{d} \geq E_{d}\right)$.
Example:
Characterisic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow load) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}=0,9 \cdot \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the load $\mathrm{E}_{\mathrm{d}}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{Rd} \geq \mathrm{Ed}_{\mathrm{d}} \rightarrow \mathrm{min} \mathrm{Rk}=\mathrm{Rd}_{d} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
I.e. the characterisicic minimum value is calculated based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{d} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}_{\bmod } \rightarrow \mathrm{R}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,9 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning dids. Projects must only be calculated by authorised persons.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised
persons in accordance with the State Building Code. As per LBuuO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Gurotec
 Constructive fastening

Paneltwistec AG	Art. no.	Dimensions [mm]	Drive	PU
Washer head screw, blue galvanised	945806	$8,0 \times 60$	TX40 -	50
	944588	$8,0 \times 80$	Tx40 -	50
T	94458	8,0× 100	TX40	50
	94459	$8,0 \times 120$	TX40 -	50
	94459	$8,0 \times 140$	TX40 -	50
	94592	$8,0 \times 160$	TX40 -	50
	944593	8,0×180	Tx40	50
	94459	8,0×200	TX40	50
	944595	8,0×220	TX40	50
0	94459\%	8,0 240	TX40	50
8	94459	8,0 $\times 260$	TX40	50
\%	944598	$8,0 \times 280$	TX40 -	50
+	94459	$8,0 \times 300$	TX40 -	50
H	94460	8,0×320	TX40 -	50
者	944601	8,0×340	TX40	50
早	94460	8,0x 360	TX40	50
\#	94603	8,0×380	TX40	50
7	94604	8,0x400	TX40	50
1	94665	$8,0 \times 420$	TX40 -	25
1	944606	8,0x 440	TX40	25
	944607	8,0x460	TX40	25
ADVANTAGES	94608	8,0x480	TX40	25
- The larger head diameter allows for considerably higher torqu	944609	8,0×500	TX40 ${ }^{\circ}$	25
and head pull-through capacity	944610	8,0x550	TX40 -	25
- This makes for better use of the screw's tensile load-bearing strength	944611	8,0×600	TX40 -	25

Paneltwistec AG
Washer head screw, blue galvanised

㴍	
\cdots	H/204

Art. no.	Dimensions [mm]	Drive	PU
945750	10x80	TX50 -	50
945751	10×100	TX50 -	50
945752	10×120	TX50	50
945753	10×140	TX50 -	50
945754	10×160	TX50 -	50
945755	10×180	TX50 -	50
945756	10×200	TX50 -	50
945757	10×220	TX50 -	50
945758	10x 240	TX50 -	50
945759	10×260	TX50 -	50
945760	10×280	TX50 -	50
945761	10×300	TX50 -	50
945762	10×320	TX50 -	50
945763	10×340	TX50	50
945764	10×360	TX50 -	50
945765	10×380	TX50 -	50
945766	10x 400	TX50 -	50

ADVANTAGES

The larger head diameter allows for considerably higher
torque and head pull-hrough capacity
This makes for better use of the screw's tensile load-bearing strength

PANELTWISTEC AG, WASHER HEAD, BLUE GALVANISED

 Eviop. Vodm BowerhugETA-11/0024

Dimensions				Extraction resistance	Head pull-through resistance	Wood-Wood shearing				Steel-Wood shearing	
						$V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=90^{\circ}\right)$			$\frac{\sqrt{7})}{\sqrt{5})}$		
$\begin{aligned} & \mathrm{dl} \times \mathrm{L} \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{gathered} \mathrm{dk} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \text { AD } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{El} \\ {[\mathrm{~mm}]} \end{gathered}$	$\mathrm{Fax}_{, ~ 90, R k}$ [kN]	$\begin{gathered} \text { Fax_head, Rk }_{\text {[kN] }} \end{gathered}$	Fla,Rk [kN]	$\begin{array}{ll}\text { Fla,Rk } & \text { Fla,Rk } \\ {[\mathrm{kN}]} & {[\mathrm{kN}]}\end{array}$	Fla,Rk [kN]	$\begin{gathered} \dagger \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{aligned} & \text { Fla,Rk } \\ & {[\mathrm{kN}]} \end{aligned}$	$\begin{aligned} & \text { Fla,Rk } \\ & {[\mathrm{kN}]} \end{aligned}$
							$\alpha A D=0^{\circ}$	$\begin{gathered} \alpha A D= \\ 90^{\circ} \end{gathered}$			
						$\alpha=0^{\circ}$	$\alpha=90^{\circ} \quad \alpha E T=90^{\circ}$	$\begin{gathered} \alpha E I= \\ 0 \end{gathered}$		$\alpha=0^{\circ}$	$\alpha=90^{\circ}$
$4,0 \times 40$	10,0	16	24	1,24	1,20		0,95		2		1,15
$4,0 \times 50$	10,0	20	30	1,55	1,20		1,03		2		1,23
$4,0 \times 60$	10,0	24	36	1,86	1,20		1,12		2		1,31
$4,5 \times 50$	11,0	20	30	1,69	1,45		1,20		2		1,44
$4,5 \times 60$	11,0	24	36	2,03	1,45		1,29		2		1,53
$4,5 \times 70$	11,0	28	42	2,36	1,45		1,38		2		1,61
5,0×50	12,0	20	30	1,82	1,73		1,37		2		1,67
$5,0 \times 60$	12,0	24	36	2,18	1,73		1,47		2		1,76
$5,0 \times 70$	12,0	28	42	2,54	1,73		1,57		2		1,85
$5,0 \times 80$	12,0	32	48	2,90	1,73		1,65		2		1,94
5,0 100	12,0	40	60	3,63	1,73		1,65		2		2,12
$6,0 \times 30$	14,0	6	24	1,64	2,35		0,65		2		1,20
$6,0 \times 40$	14,0	16	24	1,64	2,35		1,33		2		1,63
$6,0 \times 50$	14,0	20	30	2,05	2,35		1,66		2		2,06
6,0×60	14,0	24	36	2,46	2,35		1,87		2		2,26
$6,0 \times 70$	14,0	28	42	2,87	2,35		1,97		2		2,36
6,0×80	14,0	32	48	3,28	2,35		2,09		2		2,46
6,0×90	14,0	36	54	3,69	2,35		2,21		2		2,57
$6,0 \times 100$	14,0	40	60	4,10	2,35		2,23		2		2,67
$6,0 \times 110$	14,0	44	66	4,79	2,35		2,23		2		2,71
$6,0 \times 120$	14,0	50	70	4,79	2,35		2,23		2		2,84
$6,0 \times 130$	14,0	60	70	4,79	2,35		2,23		2		2,84
$6,0 \times 140$	14,0	70	70	4,79	2,35		2,23		2		2,84
$6,0 \times 150$	14,0	80	70	4,79	2,35		2,23		2		2,84
$6,0 \times 160$	14,0	90	70	4,79	2,35		2,23		2		2,84
6,0 0180	14,0	110	70	4,79	2,35		2,23		2		2,84
$6,0 \times 200$	14,0	130	70	4,79	2,35		2,23		2		2,84
$6,0 \times 220$	14,0	150	70	4,79	2,35		2,23		2		2,84
6,0 $\times 240$	14,0	170	70	4,79	2,35		2,23		2		2,84
$6,0 \times 260$	14,0	190	70	4,79	2,35		2,23		2		2,84
$6,0 \times 280$	14,0	210	70	4,79	2,35		2,23		2		2,84
$6,0 \times 300$	14,0	230	70	4,79	2,35		2,23		2		2,84

Calculation according to $\mathrm{ETA}-\mathrm{II} / 0024$. Wood density $\rho_{\mathrm{k}}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characterisicic values of the lood-bearing capacity Rk should be reduced to dimensioning values Rd
with regard to the usage class and class of the load duration: $\mathrm{Rd}=\mathrm{Rk} \cdot \mathrm{Kmod} / \gamma \mathrm{m}$. The dimensioning values of the load-bearing capacity Rd should be contrasted with the dimensioning values of the loads (Rd $\geq \mathrm{Ed})$.
Example:
Characterisic value for constant lood (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow lood) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}^{2}=0,9 . \gamma \mathrm{m}=1,3$.
\rightarrow Dimensioning value of the lood $E d=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{R}_{\mathrm{d}} \geq \mathrm{Ed}_{\mathrm{d}} \rightarrow \min \mathrm{R}_{\mathrm{k}}=\mathrm{Rd}_{\mathrm{d}} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
I.e. the characteristic minimum value is calculcted based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{d} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}_{\bmod } \rightarrow \mathrm{R}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculated by authorised persons.

Calculation according to EA- $\mathrm{II} / 0024$. Wood density $\rho \mathrm{pk}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumpions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characterisic values of the lood-bearing capacity Rk cannot be treated as equivalent to the max. possible lood (the max. force). Characterisicic values of the load-bearing capacity Rk should be reduced to dimensioning values Rd with regard to the usage class and class of the load duration: $R_{d}=R_{k} \cdot k_{m o d} / \gamma$. The dimensioning values of the load-bearing capacity R_{d} should be contrasted with the dimensioning values of the loods $\left(R_{d} \geq E_{d}\right)$.

Example:

Characterisic value for constant lood (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variabbe lood (e. g. snow load) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}=0,9 . \gamma_{\mathrm{M}}=1,3$.
\rightarrow Dimensioning value of the load $\mathrm{Ed}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The lood-bearing capacity of the joint is therefore considered to have been demonstrated if $R_{d} \geq E_{d} . \rightarrow \min R_{k}=R_{d} \cdot \gamma_{M} / k_{\text {mod }}$
l.e. the characteristic minimum value is calculated based on: $\min \mathrm{Rk}=\mathrm{Rd} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod} \rightarrow \mathrm{Rk}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculated by outhorised persons.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary meassurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Calculation according to $\mathrm{EA}-\mathrm{II} / \mathrm{OO24}$. Wood density $\rho_{\mathrm{k}}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subject to typographical and printing errors.
a) The characteristic values of the lood-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characteristic values of the load-bearing capacity Rk should be reduced to dimensioning values Rd
with regard to the usage class and class of the lood duration: $R_{d}=R_{k} \cdot \mathrm{~K}_{\text {mod }} / \gamma \mathrm{M}$. The dimensioning values of the load-bearing capacity \mathbb{R}_{d} should be contrassed with the dimensioning values of the loads ($\left.\mathbb{R}_{d} \geq \mathrm{E}_{\mathrm{d}}\right)$.
Example:
Characterisic value for constant load (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable lood (e. g. snow load) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}=0,9 . \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the load $\mathrm{E}_{\mathrm{d}}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{R}_{\mathrm{d}} \geq \mathrm{E}_{\mathrm{d}} \rightarrow \min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{d}} \cdot \gamma \mathrm{M} / \mathrm{kmod}_{\mathrm{mod}}$
I.e. the characteristic minimum valve is calculated based on: $\min \mathrm{R}_{k}=\mathrm{R}_{d} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod}_{\bmod } \rightarrow \mathrm{R}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning aids. Projects must only be calculcted by authorised persons.

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

PANELTWISTEC

Hardened stainless steel

Paneltwistec	Art．no．	Dimensions［mm］	Drive	PU
Countersunk－head，scrape point，	90474	4，0 40	TX20	500
hardened stainless steel	904475	4，0 45	TX20	500
	904776	4，0 050	TX20	500
	90477	$4,0 \times 60$	TX20	500
fret	904478	4，5 45	TX20	200
Nrer	904479	4，5 5 50	TX20	200
	904480	4，5 560	TX20	200
	90481	4，5x70	TX20	200
，	100981	4，5 580	T220	200
1	904882	5，0 50	TX25	200
最	90488	5，0×60	TX25	200
f	90488	$5,0 \times 70$	TX25	200
d	90485	5，0 $\times 80$	TX25	200
厚	90488	$5,0 \times 90$	TX25	100
C	904011	5，0×100	TX25	100
F	904012	6，0×60	TX30	100
复	904013	6，0×70	TX30	100
v	900014	6，0×80	TX30	100
ADVANTAGES	900015	6，0×90	TX30－	100
－Limited resistance to acid	904016	$6,0 \times 100$	TX30－	100
Not suitable for use with woods containing tanning agents	904017	$6,0 \times 120$	TX30	100
such as cumarú，oak，merbau，robinia，etc．	904018	6，0×140	TX30	100
－Magnetised	904019	$6,0 \times 160$	TX30	100

Paneltwistec
Washer head，scrape poin， hardened stainless steel

Art．no．	Dimensions［mm］	Drive	PU
94578	8，0×80	TX40－	50
94570	$8,0 \times 100$	TX40	50
945271	$8,0 \times 120$	TX40－	50
94572	$8,0 \times 140$	TX40－	50
945364	$8,0 \times 160$	Tx40	50
945365	$8,0 \times 180$	TX40	50
945366	$8,0 \times 200$	TX40－	50
945367	8，0 $\times 220$	Tx40	50
945368	8，0 240	TX40	50
945369	$8,0 \times 260$	TX40－	50
945370	8，0×280	Tx40－	50
945371	8，0×300	Tx40	50
945372	8，0×320	TX40－	50
94573	8，0× 340	Tx40	50
945374	8，0×360	TX40－	50
945375	8，0×380	TX40－	50
945376	8，0x 400	TX40－	50

ADVANTAGES

Also suitable for fastening over－rafter insulation
－The larger head diameter allows for considerably higher torque and head pull－through capacity
This makes for better use of the screw＇s tensile load－bearing strength

Gurotec | Constructive fastening

PANELTWISTEC AG

Washer head, hardened stainless steel

Paneltwistec AG	\%CE	Art. no.	Dimensions [mm]	Drive	PU
Washer head, screw tip AG, hardened stainless steel	边	975772	6,0×60	TX30 ${ }^{\text {c }}$	100
		975773	6,0×80	TX30 -	100
		97574	$6,0 \times 100$	TX30 -	100
		975775	$6,0 \times 120$	TX30 -	100
		97576	6,0x 140	TX30 -	100
		97577	$6,0 \times 160$	TX30 -	100

PANELTWISTEC A2

Stainless steel A2

Paneltwistec A2
Countersunk head, Stainless steel A2

Art. no.	Dimensions [mm]	Drive	PU
903330	8,0x80	TX40 -	50
903231	$8,0 \times 100$	TX40 -	50
903332	$8,0 \times 120$	TX40 -	50
903233	$8,0 \times 140$	TX40 -	50
903234	$8,0 \times 160$	TX40 -	50
903235	$8,0 \times 180$	TX40 -	50
903236	$8,0 \times 200$	TX40 -	50
903237	8,0x 220	TX40 -	50
903338	8,0×240	TX40 -	50
903239	$8,0 \times 260$	TX40 -	50
903240	8,0 280	TX40 -	50
90324	$8,0 \times 300$	TX40 -	50
903242	8,0x320	TX40 -	50
903243	8,0 $\times 340$	TX40 -	50
90324	8,0× 360	TX40 -	50
903245	8,0x 380	TX40 -	50
90324	$8,0 \times 400$	TX40 -	50

ADVANTAGES
Limited resistance to acid
Not suitable for atmospheres containing chlorine

Panelłwistec A2

Washer head, Stainless steel A2

Art. no.	Dimensions [mm]	Drive	PU
903211	$8,0 \times 80$	TX40 •	50
903212	$8,0 \times 100$	TX40 -	50
903213	8,0 $\times 120$	TX40 -	50
903214	8,0x 140	TX40 -	50
903215	8,0 $\times 160$	TX40 -	50
903216	$8,0 \times 180$	TX40 -	50
903217	$8,0 \times 200$	TX40 -	50
903218	8,0 $\times 220$	TX40 -	50
903219	8,0 240	TX40 -	50
903220	8,0 $\times 260$	TX40 -	50
903221	8,0 $\times 280$	TX40 -	50
903222	8,0 $\times 300$	TX40 -	50
903223	8,0 $\times 320$	TX40 -	50
903224	8,0x 340	TX40 -	50
903225	8,0 $\times 360$	TX40 -	50
903226	8,0 $\times 380$	TX40 -	50
903227	8,0x400	TX40 -	50
ADVANTAGES			
- Limited resistance to acid			
- Not suitable for atmospheres containing chlorine			

Eurotec | Constructive fastening

PANELTWISTEC A4

Stainless steel A4

Paneltwistec	\% (Art. no.	Dimensions [mm]	Drive	PU
Countersunk-head, Stainless steel A4	901476	4,0×25	TX20	500
	- 111442	4,0×35	TX20	500
	90302	4,0x40	TX20	500
	111443	4,0 $\times 45$	TX20	500
	901109	4,0x55	T 220 -	500
	111444	$4,0 \times 60$	TX20	500
	111445	4,0x70	T 220 -	200
	111446	4,0x80	TX20	200
	111447	4,5 45	TX25	200
	111448	$4,5 \times 60$	TX25	200
	111449	4,5×70	TX25	200
	111450	4,5 $\times 80$	TX25	200
	903990	$5,0 \times 40$	TX25	200
	111451	5, $\times 50$	TX25	200
	111452	5,0×60	TX25	200
	111453	$5,0 \times 70$	TX25	200
	111454	5,0x80	TX25	200
	903580	5,0× 100	TX25	200
	111459	6,0×60	TX30	100
	948885	6,0×70	TX30	100
	111460	6,0×80	TX30	100
	111458	$6,0 \times 100$	TX30	100
	901478	6,0 $\times 120$	TX30	100
	903380	$8,0 \times 80$	TX40 -	50
	903881	$8,0 \times 100$	TX40 -	50
	903782	$8,0 \times 120$	TX40 -	50
	90383	$8,0 \times 140$	TX40 -	50
	903284	$8,0 \times 160$	TX40	50
	90328	8,0x 180	TX40 -	50
	903286	$8,0 \times 200$	TX40 -	50
	90388	$8,0 \times 220$	TX40	50
	903788	$8,0 \times 240$	TX40 -	50
	903889	8,0 2260	TX40 -	50
	903290	$8,0 \times 280$	TX40 -	50
	903291	8,0 300	TX40 -	50
	903292	8,0 320	TX40 -	50
	903293	8,0 340	TX40 -	50
	903294	$8,0 \times 360$	TX40	50
	903295	8,0 380	TX40 -	50
	903296	$8,0 \times 400$	TX40 -	50

Paneltwistec A4			Art. no.	Dimensions [mm]	Drive	PU
Washer head, Stainless steel A4		新	903260	$8,0 \times 80$	TX40	50
			903261	8,0 $\times 100$	TX40 -	50
			903262	$8,0 \times 120$	TX40 -	50
			903263	8,0 $\times 140$	TX40 -	50
			903264	$8,0 \times 160$	TX40 -	50
			903265	$8,0 \times 180$	TX40 -	50
			903266	$8,0 \times 200$	TX40 -	50
			903267	8,0 $\times 220$	TX40 -	50
			903268	$8,0 \times 240$	TX40 -	50
			903269	$8,0 \times 260$	TX40 -	50
			903270	$8,0 \times 280$	TX40 -	50
			903271	$8,0 \times 300$	TX40 -	50
			903272	$8,0 \times 320$	TX40 -	50
			903273	$8,0 \times 340$	TX40 -	50
			903274	$8,0 \times 360$	TX40 -	50
			903275	$8,0 \times 380$	TX40 -	50
			903276	$8,0 \times 400$	TX40 •	50
			ADVANTAGES			
			- Limited resistance to acid			
			- Suitable for use with woods containing tanning agents such as cumarú, oak, merbau, robinia, etc.			
			- Suitable for saline atmospheres			
			- Not suitable for atmospheres containing chlorine			
			- The screw is suitable for use in timber / timber joints in outdoor installations and is used in garden, façade and balcony construction			

SAWTEC

Wood construction screw made of hardened carbon steel

The SawTec is a wood construction screw with a special screw tip and saw teeth below the head. The screw has a double-stage cylinder head. The special geometry of the screw tip reduces the screwing torque and also leads to a lower spliting effect when screwing in.

Friction part

- Friction part creates space for the shank, thereby reduces the insertion resistance

Coarse thread

- Speeds up the screwing-in process

DAG screw tip

- The special geometry of the DAG screw tip ensures a reduction of the screwing torque and also leads to a lower splitting effect when screwing-in

SawTec	Art. no.	Dimensions [mm]	Drive	PU
Cylinder head, blue galvanised	954115	$5,0 \times 40$	TX25	200
	954117	5,0×50	TX25	200
T	954118	$5,0 \times 60$	TX25	200
	954119	5,0×70	TX25	200
	954120	5,0×80	TX25	200
	954121	5,0×90	TX25	200
	954122	$5,0 \times 100$	TX25	200
	954124	5,0× 120	Tx25	200
	954128	6,0×60	TX30	100
	954129	$6,0 \times 70$	TX30-	100
	954130	6,0 $\times 80$	TX30-	100
	954131	6,0× 100	TX30 -	100
	954133	6,0x 120	TX30-	100
	954135	6,0x 140	TX30-	100
	954137	6,0×160	TX30-	100
	954138	$6,0 \times 180$	TX30-	100
	954145	8,0 80	TX40 -	50
	954146	$8,0 \times 100$	Tx40 -	50
	954147	$8,0 \times 120$	TX40 -	50
	954148	$8,0 \times 140$	TX40 -	50
	954149	$8,0 \times 160$	TX40 -	50
1	954150	$8,0 \times 180$	TX40	50
	954151	8,0 200	TX40 -	50
	954152	8,0x 220	TX40 -	50
\%	954153	8,0 240	TX40 -	50
ADVANTAGES	954154	$8,0 \times 260$	TX40 -	50
- Faster and easier screwing-in due to the DAG tip	954155	$8,0 \times 280$	TX40	50
. The DAG tip reduces the screw-in torque	954156	8,0x 300	TX40	50
- The DAG tip reduces the screw-in torque	954157	8,0x 320	TX40 -	50
- Reduced spliting effect	954158	$8,0 \times 340$	TX40 -	50
. Screws do not hit one another when screwed in using the TX drive	954159	8,0x 360	TX40 -	50
	954160	8,0x 380	TX40 -	50
	954161		TX40 -	50
APPLLCATION INFORMATION	954181	8,0x 420	TX40 -	50
Can be used in service classes 1 and 2 according to	954182	$8,0 \times 440$	TX40	50
DIN EN 1995 - Eurocode 5	954183	$8,0 \times 460$	TX40 -	50
	954184	8,0x 480	TX40 -	50
	954185	8,0x 500	TX40 -	50
	954186	8,0x 550	TX40 -	50
	954187	$8,0 \times 600$	Tx40 -	50
	954162	$10,0 \times 100$	TX50 -	50
	954163	10,0 $\times 120$	TX50 -	50
	954164	10,0 $\times 140$	Tx50 -	50
	954165	$10,0 \times 160$	TX50 -	50
	954166	$10,0 \times 180$	TX50 -	50
	954167	$10,0 \times 200$	TX50 -	50
	954168	10,0 $\times 220$	Tx50 -	50
	954169	10,0 $\times 240$	TX50 -	50
	954170	10,0 $\times 260$	Tx50 -	50
	954171	10,0 $\times 280$	TX50 -	50
	954172	10,0 $\times 300$	TX50 -	50
	954173	10,0 $\times 320$	TX50	50
	954174	10,0 $\times 340$	TX50 -	50
	954175	10,0 $\times 360$	TX50	25
	954176	10,0×380	TX50	25
	954177	10,0x400	TX50 -	25

$\begin{aligned} & \mathrm{dl} \times \mathrm{L} \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{gathered} d k \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{AD} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{It} \\ {[\mathrm{~mm}]} \end{gathered}$	$\mathrm{Fax}_{\mathrm{ax}}, 90$,Rk [kN]	Fox,head,Rk [kN]	Fla,Rk [kN]	Fla,Rk [kN]	Fla,Rk [kN]	Fla,Rk [kN]	$\begin{gathered} \dagger \\ {[\mathrm{mm}]} \end{gathered}$	Fla,Rk [kN]	Fla,Rk [kN]
								$\alpha_{A D}=0^{\circ}$	$\alpha A D=90^{\circ}$			
						$\alpha=0^{\circ}$	$\alpha=90^{\circ}$	$\alpha_{\mathrm{E}}=90^{\circ}$	$\alpha \in I=0^{\circ}$		$\alpha=0^{\circ}$	$\alpha=90^{\circ}$
5,0×40	10,5	16	24	1,45	1,10					2		
5,0×50	10,5	20	30	1,82	1,10					2		
5,0×60	10,5	24	36	2,18	1,10					2		
5,0×70	10,5	28	42	2,54	1,10					2		
5,0×80	10,5	32	48	2,90	1,10					2		
5,0×90	10,5	36	54	3,27	1,10					2		
5,0× 100	10,5	40	60	3,63	1,10					2		
5,0× 120	10,5	60	60	3,63	1,10							
6,0×60	13,0	24	36	2,46	1,69					2		
6,0×70	13,0	28	42	2,87	1,69					2		
6,0×80	13,0	32	48	3,28	1,69					2		
6,0×90	13,0	36	54	3,69	1,69					2		
6,0 $\times 100$	13,0	40	60	4,10	1,69					,		
6,0×110	13,0	50	60	4,10	1,69					2		
$6,0 \times 120$	13,0	60	60	4,10	1,69					2		
6,0×130	13,0	60	70	4,79	1,69					2		
6,0×140	13,0	70	70	4,79	1,69					2		
$6,0 \times 150$	13,0	80	70	4,79	1,69					2		
$6,0 \times 160$	13,0	90	70	4,79	1,69					2		
$6,0 \times 180$	13,0	110	70	4,79	1,69					2		
8,0x80	18,0	30	50	4,26	3,24	3,89	3,08	3,89	3,08	3	4,61	3,94
$8,0 \times 100$	18,0	40	60	5,33	3,24	4,31	3,48	4,31	3,48	,	4,83	4,20
$8,0 \times 120$	18,0	60	60	5,33	3,24	4,31	3,68	4,31	3,68	3	4,83	4,20
$8,0 \times 140$	18,0	40	100	8,44	3,24	4,31	3,48	4,31	3,48		5,60	4,98
$8,0 \times 160$	18,0	60	100	8,44	3,24	4,31	3,68	4,31	3,68	3	5,60	4,98
$8,0 \times 180$	18,0	80	100	8,44	3,24	4,31	3,68	4,31	3,68	3	5,60	4,98
8,0 200	18,0	100	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98

[^6]with regard to the usage class and dlass of the load duration: $R_{d}=R_{k} \cdot k_{\bmod } / \gamma \mathrm{m}$. The dimensioning values of the load-bearing capacity Rd_{d} should be contrasted with the dimensioning values of the loads ($\left.\mathrm{Rd}_{\mathrm{d}} \geq \mathrm{E}_{\mathrm{d}}\right)$.

Example:

Characterisicic value for constant lood (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow load) $Q_{k}=3,00 \mathrm{kN}$. $\mathrm{kmod}=0,9 . \gamma \mathrm{m}=1,3$.
\rightarrow Dimensioning value of the load $\mathrm{E}_{\mathrm{d}}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{Rd} \geq \mathrm{Ed} . \rightarrow \mathrm{min} \mathrm{Rk}=\mathrm{Rd} \cdot \gamma \mathrm{M} / \mathrm{kmod}$
I.e. the characterisicic minimum value is calculated based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{d} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod} \rightarrow \mathrm{R}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning ciids. Projects must only be calculated by authorised persons.
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by outhorised persons in accordance with the State Building Code. As per LBuoO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Dimensions				Extraction resistance	Head pull-through resistance		Wood-Wood	d shearing			Wood shearing	
						$\xrightarrow{V\left(\alpha=0^{\circ}\right)}$ $V\left(a=0^{\circ}\right)$ $V\left(\alpha=0^{\circ}\right)$ $V\left(\alpha=90^{\circ}\right)$	$A D$	$\begin{aligned} & \text { AD } \quad \stackrel{V\left(a=90^{\circ}\right)}{\square} \\ & \text { ET } \quad \begin{array}{l} V\left(a=90^{\circ}\right) \\ \text { AD } \\ \text { ET } \quad \underline{\left(a=90^{\circ}\right)} \\ V\left(a=0^{\circ}\right) \end{array} \end{aligned}$				
$\begin{aligned} & d l \times l \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{gathered} \mathrm{dk} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} A D \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{EI} \\ {[\mathrm{~mm}]} \end{gathered}$	$F_{a x}, 90, R k$ [kN]	Fax,head, Rk [kN]	Fla,Rk [kN]	Fla,Rk [kN]	Fla,Rk [kN]	Fla,Rk [kN]	$\begin{gathered} \dagger \\ {[\mathrm{mm}]} \end{gathered}$	Fla,Rk [kN]	Fla,Rk [kN]
								$a_{A D}=0^{\circ}$	$\alpha_{A D}=90^{\circ}$			
						$\alpha=0^{\circ}$	$\alpha=90^{\circ}$	$\alpha_{\mathrm{E}}=90^{\circ}$	$\alpha_{E T}=0^{\circ}$		$\alpha=0^{\circ}$	$\alpha=90^{\circ}$
8,0×220	18,0	120	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0 240	18,0	140	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0 260	18,0	160	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0 280	18,0	180	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0x 300	18,0	200	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0x 320	18,0	220	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0x 340	18,0	240	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0x 360	18,0	260	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0x 380	18,0	280	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0x 400	18,0	300	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0x 420	18,0	320	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0x 440	18,0	340	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0x 460	18,0	360	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0x 480	18,0	380	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0x 500	18,0	400	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0x 550	18,0	450	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
8,0x600	18,0	500	100	8,44	3,24	4,31	3,68	3,68	4,31	3	5,60	4,98
10,0 100	22,0	40	60	6,48	4,84	6,03	4,67	6,03	4,67	3	6,78	5,81
$10,0 \times 120$	22,0	60	60	6,48	4,84	6,37	5,40	6,37	5,40	3	6,78	5,81
$10,0 \times 140$	22,0	40	100	10,26	4,84	6,03	4,67	6,03	4,67	3	7,72	6,76
$10,0 \times 160$	22,0	60	100	10,26	4,84	6,37	5,40	6,37	5,40	3	7,72	6,76
$10,0 \times 180$	22,0	80	100	10,26	4,84	6,37	5,40	6,37	5,40	3	7,72	6,76
10,0 200	22,0	100	100	10,26	4,84	6,37	5,40	5,40	6,37	3	7,72	6,76
$10,0 \times 220$	22,0	120	100	10,26	4,84	6,37	5,40	5,40	6,37	3	7,72	6,76
$10,0 \times 240$	22,0	140	100	10,26	4,84	6,37	5,40	5,40	6,37	3	7,72	6,76
$10,0 \times 260$	22,0	160	100	10,26	4,84	6,37	5,40	5,40	6,37	3	7,72	6,76
$10,0 \times 280$	22,0	180	100	10,26	4,84	6,37	5,40	5,40	6,37	3	7,72	6,76
$10,0 \times 300$	22,0	200	100	10,26	4,84	6,37	5,40	5,40	6,37	3	7,72	6,76
$10,0 \times 320$	22,0	220	100	10,26	4,84	6,37	5,40	5,40	6,37	3	7,72	6,76
$10,0 \times 340$	22,0	240	100	10,26	4,84	6,37	5,40	5,40	6,37	3	7,72	6,76
$10,0 \times 360$	22,0	260	100	10,26	4,84	6,37	5,40	5,40	6,37	3	7,72	6,76
$10,0 \times 380$	22,0	280	100	10,26	4,84	6,37	5,40	5,40	6,37	3	7,72	6,76
$10,0 \times 400$	22,0	300	100	10,26	4,84	6,37	5,40	5,40	6,37	3	7,72	6,76

Calculation according to $\mathrm{EA}-\mathrm{-l} / 0024$. Wood density $\rho_{\mathrm{k}}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values and are subiect to typoographical and printing errors.
a) The characterisisic values of the lood-bearing capacity R_{k} cannot be treated os equivalent to the max. possible load (the max. force). Characteristic values of the lood-bearing capacity R_{k} should be reduced to dimensioning values R_{d} with regard to the usage class and class of the lood duration: $R_{d}=R_{k} \cdot k_{m o d} / \gamma$ M. The dimensioning values of the lood- bearing capacity $R d$ should be contrassed with the dimensioning values of the loads (Rd \geq Ed).

Example:.:

Characteristic value for constant lood (dead weight) $G_{k}=2,00 \mathrm{kN}$ and variable load (e. g. snow load) $Q_{k}=3,00 \mathrm{kN} . \mathrm{kmod}^{2}=0,9 . \gamma \mathrm{M}=1,3$.
\rightarrow Dimensioning value of the lood $\mathrm{E}_{\mathrm{d}}=2,00 \cdot 1,35+3,00 \cdot 1,5=7,20 \mathrm{kN}$.
The load-bearing capacity of the joint is therefore considered to have been demonstrated if $\mathrm{Rd}_{\mathrm{d}} \geq \mathrm{Ed} . \rightarrow \min \mathrm{Rk}_{\mathrm{k}}=\mathrm{Rd}_{d} \cdot \gamma \mathrm{YM} / \mathrm{kmod}$
I.e. the characteristic minimum value is calculated based on: $\min \mathrm{R}_{\mathrm{k}}=\mathrm{R}_{\mathrm{d}} \cdot \gamma_{\mathrm{M}} / \mathrm{kmod} \rightarrow \mathrm{Rk}_{\mathrm{k}}=7,20 \mathrm{kN} \cdot 1,3 / 0,9=10,40 \mathrm{kN} \rightarrow$ comparison with table values.

Please note: These are planning cids. Projects must only be calculated by authorised persons.

TOPDUO ROOFING SCREW

The wood-construction screw for all over-rafter insulation systems

The Topduo roofing screw can be used to fasten both compression-resistant and non-compression-resistant above-rafter insulation. The high pull-out resistance in both connecting timbers also makes the TopDuo roofing screw suitable for many other applications in timber construction. The screw has a double thread and is available with a flanged buttonhead and cylinder head.

Cylinder head

- Virtually disappears in wood
- Speeds up the screwingin process

Underhead thread with cutting notches

- Reamer creates space for the shank, reducing the screw-in resistance

DAG screw tip

- The special geometry of the DAG screw tip ensures a reduction of the screwing torque and also leads to a lower splitting effect when
screwing-in

FASTENING OPTIONS:

Topduo is suitable for pressure resistant ($\geq \mathbf{5 0} \mathbf{~ k P a}$) and non-pressure resistant insulations.
The compressive strength 010% can be found in the product data sheet issued by the insulating material manufacturer.

Solely 90° screw connection
(absorbtion of wind suction)

Combined 65° and 90° screw connection labsorbtion of shearing forces and wind suction)

Topduo cylinder head for fastening insulation material.

TOPDUO ROOFING SCREW

The wood-construction screw for all over-rafter insulation systems

Topduo roofing screw
Washer head, hardened carbon steel, electrogalvanised

	Art. no.	Dimensions [mm]	Length [mm] ${ }^{\text {a) }}$	Drive	PU
5	945870	8,0 $\times 165$	60/80	TX40 -	50
	945871	8,0 $\times 195$	60/100	TX40 -	50
	945813	8,0 $\times 225$	60/100	TX40 -	50
	945814	8,00235	60/100	TX40 -	50
	945815	8,00255	60/100	TX40 -	50
	945816	8,0 $\times 275$	60/100	TX40 -	50
	945817	8,00302	60/100	TX40 -	50
	945818	8,00335	60/100	TX40 -	50
	945819	8,0 $\times 365$	60/100	TX40 -	50
	945820	8,0x 397	60/100	TX40 -	50
	945821	8,0x 435	60/100	TX40 -	50
	945843	$8,0 \times 472$	60/100	TX40 -	50
	a) Under-head thread/drive thread				

Topduo roofing screw
Cylinder head, hardened carbon steel, electrogalvanised

Art. no.	Dimensions [mm]	Length [mm] ${ }^{\text {a) }}$	Drive	PU
945956	8,00 225	60/100	TX40 -	50
945965	8,0 $\times 235$	60/100	TX40 -	50
945957	$8,0 \times 255$	60/100	TX40 -	50
945958	8,0 $\times 275$	60/100	TX40 -	50
945960	8,0x 302	60/100	TX40 -	50
945961	8,0x 335	60/100	TX40 -	50
945962	8,0 $\times 365$	60/100	TX40 •	50
945963	8,0x 397	60/100	TX40 -	50
945964	8,0x 435	60/100	TX40 •	50

a) Under-head thread/drive thread

Roof construction with Topduo.

Façade construction with the Topduo roofing screw.

Topduo washer head for fastening insulation material.

CALCULATING QUANTITIES FOR TOPDUO ROOFING SCREW

STATICALLY NON-PRESSURE-RESISTANT INSULATING MATERIALS AT $\sigma_{10} \%<50$ KPA

Design sample for specified assumptions, project-related design may yied significantly more favourable results														
Number of Topduo screws per m${ }^{2}$														
Insulction thickness	40	60	80	100	120	140	140	160	180	200	220	240	260	280
Boarding thickness (on raters)	24	24	24	24	24	-	24	24	24	24	24	24	24	24
Dimensions Topduo Waster head	$8 \times 165^{\text {b }}$	$\left.8 \times 195^{6}\right)$	8×225	8×235	8×255	8×275	8×302	8×335	8×335	8×365	8×365	8×397	8×435	8×435
acc. Cyinder heodal	[mm]													
Snowload fone $0^{\circ} \leq \mathrm{DN} \leq 10^{\circ}$	2,20	2,20	2,38	2,38	2,38	2,38	2,38	2,29	2,29	2,48	3,01	3,57	4,08	4,76
$\text { Wind zone } 4^{(0)} 10^{\circ}<\mathrm{DN} \leq 25^{\circ}$	2,38	2,38	2,60	2,60	2,60	2,60	2,60	2,60	2,60	3,17	3,81	4,40	e)	e)
Altitude $\mathrm{NW} 25^{\circ}<\mathrm{DN} \leq 40^{\circ}$	2,72	2,72	3,01	3,01	3,01	3,01	3,01	3,01	3,01	3,57	4,40	5,19	e)	e)
$\leq 285 \mathrm{~m} \quad 40^{\circ}<\mathrm{DN} \leq 60^{\circ}$	2,86	3,01	3,17	3,17	3,36	3,36	3,36	3,36	3,36	3,57	4,40	5,19	e)	e)
Snowload $0^{\circ} \leq$ DN $\leq 10^{\circ}$	1,79	1,79	1,97	2,04	2,04	2,04	2,04	2,12	2,60	3,81	4,40	5,19	e)	e)
	2,29	2,29	2,48	2,60	2,60	2,60	2,60	2,72	3,36	4,76	e)	e)	e)	e)
$\begin{aligned} & \begin{array}{l} \text { Wind } 20 n e \\ \text { Alituve NNI } \\ \text { 25 } \end{array} 25^{\circ}<\mathrm{DN} \leq 40^{\circ} \end{aligned}$	2,38	2,48	2,72	2,72	2,72	2,86	2,86	2,86	3,57	5,19	e)	e)	e)	e)
$\leq 600 \mathrm{~m} 40^{\circ}<\mathrm{DN} \leq 60^{\circ}$	2,60	2,60	2,86	2,86	2,86	2,86	2,86	3,01	3,57	5,19	e)	e)	e)	e)

a) Quantity always refers to the less favourable valve from Topdvo Washer head and Cylinder-head
b) Topduo Washer head only, () Includes snow load zones 1, 2 and 2*, d) Includes all wind zones apart from North Sea istands
e) Use of our project assessment sevvice is recommended. The design examples isted here represent unfavourable, i.e. statically safe, instances.
f) Includes snow lood zones 1,2 und $3, \mathrm{~g}$) Includes wind zones 1 and 2 (inland)

Further assumptions:
Design with ECS design software in accordance with ETA-II/0024; screw-in angle 65°; gabled roof; ridge height above ground max. 18 m ; gross density insulation $1,50 \mathrm{kN} / \mathrm{m}^{3}$; raffers $\mathrm{C} 248 / \geq 12 \mathrm{~cm}$; counter batten $\mathrm{C} 244 / 6 \mathrm{~cm}$; raffer centre distance $0,70 \mathrm{~m}$; roofing dead weight $0,55 \mathrm{kN} / \mathrm{m}^{2}$; snow guard available; quantity calculation regarding wind pressure after the most unfavourable roof area.
All listed values should be viewed as subject to the assumptions that have been made. They therefore represent example calculations and are subject to typographical and printing errors.
Please note: These are planning aids. Projects must only be calculated by authorised persons.

CALCULATING QUANTITIES FOR TOPDUO ROOFING SCREW

STATICALLY PRESSURE-RESISTANT INSULATING MATERIALS AT $\sigma 10 \% \geq 50 \mathrm{KPA}$
Design sample for specified assumptions, project-related design may yield significantly more favourable results
Number of Topduo screws per m²

	Insulation thickness	40	60	80	100	120	140	160	180	200	220	240	260	280	300
Boarding thich	ickness (on rafters)	24	24	24	24	24	24	24	24	24	24	24	24	24	24
Dimensions Topduo Washer head acc. (ylinder head ${ }^{(0)}$		$8 \times 195^{\text {b }}$	8×225	8×235	8×255	8×275	8×302	8×335	8×335	8×365	8×365	8×397	8×435	8×435	$8 \times 472^{\text {b }}$
		[mm]													
$\begin{aligned} & \text { Snow lood zone } \\ & 2^{*}(\text { c) } \\ & \text { Wind zone 4d) } \\ & \text { Altitude NN } \\ & \leq 285 \mathrm{~m} \end{aligned}$	$0^{\circ} \leq \mathrm{DN} \leq 10^{\circ}$	1,96	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,12	1,80	2,40	2,32
	$10^{\circ}<\mathrm{DN} \leq 25^{\circ}$	2,11	2,05	1,97	1,94	1,97	1,90	1,85	2,14	2,01	2,74	2,57	2,38	3,23	2,93
	$25^{\circ}<\mathrm{DN} \leq 40^{\circ}$	2,48	2,41	2,28	2,35	2,41	2,35	2,18	2,67	2,49	3,48	3,22	2,96	4,42	3,79
	$40^{\circ}<\mathrm{DN} \leq 60^{\circ}$	2,31	2,30	2,56	2,65	2,74	2,65	2,42	2,96	2,74	4,00	3,70	3,48	4,87	4,47
Snow load zone $3^{\text {f) }}$ Wind zone 2g) Altitude NN $\leq 400 \mathrm{~m}$	$0^{\circ} \leq \mathrm{DN} \leq 10^{\circ}$	2,65	2,54	2,39	2,34	2,26	2,23	2,34	2,34	2,16	2,46	2,32	2,19	2,86	2,65
	$10^{\circ}<\mathrm{DN} \leq 25^{\circ}$	4,04	3,81	3,55	3,33	3,33	3,15	3,15	2,99	2,99	3,66	3,37	3,06	4,37	3,74
	$25^{\circ}<\mathrm{DN} \leq 40^{\circ}$	4,46	4,16	3,84	3,58	3,58	3,58	3,37	3,37	3,37	4,67	4,20	3,92	e)	e)
	$40^{\circ}<\mathrm{DN} \leq 60^{\circ}$	3,55	3,26	3,26	3,26	3,44	3,26	2,96	3,66	3,44	e)	4,67	4,27	e)	e)

[^7]Further assumptions:
Design with ECS design software in accordance with ETA-II/0024; screw-in angle roof thrusiscrew $65^{\circ} /$ wind pressure $\operatorname{screw} 90^{\circ}$; gabled roof; ridge height above ground max. 18 m ; gross density insulation $1,50 \mathrm{kN} / \mathrm{m}^{3}$; raffers $(248 / \geq 12 \mathrm{~cm} ;$ counter batten C 24
$4 / 6 \mathrm{~cm}$; rafter centre distance $0,70 \mathrm{~m}$; roofing dead weight $0,55 \mathrm{kN} / \mathrm{m}^{2}$; snow guard available; quantity calculation with respect to wind pressure affer the most unfavourable roof area.
All listed values should be viewed as subject to the assumptions that have been made. They therefore represent example calculations and are subject to typographical and printing errors.
Please note: These are planning aids. Projects must only be calculated by authorised persons.
Please note: Verify the assumptions made. The stated values, and type and number of poining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised
persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

EuroTec calculation service

On-rafter insulation according to ETA-1 1 /0024

by phone 02331 6245-444•by fax 02331 6245-200 • by e-mail technik@eurotec.team

Please contact our technical department or use the free calculation services in the service section of our website.
Contact

Trader:	Contractor:
Contact person:	Contact person:
e-mail:	Phone:
Project:	e-mail:
Project details	

[^8]
FURTHER PRODUCTS

Liffing anchor und ball supporting bolt	$128-139$
Ideefix	$140-147$
Transport anchor system	$148-149$
SonoTec	$150-161$
Bolt anchor	$162-165$
Silent EPDM decoupling profile	$166-167$
Ecktec	$168-169$

LIFTING ANCHOR AND BALL SUPPORTING BOLT

For the transport of prefabricated wall modules

The Liffing anchor is specifically designed for use with a ball supporting bolt. The liffing anchor can be used to transport prefabricated wall modules. The fact that it is sed with screws means the anchor can be used several times. 8 screws are included in delivery.

The product only works in combination with the ball supporting bolt (\varnothing : $20 \mathrm{~mm}, \mathrm{l}: 50 \mathrm{~mm}$) provided for this purpose. The specifications of the product data sheet must be observed! Please consult with our technical department and download the product data sheet from our website www.eurotec.team/en.

Liffing anchor

Art. no.	Designation	Dimensions $[\mathrm{mm}]^{\text {a) }}$	Material	PU *
944892	Lifting Anchor	60×40	$\mathrm{SJ235}$	4
a) Height x Diameter *Comes supplied with screwsn				

Art. no.	Designation	Dimensions [mm] ${ }^{\text {a/ }}$	Material	Fl [kN]	F2 [kN]	F3 [kN]	PU
948893	Ball supporing bolt	50×20	S/235	10	8,5	6,5	1
a) Height X Diameter							

Please note
 This product is subject to important conditions! Please also watch the Application video and follow the instructions for use.

LIFTING ANCHOR
APPLICATION VIDEO

LIFTING ANCHOR

TECHNICAL INFORMATION

Horizontal wall or beam: Set upright, then lift

CII- wall or heam			
Connection in the	Connector	Stop bracket β	Total weight [kg] wihh 2 strands
End grain area	Lifing anchor $940 \mathrm{~mm}+8 \times$ VSS 6×60	30°	44
		45°	528
		60°	569
		75°	588
		β	with nstruns
		90°	nx 297

Note
The tables illustrate the 'Setting upright and subsequently lifting a horizontal wall or horizontal beam' load case (lifting from a horizontal position leading to vertical suspension). The connectors are to be screwed flush, as well as at right angles to the surfaces of the narrow sides and side or end grain surfaces, into the centre plane of the components.

TECHNICAL INFORMATION

Vertical wall or beam: Lift

CLI - wall or beam			
Connection in the	Connector	Stop bracket β	Total weight [kg] with 2 strands
		30°	601
		45°	886
Norrow surface	Lifting Anchor $040 \mathrm{~mm}+8 \times 1 / 5 S 6 \times 60$	60°	1135
Narrow surface	Lifing Anchor $040 \mathrm{~mm}+8 \times 1556 \times 60$	75°	1311
		β	with nstrands
		90°	nx 688

Note

The tables illustrate an example of "Liffing a standing wall or beam". Lliffing from the horizontal to vertical suspension). The table values are only valid for lifting or assembly states.

Ceiling lying: Liffing

(Table on the next pages)
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Eurotec | Further products

Notes

The tables illustrates an example of "lifting of horizontal ceiling elements". (Liffing from the horizontal to vertical suspension). The connectors must be screwed in flush with the surface, plus perpendicular to the component surface.

OPERATING INSTRUCTIONS FOR THE BALL SUPPORTING BOLT

Warning!

Ball supporting bolts are designed for lifting and holding individual loads (not people!). In addition, they are not suitable for continuous load rotation. Contamination (e.g. grinding sludge, oil and emulsion deposits, dust, etc.) can impair the function of ball supporting bolts.

Damaged ball supporting bolts can put people's lives at risk. Before each use, ball supporting bolts must be inspected for visible defects (e.g. deformations, fractures, cracks, damage, missing balls, corrosion, function of the unlocking mechanism). Damaged ball supporting bolts must be mitdrawn from further use.

Handling and loading

Press the button (A) to release the balls. The balls are locked again by releasing the button (A).
Please note: The button (A) is locked when the spring force has caused it to spring back to its original position. Do not press the button when loaded!
The load values F1 / F2 / F3 (see page 2) apply to lifting in a steel receptacle and x min.
$=1,5 \mathrm{~mm}$.

Maintenance

Ball supporting bolts must be subjected to a safety inspection by a competent person at least once a year.

Visual inspection

Deformations, fractures, cracks, missing / damaged balls, corrosion, screw connection damage on the shackle.

Functional test

The balls' locking and unlocking mechanism must close automatically by spring force.
Full shackle mobility is guaranteed.

d_{1}	1	d_{2}	d_{3}	$d_{4} \mathrm{~min}$.	I_{2}	13	14	15	16	17	18	x min.*	x max.*	D HII	$\mathrm{F}_{1} \mathrm{kN} *$	$\mathrm{F}_{2} \mathrm{kN} *$	$\mathrm{F}_{3} \mathrm{kN}{ }^{*}$
20,0	50	24,50	30,0	25,00	19,70	36,5	52,0	32,6	36	56	114,0	1,5	25	20,0	10,0	8,5	6,5
*with five-fold protection against breakage																	

Original EC conformity mark

The product complies with the regulations set down in the EC Directive 2006/42/EC.

Make:	Ball supporting bolt
Type:	EH 22350
Applied standards:	DIN EN 13155

[^9]
LIFTING ANCHOR MINI AND BALL SUPPORTING BOLT

For transporting small elements

The Lifting Anchor Mini is especially suitable for transporting smaller loads such as beam girders or struts. Since the inner diameter has been reduced from $\varnothing 20 \mathrm{~mm}$ (Lifting Anchor) to $\varnothing 16 \mathrm{~mm}$ (Liffing Anchor Mini), there is also a new smaller ball supporting bolt.
A special feature of the lifting anchor mini is a stop on the upper edge, which simplifies installation if the hole is drilled through.

Liffing Anchor Mini

Art. no.	Designation	Dimensions $[\mathrm{mm}]^{\text {a) }}$	Material	Number of screws*	PU
944901	Lifing Anchor Mini	49×45	S235JR	8	4

a) Height x Diameter
*Incl. 8 TX25 fully threaded screws TX25 6,0 x 60

Art. no.	Designation	Dimensions [mm] ${ }^{\text {a/ }}$	Material	Fl [kN]	F2 [kN]	F3 [kN]	PU
944905 a) Height x Diameter	Boll supporting bolt	25×16	SJ235	4,8	4,5	4,1	1

LIFTING ANCHOR MINI

TECHNICAL INFORMATION

Horizontal wall or beam: Set upright, then lift

CII-Wall or beam			
Connection in the	Connetor	Stop bracket	Total weight [kg]
		β	with 2 strands
End grain area	Lifting anchor mini $1040 \mathrm{~mm}+8 \times$ VSS 6×60	30°	248
		45°	295
		60°	318
		75°	${ }^{328}$
		β	with nstrons
		90°	nx166

Note

The tables illustrate the 'Setting upright and subsequently lifting a horizontal wall or horizontal beam' load case (liffing from a horizontal position leading to vertical suspension). The connectors are to be screwed flush, as well as at right angles to the surfaces of the narrow sides and side or end grain surfaces, into the centre plane of the components.

TECHNICAL INFORMATION

Wand oder Träger stehend: Anheben

CII - Wall or beam			
Connection in the	Connetor	Stop bracket	Total weight [kg]
		-	with 2 strands
Narrow sufface	Lifting anchor mini $1040 \mathrm{~mm}+8 \times$ VSS 6×60	30°	360
		45°	585
		60°	869
		75°	11%
		β	with ntrund
		90°	nx688

Ceiling lying: Liffing

(Table on the next page)
Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary meassurements. Projects are to be dimensioned exclusively by cuthorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Eurotec | Further products

Note

The tables illustrate an example of "lifing of horizontal ceiling elements". (lifing from the horizontal to vertical suspension). The connectors must be screwed in flush with the surface, plus perpendicular to the component surface.

OPERATING INSTRUCTIONS FOR THE BALL SUPPORTING BOLT

Warning!

Ball supporting bolts are designed for lifting and holding individual loads (not people!). In addition, they are not suitable for continuous load rotation. Contamination (e.g. grinding sludge, oil and emulsion deposits, dust, etc.) can impair the function of ball supporting bolts.

Damaged ball supporting bolts can put people's lives at risk. Before each use, ball supporting bolts must be inspected for visible defects (e.g. deformations, fractures, cracks, damage, missing balls, corrosion, function of the unlocking mechanism).
Damaged ball supporting bolts must be withdrawn from further use.

Handling and loading

Press the button (A) to release the balls. The balls are locked again by releasing the button (A).
Please note: The button (A) is locked when the spring force has caused it to spring back to its original position. Do not press the button when loaded!
The load values F1 / F2 / F3 (see page 2) apply to liffing in a steel receptacle and x min. $=1.5 \mathrm{~mm}$

Maintenance

Ball supporting bolts must be subjected to a safety inspection by a competent person at
least once a year.

Visual inspection

Deformations, fractures, cracks, missing / damaged balls, corrosion, screw connection damage on the shackle.

Functional test

The balls' locking and unlocking mechanism must close automatically by spring force.
Full shackle mobility is guaranteed.

d_{1}	1	d_{2}	d_{3}	d_{4} min.	I_{2}	13	I_{4}	I_{5}	16	I_{7}	18	x min.*	x max.*	DHII	$\mathrm{F}_{1} \mathrm{kN}{ }^{*}$	$F_{2} k N^{*}$	$\mathrm{F}_{3} \mathrm{kN}{ }^{*}$
	50	24,50	$30,0$	25,00	19,70	36,5	52,0	32,6	36	56	114,0	1,5	25	20,0	10,0	8,5	6,5

*with five-fold protection against breakage

Original EC conformity mark
The product complies with the regulations set down in the EC Directive 2006/42/EG.

Make:	Ball supporting bolt
Type:	EH 22350
Applied standards:	DIN EN 13155

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by outhorised persons in accordance wiht the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

IDEEFIX

Hidden wood connector

The IdeeFix wood connector is used to create hidden wood connections for single- or multiple-row serial connections in wood-wood connections. It ensures high load-bearing capacity for tensile and transverse forces, is designed for universal use and is quick and easy to mount.

INSTRUCTIONS FOR USE

The wood is predrilled for the IdeeFix. Then the IdeeFix is first inserted into the drill hole without screws. Then, thanks to its low splitting effect, the screws can be inserted without further predrilling. In the middle of the IdeeFix is a thread into which another screw can be inserted.

2
Insert and install supplied screws
3 Fix construction in place with construction screws - Done!

Ideefix application for connecting column and beam girder

IDEEFIX 30/40/50

Technical information

IdeeFix			Timber Dimensions Min. cross section post		Tension connection with anti--wist element		Mortise joint with anti--wist element		Tensile lood with threaded bolt		
	sions				Drilling depth for post	Drilling depth for cross-piece	Drilling depth for post	Drilling depth for cross-piece	Perm. Values	Char. Values	Screw pattern
d_{c}	ag_{g}	V_{c}	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	$\mathrm{Nze}_{\text {e }}$ [[kN]	$\mathrm{Rl}_{1,1 \mathrm{k}}$ [kN]	pc.
30	M12	3	80	80	27	.	20	7	7,62	17,33	
40	M16	5	120	120	35	-	25	10	12,65	28,79	\bigcirc
50	M20	5	160	160	45	-	30	15	20,81	47,35	
30	M12	3	60	80	27	.	20	7	5,71	13,00	
40	M16	5	80	120	35	.	25	10	9,49	21,59	∞
50	M20	5	120	160	45	.	30	15	15,61	35,51	
30	M12	3	40	80	27	.	20	7	3,81	8,67	
40	M16	5	60	120	35	.	25	10	6,33	14,39	88
50	M20	5	80	160	45	-	30	15	10,41	23,67	
30	M12	3	60	60	27	.	20	7	3,81	8,67	
40	M16	5	80	80	35	-	25	10	6,33	14,39	c
50	M20	5	120	120	45	-	30	15	10,41	23,67	

dc is the diameter and the total heightit of the connector
ag is the metric connection thread of the connector
vc is the height of the integrated anti-wwis system
Fully threaded screw, GoFix ${ }^{\mathbb{}}$ FK IF $305,0 \times 40 \mathrm{~mm}$ - IF $406,0 \times 60 \mathrm{~mm}$ - IF $508,0 \times 90 \mathrm{~mm}$
The connection is drawn together using a threaded rod or construction screw with a DIN 440 R washer
Tension connection as a mortise joint with simultaneous absorption of transverse forces
Rk characteristic value calculated according to DIN $1052: 2004$-08 Timber pk $380 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{Nze}$. recommended permissible load $\mathrm{R}, \mathrm{k} \times 0,8 \mathrm{kmod}: 1,3 \mathrm{ym}: 1,4$. Factor 1,4 average load safety factor
Please note: The stated values are planning aids. Projects must only be calculated by authorised persons.

MAIN-SECONDARY BEAM

de is the diameter and the total height of the connector
ag is the metric connection thread of the connector
Vc s s the height of the integrated anti--wist system
System - Fully threaded screw, GoFix ${ }^{(2)}$ FK IF $305,0 \times 40 \mathrm{~mm}$ - IF $406,0 \times 60 \mathrm{~mm}$ - IF $508,0 \times 90 \mathrm{~mm}$
The connection is drown together using a threaded rod or construction screw with a DIN 440 R washer
MB-SB connection as a mortise joint with simultaneous absorption of tensile forces
Rk characteristic value calculated according to DIN $1052: 2004-08$ Timber pk $380 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{Nze}$. recommended permissible load $\mathrm{R}, \mathrm{k} \times 0,8 \mathrm{kmod}: 1,3 \mathrm{ym}: 1,4$. Factor 1,4 average lood safety factor
Please note: The stated values are planning aids. Projects must only be calculated by authorised persons.

MAIN-SECONDARY BEAM,
DOUBLE-SIDED CONNECTION, WITH FIXING SCREW

IdeeFix			Timber Dimensions Min. cross section of secondary beam		Timber Dimensions Min. cross section of main beam		Main-secondary beam with anti-twist element		Lood-bearing capacity with threaded bolt				
	sions				Drilling depth for SB	Drilling depth for MB	Perm. Values	Char. Values	Screw pattern				
d_{c}	a_{g}	V_{c}	w [mm]	h [mm]			w [mm]	$\mathrm{h}[\mathrm{mm}]$	[mm]	[mm]	$V_{z e}$. [kN]	R23,k[${ }^{\text {cNW }}$]	pc.
30	M12	3	80	80	80	80	20	10	2,34	5,32	1		
40	M16	5	120	120	120	120	25	15	3,60	8,19			
50	M20	5	160	160	160	160	30	20	5,03	11,44			
30	M12	3	60	80	60	80	20	10	2,34	5,32	1		
40	M16	5	80	120	80	120	25	15	3,60	8,19			
50	M20	5	120	160	120	160	30	20	5,03	11,44			
30	M12	3	40	80	40	80	20	10	2,34	5,32			
40	M16	5	60	120	60	120	25	15	3,60	8,19	88		
50	M20	5	80	160	80	160	30	20	5,03	11,44			
30	M12	3	60	60	60	60	20	10	2,34	5,32			
40	M16	5	80	80	80	80	25	15	3,60	8,19	(8)		
50	M20	5	120	120	120	120	30	20	5,03	11,44			

de is the diameter and the total height of the connectior

ag is the metric connection thread of the connector
Vcis the height of the integrated anti-wwist system
System - Fully threaded screw, Gofix ${ }^{\circledR}$ FK IF $305,0 \times 40 \mathrm{~mm}$ - IF $406,0 \times 60 \mathrm{~mm}$ - IF $508,0 \times 90 \mathrm{~mm}$
Position retention using Gofix ${ }^{\text {® }}$ SK IF $305,0 \times 100 \mathrm{~mm}$, IF $406,0 \times 140 \mathrm{~mm}$, IF $508,0 \times 160 \mathrm{~mm}$
MB-SB connection as mortise joint for double-sided connection of secondary beam
Rk characteristic value calculated according to DIN $1052: 2004-08$ Timber pk $380 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{Nze}$. recommended permissible load $\mathrm{R}, \mathrm{k} \times 0,8 \mathrm{kmod}: 1,3 \mathrm{ym}: 1,4$. Favtor 1,4 average lood safety factor
Please note: The stated values are planning aids. Projects must only be calculated by authorised persons.

MAIN-SECONDARY BEAM MULTIPLE CONNECTION, SINGLE-ROW

IdeeFix			Timber Dimensions Min. cross section of secondary beam		Edge and centre distance		Main-secondary beam Multiple connection		Load-bearing capacity Single-row		
	ns				Edge distance	Centre distance	Drilling depth for SB	Drilling depth for MB	Perm. Values	Char. Values	Number of Connectors
d_{c}	a_{g}	V_{C}	W [mm]	h [mm]	[mm]	[mm]	[mm]	[mm]	Ve. [kN]	$\mathrm{R}_{23, \mathrm{k}}[\mathrm{kN}]$	pc.
30	M12	3	80	80	50	50	20	7	4,32	8,94	1
40	M16	5	120	120	60	60	25	10	6,98	14,66	1
50	M20	5	160	160	80	80	30	15	10,88	21,09	1
30	M12	3	80	150	50	50	20	10	8,64	17,88	2
40	M16	5	120	180	60	60	25	15	13,96	29,32	2
50	M20	5	160	240	80	80	30	20	21,76	42,18	2
30	M12	3	80	200	50	50	20	10	12,96	26,82	3
40	M16	5	120	240	60	60	25	15	20,94	43,98	3
50	M20	5	160	320	80	80	30	20	32,64	63,27	3
30	M12	3	80	250	50	50	20	10	17,28	35,76	4
40	M16	5	120	300	60	60	25	15	27,92	58,64	4
50	M20	5	160	400	80	80	30	20	43,52	84,36	4
30	M12	3	80	300	50	50	20	10	21,60	44,70	5
40	M16	5	120	360	60	60	25	15	34,90	73,30	5
50	M20	5	160	480	80	80	30	20	54,40	105,45	5
30	M12	3	80	350	50	50	20	10	25,92	53,64	6
40	M16	5	120	420	60	60	25	15	41,88	87,96	6
50	M20	5	160	560	80	80	30	20	65,28	126,54	6
30	M12	3	80	400	50	50	20	10	30,24	62,58	7
40	M16	5	120	480	60	60	25	15	48,86	102,62	7
50	M20	5	160	640	80	80	30	20	76,16	117,63	7
30	M12	3	80	450	50	50	20	10	34,56	71,52	8
40	M16	5	120	540	60	60	25	15	55,84	117,28	8
50	M20	5	160	720	80	80	30	20	87,04	168,72	8

[^10]

IdeeFix			Timber Dimensions Min. cross section of secondary beam		Edge and centre distance		Main-secondary beam Multiple connection		Load-bearing capacity Single-row		$\theta 0$
	sions [Edge distance	Centre distance	Drilling depth for SB	Drilling depth for MB	Perm. Values	Char. Values	Number of connectors
d_{c}	ag_{g}	V_{c}	w [mm]	h [mm]	[mm]	[mm]	[mm]	[mm]	$V_{z e}$. [kN]	R23,k[kN]	pc.
30	M12	3	150	80	50	50	20	10	8,64	17,88	2
40	M16	5	180	120	60	60	25	15	13,6	29,32	2
50	M20	5	240	160	80	80	30	20	21,76	42,18	2
30	M12	3	150	150	50	50	20	10	17,28	35,76	4
40	M16	5	180	180	60	60	25	15	27,92	58,64	4
50	M20	5	240	240	80	80	30	20	43,52	84,36	4
30	M12	3	150	200	50	50	20	10	25,92	53,64	6
40	M16	5	180	240	60	60	25	15	41,88	87,96	6
50	M20	5	240	320	80	80	30	20	65,28	126,54	6
30	M12	3	150	250	50	50	20	10	34,56	71,52	8
40	M16	5	180	300	60	60	25	15	55,84	117,28	8
50	M20	5	240	400	80	80	30	20	87,04	168,72	8

30	M12	3	150	300	50	50	20	10	43,20	89,40
40	M16	5	180	360	60	60	25	15	69,80	146,60
50	M20	5	240	480	80	80	30	20	108,80	210,90
30	M12	3	150	350	50	50	20	10	51,84	1007,28
40	M16	5	180	420	60	60	25	15	83,76	175,92
50	M20	5	240	560	80	80	30	20	130,56	253,08

30	M12	3	150	400	50	50	20	10	60,48	125,16
40	M16	5	180	480	60	60	25	15	97,72	205,24
50	M20	5	240	640	80	80	30	20	152,32	295,26
	M12	3	150	450	50	50	20	10	14	
30	3	69,12	143,04	16						
40	M16	5	180	540	60	60	25	15	111,68	234,56
50	M20	5	240	720	80	80	30	20	174,08	337,44

de is the diameter and the tota height of the connector

ag is the metric connection thread of the connector
 vcis the height of the integrated anti--wwiss system

Fully threaded screw, GoFix ${ }^{\circledR}$ FK IF $305,0 \times 40 \mathrm{~mm}$ - IF $406,0 \times 60 \mathrm{~mm}$ - IF $508,0 \times 90 \mathrm{~mm}$
The connection is drown together using a threaded rod or constructionscrew with a DIN 440 R washer
MB-SB connection as a mortise joint with simultaneous absorption of tensile forces
Rk characteristic value calculated according to DIN $1052: 2004-08$ Timber pk $380 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{Nze}$. recommended permissible lood R,k $\times 0,8 \mathrm{kmod}: 1,3 \mathrm{ym}$: 1,4 . Factor 1,4 average load safety factor
Please note: The stated values are planning cids. Projects must only be calculated by cuthorised persons.

TRANSPORT ANCHOR SYSTEM

Transport anchor and transport anchor screws - The secure liffing system

Made of high-grade steel, this liffing attachment is used to lift all kinds of timber parts safely and easily. The transport anchors of the load group up to 1,3 tonnes are strictly to be used only in conjunction with the $\varnothing 11 \times 125 \mathrm{~mm}$ and $\varnothing 11 \times 160 \mathrm{~mm}$ Eurotec transport anchorscrews. The Eurotec transport anchor screws must only be used once. They are to be screwed into solid wood (soffwood), laminated veneer timber, glued laminated timber, cross laminated timber, stacked planks and laminated joists without pilot-drilling. Use in hardwoods is not permitted. The possible, or rather permissible, assembly positions can be found in our operating instructions, of which we will be delighted to provide you with a copy.

Transport anchor

High-quality steel

Art. no.	Dimensions $[\mathrm{mm}]^{\text {a) }}$	Load group	PU* *
110361	190×70	up to 1,3 to	2
a) Length x width $*$ Screws must be ordered separately (see below)			

PLEASE NOTE

- Transport anchor screws must only be used once
- Insert the screws without pilot-drilling
- Read the operating instructions in detail before use
- Users are to be trained before beginning use for the first time
- The transport anchor is to be examined for damage before each use and rejected if necessary
- The weight of the component to be lifted must not exceed the permissible value
- At least two altachment points per component to be lifted

Permissible liffing lood ${ }^{(a)}$ per attachment point ${ }^{\text {b/ }}$				
	$\gamma^{\prime \prime}$	$\alpha^{\text {d) }}$	$11 \times 125 \mathrm{~mm}$	$11 \times 160 \mathrm{~mm}$
Avil tenson	60°	60°	533 kg	603 kg
Axxil fension	60°	30°	409 kg	462 kg
yonal tension	60°	90°	462 kg	522 kg
Sugar	60°	0°	139 kg	157 kg

[^11]| \% C | Art. no. | Dimensions [mm] | Head | PU |
| :---: | :---: | :---: | :---: | :---: |
| 为 | 110359 | 11×125 | SW17 | 20 |
| | 110360 | 11×160 | SW17 | 20 |

Transport anchor system for safe transport.

SONOTEC SOUND INSULATION CORK

The perfect solution for sound insulation

Art. no.	Designation	Dimensions [mm]	Material thickness [mm]	PU
945305	SK02	80×1100	6	20
945306	SK02	100×1100	6	20

SonoTec sound insulation cork

Art. no.	Designation	Dimensions [mm]	Material thickness [mm]	PU
945307	SKO3	80×1100	6	20
945308	SK03	100×1100	6	20

SonoTec sound insulation cork
Material: SK04

ADVANTAGES

Sustainable material
High load bearing capacity
Hidden installation
Easy to use
Impermeable to water and gas due to component-
specific requirements

LOAD ABSORPTION

Different loads have to be absorbed when decoupling the timber vertical truss from the concrete. These are located in the $0,1 \mathrm{~N} / \mathrm{mm}^{2}-3 \mathrm{~N} / \mathrm{mm}^{2}$ stat. permanent load range. A timber beam (C24 softwood) may only be loaded up to $2,5 \mathrm{~N} / \mathrm{mm}^{2}$ (characteristic) perpendicular to the grain. Our products cover load cases from $0,1 \mathrm{~N} / \mathrm{mm}^{2}-3 \mathrm{~N} / \mathrm{mm}^{2}$ ab. The cork can thus be used both in lightweight and solid construction with cross-laminated timber (CLT).

NOISE REDUCTION

The SonoTec sound insulation cork can reduce noise by up to 40 dB .

MATERIAL

The SonoTec sound insulation cork is a combination of the components cork and natural rubber. This product is suitable for the application of vibration damping where very high isolation values are required and can be used as invisible insulators (pads/strips) with a low resonant frequency and medium to low load.

SONOTEC SOUND INSULATION CORK FOR VARIOUS APPLICATIONS

The perfect solution for sound insulation

Different SonoTec decoupling profiles variations for shearing angles
CLT system angle

Art. no.	Dimensions [mm]	Material	Can be combined with		PU
			Art-No.	Name	
945311	$230 \times 70 \times 6$	SkO4	954088	HH flat shearing ongle	5
945312	$230 \times 80 \times 6$	SKO4	954180	CII sysiem angle	5
945314	$230 \times 100 \times 6$	SKO4	954087	HB flat Shearing ongle	5
945313	$230 \times 120 \times 6$	SKO4	954112	Shearing angle 120×230	5

TECHNICAL DATA

	SKO2	SKO3	SKOO
Temperature $\left[{ }^{\circ} \mathrm{C}\right] /$ span width	$10 /+100$	Load ranges $\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	$-10 /+100$
Density $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	700	1100	1125
Shore hardness $[\mathrm{shore} \mathrm{A}]$	$35-50$	$45-60$	$60-80$
Break rotatio $[\%]$	>200	>300	>100
Tensile strength $\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	$>2,0$	$>5,0$	$>6,0$
compression $23^{\circ} \mathrm{C} / 70 \mathrm{~h}[\%]$	<15	<15	<15

IDENTIFYING THE CORRECT MATERIAL: AN EXAMPLE

We precisely identify the right material for you. So you still get an idea of how the right material is identified, we have outlined a sample identification process for you below.

First of all, we need the static continuous load that the sound insulation cork is to absorb. This is specified by the architect, structural engineer or stress analyst in question.

One of three different materials is selected depending on the static continuous load:

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by outhorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

Static continuous load $\mathrm{N} / \mathrm{mm}^{2}$	Product	Dimensions [mm]	Art. no.
$0,10-0,39$	SKO2	80×1100	945305
$0,10-0,39$	SKO2	100×1100	945306
$0,40-1,40$	SKO3	80×1100	945307
$0,40-1,40$	SKO3	100×1100	945308
$1,50-3,10$	SKO4	80×1100	945309
$1,50-3,10$	SKO4	100×1100	945310

In the second step, the material's natural frequency is determined; this depends on the occurring load. The values are approximately taken from the following table.

		6 mm			12 mm		
	Continuous load [$\mathrm{N} / \mathrm{mm}^{2}$]	Natural frequency [Hz]	Deflection [mm]	Modulus of elasicity $10 \mathrm{~Hz}\left[\mathrm{~N} / \mathrm{mm}^{2}\right]$	Natural frequency [Hz_{z}]	Deflection [mm]	Modulus of elasicity $10 \mathrm{~Hz}\left[\mathrm{~N} / \mathrm{mm}^{2}\right]$
SK02	0,1	44	0,2	4,0	27	0,5	3,7
	0,2	33	0,5	4,5	19	1,3	4,0
	0,3	27	0,8	5,6	17	1,9	5,1
	0,4	27	1,1	6,9	17	2,6	6,5
SKO3	0,5	50	0,2	11,5	31	0,4	10,5
	0,8	38	0,4	15,75	22	1,0	14,0
	1,1	31	0,7	19,5	20	1,6	18,0
	1,5	31	0,9	28,5	20	2,2	27,0
SKO4	1,6	58	0,3	18,5	36	0,6	17,0
	2,4	44	0,6	24,5	25	1,3	22,0
	3,2	35	1,0	30,5	23	2,0	28,0
	4,0	35	1,5	43,0	23	2,7	41,0

*Values for SKO2 are based on test results provided by the University of Coimbra / Institute for Research and Technological Development in Construction Sciences. The values for SK03 and SKO4 are generalised. The ongoing tests confirm the values. The results will replace the described values.
As an example, the following sample calculation assumes a load of $0,3 \mathrm{~N} / \mathrm{mm}^{2}$. Our SKO2 material was chosen due to the specified load. From the above table, we can see that the natural frequency must therefore be 27 Hz . We can illustrate this as follows in the graphs below.

SK02 Natural frequency [Hz]

Eurotec | Further products

In the next step, we take a closer look at the interference frequency.
To this end, we look at the graphs below and can thus conclude that the sound reduction in the low frequency range has deteriorated.
Low frequencies (basses) can only be isolated by mass. The frequencies to be isolated for building acoustics start in the 80 Hz range, so this is negligible. 80 Hz can be assumed if no interference frequencies are specified.

The sound reduction in dB can be determined in two ways:
1:
Based on an interference frequency of 80 Hz , a sound reduction of approx.
17 dB can be read off the following graph. These values are achieved under ideal conditions (optimum room temperature, room humidity, etc.).

2:
A sound insulation factor can be calculated from the natural frequency identified previously (27 Hz) and the specified interference frequency $(80 \mathrm{~Hz})$.

Sound insulation factor f / fO : Interference frequency / natural frequency $\rightarrow 80 \mathrm{~Hz} / 27 \mathrm{~Hz} \approx 2,96$

The sound reduction can then be read off based on the factor calculated previously. This is 17 dB under ideal conditions.

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by outhorised persons in accordance with the State Building Code. As per LBuuO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

In the last step, the material's deflection is identified.
This step is particularly important for the building's designers. The deflection is also identified using the continuous load, and there is a separate graph for each material. For the sample calculation with SKO 2 and $0,3 \mathrm{~N} / \mathrm{mm}^{2}$, the following graph shows a deflection of $0,8 \mathrm{~mm}$.
The graphs shown here are naturally adapted to the factors
identified previously.

SK02 Deflection [mm]

Gurotec
 Further products

For our SK03 and SKO4 materials, the following graphs apply to the deflection:

SK03 Deflection [mm]

Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned excusively by outhorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of sability. We will be happy to refer you to someone.

PROPERTIES OF CORK

The cork bark has a honeycomb-shaped cell structure with over 40 million cells per cm^{3}. The cells have a high proportion of an air-like gas mixture, which results in the cork's low weight on the one hand and the high compression capacity and elasticity on the other. The cork can therefore be compressed by up to half its size and can return to its original shape after compression.

Almost half of the cork bark is made up of suberin, a non-combustible biopolymer. The substance lines the individual cells and makes them impermeable to liquids and gases. The bark's structure and thickness protect the cork oak from heat, drying out and infections. This natural protective insulation makes cork oak an ideal insulating and sealing material for technical purposes.

Very good sound and thermal insulation
Impermeable to liquids and gases
Good resistance to fire and high temperatures
High frictional resistance
Compressible and elastic
Good wear resistance
Low weight - floats on water
Hypoallergenic and anti-static - does not absorb dust High flexibility - comfortable and soft

ENVIRONMENT

Cork is one of the most natural and environmentally friendly raw materials in the world. Cork oak is also the only tree that can completely regenerate itself after each harvest. The fact that cork can be recycled and ressed in new products makes it an ideal raw material with regard to sustainability.

NATURAL RUBBER

Alongside cork, natural rubber is another natural and renewable raw material. Natural rubber is a rubber-like substance and is extracted from the milky sap (also known as latex) of the rubber tree. The rubber tree grows in the tropics of Africa, South America and Asia.
Natural rubber accounts for around 40% of global rubber production. In contrast, synthetic rubber is made using crude oil as a basis and consumes far more energy during the manufacturing and transport processes.

Natural rubber is made into various products, most of them are used in tyre production. Other applications include seals, binders and mattresses.

PROPERTIES OF NATURAL RUBBER

High level of elasticity
Good mechanical resistance
High tear strength
Water repellent
Poor electrical and thermal performance
Weighs less than water on, we would be delighted to send you our brochure. Alternatively, you will find out more online.

SONOTEC ANGULAR DECOUPLER

Perfect complement to the eurotec shearing angles and the CLT system angle

SonoTec angular decoupler

Art. no.	Dimensions $[\mathrm{mm}]$	Material	Can be combined with	PU	
			Art-No.	Name	
945311	$230 \times 70 \times 6$	SKO4	954088	HH flat shearing angle	5
945312	$230 \times 80 \times 6$	SKO4	954180	CII system angle	5
945314	$230 \times 100 \times 6$	SKO4	954087	HB flat shearing angle	5
945313	$230 \times 120 \times 6$	SKO4	954112	Shearing angle 120×230	5

The Eurotec SonoTec Angular Decoupler forms the perfect complement to the Eurotec shearing angles and the CLT System Angle. The underlay is made from SKO4, which is a compound formed from cork and natural rubber. The product is suitable for vibration damping applications in which very high insulation values are required. SonoTec angular decouplers are used as invisible insulators (pads/strips) with a low resonance frequency and a medium-low load.

ADVANTAGES

- Underlay enables straightforward assembly
- Sustainable material
- Invisible
- High load-bearing capacity
- REACH-compliant

DESCRIPTION

SonoTec angular decouplers feature cut-outs for concrete screws, making them suitable for use in concrete. The double layer allows an increase in the separation layer to $\mathbf{1 2 ~ m m}$. The specifications for Sonotec SKO4 Sound Insulation Cork apply. The material can be screwed through when used in wood. The application must be determined in advance by a structural engineer. No statement can be made regarding noise reduction since this is dependent on the construction.

Shearing angle for fixing a wall to the concrete foundation.

[^12]
BOLT ANCHOR

For fastening in concrete

ETA-18/0533

CE
Eves loch brontra tuh-22/0631

The Eurotec bolt anchor is a force-controlled expanding anchor for pushthrough installations. The galvanized steel bolt anchor is approved for use in non-cracked concrete, the stainless steel A4 bolt anchor as well as the bolt anchor C3 for both non-cracked and cracked concrete. Despite the high loadbearing capacity, small axial and edge distances can be maintained. Different anchoring depths and dimensions allow a wide range of applications for connecting attachments of various materials to concrete. The A4 bolt anchor can be used both indoors and outdoors, while the galvanized steel and C 3 bolt anchor can only be used indoors. Each bolt anchor is equipped with an expansion clip, which ensures high load-bearing capacity and reduces the number of fastening points required.

Art. no.	Dimensions [mm]	Spanner gap	PU
946142	$8,0 \times 75$	SW13	100
9666143	$8,0 \times 100$	SW13	100
946644	$10,0 \times 100$	SWW	50
946145	$10,0 \times 120$	SW17	50
946146	$10,0 \times 140$	SW17	50
9466148	$12,0 \times 140$	SW19	25

Bolt anchor
With washer, electrogalvanised, for non-cracked concrete

Art. no.	Dimensions [mm]	Spanner gap	PU
946170*	6,0 $\times 55$	SWIO	200
946171**	6,0 85	Swio	100
946172*	8,0 $\times 50$	SWI3	100
946173	$8,0 \times 75$	SWI3	100
946174	$8,0 \times 95$	SW13	100
946175	$8,0 \times 115$	SWI3	100
946176	$8,0 \times 135$	SWI3	50
946177*	$10,0 \times 60$	SW17	100
946178	10,0x 80	SW17	50
946179	$10,0 \times 100$	SW17	50
946180	$10,0 \times 120$	SW17	50
946181	$10,0 \times 140$	SW17	50
946182*	12,0×80	SW19	50
946183	12,0×95	SW19	50
946184	12,0x 110	SW19	50
946185	$12,0 \times 130$	SW19	25
946186	$12,0 \times 160$	SW19	25
946187	12,0 $\times 180$	SW19	25
946188	$16,0 \times 125$	SW24	20
946189	$16,0 \times 140$	SW24	20
946190	$16,0 \times 180$	SW24	10
acc. to DN 440:			
946191	12,0 $\times 200$	SW19	20
946192	$12,0 \times 220$	SW19	20
946193	$12,0 \times 240$	Sw19	15
946194	$12,0 \times 260$	SW19	15
946195	$16,0 \times 220$	SW24	10
946196	$16,0 \times 240$	SW24	10
94619	$16,0 \times 260$	SW24	10

Bolt anchor, galvanised steel C3	N $=17$	Art. no.	Dimensions [mm]	Spanner gap	PU
With washer, galvanised steel C 3 , for cracked concrete and non-cracked concrete	to our product range	946227*	8,0x50	SW13	100
		94622	8, $\times 75$	SWI3	100
		94629	8,0×80	SW13	100
	为	946230	8,0×95	SWI3	100
		946331	8,0x 115	SWl3	100
		946332	$10,0 \times 90$	SW17	100
		94623	10,0 $\times 105$	SW17	50
		946234	10,0x 115	SW17	50
		946235	10,0 $\times 135$	SW17	50
		946236	$10,0 \times 165$	SW17	50
		94623	10,0× 185	SW17	50
		946238*	$12,0 \times 80$	SW19	50
		946239	$12,0 \times 100$	SW19	50
		94624	12,0x 110	SW19	50
		946241	12,0 $\times 120$	SW19	50
		946242	$12,0 \times 130$	SW19	50
		94623	$12,0 \times 150$	SW19	50
		94624	$12,0 \times 180$	SW19	50
		94624	$12,0 \times 200$	SW19	50
		946246	$12,0 \times 220$	SW19	25
		94624	12,0 $\times 255$	SW19	25
		94628	$16,0 \times 145$	SW24	25
		946249	$16,0 \times 175$	SW24	25
		946250	$16,0 \times 220$	SW24	25
		946251	$16,0 \times 250$	SW24	25
		94625	20,0 $\times 170$	SW30	20
		94625	20,0 $\times 200$	SW30	20
		*Screws not regulated by ETA-22/0451			

TECHNICAL INFORMATION

$\begin{gathered} \begin{array}{c} \text { Dimensions } \\ {[\mathrm{mm}]} \end{array} \\ \emptyset \times \text { Length } \end{gathered}$	Min. Subsurface thickness $\mathrm{h}_{\text {min }}$ [mm]	Drill diameter $d_{0}[\mathrm{~mm}]$	Min. Depth of drill hole h_{1} [mm]	Min. Depth of drill hole $h_{\text {ef }}$ [mm]	Max. Drill diameter in attached part d_{f} [mm]	$\begin{gathered} \text { Max. } \\ \text { altachment thickness } \\ \mathrm{t}_{\text {fix }}[\mathrm{mm}] \end{gathered}$	Installation torque $\mathrm{T}_{\text {inst }}[\mathrm{Nm}]$
Bolt anchor with washer according to DIN 125A							
6,0× 55^{*}	100	6	50	35	7	5	11
$6,0 \times 85^{*}$	100	6	50	35	7	35	11
$8,0 \times 50 *$	100	8	55	30	9	5	15
8,0x75	100	8	55	40	9	15	15
$8,0 \times 95$	100	8	55	40	9	35	15
$8,0 \times 115$	100	8	55	40	9	55	15
$8,0 \times 135$	100	8	55	40	9	75	15
$10,0 \times 60^{*}$	100	10	65	30	12	5	25
$10,0 \times 80$	100	10	65	50	12	5	25
$10,0 \times 100$	100	10	65	50	12	25	25
$10,0 \times 120$	100	10	65	50	12	45	25
$10,0 \times 140$	100	10	65	50	12	65	25
$12,0 \times 80 *$	110	12	80	50	14	5	40
12,0× 95	110	12	80	65	14	5	40
$12,0 \times 110$	110	12	80	65	14	20	40
$12,0 \times 130$	110	12	80	65	14	40	40
$12,0 \times 160$	110	12	80	65	14	70	40
$12,0 \times 180$	110	12	80	65	14	90	40
$16,0 \times 125$	120	16	90	80	18	15	80
$16,0 \times 140$	120	16	90	80	18	30	80
$16,0 \times 180$	120	16	90	80	18	70	80
Bolt anchor with washer according to DIN 440							
$12,0 \times 200$	110	12	80	65	14	110	40
$12,0 \times 220$	110	12	80	65	14	130	40
$12,0 \times 240$	110	12	80	65	14	150	40
$12,0 \times 260$	110	12	80	65	14	170	40
$16,0 \times 220$	120	16	90	80	18	110	80
$16,0 \times 240$	120	16	90	80	18	130	80
$16,0 \times 260$	120	16	90	80	18	150	80
Bolt anchor A4							
$8,0 \times 75$	100	8	60	45	9	15	20
$8,0 \times 100$	100	8	60	45	9	40	20
$10,0 \times 100$	120	10	75	60	12	25	45
$10,0 \times 120$	120	10	75	60	12	45	45
$10,0 \times 140$	120	10	75	60	12	65	45
$12,0 \times 140$	140	12	85	70	14	50	60

[^13]| Dimensions [mm] | Min. Subsurface thickness $h_{\text {min }}$ [mm] | Drill diameter $d_{0}[\mathrm{~mm}]$ | Min. Depth of drill hole h_{1} [mm] | Min. Depth of drill hole hef [mm] | Max. Drill diameter in attached part df [mm] | $\begin{gathered} \text { Max. } \\ \text { attachment thickness } \\ \mathrm{t}_{\text {fix }}[\mathrm{mm}] \end{gathered}$ | Installation torque $\mathrm{T}_{\text {inst }}[\mathrm{Nm}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 \times$ Lenght | | | | | | | |
| Bolt antho, gavanaised steel ${ }^{\text {3 }}$ | | | | | | | |
| $8,0 \times 50^{*}$ | 100 | 8 | 40 | 30 | 9 | 2 | 15 |
| $8,0 \times 75$ | 100 | 8 | 60 | 48 | 9 | 9 | 15 |
| $8,0 \times 80$ | 100 | 8 | 60 | 48 | 9 | 14 | 15 |
| $8,0 \times 95$ | 100 | 8 | 60 | 48 | 9 | 29 | 15 |
| $8,0 \times 115$ | 100 | 8 | 60 | 48 | 9 | 49 | 15 |
| $10,0 \times 90$ | 120 | 10 | 75 | 60 | 12 | 10 | 40 |
| $10,0 \times 105$ | 120 | 10 | 75 | 60 | 12 | 25 | 40 |
| $10,0 \times 115$ | 120 | 10 | 75 | 60 | 12 | 35 | 40 |
| 10,0x 135 | 120 | 10 | 75 | 60 | 12 | 55 | 40 |
| $10,0 \times 165$ | 120 | 10 | 75 | 60 | 12 | 85 | 40 |
| $10,0 \times 185$ | 120 | 10 | 75 | 60 | 12 | 105 | 40 |
| $12,0 \times 80^{*}$ | 140 | 12 | 65 | 50 | 14 | 4 | 60 |
| 12,0x 100 | 140 | 12 | 85 | 70 | 14 | 4 | 60 |
| $12,0 \times 110$ | 140 | 12 | 85 | 70 | 14 | 14 | 60 |
| $12,0 \times 120$ | 140 | 12 | 85 | 70 | 14 | 24 | 60 |
| $12,0 \times 130$ | 140 | 12 | 85 | 70 | 14 | 34 | 60 |
| $12,0 \times 150$ | 140 | 12 | 85 | 70 | 14 | 54 | 60 |
| $12,0 \times 180$ | 140 | 12 | 85 | 70 | 14 | 84 | 60 |
| $12,0 \times 200$ | 140 | 12 | 85 | 70 | 14 | 104 | 60 |
| 12,0 $\times 220$ | 140 | 12 | 85 | 70 | 14 | 124 | 60 |
| $12,0 \times 255$ | 140 | 12 | 85 | 70 | 14 | 159 | 60 |
| $16,0 \times 145$ | 170 | 14 | 105 | 85 | 18 | 28 | 100 |
| $16,0 \times 175$ | 170 | 14 | 105 | 85 | 18 | 58 | 100 |
| $16,0 \times 220$ | 170 | 14 | 105 | 85 | 18 | 103 | 100 |
| $16,0 \times 250$ | 170 | 14 | 105 | 85 | 18 | 133 | 100 |
| $20,0 \times 170$ | 200 | 20 | 125 | 100 | 22 | 32 | 200 |
| $20,0 \times 200$ | 200 | 20 | 125 | 100 | 22 | 62 | 200 |
| *Not reglucted by EA-22/0451 | | | | | | | |

SILENT EPDM DECOUPLING PROFILE

For sound insulation and material separation

The decoupling profile is used for sound insulation and material separation in timber and solid timber construction. The decoupling strip serves as a sound-insulating profile striip between timber parts and ensures physical and mechanical separation of adioining components. As a result, it prevents the transfer of vibration from fooffall/structure-borne sound.

Silent EPDM decoupling profile
Material: SK02

Art. no.	Thickness $[\mathrm{mm}]$	Width $[\mathrm{mm}]$	Lenght $[\mathrm{mm}]$	Color	Material	PU
945382	5	95	20	Black	EPDM	1

ADVANTAGES

- Versatile applications
- Can be individually cut to size (supplied as a roll)
- Ageing-resistant
- UV-stable
- Ozone-resistant
- Free of conflict materials

PROPERTIES

- Density: approx. $1,4 \mathrm{~g} / \mathrm{cm}^{3}$
- Usage temperature: $-30^{\circ} \mathrm{C}-+90^{\circ} \mathrm{C}$
- Shore hardness $48=0,500 \mathrm{~N} / \mathrm{mm}^{2}=0,05 \mathrm{kN} / \mathrm{m}^{2}$

INSTRUCTIONS FOR USE

Cut the decoupling profile to the desired length and place it in the chosen position, then fasten it in place at intervals of approx. $40-60 \mathrm{~cm}$, for example using the Eurotec Hammer tacker.

Material properties			
Property	Measurement method	Unit	Value
Hardness	DIW 1507619-1	Shore A	48
Density	DII 53479	$\mathrm{g} / \mathrm{m}^{3}$	1,23
Tearstrengh	DIIN5354	MPa	8,5
Elongation of brak	DIIN5354	\%	510
Compression set	DIW 150815-1	\%	≤ 40
Temperature resistance		${ }^{\circ} \mathrm{C}$	$30 / 100^{\circ} \mathrm{C}$

[^14]

ECKTEC

The space-saving alternative to the conventional brace

The EckTec connector can replace the conventional brace. This allows a better look without disruptive braces, especially
 at low installation heights.

Ecktec

Art. no.	Dimensions $[\mathrm{mm}]^{\text {a) }}$	PU*
975664	$50 \times 50 \times 100$	1
a) Width \times Height \times Depth *Delivery incl. screws		
ADVANTAGES		
- Supports load absorption with horizontal forces		
- Pre-assembly at the factory optional		
- Many different areas of use		

INSTRUCTIONS FOR USE

The EckTec connector is fixed with two 4×40 Paneltwistecs. The first KonstruX ST 8×155 fully-threaded screws are then set at 25° in the posts. After mounting the cross beam, the other 8×95 KonstruX ST fully threaded screws can be set at 90°. Min. cross-section of beam: $120 \times 120 \mathrm{~mm}$

SPECIAL COMPONENTS

Individual solutions for complex constructions	170
Special components	171
Module connectors	172

Gurotec

INDIVIDUAL SOLUTIONS FOR COMPLEX CONSTRUCTIONS

Your construction site is a bit more complex and you are missing the perfect connector for special tasks? NO PROBLEM!

On request, we manufacrute individual components, adapted to your needs, so that you can build worry-free!
Due to the ever-increasing popularity of wood as a building material in terms of environmental protection and cross laminated timber explicitly in building construction, we have increasingly focused on the topic of fastening and anchoring of prefabricated timber elements.

In this context, the efficiency as well as the quality of the products from the complex field of timber engineering is in the foreground. The core of this demanding architecture consists of complicated shapes, enormous spans of the structures as well as high static challenges.

For our customers we are able to develop and manufacture unique solutions in these areas of modular construction. These include hall structures for industry, trade and agriculture; but also bridges or more complex roof structures.

SPECIAL COMPONENTS

We offer customized solutions for your projects. From floor anchor plates with cross bracing in heavy timber construction connected by steel cables to cross flat connectors for heavily loaded timber connections with individual hole patterns.

Optimal load distribution thanks to individual adaptations to your projects
Better utilization of the individual connectors, for highly stressed junctions in engineered timber construction

Gurotec

EUROTEC MODULE CONNECTORS

Our products include shearing angles, shearing plates, tie rods and tension straps. These are used for anchoring walls, columns and ceilings.

The special features of shearing angles are the different installation heights and the type of perforation, depending on the application.

In order to secure aligned components against shear forces, we also developed the shearing plate, which can be used in a variety of ways to cover all possible anchoring cases.

In our product range you will find several variants of the tension straps. They can be used to create timber-timber, timber-concrete and steel-steel connections. Special holes for bolting at an angle of 45° make the tension straps particularly efficient and unique.

The Eurotec tie bar is used to absorb tensile forces to enable simple and fast base point anchoring of timber elements in timber, steel or concrete substrates.

CONDITIONS OF SALE AND DELIVERY

All sales to buyers, customers and contract partners, hereinafter referred to as customers, are made exclusively subject to the following terms and conditions unless other agreements are made in writing in the individual case:

1. SCOPE, GENERAL PROVISIONS

Our terms and conditions shall apply exclusively! We will not accept contradictory terms and conditions of our customers that deviate from our conditions unless we have given our express written consent to their validity. Our terms and conditions shall apply even if we execute orders without reservation despite being aware of contradictory conditions or conditions that deviate from our terms and conditions. Our terms and conditions shall also apply to all future transactions with our customers. Customers can access the latest version of these Standard Terms and Conditions at www.eurotec.team at any time.

2. OFFERS, WRITTEN FORM

Our offers are non-binding and subject to alteration without notice until we issue our final order confirmation. Contracts and agreements, as well as transactions brokered by our representatives, shall become binding only when we issue our written order confirmation. Verbal agreements, even within the framework of contract execution, are not valid unless confirmed by us in writing.

3. PRICES, PACKAGING, OFFSETTING

Unless otherwise indicated by the order confirmation, our prices are ex-works and exclusive of packaging. This is billed separately. The minimum order value is $£ 50.00$. For smaller quantities, we charge a flat processing fee of $€ 30.00$.
a) Our prices are exclusive of statutory value added tax. This is stated and charged separately in the invoice at the statutory rate applicable on the date of billing.
b) Our customer may only claim a right of offsetting insofar as counterclaims are established to be legally binding or are undisputed or accepted. A right of retention may only be exercised with respect to counterclaims resulting from the same contractual relationship.

4. DELIVERY, DELIVERY PERIOD AND FORCE MAJEURE

Unless otherwise agreed in writing, the place of performance shall be our company premises. The goods are shipped at the customer's risk and expense by third parties acting on our behalf. From the time at which the goods are made ready for delivery and the customer has been informed of their readiness for shipping, the customer shall bear the risk of accidental loss or deterioration of the item. This shall apply even if shipping is delayed as a result of circumstances for which we are not responsible. Punctual handing over of the goods to a shipping company requires that the order be placed on time by our customer. If the goods are handed over to the appointed shipping company punctually, we will not be liable for delayed delivery to the customer. This shall apply even if a delivery deadline was agreed with the customer, especially in the case of delivery to a construction site. The customer may be exempted from rush charges incurred in relation to this if there is a legal basis for deducting this surcharge from the forwarder's bill.
Statements relating to delivery periods are always to be seen only as approximate and non-binding. They shall begin on the date of our order confirmation but not before all of the order details are clarified in full. They refer to the time of consignment ex-works and shall be considered met when the goods are reported to be ready for dispatch. Without prejudice to our rights arising due to the customer's default, they shall be extended by the period for which the customer is in arrears to us with respect to their obligations arising from this or other orders.
Even if they arise at our suppliers, the following grounds are among those that shall release us from the obligation to adhere to the delivery period and shall entitle us to extend the delivery periods, to make partial deliveries or to wholly or partially withdraw from the part of the contract that is not yet fuffilled without becoming liable to pay damages as a result, unless we are guilty of intent or gross negligence: interruptions of operations and difficulties in delivery of any kind, e. g. shortages of machinery, goods, materials or fuels, or incidents of force majeure, e. g. export and import embargos, fires, strikes, lock-outs or new official measures that adversely affect production costs and shipping.

5. SHIPPING

Goods are shipped at the expense and risk of the customer even if prepaid delivery was agreed. Additional costs for express shipping shall always be borne by the customer. Freight costs paid by us are to be seen only as an advancement of freight charges on behalf of the customer. Additional freight costs for urgent and express parcels shall be borne by the customer, even if we have borne the transport costs on individual occasions. Goods reported as ready for shipping must be accepted immediately and will be charged as exworks. If the goods are to be shipped abroad or passed directly to third parties, they must be examined and accepted in our factory; otherwise, the goods shall be deemed to have been delivered in accordance with the contract to the exclusion of any complaints. The risk, including that of confiscation, shall be transferred to the customer when the goods are handed over to the forwarder or freight carrier and, at the latest, when they leave our facility. Return shipments always require prior consultation with our internal sales depariment. Goods that are free of defects are only taken back with our express consent. A credit note is then issued for the value of the goods with deduction of a 25% return fee per item or against a minimum fee of $€ 50$ for returning the goods to storage. Strictly no debit notes are accepted.
6. DESIGN AND PROPERTY RIGHTS

The customer shall bear sole responsibility and be liable for ensuring that the goods it orders do not violate thirdparty property rights. No verification is performed on our part in this respect. The customer shall indemnify us against injunctions or claims for damages by third parties. If an iniunction is requested against us, the customer shall meet the legal costs and shall compensate us for the damages we have incurred.

7. ACCEPTANCE, QUANTITY TOLERANCES AND CALL-OFFS

For contracts with ongoing deliveries, the goods are to be accepted in monthly quantities that are as consistent as possible over the course of the contractual period. If a call-off is not made on time, we shall be entitled, after the expiry of a grace period that we have granted, to divide the order at our own discretion, withdraw from the part of the contract that has not yet been executed, or make a claim for damages due to non-performance. In the case of call-off orders, the call-offs must always be made within 12 calendar months. Over- or under-shipment by up to 10% of the order shall be permissible.

8.1 PAYMENT TERMS FOR INVOICES, RIGHT OF RETENTION

Invoices shall be payable with a 2% discount within 10 days of the invoice date or net within 30 days, regardless of when the goods are received and without prejudice to the right to make a complaint for defects. Payment by means of acceptance or customer's bill of exchange shall require special written agreement in advance. Discount charges will be charged in the case of payment by means of acceptance, which must have a term no longer than 3 months and be issued within 1 week of the invoice date. Credit notes for bills of exchange or cheques shall apply subject to receipt and regardless of the purchase price's earlier due date in the event of default by the customer. They shall be issued with the value at the date on which the equivalent amount will be available to us; the discount charges will be charged at the respective bank rate. In the event that the payment term is exceeded, interest and commissions
may be charged without prejudice to other rights at the respective bank rate for overdrafts but at a rate at least 5% above the respective discount rate of the Deutsche Bundesbank [German Federal Bank]. If the payment terms are not adhered to or we become aware of circumstances that, in our view, are sufficient to reduce the customer's credit worthiness, all of our claims shall become payable immediately regardless of the term of any bills of exchange that have been accepted or credited.
We shall then also be entitled to perform outstanding deliveries only in exchange for advance payment, to withdraw from the contract after a reasonable grace period, and to demand compensation for default. We may also prohibit the resale or processing of the delivered goods and demand their return or the transfer of indirect possession of the delivered goods at the customer's expense. The customer hereby already authorises us to enter its premises and confiscate the delivered goods in the above cases. We shall be entitled to the usual securities for our claims according to their nature and extent, even if they are subbect to conditions or of limited duration. Offsetting or withholding payments as a result of any counterclaims or notifications of defects shall be prohibited, except where claims are undisputed or established to be legally binding.

8.2 TERMS OF PAYMENT FOR WEB-SHOP CUSTOMERS

Payment shall be made exclusively in advance. Once the order process in our online shop is complete, you will receive an email with the bank details for our business account. The invoiced amount must be transferred to our account within 7 days. We cannot carry out your order until the payment arrives.

9. RETENTION OF TITLE

Until all liabilities arising from the business relationship are paid in full and, in particular, until all bills of exchange and cheques, including finance bills, given as payment are cashed, the goods delivered by us shall remain our property and may be taken back by us at the customer's expense in the event of default in payment. Until this point, the customer shall not be entitled to pledge or assign the goods to third parties as a security; it may sell them on or process them only within the framework of its ongoing business transactions. The customer shall be obliged to inform us immediately of any seizure by third parties of the goods delivered subject to retention of fitle.
In the event of further processing, the customer shall not acquire ownership of the goods delivered by us as set out in section 950 of the German Civil Code (BGB), as any processing is carried out by the customer on our behalf. Without prejudice to the rights of third-party suppliers, the newly created thing shall serve as security for us up to the amount of our total claims arising from the business relationship. It shall be kept safe for us by the customer and shall be regarded as goods for the purpose of these terms and conditions. If the item is intermixed or otherwise combined with other objects that to do not belong to us, we shall acquire at least co-ownership of the new thing in proportion to the value of the contract item to that of other objects that have been processed with it. If the customer sells the goods delivered by us, regardless of their condition, it hereby already assigns to us all claims against its customers arising from sales, as well as all ancillary rights, until all of our claims arising from delivery of goods are paid in full. At our request, the customer shall be obliged to notify its downstream customers of the assignment and to hand over the information and documents we require in order to assert our rights against its downstream customers.
If the total value of the securities given to us exceeds our claims arising from delivery by more than 20%, we shall be obliged to retransfer securities to this extent at the customer's request. If the retention of fitle or assignment is invalid in the territory in which the goods are located, a security corresponding to the retention of title or assignment in this territory shall be deemed to be agreed. If the customer's cooperation is required in this process, it shall take all necessary measures to establish such rights.

10. NOTIFICATION OF DEFECTS, LIABILITY

Our customer shall be entitled to a warranty only if they have properly fulfilled their legal obligations under sections 377 and 378 of the German Commercial Code (HGB) with respect to the duties of examination and notification. If defects are present, we shall be entitled at our choice to either repair the defects or provide a replacement; if we are not prepared or not able to do so, and especially if repair/replacement is delayed beyond reasonable deadlines for reasons that we are responsible for, or if repair/replacement otherwise fails, our customer shall be entitled at its choice to withdraw from the contract or to demand a corresponding reduction in the price. Unless otherwise stipulated below, further claims of the customer shall be excluded regardless of their legal basis. We shall not be liable for damage that did not occur to the delivered item itself. In particular, we shall not be liable for lost profit or other pecuniary losses of the customer. The above exemption from liability shall not apply if the damage is caused by intent or gross negligence; it shall also not apply if the customer asserts claims for damages for non-performance due to the lack of a warranted characteristic. If we breach an essential contractual duty through negligence, our duty of reimbursement for property damage or personal injury shall be restricted to the level of cover provided by our product liability insurance.
We are prepared to allow the customer to view our policy. The warranty period is 6 months calculated from the date of transfer of risk. This period is a limitation period. The period shall also apply to claims under sections 1 and 4 of the German Product Liability Act (ProdHaftG). Insofar as our liability is excluded or restricted, this shall also apply to the personal liability of our employees, workers, staff, representatives and agents. Goods that are subject to a complaint must not be sent back without obtaining our prior written consent, as otherwise we may refuse to accept them at the sender's expense. Goods that have been partially or wholly processed will not be taken back under any circumstances. The customer is obliged to make sure that the purchased product is suitable for the intended application using technical descriptions, where available, and based on their specialist knowledge and to familiarise themselves with the application of this product. If they are not familiar with the product's application, our company staff are available to provide advice. All information and advice from our staff is provided carefully and conscientiously. Under no circumstances does this information and advice replace the indispensable consultancy services of architects and specialist planning companies or the services they provide during construction. Only the authorised professional groups are entitled to provide these services.

11. PLACE OF PERFORMANCE AND JURISDICTION, MISCELLANEOUS

Our company's registered office shall be the place of performance for all obligations arising from this contract, including liabilities from cheques and bills of exchange. Provided our customer is a merchant, the place of jurisdiction for all disputes arising from the contractual relationship shall be, at our choice, the Local Court of Hagen. Contracts with our customer shall be governed exclusively by German law to the exclusion of the UN Convention on Contracts for the International Sale of Goods of 11 April 1980. The language of the contract shall be German.

Hagen, 16. February 2018
E.,.r.o. Tec GmbH

Unter dem Hofe 5-58099 Hagen
Managing directors: Markus Rensburg, Gregor Mamys
Court of registration: Local Court of Registration number HRB 3817 VAT ID No.: DE 812674291
Tax number: 321/5770/0639
Tel. +4923316245-0 • Fax +49233162 45-200 • email inf@@urotec.team • www.eurotec.team

INDEX

A Angle-bracket screw ..98-99
Assembly connector .. 38 - 39

B BIM-Online-Portal 6-7

C CLT basics ..8-11

D Dowel bar. 63

E Ecktec ... 168 - 169

Eurotec module connectors .. 174

H $\mathrm{HB} / \mathrm{HH}$ flat shearing angle .. 27

1 Ideefix .. 47

K KonstruX fully threaded screw ... $72-97$

L Lifing anchor.. 128 - 147

M Magnus hook connector ... 59

P Paneltwistec .. 115
Product finder .. 4-5

S SawTec ... 119
Shear wall connector .. 36

Shearing plate ... $28-31$
Silent EPDM decoupling profile..166-167

SonoTec sound insulation cork.. 160
Special components.. 173

T Tension strap HB60/70.. 32 - 33
Tension strap HH60/70.. 34-35
Topduo roofing screw...120-125

Transport anchor system.. 148 - 149

NOTES:

Gurotec | Construction with CLT

NOTES:

NOTES:

Publisher: E.u.r.o.Tec GmbH • Revised $03 / 2023$
The content is subiject to errors and technical changes and additions. All dimensions are approximate values.
The information is subject to model and colour deviations, as well as errors.
We accept no liability for printing errors. Reprinting (even in part) is only permitted with E.u.r.o.Tec GmbH's prior approval.

E.u.r.o.Tec GmbH

Unter dem Hofe 5- D-58099 Hagen

[^0]: Suitable for use with:
 Shearing angle, Shearing plate, Shearing angle HB flat, Shrearing angle HH flat, Tension strap HB / HH

[^1]: Suitable for use with:
 KonstruX, Angle-bracket screw
 Paneltwistec, Rock concrete screw,
 EST dowel bar, Dowel bar

[^2]: Calculation according to EAA- $11 / 0024$. Wood density $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
 All values are calculated minimum values and are subject to typographical and printing errors.
 a) The characterisic values of the load bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characteristic values of the load-bearing capacity Rk should be reduced to dimensioning valves
 R_{d} with regard to the usage class and class of the load duration: $\mathrm{Rd}=\mathrm{Rk}_{\mathrm{k}} \cdot \mathrm{Kmod}^{\mathrm{m}} / \gamma_{\mathrm{M}}$. The dimensioning values of the lood-bearing capacity Rd should be contrasted with the dimensioning values of the loads $\left(\mathrm{R}_{\mathrm{d}} \geq \mathrm{E}_{\mathrm{d}}\right)$.

[^3]: Calculction according to EA-11/024. Wood density $\mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be vieved as subject to the assumpions that have been made and represent example calulutions.
 All values sre calculcted minimum values and dre subjedt to typographical and p pirining errors.

 Plesse note: These cre planning iids. Projets must only be calculated by uuthorised pessons.

[^4]: Calculation according to EAA- $11 / 0024$. Wood density $\rho \mathrm{pk}=380 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
 All values are calculcted minimum values and are subject to typographical and printing errors.
 a) The characteristic values of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characterisicic values of the load-bearing capacity Rk should be reduced to dimensioning valves Rd

[^5]: Calculation according to $\operatorname{ETA}-11 / 0024$. Wood density $\rho \mathrm{\rho k}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
 All values are calculated minimum values. Typesetting and printing errors are excepted.
 a) The characterisicic values of the lood-bearing capacity Rh should not be treated as equivalent to the max. possible load (the max. force). Characteristic valves of the load-bearing capacity Rk are to be reduced to the design values
 R_{d} as regards the service class and class of the load duration: $\mathbb{R d}_{d}=R_{k} \cdot K_{m o d} / \gamma m$. The design values of the load-bearing capacity R_{d} should be compared to the design values of the loads $\left(\mathbb{R}_{d} \geq E_{d}\right)$.

[^6]: Calculation according to ETA- $\mathrm{II} / 0024$. Wood density $\rho_{\mathrm{k}}=350 \mathrm{~kg} / \mathrm{m}^{3}$. All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
 All values are calculated minimum values and are subject to typographical and printing errors.
 a) The characteristic valves of the load-bearing capacity Rk cannot be treated as equivalent to the max. possible load (the max. force). Characterisicic values of the load-bearing capacity Rk should be reduced to dimensioning values Rd

[^7]: a) Ouantity dways refers to the less favourable value from Topduo Washer head and Cylinder-head
 b) Topduo Washer head only, c) Includes snow load zones 1,2 and 2^{*} each with snow guard, d) Includes all wind zones apart from North Sea islands
 e) Use of our proiect assessment service is recommended. The design examples listed here represent unfavourable, i.e. statically safe, instances.
 f) Incudedes snow lood zones 1,2 and 3, g) Includes wind zones 1 and 2 (inland)

[^8]: *only for compression-proof insulations with compression strength $\geq 50 \mathrm{kPa}$ **also for non-compression-proof insulations

[^9]: Please note: Verity the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

[^10]: de is the diameter and the total height of the connector
 ag is the metric connection thread of the connector
 V cis the height of the integrated anti-wwist system - Fully threaded screw, GoFix ${ }^{\circledR}$ FK
 IF $305,0 \times 40 \mathrm{~mm} \cdot$ IF $406,0 \times 60 \mathrm{~mm} \cdot$ IF $508,0 \times 90 \mathrm{~mm}$
 The connection is drawn together using a threaded rod or constructionscrew with a DIN 440 R washer
 MB-SB connection as a mortise joint with simultaneous absorption of tensile forces
 Rk characteristic value calculated according to DIN $1052: 2004-08$ Timber pk $380 \mathrm{~kg} / \mathrm{m}^{3} \mathrm{Nze}$. recommended permissible lood $\mathrm{R}, \mathrm{k} \times 0,8 \mathrm{kmod}: 1,3 \mathrm{ym}: 1,4$. Favtor 1,4 average load safery factor
 Please note: The stated values are planning ciids. Projects must only be calculated by authorised persons.

[^11]:

 d γ - Inctindion angle of line (chain, rope, lititing strap etic.) ; oflesst. 60° according to BGR 500
 d) α - Angle between grain direction ond screwing oxis

 Please not: These are planning aids. Proiects must only be calculced by outhorised persons.

[^12]: CLT system angle for fixing a wall to the wooden floor of the upper level.

[^13]: *Not regulated by ETA-14/0409
 Please note: Verify the assumptions made. The stated values, and type and number of joining devices are based on preliminary measurements. Projects are to be dimensioned exclusively by authorised
 persons in accordance with the State Building Code. As per LBuoO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

[^14]: Please note: Verify the assumptions made. The stated values, and type and number of joining devices are bassed on preliminary measurements. Projects are to be dimensioned exdusively by authorised persons in accordance with the State Building Code. As per LBauO, please contact a qualified structural engineer for a paid proof of stability. We will be happy to refer you to someone.

