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Abstract

The number of offspring an organism can produce is a key component of its evolutionary fitness and life-
history. Here we perform a test of the hypothesized trade-off between the number and size of offspring using
thousands of descriptions of the number of egg-producing compartments in the insect ovary (ovarioles), a
common proxy for potential offspring number in insects. We find evidence of a negative relationship between
egg size and ovariole number when accounting for adult body size. However in contrast to prior claims, we
note that this relationship is not generalizable across all insect clades, and we highlight several factors that
may have contributed to this size-number trade-off being stated as a general rule in previous studies. We
reconstruct the evolution of the arrangement of cells that contribute nutrients and patterning information
during oogenesis (nurse cells), and show that the diversification of ovariole number and egg size have both
been largely independent of their presence or position within the ovariole. Instead we show that ovariole
number evolution has been shaped by a series of transitions between variable and invariant states, with
multiple independent lineages evolving to have almost no variation in ovariole number. We highlight the
implications of these invariant lineages on our understanding of the specification of ovariole number during
development, as well as the importance of considering developmental processes in theories of life-history
evolution.

Introduction

Offspring number is a fundamental parameter in the study of life-history1. This number differs widely
between organisms1, and its variation is the foundation for several hypotheses about life-history evolution,
including the prediction that there is an evolutionary trade-off between the number of offspring and their
size (e.g. egg size)1–3. In insects, the number of egg-producing compartments in the ovary, called ovarioles,
has been used as a proxy for potential offspring number in the study of life-history4–6. However, without an
understanding of the phylogenetic distribution of ovariole number, this hypothesized relationship cannot be
assessed across insects. Here we tested for the presence of a general trade-off between ovariole number and
egg size by collecting thousands of records of ovariole number from the published literature, placing them in
a phylogenetic context, and comparing them to other datasets of insect reproductive morphology.
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The insect female reproductive system includes a pair of ovaries, each of which contains a number of ovarioles7
(Fig 1a). Each ovariole consists of an anterior germarium containing the stem cell niche or resting oogonia,
developing oocytes arranged in an ontogenic series from anterior to posterior, and a posterior connection
to a common oviduct. The number of ovarioles varies across species6, and can vary across individuals in a
population4, as well as between the left and right ovary within a single individual8. Therefore total ovariole
number may be an even or odd integer for an individual female insect. In addition to variation in the number
of ovarioles, the tissue morphology within ovarioles varies across insects, and has been classified into several
modes of oogenesis based on the presence and position of special oocyte-associated cells called nurse cells7.

Here we compiled 3355 records of ovariole number from across 28 orders, 301 families, and 2103 species of
insects. We combined these data with published datasets of egg size9, fecundity10,11, and body size12, to
test hypotheses about the evolutionary trade-off between offspring size and number. In these analyses we
used an existing phylogeny of insects13 to analyze evolutionary patterns in ovariole number, and found that
hypotheses about life-history evolution do not hold generally true across insects. We then combined these
data with published observations of the mode of oogenesis7 and reconstructed the evolutionary history of
the presence and position of nurse cells that contribute to the oocyte during oogenesis. We tested whether
patterns in the distribution of ovariole number, egg size, or egg shape were driven by the evolution of nurse
cells, and found no significant results. Instead we observe that the phylogenetic distribution of ovariole
number suggests a model where the developmental mechanisms that govern ovariole number have shifted
between variable and invariant states several times over the course of insect evolution. Based on this finding,
we propose that the developmental mechanisms used to establish ovariole number in well-studied insects
such as Drosophila melanogaster are unlikely to regulate ovariole number in all insects.

Methods

Gathering trait data

We searched the published literature for references to insect ovariole number using a predetermined set
of 131 search terms, entered into Google Scholar (scholar.google.com) between June and October of 2019.
Each search term was comprised of an insect taxonomic group and the words “ovariole number”. The
taxonomic groups used in the search process included all insect orders, many large insect families, and
taxonomic groups that are well-represented in the insect egg dataset9. For each Google Scholar search,
we evaluated the first ten pages in the search results. For 61 search terms that had a large number of
informative hits, significant representation in the egg dataset, or that corresponded to very speciose groups,
we evaluated an additional 20 publications. The list of search terms is available in the supplementary file
‘ovariole_number_search_terms.tsv’.

Using this approach, we gathered 3355 records for ovariole number for 28 insect orders, 301 families, and 2103
species, using 448 publications that are listed in the supplementary file ‘ovariole_number_bibliography.pdf’.
We matched these records to additional taxonomic information using the software TaxReformer14. For all
subsequent analyses, we excluded observations made in non-reproductive individuals from eusocial species
(e.g. workers), as well as two observations that represented significant outliers and could not be validated
using additional sources15,16. See supplementary methods section 1 for details.

For records of ovariole number that reported intraspecific variation in ovariole number, we calculated the
percent difference as follows: if ovariole number was reported as a range, percent difference was calculated
as the 100 ∗ ((max − min)/median); if ovariole number was reported as an average with deviations, percent
difference was calculated as 100∗((2∗deviation)/mean). When independent observations of ovariole number
for a given species were available across multiple published records, we calculated the percent difference as
the 100 ∗ ((max − min)/median).

We combined the data we collected on total ovariole number with existing datasets of egg size and shape9,
insect lifetime fecundity and dry adult body mass10,11,17, average adult body length per insect family12,
several lineage-specific measures of adult body size18–22, and the mode of oogenesis7. See supplementary
methods section 3.1 for details.
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All continuous traits (ovariole number, egg volume, lifetime fecundity, and all measures of body size) were
log10 transformed for subsequent analyses.

Phylogenetic analyses

The analyses in this manuscript were performed using the insect phylogeny published in Church et al., 201913,
unless otherwise specified. For regressions involving body size data that were reported as insect family-level
averages, we used the insect phylogeny published in Rainford et. al, 201423. Analyses of Drosophilidae
ovariole number, egg size, and body size were performed using a phylogeny newly assembled for this study.
See supplementary methods section 2 for details.

To evaluate the robustness of our results to uncertainty in the phylogenetic relationships, all Phylogenetic
Generalized Least Squares (PGLS) analyses were performed 1000 times over a posterior distribution of trees,
using a Brownian Motion based covariance matrix in the R package ape (version 5.4.1)24 and nlme (version
3.1.151)25. For regressions at the species and genus level, we reshuffled and matched records for each iteration
to account for variation across records for the same taxon. For regressions at the family level we recalculated
the average ovariole number per insect family, randomly downsampling the representation for each family
by half. To weight traits by body size, we calculated the phylogenetic residuals26 of each trait to body size,
and then compared the evolution of these residuals using a PGLS regression. See supplementary methods
section 3.2 for details.

For two regressions comparing egg size to ovariole number while accounting for adult body size, we tested
alternative hypotheses of evolution by simulating new data. We considered two such hypotheses: no evolu-
tionary correlation with ovariole number, and a strong correlation with ovariole number (slope of -1). For
each trait we simulated 1,000 datasets using evolutionary parameters fit under a Brownian Motion model in
the R packages geiger (version 2.0.7)27, and phylolm (version 2.6.2)28.

Ancestral state reconstruction of oogenesis mode was performed with the R package corHMM (version
1.22)29, and models of trait evolution were compared using the R package Ouwie (version 1.57)30. Ancestral
state reconstruction and model comparison were repeated 100 times over a posterior distribution of trees
and resampling data to account for variation across records for the same taxon. See supplementary methods
section 4.3.

Other comparisons of model fit were performed using the R package geiger(version 2.0.7)27 and validated
using a parametric bootstrap with the R package arbutus (version 0.1)31. See supplementary methods section
5.1.

Analyses of evolutionary rate were performed using BAMM (version 2.5.0)32. For this analysis, we calculated
the average ovariole number (log10 transformed) for each genus present in the phylogeny (507 taxa). We used
the R package BAMMtools (version 2.1.7)33 to select appropriate priors, and ran BAMM for the maximum
number of generations (2 ∗ 10−9), sampling every 106 generations. Convergence was evaluated both visually
(Fig. S12) and numerically. Running BAMM for the maximum possible number of generations and selecting
the optimum burn-in (Fig. S13) resulted in an effective size for the number of shifts of 482.51, and for
the log-likelihood of 149.15. Repeated BAMM analyses showed similar distributions of high and low rate
regimes, indicating the implications for ovariole number evolution are robust to uncertainty in rate estimates.
See supplementary methods section 5.2 for details.

We visualized the results from the BAMM analysis to establish a threshold (10−4) for assigning a binary rate
regime to each node in the phylogeny, categorizing them as above (variable) or below (invariant) a threshold
that separates these two peaks.

Data availability

The dataset of insect ovariole number is available at Dryad, doi:10.5061/dryad.59zw3r253.
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Code availability

The code and phylogenetic trees required to reproduce all the analyses, figures, and generate the manuscript
files are provided at ‘https://github.com/shchurch/insect_ovariole_number_evolution_2020’, commit
6cf446a. All analyses performed in R (version 4.0.3) were done so in a clean environment, built with conda
(version 4.9.2), and instructions for rebuilding this environment are provided in the same repository.

Statistical significance

All phylogenetic regressions were performed using the maximum clade credibility (MCC) tree (the tree
with highest credibility score from the posterior distribution of the Bayesian analysis). We considered a
relationship significant when the p-value was below the threshold 0.01. To assess the robustness of results
to uncertainty in phylogenetic relationships, we also repeated these analyses over the posterior distribution
of phylogenetic trees and report the number of regressions that gave a significant result (see Table S1).

For two comparisons, we validated that our tests had sufficient statistical power using the selected threshold
by comparing the distribution of p-values from regressions of observed data to regressions of data simulated
under alternative hypotheses. We compared the results of analyses of our observed to those based on
simulated data to evaluate the likelihood of false positives (comparing to data simulated under no correlation)
and false negatives (comparing to data simulated with strong correlation).

Model comparisons of trait evolution were also performed over a posterior distribution and accounting for
phenotypic uncertainty. For these analyses, we considered a model to have significantly better fit the data
than other models when the difference in the corrected Akaike Information Criterion (AICc) was greater
than two in every analysis iteration.

Results

Ovariole number diversity

Ovariole number varies by at least four orders of magnitude across insect species (Fig. 1b). We identify
seven insect families with species that have been reported to have more than 1,000 total ovarioles, including
several eusocial insects (e.g. queens of the termite species Hypotermes obscuriceps, Blattodea: Termitidae34,
and several ant species, Hymenoptera: Formicidae)35,36 and non-eusocial insects (e.g. the blister beetle Meloe
proscarabaeus, Coleoptera: Meloidae)37. We also find two independent lineages that have evolved to have
only one functional ovariole: dung beetles in the tribe Scarabaeinae (Coleoptera: Scarabaeidae)38, and grass
flies in the genus Pachylophus (Diptera: Chloropidae)39,40. In these insects one of the two ovaries presumably
established during embryogenesis is reported to atrophy during development40,41, resulting in an asymmetric
adult reproductive system. We also evaluated intraspecific variation in ovariole number, and found that, for
species for which it has been reported, the average percent difference number within species is between 10%
and 100% of the median value (Fig. S1).
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Figure 1: The diversity of ovariole number across insects. a, Schematic of a generalized insect female
reproductive system, showing a pair of ovaries, each with four ovarioles. b, The range of total adult ovariole
number, log10 scale, across nine groups of insects, arranged with random jitter on the y-axis within each
group. Groups are, from top to bottom: Apterygota, Palaeoptera, Polyneoptera, Condylognatha, Psocodea,
Amphiesmenoptera, Antliophora, Neuropteroidea, and Hymenoptera.

Ovariole number, egg size, and body size

Ovariole number has been hypothesized to be negatively correlated with egg size5,21,42. This hypothesis is
based on the predictions that (1) female reproduction is resource-limited, therefore egg size should trade off
with egg number, and (2) ovariole number can serve as a proxy for egg number2,42. We did not observe
a significant negative relationship when comparing egg size and ovariole number across insect species (Fig.
2a, Table S1, p-value 0.195, n=306). We also compared egg size and ovariole number, combining data from
species within the same genus to increase sample size, and again did not observe a significant relationship
(Fig. S2, p-value 0.066, n=482). To verify this finding was not driven by the high ovariole numbers seen
in the queens of some eusocial insects, we repeated this comparison excluding insects from families with
eusocial representatives, with the same result (Fig. S3, p-value 0.209, n=415).

Given that this predicted relationship is often conditioned on body size, which is predicted to limit total
potential reproductive investment21,43, we combined data on ovariole number and egg size with data on
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insect adult body mass10,11,17 and length12. When accounting for adult body mass, we observed a significant
negative relationship between egg size and ovariole number across genera (Fig. 2b, S4, p-value 0.003, slope
-0.399, n=61). To evaluate the robustness of this result, we repeated the analysis 1000 times, taking into
account uncertainty in both the phylogeny and trait measurements. Out of 1000 regressions, 995 indicated
a significant negative relationship (Table S1). We performed the same comparison accounting for adult
body length, and likewise observed a significant negative relationship (Fig. S5, p-value <0.001, slope -0.52,
n=126), supported by 966 of 1000 repeated analyses (Table S1).

We further explored these results using two methods: First, to evaluate our findings against alternative
evolutionary hypotheses, we compared these results to regressions based on simulated data. Our results
showed that when considering body size, the slope of the regression of egg size and ovariole number is more
negative than we would expect to observe by chance, as assessed by comparing to data simulated with
no evolutionary correlation (Fig. S6). However, for both adult body length and dry mass, the slope of
the regressions on observed data are not within the range that would be expected under a strong negative
correlation (slope of -1 in log-log space, Fig. S6). This suggests the presence of a weak evolutionary
relationship between ovariole number and egg size, when accounting for body size.

Second, we assessed the relationship between egg size and ovariole number, accounting for body size, within
four subclades of insects. We found that across Drosophilidae fly species, egg size is indeed strongly negatively
correlated with ovariole number when accounting for body size (Fig. 2c, Table S2, p-value <0.001, slope
-0.809, n=30). For grasshoppers and crickets (Orthoptera), beetles (Coleoptera), and wasps (Hymenoptera),
we observed no significant relationship between ovariole number and egg size, even when accounting for body
size (Fig. 2d, S7, Table S2, Orthoptera: p-value 0.485, n=40, Coleoptera: p-value 0.384, n=30, Hymenoptera:
p-value 0.139, n=21). This indicates that, while a strong negative correlation between egg size and ovariole
number exists for some insects, it does not represent a universal pattern across insect clades.

Finally, we tested whether ovariole number is positively correlated with adult body size, and in contrast to
previous studies4, we found no correlation between ovariole number and adult body mass or length across
insects (Fig. S8, Table S3, body mass: p-value 0.618, n=61, body length: p-value 0.031, n=98). Of the four
subclades considered, only insects in the order Orthoptera had a positive relationship between body size and
ovariole number (Table S3, p-value 0.001, slope 0.35, n=40).
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Figure 2: Tests of the hypothesized trade-off between egg size and ovariole number. a, Egg volume
(mm3) and ovariole number, both log10 scale; points represent insect species. See section Modeling ovariole
number evolution for discussion of the enrichment of certain low values of ovariole number (points appearing
vertically arranged) b, Egg volume and ovariole number, residuals to dry adult body mass, points represent
genera. c, Drosophilidae egg volume and ovariole number, residuals to thorax length, points represent species.
d, Orthoptera egg volume and ovariole number, residuals to body length, points represent genera.
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Ovariole number and fecundity

If the hypothesized trade-off between the number and size of offspring is true for insects, then one explanation
for the lack of a consistent negative relationship between ovariole number and egg size is that ovariole number
may not be a reasonable proxy for offspring number. Previous research has shown that, across individuals
within the same species, ovariole number is correlated with certain measurements of fecundity, such as
maximum daily rate of egg production for Drosophila,44,45 but not others, such as lifetime fecundity46 or
fitness in competition assays47. Few studies have compared fecundity and ovariole number across species43,
likely due to the difficulties of measuring fecundity consistently across insects, many of which lay eggs singly
and continuously rather than in distinct clutches.

Using a previously reported dataset of lifetime fecundity measurements across insects10,11, we assessed the
relationship between lifetime fecundity and ovariole number. We observed a significant positive relationship
(Fig. 3, p-value 0.002, slope 1.233, n=65), however, a substantial fraction of repeat analyses show these
results are not robust to uncertainty (733 of 1000 regressions are not significant, Table S4). We note that
this relationship is largely defined by the absence of insects with high ovariole number and low fecundity
(Fig. 3, empty bottom right corner), while for insects with low ovariole number, fecundity varied over more
than three orders of magnitude. We interpret our results, in conjunction with those previously reported,
to suggest that ovariole number, when variable across insects in a lineage, may be one factor among many
influencing the number of eggs produced. However, we caution against using ovariole number as a direct
mathematical proxy for offspring number.

Figure 3: The relationship between lifetime fecundity and ovariole number. Both values are shown
on a log10 scale. Points represent insect genera and are colored according to the groups shown in Fig. 1b.

Evolution of nurse cells

In addition to the number of ovarioles, insect ovary morphology has been classified into several modes of
oogenesis based on the presence and position of cells that provide nutritive and patterning molecules to the
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oocyte, which are called nurse cells7 (Fig. 4a). Egg formation in the well-studied species D. melanogaster is
an example of a meroistic oogenesis mode, meaning that its ovarioles contain nurse cells of germ line origin
that are connected to developing oocytes via cytoplasmic bridges48. In insects with a polytrophic meroistic
arrangement, these nurse cells are clonally related and immediately adjacent to each oocyte. An alternative
arrangement is seen in telotrophic meroistic ovaries, where oocytes in each ovariole are connected to a
common pool of nurse cells located in the germarium7. Meroistic ovaries are thought to have evolved from
an ancestral panoistic mode, meaning they lack nurse cells7. Using a previously published set of descriptions
of these oogenesis modes across insects7, we reconstructed the evolutionary transitions between these states.
Consistent with previous analyses7, we found that the ancestral insect likely had panoistic ovaries (lacking
nurse cells), with several independent shifts to both telotrophic and polytrophic meroistic modes, and at
least two reversals from meroistic back to panoistic (Figs. 4b, S10).

Using this ancestral state reconstruction, we then compared models of trait evolution to test whether evolu-
tionary transitions in oogenesis mode helped explain the diversification of ovariole number and egg morphol-
ogy. We found that, for the traits studied here, models that take into account evolutionary changes in mode
of oogenesis do not consistently demonstrate a significant improvement over models that do not take these
changes into account (∆AIC < 2, Table S5). In other words, the evolution of nurse cells and their position
within the ovary do not explain the diversification of egg size, egg shape, or ovariole number.

To analyze the robustness of these results to uncertainty in the tree topology and in the inference of ancestral
states, we repeated each analysis over a posterior distribution of trees. For egg asymmetry and curvature, but
not for volume or aspect ratio, we observed a few iterations where a model that takes into account oogenesis
mode evolution was significantly favored over models that did not (∆AIC > 2, Table S5). However, this
result was infrequent over 100 repetitions of the analysis. We therefore interpret these results as suggestive of
a possible relationship between mode of oogenesis and egg asymmetry and curvature, but one which cannot
be confirmed given the current data available.

Figure 4: The evolution of the presence and position of nurse cells. a, Insect oogenesis was cate-
gorized into several modes by Büning7 based on the presence and position of nurse cells. b, Phylogenetic
reconstruction of mode of oogenesis. Scale bar indicates 100 million years (Myr). Gray = panoistic ovaries,
without nurse cells, cyan = polytrophic meroistic ovaries, with nurse cells adjacent to maturing oocytes, red
= telotrophic meroistic ovaries, with nurse cells located in germaria, black = unique meroistic ovary type
observed in Strepsiptera. Insect taxonomic groups are, from top to bottom: Apterygota, Palaeoptera, Poly-
neoptera, Condylognatha, Psocodea, Hymenoptera, Neuropteroidea, Amphiesmenoptera, and Antliophora.
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Modeling ovariole number evolution

Using the dataset compiled here and a previously published phylogeny of insects (Fig. 5a)13, we modeled
the rate of evolutionary change in ovariole number (Figs. S11, S12, S13, S14). We observed substantial
rate heterogeneity in the evolution of ovariole number (Fig. S14), meaning that for some lineages ovariole
number has evolved rapidly where in others, ovariole number has evolved very slowly or not at all. The
most striking example of this are the multiple lineages which have independently evolved invariant or near-
invariant ovariole number across taxa (e.g. nearly all Lepidoptera have exactly eight ovarioles, Fig. 5b,
Lepidoptera are part of Amphiesmenoptera, in cyan), from an ancestral variable state. These invariant
lineages were identified by finding regions of the phylogeny that experience extremely low rates of ovariole
number diversification (Figs. S14, S15). Using this approach, we found that invariant ovariole numbers have
evolved at least nine times independently across insects, with several subsequent reversals from invariant to
variable states (Fig. 5a).

We find that the rate of evolutionary change in ovariole number is correlated with the number of ovarioles:
lineages with relatively low ovariole number also experience relatively low degrees of ovariole number change
(Fig. S11). This is evidenced by the fact that, of the nine invariant lineages, none have greater than seven
ovarioles per ovary (Fig. 5c). However we note that not all insects with low ovariole counts are in invariant
lineages; many insects with fewer than 14 total ovarioles are in lineages with relatively high rates of intra-
and interspecific ovariole number variation (Fig. 5)

The distribution of ovariole numbers across insects is enriched for even numbers of total ovarioles (Fig. 5c).
While many insects show asymmetries in the number of ovarioles between the left and right ovaries, all of
the invariant lineages are symmetric (at 4, 6, 8, 10, 12, and 14 total ovarioles). Additionally, for the insects
identified as part of invariant lineages, none have any reported intraspecific variation in ovariole number.
Therefore, invariant lineages have near-zero variation when comparing between species, between individuals
within a species, and between the left and right ovary within an individual.

Using these results, we propose a multi-rate model, where the rate of ovariole number evolution differs
based on the evolution of a discrete trait representing invariant or variable status. We propose that the
evolution of this discrete trait is governed by a model where the likelihood of transitions from a variable
to an invariant state is negatively correlated with the current number of ovarioles. Here we demonstrate
that a multi-rate Brownian motion model far outperforms a single rate model in fitting the data (∆ AICc
1770.93). In addition, using a parametric bootstrap to evaluate model fit, we find evidence that processes
beyond Brownian Motion processes are likely at play (Fig. S11)31. We suggest that as researchers continue
to develop non-Gaussian models for continuous trait evolution49, those models will be useful for describing
the evolution of ovariole number.
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Figure 5: The evolutionary distribution of ovariole number across insects. a, Phylogeny of insect
genera, colored according to the inferred rate regime of ovariole number evolution, variable in gray and
invariant in black (see Supplementary Methods). b, Total ovariole numbers, shown on a log10 scale and
arranged by insect genus according to the phylogeny. Tips with more than one point represent genera with
multiple records for total ovariole number in the dataset. c, The distribution of values shown in (b), showing
enrichment for even values in the left tail of the distribution.

11

in press at Proceedings of the Royal Society B 
publication date 05/05/2021



Discussion

A frequently invoked life-history prediction is that, given a finite set of metabolic resources, organisms can
either produce few offspring, each with high fitness, or many low-fitness offspring1–3. In insects, egg size and
ovariole number are often used as proxies for offspring fitness50 and number44,45, respectively, and therefore it
has been predicted that insects with more ovarioles lay smaller eggs than insects with fewer ovarioles5,6,21,42.
Our results, using a dataset that spans 3355 observations across 2103 species, and that takes into account
phylogenetic relationships, indicate that a generalized trade-off between insect egg size and ovariole number
does not exist (Fig. 2).

Lineages of insects with invariant ovariole number illustrate this point. Despite having the same ovariole
number, these lineages contain a range of egg sizes that is comparable to the four orders of magnitude
observed across all insects (Fig. 2a). Furthermore, we observed no relationship between the evolutionary
rates of change for ovariole number and egg size (Fig. S17). Therefore, if a trade-off between egg size and
fecundity exists, factors beyond variation in ovariole number must contribute to fecundity. These factors
might include variation in the rate of egg production per ovariole51–54, among others55,56.

We suggest that considering the evolution of developmental processes that govern ovariole number specifica-
tion may be more useful in explaining patterns of diversity than predictions based on metabolic trade-offs.
As evidence of this, we point to the fact that invariant lineages appear to have near-zero variation not only
across species, but also within species, and between the left and right ovary within individuals. This suggests
that the mechanism that determines ovariole number has become canalized in these groups. In contrast, our
previous understanding of how ovariole number is regulated comes from research on Drosophila melanogaster,
where the number of ovarioles can vary between the left and right ovaries within an individual, as well as
across individuals within a population57,58. In this species, adult ovariole number is determined by cell pro-
liferation and rearrangement during larval development59,60. Variation in adult number is derived primarily
from variation in the number of “terminal filament precursor cells”61,62, as well as from variation in the
number of those precursor cells that group together to form the structure that initiates ovariole formation,
known as a “terminal filament”63. Across species of Drosophila, variation in average adult ovariole number
results primarily from variation in the average number of terminal filament precursor cells62.

When considering the developmental processes that could give rise to invariant ovariole number, we propose
that the major determinants of ovariole number known from Drosophila may not apply. To achieve an
invariant ovariole number, these processes might instead include mechanisms for strict counting of individual
cells or discrete cell subpopulations. In the former, if the cells that ultimately comprised a terminal filament
were derived by mitotic division from a single progenitor, rather than by cellular rearrangements as is the
case in Drosophila59, then an invariant ovariole number could be achieved via strict control of the number
of precursor cells. Alternatively, an invariant ovariole number could be achieved by partitioning the starting
population of precursor cells into a tightly regulated number of subpopulations. This would again be a
departure from known mechanisms in Drosophila, in which a variable number of precursor cells are gathered
into terminal filaments until the population is depleted59,63. The determining factor for partitioning the
precursor pool could be, for example, a spatially variable morphogen emanating from adjacent tissues64 or
a reaction-diffusion patterning process65 within the developing ovary, as these have been shown to generate
fixed numbers of multicellular structures in other developmental contexts66–68. These predictions could be
tested by characterizing the dynamics of cell number and position across invariant lineages, and making
comparisons to corresponding data from their variable relatives.

The evolutionary transitions between variable and invariant ovariole number are reminiscent of other quan-
titative traits across multicellular life, including patterns of variability and invariance in arthropod segment
number69,70, vertebrate digit number71,72, or the number of angiosperm floral organs73,74. Across these sys-
tems, the evolutionary history of morphogenetic counting mechanisms is poorly understood. We suggest that
insect ovariole number presents an ideal case to study this phenomenon. In particular, we note the evidence
that invariance has evolved convergently at least nine times, as well as the evidence of several reversals back
to variability from an invariant ancestral state (Fig. 5). These convergent lineages provide an opportunity
to test the predictability of evolutionary changes to counting mechanisms, by asking whether convergent
evolution of invariance involves convergent canalization of shared molecular mechanisms.
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Contents

1 Gathering ovariole number records

We searched the published literature for references to insect ovariole number using a predetermined set of 
131 search terms, entered into Google Scholar (scholar.google.com) between June and October of 2019. Each 
search term consisted of an insect taxonomic group and the words “ovariole number”. This list was created 
to include all insect orders, many large insect families, and groups well-represented in the insect egg dataset. 
The list of search terms is available in the supplementary file ‘ovariole_number_search_terms.tsv’.

For each search term, we evaluated all publications in the first page of results (ten publications). For 61 
search terms that had a large number of informative hits, significant representation in the egg dataset, or 
that corresponded to very speciose groups, we evaluated an additional 20 publications. If a publication 
reported ovariole number for one or more insect species, we recorded the following information: (1) genus,
(2) species name, when available, (3) taxonomic order, (4) sample size, when available, (5) ovariole number, 
and (6) additional notes (e.g. for eusocial insects, whether the observation was made in a reproductive or non-
reproductive individual). This dataset is made publically available at Dryad (doi:10.5061/dryad.59zw3r253).

Ovariole number was recorded as either an average with deviations, a range, or a single total value. When 
multiple types of data were available from a single publication, we recorded only a single type, with priority 
given to averages over ranges, and to both over single total values. Ovariole number was recorded as the 
total number of ovarioles per female, summing over both the left and right adult ovaries. When authors 
reported ovariole number from a single ovary, the total value was calculated by doubling the reported value. 
When authors described differences between the two ovaries, this information was recorded in an additional 
notes column.

For records of ovariole number that reported intraspecific variation in ovariole number, we calculated the 
percent difference as follows: if ovariole number was reported as a range, percent difference was calculated as 
the 100 ∗  ((max − min)/median); if ovariole number was reported as an average with deviations, percent 
difference was calculated as 100∗((2∗deviation)/mean). When independent observations of ovariole number 
for a given species were available across multiple published records, we calculated the percent difference as the 
100 ∗ ((max − min)/median) (Fig. S1).

Using this approach, we gathered 3355 records for ovariole number from 460 publications. A full list of 
publications is provided in the supplementary file ‘ovariole_number_bibliography.pdf’. We matched the 
scientific names to additional taxonomic information using the software TaxReformer1 and found additional 
taxonomic data for 3252 of the 3355 records. We verified that TaxReformer had found a valid match by 
comparing the originally recorded taxonomic order to the order populated by online databases, and removed 
22 taxonomic records for which these values did not match. For all subsequent analyses, we also excluded 
observations made in non-reproductive individuals from eusocial species (workers), as well as two observations 
which represented significant outliers and could not be validated using additional sources or figures2,3.
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Figure S1: Intraspecific variation in ovariole number.

2 Phylogenetic trees

The analyses herein were performed using the insect phylogeny published in Church et al, 20194, unless 
otherwise specified. This phylogeny was constructed by combining ribosomal genetic data from 1726 insect 
genera, published originally in the SILVA database5, with constrained, time-calibrated nodes for each insect 
order, published originally in Misof et al, 20146. This phylogeny is enriched for insect genera with records 
in the egg trait dataset, and also has considerable overlap with the genera included in this ovariole number 
dataset (508 genera). For generalized least squares analyses and trait model comparisons, analyses were 
performed over a posterior distribution of trees associated with this published phylogeny4.

For regressions involving body size data that were reported as insect family-level averages, we used the insect 
phylogeny published in Rainford et. al, 20147.

Analyses of Drosophilidae ovariole number, egg size, and body size were performed using a phylogeny newly 
assembled for this study. Published genetic data for 317 Drosophilidae species were retrieved from NCBI 
in June of 20198–16. These data encompassed 41 gene regions including mitochondrial, nuclear, and ribo-
somal genes. When multiple sequences for a gene region were available from the same species, the one 
with the least amount of missing data was selected. Each gene region was aligned using the program 
MAFFT17, model auto selected). Alignments were concatenated and trimmed to 3% occupancy across 
species using the program phyutlity18. Documentation including accession numbers, sequence files, and align-
ments are available in the supplementary directory ‘https://github.com/shchurch/insect_ovariole_number_ 
evolution_2020/phylogeny/Drosophilidae_sequences/’.

To the extent possible, sequence data were not curated beyond what was downloaded from NCBI, with the 
following exceptions: [1] two sequences labeled as 16S that did not align to other 16S sequences were removed 
manually. [2] COI sequences were trimmed to remove regions with large quantities of missing sites prior 
to alignment. [3] One species name (D. albovittata) was corrected for typographical error. [4] Sequences 
identified as Drosophila crassifemur were taxonomically corrected to Scaptomyza crassifemur19.

Phylogenetic estimation of the Drosophilidae data were performed using RAxML (model GTRGAMMA), 
setting the split between Hawaiian Drosophila and Scaptomyza as the root of the tree8,11. The final 
tree was pruned to remove undescribed species (e.g. Drosophila nr dorsigera), and was time-calibrated 
using the R package ape, function chronos (default parameters, version 5.4.1)20. This tree is available in 
the supplementary file ‘https://github.com/shchurch/insect_ovariole_number_evolution_2020/phylogeny/
Drosophilidae_time_calibrated.tre’.
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3 Phylogenetic regressions

3.1 Combining datasets

We combined the data we collected on total ovariole number with existing datasets of egg size and shape21, 
insect lifetime fecundity and dry adult body mass22–24, average adult body length per insect family25, and 
several lineage-specific measures of adult body size26–30.

Ovariole number and egg size4 data were combined by matching records across datasets for the same insect 
species (Fig 2a). When multiple records existed for a given species, the dataset was randomly shuffled and a 
single matching record was selected. This variation across records for the same species was accounted for in 
regressions by reshuffling and matching records at each iteration of the analysis. We also matched records for 
insects in the same genus following the same reshuffling method, which allowed us to test whether results were 
robust with a larger sample size when an exact species match was not available (Fig. S2).

Average adult body length per insect family25 was matched to the average ovariole number for the corre-
sponding families (Fig. S5). The Rainford et al, 201625 dataset contains a small number of average adult 
body lengths at the order level (e.g. Strepsiptera), which were matched to their equivalent group in the 
ovariole number dataset. To test the effect of uncertainty in the estimated average ovariole number on our 
results, the dataset for each family was downsampled by half at each iteration of the regression analysis.

Ovariole number, egg volume, lifetime fecundity, and adult body mass22–24 were combined by matching 
records at the species level and genus level, using the same method as described above (Figs. 2b, 3, and 
S4). We excluded one value from this dataset which appeared to include a typographical error for lifetime 
fecundity (Hymenoptera: Trichogrammatidae, lifetime fecundity recorded as 0.122).

Several lineage-specific measurements for body size were matched to the ovariole number and egg size 
datasets, as follows: Drosophilidae thorax length29 was matched at the species level (Fig. 2c), Orthoptera 
body length28 was matched at the genus level (Fig. 2d), Hymenoptera mesosoma width27 was matched at 
the genus level, and Curculonoidea elytra length26 was matched at the genus level (Fig. S7).
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3.2 Phylogenetic Generalized Least Squares (PGLS) analyses

−4

−2

0

2

1 2 3
ovariole number, log10

eg
g 

vo
lu

m
e,

 m
m

3  , 
lo

g 1
0

Figure S2: Egg volume vs ovariole number, matching records at the genus level.
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Figure S3: Egg volume vs ovariole number, matching records at the genus level, excluding
records from families with eusocial insects.
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Figure S4: Egg volume vs ovariole number, phylogenetic residuals to dry adult body mass,
matching records at the species level.
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Figure S5: Family average egg volume vs ovariole number, phylogenetic residuals to adult body 
length.

We ran each Phylogenetic Generalized Least Squares (PGLS) regression over the Maximum Clade Credibilty 
(MCC) tree. For each regression, we also repeated each PGLS analysis 1000 times, accounting for phyloge-
netic and phenotypic uncertainty, using the R packages ape (version 5.4.1)20 and nlme (version 3.1.151)31. 
In these analyses we used a Brownian Motion based covariance matrix for traits.

For regressions using data matched across species or genera, we reshuffled and matched records at each 
iteration to account for variation across records for the same taxon. For regressions on family-level average 
data, we recalculated the average ovariole number per insect family, downsampling the representation for each 
family by half. No posterior distribution was available with the previously published family level phylogeny7.

To account for body size, we calculated the phylogenetic residuals32 of each trait to body size, and then 
compared the evolution of these residuals using a PGLS regression.

For regressions of egg size and ovariole number when accounting for adult body size, we compared the results 
of our regression analyses to distributions estimated using simulated data under alternative hypotheses. We 
fit a Brownian motion model to the phylogenetic residuals of egg size and body size (R package geiger, 
version 2.0.7)33, and then used the parameters of this fitted model to simulate new datasets (R package 
phylolm, version 2.6.2)34. We performed this resimulation using the datasets of egg size and body length 
at the family level, and egg size and body mass at the genus level. We simulated 1000 datasets each under 
two hypotheses: no correlation (slope=0) and a strong negative correlation (slope=-1). We performed the 
regressions as described above and compared the distribution of p-values and slopes to values from regressions 
on observed data.
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Figure S6: Using simulated data to test alternative hypotheses of evolutionary relationships.
Top row, distributions of p-values over 1000 replicate regressions, dashed black line indicates threshold of
0.01. Bottom row, distribution of estimated slopes between egg size and ovariole number, dashed lines
indicate 95% interval of simulated distributions. Left, comparing egg size and ovariole number, accounting
for body length at the family level. Right, comparing egg size and ovariole number, accounting for body
mass at the genus level. Red=observed values, gray=simulated with no correlation, black=simulated with a
-1:1 correlation. n=1000 regressions.
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Figure S9: Lifetime fecundity vs ovariole number, matching records at the species level.

Table S1: Results of PGLS analysis of ovariole number and egg size across a posterior distribution. The
’data match’ columns describes how observations were matched across datasets, e.g. matching records for
the same species, genera, or using family-level averages.

analysis data match slope MCC p-value num. sig. / 1000 taxa

ovariole number vs egg volume species -0.426 – -0.082 0.195 43 306
ovariole number vs egg volume genus -0.356 – -0.128 0.066 470 482
ovariole number vs egg volume,
residuals to body mass

species -0.646 – -0.333 0.003 833 24

ovariole number vs egg volume,
residuals to body mass

genus -0.769 – -0.284 0.003 995 61

ovariole number vs egg volume,
residuals to body length

family average -0.685 – -0.304 <0.001 966 98

Table S2: Results of PGLS analysis of ovariole number and egg size across a posterior distribution.

analysis data match slope MCC p-value num. sig. / 1000 taxa

Drosophilidae ovariole number vs
egg volume, residuals to thorax
length

species -0.814 – -0.799 <0.001 1000 30

Orthoptera ovariole number vs egg
volume, residuals to body length

genus -0.315 – 0.379 0.485 0 40

Curculionoidea ovariole number vs
egg volume, residual to elytra length

genus -0.293 – 0.633 0.384 0 30

Hymenoptera ovariole number vs
egg volume, residuals to mesosoma
width

genus -2.131 – -0.288 0.139 13 21
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Table S3: Results of PGLS analysis of ovariole number and body size across a posterior distribution.

analysis data match slope MCC p-value num. sig. / 1000 taxa

ovariole number vs body length species 0.025 – 0.208 0.618 0 24
ovariole number vs body mass genus 0.095 – 0.299 0.546 0 61
ovariole number vs body mass family average 0.123 – 0.177 0.031 29 98
Drosophilidae ovariole number vs
thorax length

species 0.223 – 0.223 0.031 0 30

Orthoptera ovariole number vs body
length

genus 0.132 – 0.450 0.001 993 40

Curculionoidea ovariole number vs
elytra length

genus -0.211 – 0.257 0.917 0 30

Hymenoptera ovariole number vs
mesosoma width

genus -0.112 – 0.355 0.482 0 21

Table S4: Results of PGLS analysis of ovariole number and fecundity across a posterior distribution.

analysis data match slope MCC p-value num. sig. / 1000 taxa

ovariole number vs lifetime
fecundity

species 0.324 – 0.542 0.011 311 37

ovariole number vs lifetime
fecundity

genus -0.275 – 0.601 0.002 267 65
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4 Evolution of nurse cells

4.1 Combining datasets

We used the descriptions of the mode of oogenesis recorded by Büning35. This author catalogued the ovary
morphology for 136 insect genera, categorizing them into four modes: those without nurse cells (panoistic),
with nurse cells adjacent to each clonally related, developing oocyte (polytrophic meroistic), with all nurse
cells located in the germarium (telotrophic meroistic), and a unique mode of oogenesis reported only in
Strepsiptera (reduced polytrophic meroistic ovaries).

Of the 136 genera observed by Büning, 70 are represented in the phylogeny used here4. Another 36 come from
families or orders that have representative genera in the phylogeny, and within which all observations have
the same recorded mode of oogenesis, when more than one was recorded. Therefore, we used a substitute
genus as the phylogenetic tip for these 36 groups, bringing the total overlap between dataset and phylogeny
to 106 taxa.
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4.2 Reconstructing evolutionary shifts in oogenesis mode

100

Figure S10: Ancestral state reconstruction of oogenesis mode, full phylogeny. Scale bar indicates
100 million years. Gray = panoistic, red = telotrophic meroistic, cyan = polytrophic meroistic, black =
unique meroistic mode found in Strepsiptera.

Using these 106 records for ovary type, we reconstructed the ancestral state at each node of the published
phylogeny of 1705 insect genera using an equal-rates model that allows for missing data (Fig. S10, R package
corHMM, version 1.2236 function rayDISC, node.states = ‘marginal’).
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4.3 Oogenesis mode model comparison

Table S5: Average corrected AIC (AICc) value from model comparison

analysis name BM1 BMS OU1 OUM
ovariole number 477.20195 473.03372 479.22592 482.42889
egg volume 3295.74949 3281.71001 3297.75729 3299.52446
egg aspect ratio -1486.86444 -1506.89208 -1484.85630 -1483.01934
egg asymmetry -763.10658 -785.44797 -808.70150 -810.07385
egg curvature 62.36224 35.70801 63.46489 64.20869

Table S6: Results of model comparison analysis over posterior distribution, showing the number of iterations
out of 100 where the difference in model fit (∆AICc) was greater than 2.

analysis name BMS vs. BM1 OU1 vs. BM1 OUM vs. BM1 OUM vs. OU1 taxa
ovariole number 90 0 0 0 506
egg volume 100 0 0 0 1567
egg aspect ratio 100 0 0 0 1488
egg asymmetry 100 100 100 20 844
egg curvature 100 1 1 1 781

Using the ancestral state reconstruction of evolutionary shifts in the mode of oogenesis, we inferred the most
likely mode of oogenesis for all nodes and unobserved extant tips in the phylogeny (Fig. S10). We then
compared the fit of models of trait evolution that take into account these shifts in oogenesis mode against
those that do not. These comparisons were performed with the R package OUwie (version 1.57)37.

Each analysis compared four models of evolution: single-rate Brownian Motion (BM1), multi-rate Brownian
Motion (BMS), single-optimum Ornstein-Uhlenbeck (OU1), and an Ornstein-Uhlenbeck model with different
optima for each mode of oogenesis (OUM).

These comparisons were repeated 100 times over a posterior distribution of trees. At each iteration we
selected a random representative trait record for each genus in the phylogeny, when multiple records were
available.
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5 Modeling rate of ovariole number change

5.1 Parametric bootstrap of Brownian Motion model
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Figure S11: Bootstrap analysis of Brownian Motion model for ovariole number evolution, using
the R package arbutus. In each panel the red line represents the observed value and the black distribution
represents the bootstrap simulation. See Section 5 for details on each parameter.

We evaluated the fit of a Brownian Motion (BM) model for ovariole number evolution using the R package
arbutus (version 0.138, Fig. S11). In this approach, a BM model is fit to the data (R package geiger, version
2.0.7)33, and the resulting parameters of the model are used to simulate 1000 new datasets. Six statistical
parameters are used to compare the phylogenetic contrasts of the observed data to the simulated data, and
their interpretations are as follows38:

1. Mean of squared contrasts. The rate of evolution of ovariole number can be well estimated by the
Brownian Motion model (the observed value falls within the null distribution).

2. Coefficient of variation of the absolute value of the contrasts. There is substantially more variation in
contrasts than expected by chance, indicating heterogeneity in the rate of evolution beyond what a
single-rate Brownian Motion model predicts (the observed value falls well outside the null distribution).

3. Slope of a linear model fitted to the absolute value of the contrasts against their expected variances.
Contrasts are larger than expected on short branches in the phylogenetic tree, resulting in a negative
slope. This could be explained by error in estimation of branch lengths.

4. Slope of a linear model fitted to the absolute value of the contrasts against the ancestral state at the
corresponding node. The number of ovarioles is more correlated with contrast values than would be
expected by chance. Phylogenetic nodes with a low ovariole number experience lower rates of evolution.
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5. Slope of a linear model fitted to the absolute value of the contrasts against node depth. Contrast values
are not correlated with time, falling within the null distribution. Therefore the rate of ovariole number
change is not increasing or decreasing over time.

6. The D statistic from a Kolmogorov-Smirnov test comparing the distribution of contrasts to an expected
normal distribution. The data do not fit a normal distribution of contrasts well, suggesting there are
likely non-Brownian motion based processes at play (e.g. jump-diffusion processes).

5.2 Assessing rate heterogeneity

Given the result that our dataset contains substantial rate heterogeneity, we identified regions of the tree
with high and low rates of ovariole number evolution using the software BAMM (version 2.5.0)39. For
this analysis, we calculated the average ovariole number for each genus in the insect phylogeny4. Average
ovariole number was log10 transformed, and the tree was filtered to include only tips for which there were
corresponding ovariole number data (sample size = 508). We used the R package BAMMtools (version
2.1.7)40 to select priors, and ran BAMM for the maximum number of generations (2 ∗ 109), sampling every
106 generations.
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Figure S12: Convergence of trait diversification rate analysis
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Figure S13: Comparison of burn-in proportions. The burn-in proportion that maximized the effective
size was used in subsequent analyses.

Convergence was evaluated both visually (Fig. S12) and numerically by comparing the effective sample size
for number of shifts and log-likelihood to the standard recommended by the software (>200). We determined
the most appropriate burn-in proportion to use by finding the maximum effective sample size of the log-
likelihood across an array of possible burn-in proportions (Fig. S13). Running BAMM for the maximum
possible number of generations and selecting the optimum burn-in (Fig. S13) resulted in an effective size for
the number of shifts of 482.51, and for log-likelihood of 149.15. Repeated BAMM analyses showed similar
distributions of high and low rate regimes, indicating the implications for ovariole number evolution are
robust to uncertainty in rate estimates. See Supplemental Methods Section 5.2 for details.
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Figure S14: Best rate shift configuration from BAMM trait diversification analysis on ovariole
number. Purple = low rate of evolution, yellow = high rate of evolution.
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Figure S15: Distribution of trait diversification rates. Dotted line shows threshold used to assigned
rate regimes.

The best configuration of rate shift regimes shows multiple independent clades with very low rates of evolution
(Fig. S14). Visualizing the distribution of mean rates along branches revealed a discontinuous distribution,
with one peak at a moderate rate of evolution and several clusters at extremely low rates, separated from
the first peak by over six orders of magnitude (Fig. S15). We used this visualization to establish a threshold
(10−4) for assigning a binary rate regime to each node in the phylogeny, categorizing them as above (variable)
or below (invariant) a threshold that separates these two peaks.

5.3 Rate model comparison

We tested whether a BM model of evolution that incorporates the binary state (variable or invariant) as
independent rate regimes can better explain the distribution of ovariole numbers than a single rate BM
model, by comparing model fit using the R package OUwie (version 2.5)37. We find that a multi-rate model
is significantly favored over a single-rate model (∆ AICc 1770.93).
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5.4 Comparing rates of trait diversification

Figure S16: Best rate shift configuration from BAMM trait diversification analysis on egg
volume. Purple = low rate of evolution, yellow = high rate of evolution.

20

in press at Proceedings of the Royal Society B 
publication date 05/05/2021



10−3

0.003

10−2

10−12 10−8 10−4

rate of ovariole number diversification

ra
te

 o
f e

gg
 v

ol
um

e 
di

ve
rs

ifi
ca

tio
n

Figure S17: Rates of trait diversification of egg volume and ovariole number. Points are colored
by phylogenetic groups shown in Fig 1a. Dotted line shows threshold used to assigned rate regimes.

We assessed the rate of egg volume diversification across insects using the same method of assessing rate
heterogeneity as described in Section 5.2 (Fig. S16). This analysis converged in 7 ∗ 109 generations (the
effective size for the number of shifts and log-likelihood were >200, 670.2 and 753.42 respectively). We
compared the correlation between the rates of trait diversification for ovariole number and egg volume by
matching the mean rate predicted for each insect genus (the tips of the phylogeny from the BAMM analyses,
Fig. S17).
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