### PHYLUM MOLLUSCA (2nd largest, 100,000 spp)

Snails, slugs, clams, oysters, scallops, squid, octopods [giant squid 18 m, 0.5 tons, giant clam 1.5 m, 0.25 tons]

Bilateral Symmetry

Triploblastic (ectoderm, endoderm, & mesoderm)

Eucoelous (true peritoneum)

Blastopore mouth, Spiral & Determinate cleavage

Schizocoelous

Complete Digestive Tract

Circulatory system (open)

Respiratory system

Mantle cells secrete a shell in most

Radula in most (not bivalves)

Muscular foot

Soft unsegmented body

Usually dioecous

Nervous system and sensory organs complex

### 8 Classes, 6 will be emphasized

- 1. Monoplacophora (11 spp) e.g. Neopilina very primitive, indications of segmentation
- 2. Polyplacophora (600 spp) Limpets shell of 8 plates
- 3. Gastropoda (35,000+ spp) Snails, whelks, conch, limpets, slugs Characterized by torsion
- 4. Bivalvia (8,000 spp) Clams, oysters reduced head, hinged shells, no radula, blade-like foot
- 5. Scaphopoda (350 spp) Tusk shells no gills
- 6. Cephalopoda (200 spp) Cuttlefish, squid, octopods -Foot tentacles, mantle + foot jet propulsion

#### ANCESTRAL MOLLUSC BODY PLAN

```
Muscular creeping foot
```

## Modest cephalization

specialized cephalic sense organs

(tentacles - tactile, chemosensory; eyes; statoreceptors - gravity)

Osphradium - monitors incoming water

## Mantle composed of:

Periostracum (outer layer)

Prismatic (middle layer)

Nacreous (inner layer) mother-of-pearl

Gills & anus in posterior mantle cavity

Nephridia (Metanephridia - open into coelom)

Radula & Odontophore

Stomach - style and digestive glands

Circulatory System - heart (ostia), open plan except Cephalopods

### Reproductive

External fertilization in most

Gonads in coelom - gametes exit thru nephridium

Free-swimming larva (Trochophore larva) - Some moluscs have further laval development (e.g., veliger)

## Class Gastropoda ("stomach foot")

Torsion (180° twist of body results in anus over head

Reduced or absent right gill, nephridium, & auricle

Subclass Prosobranchia ("forward gill")

Contains species with anterior mantle cavity & torsion of internal organs

## Subclass Opisthobranchia ("rear gill")

Contains species which have "de-torsioned" Reduction of mantle cavity & shell Gas exchange external - posterior gills, Cerata

# Subclass Pulmonata ("lung")

Adapted for terrestial habitats

Mantle cavity (w/o gills) - exchange gases

Opening to mantle cavity reduced to a pore (even a snorkel)

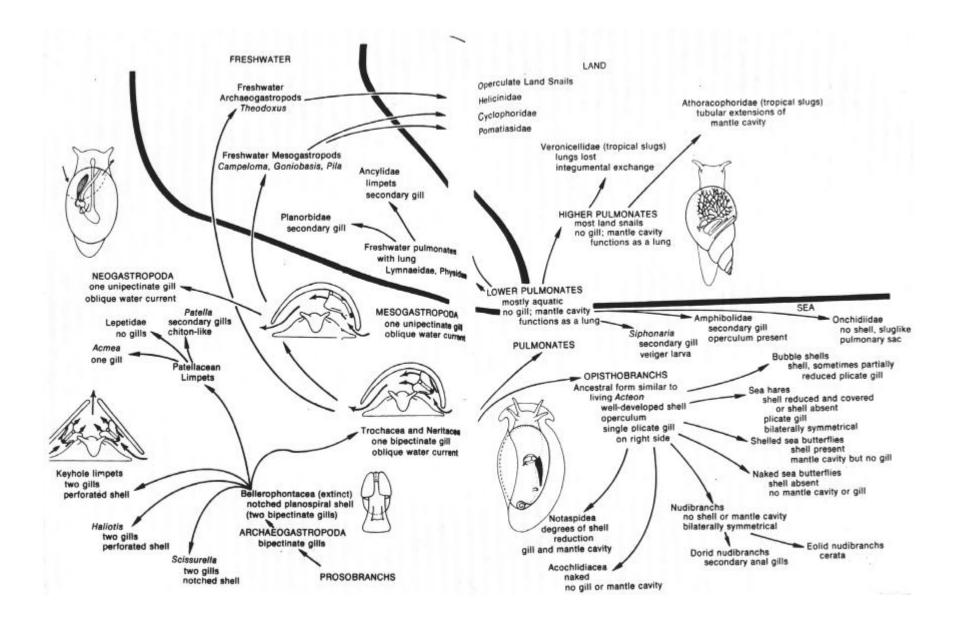
Well developed head & eyes on tentacles

FW types can tolerate pollution and low O<sub>2</sub> levels

#### **Gastropod Evolution**

Primitive Body Plan (monoplacophora, limpets, abalone)

### Proposed Evolutionary Steps: See diagram on next page.


- 1. Shell goes conical (paired pectinate gills)
- 2. Head develops
- 3. Shell coils
- 4. Torsion occurs
- 5. Right organs de-emphasized

6a. Gills absent (pulmonates) terrestrial forms, including slugs (no shell)

6b. Detorsion (opisthobranchs) nudibranchs (no shell, gills absent)

### Locomotion - Foot

- 1) For movement (slime & cilia, wave action)
- 2) For adhesion (abalone, limpet)
- 3) Absent (worm shell sessile)
- 4) For swimming a fin or ripple flange (heteropod, sea hare)



#### Nutrition

- 1) Particle feeders using radula
- 2) Carnivores, For examples:

Oyster borer - acid (1 mm/h) & extensible proboscis

Cone shell - radula like a harpoon + neurotoxin

Whelk - pull bivalves apart, use extension of shell as a wedge, insert proboscis

Nudibranchs - eat cnidarians, store nematocysts in cerata

3) Filter feeders, For example:

Sea butterfly - secretes a net of mucus

4) Ectoparasitic (near opening of bivalves or in body walls of starfish)

## Reproduction

Egg Trochophore lava Veliger larva (can clog pipes)

[similar to larvae of annelids suppressed in many gastropods]

Egg small snail (Direct Development)

Most species are dioecious, but opisthobranchs & pulmonates are hermaphrodites

External fertilization, or right nephridium converted to a duct + a penis from mantle tissue for internal fertilization. In pulmonates, one snail plays the \_ and another the \_.

Class Monoplacophora ("single plate")

One living specimen was dredged up from 7,000 m in 1952. Last known member a fossil

from 400 million yr ago.

Has radula & style, eats diatoms and sponges

Metamerism (segmentation) weak - organs in repeating pairs (8 pr retractor muscles, 6 pr nephridia, 6 pr gills)

Trochophore larva and this metamerism shows a relationship with annelids

Class Polyplacophora ("many plates") Chitons (2 - 30 cm)

Indistinct head

No eyes or tentacles on head

Foot adapted for adhering to rocks with heavy wave action

Feed on algae and exhibit homing behavior

## Class Bivalvia ("two valves")

Body flattened
Shell composed of two hinged valves
Head not well developed
Radula absent
Labial palps & gills

Subclass Protobranchia ("first gill")

One pair of unfolded, bipectinate gills

Most primitive bivalve condition

Bottom (deposit) feeders - <u>preadapted</u> for filter feeding

Foot - digging function usually

Adductor Muscle (large) for closing

Retractor Muscle (small) foot retraction

Suprabranchial cavity

Inhalant siphon (from mantle tissue)

exhalant siphon (from mantle tissue)

Labial palps - muscous, cilia

External fertilization (indirect development)

Subclass Lamellibranchia ("plate gills") - most species

Refolded bipectinate gills - increase surface area

Efficient filter feeders

Food grooves - mucous, style

**Ecology** 

Soft-bottom Burrowers - e.g., goose neck clam - use foot to dig and long siphons to feed and respire (e.g., goose neck clams)

Attached Surface Dwellers - e.g., oyster - byssal secretions, foot absent

Unattached Surface Dwellers - e.g., scallops - sensory enhancement,

swimming ability

Hard-bottom Burrowers - e.g., shipworms - highly modified shell to drill into sandstone, coral, limestone, wood

### Reproduction

Mostly dioecious and external fertilization

Most freshwater species lack veliger larvae, have sub Glochidium larva instead

### Class CEPHALOPODA ("head foot")

Foot tissue derives tentacles and funnel

Three basic groups

- 1. Nautilus >90 arms, no suction discs [e.g., chambered nautilus]
- Decapods 2 long tentacles (prehensile),
   8 shorter arms all w/ suction discs
   [e.g., squid, cuttlefish]

3. Octapods - 8 arms w/ suction discs [e.g., octapus]

Shell

Nautilus - Present and exterior Decapods - Present, but interior (Pen) Octopods - Absent

## Predatory adaptations

Smarts - Big brain and well developed sensory organs

Speed - Well developed locomotion

Horsepower - closed circulatory system, multiple hearts

Capturing devices - Arms

Killing devices - Beak & toxins (tetrodotoxin)

Anti-predator devices - Ink, cryptic coloration

# Reproduction

Dioecious - \_ has Hectocotylus arm for internal fertilization, Direct development, Parental care (e.g., octopus cleans, aerates, & defends eggs)

Many spp. mate once, then die (Optic gland)