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A universal paradigm describing patterns of speciation across the tree of life
has been debated for decades. In marine organisms, inferring patterns of
speciation using contemporary and historical patterns of biogeography is
challenging due to the deficiency of species-level phylogenies and infor-
mation on species’ distributions, as well as conflicting relationships
between species’ dispersal, range size and co-occurrence. Most research on
global patterns of marine fish speciation and biogeography has focused on
coral reef or pelagic species. Carangoidei is an ecologically important
clade of marine fishes that use coral reef and pelagic environments. We
used sequence capture of 1314 ultraconserved elements (UCEs) from 154
taxa to generate a time-calibrated phylogeny of Carangoidei and its parent
clade, Carangiformes. Age-range correlation analyses of the geographical
distributions and divergence times of sister species pairs reveal widespread
sympatry, with 73% of sister species pairs exhibiting sympatric geographical
distributions, regardless of node age. Most species pairs coexist across large
portions of their ranges. We also observe greater disparity in body length
and maximum depth between sympatric relative to allopatric sister species.
These and other ecological or behavioural attributes probably facilitate
sympatry among the most closely related carangoids.
1. Introduction
For decades, biologists have debated whether there is a universal paradigm to
explain patterns and processes of speciation in marine habitats [1–3]. From
describing modes of speciation and mechanisms of dispersal [4,5], to character-
izing latitudinal and longitudinal diversity gradients [6–8] and hypothesizing
geographical origins of diversity [9–11], the rise of genetic methods and oceano-
graphic modelling has upended traditional assumptions that vicariance leading
to allopatry [12] is the default mechanism of speciation in the ocean [1,11].
Although biogeographic barriers have been shown to result in allopatric specia-
tion in certain circumstances [1,13–15], in oceanic environments with fewer
obvious geographical barriers to dispersal, other factors such as body size, pela-
gic larval duration and dispersal ability may be the prominent facilitators,
rather than artefacts, of speciation [2,4,16–18].

To assess contemporary and historical patterns of marine speciation and
biogeography, scientists have employed a variety of approaches [1,14,19–21].
One comparative method, age-range correlation, analyses the extent of range
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overlap between sister species pairs compared to the age of
the phylogenetic node immediately subtending them as a
proxy of species’ age [22–26]. Age-range correlations can be
examined across sister species pairs to look for associations
between geographical patterns and relative node ages.
Assuming an allopatric speciation model, random, indepen-
dent changes in ranges over time should lead to greater
sympatry at older nodes, whereas a sympatric speciation
model should reflect greater range overlap in recently
diverged sister species compared to more distantly related
sister clades [23,24]. Peripatric speciation, caused when a
population becomes isolated at the periphery of its ancestral
distribution, can be assessed by examining range size even-
ness (range symmetry) between sister species. Peripatric
speciation is thought to occur when the ranges of recently
diverged sister species are highly asymmetrical due to one
species having a smaller range on the edge of the larger
ancestral range [22,27].

Few studies have applied analyses of age-range corre-
lation and range symmetry in large and taxonomically
inclusive lineages of vertebrates, particularly marine fishes
[18,23,24,28–31]. The use of these approaches is hindered by
a lack of comprehensive taxon sampling and limited avail-
ability of range data for many species. Existing age-range
correlation studies on marine fishes have focused mainly on
taxa occupying tropical coral reefs [1,6,11,14,32, cf. 33].
While these methods have challenges, such as distinguishing
between sympatric speciation and secondary sympatry (i.e.
allopatric speciation with subsequent range changes)
[19,22,26,34], examining relationships between species
ranges and node ages across large clades remains useful for
understanding contemporary and historic biogeography in
marine fishes. For pelagic and non-reef obligate species
with high dispersal abilities, traditional models of allopatric
and parapatric speciation that are thought to affect coral
reef species [1,14] may be less important than sympatric spe-
ciation involving ecological divergence through habitat
partitioning or reproductive timing [2,16,32]. Examining
clade-level patterns of species ranges and integrating
approaches such as age-range correlation with ecological
data allow one to quantify the relationship between biogeo-
graphy and speciation at larger taxonomic scales and assess
potential drivers or outcomes of different speciation mechan-
isms (e.g. character displacement, competitive release).

Here, we integrate ecological trait data and characterize
contemporary patterns of biogeography in species belonging
to a large clade of coastal-pelagic percomorph marine fishes,
Carangoidei [35], which contains Coryphaena (dolphinfishes),
Echeneidae (remoras), Rachycentron canadum (cobia) and Car-
angidae (trevallies). These fishes prefer habitats ranging from
reef-associated with pelagic-neritic to brackish, although the
group can broadly be classified as coastal-pelagic. Life-history
characteristics of the carangoids frequently exclude them from
studies on coral reef obligate fishes, as well as studies that
focus on open-water pelagic species such as tunas, because
they do not exhibit ecological traits characteristic of entirely
one group. For example, some genera within Carangoidei
(e.g. Seriola, Caranx, Remora) have high dispersal potential
due to their large body size and association with drifting sea-
weed rafts, similar to pelagic fishes [17]. Yet many carangoid
species also display restricted home ranges [36–39] – a trait
more characteristic of reef fishes. Carangoids are assumed to
have pelagic larval dispersal but the length of larval drifting
and juvenile settlement patterns varies by species [40–42].
Moreover, the importance of pelagic larval duration on disper-
sal, range size and speciation rate for marine fishes remains
disputed [18,43–45]. The regions of highest species richness
of Carangoidei are the reef-abundant Indo-Australian Archipe-
lago andWestern Indian Ocean (figure 1a), making carangoids
important for discussions on origins of tropical and sub-
tropical fish biodiversity [6]. Carangoids are thus a key
group for studying biogeographic patterns of fishes that
span coral reefs and coastal habitats to the open ocean.

A comprehensive, time-calibrated phylogeny is highly
desirable to study patterns of speciation. However, the mono-
phyly and taxonomic composition of Carangoidei and the
more inclusive lineage, Carangiformes, have been contentious
since the first phylogenies of these groups were published in
the late twentieth century [42,47,48]. For example, early mor-
phological phylogenies suggested Carangoidei encompassed
the Carangidae, Echeneidae, Rachycentron canadum, Cory-
phaena, Nematistius pectoralis (roosterfish) and Mene maculata
(moonfish) [42,49,50], whereas molecular data consistently
resolved Carangidae as paraphyletic, but only inclusive of
Rachycentron canadum, Coryphaena and Echeneidae [35,51–53].
Moreover, molecular studies have disagreed on whether
Carangiformes is paraphyletic [54,55] or monophyletic
[35,56–58]. These prior studies have been limited by
combinations of taxonomic or locus sampling [51,53,56] or
insufficient fossil calibrations [52]. Here, we perform a compre-
hensive phylogenomic analysis using a dataset of more than
955 ultraconserved element (UCE) loci [59] collected from
80% of the recognized species of Carangoidei. We combine
this phylogenetic framework with data on geographical distri-
butions, depth distributions and body size to address patterns
of allopatry and sympatry in Carangoidei and examine
phylogenetic signal in traits thought to influence speciation.
2. Material and methods
(a) Specimen sampling, genomic library construction

and DNA sequencing
We obtained tissues for 154 species including nine outgroup
species of Carangiformes through field collection and museum
loans (electronic supplementary material, table S1). We prepared
dual-indexed libraries [60] for targeted enrichment using the
HyperPrep Kit (KAPA Biosystems, Wilmington, MA) follow-
ing the manufacturer’s protocols (electronic supplementary
material). We used a probe set targeting 1314 UCE loci informa-
tive for phylogenetic analyses of Carangiformes and other
acanthomorph fishes across evolutionary time scales [59]. We fol-
lowed the methods of Ghezelayagh and Harrington [61]; see
detailed protocol in electronic supplementary material. UCE
sequence data were processed prior to phylogenetic analyses
with phyluce v1.6 [62], which we used to construct alignments
of individual UCE loci and perform edge trimming. We gener-
ated two data matrices for phylogenetic analyses to compare
tree topologies with different amounts of missing data: one
where 75% of taxa (115 out of 154) were present in each align-
ment and one where 95% of taxa (146 out of 154) were present.
(b) Phylogenetic and relaxed molecular clock analyses
We implemented the UCE-specific Sliding Window Site Charac-
teristics approach with site entropy (SWSC-EN) to identify UCE
core and flanking regions at each locus [63]. We used these results
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Figure 1. (a) Heatmap of Carangoidei species richness using species range extent of occurrence data from IUCN and probability of occurrence data from Aquamaps
[46]. (b) Allopatric sister species pair, Alectis indica (dark green) and Alectis alexandrina (light green), exhibit no range overlap and low range symmetry. (c) Sym-
patric sister species pair, Caranx sexfasciatus (light green) and Caranx papuensis (dark green), exhibit high range overlap and high range symmetry. The dark green
regions in (c) represent complete overlap between C. sexfasciatus and C. papuensis.
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as input for PartitionFinder v2 [64] to determine the optimal
number of partitions for loci in the 75% complete and 95% com-
plete matrices. We inferred a partitioned maximum-likelihood
(ML) phylogeny using IQ-TREE [65] and implemented the ultra-
fast bootstrap approximation approach using 1000 bootstrap
replicates and a relaxed hierarchical clustering algorithm (rcluster)
that included the top 10% partition merging schemes [66]. We
rooted the tree with the myctophid Ceratoscopelus warmingii.

To account for stochasticity in the evolutionary history among
individual UCE loci, we also performed a coalescent-based analysis
using loci from the 75% complete matrix. We first generated
individual locus trees in MrBayes v3.2.6 (see electronic supplemen-
tary material) [67]. We inferred a species tree from these locus trees
using ASTRAL-II v5.6.2 with the default parameters [68]. Given the
similar topologies generated from the 75% complete concatenated
dataset compared to the coalescent-based tree, we used the ML
phylogeny as a fixed topology to estimate divergence times of car-
angiform lineages by implementing a relaxed molecular clock
approach in BEAST v1.10.4 [69]. Because BEAST has computational
limitations when analysing hundreds of loci simultaneously, we
performed replicate analyses using different combinations of loci,
sensu Harrington et al. [56] and Branstetter et al. [70]. We included
nine fossil calibration points from Harrington et al. [56] that
spanned the Carangiformes clade and assigned the same lognor-
mal prior distributions to incorporate age priors for select nodes
(electronic supplementary material).

(c) Biogeographic and trait analyses
We obtained range data for 125 species from the IUCN Red List
database, which consists of expert-validated range maps
depicting the known ‘extent of occurrence’ of each species in
the form of spatial polygons [71]. We obtained ranges for species
missing from the IUCN database (n = 25) from Aquamaps, a
database of species range predictions that uses a combination
of occurrence data and species range modelling to assign relative
probabilities of occurrence for each point coordinate [46]. Species
for which no range data were available (n = 4) were trimmed
from the time-calibrated phylogeny prior to biogeographic ana-
lyses. We also trimmed the time-calibrated phylogeny to only
include carangoid taxa (Carangidae, Echeneidae, Coryphaenidae
and Rachycentridae). The final dataset contained 123 species
(electronic supplementary material, able S1).

To assess relationships between morphological traits, ecologi-
cal traits and biogeography, we compiled trait data on maximum
body length and maximum depth in the water column for the 125
carangoid species from the IUCN database [71]. If IUCN data
were missing, we used FishBase [72]. We also compiled data on
habitat class (reef or non-reef-associated) and diet (piscivorous
or non-piscivorous) from a prior study [73] and the IUCN
database [71].

We extracted divergence time estimates for each node of the
time-calibrated phylogeny and conducted pairwise comparisons
of range overlap and range symmetry [26]. We defined range
overlap as the area occupied by a given species pair divided
by the area of the species with a smaller range [26]. This pro-
duced an index ranging from 0 to 1, with 0 indicating no
overlap (figure 1b) and 1 indicating complete overlap
(figure 1c). Complete overlap meant both species co-occur
throughout their entire respective ranges or that the range of
one species is entirely encompassed by the other. To incorporate
possible errors in points of occurrence, we classified species as
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allopatric if the range overlap index was less than 0.05 and sym-
patric if the range overlap index was greater than or equal to 0.05.
We performed these analyses between all species in the phylo-
geny and extracted sister species pairs for additional analyses.
A sister species pair was defined as two species sharing a
unique common ancestor, i.e. an ancestor not shared with any
other taxa in our phylogeny. We analysed 41 distinct sister
species pairs, of which at least 32 we believe to be direct sister
species (reciprocally monophyletic). The remaining nine pairs
were uncertain due to unsampled species which may represent
a closer relative to one of the species in those pairs. We hereon
refer to sister species pairs inclusive of those believed to be
direct sister species and those that exclusively share a single
ancestor based on our phylogenetic sampling. To test for peripa-
try, we calculated range symmetry for each sister species pair,
defined as the smaller of the two species’ ranges divided by
the sum of both species’ ranges [22]. The range symmetry
metric falls between 0 and 0.5, where 0.5 indicates that both
species have equal-sized ranges.

(d) Phylogenetic signal in Carangoidei
To examine the ecological and physical similarity of closely
related species in Carangoidei, we tested three continuous traits
(maximum body length, maximum water column depth and
range size) and two discrete traits (habitat and piscivory) for
phylogenetic signal, defined as the tendency for related species
to resemble each other more than they resemble species drawn
at random from the tree [74,75]. For continuous traits, we
tested for phylogenetic signal using Blomberg’s K [75]. We
tested for phylogenetic signal in the discrete traits—habitat
(reef or non-reef ) and piscivory (piscivorous or non-piscivor-
ous)—using Fritz’s D [76] (electronic supplementary material).

We tested for phylogenetic signal of range overlap and range
symmetry in Carangoidei using multiple matrix regression by
means of a partial Mantel test with 1000 phylogenetically
informed permutations in ‘phytools’ in R [77,78]. Although the
Mantel test has been criticized for its low power, it is a suitable
option for testing phylogenetic signal in data that are inherently
pairwise contrasts, such as measures of range overlap and
symmetry [79].

We used linear regression to examine the relationships
between divergence times for 41 sister species pairs, range over-
lap, and range symmetry because these metrics are hypothesized
to be informative about speciation mechanisms [22,26,29]. We
also used Welch’s t-tests to statistically examine the association
of allopatry and sympatry with ecological trait differences. For
each sister species pair, we calculated trait contrasts: the differ-
ences in body length and maximum water column depth
between sister species. We chose water depth as a proxy for
species’ utilization of the water column. Limited availability of
data on minimum water column depth prohibited us from calcu-
lating depth distributions across Carangoidei. We recognized this
limitation and used the most comprehensive depth datasets
available for the clade. We also analysed differences in body
length and water column depth for sympatric sister species cate-
gorized by habitat type, i.e. whether both sister species occupied
the same or different habitat type (reef or non-reef ). We excluded
one sister pair, Trachinotus mookalee (Indian pompano) and Trachi-
notus anak (oyster pompano), because no maximum depth data
were available for T. mookalee [71,72].
3. Results
(a) Phylogenomic analyses and divergence times
We collected sequence data from an average of 958 loci for
154 individuals. Following alignment trimming, mean locus
length was 972 bp (range: 319–1570 bp) and each locus con-
tained a mean of 270.6 parsimony informative sites. The
75% complete alignment included 986 loci and the 95% com-
plete alignment included 371 loci. PartitionFinder produced
143 partitions for the 75% complete matrix and 94 partitions
for the 95% complete matrix. IQ-TREE (electronic supplemen-
tary material, figures S1 and S2) and ASTRAL (electronic
supplementary material, figure S3) inferred similar trees
with high ultrafast bootstrap support and local posterior
probabilities, respectively (electronic supplementary material,
figures S4 and S5). We observe similar topologies generated
from the 75% complete concatenated dataset compared to
the coalescent-based tree (electronic supplementary material,
figure S4) and low Robinson-Foulds values between the trees
(electronic supplementary material, table S3).

Most nodes in the ML tree generated from the 75%
complete matrix are strongly supported, with 90% having
ultrafast bootstrap support of 100 (figure 2). Our phyloge-
nomic analyses suggest four distinct lineages within
carangiform fishes: (1) a clade containing Lates calcarifer (bar-
ramundi), Centropomidae, Lactarius lactarius and Sphyraena;
(2) a clade containing Polynemidae and Pleuronectoidei (flat-
fishes); (3) a clade containing Leptobrama, Toxotes, Nematistius
pectoralis, Mene maculata (moonfish), Xiphias gladius and
Istiophoridae; and (4) a clade containing Echeneidae, Rachy-
centron canadum and Coryphaena nested in a paraphyletic
Carangidae (figure 2a; electronic supplementary material,
figures S1–S3).

Within Carangoidei, our phylogenetic hypotheses resolve
two large subclades. The first consists of the echenoids
(Echeneidae, Rachycentron canadum and Coryphaena). This
clade is sister to the recently elevated Trachinotidae that
includes Trachinotus (pompanos), Lichia amia (leerfish) and
Scomberoidinae (Oligoplites [leatherjackets] and Scomberoides
[queenfishes]) [80]. Lichia amia was previously classified
with Trachinotus in Trachinotini [42,49]; however, we
resolve L. amia as the sister lineage of Scomberoidinae with
strong support (figure 2; electronic supplementary material,
figures S1–S3). We delimit the second major subclade
within Carangoidei as Carangidae, inclusive of Naucratinae
and Caranginae, which contain numerous paraphyletic
genera (figure 2). In Alepes, Decapterus, Seriola, and Caranx,
one or two species classified in other genera resolve within
these clades (figure 2; electronic supplementary material,
figures S1–S3). Carangoides is polyphyletic, with species
distributed across nine clades (figure 2b; electronic sup-
plementary material, figures S1–S3). Our phylogenetic
hypotheses are broadly congruent with recent molecular ana-
lyses focusing on Carangoidei that contain dense taxonomic
sampling [52,53,56].

Species relationships within Carangiformes are largely
consistent across the different methods of analysis (IQ-
TREE, ASTRAL) and matrix composition (75% or 95%
complete). Differences in phylogenetic relationships between
the 75% ML topology and ASTRAL coalescent-based tree
involve the phylogenetic placement of Centropomus medius,
Seriola nigrofasciata, Decapterus macarellus, D. akaadsi, Caranx
crysos and C. caballus, as well as Parastromateus niger (elec-
tronic supplementary material, figure S4). Maximum
likelihood phylogenies inferred using the 75% and 95%
matrices differ in the resolution of Trachurus trecae, Decapterus
akaadsi, Uraspis uraspis and Carangoides bajad (electronic
supplementary material, figure S5).
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Figure 2. Time-calibrated phylogeny of 145 species of Carangiformes and two outgroup species generated by BEAST using a guide tree from the 75% complete
matrix constructed in IQ-TREE and nine fossil calibration points. Blue bars indicate 95% posterior probability densities (HPD) around point estimates. Nodes represent
median ages from a maximum clade-credibility tree. Ultrafast bootstrap support values (BT) are indicated as circles on each node. No circle indicates 95–100% BT
support. Dark blue rectangles indicate nodes calibrated with priors based on fossil data. Diamond node labels indicate sympatric (light blue) and allopatric (black)
carangoid sister species pairs. One sister pair (Trachurus indicus and T. delagoa) are unlabeled due to missing range data. Fish image sources are in electronic
supplementary material, table S5.
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Using relaxed-clock molecular dating analyses, we gener-
ated similar estimates of divergence times and overlapping
95% highest posterior densities (HPD) across four random
subsets of 25 UCE loci (figure 2; electronic supplementary
material, figure S6). These analyses estimate the age of the
most recent common ancestor (MRCA) of Carangiformes as
66.66 Ma (95% HPD: 62.43–71.59 Ma) and of Carangoidei as
53.82 Ma (95% HPD: 51.50–56.77 Ma; figure 2). These
divergence times are younger than a previous study on
Carangoidei [52] but fall within the 95% confidence intervals
of other phylogenetic studies that estimate the ages of
Carangiformes and Carangoidei [56–59].
(b) Phylogenetic signal
Tests of continuous trait variables within Carangoidei
using Blomberg’s K suggest there is phylogenetic signal for
body length (K = 0.123, p = 0.001), water column depth (K =
0.090, p = 0.006) and range size (K = 0.307, p = 0.001), as K
values lower than one imply that variance is less than
expected by a Brownian process. Phylogenetic least squares
regression with an OU error model suggests a correlation
between maximum body length and maximum water
column depth (t = 2.593, p = 0.011), but not between maxi-
mum body length and geographical range size (t = 1.004,
p = 0.317).
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Figure 2. (Continued).
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We calculated Fritz’s D to examine phylogenetic signal
in discrete variables (reef habitat and piscivory) and com-
pared observed D values to simulated sums of expected
character changes under Brownian motion and random
models. The test for reef habitat (D = 0.663) suggests a
departure from Brownian motion expectations (p[D > 0] <
0.001) but more phylogenetic signal than expected from
a random distribution of habitat traits across the
phylogeny ( p[D < 1] < 0.001). The test of Fritz’s D for diet
(piscivory or non-piscivory; D = 0.069) suggests the
evolution of diet resembles a Brownian process (p[D > 0] =
0.365; p[D < 1] < 0.001). Mantel tests of contrast variables
reveal a correlation between phylogeny and overlap
of geographical ranges (R2 = 0.020, p = 0.009), as well as
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phylogeny and geographical range size symmetry (R2 =
0.033, p = 0.001).

(c) Sister species analyses
Among the 41 resolved carangoid sister species pairs, 30
(73%) are sympatric (range overlap > 0.05) and 11 (27%)
are allopatric (figure 2). All allopatric sister pairs have
range overlap values of zero except Trachinotus anak and T.
mookalee, with a range overlap value of 0.02. All sympatric
species pairs have range overlap values > 0.6 except Uraspis
helvola and U. secunda, whose range overlap is 0.16
(figure 3a). The node ages of sympatric sister species pairs
range from 0.08–17.74 Ma (median: 1.65 Ma), while the
node ages of allopatric pairs range from 1.23–6.31 Ma
(median: 2.14 Ma). We find no effect of node age on range
overlap (r = 2.25 × 10−4, p = 0.926; figure 3a) or geographical
range size symmetry (r = 0.013, p = 0.480), nor is there a cor-
relation between range overlap and range size symmetry
(r = 0.072, p = 0.091; figure 3b). Median range size symmetry
is 0.273 for allopatric species pairs and 0.348 for sympatric
species pairs. Notably, there are greater differences in maxi-
mum water depth between sister species in sympatry versus
those in allopatry (t = 2.513, p = 0.017; figure 4a). We also
observe greater differences in maximum body length
between sympatric sister species pairs compared to allopa-
tric pairs (figure 4b), though these are not significant
(t = 1.821, p = 0.081).

Most allopatric sister species pairs are comprised non-reef
associated species. Out of 11 allopatric sister pairs, 73% (n = 8
pairs) contain two non-reef-associated species (electronic
supplementary material, table S4). We also find greater differ-
ences in maximum water depth (t = 2.173, p = 0.034) between
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sympatric sister species pairs that occupy the same habitat
(e.g. both occupy reef or non-reef habitats) compared to
sympatric pairs that occupy different habitats (electronic
supplementary material, figure S7).
ietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20230657
4. Discussion
(a) Carangiform phylogeny and timing of diversification
With a dataset averaging 958 UCE loci and representing 80%
of the known species diversity within Carangoidei, we pro-
vide phylogenomic resolution for the relationships within
this clade. The molecular and phylogenomic perspective on
carangoid relationships is notable in the consistent paraphyly
of the traditional delimitation of Carangidae when excluding
the echenoids; thus, we confirm a newly revised classification
for the carangoid subclades Carangidae and Trachinotidae
[80]. Our resolution of subclades within Carangiformes is
concordant with previous analyses using UCEs, with the
exception of the relationships of Latidae, Centropomidae
and Sphyraena [35,56]; these different phylogenetic relation-
ships of early diverging carangiform lineages reflect
ongoing challenges using molecular data to resolve
taxonomic relationships due to short internal branches [81].

Ourestimatesofnodeages suggest theoriginofCarangoidei
was approximately 53 Ma during the early Eocene (electronic
supplementary material, figure S6). Estimates from UCE data
for the age of Carangoidei are much younger than a previous
studywhich suggested aLateCretaceous origin; this is probably
due to that study’s fossil calibrations, which have older age esti-
mates within Carangoidei [52]. Due to several identical fossil
calibration points within Carangiformes shared across studies,
our age estimates are similar to phylogenomic analyses using
UCEs [56,59] and exons from protein coding genes [57]. Our
results suggest most of the species level diversification occurred
during the last 10 million years, during the late Miocene
(approx. 11.63–5.33 Ma). The late Miocene was a period of
warmer global climate and expanding coral reef habitats,
which is congruent with the observed diversification of other
tropical and sub-tropical coral reef fish lineages with diversity
centered in the Indo-Pacific Archipelago region [6,9].

(b) Patterns of carangoid sympatry and allopatry
While sympatry of sister species pairs is ubiquitous across
Carangoidei, regardless of node age, 27% of sister species
pairs were allopatric. Most cases of allopatry (64%) were
likely caused by vicariance, specifically the Isthmus of
Panama. Seven out of eleven allopatric pairs have divergence
times younger than 5 Ma and presently exhibit parallel range
patterns, where one species occupies the eastern Pacific (e.g.
Selene brevoortii [Mexican lookdown]) and its sister species
inhabits the western Atlantic (e.g. Selene vomer [lookdown];
electronic supplementary material, figure S8A). The other
cases of allopatry are potentially maintained by the cold-
water barrier formed by the Benguela and Agulhas currents
off the southern coast of South Africa separating the Atlantic
and Indian Oceans (Alectis indica [diamond trevally] and
A. alexandrina [African threadfish]), or open-ocean barriers
in the Atlantic (e.g. Selene setapinnis [Atlantic moonfish] and
S. dorsalis [African moonfish]; electronic supplementary
material, figure S8B) and Indo-Pacific (Trachinotus mookalee
and T. anak; Trachurus japonicus [Japanese horse mackerel]
and T. novaezelandiae [yellowtail horse mackerel]). Isolating
barriers are unknown for the oldest (approx. 6.3 Ma) diverging
allopatric sister pair, Pseudocaranx dentex (white trevally) and
Carangoides equula (whitefin trevally), which are found
throughout the Atlantic and Indo-Pacific, respectively.

To our knowledge, only one study has demonstrated such
widespread sympatry (76%) in a large lineage of marine fishes,
Myctophidae [82], although high degrees of sympatry have
been demonstrated in some genera of coral reef fishes – for
example, over 80%of sister species pairs in Pomacanthus (angel-
fishes; n = 13 spp.) [83] andHaemulon (grunts; n = 21 spp.) [84].
Most comparable analyses of marine fishes found a higher
prevalence of allopatry between sister species, from 62% in
NewWorld haemulid fishes (n = 42 spp.) [31] to 64% in parrot-
fishes (N = 61 spp.) [85] to 88% in Halichoeres (wrasses; n = 24
spp.) [86]. In Holocanthus (angelfishes; n = 7 spp.), one sister
pair is sympatric while the other species are allopatric [87].

Our age-range correlation analysis revealed patterns that
were not clearly consistent with a single geographical mech-
anism of speciation (e.g. sympatry, allopatry, peripatry),
potentially due to range shifts in this clade over time [19].
While we cannot rule out sympatric speciation due to lack
of appropriate data, we follow long-held assumptions and
empirical evidence that allopatric speciation is the predomi-
nant mechanism driving diversification [88,89]. As such, the
clade-wide pattern we observed may suggest secondary sym-
patry occurring after allopatric speciation. Moreover, the
patterns we observe in range overlap and range symmetry
imply close relatives in Carangoidei coexist and maintain
sympatry across large portions of their ranges. The greater
divergence in body size and water column depth in sympa-
tric sister pairs compared to allopatric pairs may be
prezygotic isolation mechanisms that reduce interspecific
competition (e.g. character displacement), facilitating second-
ary sympatry among closely related species [90]. Similar
examples of transitions from allopatry to secondary sympatry
are sparse but have been observed in birds [30,91,92] and
coral reef fishes [25,93]. Even under an assumed model of
allopatric speciation, recent evidence suggests diverging
and recently diverged lineages of birds, mammals and
amphibians evolve under similar macro-selective pressures,
contradicting long-standing ideas that divergent, allopatric
adaptation initiates the earliest stages of speciation [33].
Reef fishes and marine cetaceans exhibit higher transition
rates to sympatry than birds and other vertebrate lineages
[93]. Although node age is a significant predictor of transition
from allopatry to sympatry in terrestrial organisms, the prob-
ability of sympatry is independent of node age in coral reef
fishes and cetaceans due to frequent, fast transitions between
allopatric and sympatric states [93]. These fast transitions are
attributed to higher intrinsic dispersal abilities in lineages of
marine organisms compared to terrestrial vertebrates [93]
even though dispersal ability—including pelagic larval
duration—has a nuanced correlation with range size [18,44].

(c) Ecological signature of secondary sympatry in
carangoid fishes

We observe higher divergence in maximum water depth and
body size in sympatric sister species pairs, suggesting eco-
logical factors facilitate sympatry among the most closely
related species of carangoids. Water depth differences
between sympatric sister species have also been documented
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in New World Halichoeres fishes [86], and sympatric sister
pairs of parrotfish exhibit greater differences in body size,
morphology, habitat type and colour patterns [85]. Body
size and water column depth are reflective of resource use,
with the former being a strong correlate of prey consumption
[94] and the latter indicative of habitat niche partitioning
[95,96]. The trait differences we examined in Carangoidei
may be the result of character displacement, which is rep-
resented by the divergence of character traits in two or
more lineages occurring in sympatry [90,97–100], but at pre-
sent, character displacement is difficult to prove due to the
lack of detailed ecological trait data across carangoid species’
ranges. Given that body size and maximum depth in the
water column are positively correlated [101], it is unclear if
divergence in body size is driving divergence in water
depth distribution. Further research on these and other
traits is warranted, particularly to compare sister species’
traits between areas of overlap versus non-overlap.

The displacement of ecological and behavioural charac-
ters, in part by minimizing competition, is hypothesized to
facilitate sympatry between closely related species [97,99].
In coral reef environments, habitat complexity may influence
character displacement in reef fishes, be it divergence in mate
recognition [102], trophic partitioning [103], reef preference
[85], or territoriality [104]. Yet, since fewer than half of caran-
goid species (45%) are classified as reef-associated, carangoid
niche partitioning might be shaped by different factors than
those affecting coral reef fishes. Most (80%) allopatric caran-
goid sister pairs are non-reef-associated, while 80% of
sympatric sister species contain at least one reef-associated
species. A previous analysis on carangoid body shape and
ecological traits found that shifts from reef to non-reef
environments increased rates of morphological diversifica-
tion, implying that non-reef environments influenced
morphological changes more than reef environments [73].
Although the authors did not find an effect of habitat type
on rates of phylogenetic lineage diversification, their lineage
diversification rates may have been skewed by their age esti-
mates of Carangoidei [52], which are substantially older than
our age estimates and those of other phylogenomic studies
[56,57]. Our results suggest habitat and diet resemble a Brow-
nian motion model of trait evolution, but we did not test for
the effects of trait evolution on rates of diversification. Eco-
logical partitioning among closely related species occupying
non-reef environments might be one reason why carangoids
exhibit such high disparity in body shape and body size rela-
tive to other percomorphs [48,105]. Despite this variation in
body shape and size, we still observe phylogenetic signal in
body length, which corroborates previous morphological
work suggesting similarity in the evolution of carangoid
body types among major subclades [51].

Our tests of phylogenetic covariance suggest that the evol-
ution of certain morphological and ecological traits has been
conserved during carangoid lineage diversification. Notably,
although we observe weak but significant phylogenetic
signal in body length and water column depth in Carangoidei,
the prevalence of sympatry coincides with evidence of mor-
phological and environmental niche-partitioning in body size
and depth in thewater column between sister taxa. Our results
highlight the benefits of performing sister species analyses, not
only because such analyses pose less risk of overestimating
divergence times due to extinction events [24], but also because
independent replicates are less likely to be phylogenetically
confounded [106] and may reveal trait divergences that are
masked by analyses of phylogenetic signal across the entire
clade. Additional studies examining the mechanistic processes
underlying speciation in Carangoidei, including mate selec-
tion, reproductive timing, and mechanisms of dispersal at the
species-level will shed further light on the drivers of
speciation in this unique clade of fishes.
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