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L E T T E R

Tilapia health: quo vadis?

Species and farmed types of tilapia have become one of the world's

most popular aquaculture products and provide nutrition and liveli-

hood to rural and urban communities around the world.* This popular-

ity has been due to technological advances in fish health, farming

systems, breeding and genetics, engineering, marketing as well as

wide consumer acceptance and the special biological characteristics

of tilapia that enable them to survive and grow in a variety of environ-

ments and farming systems. As the farming of tilapia has become

more widespread, so have the concerns around fish health and dis-

ease prevention and cure.

To review the status of tilapia health, disease prevention and

cure, the Food and Agriculture Organization of the United Nations

(FAO) and INFOFISH convened a virtual International Technical Semi-

nar, Tilapia health: quo vadis,† that brought together 1700 participants

from over 100 countries. A call for expression of interest was released

after the event, to develop the presentations into full articles for pub-

lication as a Special Issue at Reviews in Aquaculture. Eight groups of

authors responded to the call and the eight papers now constitute this

Special Issue. The FAO Lead Technical Officer (Melba G. Bondad-

Reantaso), guest editors (J.R. Arthur, Devin M. Bartley, Kevin Fitzsim-

mons, and Michael J. Phillips), authors and entities that funded the

papers as Open Access (indicated in individual papers) are gratefully

acknowledged. The virtual event was supported by two FAO projects,

namely: GCP/RAF/510/MUL Enhancing capacity/risk reduction of

emerging Tilapia Lake Virus (TiLV) to African tilapia aquaculture and

TCP/INT/3707 Strengthening biosecurity (policy and farm-level) gov-

ernance to deal with Tilapia lake virus.

The special issue builds on the recent review of tilapia published

as a special virtual issue in RAQ 15:1 (2023); with articles that focus

on fish health issues along with other articles that set the scene for

tilapia farming globally. The paper by El-Sayed and Fitzsimmons, From

Africa to the World- the Journey of Nile tilapia, documents how Nile

tilapia, first farmed by ancient Egyptians 4000 years ago, has been

moved from Africa to farming systems around the world to become

one of the most important farmed species. The review further reveals

that although Nile tilapia often supports inland capture fisheries as

well as aquaculture production, tilapia introductions have in some

cases adversely impacted local cichlid species, and reduced abundance

of other fishery resources.

Farmed tilapia producers and processors have been leading the

seafood industry in several aspects of processing, value adding, and

packaging. The dependable supply and pricing of farmed tilapia and its

value in several sectors, for example, food service, fast casual dining,

frozen meals, as well as fresh seafood counters, have allowed proces-

sors and marketers to invest in novel value-added processing and

packaging. This has only been possible because the tilapia industry

has invested in advanced production systems and fish health.

Much of the tilapia sold in international trade is processed in the

producing country. Often fillets are marketed leaving about 70 percent

of the fish unused. The paper, How value addition by utilization of tila-

pia processing by-products can improve human nutrition and livelihood,

by Peñarubia and co-authors, reveals a wide range of other products

that are or could be utilized in the supply chain. So-called ‘by-prod-
ucts’ of processed tilapia that may be discarded or used for animal

feed, can provide additional income to workers in the tilapia supply

chain. In addition to nutritious products such as fish cakes and sau-

sage, tilapia skins are processed to produce leather and gelatin, heads

and bones can be turned into flour or supplements, and collagen from

fish scales and bones have potential in the cosmetic and pharmaceuti-

cal fields. The authors point out that further research and develop-

ment, along with marketing are needed to fully utilize the wide range

of products available from tilapia.

The paper by Zimmerman and co-authors, The future of intensive

tilapia production and the circular bioeconomy without effluents: biofloc

technology, recirculation aquaculture systems, Bio-RAS, partitioned aqua-

culture systems, and integrated multitrophic aquaculture, describes sev-

eral of the most innovative fish farming systems allowing farmers to

grow more fish in smaller areas with fewer inputs. Recirculating sys-

tems, aquaponics, bioflocs, in-pond raceways are just some of the

more advanced, or intensive, aquaculture methods that were mostly

pioneered using tilapia and are now being tested with other species.

The paper provides a nice overview of these systems and their partic-

ular pro's and con's.

In, Strategies to enhance tilapia immunity to improve their health in

aquaculture, Wang and co-authors provide an overview of the benefits

of enhancing the immune response to improve tilapia health, in turn

reducing the levels of pathogens within tilapia farming systems. The

authors review the immune system of tilapia and the importance of

the gut microbiome. They then summarize the strategies used to

reduce the impact of disease in tilapia culture through enhancement

of the immune system, including the feeding of probiotic and prebiotic

supplements to modulate the gut microbiota, the use of herbal
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medicines and immunostimulants to enhance immunity to disease,

and the existing and potential use of vaccines to prevent infections.

They note that emerging and re-emerging diseases such as strepto-

coccosis, tilapia lake virus disease, and infectious spleen and kidney

necrosis virus disease have resulted in high levels of morbidity and

mortality, production losses and trade restrictions. In the absence of

effective husbandry management, disease prevention strategies and

appropriate biosecurity measures, these and other infectious diseases

will continue to challenge the sustainability of global tilapia aquacul-

ture. They then look at the economics of applying immune enhance-

ment strategies in tilapia culture, noting that the decision to use these

products depends on multiple factors including farming practice,

farmer perception, and the overall cost-benefits. They note that effec-

tive husbandry management through maintaining high water quality,

adequate nutrition, and good biosecurity will create a less stressful

environment for fish. Rapid response to epidemic events and the

availability of rapid and accurate diagnostic methods are important to

limit the damage caused by disease. Vaccination as a means of con-

trolling infectious diseases is one of the most significant and success-

ful health practices within the aquaculture industry.

The review, Improving tilapia biosecurity through a value chain

approach, by MacKinnon and co-authors explores the value chain per-

spective to assess and manage risks of disease threats and losses in tila-

pia aquaculture. The paper outlines the tilapia value chain as a starting

point, then assesses the important infectious agents of tilapia that may

affect different parts in the value chain. The paper then describes how

risk analysis can be applied to identify critical control points in the value

chain and potential risk mitigation measures that may be implemented

at those points. It emphasizes, as many of the other papers illustrate,

that the control of diseases of tilapia requires a multi-faceted approach

across the whole ‘aquaculture system’, with control measures chosen

based on their feasibility, effectiveness and sustainability.

In, A global review of problematic and pathogenic parasites of farmed

tilapia, Shinn and co-authors provide an extensive and detailed global

accounting of the protistan and metazoan parasites of tilapias, with

emphasis on those species having demonstrated or potential impact to

tilapia aquaculture. The authors summarize more than 2500 host–

parasite records from 73 countries and more that 820 recorded tilapia

introductions. For each major parasite taxonomic group, they highlight

those parasites that have been translocated along with their tilapine

hosts or have been acquired from the new environments into which tila-

pia have been introduced, together with remarks on their taxonomy,

reported geographic distribution (including translocations), pathology,

status, and future directions of research, and approaches to treatment

and control. They note that while Africa has enormous potential for

aquaculture development, substantial knowledge gaps about tilapia par-

asites remain for many African states, which creates associated produc-

tion and biosecurity risks. Globally, tilapias host a rich fauna of parasites,

with new species still being encountered. This review and its associated

supplementary tables will be of high value to fish parasitologists in gen-

eral, to diagnosticians, to tilapia farmers encountering parasite problems

in their facilities, and to government scientists conducting import risk

analyses for proposals to introduce tilapias to new geographic areas.

Tilapia has often been described as extremely hardy fish with very

few disease problems. While this is generally true, rearing more and

more fish intensively can induce stressful conditions that allow patho-

gens to take hold and allow a disease to spread. Likewise, fish selected

for fast growth, colour morphs and/or body conformation may have

allowed some of the innate hardiness to have been degraded. The

paper by Haenen and co-authors, Bacterial diseases of tilapia, their

zoonotic potential and risk of antimicrobial resistance provides a thor-

ough overview of bacterial diseases and some associated pathologies

that have and are affecting commercial farms rearing tilapia. While the

losses endured by the tilapia industry have been less than salmon or

shrimp farming, no farmer wants to lose fish and see income decline.

Treatments and vaccines are described for the various bacteria which

have been associated with significant mortalities.

In their review, From the basics to emerging diagnostic technolo-

gies: What is on the horizon for tilapia disease diagnostics?, Ha Dong

and co-authors stress that the intensification of tilapia farming has

exacerbated losses due infectious diseases and that the disease diag-

nostics play a crucial role in aquaculture biosecurity and health man-

agement. However, the recent proliferation of cutting-edge

molecular methods in aquaculture has shifted the focus of

researchers and users away from basic approaches and towards

molecular diagnostics, despite the fact that many diseases can be

rapidly diagnosed using inexpensive, simple microscopic examina-

tion. This review highlights the importance of the three levels of

diagnostics for diseases of tilapia to promote the integration of both

basic and advanced methods to achieve accurate and meaningful

diagnostic results. The authors thus emphasize the need for fre-

quently overlooked but basic procedures such as case history

records, gross pathology, presumptive diagnostic methods, and his-

topathology. They also provide an in-depth review of current and

emerging molecular diagnostic technologies for tilapia pathogens,

including polymerase chain reaction methods, isothermal amplifica-

tion methods, CRISPR-based detection, and lateral flow immunoas-

says. They also discuss the future of tilapia disease diagnostics,

including next generation sequencing, artificial intelligence, environ-

mental DNA/RNA and point-of-care testing, and a future vision for

transferring these technologies to farmers and stakeholders for a

sustainable aquatic food system transformation.

Undoubtedly, tilapia, and especially Nile tilapia, will continue to

be one of the most important groups of farmed aquatic species. The

material reviewed in this special edition provides valuable information

to resource managers, fish farmers, processors, marketers, and ven-

dors to help ensure that tilapia aquaculture develops responsibly and

provides beneficial outcomes to communities and the environment.

KEYWORDS
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Abstract

Despite the fact that Nile tilapia (Oreochromis niloticus) (Linnaeus, 1758) are African

freshwater fish, they have been introduced into many countries inside and outside

Africa. The journey of Nile tilapia started during the second half of the 20th Century,

especially in Southeast Asia and the Americas, mainly for aquaculture and fisheries

enhancement. Most of these introductions became well established in aquaculture.

As a result, aquaculture of Nile tilapia has been steadily expanding in many countries.

These fish play an important role in the livelihoods of local societies on different con-

tinents. This review summarizes the current knowledge on global Nile tilapia intro-

ductions and sheds light on their social and economic contributions to the countries

into which they have been introduced, as well as their share in the global fish market.

The ecological impacts of tilapia introductions have also been addressed. The success

stories of the major Nile tilapia producers were highlighted so that the lessons

learned from their experiences could be transferred to other countries.

K E YWORD S

Africa, Asia, impacts, introductions, Nile tilapia, The Americas

1 | INTRODUCTION

Tilapia are African freshwater fish belonging to the family Cichlidae.

They are distributed all over Africa, except the northern Atlas Moun-

tains and Southwest Africa.1 About 700 Cichlid species have been

reported in the African Nile basin.2 Of those, Philippart and Ruwet3

reported 76 tilapia species across Africa. Fishbase4 suggested that the

family Cichlidae includes 52 tilapia species (32 Oreochromis, 13 Sar-

otherodon, and seven Tilapia species). More recently, the names of

Tilapia dageti (Thys van den Audenaerde, 1971), Tilapia guineensis

(Günther, 1862), Tilapia zillii (Gervais, 1848) and Tilapia mariae (Bou-

lenger, 1899) have been reclassified as Coptodon dageti (Thys van den

Audenaerde, 1971), Coptodon guineensis (Günther, 1862), Coptodon

zillii (Gervais, 1848), and Pelmatolapia mariae (Boulenger, 1899),

respectively. Past publications may refer to the older invalid names,

but the updated names are used in this document. This means that

there is still confusion among researchers in the taxonomic classifica-

tion of tilapia.5

Eleven tilapia species are currently farmed in Africa,6 compared to

only three species in 1980. However, Nile tilapia (Oreochromis niloticus)

(Linnaeus, 1758) is, by far, the most widely cultured tilapia species,7 due

to its economic value as one of the most important farmed fish species in

the world. The culture of other tilapia species is also practiced, together

with “not elsewhere included” or ‘nei’ ‘tilapia’. These species include blue

tilapia (Oreochromis aureus) (Steindachner, 1864), longfin tilapia (Oreochro-

mis macrochir) (Boulenger, 1912), three spotted tilapia (Oreochromis ander-

sonii) (Casteinau, 1861), Mozambique tilapia (Oreochromis mossambicus)

(Peters, 1852), Shire River tilapia (Oreochromis shiranus) (Boulenger, 1897),

Tanganyikan tilapia (Oreochromis tanganicae) (Günther, 1894), mango tila-

pia (Sarotherodon galilaeus) (Linnaeus, 1758), blackchin tilapia (Sarothero-

don melanotheron) (Rüppell, 1852), redbelly tilapia (C. zillii) (Gervais,

1848) and redbreast tilapia (Coptodon rendalli) (Boulenger, 1897).
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DOI: 10.1111/raq.12738

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2023 The Authors. Reviews in Aquaculture published by John Wiley & Sons Australia, Ltd.

6 Rev Aquac. 2023;15(Suppl. 1):6–21.wileyonlinelibrary.com/journal/raq

https://orcid.org/0000-0003-3378-1205
https://orcid.org/0000-0003-3759-8168
mailto:abdelfatah.youssif@alexu.edu.eg
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/raq


However, the production of this group is very limited, being only 62,393

metric tons (mt) (4.6%) of total farmed tilapia production in Africa in

2019.7

Nile tilapia are naturally distributed in the Nilo-Sudanian region,

Ethiopian Rift Valley, the western Rift Lakes (Lake Albert, Lake Edward,

Lake George, Lake Kivu and Lake Tanganyika) and Lake Turkana in the

eastern Rift Valley. Nile tilapia is also naturally established in Central and

Western Africa (Senegal, Gambia, Volta, Niger, Benue and Chad river

basins) (Figure 1).1,3 Nile tilapia are highly adapted to tropical, subtropical

and temperate environments. They are characterized by their fast growth

rates, tolerance to extreme environmental conditions (such as tempera-

ture, salinity, pH, and low dissolved oxygen), high resistance to stress and

diseases, trophic plasticity and feeding on low trophic levels, and their

ability to reproduce in captivity.6,8,9 These attributes made them an

ideal candidate for aquaculture all over the globe. It is no surprise,

therefore, that 114 Nile tilapia introductions have been recorded

worldwide (Figure 2), mainly for aquaculture and fisheries enhance-

ment.10 As a result, tilapia culture has been developing at a high rate

since the 1990's. Production of farmed tilapia increased from only 1 mil-

lion mt in 2000 to over 6 million mt in 2019, with Nile tilapia contribut-

ing 74% to this production7 (Figure 3).

Nile tilapia, often described as the ‘aquatic chicken’ can be a low-

priced fish compared with other farmed fish, which feed on higher

trophic levels.11 Therefore, it is sometimes considered a food for the

poor, or the fish for the masses.11 In many locations tilapia has played

a significant role in rural development, poverty alleviation, hunger

eradication and human health improvement in the developing and

least developed countries, thereby directly contributing to the

achievement of the United Nations Sustainable Development Goals

(e.g., SDGs 1, 2 and 3). (https://www.undp.org/sustainable-

development-goals). This has been achieved through fish supply for

domestic consumption and export, generating more foreign currency,

raising producers’ income and creating employment opportunities.

We review global Nile tilapia introductions, and the economic and

social roles they play in the regions and countries into which they have

been introduced, and the success stories of the major Nile tilapia

producers. It also discusses the adverse ecological impacts which may
F IGURE 1 Natural distribution of Nile tilapia in Africa. Modified
from: Philippart and Ruwet.3

F IGURE 2 Global Nile tilapia introductions. Source: CABI Invasive Species Compendium (https://www.cabi.org/isc/datasheet/72086).
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result from tilapia introductions and transfers, so that the necessary pre-

cautions can be taken to avoid, or at least minimize, these adverse impacts.

2 | THE JOURNEY OF NILE TILAPIA IN
AFRICA

The story of Nile tilapia culture in Africa started about 4000 years

ago. As indicated from the biblical references and illustrations from

ancient Egyptians tombs, tilapia farming is, arguably, rooted in Egypt,

at about 4000 BC, about 1000 years before cyprinid carps culture

was practiced and published in the first aquaculture text by Fan Li in

China.12,13 Although a recent article14 hypothesizes carps may have

been reared as far back as 8000 years ago. In recent history, the first

tilapia culture trial dates back to 1924 in Kenya, when water ponds

were stocked with different species of tilapias (especially Oreochromis

niger) (Günther, 1894) followed by African catfish (Clarias gariepinus)

(Burchell, 1822) and common carp (Cyprinus carpio) (Linnaeus,

1758).15 Ten years later, the first scientific fish farming trials took

place in Egypt.16 Many other tilapia farming trials were conducted

during the 1950s and 1960s throughout the continent, where thou-

sands of small ponds were constructed for tilapia farming, mainly for

subsistence, using extensive farming techniques.15

The real journey of Nile tilapia in Africa started in the 1990s,

when tilapia was introduced, transferred or translocated in many Afri-

can countries, mainly for commercial aquaculture and fisheries

enhancement.17–19 By 2020 Nile tilapia culture was practiced in

30 countries throughout Africa,7 and their production increased from

only 27,000 mt in 1990 to 1,287,053 mt in 2019, representing 95.4%

of farmed tilapia production in Africa, and 68% of African inland water

aquaculture outputs,7 and contributing 28% of global Nile tilapia out-

put (Figure 4). However, Nile tilapia farming in Africa is dominated by

a single country, Egypt, which contributed 84% (1,081,202 mt) to

farmed Nile tilapia output in Africa in 2019. Egypt is also ranked third

among the top global Nile tilapia producers in the world, after China

and Indonesia (Figure 5a). Tilapia culture is also expanding in Uganda,

Ghana, Kenya, Mali, Sudan, Tanzania, and Zambia (Figure 5b).

3 | EGYPT'S EXPERIENCE AND LESSONS
LEARNED

Tilapia farming in Egypt is practiced mainly by small-scale farmers, using

simple farming technologies and outputs. Extensive, semi-intensive (SI),

intensive and integrated farming are applied; however, SI remains the

most popular system. Over 80% of aquaculture output is produced under

SI systems in earthen ponds, with mono-sex Nile tilapia being the pri-

mary species.20 Farmed tilapia (and other fish) are fed with high quality

extruded feeds (both sinking and floating pellets).21,22

Nile tilapia, despite being freshwater fish, are able to tolerate a

wide range of water salinity.23 They can grow in brackish water (BW),

at salinity of up to 15‰. They can also reproduce at water salinity

ranging from 13‰ to 29‰.23 Due to the scarcity of fresh water and

abundance of BW in Egypt, Nile tilapia production is practiced mainly

in BW environments, especially in the northern delta lakes areas along

the Mediterranean coast. In 2019, 89% of farmed Nile tilapia in Egypt

were produced from BW, whereas global Nile tilapia production in

BW environment represented 21% of total Nile tilapia outputs.7

Nile tilapia culture has a major contribution to animal protein sup-

ply and food security for millions of Egyptians, especially among the

poor and middle-class communities in rural areas.24 Farmed Nile tila-

pia contributed 66% to national aquaculture production, and 43% to

total fish consumption in Egypt in 2019.20 Thus, out of 25.38 kg of

fish consumed per capita per year, 11 kg come from farmed Nile tila-

pia. This confirms the significant contribution of farmed Nile tilapia to

food security for the Egyptian population, especially among the poor

and middle-class communities.24

Almost all Egyptian tilapia production is directed to the domestic

market; only about 10,000 mt are exported (GAFRD, personal communi-

cation, 2022),20 mainly to the Gulf Cooperation Council region.24 Farmed

tilapia play a significant role in poverty and malnutrition eradication of

rural Egyptian households, especially for nutritionally vulnerable groups,

through providing good quality animal protein at low prices.24,25 In addi-

tion, Nile tilapia farming improves the livelihoods of tens of thousands of

households, mainly by generating employment opportunities through the

whole aquaculture value chain. Taking into account that 14 full-time jobs

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Pr
od

uc
tio

n 
(m

t)

Nile tilapia

Total tilapia

F IGURE 3 Global farmed tilapia production 2000–2019.7

2806295

1287053

436033

1589
0

500000

1000000

1500000

2000000

2500000

3000000

Pr
od

uc
�o

n 
(m

t)

Asia Africa Americas Oceania

F IGURE 4 Production of farmed Nile tilapia by continent in
2019.7

8 EL-SAYED AND FITZSIMMONS



are required to produce 100 mt of fish,26 it has been estimated that full-

time employment in the tilapia value chain is currently about 151,000

persons. Many part-time jobs are also created throughout the production

cycle (e.g., harvesting, transportation, and pond preparation).

3.1 | Other African countries

Tilapia farming plays a significant role in food security in several other

sub-Saharan African regions. Countries such as Benin, Burundi,

Cameroon, Congo, Cote d'Ivoire, Mozambique, and Rwanda are

expanding Nile tilapia farming.27 Different types of incentives are

offered to encourage local and foreign investors to invest in tilapia

culture which has been proven profitable. For example, Nile tilapia in

Rwanda are farmed as a cash crop, with the cash generated from their

sale used for buying necessary commodities.28 In Tanzania, house-

holds of small-scale farmers in Mvomero and Mbarali districts con-

sume substantial amounts of Nile tilapia they produce, while the

remaining portions were sold mostly fresh to their neighbours.29 In

Zambia, tilapia contributes directly to food security and indirectly to

income generation through fish retail and job creation. About 40% of

fish farming households use all of the harvest for family consumption,

while about 57% sell their harvest in local markets.30–32 Similarly,

farmed Nile tilapia has become a major livelihood source for small-

holder households in Ghana,33–35 Kenya,36 Nigeria,37 and Uganda,38

through improving rural income, food and nutrition security and pov-

erty alleviation.

4 | TILAPIA FARMING SYSTEMS IN AFRICA

Despite the huge potential of Nile tilapia farming in Africa, it has not

kept pace with the changes in aquaculture technologies and lags far

behind other producing regions. Tilapia farmers in most African coun-

tries, except a few countries (e.g., Uganda, Ghana and Kenya) adopt

non-commercial extensive systems in earthen ponds, mainly for

subsistence. Farm ponds are generally very small (<100 m2–

1000 m2).27,39,40 In Cote d'Ivoire, the Acadja-enclos system is still

used in ponds with tree branches or bamboo poles placed in ponds to

encourage periphyton to grow where the tilapia can easily graze. The

branches and/or poles are then removed to simplify harvest.41 Family

labour is generally used on African farms, while the use of hired labour

is very rare because many small-scale farmers do not have the cash to

hire external labour. Small fish ponds have been reported to improve

food security, poverty reduction and health status and economic stan-

dard of rural households in Zambia,31,32 Uganda38,42 and Tanzania.29

In commercial tilapia culture systems, both monoculture of Nile

tilapia (O. niloticus) and polyculture of tilapia with North African cat-

fish (C. gariepinus) and common carp (C. carpio) are commonly prac-

ticed, especially in sub-Saharan Africa (SSA).43 The use of mixed-sex

tilapia is common, although sex-reversed (all male) tilapia culture is

spreading in a number of SSA countries.6 This system is primarily

based on fertilization using a compost crib built inside the pond,

where farmed tilapia depends on the enhanced natural food produc-

tion. Stocking densities of tilapia fingerlings in this system are gener-

ally low, ranging from 1 to 4 fish/m3.26 The more advanced farming

systems, namely SI and intensive farming technologies are also prac-

ticed, especially in Egypt, Uganda, Ghana and Kenya. SI tilapia farming

in earthen ponds is popular; where tilapia monoculture and polycul-

ture systems are commonly used.6,39

Intensive tilapia culture is practiced in a few African countries

(Egypt, Ghana, Kenya, Nigeria, Malawi, Zambia, Zimbabwe, Cote

d'Ivoire and Uganda), mainly in cages and, to a lesser extent, in tanks,

raceways and recirculating systems.44,45 The aquaculture of Nile tila-

pia in floating cages is widely practiced in Egypt, with a production

amounting to 119,291 mt in 2019, representing 11% of total farmed

tilapia production and 7.3% of total aquaculture output.20 While tila-

pia cage culture is developing in other African countries, it is still a rel-

atively low contributor to total tilapia production.27,45 Small (48 m3)

to medium (108 m3) cages, made of locally available materials, are
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generally used. Commercial, large-scale cages (800–1200 m3) are also

used in Ghana and Zimbabwe.39,46 In 2021 and 2022, multi-million

dollar international investments have been placed for the cage culture

of Nile tilapia in Ghana, Zimbabwe, and Lake Victoria (Uganda and

Kenya) (El-Sayed, 2022, personal survey).

Intensive tank tilapia culture in Africa, especially in Egypt, is also

growing. Most tank tilapia farmers in Egypt use concrete tanks for

raising all-male Nile tilapia, at densities ranging between 25 and

100 fish m�3, depending on the initial stocking size. Tank-raised tilapia

are generally fed with extruded feeds (sinking or floating pellets-

25%–30% crude protein), to grow to about 200–300 g over a

5–7-month period. Tilapia culture in concrete tanks and raceways in

the rest of Africa is very limited and is practiced in only a few coun-

tries, such as Kenya and Zambia.39 The size and shape of tilapia cul-

ture tanks vary depending on the culture objectives. A few other

large-scale commercial tilapia enterprises have been established in

SSA (e.g., Republic of South Africa and Congo) (A.-F.M. El-Sayed,

2018, personal survey). Fish are fed either farm-made pellets or com-

mercial feeds (mostly imported).

5 | THE JOURNEY OF NILE TILAPIA
OUTSIDE AFRICA

During the second half of the 20th Century, Nile tilapia was intro-

duced into many countries outside Africa, especially into Southeast

Asia and the Americas, mainly for aquaculture and fisheries enhance-

ment.4,47 Most introductions were successful; domesticated brood-

stocks and self-sustaining Nile tilapia populations are now established

in many countries.10,48 Consequently, Nile tilapia became an impor-

tant component of inland fisheries in many tropical and subtropical

countries.49–51 Tilapia aquaculture was successful in many countries

and has played a considerable role in the livelihoods, health and econ-

omies of rural societies in these countries.11,49 The following sections

will briefly describe Nile tilapia culture in Asia and the Americas, with

emphasis on major producers.

6 | THE JOURNEY OF NILE TILAPIA
TO ASIA

Mozambique tilapia (O. mossambicus) was introduced in Indonesia in

1939, and to many other Asian countries during the 1950s and

1960s; but it was not widely accepted by the consumers.52 Alterna-

tively, Nile tilapia was introduced from Africa to some Asian countries

in the 1960s and early 1970s, for aquaculture and fisheries enhance-

ment.3,49,52 During the following years, it was widely distributed

throughout the continent. For example, Nile tilapia was introduced to

Japan from Egypt in 1962, and was then introduced to Thailand and

Taiwan in mid-1960s.49 In the 1970s through 1990s, this species was

introduced from Thailand to several Asian countries, including

Bangladesh, India, Lao PDR, Malaysia, Myanmar, Nepal, Philippines,

and Vietnam.49 Several Nile tilapia introductions from unknown ori-

gins have also been reported.4

As a result, Nile tilapia culture has become a popular, well-estab-

lished, and profitable activity in Asian countries, such as Bangladesh,

China, India, Indonesia, Myanmar, Pakistan, Philippines, Sri Lanka,

Thailand, and Vietnam.6 Nile tilapia culture is currently playing an

important role in food security of local rural poor, due to the provision

of cheap, high-quality food both to farmers' households and local mar-

kets and generation of cash incomes.11,53

Nile tilapia has been a subject of continuous genetic improve-

ment for many years in many countries. For example, the World-

Fish Centre (formerly known as the International Centre for

Living Aquatic Resources Management [ICLARM]) initiated a

selective breeding research programme in the Philippines, for

genetic improvement of Nile tilapia more than 30 years ago,

which resulted in the production of the genetically improved

farmed tilapia (GIFT) strain.54 After nine generations, the GIFT

strains showed a 64% cumulative increase in growth over the

original base population. As a result, GIFT has been disseminated

to other Asian countries, including Bangladesh, Indonesia,

Malaysia, and Sri Lanka.11

7 | ROLE OF TILAPIA IN FOOD SECURITY
AND RURAL DEVELOPMENT IN ASIA

Despite the fact that tilapia is not native to Asia, their introductions,

especially in Southeast Asia, have resulted in significant benefits,

including: a) establishment of capture fisheries in certain countries55;

b) an important aquaculture fish in most countries in the region,

appropriate for a wide range of aquaculture operations49,56; c) a

source of affordable animal protein in many countries, improving

nutritional and economic status of local households51; and d) provid-

ing employment and increasing income, and playing a significant role

in rural development and welfare.49 For example, introduced Nile tila-

pia is currently among the most important farmed freshwater fish in

Southern China, especially in Guangdong and Hainan Provinces,

mainly due to favourable geographic location and weather condi-

tions.55,57 However, production is seasonal, and there are distinct

periods of low growth. The fact that the commercial supply is stable is

a testimony to the success in developing an export-oriented sector,

with careful control of inventories.

As a result, Asia is currently the largest producer of farmed tilapia

in the world, with a production of 4,141,976 mt in 2019, contributing

69% to global tilapia production.7 Nile tilapia is the dominant species,

contributing 68% (2,806,295 mt) to total Asian tilapia production and

45% to global tilapia output (Figure 4). Most of this production comes

from small-scale, rural farms.58,59 These family-owned, often contract

farmers, in much of Asia are becoming more competitive to large-

scale, commercially-managed tilapia farms.58,60 Nile tilapia is cultured

mainly in polyculture systems or in integrated systems with other

plant/animal species and separate information and statistical data on
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tilapia production, value, etc., is generally not available in many

countries.43

Most of cultured Nile tilapia in Asia is produced in China,

Indonesia, Bangladesh, Philippines, Thailand, and Vietnam, which are

among the most heavily populated countries in Asia. These six coun-

tries produced over 65% of total farmed tilapia in Asia in 2019.7 Tila-

pia production is directed mostly to domestic consumption; however,

significant amounts are exported to foreign countries, in different

forms.61–63 The following section summarizes the role of tilapia pro-

duction in general, and Nile tilapia in particular, on the livelihood and

rural economies in these countries.

8 | BANGLADESH

Nile tilapia (O. niloticus) (Chitralada strain) was introduced into

Bangladesh from Thailand in 1974, to replace another introduced

species (O. mossambicus), which was not accepted by the farmers.64

Nile tilapia was quickly accepted by the public, and has become the

primary farmed tilapia species, due to their low prices, and low-cost

operation with good financial returns.11,65 The culture of the GIFT

strain has overtaken the Chitralada strain across most of Bangladesh

as a means of increasing tilapia production and economic return,

due to their better performance. Currently, there are more than

400 fish hatcheries in Bangladesh, using the GIFT strains, with a

production of over four billion tilapia fry every year.66 As a result,

tilapia production in Bangladesh has witnessed a sharp increase in

recent years. Until 2008, no official tilapia production from

Bangladesh was reported in Food and Agriculture Organization

(FAO) records; reported production started in 2009, with only

16,237 mt. Since then, Nile tilapia production has grown to reach

350,258 mt in 2019, over only 11 years.7

Nile tilapia culture plays a vital role in rural livelihood in

Bangladesh since the fish are produced exclusively in freshwater

environments in rural areas, through production, direct consumption,

distribution and marketing.53 Tilapia is now the third most important

fish species in Bangladesh, after pangas (Pangasius sp.) and rohu

(Labeo rohita) (Hamilton, 1822).65 Tilapia are used mainly for subsis-

tence and can be an economical source of food fish and additional

income. Small-scale Nile tilapia culture in rural regions is basic,

requiring very low inputs and labour, and can be undertaken by

women and even children.11,67 Tilapia farmers made significant

profit by selling tilapia seeds to other tilapia growers.68,69 In addi-

tion, landless farmers can benefit from tilapia farming by culturing

these fish in common property roadside ditches.70 The integration

of Nile tilapia farming with existing farming systems has also signifi-

cantly improved the livelihoods and reduced poverty of households

in rural and peri-urban areas in Bangladesh.67

9 | CHINA

China is the world's leader in tilapia farming, with a production of

1,641,662 mt in 2019, contributing 20% to total tilapia outputs

(Figure 5b).7 Also, China contributed 27% (1,231,162 mt) to total global

Nile tilapia production. Guangdong, Hainan, Guangxi, Fujian and Yun-

nan are the major tilapia producing provinces in China; contributing

over 95% to national total tilapia production 60. Small-scale and house-

hold-based tilapia farming is widely practiced in these provinces, mak-

ing an important contribution to sustainable rural development,

including food security, employment, income generation, diversifying

livelihoods, utilizing family labour, and empowering women.60

Tilapia production has been expanding at a steady rate, along with

domestic and international markets. Huge governmental support has

been provided to tilapia producers, processors, and traders.71 An

example of this support is the development of tilapia culture in

Guangdong Province, especially around the city of Maoming. Govern-

mental support comprises services and supervision for all tilapia indus-

try stakeholders, including improving farming technologies, well-

trained researchers, strict quality supervision systems, disease

TABLE 1 The contribution of tilapia to total freshwater (FW) fish production in major tilapia producing countries in 2019.7

Production system

Africa Americas Asia

Egypt Brazil Mexico Indonesia Philippines Bangladesh China Thailand Vietnam

Tilapia fisheries (mt) 140,702 22,770 91,143 70,450 41,802 NA NA 19,300 NA

Total FW fisheries output (mt) 229,479 218,932 151,638 480,935 90,421 929,872 1,383,929 129,300 128,120

% tilapia in total FW fisheries output 61.31 10.40 60.11 14.69 46.23 NA NA 14.92 NA

Aquaculture of Nile tilapia output (mt) 1,081,202 323,714 NAa 1,130,000 174,212 350,258 1,231,162 213,872 NA

Total tilapia aquaculture output (mt) 1,081,202 323,806 56,945 1,166,800 279,386 350,258 1,641,662 213,981 263,107

% Nile tilapia in total tilapia output 100 99.97 - 96.84 62.40 100 75.00 99.94 -

Total FW aquaculture output (mt) 1,306,335 527,591 63,017 3,714,500 298,132 2,209,839 25,068,485 383,309 2,950,200

% tilapia in total FW aquaculture output 82.77 61.37 90.36 31.41 93.7 15.85 6.55 55.82 8.92

% tilapia in total FW fish output 70.40 46.42 68.99 29.49 71.9 11.16 6.21 45.51 8.55

aNot Available.
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prevention and treatment, establishing breeding technology, and low

interest financing for contract farming, processing plants and market-

ing support.72 As a result, tilapia culture was rapidly developed in the

Maoming district, so that it has become China's largest tilapia pro-

ducer, and also the main centre for tilapia export processing11,55

(CICCE, China International Cold Chain Equipment and Fresh Logistics

Exhibition) (http://www.coldchain-china.com/index.php?m=content&

c=index&a=show&catid=66&id=68).

In addition to supplying the domestic market with tilapia as a

source of high quality, low-cost animal protein source, huge amounts

of tilapia are exported to international markets.63 The local tilapia fish

market is dominated by farmed Nile tilapia, while the contribution of

tilapia from captured fisheries is limited (Table 1). China has been the

largest tilapia exporter in the world for many years, with a huge com-

petitive advantage over other exporters, due to the low cost of Chi-

nese tilapia. A total amount of 445,844 mt of tilapia (mainly Nile

tilapia) was exported in 2018, contributing 87.4% and 79.2% to Asian

and global tilapia exports, respectively,7 with USA and Africa being

the main markets for Chinese tilapia.

China realized the importance of tilapia as an export commodity

to foreign markets and took strong measures to promote tilapia

exports. The Chinese government established an early warning system

on tilapia trade for assessing and monitoring the status and trends of

tilapia culture industry.71 The system provides the necessary strate-

gies that facilitate sustainable tilapia development in China, using eco-

nomics, management science and information technology to analyse

the status of the tilapia industry, identify the major warning signals

and, in turn, forecast the future trend of the industry.

However, between 2015 and 2020, the China Aquatic Products

Processing and Marketing Association reported that cost of production

has been increasing 5%–7% per year as government hatcheries have

been replaced by private hatcheries, marketing support has decreased,

and labour and regulatory costs have increased.73 Some low-cost loan

programs have also been removed. Farmers have had to absorb most

of these costs as processors have not offered much higher prices.

Many farmers are switching to high-value fish (in marketing terms) or

trying to increase production per hectare with intensification and auto-

matic feeders to reduce labour. The COVID-19 crisis also reduced tila-

pia harvests and domestic and international demand for tilapia

products in 2020 compared to 2019.74 In 2021, increasing demand

and exports were resumed, but still not to the level of 2019.74 Early in

2022, opinion seems to be that Chinese production of tilapia will grow

only slightly with much of the demand coming from value added forms

in domestic markets, with minimal new demand from international

markets at the higher prices demanded by farmers and processors and

higher transport costs affecting global trade.

10 | INDONESIA

In Indonesia, Nile tilapia gradually overtook carps and Mozambique

tilapia to become the dominant freshwater aquaculture species.

Indonesia is currently the second largest tilapia producer in the world

(after China). Farmed tilapia output represents 31.4% of total freshwa-

ter aquaculture production in 2019; with Nile tilapia contributing

96.8% to total tilapia production.

Tilapia culture is practiced mainly in earthen ponds, by small

farmers and households. Raising tilapia in floating cages and rice

paddies is also widely practiced.75 Commercial-scale cage farming of

Nile tilapia in lakes and reservoirs for export has also been growing in

Indonesia (e.g., Regal Springs). Therefore, in addition to the role of

farmed Nile tilapia in local Indonesian markets, exporting tilapia with

value adding to international markets has emerged in recent years. In

2019, Indonesia exported 11,107 mt of tilapia, mainly to the US mar-

ket, in the form of frozen fillet.7 Tilapia seed production and trade has

also become a major source of employment and profit in many rural

regions in Indonesia.76 Tilapia farming is expected to become a major

employer by 2030.77

11 | PHILIPPINES

Tilapia culture (especially GIFT strain) in the Philippines has witnessed

rapid development during the last decades, leading the country to

occupy the sixth position among the top tilapia producers in the

world.7 Nile tilapia is currently one of the most important animal pro-

tein sources in the Philippines, especially in rural areas.78,79 In fact,

tilapia prices are included in the market basket of goods that deter-

mine the cost-of-living government statistics.79 These fish provide

local communities with affordable, high-quality protein, and improve

the nutrition and health status of rural households. Nile tilapia farming

is also considered a cash crop; generating income and employment

opportunities.78

The seeds of the GIFT strain of Nile tilapia are currently used

throughout the country, leading to a sharp increase in tilapia produc-

tion from only 13,214 mt in 1980 to 279,386 mt in 2019, represent-

ing 94% of freshwater aquaculture production of the country.7 The

use of improved seeds significantly improved the livelihood and profit

margins of hatchery operators and fish farmers, created more employ-

ment in rural societies, and empowered women.80

In continuation with the development of the GIFT technology, a

“Strategy for Sustainable Aquaculture for Poverty Reduction in

Philippines” has been adopted and implemented by Philippine Depart-

ment of Agriculture-Bureau of Fisheries and Aquatic Resources (DA-

BFAR), with support of the WorldFish Center.11 The main targets of

this strategy were to increase farm incomes through the use of viable

tilapia production approaches, promote the investment in post-

harvest facilities, and improve the capability of local government units

to foster production and marketing partnerships with BFAR and the

private sector. The role of the Southeast Asian Fisheries Development

Center (SEAFDEC) in tilapia culture development and promotion in

the Philippines, and many other Asian countries is outstanding. The

centre has carried out a number of research projects on the contribu-

tion of small-scale aquaculture to sustainable aquaculture and rural

livelihood development. It also provides training and capacity building,

extension services and technical supports to stakeholders along the
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whole tilapia culture value chain. GET EXCEL tilapia is another new

breed developed by the government of the Philippines by combining

an improved breed of Nile tilapia using within-family selection and a

rotational mating scheme. The Bureau of Fisheries and Aquatic

Resources-National Freshwater Fisheries Technology Centre (BFAR-

NFFTC) has sustained the development of a fast-growing fish known

as GET EXCEL 2002 through the use of genetically improved tilapia.

12 | THAILAND

Thailand is currently the eighth largest world tilapia producer and

sixth largest tilapia producer from aquaculture in Asia, after China,

Indonesia, Bangladesh, the Philippines, and Vietnam, with a produc-

tion of 213,981 mt in 2019.7 Tilapia production comes mostly from

freshwater aquaculture; which represented 56% of total freshwater

aquaculture production in 2019,7 with Nile tilapia and the hybrid red

tilapia representing 99.9% of total farmed tilapia production.7,81 The

hybrid red tilapia (O. niloticus x O. mossambicus) strain developed by

Charoen Phokpand (locally known as TabTim or Tub-Tim) is a popular

variety that is grown in fresh water and brackish water as it has a

higher salinity tolerance.82,83 In some locations it is grown in polycul-

ture systems with shrimp where it is reported to reduce occurrences

and severity of shrimp diseases and provide a firmer texture for the

tilapia flesh.84,85 Tilapia farming is practiced primarily in private/fam-

ily-owned, small to moderate-size ponds (1–3 ha).

Intensive and SI tilapia culture are commonly practiced in

Thailand. Polyculture systems with carps and silver barb are some of

most popular.58,86 Integrated agriculture-aquaculture systems (IAAS)

(fish-chicken/duck-pig, fish-cum-rice) are also very common in

Thailand. Integrated tilapia culture currently plays a significant role in

rural areas, by providing high-quality, cheap protein source, generating

additional income and rehabilitating the soil through better on-farm

nutrient recycling.58,71,86 In Northeast Thailand, tilapia/carp polycul-

ture is profitable, because pond inputs such as rice bran, crop by-

products, broken rice, cattle, and buffalo manure are available, mostly

on-farm, at low cost. Cage culture of tilapia in the extensive canal sys-

tems across Thailand has grown enormously in recent years, providing

economic opportunities for landless farmers.81,87 However, cage-

based culture in rivers faces several challenges including water quality

and disease. More research is needed on farm practices and risks, river

and water management, and the complete commodity value chain.87

13 | VIETNAM

Nile tilapia culture in Vietnam grew at a high rate during the last

decade (2010–2019), to become an important component in the food

security of local rural poor.88,89 Vietnam was ranked seventh among

the top tilapia producers in the world in 2019.7 Tilapia is among the

most important fish species stocked in integrated systems in the

Mekong Delta, second only to carps.90 Nile tilapia is also integrated

with silver barb and common carp in rice fields.91 In addition, the

culture of red hybrid (O. mossambicus x O. niloticus) in floating cages is

widely practiced in the Mekong River, often in cages abandoned by

Pangasius farmers who moved into intensive pond systems.92,93

Most tilapia produced in Vietnam is directed to local consumption.

However, Vietnamese tilapia exports have gained significant attention in

recent years. The exports increased from 0 mt in 2010 to 11,969 mt in

2019,7 mainly in the form of frozen whole fish and frozen fillet. Major

importers include the United States, Colombia, the Netherlands, Turkey,

Italy, Belgium, Spain, Germany, South Korea and Saudi Arabia.61

14 | OTHER ASIAN COUNTRIES

In addition to the above-mentioned Asian countries, Nile tilapia (espe-

cially GIFT) farming is practiced in 16 other Asian countries at varying

intensities. In addition, 14 countries farm other tilapia species, namely,

Mozambique tilapia (O. mossambicus), blue tilapia (O. aureus) Sabaki

tilapia (O. spilurus) or tilapia hybrids. Large amounts of tilapia are also

recorded in the FAO aquaculture statistics under “not elsewhere

included (nei)” tilapia’ (Oreochromis [= Tilapia = Coptodon] spp). Signif-

icant amounts of Nile tilapia are produced in Taiwan, Cambodia,

Myanmar, Sri Lanka, Lao PDR, Saudi Arabia, Malaysia, and Nepal.94–96

Semi-intensive tilapia culture in earthen ponds, intensive systems in

cages and tanks and integrated aquaculture/agriculture systems are all

adopted at varying levels. Nile tilapia culture is gaining increasing

attention in some other Asian countries such as India, Pakistan, Iran,

and the Arabian Gulf Cooperation Council (GCC) countries. Extensive

research is currently underway in these countries to develop sustain-

able tilapia culture industries.

15 | THE JOURNEY OF NILE TILAPIA TO
THE AMERICAS

In the Americas, Mozambique tilapia (O. mossambicus) was first intro-

duced from Malaysia into the Caribbean Island of St. Lucia in 1949.97

These fish were then introduced from St. Lucia to many American

countries during the 1950s and 1960s, mainly for aquaculture, fisher-

ies, mosquito and weed control and fee fishing.98,99 However,

Mozambique tilapia was poorly accepted by the consumers as a food

fish. Nile tilapia (O. niloticus) was then introduced, during the 1960s

and 1970s, as a major candidate for aquaculture and fisheries. Accord-

ing to Fishbase,4 Nile tilapia was introduced from Cote d'Ivoire to

Brazil in 1971 and then to many Latin American countries in the

1970s, including Bolivia, Colombia, Panama, and Peru.4 In North

America and the Caribbean, Nile tilapia was introduced from Africa to

Mexico in 1964, and Puerto Rico and the United States in the

1970s.100 As a result, Nile tilapia has become a major component of

freshwater aquaculture industry in some countries in the Americas.

Seventeen countries, especially in Latin America and the Carib-

bean, now practice Nile tilapia culture, with a production of 436,033

mt in 2019, representing 75% of total farmed tilapia production

(584,202 mt), and 42% of total FW aquaculture output (1,031,434

EL-SAYED AND FITZSIMMONS 13



mt).7 As shown in the following section, Nile tilapia represents 61% of

total freshwater aquaculture in Brazil.7 Moreover, Nile tilapia repre-

sents 92% of total freshwater aquaculture in Costa Rica, and the only

freshwater fish species with data reported to FAO from Honduras.7

Red tilapia hybrids are also farmed in Honduras for local consumption

and export to the US market,101 but data are not available on the pro-

duction of this hybrid. This demonstrates the role Nile tilapia plays in

food security in these countries. Most tilapia production in the Ameri-

cas is directed to domestic markets, with significant value-added tila-

pia exports to the US.24,61,100,102

16 | THE ROLE OF NILE TILAPIA CULTURE
IN BRAZIL

Brazil is the most important Nile tilapia producer in the Americas, with

a production of 323,714 mt in 2019.7 Currently Brazil is ranked 5th

among the top Nile tilapia producers in the world. Several additional

large-scale vertically integrated tilapia projects have been announced

in 2019 and 2021.103,104 If these and other project expansions are all

realized, the production would exceed 500,000 mt by 2025. Different

farming systems are deployed, including SI in earthen ponds, intensive

and integrated practices. Cage culture in lakes, reservoirs and just

below hydroelectric power dams has also gained more popularity in

recent years105,106 contributing over 40% of total aquaculture produc-

tion in Brazil.106

Nile tilapia culture in floating cages in reservoirs in semi-arid

Brazilian regions is supported by state and federal governments as

a means of food security and poverty alleviation.107,108 Reservoirs

that were created by governments, initially for drinking water and

irrigation, now support cage culture which has become an impor-

tant livelihood for resource-poor rural households, which generally

live under harsh environmental conditions and low social develop-

ment.107,108 For example, it has been demonstrated that Nile tila-

pia aquaculture and fisheries activities contribute significantly to

local economy in two semi-arid Brazilian reservoirs, Santa Cruz

and Umari.108 These activities provide over 44 mt of tilapia per

year, for local consumption, in addition to various goods and ser-

vices, with aquaculture generating higher revenues than fisheries.

It has also been reported that cage culture of Nile tilapia in Santa

Cruz reservoir is sustainable.109 The benefit–cost ratio indicated

that total revenue was US$ 1.34 for each US$ 1.00 invested

(i.e., 34% profit).

17 | OTHER AMERICAN COUNTRIES

As a result of the continuous national and international efforts, small-

scale and vertically integrated large-scale production of Nile tilapia in

other American countries including Mexico, Colombia, Honduras,

Ecuador, Costa Rica, El Salvador and Paraguay have recorded signifi-

cant increases.7,102,110,111 These countries produced 105,355 mt of

Nile tilapia in 2019, representing 69% of their total farmed tilapia

production, and contributed 41% to total tilapia production in the

Americas, excluding Brazil.7

In Mexico, net pens, constructed out of local materials, are com-

monly used for raising Nile tilapia by low-income groups or individuals
103. More sophisticated, large-scale production of Nile tilapia in float-

ing cages are also in use, mainly in irrigation reservoirs. Floating or

slow-sinking pelleted feeds are commonly used for feeding caged tila-

pia. In Colombia, Nile tilapia are also produced, mainly in cages, for

export, while red tilapia are produced for the domestic market. Cage

culture is practiced in large hydroelectric power reservoirs, using all-

male Nile tilapia. The caged fish are generally fed with commercial

extruded feed (24%–34% cp). Significant amounts of other tilapia spe-

cies (e.g., O. aureus) and hybrids are produced in other American coun-

tries such as Peru and the United States. Over 90% of tilapia

production in the Americas is directed to domestic consumption.

However, some of these Latin American countries produce high

quality tilapia, which is exported to the United States in the form of

fresh fillets. While China remains the leading Nile tilapia exporter to

the US market, exports from other American countries are increasing.

The rising of production costs in China and the change in government

policy with regard to product subsidies will make Chinese producers

less competitive over time, leaving more room for imports from neigh-

bouring Central and South American countries. As a result, 13 coun-

tries from these regions are currently exporting tilapia and tilapia

products to the US market; with Honduras, Colombia, Costa Rica,

Mexico and Ecuador, respectively, being the largest exporters, con-

tributing 95% of total tilapia export from these regions to US mar-

ket.61 The fresh tilapia market in the United States is dependent

almost exclusively on these regions, since they contributed over

99.5% of total fresh fillet imported to the US market.61 A total of

19,141 mt of tilapia fillet were exported from Colombia, Costa Rica,

Honduras, Ecuador and Mexico to the US market in 2019.7 Domestic

production of tilapia in the United States has been fairly stable during

the last two decades (2000–2019), with an annual production ranging

from 8000 to 10,000 mt.7 This production meets only 8% of the

increasing demand for tilapia in the US market, leading to significant

tilapia imports, as explored in the next section.

Tilapia culture development programs are implemented by local

and international organizations in some countries in Latin America and

the Caribbean, leading to significant economic and social development

in rural societies. For example, a rural development program has been

implemented by FAO in El Salvador to promote polyculture of tilapia

and white-leg shrimp (Penaeus vannamei) (Boone, 1931) as a means of

income generation and food security.112 This practice increased the

average farmers' income by up to 28%. A similar program has been

carried out in Guatemala, also with FAO assistance, for making effi-

cient use of water in Thismuntique village.112 Nile tilapia farming

resulted in a significant improvement in the livelihoods of many

households. Rural households consumed 39.5% of fish production,

while the remaining 60.5% were distributed among the local schools,

leading to improving nutrition among Guatemalan school children. A

benefit/cost analysis showed that profit margin for producers

was 26%.
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18 | CONTRIBUTION OF INTRODUCED
NILE TILAPIA TO FRESHWATER FISHERIES
ENHANCEMENT

In addition to the socioeconomic benefits of farmed Nile tilapia, tilapia

has made a significant contribution to the wild fisheries in countries

to which these fish have been introduced and established. For exam-

ple, Nile tilapia have been introduced in many rivers in south China

and become the most dominant exotic fish species in Guangdong,

Hainan, Guangxi, Fujian and Yunnan provinces.57,113,114 Also, when

Nile tilapia were introduced into East African Lakes (such as lakes

Victoria, Kyoga, and Nabugabo), they became the most important

commercial Tilapiine fish in many of these water bodies.17 Similarly,

Nile tilapia was introduced into Lake Kutubu, Papua New Guinea115

and in just a few years became the most dominant component of the

lake fishery, representing over 50% of total fish yield.116,117 These fish

have also become an important source of animal protein and cash

crop for local communities; exceeding the benefits provided by native

fish.117 In Mexico, many new reservoirs have been stocked with Nile

tilapia fingerlings from government hatcheries to provide a new fish-

ery resource for those fish displaced by the filling of the reservoir.111

Virtually all the wild fisheries catch of tilapia in Mexico come from

these reservoirs and at times have been included in Mexico's aquacul-

ture statistics.

19 | NILE TILAPIA- A FISH FOR THE POOR,
AND THE RICH

It is clear from the above review that farmed Nile tilapia is a fish for

both the poor and the rich in Asia, Africa, and Latin America. These

fish can help feed the world, due to their simple farming techniques,

good quality and affordable prices. The demand for Nile tilapia is

increasing worldwide, especially in developing countries.61,118 Conse-

quently, most tilapia are consumed domestically (91% of total tilapia

production in 2018)7 (Figure 6). It should be emphasized, however,

that tilapia trade data and statistics did not separate tilapia imports

and exports into species; but reported them as ‘total tilapia’. Since

Nile tilapia represents about 75% of total farmed tilapia production, it

is fair to suggest that Nile tilapia represent a major source of locally

consumed and traded tilapia. Tilapia is also in high demand among the

middle-income and high-income communities in many countries.118

Therefore, the global trade of tilapia products has flourished in the last

two decades and is expected to continue.62

The demand for tilapia is also growing in traditionally non-tilapia

producing countries, especially those countries which rely on white-

fish species (e.g., Atlantic cod [Gadus morhua Linnaeus, 1758], whiting

[Merluccius bilinearis Mitchill, 1814], haddock [Melanogrammus aeglefi-

nus Linnaeus, 1758], hake [Urophycis sp.], Asian catfish [Basa] [Panga-

sius sp.] and pollock [Pollachius sp.]),119,120 primarily Europe and the

United States. Tilapia is currently imported by over 135 countries

worldwide. As a result, total tilapia imports doubled during the last

10 years to reach 537,914 mt in 2018 (Figure 7).62 The USA is the

largest tilapia importer in the world, with imports of 189,565 mt in

2018, representing 35% of total tilapia imports, while China is the

largest tilapia exporter; contributing 444,851 mt (80%) to global tilapia

exports.62

In other markets, especially Europe, Africa and the Middle East,

the demand for tilapia is high. For example, over 35 sub-Saharan

African (SSA) countries import tilapia, mostly frozen fish, mainly from

China.61 Tilapia imports in SSA increased dramatically from a couple

100 mt in 2010 to 132,475 mt, representing 25% of global tilapia

imports in 2018 63 in just 9 years (2010–2018) (Figure 8).
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Tilapia imports to 36 European countries, from different global

exporters, have also increased during the last decade from 20,520 mt

in 2010 to 45,457 mt in 2019.62 This increase may appear limited on

the global scale; however, in a continent where tilapia had no market

until a few decades ago, consuming over 45,000 mt a year is impres-

sive. This suggests European tilapia demand will expand further. The

largest importers of tilapia in Europe are Belgium, France, Germany,

Italy, the Netherlands, Poland, Russian Federation, Spain, and the

United Kingdom (Table 2). They accounted for about 90% of the total

tilapia imports during 2015–2019.

20 | ADVERSE IMPACTS OF NILE TILAPIA
INTRODUCTIONS

Despite the above-mentioned benefits of Nile tilapia introductions,

tilapia may pose adverse ecological and socioeconomic impacts in eco-

systems into which they are introduced.48,98,121,122 These impacts

include: habitat degradation and loss, disruption of native biota, reduc-

tion or eradication of native species, reduction in capture fisheries

yield, competition for food and breeding sites with native species,

hybridization with native species of tilapia, and spread of aquatic dis-

eases. For example, the introduction of Nile tilapia to the Pearl River in

China led to a significant reduction in the relative densities and the

body sizes of the native fish; thereby impacting the overall ecosystem

function.122 These changes suggest that Nile tilapia compete with

native species for food resources and space,48,98 and can seriously alter

the trophic position and food web of native species.123,124 Similarly,

when Nile tilapia were introduced into Tangxi Reservoir (South China),

they became dominant over time, leading to a reduction in the catch of

other introduced fish, especially bighead carp.125 The introduction of

Nile tilapia in the Halali Reservoir (India) has also significantly reduced

the catch per unit effort (CPUE) of native fish species.126 Introduced

Nile tilapia into Igarapé Fortaleza hydrographic basin (Amazonas River)

have also caused significant impacts on native cichlids,99 presumably

due to the competition for food, preying on the eggs and larvae of

native cichlids, and occupation of most spawning cites, leaving little

room for the spawning of native species.98,127 Introduced Nile tilapia

also have the potential to transmit diseases into recipient aquatic envi-

ronments, as demonstrated by McCrary, Murphy, Stauffer and Hen-

drix128 in Lake Nicaragua (Central America). These authors reported

that several native cichlid species were affected by an outbreak of

trematodes, which was linked to the dominance of both Nile tilapia

and Mozambique tilapia in the lake system.

The capability of introduced tilapia to interbreed with

natural populations of their closely related native species is

extremely high, which may cause genetic impacts and reduce the pop-

ulation size of these native populations.48 The introgression between

Nile tilapia and native Oreochromis spp. in Lakes Victoria and Kyoga

resulted in morphological changes and disappearance of native spe-

cies.129 Similar effects have been recorded in Limpopo River (South

Africa),48 and the Mindu Reservoir and Kidatu Rufiji river system (cen-

tral Tanzania),130,131 where introduced Nile tilapia led to genetic and

environmental impacts, including extinction risk of the indigenous

species through hybridization, competition exclusion and loss of

genetic integrity.

The introduction of tilapia into new freshwater ecosystems

may also adversely affect the income of the resource users and

other local communities.10 For example, the increase in Nile tilapia

abundance in rivers of Guangdong Province (China) reduced the

incomes of local fishers55,57,113; as the contribution of tilapia

increased, the CPUE of native species decreased.112 The market

prices of tilapia are also lower than that of native species, which

are sold at much higher prices, because of their preferences by

local consumers.57,113 Consequently, fishers' income decreased with

increasing the proportion of Nile tilapia in the catch.113 The spread

of tilapia can also adversely affect the value of other species, as

they compete for food, which in turn leads to growth retardation

and low production; thereby contributing to further decreases in

fishers' income.55,57

TABLE 2 Major tilapia importers in Europe, and amounts imported (mt) in 2010 and 2015–2019.62

2010 2015 2016 2017 2018 2019

Belgium 1758 3965 3556 2633 3180 3896

France 769 4649 3839 4418 3555 4800

Germany 2638 3191 2695 2822 2702 2809

Italy 688 2646 2261 2065 2303 2565

Netherlands 2219 6469 5475 5910 6271 7314

Poland 6853 3836 3162 4706 3674 4274

Russian Federation - 8127 6630 9944 8996 6702

Spain 3424 5498 4933 4856 3919 4408

United Kingdom 477 3622 3488 3693 2791 3852

Other countries 1703 4938 4976 5054 5177 4837

Total 18,826 42,003 36,039 41,047 37,391 40,620

Total Europe 20,529 46,941 41,015 46,101 42,568 45,457
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Similar impacts have also been reported in Brazil,98,99 South

Africa,18 and Zambia,132 where the spread of Nile tilapia seriously

impacted the value of other species, due to the competition for food

and reduction in growth rates of other fish. Hybridization between

introduced Nile tilapia and native tilapias (three spot tilapia

O. andersonii and green head tilapia O. macrochir) in Kafue River

(Zambia) resulted in a significant increase in the CPUE of Nile tilapia,

whereas the CPUE of native tilapias showed a continuous

decrease.132 This situation poses potential threats to native fish pro-

duction, which provides local communities with self-sufficiency in

food, employment generation, and economic profitability.

Although the potential for deleterious effects caused by tilapia

introductions must be recognized, tilapia are hardy and able to thrive

in some disturbed and polluted environments in which native fish are

ill adapted. Many reports of tilapia invasions fail to describe the alter-

ations in water quality, climate change, and placement of dams chang-

ing water temperatures and flow rates, or co-introduction of more

predatory non-native species that accompanied the introduction of

tilapia into a particular watershed.10,103,104,133,134 There are also

reports that in relatively pristine ecosystems, Nile tilapia introductions

did not lead to deleterious effects and that the fish did not even

hybridize with indigenous cichlids.134

21 | MISMANAGEMENT OF TILAPIA
INTRODUCTIONS

Tilapia introductions for insect and weed control, aquaculture and

fisheries have occurred in many countries. It is almost impossible to

guarantee safe confinement of these fish; their escape from irrigation

and aquaculture facilities to natural aquatic ecosystems is inevitable.

Therefore, appropriate management measures should be adopted to

control tilapia introductions and mitigate any adverse ecological and

socioeconomic impacts. In this regard, management strategies vary

from one country to another depending on the objectives of tilapia

introductions. Some countries adopt protective measures to control

tilapia introductions to protect and sustain their native aquatic habi-

tats.107 For example, the United States has legalized unlimited catch

of non-native fish species, as a means of controlling their spread and

reducing their stocks.135 Obligatory best management practices in

aquaculture were implemented in some states (e.g., Florida) to control

the stocks of these non-native species through preventing their

escape.136,137

On the contrary, some other countries encourage tilapia introduc-

tions for aquaculture and natural fisheries enhancement, regardless of

the negative effects they may cause.107,138 They believe that feeding

the public and maintaining better livelihoods of local communities are

more important than the conservation of aquatic biodiversity. Current

Brazilian federal legislation, for instance, encourages naturalization of

non-native fish species, including tilapia, and allows the aquaculture,

transportation and trade of these non-native species.139,140 Aquacul-

ture in China also depends increasingly on introduced species, includ-

ing tilapia. Although such introductions can be considered assaults on

already damaged and compromised aquatic ecosystems, government

policy supports such introductions, and substantial domestic market

and export fish market sectors have been built around these intro-

duced species.71,72

22 | CONCLUSION

This review indicated that while Nile tilapia are endemic to Africa,

they have been introduced into many countries worldwide, mainly for

aquaculture and fisheries purposes. As a result, aquaculture of Nile

tilapia is currently practiced in more than 80 countries and is now

ranked third among the top farmed fish species, behind grass carp and

silver carp. They make a significant contribution to the livelihoods and

economies of rural societies in these countries. In some Asian coun-

tries, such as China, India, Bangladesh, Vietnam, and Myanmar, intro-

duced Mozambique tilapia (O. mossambicus) has generally not been

accepted by consumers. In contrast, the interest in Nile tilapia culture

(especially monosex Nile tilapia and the GIFT strain) in those countries

is increasing. Nile tilapia are also commercially important in Central

and South American countries, especially Mexico, Costa Rica,

Honduras, Guatemala, Ecuador, Brazil, and Colombia. The Nile tilapia

journey will likely continue to further destinations. The adaptability of

Nile tilapia to a wide range of environmental conditions, and their

suitability for different farming systems will likely accelerate their

spread and distribution worldwide.

Global tilapia markets and trade are expanding, and are expected to

continue much further. It is hoped that the success stories of the major

Nile tilapia producers will motivate Nile tilapia culture in other countries

that intend to introduce this fish for aquaculture purposes. However,

countries which introduced, or intend to introduce, Nile tilapia should

adopt the necessary policies that support the conservation of native

ecosystems and local biodiversity and at the same time, promote tilapia

culture and improve the livelihoods of aquatic resource users.
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Abstract

Modern tilapia farming with low use of water aims, as in circular bioeconomy, to

reduce inputs and fully reuse waste and effluents, closing flows or links of economic

and ecological resources and decentralizing production systems (local production and

local consumption). Concerns over diseases, market demand for a clean, sustainable

and ecologically correct aquaculture, with greater and more efficient controls,

increased predictability and repeatability of activities, are leading to a series of struc-

tural changes in the reuse of water and effluents through various closed recirculation

systems with the reuse of waste as nutrients. In recent decades, one of the most

important innovations and trends of tilapia culture is towards circular bioeconomy,

characterized in this review by several recirculation systems, such as biofloc technol-

ogy (BFT), recirculation aquaculture systems (RASs), bio-RAS, partitioned aquaculture

systems (PASs with split ponds, SPs; and in pond recirculation system, IPRS) and inte-

grated multitrophic aquaculture (IMTA). The future of tilapia culture meshes with

urban agriculture and waste fermentation, where low-demand water recirculation

systems will be the protagonists in the disruption of industries in five main sectors

(materials, energy, information, transport and food/health), that still today focus on

extraction, into a more sustainable local model.

K E YWORD S

bioflocs, bio-RAS, circular bioeconomy, culture systems, recirculation, tilapia, zero effluents

1 | INTRODUCTION

Resource flows in a circular economy can help reduce the use of

increasingly scarce resources, reduce waste production and limit energy

consumption. In a world with a growing demand for clean water and

healthy food, the economy in a linear model is no longer adequate,

since modern societies cannot build a future under a ‘take-do-discard’
model. The movement towards environmentally sustainable systems is

necessary through circular and life cycle thinking to preserve our finite

natural resources.1–4 Water, in particular as a valuable resource, must

be treated with respect and managed with methods to reuse and con-

serve it, putting into action the concepts of circular bioeconomy.
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2 | CIRCULAR BIOECONOMY WITHOUT
EFFLUENTS

The circular economy can be defined as a production strategy that

aims to reduce inputs, as well as waste production, closing economic

and ecological resource flows or links, decentralizing production sys-

tems (local production and consumption) and questioning tools for

measuring economic performance and the role of money and finance

in building natural and social economic capital.3 The analysis of physi-

cal resource flows is of two main types: (1) linear, where biological

wastes (nutrients) are expected to be reintroduced into the biosphere

and (2) circular, with biological wastes (nutrients) being recirculated

and used again in the production system, not returning to the bio-

sphere. Traditional aquaculture generates wastes deposited directly

into nature, providing high levels of nitrogen and phosphorus to the

natural environment. These represent a threat to human health, the

welfare of fish and shrimp and the overall environment.1 The frequent

diseases that occur in aquaculture and the growing demand of the

population for clean, sustainable aquafarming that is environmentally

friendly are leading to the development of alternative production

models with greater and more efficient controls, increase in predict-

ability and repeatability of activities. These include a series of struc-

tural changes in aquaculture activity that consider the treatment of

water and waste through closed land-based recirculation aquaculture

system (RASs) and the reuse of wastes as nutrients. The partial or

total reuse of water from aquatic crops has generated a series of land-

based RAS, undoubtedly the most important innovation in aquacul-

ture in recent decades when integrated with complementary systems

forming a donor and receiver system.

Recirculation is based on the water movement through various

compartments, tanks or ponds of different sizes. The water passes

from one compartment to another and is partially or totally reused,

depending on the intensity of the culture, ranging from more exten-

sive/semi-intensive ponds to intensive/super-intensive tanks. The

more intensive systems make use of sophisticated biofilters, compart-

ments with biofilters, mechanical filters, geo-membranes/liners and

various treatment methods, using any species grown in conventional

aquaculture such as fish, crustaceans, molluscs, algae, and so

on. Recirculation technology is widely used today in tropical fish

farms, primarily for biosecurity reasons. RAS is showing enormous

growth in marine shrimp, bivalve and seaweed farming, especially in

the initial phases (hatchery and nursery). There is also enormous

investment in recirculating water in salmon farming, but at low tem-

peratures filter microorganisms are not very efficient, which greatly

increases the costs of biofilters and additional structures.

Low water demand systems, either in isolated or recirculating

compartments with intense aeration and high load of omnivorous tila-

pia or shrimp (more than 8 units/m3 for fish and 100 units/m3 for

shrimp) end up spontaneously generating bioflocs.5 In a single com-

partment, for example, a pond or tank, bioflocs are known as BFT

(from biofloc technology). By recirculating the water in more compart-

ments, this system can be called bio-RAS, a combination of the BFTs

with the RAS, a term originally coined by Prof. Anders Kiessling back

in 2015.6 The primary objective is to improve the biosecurity of crops

in places where water is scarce and/or land is expensive since the

minimum exchange of water reduces the incidence of diseases.7 The

recirculation and reuse of water is the most classic application of the

circular economy in aquaculture. These techniques are deployed in

several aquaculture systems with possibilities of ‘zero effluents’
(Figure 1), whose focus is to maintain stable water quality and levels,

suitable through the recycling of nitrogenous and carbon components,

carried out mainly by specific bacteria, which are stimulated by the

balance/ratio of carbon and nitrogen (C:N) in the water. The structure

of this review is based on a publication prepared by the first author

and collaborators for EMBRAPA/Brazil.8

3 | RECIRCULATION AQUACULTURE
SYSTEMS

Recirculation aquaculture system technology has been developed over

the last five decades, and it is becoming more popular and accessible as

infrastructure and equipment are proportionally decreasing in price,

while fish, labour and especially feed are increasingly expensive. Apart

from that, RAS are being well applied in grow-out systems that are

extensive in nature (in order to save water, increase yield and lower

production costs) and intensive systems (on high-cost property, closer

to urban markets and where water is expensive).8 The main objectives

of a more extensive RAS in ponds are to conserve water and generate

less effluent that could damage the surrounding environment. To

achieve this, an increased technology level is needed, by default

increasing productivity. Despite the productive and environmental

advantages, the reuse and maintenance of water quality, especially in

more intensive RAS, will depend on a series of structures and equip-

ment that are still relatively expensive, such as: settlers, mechanical fil-

ters, biological filters, ultraviolet lamps (disinfection), water pumps, air

blowers, power generator, emergency aeration, ozone generation, and

so on. (Figure 2). In addition to the high investments in building struc-

tures and equipment, there are high operating costs such as electricity,

maintenance and depreciation. This is in part compensated for by the

flexibility to locate production facilities near large markets, complete

and convenient harvesting, quick and efficient disease control.8 RAS

have been widely used for hatcheries and nurseries for both freshwater

and marine aquaculture. In recent years, large scale production with

RAS for grow-out to harvest size have come into commercial success.

Unfortunately, there were a significant number of failures of RAS com-

mercial operations before the more recent successes.

4 | BIOFLOC SYSTEMS

Bioflocs are usually formed in isolated compartments (tanks or

ponds),8 but, unlike high technology water purification used in RAS,

water recycling occurs directly in the fish production unit, reducing

the size and the cost of mechanical and biological pipes, pumps and

filtration systems. The process is somewhat similar to an activated

ZIMMERMANN ET AL. 23



sludge system used for wastewater treatment. The bioflocs are com-

posed of assemblages of heterotrophic, nitrifying and cyano-bacteria

as well as various algae and fungi. Therefore, compared with the more

intensive RAS, it does not require filtration structures and can simply

consist of tanks and aerators/pumps (Figure 3). The BFT can be

inserted into a recirculation system (optional), with settler (optional)

to control excess solids, drainage system (optional), blower and/or

water pump and power generators. The structural and operational

advantages of a BFT allow cultivation with high loads of suspended

solids in the water, characteristics that affect different species pro-

duced in the RAS, but do not impact omnivorous filter-feeding species

such as tilapia and marine shrimp, two of the most used species in

BFTs around the world.8 The ability to work with a relatively high

solids load makes the BFT less dependent on mechanical filters.6 It

also abolishes the need for either partial water exchange or a second-

ary denitrification system typical of a highly intensive RAS. Some

microorganisms that grow in the bioflocs of the culture water, such as

nitrifying bacteria, transform toxic nitrogenous compounds (mainly

ammonia and nitrite) to nitrate, also eliminating the need for an exter-

nal biofilter, mandatory in recirculation systems (RAS). In essence,

toxic ammonium is assimilated to organic N by heterotrophic bacteria

and algal biomass when carbohydrate is added into culture water,9

and thereby also function as an additional feed source for the farmed

fish/shrimp. Such systems require constant and reliable aeration and

physical water movement equipment in order to keep sediments sus-

pended, plenty of available dissolved oxygen and avoid anaerobic

sludge accumulation. In addition, careful monitoring and manipulation

of dissolved oxygen, alkalinity, pH and C:N ratio is required.5

F IGURE 1 Characterization of the main aquaculture systems with low demand for recirculating water without effluents and their various
derivations.

F IGURE 2 High technology and clear water recirculation aquaculture system for Tilapia (www.globalfish.pl).
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5 | BIO-RAS

Bio-RAS is the combination of RAS with BFT (a recirculation system

with bioflocs in more than one compartment).8 The advantages of

BFT over classical RAS became apparent three decades ago, when dif-

ferent systems based on bioflocs were developed. Currently, there is

a trend to merge these two low water demand systems to optimize

crops with a reduction in production costs (especially food and

electricity). The bio-RAS strategy uses the best and most efficient of

each of the previous technologies, with cost reduction combined with

the maximization of technological, zootechnical and animal welfare

efficiency with the sustainability of the crops.6 Bio-RAS has been used

in the last decade in a number of low-cost aquaculture projects

(Figure 4). In bio-RAS, bioflocs can form in part of one or more com-

partments, or of the entire circulating water (in this case, it requires

some adaptations in the filtration system or its exclusion).8 In most

F IGURE 3 BFT (system without water exchange) in a greenhouse, with constant temperature throughout the year, in the sub-tropics of
Brazil. Photo: Rafael Jung (2002).

F IGURE 4 Bio-RAS with six greenhouse fattening reactors, recirculation tank (bottom) and denitrifying tank or sludge concentration/reuse
tank (top left). Photo: Sergio Zimmermann (2003).
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cases, it is part of the sludge reuse system of a simplified RAS, without

effluents (Figure 5 shows a simplified drawing of the CW- and bio-

RAS systems used by Kiessling and co-workers at AnGiang University

in Vietnam).6

6 | PARTITIONED AQUACULTURE
SYSTEMS

The partitioned aquaculture system (PAS) was developed in the 1990s

in the southern United States to cultivate American channel catfish

with recirculation of wastewater. The objective is producing zero

effluents,11 where fish are confined in high densities in concrete tanks

(raceways) or smaller channels/ponds, around 5% of the total area for

the tank and 95% of the pond or lake for recirculation and reuse of

water. The fish residues from its catabolism circulate and recycle

through the water body where there are high concentrations of algae

(fertilized by these residues), similar to a domestic wastewater treat-

ment, which increases or even doubles the support capacity of the

system. By doubling the rate of photosynthesis of algae in these gen-

erally isolated baffles and ponds, the rate of removal of nitrogenous,

phosphorous and other waste products doubles, thus doubling the

potential maximum feeding rate and the consequent carrying capacity

to sustain the system and the fish and shrimp production.

PAS represents a high degree of intensification for previously

extensive ponds and reservoirs where phytoplankton predominate.11

In its various forms, productions in the range of 10–50 tons of tilapia

per hectare of surface or 10,000 m3 of total volume are obtainable. Its

two main variations are increasingly common around the world:

(a) IPRS for in pond raceway system with a pond/reservoir/lake hold-

ing cages, raceways or containers (Figure 6a–f) and (b) SPs for split

ponds (Figure 7).

IPRS confine omnivorous fish at high densities in cages or race-

ways (channels with high water flow) installed along the inside periph-

ery of an existing lake or pond. The water recirculates through the

large bodies of water that assimilate the waste from the small, culti-

vated areas, facilitating the feeding, sampling, protection and harvest

of the fish.11 Although IPRS was originally designed for channel cat-

fish aquaculture in the southern United States, its use expanded and

became more popular in the farming of carp, tilapia and other omnivo-

rous fish in China, India, Brazil, Colombia, Thailand and several other

countries.8

The SP's also originated in the southern United States, taking

advantage of the huge dams with reservoirs available as a starting

point for the construction of the system. SPs are built by dividing a

fish pond into two unequal sections by building a central partition or

dike, with water circulating between the two sections with high-vol-

ume, low-head pumps. Compared with the IPRS, SPs usually have a

relatively smaller recirculation basin (around 80%–85% of the total

area) and a larger fish retention basin (15%–20% compared with 5%

of the IPRS). In both systems, farmers are increasingly using pumps

connected to solar collectors to reduce electricity and electrical instal-

lation costs.11

Some PAS adopt techniques derived from bio-RAS, with early

research and scientific publications using bioflocs as biological water

treatment in large-scale commercial systems for intensive fish and

F IGURE 5 A simplified drawing of the CW- and bio-RAS systems used by Kiessling and co-workers6 at AnGiang University in Vietnam.
Extracted from Reference 10.
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shrimp production. At higher densities, PAS change rapidly to a pre-

dominance of bioflocs and require more and more aeration, water

movement and the addition of symbiotic supplements (pre +-

probiotics) as summarized in Figure 1: Bokashi (organic fertilizer/bior-

emediator), fermentative Premix (FermentAqua®), EM (Enhanced

Microorganisms) or mixotrophic products (BlueAqua's Mixotrophic

System®), and so on. These have been developed into a series of sys-

tems, among which are aquamimicry heterotrophic, autotrophic,

photo-autotrophic and the active suspension system, various tech-

niques which use concepts generated in the RAS and BFT systems

mixed with bio-RAS.5,6,8

7 | INTEGRATED MULTITROPHIC
AQUACULTURE (AQUAPONICS AND FERTI-
IRRIGATION)

In integrated multitrophic aquaculture system (IMTA), two or more

complementary species with different trophic levels or niches are

farmed. For example, tilapia with shrimp and seaweeds in brackish

water. Another example would be tilapia, silver carp and water lotus

in freshwater. In some cases, fish and terrestrial animals and/or

hydroponics (vegetables) could be in the same production system in

recirculation with single or multiple loops. The integration between

aquatic and terrestrial species (such as plants, pigs, poultry, among

others) is maintained with multiple relationships between resources

(such as space, water, food or nutrients). Generally, these are shared

between different species, thus offering greater potential in terms of

technical and economic efficiency and redundancy.12 In the past, the

production of more than one aquatic species in the same culture unit,

either in earthen ponds or in cages, was called polyculture, while

aquatic and terrestrial organisms that were produced together, was

called integrated aquaculture (IA). In IA, the waste output from one

subsystem generally becomes an input for another subsystem, result-

ing in greater efficiency in the production of aquatic organisms.

IMTA combines the cultivation of fed species

(e.g., tilapia + shrimp) with extractive (species, grazers and filter

feeders) feeding on organic matter (echinoderms, molluscs, especially

bivalves, micro-crustaceans and worms, other herbivorous fish) and

inorganic extracting species (such as phytoplankton and marine

macroalgae or hydroponic vegetables). The goal is to match in the

right proportions to create balanced systems that generate environ-

mental and economic sustainability and social acceptability. The feed-

ing costs of the IMTA systems are thus distributed between two or

F IGURE 6 Raceways on the banks of a pond or lake (IPRS), floating cages inside a reservoir, IPRS in a typical RAS pond farm and Tilapia being
cultured in containers on the banks of an earthen pond used as a purification system. Photos: Sergio Zimmermann and Chinese Medias (2021).
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F IGURE 7 Aerial view of split-ponds or split ponds/weirs (partitioned) from the Google Earth program (accessed in August 2020). Photo:
Sergio Zimmermann.

F IGURE 8 Uncoupled aquaponics system, tilapia juveniles integrated to the production of mini-tomatoes in ferti-irrigation and vegetables in
hydroponic profiles. Collection and storage of rainwater (left outside), in the extreme south of Brazil (sub-tropics). Photos: Fagner Tafarel Campos
de Sá (2021).

F IGURE 9 Integrating IPRS with rice production in China (2020). Photo: Chinese Medias (2021).
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more commercial crops where more nutrients can be captured and

sequestered, avoiding the loss of valuable inputs. Therefore, IMTA

can produce more than one type of edible crop from feed ingredients

more efficiently than other conventional production systems. For

example, in an integrated system of tilapia with shrimp and hydropon-

ics (aquaponics) with fertigation, the metabolites produced by aquatic

organisms serve as nutrients for each other and for plants

(Figure 6c–e). In addition, the sludge from RAS and bio-RAS systems

can be reused as pre-digested ingredients (highly digestible) in rations

for aquatic and terrestrial animals (Figure 8a–c).

Aquaponics is one of the classic examples of IMTA, an interaction

between hydroponics and aquaculture, where one crop benefits from

the by-products of another, making the respective ecological ‘bottle-
necks’ of both systems become strengths, considerably reducing the

need for inputs, nutrients and effluent production, unlike when the

same systems are run individually.13 Aquaponics systems can be

important tools to enable economic temperature control, disease pre-

vention, predator control and the full use of the most expensive

inputs (rations) and should also be encouraged for their sustainability

and biosecurity characteristics (Figures 9 and 10).14

8 | COMPARING THE SYSTEMS

In 2021, the Brazilian Ministry of Agriculture published a booklet with

the main characteristics and production costs of several tilapia inten-

sive rearing systems,15 such as BFT, bio-RAS, ponds and cages from

the States of São Paulo and Paraná (subtropical climate). The authors

stressed that the comparison between technologies should go beyond

observation of the production costs per ton of tilapia. It is very impor-

tant to evaluate the Capital Expenditure/Operational Expenditure

(CAPEX/OPEX), and especially the increasing land costs (not consid-

ered in the study, thus favouring the more extensive systems such as

IPRS and SP), as well as water volumes and the annual production

potential of each technology. This last feature altered the financial

F IGURE 10 Tilapia and rice culture in China (2021). Photo:
Chinese Medias (2021).
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result and may favour one or another technology. This is the case of

BFT and bio-RAS, which could perform 2.6–3 cycles per year, with

the financial differential of low water requirement production technol-

ogies, where management efficiency should reach high levels to the

systems to be viable, as well as the appeal to be environmentally

sound. This study was later published in more detail with a short eco-

nomic analysis,16 and it is summarized together with other references

characterizing the systems in Table 1.

It is very challenging to summarize quantitative data on nutrient

flows or balances when describing most extensive systems such as

RAS in ponds or PAS (SP or IPRS).18 Table 1 summarizes information

on how the dimensions of the grow-out and ‘purifying/receiving’
(recirculation) water bodies (tank, pond or lake) are applied worldwide

in order to generate a better understanding of how each of these

main five systems are dimensioned, functioning and yielding. The

ranges presented were collected in commercial structures in Brazil,

Peru, Ecuador, Colombia, Mexico, USA, Thailand, Vietnam and

China.17,19

9 | CONCLUSIONS

Tilapia culture will evolve along with the trends of food production

that are increasingly urban, ‘on the roofs of supermarkets’ and in

urban industry facilities,20 where aquaponics and water saving/

recirculation systems will be the producers in these new forms of Cir-

cular Economy.8,20 During the COVID-19 years and more recently the

war in Ukraine, it is clear the increasing disruptions of the centralized

extractive industries that today sustain the global economy in the five

main sectors (materials, energy, information, transport and food/

health), are evolving into a more local model. It is suggested that pro-

duction and process costs could decrease by an order of magnitude of

10 times by 2030, that is, we will use 90% less natural resources and

produce 10 times less waste.20

Modern tilapia culture systems with resources flowing in a circular

economy will reduce the use of increasingly scarce resources such as

water, energy, labour and especially feed ingredients, minimizing waste

production. Novel pre-digested dough-like feed (FermentAqua®), pro-

duced from inexpensive by-products or diet ingredients are replacing

traditional diets with low cost and improvements in productivity.19 The

convergence of precision fermentation and water circularity is enabling

rapidly falling costs.20 The recirculation systems characterized in this

review include: BFT, RAS, bio-RAS, PAS with SPs and IPRS and IMTA.

Each system has different characteristics in term of production costs,

carrying capacities, FCR, cycles per year, CAPEX/OPEX, financial char-

acteristics, water requirements, production technologies and can be

chosen based on specific situations such as land prices, market

demands/distance, water availability and several other parameters.
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Abstract

Aquatic foods, particularly fish, are recognized as a unique source of essential fatty

acids, micronutrients and protein many diets lack, especially in poor and vulnerable

communities. Tilapia (Oreochromis sp.) fillets typically represent 30%–33% of the fish,

leaving around 70% of the fish unused for human consumption. These nutrient-rich

by-products can be converted into food and other products with medical, pharma-

ceutical and packaging applications. Heads and backbones of processed tilapias, and

undersized tilapia can be used in the development or fortification of food products

such as fish cakes, sausages and bread. Tilapia skin can be processed into leather for

clothing and leather artefacts. Gelatin from fish skin can be developed into edible

films and coating while collagen from fish scales and bones has good application in

the cosmetic and pharmaceutical fields. The viscera can be converted into biodiesel

or silage and hydrolysates, which are good sources of peptides and enzymes. To

ensure 100% utilization, any remaining parts of the fish not used for food, can be

transformed into products for animal consumption or for fertilizer. Thus, the conver-

sion of by-products from tilapia processing into value-added products can contribute

to improve human nutrition and better livelihood opportunities. However, adopting

new technologies in value addition will require additional operational costs for

acquiring new equipment and skills, a proven market demand for the products and an

enabling policy environment.

K E YWORD S

by-products, livelihood, nutrition, processing, tilapia, value-addition

1 | INTRODUCTION

Human population growth, rising incomes and shifts to healthy diets

will increase global demand for nutritious foods in the next decades.1

Global food demand is rising, and the effects of limited opportunity to

expand land-based production have posed negative impacts on the

environment and human health. Fish and other aquatic foods are

among the world's most traded food items, with a total export value

of USD 164 billion globally in 2018.2 Globally, more than 1 billion

people rely on fish for consumption and livelihoods. Aquatic foods are

considered nutritionally diverse and have been recognized as particu-

larly nutritious, contributing essential fatty acids, micronutrients, such

as iron and zinc, calcium and vitamin A, as well as protein.

Tilapia (Oreochromis sp.) production has great potential to contrib-

ute to income generation, poverty alleviation, enhanced trade, eco-

nomic benefits and the supply of protein and essential nutrients. In
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2020, global tilapia production was estimated at almost 7 million

tonnes.3 Tilapia is mostly sourced from aquaculture, which accounts

for 6.2 million tonnes worth USD 12 billion annually. The vast major-

ity of tilapia production is destined for domestic consumption, with

only 507,000 tonnes traded internationally. This trade has an annual

value of USD 1.392 billion.4

In terms of the consumer market, the consumption of tilapia in the

United States, the second most important consumer market for tilapia,

remained relatively stable throughout the pandemic.4 Tilapia, the fourth

most popular fish species among US consumers, has increased in retail

sales as house-bound consumers sought out easy-to-prepare, versatile

aquatic food options. Tilapia imports in 2020 increased 10% in terms of

volume and 2.3% in value compared with 2019, where frozen tilapia fillets

made up most of these imports, accounting for 61% of value.5 While the

United States remains by far the most import market, its imports of tilapia

have fallen significantly since their peak in 2014. Prior to the pandemic,

tilapia imports fell by 12% in value terms between 2018 and 2019, 7% in

volume. US tilapia imports account for 48% of the value of global trade,

followed by Mexico (26%, USD 185 million), Israel (11%, USD 58 million),

Côte d'Ivoire (11%, 52 million) and Canada (10%, USD 40 million).

Processing tilapia for international markets is a common form of

value addition, with fillets making up 75% of the value of tilapia trade

(55% of volume). Fish processing includes bleeding, gutting, beheading,

filleting, skinning and trimming before fillets are bought by consumers.

The fillet yield in industrial processing is species-dependent and leads

to a significant removal of parts of the fish, such as heads, bones, guts

or by-products.6,7 The tilapia fillet industry produces a large amount of

processing by-products estimated at 60%–70% of the total weight

comprising head, carcass, viscera, fins, skin and scales.8–10

By-products of fish were traditionally considered to be of low

value and as a waste product contributing to environmental problems.

The ever-increasing production of these processing by-products with-

out utilization was resulting in environmental pollution.11–14 Inappro-

priate waste management causes environmental pollution leading to

breeding grounds for insects and vermin, thus, posing significant public

health risks. Consequently, waste management is coming under strict

regulations due to environmental issues and has become an increased

cost burden for the seafood industry.12 However, by-products of fish

processing provide a good source of macro- and micronutrients and

can be converted into a variety of products including fishmeal and oil,

fish hydrolysates, fish collagen, fish sauce, fish biodiesel and fish

leather, but also nutritious food products. The utilization of by-

products has several environmental and economic benefits as well as

the possibilities to produce more food from limited resources.6,13

Large-scale processing companies may process fish by-products

and convert them into value-added products such as fish oil and fish-

meal. However, challenges such as the unavailability of waste disposal

facilities and programmes for small-scale fish processors and fishing

communities often result in missed opportunities to utilize these

by-products for potential economic gain to local communities. The

transformation of by-products into commercial products must be

market-driven or must have a realistic possibility of being sold with an

economic gain within a reasonable time period.6,13

This review summarizes the importance of fish, and particularly

tilapia, as sources of important micro- and macronutrients. Impor-

tantly, it will highlight existing studies and practices on how to fully

utilize the whole fish by transforming tilapia processing by-products

into nutritious fish products for human consumption. Furthermore, it

will provide information on other non-food products that can be

developed from tilapia and promoted as an additional source of

livelihood for small-scale producers and processors.

1.1 | Fish and human nutrition

Aquatic foods are rich in numerous vitamins, minerals, essential fatty

acids and micronutrients essential to cognitive development and

human health, particularly in the first 1000 days of a child's life.15,16

However, there is evidence that the crucial first 1000 days extend for

an additional 7000 days throughout adolescence, linking two crucial

time periods—the first 1000 days of life and women of reproductive

age, particularly important for adolescent girls.17–23

Aquatic foods can improve human health through at least three

pathways: by reducing micronutrient deficiencies that can lead to sub-

sequent disease; by providing a unique source of the omega-3 long-

chain polyunsaturated fatty acids docosahexaenoic acid (DHA) and

eicosapentaenoic acid (EPA) which may reduce the risk of heart disease

and promote brain and eye health; and by displacing the consumption

of less-healthy red and processed meats that can cause adverse health

outcomes.24,25 Many fish, and other aquatic animals, naturally obtain

health promoting long chain omaega-3 fatty acids from consumption

of, or bio-accumulation from, marine microalgae. These omega-3 fatty

acids (particularly EPA and DHA) are exceedingly rare in land-based

plant crops, but have many essential roles, including being precursors

of eicosanoids, a large component of the central nervous system, a

structural element of every cell of the body, and a regulator of cardiac

rhythm, thus it can reduce risks for cardiovascular disease.26,27

Micronutrient deficiencies account for an estimated 1 million pre-

mature deaths annually.24,28 Nutrient-rich aquatic foods could provide

food-based approaches to reducing nutrient deficiencies, with

increasing access and consumption offering many advantages over

nutrient supplementation.29 Calcium, iron, zinc and vitamin A from

fish could provide a considerable proportion of the recommended die-

tary allowance (RDA) for adults and children under 5-years old.28

Aquatic foods particularly fish is an animal-source food, which

provides 17% of animal protein and 7% of total protein consumed

globally.2,15,26 However, in 31 countries—16 of which are LIFDCs and

five are small island developing states (SIDS)—where fish and other

aquatic foods serve as the backbone to a healthy diet, fish accounts

for more than 30% of total animal protein supply.17

Tilapia has high crude protein content, minerals such as calcium,

phosphorus, magnesium, sodium and iron30 and fatty acids. Tilapia is

also a good source of vitamins A, C, D, E, K, B6 and B1211 Further-

more, tilapia carcasses contain 23 fatty acids, including the very

important n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic

acid (EPA) and docosahexaenoic acid (DHA).30
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1.2 | Value addition

Aquatic foods particularly fish are highly perishable food products due

to their chemical composition including neutral pH, and weak connec-

tive tissues.31 Therefore, it is necessary for storage or transport to

preserve and process aquatic foods to maintain durability and to

retain their nutritional value. In addition to increasing the shelf life,

fish processing and the sale of by-products also aims to increase its

economic value by developing new fishery products to attract public

interest.17,31–33

The development of new ingredients or new products in various

forms by using tilapia processing by-products has been an important

option to increase the added-value of products, avoid economic loss,

reduce environmental impact, and supply consumers with a nutritious,

low-cost, more stable shelf-life and convenient food.34,35

Fish processing by-products deteriorate very rapidly, especially

when containing viscera, therefore it is important to preserve them as

soon as possible after being produced. Some of the by-products such as

heads and trimmings, may in certain cases be used for human consump-

tion while the majority has traditionally been regarded to be of low value

or as a problem and used as feed for farmed animals or as fertilizers.36

1.2.1 | Food products

Tilapia production is expected to rise and already has one of the most

diversified supply chains in aquaculture, increasing the amount of

by-products generated after processing. Value addition through pro-

duction of fish fillets has been an effective strategy to increase

consumer acceptability and commercial value, and ensure better utili-

zation of tilapia. With the changes in consumer consumption expecta-

tions as well as the development of reliable cold-chains, fresh pre-

processed fishery products such as fillets are more popular with con-

sumers and producers because of their convenience for processing

and cooking.31 However, the filleting process results in a significant

amount of by-products that can be converted to nutritious low-cost

fish products. By-products containing heads, frames and belly flaps,

and parts of the viscera like liver and roe are good sources of high-

quality proteins, lipids with long-chain omega-3 fatty acids, micronu-

trients like vitamins A, D, riboflavin (B2) and niacin (B3) as well as

minerals such as iron, zinc, selenium and iodine6,37,38 (Table 1).

Several studies were conducted to convert undersized tilapia and

tilapia processing by-products into new food products with good

nutrition and various applications. Small-sized tilapia can be converted

into flour and used as a flour substitute in brownies to add nutrients

such as protein and calcium.40 Furthermore, it can be converted into

spring roll with high acceptability from consumers.39

Mechanically separated flesh or the minced fish obtained from

tilapia backbones offered good quality and organoleptic characteris-

tics and therefore, have great potential to develop value-added prod-

ucts. From the microbiological perspective, the frozen mince was

determined to be safe and had a stable physicochemical and sensorial

quality for 6 months of storage.79

Tilapia mince can be converted into surimi32,41–45 or surimi pow-

der.46 The proximate composition and quality indices of surimi pow-

der made from minced tilapia suggest that it can be prepared easily,

has low distribution cost, requires minimum storage space, is useful

in dry mixtures to produce homogenous blends and is easy to stan-

dardize protein content.46 Furthermore, tilapia mince can be directly

used as an ingredient in the production of burger patties,47

nuggets,9,48 mortadella10,49 and sausage.50–56 The mortadella made

from minced tilapia had a good acceptance index, higher mineral con-

tent, especially calcium, greater softness, less luminosity and greater

colour intensity compared with pork and chicken mortadella.10 A

maximum level of 60% minced fish in sausage has been recom-

mended to obtain good nutritional quality and acceptable sensory

attributes.55 Sausages manufactured with mechanically separated

tilapia meat represent a sustainable use of this waste, with high con-

sumer acceptance.50

The head and minced fish of tilapia can be converted into flour11

with various food applications. Instant soup and flours from tilapia

wastes can be used in the food industry either for development and

introduction of new food products on the market or for the replace-

ment in current food products made from conventional flour

sources, producing a healthy alternative particularly to gluten-

intolerant consumers.34 Tilapia flour can be used as an ingredient in

various food products such as croquettes,35,57 bread,58,63 pasta,59,64

extruded snacks30,60 and in local soup and vegetable dishes.16 In

addition, tilapia bones can be converted into bone flour and used for

noodles and cookies, replacing wheat flour. The tensile strength,

TABLE 1 Utilization of undersized tilapia and tilapia processing
by-products in foods

Fish-based product Part used

Spring rolls39 Undersized tilapia

Flour (brownies)40

Surimi32,41–45 Minced meat/mechanically

separated meatSurimi powder46

Burger patties47

Nuggets9,48

Mortadella10,49

Sausage50–56

Flour11,34 Head and bone

Flour30,35,57–60 Minced fish/mechanically

separated meat

Flour59–62,80,81,109 Bone

Protein concentrate/flour63–65 By-products

Gelatin66–70 Skin

Gelatin71 Bone

Gelatin72 Scales

Gelatin73 Muscle

Edible film74–76 Skin

Edible film77,78 Bones

Edible coating62 Skin
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colour and water absorption of noodles significantly decreases as

the level of tilapia bone flour is increased from 0% to 15%,80 while

the addition of 20% tilapia flour in cookies resulted in acceptable

physicochemical and organoleptic qualities while further increasing

the calcium content.61 Tilapia powder can also be used to improve

the textural properties of fish sausage.81 In addition, snack bars can

be prepared with the addition of tilapia dry powder and tilapia

hydrolysate powder as alternative options for adding nutraceutical

values to food products.65

Gelatin can be extracted from tilapia skin,66–70 bones,71 scales72

and muscle.73 Gelatin made from tilapia skin displayed better thermo-

stability and could form stronger gelatin networks than other reported

fish gelatins, which is of commercial value for replacing mammal-based

gelatin66,69 as food additives in various food products.68 Therefore,

gelatin from tilapia can meet the demand of some groups of people

who do not consume meat and meat products.67 The obtained tilapia

gelatin can be used in yogurt,70 panna cotta71 or for manufacturing of

imitation seafood products.73

Gelatin made from tilapia can be further processed into edible

films and edible coatings for food applications. However, the value

of the water vapour transmission rate through the gelatin is high due

to the hydrophilic property. To improve the thickness, tensile

strength, elongation, solubility and water vapour transmission rate

of the edible film, polysaccharide hydrocolloids such as

carageenan,74,77 chitosan,78 alginate75 can be added or chemical

crosslinking using electrolytes can be used.76 Gelatin-based edible

coating developed using tilapia skin could extend the shelf life of fish

meatballs to 14 days in cold storage as compared with fish meatballs

without the coating.62

1.2.2 | Biotechnological or pharmaceutical
applications

The use of fish by-products is increasingly gaining attention, as they

offer a significant and sustainable source of high-value bio-

compounds (Table 2),109 due to their high content of collagen, pep-

tides, chitin, PUFAs, enzymes and minerals, suitable for biotechnologi-

cal or pharmaceutical applications since they are considered safe,

nutritionally healthy, low cost and with therapeutic benefit.37,98

Fish oil contains mainly triglycerides of fatty acids. The lipid com-

position in fish is quite different from land animal lipids and vegetable

oils due to the large quantity long-chain PUFAs, which cannot be syn-

thesized by human body and provide a wide range of critical functions

for human health.37,82 Tilapia oil extracted from viscera can compete

with other commercial oil in terms of nutrient content.83

Fish collagen is considered to be an alternative to collagen from

bovines and pigs and is recently recognized as a promising biomaterial

with great potential in pharmaceutical and biomedical applications.85

Fish collagen can be extracted from tilapia skin, scales and bones. Col-

lagen gels made from tilapia skin have excellent mechanical properties

and thermal stability.86 Collagen/bioactive glass nanofibers prepared

with collagen from tilapia skin, can be used for burn treatment as it

promotes wound healing and skin regeneration in human, donkeys

and bears.37,87,110,111 A specific extracted collagen peptide from tila-

pia collagen hydrolysate has the function of preventing ultraviolet

(UVB)-induced damage to cells and inhibiting UVB-mediated photoag-

ing of skin.90 In addition, tilapia scale gelatin which can be extracted

from collagen has great potential to be developed as an emulsifier in

body creams.92 Furthermore, tilapia scale gelatin can be used in pro-

ducing stomach-soluble capsules.93

By-products from tilapia processing can be converted into hydro-

lysate with beneficial functional properties and have potential for

applications in food, healthcare and pharmaceutical products.94,95,100

Protein hydrolysates helped prevent and manage obesity-related

comorbidities such as diabetes as they effect intestinal hormones

secretion and dipeptidyl peptidase IV (DPP-IV) inhibitory activity.96

The alkaline-aided protein hydrolysates can be used as a valuable and

low-cost source for a natural antioxidant for several food and pharma-

ceutical applications.97,102 Furthermore, the amino acids of tilapia

hydrolysates have a significant impact on numerous human biological

and physiological activities as they have various functional and bioac-

tive properties.88

1.2.3 | Other products

More sophisticated products often only utilize certain parts of the fish.

The conversion of by-products into fishmeal seems to be the best way

of using these residues, since it generates less quantities of wastes.103

Previously used as a protein and energy source, fishmeal is currently

recognized for its high palatability and source of vitamins, essential

fatty acids, minerals and oligoelements for animal feeds.103,104 The fish-

meal produced using tilapia processing by-products displayed variations

TABLE 2 Utilization of tilapia processing by-products into
products with biotechnological or pharmaceutical applications

Part used

Fish-based products

Fish oil82 Whole fish

Fish oil83 Viscera

Fish oil84 Head, viscera and skin

Collagen35,36,85–89,110,111,116 Skin

Collagen37,90,91 Scales

Collagen85,90 Bones

Gelatin92,93 Scales

Hydrolysates37,94–97 Head, tail and frame

Hydrolysates37,38,98,99 Viscera

Hydrolysates88,100,101 Muscle

Hydrolysates102 Scale

Other products

Fish meal103,104 Whole fish and by-products

Silage36,105 By-products

Biodiesel106,112–115 By-products

Leather106–108 Skin
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in its nutritional contents. However, no differences were observed in

its biological values or the proportion of protein retained in the body

for growth and/or maintenance, that might compromise its use in diets

offered for tilapia, or more likely other non-fish species.103

Tilapia silage contains high amounts of all essential amino acids,

except for tryptophan, making it a potential protein source in the

manufacturing of animal feeds particularly for livestocks.105 The acid

silage or the oil and protein hydrolysate obtained from the silage, are

useful nutrients when included in moderate amounts in feed for

farmed animals and fish. Furthermore, the presence of free amino

acids and short-chain peptides in the protein hydrolysate may also

function as a feed additive promoting growth performance, not only

as a source of amino acids.36

Biodiesel can be produced using viscera of tilapia.112,113 The bio-

diesel made from tilapia wastes had high levels of acidity for biofuel

use and with physicochemical parameters that could meet the

specifications for biodiesel such as low-ash content, flashpoint and

density.114,115

Due to its excellent biocompatibility and biodegradability, fish

skin has been widely applied not only in food and pharmaceutical

applications but also in the production of leather.116 Tilapia leather

may be used for clothing and leather products in general.107 Due to

its thickness and tensile strength, tilapia leather is stronger than some

other leather types.106

1.3 | Profit from value addition

Value addition and product diversification could convert more of the

fish into food or other valuable products, and provide additional

sources of income for processors and venders. Tilapia processing can

lead to as little as 30% fillet leaving almost 70% as a by-product usu-

ally not used for human consumption. Most tilapia processing plants

of a certain size do add value to their by-products by for example con-

verting it into fishmeal, or selling the skins for further processing.

Smaller processing plants are less likely to have the capital to invest in

equipment for further processing.

The potential for adding value is huge, in terms of financial gain,

food security and nutrition. The potential in using more of the tilapia

for human food purposes has not gained much attention, although in

many parts of the world more than the fillet are eaten when fish is

prepared at home. From a food security point of view, utilizing 60%

instead of 30% of the fish as food would double the amount of fish

for consumption without any increase in fish production. Based on

knowledge of other species, using non-fillet parts such as heads, tails

and frames, for consumption would also significantly increase the

nutritional value in terms of micronutrients.117 However, there is a

need for further studies to generate knowledge on nutritional compo-

sition of non-fillet parts. Proving the nutritional value of a product

does not necessarily mean the product will be consumed. However,

there are a few studies showing that products based on non-fillet

parts of tilapia and other species had a high acceptability among

school children and could be done in simple way at low cost.117

When handling aquatic by-products, the interest has often been

on end products with a higher value, such as isolating bioactive com-

pounds and using them as food ingredients, supplements or nutraceu-

tricals. Other bioactive compounds such as collagen and gelatine,

chitin and chitosan, enzymes and specific proteins, bioactive peptides

and pigments which have food, packaging and pharmaceutical applica-

tions can be obtained from processing by-products. However, these

processes may require high initial investment and intensive use of

technology which is not practical and beneficial for small-scale proces-

sors. Upfront investment for innovations can be high particularly for

buying new equipment or sophisticated machineries as well as use of

reagents for laboratory extraction of isolates. Also, investment must

be made for human capital, for example, developing new skills and

capacity building.

Many of the promising products developed from the by-products

would require investments and technologies not available in many

cases. However these are good opportunities for companies that can

invest in technologies and in opening new markets. Converting by-

products into food or feed products can often be done with simple

technologies, at artisanal level and make use of most of the by-prod-

uct. These might be product of relative low value, but with higher vol-

umes. The high-tech products are of much higher value but at much

smaller volumes. Both options are good and should be developed in

parallel.

Prior to adoption of new technologies and value addition, studies

of market must be conducted to ensure the demand for the product.

It is important to know if there are potential buyers or consumers and

their buying behaviour. In the end it is the consumer who decides

what to buy. Also, having an enabling policy environment that can

support the uptake of new technologies and products by providing

incentives can play an important role.

2 | CONCLUSION

Fisheries and aquaculture production has seen a massive increase

driven by the growth of global population and the subsequent recog-

nition of aquatic foods as a key component in a balanced diet and a

healthy lifestyle. With the increase in market demand for convenient

fish products, different ways to process and preserve fish and fish

products are introduced to meet consumer demands. Accordingly, a

remarkable increase in the amount of by-products from fish proces-

sing and waste are being generated around the world. This is leading

to a potential economic loss and environmental pollution, but could

also be an opportunity to improve the economy and the environmen-

tal impact of the sector.

Even though more of the tilapia could be used to produce tasty,

healthy and low cost foods, most of the by-products will end up as

other non-food product. Fishmeal production could be a good alterna-

tive for big processing plants, but investment cost will make it difficult

for smaller plants to use this technology. Use of simple low-cost tech-

nologies such as fish silage production could be a good alternative to

handle processing by-products.

36 PEÑARUBIA ET AL.



Instead of using sophisticated technology, low cost yet efficient

techniques can be utilized to convert processing by-products into

value-added products with high nutrient contents. Some of these

innovations include production of fish powder, fish silage and fish

meal, which can be conducted with household equipment and do not

require high upfront investment.

Tilapia can be fully utilized by converting by-products from

processing into new food, animal feed products, used in packaging or

in the manufacture of biotechnological and pharmaceutical products.

By doing this, we can reduce environmental pollution, improve human

nutrition and provide additional sources of income and livelihood.
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Abstract

Various emerging and re-emerging diseases, such as streptococcosis, tilapia lake virus

disease and infectious spleen and kidney necrosis virus disease, have had a significant

economic impact on the tilapia industry over the last decade. These diseases have

resulted in high levels of morbidity and mortality, production losses and trade restric-

tions. In the absence of effective husbandry management, disease prevention strate-

gies and appropriate biosecurity measures, infectious diseases will continue to

challenge the sustainability of global tilapia aquaculture. Strategies used to reduce

the impact of disease include feeding probiotic and prebiotic supplements to enhance

tilapia health and to modulate the fish's gut microbiota to improve gut health. Herbal

medicines and immunostimulants are also used to enhance immunity to disease,

while vaccines are available, or are under development, for a number of economically

important pathogens affecting tilapia culture. This review provides an overview of

the benefits of enhancing the immune response of tilapia to improve their health,

and in turn reduce the levels of pathogens within tilapia farming systems.

K E YWORD S

emerging pathogen, immune response, immunostimulation, vaccine

1 | INTRODUCTION

Tilapia is the second most important fish species group farmed

globally, with an annual production of over 4.5 million tonnes.1 They

are hardy, fast-growing fish, able to tolerate a wide range of environ-

mental conditions, including the high stocking densities normally used

during their culture.1 The most commonly farmed tilapia species is the

Nile tilapia (Oreochromis niloticus), which is now cultured in more than

120 countries around the world2 and is third globally in terms of

production volume, with a production of 4.6 million tonnes produced

in 2019.1 However, various emerging and re-emerging diseases, such

as streptococcosis,3,4 tilapia lake virus (TiLV) disease5 and infectious

spleen and necrosis virus (ISKNV) infections6 have caused mass mor-

talities in tilapia farms, which have had a damaging effect on the

global tilapia industry, especially over the past decade. Although vari-

ous measures have been used to control outbreaks of these diseases,

including the use of antibiotics and other therapies, improving farm

management and biosecurity practices, limiting animal movements
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and identifying and eliminating infected fish populations, the negative

impacts caused by these infectious diseases on the tilapia industry

continue to grow.7,8 Improving tilapia health through modulation of

their immune system is considered an attractive alternative to limit

disease outbreaks and reduce the disease-related losses experienced

by tilapia farmers. Combining existing methods of disease control with

alternative strategies aimed at enhancing the fish's immune response

may be a suitable way to improve the fish's ability to resist disease,

and in turn, improve the sustainability and profitability of the tilapia

aquaculture industry by reducing disease outbreaks. In this review, we

summarize strategies and molecules that are being used to improve

tilapia health and enhance their immunity against diseases.

2 | IMPORTANCE OF EMERGING AND
RE-EMERGING DISEASES IN TILAPIA

According to the statistics of the Food and Agriculture Organization

of the United Nations (FAO), the world tilapia aquaculture production

grew 10.4% a year, from around 380,000 tonnes in 1990 to 6 million

tonnes in 2018.9 High stocking densities are stressful for the fish,

making them more susceptible to infection, and they also promote the

rapid spread of emerging pathogens by fish-to-fish contact.10,11 The

movement of live fish carrying a pathogen or contaminated fish prod-

ucts can also transmit pathogens to a new geographical region, con-

tributing to the emergence of new disease epidemics.11 Another

factor contributing to the spread of pathogens is infected migratory

fish and resident populations of wild fish transmitting pathogens to

farmed fish within their new environment.8

Stress is a major factor that affects the well-being of an animal,

including fish. It creates a physiological situation that is beyond the

normal level of tolerance, thus compromising the natural defences of

fish and increasing their susceptibility to pathogens. Cultured fish may

experience many sources of stress, for example, poor water quality,

high stocking density, poor nutrition, weather events or changes in

temperature, handling, transportation and disease treatment. Stress is

defined as the physiological response to a threatening situation, initi-

ated and controlled by hormonal systems that regulate secondary

stress response factors.12,13 Acute and intense stress responses can

alter the physiological balance of the fish, which may cause beha-

vioural or physical responses such as skin colour change. When ani-

mals are exposed to chronic stress, they are less able to elicit an

adaptive response to the stress, resulting in the response becoming

dysfunctional, leading to growth inhibition, reproductive failure and a

negative effect on their immunocompetence to resist pathogens.

It was initially thought that tilapia were relatively tolerant to dis-

ease and could easily adapt to a wide range of rearing environments,

including those with poor environmental conditions. However, bacte-

rial and viral diseases have recently become a major threat to the tila-

pia farming industry.14,15

Streptococcosis is one of the most frequently reported bacterial

diseases in tilapia aquaculture, and is mainly observed in temperate

and tropical tilapia-culture areas. The mortality rate can reach

50%–70% in relatively warm seasons, especially during summer.

The typical clinical signs of Streptococcal infections in tilapia include

abnormal behaviour, exophthalmos and meningitis.3,4 Hai et al. dem-

onstrated that red tilapia fry are highly susceptible to Flavobacterium

columnare, with up to 100% cumulative mortality occurring within

24 h of infection.16 The pathological changes associated with this

disease are usually restricted to external lesions such as skin damage,

gill necrosis and fin erosion.17 Recently Francisella species have been

reported to cause mortality in cultured finfish species.18 The most

information to date relates to disease in tilapia due to infection by

F. noatunensis subsp. orientalis, causing granulomatous inflammatory

reactions. Mortalities in the species can be high, and the disease can

likely be transferred via live fish movements.19 Aeromonads are also a

common cause of disease in tilapia culture, with Nile tilapia among the

wide range of fish species affected.20 Haemorrhages, slow swimming,

pop-eye and reddening skin are the prominent clinical signs seen in

most affected tilapia farms.21

In addition to bacterial diseases, viral diseases caused by TiLV,22–29

ISKNV6,30 and Tilapia parvovirus (TiPV)31,32 cause high mortalities and

negative impacts on the global tilapia industry.31,32 TiLV or Tilapia tilapi-

nevirus33 has been extensively studied over the past 5 years. It has now

been reported in 16 countries over four continents, where it affects

both wild and farmed tilapia.5,34 TiLV infection is known to be part of

“tilapia 1-month mortality syndrome,” causing up to 90% cumulative

mortality in fry and juveniles within 1 month of their transfer to grow-

out ponds.25 Moreover, several studies have reported high levels of

TiLV-associated mortality in different tilapia species.22–27,35,36 Another

emerging virus, TiPV, has been isolated and characterized from adult

Nile tilapia.31 Concurrent TiLV and TiPV infections have subsequently

been reported during disease investigations in farmed red hybrid

tilapia,32 and there are several reports of multiple infections leading to

severe pathology in farmed tilapia.37–39 Despite being the focus of

recent, extensive research, no effective methods have been developed

to manage these emerging diseases, including the development of

effective vaccines.40 Thus, these pathogens continue to devastate

global tilapia culture, with associated socio-economic problems and

food security issues related to lost production.41

The misuse of antimicrobials in agriculture and aquaculture has

led to concerns relating to human and animal health issues, potential

environmental and ecological impacts due to the presence of antimi-

crobial residues in products and the development of antimicrobial

resistance (AMR) in bacteria. In 2015, during the 68th World Health

Assembly, a Global Plan of Action (GAP) on AMR was established.

Members of the World Health Organization have developed and

implemented a National Action Plan on AMR based on a “One Health”
approach. Commitments to support the GAP were obtained from

members attending the 83rd General Assembly of the World Organi-

sation for Animal Health (WOAH) and the 39th Conference of the

FAO.42

Options for controlling emerging disease problems in tilapia aqua-

culture include the use of antibiotics and vaccines. Recently, the

use of antibiotics in tilapia production has increased due to the rise

in infectious disease problems resulting from the sector's rapid
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expansion. Using antibiotics appropriately and correctly would reduce

the development of drug-resistant bacteria and increase the effective-

ness of treatment.7,43 Since there is no specific treatments for viral

diseases in tilapia aquaculture, rapid screening for viral pathogens and

the development of effective vaccines are necessary to prevent and

control future outbreaks of viral disease.

3 | IMMUNE SYSTEM IN TILAPIA

Routine husbandry and water quality issues can lead to stress-related

immunosuppression that makes fish more susceptible to infections.

Understanding the impact that these factors can have on immune

function and disease resistance can allow immunosuppressive events

to be predicted and appropriate actions to be taken by the fish farmer

to alleviate immunosuppression. Knowing how fish respond to patho-

gens immunologically and being able to manipulate these responses

offers an opportunity to enhance the fish's ability to combat dis-

ease.44 Feeds containing probiotics, prebiotics, medicinal herbs and

other immuno-stimulatory products have been reported to enhance

the fish's immune system at times of immunosuppression or before

the fish becomes fully immunocompetent.45,46 Vaccines, on the other

hand, provide protection against subsequent infections through adap-

tive immunity.47

Tilapia have a very effective immune system consisting of both

innate and adaptive immune responses48 that can protect them from

invading pathogens. Innate immunity provides the first line of defence

against infection,49,50 while the adaptive immune response, occurring

after the innate immune response has been initiated, responds to spe-

cific pathogens, producing an immunological memory that can

respond to a subsequent re-encounter with the pathogen.51 A simple

overview of the tilapia's immune response to infection is presented in

Figure 1.

Innate immune defences of tilapia include physical barriers and

various cellular and humoral components.51–54 Skin, scales and the

epithelial layers of gills and the gastrointestinal tract act as physical

barriers, helping to prevent the entry of pathogens into the fish. The

mucus covering these surfaces also acts as a physical barrier by trap-

ping pathogens and contains various antimicrobial substances such as

lectins, lysozymes, complement proteins and antimicrobial peptides

(AMPs) that can neutralize and kill the pathogen.51,53–55

If the pathogen is able to breach the physical barriers and enter

the host, humoral and cellular components of the innate immune sys-

tem respond in an attempt to prevent the infection from progres-

sing.44,56 The humoral response uses a diverse range of antimicrobial

components (e.g., AMPs, lysozyme, complement proteins and acute

phase proteins) to directly destroy the pathogen, or to promote

inflammation and phagocytosis by cellular components of the innate

F IGURE 1 A simple overview of the immune response of tilapia to invading pathogens. PAMPs, pathogen-associated molecular patterns;
PRRs, pattern recognition receptors.
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immune response.51,53–55,57,58 Several studies report on the func-

tional characterization and activity of complement in tilapia.59–64

Measurement of lysozyme activity is often used as an indicator of the

innate immune response in tilapia to various stimuli.54,65–68 Over

90 AMPs have been identified in teleost fish, including molecules like

β-defensins, cathelicidins, hepcidins, histone-derived peptides and

fish-specific piscidins.51 Nile tilapia β-defensin has been shown to

have an inhibitory effect on the growth of Escherichia coli and Strepto-

coccus agalactiae.69 The therapeutic potential of piscidins,70 including

tilapia piscidins, has recently been reviewed by Hazam and Chen71

and Raju et al.72

The cellular components of the tilapia's innate immune response

consist of monocytes/macrophages and granulocytes, that is, neutro-

phils and eosinophilic granule cells. Initiation of the cellular response

is mediated through the binding of pattern recognition receptors

(PRRs) on these cells to pathogen-associated molecular patterns

(PAMPs) located on different microbial pathogens, including viruses,

bacteria, fungi and parasites, or to danger-associated molecular pat-

terns (DAMP) found on proteins or other molecules released from

stressed or injured cells.51 Toll-like receptors (TLRs) are a group of

PPRs responsible for monitoring the extracellular environment for

pathogens. TLRs detected in tilapia include TLR3, 7, 21 and 22, with

high expression of TLR3 found in tilapia liver, brain and spleen.73,74

Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) on the

other hand, detect viral RNA. Tilapia appear to lack RLR genes RIG-I

and LGP2, but possess MDA5 and RLR adaptor IPS-1 genes.73 The

nucleotide-binding oligomerization domain (NOD)-like receptors

(NLRs) that have been detected in tilapia include NOD1, NOD2 and

NRL3.75 These molecules are responsible for detecting host cell mem-

brane damage and intracellular pathogens, and the stimulation of

inflammatory cytokine expression, such as interleukin-1β (IL-1β), lead-

ing to the formation of inflammasomes.76

The process of inflammation is the host's response to infection,

and is aimed at eliminating the pathogen and initiating tissue healing.

Various inflammatory cytokines have been identified in tilapia, and

their expression profiles investigated in response to various patho-

gens, for example, upregulation of IL-1β and tumour necrosis factor

alpha (TNFα) during infection by Lactobacillus rhamnosus77 or

S. agalactiae78,79 showed that IL-10 was up-regulated, and TNFα and

IL-6 down-regulated during an infection by S. agalactiae, indicating

antagonistic pro- and anti-inflammatory cytokines responses.

The main phagocytes in fish are monocytes/macrophages and

neutrophils.80 Monocyte/macrophages, neutrophils and eosinophils

have been shown to have phagocytic activity in fish,81 with many

reports available on the phagocytic activity of tilapia macrophages, for

example, phagocytosis of Aeromonas hydrophila in vivo.82 During

phagocytosis, the pathogen is taken up by the phagocyte and is

enclosed into a phagosome, which then combines with a lysosome to

form a phagolysosome, where the pathogen is killed by antimicrobial

substances such as reactive oxygen species (ROS) released during

respiratory burst and nitric oxide (NO).54,83–85

If a pathogen persists within the host, the adaptive immune sys-

tem becomes activated. Adaptive immunity in tilapia, like other

teleosts, is divided into cell-mediated and humoral immune

responses,86,87 with B and T lymphocyte cells responsible for deliver-

ing cellular immunity. Antigen presenting cells (APCs) from the innate

response, including dendritic cells, monocyte/macrophages and B cells

present processed phagocytosed materials to the T cells of the adap-

tive immune system in a process known as antigen presentation,51

linking the innate and adaptive immune responses. Genes associated

with pathogen recognition, antigen presentation and activation of

the adaptive response have been detected in tilapia through transcrip-

tomic analysis.88 Presentation occurs in association with major histo-

compatibility complex (MHC) antigens on the surface of the APC and

the T cell receptor (TCR) to stimulate T cell differentiation. Types of

T cells include helper (CD4+) T cells, cytotoxic (CD8+) T cells and reg-

ulatory T cells (Treg).51,86,89 The protein structure of the TCR β chain

has been characterized in Nile tilapia.90 CD4 is the T-cell co-receptor

found on APCs, and is associated with the recognition of processed

antigens presented by MHC-II. CD8 is the T-cell co-receptor associ-

ated with binding to antigens presented via the MHC-I molecule.51

MHC class Iα gene,91 and two MHC-II molecules, MHC-IIa and MHC-

IIb have been described for Nile tilapia.92 Both CD4 and CD8 genes

have also been identified in tilapia.93,94 The CD8+ T cells (also

referred to as cytotoxic T lymphocytes or CTLs) are an important

immune defence against intracellular pathogens (viruses and bacteria)

or tumour cells. The CD4+ T cells, also referred to as T helper cells

(Th cells), play a major role in initiating and regulating adaptive

immune responses.51,95

The humoral adaptive immune response is delivered by B cells,

which produce high-affinity immunoglobulins (Ig) specific for their tar-

get antigen. Three classes of Ig have been identified in teleosts, IgM,

IgD and IgT, all of which have been detected in tilapia.96–98 IgM is the

major Ig found in serum and the systemic response of tilapia, and is

found in all immune tissues. Although its function remains unclear, IgT

plays a major role in mucosal immunity and is found predominantly in

the mucus on mucosal surfaces of gills, skin and intestines.99 IgM is

frequently used as a measure of systemic antibody responses, while

IgT is often used as a measure of a mucosal antibody response, includ-

ing in tilapia.94,96,100

The mucosal-associated lymphoid tissues (MALTs) are important

in preventing pathogen invasion into the fish during the early stages

of infection and are associated with skin (skin-associated lymphoid

tissue [SALT]), gut (gut-associated lymphoid tissue [GALT]), gills

(gill associated lymphoid tissues [GIALT]) and nares (nasopharynx-

associated lymphoid tissue [NALT]).55,101 While the contribution of

MALTs in tilapia immunity has not yet been fully elucidated, mucosal

vaccination of tilapia with a nanoparticle vaccine against F. columnare,

delivered by immersion, was shown to trigger upregulation of IgT,

IgM, TNF α, IL1-β and MHC-1 in the gills (mucosal response)102 and of

IgT, IgM, TNF α and IL1-β in the blood (systemic response)103 of

vaccinated fish.

Since the products discussed in this review tend to be delivered

orally to fish, we need a better understanding of how they influence

the GALT as well as other MALT responses. For example, alternations

to the intestinal microbial community of the host after feeding
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probiotics are known to influence growth, digestion, immunity and

disease resistance of the fish and development and function of the

fish's immune response.45,46

Understanding how these products influence different compo-

nents of the tilapia's immune response may provide insight into how

they can be used against specific types of pathogens, for example,

bacteria, viruses or parasites. Several reviews are available describing

the effects of dietary immunostimulants on various immune responses

of fish.45,46,104–106 However, these responses depend on the type and

dose of immunostimulant used and how it is administered (route and

duration). The overuse of immunostimulants can actually lead to

immunosuppression.106 These aspects need further investigation to

optimize the use of immunostimulants in tilapia.

4 | MODULATION OF GUT HEALTH TO
IMPROVE TILAPIA IMMUNITY AGAINST
DISEASES

The uncontrolled use of antibiotics for treating diseases can lead to an

imbalance in the natural dynamics of microorganisms present in fish

cultivation.107 Researchers are keen to find lasting, environmentally

friendly solutions for disease control in tilapia farming systems. In this

section, strategies to manage the digestive health of tilapia including

understanding and modulation of gut microbiota, and supplementa-

tion of probiotic and herbal extract are discussed.

4.1 | Gut microbiome

Intestinal bacteria play an important role in promoting fish health and

are involved in the development of lymphoid tissues in the intes-

tine.108 Although the role of gut microbiota in the development of

lymphoid organs and GALT have been investigated in other fish spe-

cies, this remains to be examined in tilapia. Data generated from other

fish species may help to inform on the role of the microbiome in pro-

moting gut immunity in tilapia. The proposed roles of gut microbiota

on the intestinal immune system and pathogen regulation in tilapia

are shown in Figure 2.

In other fish species such as zebrafish (Danio rerio) and ayu

(Plecoglossus altivelis), the gut microbiota are involved in the recruitment

and development of immune cells and the formation of lymphoid

tissue in the fish's intestine.108–110 It has been shown that the

absence of the gut microbiota and lack of intestinal alkaline phospha-

tase in zebrafish limits the differentiation of the gut epithelium and

results in the depletion of goblet cells and enteroendocrine cells.111,112

F IGURE 2 The proposed roles of gut microbiota on the intestinal immune system and pathogen regulation in tilapia.
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Furthermore, the gut microbiota influences the development of GALT

by providing essential signals, such as cytokines to recruit macrophages

into the intestine and the GALT.113,114 In zebrafish, the gut microbiota

can modulate the expression of genes involved in maintaining homeosta-

sis of the intestinal environment and gut epithelial regeneration.109 As

such, disruption of the gut microbiota and gut homeostasis may result in

excessive inflammation and depletion of lymphoid tissue.110–112

Lessons learnt from other species may help define future studies

in tilapia. As well as its role in GALT development, the gut microbiota

produces important enzymes that are required for nutrient metabo-

lism and to stimulate the uptake of vitamins and minerals in

fish.109,111,115,116 For instance, Ray et al.,115 showed that gut micro-

biota produce enzymes such as amylase, protease, xylanase and cellu-

lose, which are able to break down indigestible substances, including

complex protein, cellulose and hemicellulose, and help with the

absorption of these nutrients in the fish's intestine. Hence, better

nutrient absorption may lead to improved feed conversion ratios, and

improved growth and feed efficiency in tilapia.117,118 Lastly, many

beneficial bacteria can protect the intestinal epithelium by competing

with pathogenic bacteria to prevent their attachment and multiplica-

tion on the intestinal surface.110,119 It is important to study the com-

position and role of gut microbiota in promoting and maintaining gut

health, and its interaction with the intestinal immune system of

fish.113 This information is important to develop appropriate strate-

gies to maintain an optimal gut microbiome in tilapia.120

Several molecular techniques are used to study the 16S ribosomal

RNA (16S rRNA) of bacteria conserved between different groups of bac-

teria. Such methods include denaturing gradient gel electrophoresis

(DGGE), terminal restriction fragment length polymorphism (T-RFLP),

fluorescence in situ hybridization (FISH) and DNA microarrays.121 These

techniques allow the identification of bacterial communities and changes

in the quantities and compositions of these populations after exposure to

specific environmental changes, such as infection, therapeutic treatment

or feed supplementation. In tilapia, the use of 16S rRNA sequencing has

revealed that the most common bacterial species in the intestine belong

to the phyla Fusobacteria, Firmicutes, Proteobacteria,122 Actinobacteria,

Bacteroidetes, Chloroflexi and Cyanobacteria.122,123

Many different factors can affect the diversity of the intestinal

bacteria found in tilapia, including seasonal influences, farming

location, culture system and feed ingredients. For example, recent evi-

dence has suggested that the number and type of bacterial communi-

ties within the same fish species is affected by seasonal change.122,124

In general, five bacterial phyla make up the main bacterial populations

within the tilapia's intestine, that is, Bacteroidetes, Cyanobacteria,

Firmicutes, Fusobacteria and Proteobacteria. During the pre-rainy and

rainy season, the Firmicutes dominate the intestinal tract more than

other bacterial groups, while the Fusobacteria are primarily found

during the end of the rainy and dry season.122 Similarly, high and low

water temperature during summer and winter, respectively, can lower

the number and diversity of mesophilic bacteria in the tilapia's intes-

tine compared with the autumn months.124 However, the composition

and number of gut microbiota during different seasons await further

investigation.

Besides the effect of seasonal change, farming locations and differ-

ent rearing systems also affect the diversity of gut microbiota.122,125,126

Bereded et al.122 reported different populations of gut microbiota in

fish raised in the natural environment in Lake Tana compared with

indoor facilities in Ethiopia. During the same season, the abundances of

Proteobacteria, Chloroflexi and Cyanobacteria were higher in tilapia

collected from the indoor aquaculture facility, while Firmicutes and

Fusobacteria dominated in the intestine of fish collected from their nat-

ural environment. In addition, tilapia reared in recirculating systems had

a rich and diverse bacterial community in their gut, especially Cetobac-

terium spp. in tilapia larvae, which was believed to have resulted in a

higher survival rate than fish in a flow-through aquaculture system.126

The reason for this increased survival might be a result of Cetobacter-

ium inhibiting the growth of invading pathogens, as shown for other

freshwater fish species.127,128 Although the protective mechanisms of

Cetobacterium in tilapia gut health have not been fully investigated, a

decrease in Cetobacterium in the gut microbiota of zebrafish as a result

of Olaquindox supplementation appears to make the fish more suscep-

tible to an infection by A. hydrophila, leading to bacterial septicemia and

high levels of mortality.129

Antibiotics have been widely used by the aquaculture industry to

treat bacterial infections within their stock. However, the misuse of

antibiotics can alter the quantity and diversity of intestinal bacteria in

fish and, in turn, increase the host's susceptibility to pathogen infec-

tion.7,129 To avoid such problems, alternative strategies have been

used to make the fish more resistant to disease. For example, dietary

supplementation with a combination of organic salt, potassium difor-

mate and phytogenic compounds derived from plant extracts was fed

to tilapia to make them more resistant against an infection by Franci-

sella spp.130 Interestingly, it was shown in this study that a combina-

tion of 0.5% phytogenic compounds and 0.2% organic salt could

maintain the diversity of gut microbiota in tilapia during an infection

by Francisella spp. Notably, tilapia that received a combination of phy-

togenic compounds and organic salt had fewer opportunistic bacterial

pathogen species present in their microbiome, including Plesiomonas

shigeloides and Vibrionacea spp., than groups of fish receiving only one

of these dietary supplements.130 Moreover, microbial diversity and

fish survival can be enhanced using probiotic and prebiotic supple-

mentation in fish feed.126,131,132 For instance, supplementation with

fermentation products from Saccharomyces cerevisiae yeast can inhibit

infection by pathogenic E. coli and Pseudomonas fluorescens in a dose-

dependent manner and improves survival of tilapia fed with these

diets.133 Although various products and factors that affect the compo-

sition of gut microbiota of tilapia have been extensively studied, an

in-depth analysis of the mechanisms and interaction between patho-

genic bacteria and the gut microbiota of tilapia should be conducted.

4.2 | Probiotics, prebiotics and immunostimulants

Feeding probiotics to tilapia is an effective and attractive way to modu-

late the intestinal microbial composition and to maintain and promote

host health.134,135 Probiotics are defined as live microbial adjuncts that
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have a beneficial effect on their host. The primary mechanisms of

action of probiotics include improved epithelial barrier function, their

adhesion to intestinal cells and pathogen inhibition by occupying adhe-

sion sites, production of antibacterial substances and activation of

humoral and cellular immunity.136–138 Probiotics also have the ability to

improve the quality of the host's living environment, by inhibiting the

growth and reproduction of harmful bacteria by decomposing organic

matter in the water.108 The major mechanisms for biological control

resulting from the application of probiotics include induction of sys-

temic resistance in the fish, competition for nutrients and space and

the production of biologically active compounds.139–141 Various bacte-

rial species displaying these properties have been used as probiotics in

aquaculture over the years to enhance fish growth and immunity,

including Arthrobacter, Bacillus, Enterococcus, Lactobacillus, Lactococcus,

Micrococcus, Pediococcus, Aeromonas, Burkholderia, Enterobacter, Vibrio,

Pseudomonas, Rhodopseudomonas, Roseobacter and Shewanella.133,142

Specifically, the benefits of feeding probiotics to enhance tilapia

innate immune responses have been described. Abdel-Tawwab

et al.143 found that Nile tilapia fed spirulina (Arthrospira platensis) in

their diet (5.0–10.0 g spirulina kg�1 diet), had higher red blood cell

and white blood cell counts and nitro blue tetrazolium values

(in macrophage respiratory burst assays) compared with control fish.

The cumulative mortality was lower in fish fed with these probiotics

after experimentally infecting them with A. hydrophila and S. iniae

(P < 0.05).144 In aquaculture, probiotics have been used to modulate

the fish's immune response. Bacillus subtilis has been shown to

improve innate immunity in Nile tilapia and decrease immunosuppres-

sion caused by stress associated with high stocking densities, with

increased mean corpuscular haemoglobin and higher lysozyme and

phagocytic activities of macrophages in treated fish.145 Lactic acid

bacteria and other probiotic bacteria can improve fish survival by

modulating the host's immune functions. The probiotic P. fluorescens

also reduced the level of mortality in Nile tilapia challenged with

A. hydrophila.146 When Aly et al.147 used B. pumilus as a probiotic,

which they fed to fish for 1 and 2 months, they saw a significant

increase in total leucocyte counts, and lymphocyte and monocyte

populations in the fish's blood.

Bacillus sp., L. acidophilus and P. fluorescens have been shown to

improve the health status and disease resistance of Nile tila-

pia.49,147,148 When these probiotics were fed to tilapia, the fish had a

higher resistance to an infection by S. agalactiae.149 As mentioned

above, P. fluorescens also reduced mortality in Nile tilapia when chal-

lenged with A. hydrophila49 and lower cumulative mortality was noted

in tilapia fed with a combination of B. subtilis, S. cerevisiae and

A. oryzae compared with untreated fish after infecting them with

A. hydrophila or S. iniae (P < 0.05).144 Lactobacillus plantarum subspe-

cies plantarum JCM 1149 reduced a localized immune response in an

ex vivo anterior sac from hybrid tilapia (O. niloticus♀ � O. aureus♂).150

Previous research has shown that fish fed with probiotic gave the

highest net return and the lowest total cost of production compared

with the tilapia on a control diet.151 Moreover, the use of probiotic in

tilapia culture enhanced the immune and health status of the fish and

improved their disease resistance.147

Prebiotics are non-digestible, complex carbohydrates such as

inulin, fructo-oligosaccharides, short-chain fructo-oligosaccharides,

mannan-oligosaccharides, galacto-oligosaccharides, xylooligo-saccharides,

arabinoxylo-oligosaccharides, isomalto-oligosaccharides and

GroBiotic.152 They provide health benefits by stimulating the growth

and activity of bacteria within the fish's gut. Prebiotics are metabolized

by the gut bacteria and have the ability to stimulate the host's

innate immune responses.153 When combined with probiotics they are

referred to as synbiotics, influencing the growth and activity of the

probiotic. Cavalcante et al.154 give an example of the use of probiotics,

prebiotics and synbiotics in tilapia to improve protection against an

infection by A. hydrophila.154

Immunostimulants are commonly used to increase the fish's resis-

tance to disease at times of immunosuppression, with β-glucans being

the most commonly used in aquaculture, especially β-glucan (β-1,3 and

1,6 glucans) derived from the cell wall of baker's yeast, S. cerevisiae.155

This contains various immunostimulatory compounds that have the

ability to enhance the immune responses of fish.156 For example, mor-

tality levels of Nile tilapia resulting from an infection by A. hydrophila

were seen to decrease as the level of yeast increased in the fish's

diet.157 Moreover, supplementation of carotenoid product (Lycogen™)

extracted from the photobacterium Rhodobacter sphaeroidesWL-APD911

at 1.0% in feed can enhance tilapia (O. mossambicus � O. niloticus) growth

performance through immune regulation.158

The application of probiotics and feed additives shows great

promise in controlling disease in tilapia aquaculture, but extensive

research is still required to optimize their use for this purpose. More

information is needed to understand how these substances influence

host/microbe interactions in vivo.

4.3 | Medicinal plants

To date, several medicinal plants have been used as feed additives

using the whole plant, parts of the plant (leaf, root or seed) or

extracted compounds and have been successfully used for the treat-

ment of tilapia.14 Medicinal plants are an important source of bioac-

tive compounds and have been used as immunostimulants in

traditional medicine for thousands of years.159 These herbal medicines

contain a wide range of phytoadditives, which are mainly alkaloids,

terpenoids, lectins, polyphenolics, phenolics, quinones and polypep-

tides.160 Medicinal plants are applied using the whole or parts of the

plant, or as plant extracts, added to the water or the fish's diet. Plant

extracts have been used as single compounds or in combination, or

together with other bioactive compounds.161 The use of herbs as nat-

ural feed additives has attracted great interest for tilapia aquacul-

ture.162,163 Many studies have shown that herbs, used as natural feed

additives, have the potential to increase fish growth, immunity and

health.164,165 Although growth performance is an important parame-

ter to be considered when assessing the potential of a feed additive

for tilapia, improvement of the fish's immune system is also important

to help prevent disease. Several studies have demonstrated that die-

tary herbal extract supplementation can improve disease resistance in
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farmed tilapia. These include diets supplemented with elephant's foot

(Elephantopus scaber),166 cinnamon (Cinnamomum zeylanicum),167 tur-

meric (Curcuma longa),168 purslane (Portulaca oleracea)169 and garlic

(Allium sativum),170 with treated fish displaying greater anti-bacterial

activity against Gram-positive and Gram-negative bacteria.

It has also been shown that major bioactive compounds derived

from these herbs can regulate the tilapia's immune system, particularly

the proliferation of immune cells,171,172 and have enhanced antioxi-

dant properties.173 Previous reports have shown that the mucosal

immune response in tilapia can be triggered through the use of medic-

inal plants.54,174 These studies indicate the potential of herbal medi-

cine as an alternative approach for disease control by enhancing

tilapia immunity, improving resistance to disease and helping to allevi-

ate immunosuppression caused by husbandry practices. Therefore,

the use of medicinal herbs as immunostimulants for tilapia might be a

promising approach to reduce the risk of disease outbreaks and could

reduce the use of chemicals during the course of production.

5 | VACCINATION

Vaccination is one of the most important tools for managing infectious

diseases in fish culture,175 because of the vaccine's ability to stimulate

protective immunity and produce a memory response in vaccinated

fish. The first commercial fish vaccine was licensed in 1976, and pro-

vides superior and long-lasting protection against bacterial infectious

disease in salmonids.176 Various bacterial vaccines are commercially

available for tilapia. To date, only one commercially available strepto-

coccosis vaccine (AQUAVAC® MSD Animal Health) is available, which

has been widely applied in tilapia aquaculture.177 Moreover, the emer-

gence of viral pathogens, ISKNV and TiLV, have been spread across tila-

pia producing countries and it causes high mortalities leading to high

economic losses. Regarding viral vaccines, only one ISKNV vaccine has

been developed and commercialized (AQUAVAC® MSD Animal Health)

so far. Besides ISKNV, recent studies have shown the effectiveness of

vaccines against TiLV in tilapia.94,178,179 Different types of vaccine are

currently under development for TiLV, such as live-attenuated, inacti-

vated, DNA and subunit vaccines.94,178,179 Evidence suggests tilapia

that have survived an infection by TiLV develop antibody responses

and have protection against subsequent TiLV infections, thus indicating

the potential of an effective vaccine to protect tilapia from TiLV dis-

ease.180,181 A live-attenuated vaccine with a relative percentage sur-

vival of 55%–62% was the first vaccine to be developed. Subsequently,

Mai et al.94 developed both heat and formalin inactivated vaccines

using whole virus, which gave a higher level of survival of between

81.3% and 86.3% compared with unvaccinated fish. After the first vac-

cination, the vaccinated tilapia produced 3.7 and 5.7 times more sys-

temic and mucosal anti-TiLV IgM than the unvaccinated fish.94

However, the anti-TiLV IgM levels dropped significantly after 3-weeks

post-vaccination. Interestingly, fish receiving a booster vaccination eli-

cited a strong antibody response 5.4 and 5.9 times higher than the

unvaccinated fish.94 In another study, using inactivated TiLV antigen

combined with Montanide IMS 1312 VG adjuvant, injected tilapia had

a survival rate of 86.7% against a TiLV challenge.179 Moreover, a DNA

vaccine and a subunit vaccine have also been developed to protect tila-

pia from TiLV. Both vaccines increase survival by up to 52.5% com-

pared with unvaccinated fish. In contrast, when the DNA vaccine was

used as the primary vaccine and the subunit protein as a booster vac-

cine, the survival rate increased to 72.5% in these fish.178 Nevertheless,

further research into the development of viral vaccines for tilapia is still

urgently required to have an effective tool for managing viral diseases

in tilapia aquaculture.

Recently, S. agalactiae is the main bacterial pathogen in cultured Nile

tilapia, numerous vaccinations have been developed and can improve

immune response against infection such as inactivated vaccines, subunit

vaccines, DNA or live attenuated vaccines. The first vaccine against

S. agalactiae was created in the 1930s.182 With the development of the

human S. agalactiae vaccine, studies and the use of S. agalactiae vaccine

in tilapia have also advanced greatly in the past two decades. These vac-

cines are classified into replicative and non-replicative vaccines. Replica-

tive antigen delivery systems used for the design of S. agalactiae vaccine

for tilapia comprise live attenuated and DNA vaccines.177 Pridgeno and

Klesius183 reported that an attenuated S. agalactiae vaccine, selected

based on the bacterium's resistance to sparfloxacin, a fluoroquinolone

antibiotic, provided 100% protection in both 3–5 g and 15–20 g tilapia

administered via intraperitoneal (IP) injection. Another attenuated

erythromycin-resistant S. agalactiae vaccine for tilapia presented 95%,

93.02% and 100% relative percentage survival (RPS) at 4, 8 and

16 weeks post-vaccination.184 In 2019, Li et al.185 produced a Δ2 mutant

with a deleted D2 fragment that provided RPS values of 93.05% and

53.16% at 30 days post-IP injection and oral administration, respectively.

DNA vaccines have been made using different surface proteins of

S. agalactiae encoded in plasmid vectors. Surface immunogenic protein

(SIP),186 LPXT motif,187 fibrinogen binding protein (FbsA),188 alpha-

enolase (ENO1), phosphoglycerate kinase (PGK),189 ornithine carbamoyl-

transferase (OCT),190 extracellular products 89 kDa protein (ECO89),191

pyruvate kinase (PK)190 and capsular polysaccharide protein E (CspE)192

have been used as vaccine candidates for use in DNA vaccine produc-

tion. Most of them showed higher protection than inactivated whole cell

(IWC) vaccines.

No-replication antigen delivery systems include inactivated whole

cell (IWC), subunit and extracellular protein (ECP) vaccines. The exper-

imental data presented in the work by Avi et al.193 showed that vac-

cines based on formalin-killed S. agalactiae strains are very effective at

protecting tilapia against a lethal challenge with the bacterium. In

order to enhance their immunogenicity, different adjuvants, including

Freund's incomplete194 and aluminium hydroxide gel195 have been

used in IWC-vaccine formulations for S. agalactiae in tilapia. He

et al.195 produced a subunit vaccine using the Sip protein that pro-

duced high protection in tilapia, while Yi et al.188 showed high protec-

tion in tilapia using the subunit vaccines encoding the fibrinogen

binding protein A (FbsA) and α-enolase antigens. An ECP vaccine was

prepared by concentrating the cell-free fluid followed by 3% formalin

inactivation. Research has shown that the RPS of ECP vaccines give a

low level of protection against S. agalactiae challenge in tilapia; never-

theless, when the EPC vaccine was combined with the IWC-vaccine it
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showed higher protection than either the IWC-vaccine or the ECP

vaccine.196 As such, the search for protective vaccines against

S. agalactiae has significantly intensified alongside the rapid expansion

of tilapia production in the last two decades.177

Factors that need to be considered during vaccine development

for tilapia include the type of antigens and adjuvants used and the

number of vaccinations that are required. Indeed, the route of vaccine

delivery is important, as it can affect the wide-scale uptake of vaccine

usage by the tilapia aquaculture industry. Immersion and oral vaccines

are more practical for vaccinating large numbers of fish and are easier

to give to small fish. Nonetheless, vaccines need to be used in combi-

nation with other farm management practices, including effective dis-

ease diagnosis and elimination of infected fish, as well as promoting

fish health through alternative products and methods.

The time period from vaccination to potential exposure to the

actual pathogen should be optimized in such a way that maximum

protection coincides with the time of greatest risk of disease out-

break. Experimentally, formalin-killed cells of a single isolate of

S. agalactiae have been reported to offer significant protection to

30 g tilapia, with a RPS of 80% in vaccinated fish at 30 days post-

vaccination.197 The polyvalent vaccine provided significant

(P < 0.001) protection in both 3–5 g and 15–20 g Nile tilapia against

challenges with 30 isolated of virulent S. agalactiae.183 Overall, vac-

cination should be carried out some time before exposure to the

actual pathogen, in order to give immunity sufficient time to

develop. It is important to note that vaccination should not be car-

ried out too early prior to the risk period, as the degree of immunity

declines with time. Water temperature may be an important factor

when deciding when to vaccinate, as well as the size of fish. These

parameters are closely linked, and one cannot be settled without

account being taken of the other.

6 | ECONOMIC CONSIDERATIONS

The decision of fish farmers to immunostimulate their tilapia is nor-

mally based on an economic consideration of benefits and costs. Of

all the methods for enhancing fish immunity, the economy of vaccina-

tion is the most thoroughly studied. A model was developed and

applied to calculate the point of break-even between costs of vaccina-

tion and losses due to disease.198 It also considers labour costs for the

vaccination procedure and losses resulting from side-effects. Due to

vaccine licensing and other reasons, there has been no economic eval-

uation for Streptococcus vaccine for tilapia. Considering the economic

benefits of the vibriosis vaccine used in Atlantic salmon, injection vac-

cine has been shown to be economically beneficial if the disease

causes significant mortalities in non-vaccinated fish. An economic

model was further developed by Thorarinsson and Powell and

employed to evaluate the impact of disease risk, vaccine efficacy and

market price of fish.199 According to the results of the study, fish

farmers should choose the vaccine giving the best level of protection,

even if the price per dose is higher, due to the impact of vaccine effi-

cacy on the economic outcome.

7 | CONCLUSION AND FUTURE
DIRECTIONS

Recent epidemics due to emerging bacteria and viruses have caused

mass mortalities in tilapia production, which have had serious implica-

tions for countries that rely on tilapia aquaculture for food security

and socio-economic benefits. There are many strategies available to

address the challenges brought about by risk of diseases affecting

aquatic populations. These can range from effective biosecurity gov-

ernance (at the farm, sectoral, industry and legislation/policy levels),

good health management and responsible aquaculture practices

(including responsible movement of live aquatic animals), and effective

prevention technologies (e.g., use of clean seed through specific path-

ogen free stocks, vaccination) supported by sensitive and timely diag-

nostics, surveillance and emergency preparedness and contingency

plans. The critical “control point thinking” and “risk mindset” can be

applied throughout the value chain and combines good aquaculture

and biosecurity practices to understand the risk, identify the hazards

and manage the risk at each point of the chain.200 Awareness and

continuous capacity building are needed, especially targeting small-

scale producers. A combination of good health, good nutrition and

good genetics will create resilient hosts that can make farming of

aquatic species for food and livelihood be sustainable.201 Effective

disease management is essential to control these disease outbreaks

such as establishing a robust disease prevention program, including

the use of probiotics and good management practice could have a

beneficial impact on improving tilapia production.202 Nevertheless,

the decision to use products to enhance tilapia health will depend on

multiple factors including farming practice, farmer perception and the

overall cost–benefit of using such products. Importantly, creating a

less stressful environment for fish can be achieved through effective

husbandry management by maintaining high water quality, adequate

nutrition and good biosecurity. Rapid response to epidemic events

and the availability of rapid and accurate diagnostic methods are

important to limit the damage caused by these diseases. Vaccination

as a means of controlling infectious diseases is one of the most signifi-

cant and successful health practices within the aquaculture industry,

as seen in salmonids.

Strategies that enhance tilapia health are also beneficial for con-

trolling disease. We have highlighted the current knowledge and strat-

egies that are being used to improve tilapia health and disease

resistance, such as the use of immunomodulators and herbs, and the

supplementation of fish diets with probiotics and prebiotics. As well

as enhancing the fish's immune response, these products help to pro-

mote a healthy balance of commensal bacteria within the gut micro-

biome and prevent an imbalance in the microbial taxa resulting from

disturbance or perturbation of the microbiome due to environmental

stressors or disease. We need a greater understanding of the role the

gut microbiota has in key biological processes of the fish, such as its

ability to modulate metabolic processes, protect the host from patho-

gen invasion through competitive colonization and the production of

antimicrobial products, and in immune response development. Further

development and implementation of effective vaccines is also needed

WANG ET AL. 49



to reduce the negative impact of infectious diseases within tilapia

farms.

New technologies to select strains of disease-resistant tilapia

using marker-assisted selection (MAS) traits and next-generation

sequencing will be used to increase the survival of fish during

exposure to virulent pathogens.203–206 Advances in sensor-based

technology to monitor water quality, proper feed management and

monitoring for the presence of pathogens in rearing environments will

also increase the efficiency of tilapia health management and limit the

spread of pathogens in the farms. Integration of these technologies

together with the strategies summarized in this review will greatly

improve tilapia health, survival of the fish, and a reduction in the use

of antibiotics.
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Abstract

Tilapia aquaculture is a major source of animal protein, with global production reach-

ing over 6 million tonnes in 2020. The rapid growth of the tilapia sector has led to a

number of emerging disease threats and subsequent production losses. Risk analysis

can provide a targeted approach for improving biosecurity in the tilapia sector. The

aim of this work was to describe the tilapia value chain and review the important

infectious agents of tilapia that may affect the different points along the value chain;

such points include input and service suppliers, producers (i.e., hatcheries, nurseries

and grow-out farms), and processors, traders and marketers. We then describe how

risk analysis can be used to identify critical controls points along the value chain and

describe potential risk mitigation measures that may be implemented at those points.

The control of diseases of tilapia requires a multi-faceted approach, with risk-based

control measures chosen based on their feasibility, effectiveness and sustainability.

The Progressive Management Pathway for Improving Aquaculture Biosecurity, as a

risk-based, collaborative and progressive management approach combined with the

systematic preventive principles of Hazard Analysis Critical Control Point, offers a

strategic and practical way of improving biosecurity in the tilapia value chain.

K E YWORD S

aquaculture, HACCP, PMP/AB, risk assessment, tilapia, value chain

1 | INTRODUCTION

Tilapia is a very popular aquaculture commodity and is farmed in more than

120 countries and regions. It provides a good source of food and nutrition

and positively contributes to livelihoods through domestic and export earn-

ings. Global tilapia production is estimated to have reached about 6.8 mil-

lion tonnes in 2020 (Figure 1). Of the overall total, tilapia capture fisheries

produced about 0.7 million tonnes, accounting for only 10.8%, which has

peaked and remained static since 2007. In the same period, tilapia aquacul-

ture production has more than doubled to approximately 6.1 million tonnes

in 2020, with an estimated value of USD 12.3 billion.1

In terms of global tilapia commodity trade (export, import,

re-export), official Food and Agriculture Organization of the

United Nations (FAO) data for 2020 reported a quantity of 1.1 million

tonnes and a value of USD 3.2 billion.2 The top 10 tilapia aquaculture

producing countries in 2020 were China, Indonesia, Egypt, Brazil,

Bangladesh, Viet Nam, the Philippines, Thailand, Colombia and Uganda,

accounting for nearly 90% of the global aquaculture production. Only

the top three producers reached around one million tonnes in 2020;

1.66 million tonnes for China, 1.23 million tonnes for Indonesia, 0.95

million tonnes for Egypt, respectively, totalling a share of around 63%

of global tilapia aquaculture production.
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In line with other food production systems, diseases in the aquatic

sector represent a serious threat that must be addressed. Due to the

intensification of the aquaculture industry, combined with the increase in

the number and diversity of cultured species (more than 500 species of

finfish, molluscs, crustaceans, amphibians and aquatic plants), the likeli-

hood of the occurrence of new, emerging and re-emerging diseases has

increased.3–5 This is further exacerbated by the broad scope of culture

environments, the production systems, types of management and scale

of operations. Tilapia are tolerant to a wide range of environmental con-

ditions; however, diseases, particularly those of bacterial and viral origin,

remain one of the major limiting factors that hinder tilapia productivity,

particularly when cultured in intensive farming systems.3

The emergence and spread of disease within an aquaculture sys-

tem can be the result of a series of linked events reflecting the inter-

action between a number of biological factors, that is, host, infectious

agent(s) and environment. The Snieszko circle,6,7 also known as the

epidemiological triad,8,9 is commonly used to represent this paradigm.

Representing the interplay between these variables, this triad highlights

the interaction between pathogen and susceptible host in a suitable

environment that allows for transmission of the pathogen and develop-

ment of disease in the population (Figure 2). One approach to improv-

ing health management within the aquatic sector is to understand the

sequence of events in a given production system, possible risks and

pathways for pathogen transmission, and to identify interventions that

may lead to improvements in the health status of farmed tilapia.3

An estimation of the risks to human health and safety as well

as the identification and implementation of suitable mitigation

measures can be carried out by risk analysis, with concurrent com-

munication to stakeholders about the risks and measures

employed.10 Within an aquaculture context, these identified risk

categories may include pathogen risks, food safety and public

health risks, ecological (pests and invasive species) risks, genetic

risks, environmental risks, economic risks and social risks.11 In the

rapidly expanding tilapia sector, risk analysis offers targeted

improvements to biosecurity, a sound understanding of the tilapia

value chain relevant to each region or country and knowledge of

potential disease, all contributing to intervention and mitigation of

disease risks.

The aim of this paper is to describe and review important infec-

tious agents of tilapia that may affect the different points along the

tilapia value chain. Also discussed is how risk analysis can be used

to identify critical controls points within the value chain, and

potential biosecurity measures that can be implemented at these

points. Special attention is given to practical measures that can be

implemented for smallholders in developing countries with limited

capacity.

F IGURE 1 Global total tilapia capture and tilapia aquaculture production from 2000 to 2020. (source: www.fao.org/fishery/statistics/
software/fishstatj/en)

F IGURE 2 The Snieszko circle or epidemiological triad that shows
the interplay between the pathogen, and susceptible host in a suitable
environment that allows for transmission of the pathogen and
development of disease in the population. (Figure credit: Paulo Padre)
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2 | UNDERSTANDING THE TILAPIA
VALUE CHAIN

In general, a ‘value chain’ can be defined as a set of activities required

to bring a commodity to market. To truly understand the tilapia value

chain in a country, the stakeholders involved, and direction of activi-

ties, processes or movements of tilapia products should be well-

understood.12 The tilapia value chain can be mapped visually to

describe the flow of commodities through points along the value

chain, using a set of boxes and arrows, and includes both domestic

and international trade activities (Figure 3). Information should be

based on stakeholder consultations and published literature and

reports to ensure the tilapia sector is accurately described. Wherever

possible, this analysis should include socioeconomic information such

as number of farms, commodity volumes and profits.

Through value chain mapping, we can describe the movements

between points along the tilapia value chain, from input and service

suppliers to tilapia producers, and from there onto wholesalers,

processors, marketers, retailers and everything in between. Input and

service suppliers provide producers with fish health services, transpor-

tation services, feed, pharmaceuticals, tilapia seed and broodstock.

Tilapia producers have hatchery, nursery, or grow-out farms, with

movement and trading often occurring between farms. Marketing and

processing activities for live tilapia or their products may consist of

markets, traders (i.e., import/export movements), dealers, wholesalers,

processing plants, cold storage, or retail stores.

Relative to other actors in the value chain, smallholders or small-

scale producers receive the fewest economic benefits, which may be

due to lack of financial capital, infrastructure and organizational

capacity.13 From this perspective, they present the weakest link in the

system and represent higher risk in the long value chain. In many

developing countries that farm tilapia, the concept of value chain has

not been fully applied and services such as certification, traceability,

research on genetic improvements, enforcements of sanitary condi-

tions and regulating best practice in aquaculture can be lacking.14

Public institutions can strengthen and support the value chain;

however, these can be limited due to a lack of policy, legal, or regula-

tory framework, or manpower and logistical difficulties.15 Large-scale

commercial businesses in the tilapia value chain generally have

more limited risk exposure than small-scale companies in part due to

significantly greater structural organization, either in the form of

horizontally or vertically integrated operations, institutional support

and economic benefits.14 These advantages allow for large-scale

producers, processors and retail markets to have a stronger ability

to meet certification and quality assurance requirements related to

fish health or food safety, and thus greater access to international

markets.

3 | BIOSECURITY IN AQUACULTURE

Definition of biosecurity can vary. A broad definition of biosecurity

was provided by FAO,10 as a strategic and integrated approach that

encompasses both policy and regulatory frameworks aimed at analys-

ing and managing risks relevant to human, animal and plant life and

health, including associated environmental risks. It covers food safety,

zoonoses, introduction of animal and plant diseases and pests, intro-

duction and release of living modified organisms (LMOs) and their

products (e.g., GMOs), and the introduction of invasive alien species.

Biosecurity, in the context of the aquatic environment, is the sum

total of a country's activities and measures taken to protect its natural

aquatic resources, capture fisheries, aquaculture and biodiversity and

the people who depend on them from the possible negative impacts

resulting from the introduction and spread of serious transboundary

aquatic animal diseases (TAADs). The concept of biosecurity as a col-

lective term, referring to the application of appropriate measures, for

example, proactive disease risk analysis, in order to reduce the proba-

bility of the spread of biological organisms or agents to an individual,

population or ecosystem and mitigate the adverse effects was

described by Subasinghe and Bondad-Reantaso.16

In aquaculture, the drivers of risk analysis include resource pro-

tection, food security, trade, consumer preference for high quality and

safe products, production profitability as well as other investment and

development objectives. Risk analysis is a core concept that can be

applied to prevent and control the occurrence and spread of infec-

tious diseases, and needs to be incorporated into governmental regu-

lations as well as farm operational plans.17 Effective governance at all

levels (i.e., at both policy/legislation and farm levels) determines the

sustainability of the aquaculture sector. Biosecurity is also a major

player in the ‘One Health’ concept towards reducing antimicrobial

resistance and zoonotic diseases from farmed aquatic organisms and

their environment.

F IGURE 3 General representation of the tilapia value chain. (Figure credit: Brett MacKinnon)
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The World Organisation for Animal Health (WOAH) (founded as

OIE) defines biosecurity as a set of management and physical mea-

sures designed to reduce the risk of introduction, establishment and

spread of animal diseases, infections or infestations to, from and

within an animal population. The WOAH Aquatic Animal Health Code

(Aquatic Code) establishes standards for the improvement of aquatic

animal health worldwide,18 and includes standards for the welfare of

farmed fish and the use of antimicrobial agents in aquatic animals. It is

used to develop measures for the early detection, internal reporting,

notification, control or eradication of pathogenic agents in aquatic

animals to prevent their spread via international trade. WOAH's Manual

of Diagnostic Tests for Aquatic Animals18 provides the rapidly evolving

laboratory testing methods for the diagnosis of pathogenic agents that

may adversely affect aquatic animals.

In the context of FAO's Progressive Management Pathway for

Improving Aquaculture Biosecurity (PMP/AB), biosecurity refers to “the
cost-effective management of risks posed by pathogenic agents to

aquaculture through a strategic approach at enterprise, national and

international levels with shared public-private responsibilities.”1 It fol-

lows the principles of being risk-based, progressive and collaborative.

F IGURE 4 Diseases of tilapia reported to affect various stages of production. IPNV, Infectious pancreatic necrosis virus; ISKNV, Infectious
skin and kidney necrosis; LCDV, Lymphocystis disease virus; TiPV, Tilapia parvovirus; TiLV, Tilapia lake virus; MAS, Motile Aeromonas septicemia;
NNV, Nervous necrosis virus; TLEV, Tilapia larvae encephalitis virus. (Figure credit: Partho Dennath)
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Implementation of the PMP/AB is expected to result in “sustainable
reduction of burden of disease; improvement of health at farm and

national levels; minimization of global spread of diseases; optimization

of socioeconomic benefits from aquaculture; attraction of investment

opportunities into aquaculture; and achievement of ‘One Health’ goals.”
In this paper, biosecurity takes a broader dimension and combines

a number of important principles and elements taken from the above

definitions, whilst still taking the risk assessment approach and hazard

analysis and critical control point (HACCP) approach in improving bio-

security in the tilapia aquaculture value chain.

4 | REVIEW OF INFECTIOUS AGENTS OF
TILAPIA

Prior to implementing biosecurity measures on a tilapia farm or within the

tilapia value chain, it is important to first identify and have a good under-

standing of all pathogens (i.e., viruses, bacteria, fungi, parasites) that could

negatively impact the fish population. One or more stages of production

may be affected depending on the infectious agent and aquaculture sys-

tem (Figure 4). Ideally, serious diseases affecting the tilapia industry are

reportable at the national level and have valid diagnostic tests for

identification and merit the effort required to control their introduc-

tion and spread in the country, zone, or farm. These pathogens may

already be present in the country, may be exotic or emerging, and

may be listed under transnational reporting systems such as the

World Animal Health Information System (WAHIS) of the WOAH

(https://wahis.woah.org), the Animal Disease Notification System

(ADNS) of the European Union (https://ec.europa.eu/food/animals/

animaldiseases/not-system_en), the Emergency Prevention System

for Animal Health (EMPRES-AH) of the FAO (http://www.fao.org/

ag/againfo/programmes/en/empres/home.asp) and the Quarterly

Aquatic Animal Disease (QAAD) Reports for Asia and the Pacific

region administered by the Network of Aquaculture Centres in the

Asia-Pacific (NACA).19

Below is a review of bacterial, parasitic, viral and fungal diseases

that have been reported in cultured tilapia, identifying the potential

risk factors involved, that is, the infectious agent, host or environmen-

tal characteristics specific to the geographic location or value chain.

4.1 | Parasitic diseases of tilapia

Wide ranges of parasite species have been reported to threaten tilapia

production (Table 1). Several factors influence the occurrence and sever-

ity of parasitic infections, including the parasite load, culture system, and

fish population density, species, sex, size and health status.20 In both

hatcheries and rearing facilities, protozoan parasites have been docu-

mented to cause severe mortality in wild and farmed tilapia.20 Ectopara-

sitic infection by ciliated protozoans, such as Trichodina spp. and

Ichthyophthirius multifiliis, has been extensively studied and characterized

in tilapia.21,22 In general, juvenile stages of tilapia are more vulnerable to

protozoan infestations than adults.20,23,24 In addition, higher

temperatures have been reported to be a key risk factor for protozoan

infestations on tilapia farms.20,24–27

Outbreaks with monogenean parasites may impact production

on tilapia farms, especially in pond culture systems.28 Monogenean

infections are commonly associated with parasites belonging

to the Dactylogyridae and Gyrodactylidae families, as well as the

Cichlidogyrus genus.24 Gyrodactylids, such as Gyrodactylus cichlidarum,

are one of the most common monogenean species infecting young Nile

tilapia (Oreochromis niloticus) and have the potential to cause substantial

mortality in intensively farmed fish around the world.29 Monogenetic

trematodes are regarded as a bioindicator of the quality of culture

conditions, since poor water quality, poor farm management, and

toxic pollutants all contribute to parasitic abundance.30 Digenetic

trematodes are another major concern in tilapia farming, causing

significant losses in fingerling and juvenile fish.20 Clinostomum and

Euclinostomum, for example, are two genera of digenetic trematodes

reported to affect tilapia. There are no effective treatments for dige-

netic trematodes in tilapia, and infestations with these parasites are

typically managed by removing snails and drying and liming ponds.20

Many species of nematodes, cestodes and acanthocephalans have

been reported in both wild and cultivated tilapia, but little is known

about their parasitic relevance.31–35 There have been reports of tilapia

diseases induced by these parasites, including diphyllobothriosis, heart

worm disease and cichlid acanthocephaliasis.26 The copepods Ergasilus

spp., Lernaea spp., Caligus spp. and Lamperoglena spp., the branchiurans

Argulus spp. and Dolops spp., and the isopod Alitropus typus are parasitic

crustaceans that frequently infest wild and farmed tilapia.36 Many of

these parasites pose serious health risks to cultured tilapia, resulting in

significant losses for producers.36 Overstocking may lead to rapid trans-

mission and replication of crustacean parasites, causing significant mor-

tality in stocked fish, particularly in high water temperature, as their life

cycles accelerate.26 Overall, the life stage of the tilapia population is a

critical indicator for managing infestations, with parasitic diseases primar-

ily occurring in the larval, fingerling and juvenile stages. Apart from tem-

perature fluctuations, other major risk factors for parasitic infections in

tilapia include poor water quality management and inadequate biosecur-

ity measures. It is important that these are addressed to control the para-

sitic load during early rearing stages.

4.2 | Viral diseases of tilapia

In recent years, there have been numerous reports of viral infections

significantly impacting tilapia production. Nine viral diseases have

been reported in tilapia, to date, including six DNA viruses and three

RNA viruses (Table 2). Tilapia parvovirus (TiPV), reported on tilapia

farms in China37 and Thailand,38 is the most recently discovered viral

disease in tilapia. However, tilapia lake virus (TiLV) has had the most

significant impact on the tilapia industry. TiLV was initially discovered

in Israel39 in 2014, and has now spread to 16 nations across four con-

tinents.40 TiLV is a negative-sense single-stranded RNA virus that

may infect tilapia at any life stage and cause massive mortalities as

high as 90%.39,41,42 Live fish translocation has been identified as a
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possible risk factor for the rapid spread of TiLV to several countries.43

Recently, co-infections of TiPV and TiLV have been reported in tilapia

farms in Thailand.44

In tilapia production, the disease risks associated with viruses vary

greatly depending on the life stage of the fish. Several viral infections

have been documented in tilapia fry, including betanodavirus and tila-

pia larvae encephalitis virus (TLEV), which often result in significant

mortalities in hatcheries.45,46 The majority of viruses affecting tilapia,

namely TiLV, infectious spleen and kidney necrosis virus (ISKNV),

TLEV, infectious pancreatic necrosis virus (IPNV) and nervous necrosis

virus (NNV), may spread via vertical and horizontal transmission. TiLV,

for example, was detected in subclinical broodstock sourced from dif-

ferent hatcheries and readily transmits between farms.47,48 For the

majority of viruses affecting tilapia (excluding TiLV), little information

is known regarding their geographical distribution or impact on pro-

duction. No treatment is available for these viral diseases; therefore,

good biosecurity protocols should be followed during every stage of

production.

4.3 | Bacterial diseases of tilapia

Tilapias are susceptible to a wide range of bacterial infections

(Table 3). Among them, streptococcosis is one of the most common

bacterial infections, which led to USD 40 million in economic losses in

China in 2011.49 Streptococcus spp. can transmit both vertically and

horizontally50,51 and outbreaks have been associated with high stock-

ing densities and poor water quality, such as high temperatures,

excessive ammonium and nitrite levels, and low dissolved oxygen

levels.50,52–55 The disease has been found in fish of any size or

age.50,55–57 Streptococcus spp. may also present a public health risk,

which is a major concern in humans.58

Numerous other bacterial infections, such as columnaris, franci-

sellosis and edwardsiellosis, have been reported as the most prevalent

diseases in the tilapia industry, causing severe infection in fry and fin-

gerling stages.59–66 Columnaris infection, caused by Flavobacterium

columnare, can significantly impact productivity on farms.59 This dis-

ease produces necrotic lesions on the gills and surface of the skin,

often affecting the back and sides of the fish with a ‘saddle back’
lesion. Outbreaks are often initiated after periods of environmental

stress caused by poor water quality, excessive handling and high

stocking density. Columnaris can affect tilapia at any stage of develop-

ment; however, fry and fingerlings tend to be more severely impacted

by this disease.59,62

Motile aeromonas septicemia (MAS) is another major threat to

the tilapia industry.67–70 Most commonly caused by Aeromonas hydro-

phila, this disease frequently results in high mortality rates and affects

both juvenile and adult fish. Infected fish are often treated with antibi-

otics but there are many reports of antimicrobial resistant strains on

farms around the world.71 Several vaccines against MAS are available

and range in their efficacy.72 Multiple risk factors are well known that

may lead to an increase in outbreaks on tilapia farms. These include

management related factors known to stress tilapia—such asT
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aggressive handling, high stocking density and poor water quality.

Abrupt fluctuations in water temperature or concurrent fungal or par-

asitic infections may also increase their susceptibility to developing

MAS.73

Francisellosis, caused by Francisella orientalis, is a significant dis-

ease affecting the tilapia sector.74 Disease outbreaks have been docu-

mented as early as the 1990s, and high prevalence of infection with

this pathogen has continued to be reported on tilapia farms over the

past decade.75–77 Both horizontal and vertical transmission may occur,

and the infection is typically chronic with high morbidity and mortality

(<90%) on tilapia farms.66,78 To date, no commercial vaccines against

francisellosis are licensed for use in tilapia.79

The novel bacterial disease hahellosis, caused by Hahella chejuen-

sis, reportedly affects eggs and leads to red egg syndrome prior to

hatching.80 Disease outbreaks with this marine pathogen are more

likely to occur in colder seasons, with an increase in mortality rates

when water temperatures drop below 24�C.80

In general, several stressors, such as fluctuating water tempera-

ture, pH and salinity, low levels of dissolve oxygen, increasing levels

of ammonia, higher stocking density, improper fish handling and poor

management may increase the risk of bacterial disease outbreaks in

tilapia populations.73,81–85 Antibiotics have historically been used to

treat bacterial diseases in aquaculture, however, there is growing pub-

lic concern regarding the use of antimicrobials for disease manage-

ment due the introduction and spread of antimicrobial resistant genes

and detection of drug residues.

4.4 | Fungal diseases of tilapia

Fungal infections are classified as opportunistic because they thrive

in necrotic tissues linked with injuries, bacterial or parasitic infec-

tions, dead and rotting eggs, and suboptimal culture conditions.86 A

variety of fungal species have been identified from wild and farmed

tilapia, with the following diseases being the most common and

well-documented.87,88 Saprolegniasis, caused by the water mould

oomycete Saprolegnia ubiquitous,89 appears as cottony white, grey,

brown, red, or greenish masses on affected fish.88 Haemorrhagic

ulceration, erosion of the skin, fins, gills and muscles, systemic

mycosis of the liver, spleen, eyes and kidney, and elevated mortality

were reported as major clinical indications of saprolegniasis.88 This

pathogen causes notable infections, usually during larval growth in

hatcheries,90 resulting in fatalities and considerable economic

losses, particularly in aquaculture facilities.91–93 Low temperature

(<15�C) was reported as the key influencing factor for the rapid

spread of this pathogen.94 Branchiomycosis (gill rot) is another fun-

gal infection in tilapia that affects the gills and is caused by two

oomycetes: Branchiomyces sanguinis and B. demigrans.89 Branchio-

myces spp. infection is sometimes referred to as ‘bad-management

disease,’ since it thrives in low-quality water with large amounts of

organic debris. Another fungal disease, Ichthyophoniasis, is one of

the most economically and environmentally devastating diseases

that affects farmed Nile tilapia.95,96 Infection with Ichthyophonus

spp. is more common throughout the winter.96,97 Aspergillomycosis

is a fungal infection in tilapia caused by Aspergillus niger.24 The

growth of this mould is caused by poor storage of fish feed.20 There

have been no reports describing the life stages of tilapia affected by

ichthyophoniasis and aspergillomycosis.

5 | IMPLEMENTING BIOSECURITY
MEASURES IN THE VALUE CHAIN

Any aquaculture biosecurity programme should include risk analysis

as a fundamental component for disease control.10 For the purposes

of this paper, we focus on disease risk, in which ‘risk’ is represented

by one or more infections/diseases. Risk analysis allows for a greater

understanding of the tilapia sector in a particular country or region

and can be used to identify the diseases that impact production and

sustainability of fish farms. Using this systematic approach, risk-based

biosecurity strategies can be developed to control the introduction

and spread of infectious diseases within the tilapia value chain in an

effective and sustainable manner for the industry.

The general framework for risk analysis typically consists of four

major components: (i) hazard identification—the process of identifying

hazards that could potentially produce consequences; (ii) risk

assessment—the process of evaluating the likelihood that a potential

hazard will be realized and estimating the biological, social and/or eco-

nomic consequences of its realization; (iii) risk management—the seek-

ing of means to reduce either the likelihood or the consequences

upon occurrence; and (iv) risk communication—the process by which

stakeholders are consulted, information and opinions are gathered,

and risk analysis results and management measures are communi-

cated. Risk analysis is a process that provides a flexible framework

within which the risks of adverse consequences resulting from a

course of action can be evaluated in a transparent, evidence-based

manner. The risk analysis approach permits a defendable decision to

be made on whether the risk posed by a particular action or ‘hazard’
is acceptable or not, and provides the means to evaluate possible

ways to reduce the risk from an unacceptable level to one that is

acceptable. Its structure and components will vary considerably

depending on: (i) the sector (technical, social or financial), (ii) the user

(government, company or individual), (iii) the scale (international, local

or entity), or (iv) the purpose (to gain understanding of the processes

that determine the risk or to form the basis for legal measures). It can

be qualitative or quantitative.17 As a decision-making tool, risk analy-

sis can be used to identify and prioritize the points or indicators that

may pose a risk for disease transmission along the tilapia value chain,

offering flexibility in its use.

‘Risk’ is defined as an estimation of the likelihood (i.e., probability)

of introduction and spread of a pathogen, and the consequences of

this occurring.98 Risk assessments are conducted as part of the overall

risk analysis process to estimate the level of risk at each point along the

value chain and typically follow the WOAH's methodology, consisting

of an entry assessment and exposure assessment, followed by a conse-

quence assessment.18
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Specifically, entry and exposure assessments describe the risk

pathways necessary for the entry of a pathogen into a particular envi-

ronment and exposure of a susceptible population to the pathogen,

followed by an assessment of the likelihood of the processes occur-

ring.99 These pathways should be targeted when implementing new

biosecurity measures or enhancing existing measures. In developing

countries with limited resources, risk pathways around points in the

tilapia value chain with the highest levels of risk can be prioritized.

Risk pathways are stepwise in nature and assist in identifying all

conditions required for a disease outbreak to occur at points in the

value chain. It is important that all steps within the risk pathway are

plausible and evidence-based, considering the epidemiology of patho-

gens and diseases of concern and specific processes and activities

occurring within the value chain.12 The networks and linkages in tilapia

value chains provide opportunities for disease transmission within or

between farms, and diseases are often spread by movements of

infected fish or their products. Contaminated influent water or effluent

water are other major routes of pathogen introduction to farms. Dis-

ease transmission can also occur through movements of contaminated

input materials (e.g., feed, seed), vectors (e.g., people, birds, vermin),

and equipment, vehicles and other fomites (i.e., non-living objects that

can be contaminated with pathogenic agents) during transport. All

potential transmission routes in which an infectious disease may enter

a point along the value chain should therefore be considered.

For each step of the risk pathway, it is necessary to identify all

known factors influencing the probability of that step occurring. Risk

factors increase the likelihood of disease introduction and spread along

the value chain (Table 4). These factors can be related to the infectious

agent (e.g., virulence, pathogenicity, survival), host (e.g., immunity, spe-

cies of tilapia), or environmental characteristics specific to the geo-

graphic location or value chain (e.g., management practices, seasonal

changes, volume of commodity).100 Based on this knowledge, the likeli-

hood of each step occurring along the pathway is typically estimated

qualitatively or semi-quantitatively.12 It is especially important to

engage with key stakeholders in the tilapia industry throughout the risk

analysis process to increase compliance, and ensure results are realistic

and biosecurity measures are feasible.

Critical control points are points in the risk pathways where efforts

can be focused to minimize or completely eliminate the risks of disease

introduction and spread. In other words, these points can be targeted

for the implementation of risk management, a major component of the

risk analysis process.99 This is also in line with the HACCP system that

has been adopted by the Codex Alimentarius Commission.101 Particu-

larly in developing countries with limited resources, it is important to

select control measures that are practical, effective, economical and

sustainable. Biosecurity measures should consider the likelihood esti-

mates and risk factors identified at each step of the pathway. Multiple

critical control points may be identified, but in many cases, they should

be prioritized based on multi-stakeholder discussions.

In the sections below, we briefly discuss potential risk management

measures that may be implemented at critical control points to mitigate

the risk of disease introduction and spread along the tilapia value chain

(i.e., input and service suppliers; producers at hatcheries, nurseries and

grow-out farms; and processors, traders and marketers). It is important

that biosecurity measures are first selected based on their effectiveness

in preventing or minimizing the risks associated with known risk factors

(Table 4), and then prioritized based on their practicality, cost-benefits

and sustainability associated with implementation.

5.1 | Input and service suppliers

Input and service suppliers in the tilapia sector provide seed, brood fish,

feed, drugs, equipment and materials, often serving multiple clients in a

particular region. During these visits, their vehicles, farm equipment,

boots or other outerwear may act as fomites and pose a risk for the

introduction of infectious diseases onto farms. The risks increase if multi-

ple sites are visited within a short period of time, particularly if hatcheries

are attended following grow-out site visits. Disease management solu-

tions that can be used in the tilapia sector include handwashing, foot-

baths and the cleaning and disinfection of protective clothing, vehicles,

boats, nets and other equipment and materials between site visits.18 Dis-

infectants should be safe for use around aquaculture systems and suffi-

cient to kill pathogenic agents of concern on the farm. Commonly used

disinfectants include iodophors (e.g., Wescodyne, Betadine) and Virkon

Aquatic, which are effective against most aquatic bacterial and viral path-

ogens affecting tilapia.102 Strict security should also be enforced at both

in-land and cage culture systems to restrict the movement of visitors and

ensure compliance with biosecurity protocols.18

A number of problems tend to arise when there is limited access

to trained fish health service providers; major consequences include

misdiagnosis and improper treatments on farms, which often leads to

reduced production and treatment failure.103 Implementation of fish

health management and surveillance programmes are vital to support

the early diagnosis of emerging diseases.19 In countries or regions

where fish health services are provided by non-aquatic veterinarians,

one possible solution is to ensure fish health specialists are qualified

through education (post-graduate qualification), fish health programmes

recognized by the Competent Authority, a professional certification

scheme that involves standardized training and assessments.11 This

would provide a mechanism for farmers to identify competent fish

health professionals to attend their sites. A few of these certification

schemes exist and are being explored by FAO as a means to build

capacity in aquatic animal health in developing countries.104 In coun-

tries with limited fish health diagnostic expertise, formal collaborations

can be established with international accredited laboratories to provide

diagnostic testing for diseases of national concern.

The introduction of fish seed or broodstock with an unknown

health-status is another major pathway of disease introduction in the

tilapia sector. To mitigate the risks, seed or broodstock should be

sourced from specific pathogen free (SPF) stocks that are certified-

free from pathogens of concern.3 In many cases, local hatcheries

supply tilapia seed over relatively short distances, which reduces the

likelihood of transport-related stress and trauma that often predispose

fish to opportunistic infections.105 Transportation containers should

be disinfected before use, and eggs should be disinfected prior to
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TABLE 4 A generalized list of potential risk factors for disease introduction and spread at major points along the tilapia value chain

Point in value chain Potential risk factors

Input and service suppliers

Fish health services • Inadequate fish health services (e.g., limited training, misdiagnosis, lack of surveillance)

• Inadequate fish health diagnostic laboratory

• Multiple farm visits within a short time period

• Inadequate cleaning and disinfection of fomites (e.g., nets, boots, outerwear, boats, vehicles, equipment) between

rearing units or site visits

Transportation services • Multiple visits by different transportation services at farms

• Inadequate cleaning and disinfection of fomites between visits (e.g., boots, boats, vehicles, nets)

• Inadequate disinfection of effluent water

• Inadequate disposal of mortalities or offal

• Mixing of species

• Mixing of life-stages

• Lack of traceability of fish

• Inadequate governmental biosecurity regulations or enforcement

Equipment and materials

supplier

• Multiple visits by different suppliers at farms

• Inadequate cleaning and disinfection of fomites between visits (e.g., boots, boats, vehicles)

• Inadequate cleaning and disinfection of used equipment and materials

Feed and pharmaceutical

suppliers

• Multiple visits by different suppliers at farms

• Inadequate cleaning and disinfection of fomites between visits (e.g., boots, boats, vehicles)

• Unreputable feed supplier

• Using live feed

• Using non-commercial feed

• Unreputable pharmaceutical supplier

• Using unlicensed, expired, or fraudulent drugs

• Inadequate governmental biosecurity regulations or enforcement

Seed and broodstock

suppliers

• Multiple visits by different suppliers at farms

• Inadequate cleaning and disinfection of fomites between visits (e.g., boots, boats, vehicles, nets)

• Inadequate disinfection of effluent water

• Inadequate disposal of mortalities

• Lack of health certification or traceability of seed or fish

• Collection of seed from the wild

• Inadequate disinfection of eggs

• Inadequate governmental biosecurity regulations or enforcement

Producers

Hatchery, nursery, or grow-

out

• Inexperienced farmer

• Lack of standard operating procedures or improper training of staff

• Lack of security or visitor control to sites

• Visiting multiple sites within a short time period

• Visiting other sites prior to the hatchery or nursery within a short time period

• Inadequate cleaning and disinfection of fomites (e.g., boots, outerwear, equipment, vehicles) between visits

• Sharing equipment (e.g., nets) between sites

• Inadequate cleaning and disinfection of tanks

• Dirty or damaged nets

• Untreated influent water or lack of a pathogen-free water source

• Poor water quality

• Inadequate cleaning and disinfection of ponds

• Lack of fallowing of ponds, cages or net-pens

• Multiple farms in a small geographic area

• Seasonal fluctuations in weather

• Shared water with infected wild fish populations

• Accidental introductions of wild species

• Introduction of fish of unknown health status

• Mixing of stock from different sources

• Mixing of stock from different age-classes

• Mixing of species

• Overstocking of fish

• Excessive fish handling

• Movement of fish between rearing units

(Continues)
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entry into hatcheries to minimize contamination with pathogenic

agents.18 At the country level, strict aquaculture biosecurity regula-

tions should be in place regarding inspection and health certification

of imported live fish or their products to ensure freedom from infec-

tious pathogens.106 These regulations also often include proper disin-

fection and disposal of effluent water, mortalities or waste related to

transport from both locally or internationally sourced animals.

It is important that tilapia producers source their feed from repu-

table companies, as feed quality and nutrition are integral to fish

health. Trash fish can carry numerous pathogenic agents and pose a

risk for disease introduction, particularly in cage culture settings.98

Commercial feeds that follow good manufacturing practices and

HACCP guidelines undergo intensive processing that inactivates path-

ogenic agents, making these products a safe choice for farmed fish.

However, feeds that are not stored in cool, dry and secure containers

are at risk for contamination with pathogenic bacteria or fungi.107 In

the case of premixes and medicated feeds, proper storage is especially

important to maintain the stability of active ingredients.

Antimicrobials and other drugs are commonly used in tilapia aqua-

culture production and should be used responsibly under the direction

of an aquatic veterinarian or a fish health specialist.108 Fish populations

treated with expired or fraudulent antimicrobial products are at risk of

treatment failure, which can result in sub-therapeutic levels of treat-

ments and significant production losses. In some cases, the risks are

exacerbated with the development of antimicrobial resistant genes.109

It is therefore important to source medications and medicated feeds

from reputable suppliers. However, as evident in recent studies in Asia,

even commercially purchased antimicrobial products may be of poor

quality with limited active ingredients, limiting their efficacy.110,111 In

the case of antibiotics, their efficacy can be confirmed through diagnos-

tic testing that can be performed in most laboratories. Susceptibility

testing via minimum inhibitory concentration (MIC) panels can be used

to confirm the effectiveness of antibiotic products against targeted bac-

terial isolates; this test is a very cost-effective and practical method that

can be used in laboratories with limited capacity. High-performance liq-

uid chromatography (HPLC) can also be used to confirm the concentra-

tion of active pharmaceutical ingredients in antimicrobial products.110

This test may be particularly useful in developing countries with limited

regulations or enforcement for veterinary drugs. Many countries have

strict regulations in place to ensure pharmaceutical products used in

aquaculture are safe for use in food fish, and have strict withdrawal

times and complete transparency regarding active ingredients.112

5.2 | Producers

5.2.1 | Hatcheries

Hatcheries are the first phase of the tilapia production cycle and

should begin with healthy broodstock. If eggs or fry are produced on

TABLE 4 (Continued)

Point in value chain Potential risk factors

• Inadequate egg disinfection

• Providing treatments without consultation of a fish health expert

• Lack of vaccination

• Use of contaminated or spoiled feed

• Inadequate protection from predators

• Inadequate disinfection effluent water

• Inadequate disposal of mortalities or waste

• Use of contaminated fertilizers in or around ponds

• Presence of snails within sites

• Inadequate governmental biosecurity regulations or enforcement

Processors, traders and marketers

Processing plant • Receiving fish from multiple sources

• Lack of traceability of fish

• Inadequate cleaning and disinfection of equipment

• Inadequate disposal of fish or offal

• Inadequate disinfection effluent water

• Poor hygiene of staff

• Improper storage of fish or their products

• Inadequate protection from vermin and scavengers

• Inadequate governmental biosecurity regulations or enforcement

Distributors, markets or

retail

• Mixing of stock from different sources

• Mixing of species

• Lack of traceability of fish

• Inadequate disposal of fish or offal

• Inadequate disinfection effluent water

• Poor hygiene of staff

• Improper storage of fish or their products

• Inadequate protection from vermin and scavengers

• Inadequate governmental biosecurity regulations or enforcement
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site, broodstock are usually raised in ponds, hapas, or tanks where egg

laying, spawning and fertilization occurs. At this stage, eggs may be

collected and transferred to hatching units, or be left to hatch natu-

rally alongside the brood fish. Fry are collected and transferred to

tanks or hapas until they reach fingerling size. Infectious diseases are

a major issue in hatcheries and can lead to massive mortality in larval

populations.113 For example, the majority of parasitic infections in tila-

pia occur during the early life stages of the fish; therefore, special

attention should be paid to the prevention and treatment of parasites

in hatcheries.

Disease risks cannot be mitigated by simply using SPF brood-

stock; however, stocking clean stocks is already a good starting point.

Pathogens can enter a hatchery through a number of transmission

routes, including risky practices associated with input and service sup-

pliers, as described above. It is much easier to prevent disease out-

breaks in a closed aquaculture system compared with pond or hapa-

based culture—as discussed further in Section 5.2.2. Although not

always practical, tank culture allows for easy observation of fish for

early signs of disease and a high degree of control over water condi-

tions. Regardless of the culture system, newly introduced brood fish

or seed into the hatchery should first be quarantined and monitored

for the presence of infectious diseases.

Although tilapia can be reared in a wide range of environmental

conditions, poor water quality can lead to elevated mortality and

reduced production on farms.114 In tank culture systems, the use of

contaminated influent water is a major risk, which can be mitigated

with a water treatment system or by supplying tanks with pathogen-

free ground water or de-chlorinated municipal water.18 If lake or river

water is used, screening and filtration should be in place to prevent

the entry of wild fish, which can be carriers of infectious agents.

These mitigating measures are not possible in ponds or hapas.

Subclinical infections are common in adult fish and remain unde-

tected in a population without regular surveillance.19 Furthermore,

the immature immune system of tilapia larvae makes them particularly

vulnerable to infections.112 Biosecurity strategies should therefore be

in place to minimize horizontal transmission from brood fish to these

early stages within a hatchery.

In flow-through systems, water should first pass through the

broodstock units and then the eggs, before supplying the early larval

stages. Other ways to minimize horizontal transmission to tilapia seed

include separation of life stages, designated equipment and staff for

each rearing unit, proper disposal of waste and limited visitors to the

hatchery.18 Broodstock vaccination is another option that can transfer

both specific and non-specific immunity to their offspring.115–117 In a

recent study, vaccination of tilapia brood fish against Streptococcus

agalactiae provided enhanced protection in their seed.118 Fry or jun-

venile tilapia can also be vaccinated before transfer to grow-out

farms.

As with any aquaculture system, the goal is to reduce exposure to

potential infectious agents through the removal of mortalities and reg-

ular cleaning and disinfection of nets, tanks, equipment and other

materials. Tilapia producers should strive for early disease detection

and treatment on farms by training all farm staff and working with an

experienced fish health specialist. It is important that only healthy fin-

gerlings are transferred to nurseries or grow-out sites to minimize the

spread of disease within a farm.

5.2.2 | Nurseries and grow-out farms

Tilapia fingerlings are usually raised in nurseries for 2 to 3 months

until they reach an advanced size.119 Nurseries may consist of tanks,

ponds, or hapas. Once fingerlings reach grow-out, pond culture is

most common; however, cage, tank and raceway culture systems also

exist. Any newly introduced fingerlings with an unknown health status

should be contained in a separate quarantine unit to ensure freedom

from infectious agents.

Water serves as the greatest risk for pathogen introduction in

open aquaculture systems, particularly in cage culture. Disease risks

can be minimized, but not completely prevented, by implementing

biosecurity measures aimed to improve the immunity of the popula-

tion, and reduce the level of exposure and pathogenicity of infectious

agents. Several risk management measures may be used to reduce the

potential pathogen load in nurseries or grow-out farms. Early treat-

ments may reduce the severity of disease and limit transmission

within a farm.120 Therefore, farms should be monitored daily to allow

for rapid diagnoses during outbreaks.

Proper sanitary conditions are very important, cost-effective and

fairly easy to implement. In cage or hapa culture, regular removal of

dead fish and cleaning of nets can improve water quality and reduce

exposure to infectious agents in pens.121 A fallowing period should

also be implemented for several days between harvest and stock-

ing.122 In pond farming, ponds should be drained, cleaned, limed and

dried before the next production cycle.123 This will disinfect the pond

and kill wild aquatic species that may serve as potential vectors for

disease transmission to tilapia. For example, snails are the intermedi-

ate host of parasitic trematodes.124

Vaccination is widely promoted as a first line of defence against

infectious diseases in tilapia production. Fingerlings should be vacci-

nated prior to grow-out. A number of vaccines have been developed

to address major disease challenges in tilapia, such as streptococcosis,

francisellosis, MAS and TiLV infection.72,125,126 Autogenous vaccines

can also be produced against various pathogens for individual farms.

Stressful environmental conditions weaken the fish immune sys-

tem, increasing the occurrence of opportunistic infections.127 Over-

stocking is a major stressor in tilapia culture and can lead to an

increase in competition and aggression in the population. El Nouman

et al.128 reported that tilapia fingerlings reared in floating cages had

the best performance at a medium density of 240 fish-m3. Excessive

handling, which can occur during transportation, vaccination or treat-

ments, is also very stressful for fish.129

Fluctuations in weather can be problematic for open aquaculture

systems. Rising water temperatures increase the risk of infectious dis-

ease outbreaks on tilapia farms.121,130 For example, ‘summer mortality

syndrome’ was reported on Egyptian tilapia farms in 2015 and poten-

tially linked to TiLV.131 For early detection of diseases, active
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surveillance should be conducted regularly during seasons of elevated

disease risk.19 Storm events can stress fish, tear nets, or in severe

cases, destroy farms entirely. Nets should be checked regularly and

replaced, if necessary, to prevent the entry of wild fish, birds, or other

predators, which may be vectors or carriers of disease.

5.3 | Processors, traders and marketers

Once live tilapia or their products reach the processing, trading or

marketing points in the value chain, it is important to understand what

typical managing practices are being followed, the quantity of com-

modity being moved and the transportation routes and final destina-

tion. These factors affect the risk of contamination occurring along

this part of the value chain. To better estimate the level of risk, the

effects of processing, storage, or transport on the pathogens of con-

cern should be well-understood. Infectious agents may be reduced or

inactivated during the handling, processing or storing (e.g., freezing)

stages.98

In general, the tilapia industry is dominated by small-scale farms.

The majority of tilapia production is marketed in rural areas and con-

sumed locally, especially in developing countries. Local markets usu-

ally sell dried, smoked, live, freshly killed or chilled tilapia directly to

consumers.132 Food safety risks associated with tilapia products being

sold in local market settings should also be considered. The surface of

the fish may be contaminated with pathogens from the water, particu-

larly in cases of sewage contamination, or through exposure during

handling, processing, or transportation.133 Strict hygiene measures

should be taken to minimize the risks of foodborne illness, including

handwashing, preventing cross-contamination from people/fomites

and cooking raw fish products prior to consumption. Fresh tilapia

products must be chilled immediately to prevent spoilage. Tempera-

ture control of fresh fish is dependent on the availability of ice or

refrigeration in the region. Smoked fish may contain a high concentra-

tion of polycyclic aromatic hydrocarbons (PAHs), which may also pre-

sent carcinogenic risks when consumed.134

In some cases, tilapia producers sell their fish directly to traders,

who then sell the product to wholesalers or retailers. It is common,

particularly in Southeast Asia, to see live tilapia in aquariums in super-

markets and restaurants. At these locations, the fish may be sourced

from multiple producers within a local region, which represents a

potential risk of disease transmission to farms via fomites or vectors,

or even effluent water in the case of farms in very close proximity to

markets.

In addition to the domestic markets, tilapia is highly traded on a

global scale. Therefore, it is important that proper handling and pro-

cessing is implemented to maintain high quality products that meet

standards required by external trade partners.132 Processed fish are

in high demand in global markets, which includes, freshly frozen fil-

lets, dried and salted fish, minced fish or fish balls. Large tilapia pro-

cessors may sell their products to wholesalers or directly to retailers;

or in some instances, these products are exported to international

markets.

Governmental regulation and control of fish processing plants

reduce the risk of microbial, chemical or physical hazards entering the

tilapia value chain.98 This includes the implementation of an opera-

tional HACCP plan and other food safety related risk management

practices. Processing plants that are located near fish farms should

ensure any effluent or waste is treated prior to disposal, especially if

they are located near bodies of water. Movements through the pro-

cessors to distributers should be traceable in order to identify the

source of infection in the event of an outbreak.

6 | DISCUSSION AND PERSPECTIVES

Biosecurity risks should be a common responsibility among rele-

vant authorities and stakeholders along the aquaculture value

chain.135 Indeed, capacity building in risk analysis and adaptive

management at all levels—from farms to oversight bodies of the

public and private sectors—is becoming essential in order to rap-

idly assess the threats and uncertainties from new species and

innovations.

The diseases of concern to the tilapia sector should continuously

be reviewed and updated based on changes in the national, regional

and international situation. The prevalence and distribution of dis-

eases affecting tilapia can be determined through national surveillance

and monitoring programmes and unofficial data sources, such as peer-

reviewed journals, news articles and public reports. It is fundamental

to have a good understanding of the infectious agents affecting tilapia

prior to implementing any mitigating measures on farms; this includes

clinical signs, pathology, and epidemiology of diseases, as well as diag-

nostic testing and pathogen characteristics.

In general, the main purpose of aquaculture biosecurity is to pro-

tect a population of aquatic organisms against identified disease risks.

Biosecurity measures can be applied at the national level or local farm

level and includes mitigating the risk of disease introduction into a

farm and preventing the spread between rearing units within a farm.

The control of diseases in the tilapia sector requires a multi-faceted

approach and may involve a combination of multiple biosecurity mea-

sures at numerous points along the value chain.12

In most cases of tilapia production, the complete elimination of

disease risks along the value chain is not realistic. This is especially

true in open aquaculture culture systems (i.e., ponds or net pens) that

present many opportunities for disease transmission into a farm; and

in certain cases, no control measures may be identified for a particular

risk pathway. In these situations, a surveillance programme can be

implemented as an early detection method for disease spread.12,19

Contingency planning for diseases of high concern to the tilapia sector

should also be a major part of any biosecurity programme, especially

when appropriate control measures cannot be identified.136 This is

often the case when interactions between cultured and wild stocks

cannot be prevented. A strong surveillance and contingency planning

programme may promote a rapid disease response, which can reduce

the impacts associated with outbreaks and lower the overall risk. It is

also important to monitor for changes in value chains that could affect
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disease risks. For example, risk factors may change depending on the

season or if production systems develop and expand over time.

Smallholders often have unorganized or dispersed value chains

stemming from multiple factors including informal trade and market-

ing practices, inadequate infrastructure and inaccessibility to required

aquatic health services.14 This poses an increased risk due to more

opportunities for disease introduction and spread between points.12

As small-scale operations expand, there will be increased incidence

both of production-related diseases and the rapidly spreading emerg-

ing infectious diseases that will need to be managed at the farm level.

The overarching aim should be firstly to increase resilience of small-

scale producers to allow for a greater level of self-sufficiency in recog-

nizing and mitigating risks within their sector. Small-scale producers

can organize themselves into cooperatives and producer associations,

which can then enable them to increase their representation and their

interest as well as bargaining power, resulting in more active participa-

tion in the value chain. In addition, reducing the number of steps

within value chains, if at all possible, will in turn reduce these risks.

Improving risk management along the production, marketing and

governance chains may provide some solutions. Basic biosecurity such

as good hygiene, sound sanitary practices and early detection of

disease with appropriate responses should be a routine application at

the farms. It is necessary that all levels of the sector, from small-scale

farmers through to government policy makers, have a good under-

standing of the critical points in the system which need to be con-

trolled, as well as the means to manage them. Addressing such issues in

a systematic manner will reduce the impacts of diseases.

Access to reliable, effective and practical pond-side diagnostic

tools and timely information are needed by fish farmers (especially

smallholders) through revitalized extension and diagnostic services

reaching often remotely located aquaculture facilities. Through the

use of cluster management, the empowerment of individuals will

develop leadership and foster ownership, creating economies of scale

through collective action that can lead to improved governance and

management of the sector, including biosecurity challenges.137

Developing countries with limited or no aquaculture biosecurity

regulations should strive towards building capacity in their national legal

framework related to aquatic animal health and aquaculture biosecurity.

This includes regulations to safeguard the country against the introduc-

tion and spread of reportable diseases of tilapia through the importation

and movement of live fish and their products. The often injudicious and

inappropriate use of antimicrobial products to treat diseases in cultured

tilapia has serious consequences, that include the introduction and

spread of antimicrobial resistant genes and residues. Recognizing the

risks associated with these imprudent practices and minimizing their

usage is vital for promoting the sustainability of the tilapia industry. This

requires the development of regulations and strict enforcement in

regard to the labeling and marketing of veterinary drugs.

It is especially important that we ensure that the value chain for

the tilapia sector can continue to operate, even with new biosecurity

measures in place. Risk communication is a vital step of the risk analy-

sis process and is a way for stakeholders to share information regard-

ing identified risks and discuss major decisions prior to the

implementation of new biosecurity policies. Public-private partnership

(PPP), that is, active stakeholder engagement and collaboration, is

strongly encouraged for this process and allows for transparent shar-

ing of information among value chain actors. PPP should be formed

early in the risk analysis process and serves the purpose of exchanging

information to support the risk assessment and disseminating infor-

mation during the risk management step prior to policy making.

Newly implemented control measures should be chosen based on

their practicality, effectiveness and sustainability. It must be recog-

nized that suitable control measures may vary depending on the tila-

pia species, culture conditions and environment, and may vary

according to the country or development of the sector, so must be tai-

lored accordingly. In developing countries with limited resources, it is

essential to identify and prioritize the riskiest pathways for disease

spread. It is therefore important to consult with key stakeholders in

the tilapia industry prior to making decisions regarding risk manage-

ment in order to improve compliance and build trust.

The PMP/AB, a pathway that builds on existing frameworks and

is supported by appropriate tools (via the PMP/AB toolkit), offers a

four-stage, step-wise risk management approach that introduces the

building blocks for aquaculture biosecurity capacity that are relevant

to national needs at every stage.104 It typically includes the following

elements: defining the risks, for example, pathogen, antimicrobial

resistance (AMR), ecosystem risks; developing a long-term national

aquaculture biosecurity strategic plan; implementing the plan; and

monitoring and evaluating the plan. It can be tailored to meet either

sector- or disease-specific risks and encourages PPP, thus promoting

a greater recognition of the important role of biosecurity in aquacul-

ture health management.138

Since the PMP/AB is risk-based, the concept of HACCP is very rel-

evant. Indeed, the application of risk analysis to minimize disease risks

within a value chain not a novel approach and has also been widely

used in the terrestrial animal sector over the past decade. The Codex

Alimentarius' HACCP system is the most recognized tool for developing

food safety standards worldwide,139 offering a logical framework and

following a systematic approach, to identify, assess and control food

safety related hazards throughout the food supply chain. Widely used

in the food-processing sector, however, this approach still provides a

good framework for the planning and implementation of biosecurity at

the farm level. It is based on seven principles, (i) conduct hazard analysis

to identify pathogens; (ii) determine critical points, that is, contamina-

tion pathways; (iii) establish critical limits, that is, water quality;

(iv) establish monitoring system for critical points, for example, disinfec-

tion of intake water, movement of stock and disinfection of equipment

and outerwear; (v) establish corrective actions when failures in biose-

curity are detected; (vi) establish verification procedures to ensure the

HACCP is working effectively; and (vii) maintain efficient record keep-

ing appropriate to these principles and their application.104

The PMP/AB is based on similar frameworks that have been

applied in the terrestrial animal production sector. In 2011, FAO

developed detailed guidelines for applying the combination of value

chain and risk analyses in a HACCP-like approach to control disease

risks in livestock production12; this approach has since been promoted
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by the European Commission for the Control of Foot-and-Mouth

Disease (EuFMD) for the development of risk-based control strategies

for foot-and-mouth disease and a number of transboundary animal

diseases affecting livestock.140 Several projects led by FAO have

also used this approach to develop more effective risk mitigation mea-

sures141; for example, value chain mapping and risk assessment of

cross-border chicken trade between Viet Nam and China was success-

ful in developing stronger policies related to movement controls and

trade mechanisms. More recently, a number of publications feature

value chain analysis and risk assessment methodology to develop dis-

ease interventions in the pig142–144 and poultry145,146 production

sectors.

7 | CONCLUSION

The prevalence of diseases affecting cultured tilapia is growing, as is

the global distribution of emerging diseases causing concern to the

industry. It is well recognized that their management and control

requires a multi-faceted approach, with risk-based control measures

chosen based on their feasibility, effectiveness and sustainability. The

PMP/AB, as a risk-based, collaborative and progressive management

approach combined with the systematic preventive approach of

HAACP, offers a strategic and practical way of improving biosecurity

in the tilapia value chain. Understanding and embracing the use of the

risk analysis process to identify critical control points is encouraged,

as it is not always possible to know and precisely predict every poten-

tial source of harm and its pathways. A flexible approach should be

taken in order to implement potential risk mitigation processes.

In many developing countries that farm tilapia, small-scale pro-

ducers may not have access to a functional value chain and public

institutions should strive to address these risks. Small-scale producers

can organize themselves into cooperatives and producer associations,

which can then enable them to increase their representativeness and

their interest as well as bargaining power, thus having more active

participation in the value chain.
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Abstract

Over the past 80 years, tilapia have been translocated globally for aquaculture; active

production is recorded in >124 countries. Of 7 million tonnes of tilapia produced in

aquaculture, 79% is from 79 countries outside the natural range of tilapia. Capture fish-

eries account for a further 723,627 tonnes of tilapia, and >47% of this is landed from

established invasive populations outside Africa. Tilapias host a rich fauna of parasites,

many of which have been translocated with their hosts. This review summarises >2500

host–parasite records from 73+ countries and >820 recorded tilapia translocations

(provided in the supplementary materials). This work focuses on the notable pathogens

that threaten the health of cultured populations of tilapia, providing a description of

their pathology and includes species that also have substantial impacts on wild tilapia
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populations, where relevant. For each major parasite taxonomic group, we highlight

which parasites have been translocated or have been acquired from the new environ-

ments into which tilapia have been introduced, together with remarks on standard

treatment approaches and research on them and their management and control.

Regarding the theme ‘Tilapia health: quo vadis?’, Africa has enormous potential for

aquaculture growth, but substantial knowledge gaps about tilapia parasites in many

African states remain, which creates associated production and biosecurity risks. For

each parasitic group, therefore, the risks of parasite translocation to new regions as

tilapia aquaculture industries expand are highlighted.

K E YWORD S

aquaculture, global translocation, host–parasite record, pathogenicity, production

1 | INTRODUCTION

Cichlids belonging to the genera Coptodon Gervais, 1848 (31 species),

Oreochromis Günther, 1889 (33 species) and Sarotherodon Rüppell,

1852 (13 species) are endemic to Africa and the Middle East, while

those belonging to the genus Tilapia Smith, 1840 (four species) have

distribution across southern parts of West Africa. Of these, 12 species

and one hybrid of ‘tilapia’ are cultured intensively, namely Coptodon

rendalli (Boulenger, 1897); C. zillii (Gervais, 1848); Oreochromis andersonii

(Castelnau, 1861); O. aureus (Steindachner, 1864); O. leucostictus

(Trewavas, 1933); O. macrochir (Boulenger, 1912); O. mossambicus

(Peters, 1852); O. niloticus (Linnaeus, 1758); O. aureus � O. niloticus

cross; O. shiranus Boulenger, 1897; O. spilurus (Günther, 1894); Sarother-

odon galilaeus (Linnaeus, 1758); and S. melanotheron (Rüppell, 1852).1

The aquaculture production of tilapia approaches 7 million tonnes of

which a staggering 4,866,563 tonnes (79.01%) is produced in 79 states

outside their native range (Tables 1 and S1).2 The collective production of

tilapia of 6,192,963 tonnes valued at USD 12.342 billion, from 124 coun-

tries currently registering production, ranks first in all production catego-

ries above that of grass and silver carps, while Nile tilapia alone with a

global production of 4,590,292 tonnes, ranks third. Production trends

based on FAO,2 and current to 2019, indicate that O. niloticus has the

fastest industry growth, increasing at 4.11% year-on-year (2015–2019),

when compared to the other top four fish species, that is, grass carp (Cte-

nopharyngodon idella [Valenciennes, 1844]; 2.61%), silver carp

(Hypophthalmichthys molitrix [Valenciennes, 1844]; 1.09%), common carp

(Cyprinus carpio Linnaeus, 1758; 2.78%) and bighead carp (Hypophthal-

michthys nobilis [Richardson, 1845]; 1.26%). The average growth rate of

all cultured tilapia across the same period is 3.73% year-on-year.

Tilapias are farmed in 79 territories outside their native range,

mainly in China (1,641,662 tonnes), Indonesia (1,257,000 tonnes) and

Bangladesh (350,258 tonnes), these producers accounting for 66.76%

of all tilapia grown. Production of cultured tilapia surpassed the vol-

umes landed from capture fisheries in 1993 and currently represents

89.54% of total tilapia production. Of the 723,627 tonnes derived

from capture fisheries, 358,025 tonnes (47.71%) of the take is from

24 countries outside the native range of tilapia. Of these, Mexico

(136,820 tonnes), Indonesia (68,650 tonnes) and Sri Lanka (51,810

tonnes) are the top three producers (Table S1).

The earliest recorded translocations of tilapia out of Africa were to

South East Asia in the late 1930s with the purported unintentional intro-

duction of O. mossambicus into the Serang River, Java in 1939,3 and in the

early 1940s with shipments of O. mossambicus to Hong Kong, Indonesia,

Malaysia and Singapore, followed by consignments of O. niloticus to

Argentina in 1940 and of C. zillii to Mexico and Antigua in 1943–1945

(Table S1). Tilapia host a rich fauna of metazoan parasites and eukaryotic

microbial pathogens (protists), many of which have been translocated with

the global movement of tilapia or have been acquired from resident fish

and environments into which they have been introduced (Tables 1 and S1).

This review provides a list of recorded parasites (metazoans and

protists) of tilapia (Tables S2 and S3) and focuses on the notable path-

ogens that threaten the health of cultured populations of tilapia. It

provides comments on their pathology and effects on their hosts,

including where relevant, references to the pathogens that also have

substantial impacts on wild tilapia. For each major parasite taxonomic

group, we provide comments on the translocation of parasites with

fish and parasites from these new environments that parasitise tilapia,

together with remarks on standard treatment approaches, where

these exist, and research towards their management and control.

2 | PARASITIC INFECTIONS OF TILAPIA

The ensuing parasite sections follow the phylogenetic classification of

eukaryotes proposed by Adl et al. and Burki et al.4,5

2.1 | Amoebozoa Lühe, 1913 (Amorphea:
Amoebozoa)

2.1.1 | Taxonomic identity

Amoebozoa is a group of amoeboid protists often possessing blunt,

fingerlike pseudopods and tubular cristae. At least seven genera of
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free-living amoebae are reported in farmed tilapia, including Rosculus

Hawes, 1963, Mayorella Schaeffer, 1926, Platyamoeba Page, 1969 and

Vermamoeba Cavalier–Smith et Smirnov, 2011, from farmed O. niloticus

in the Czech Republic,6 Acanthamoeba Volkonsky, 1931, Naegleria Alex-

eieff, 1912 and Vahlkampfia Chatton et Lalung–Bonnaire, 1912 from

farmed O. aureus and O. niloticus from the USA7 and Vernamoeba from

the intestines of farmed O. niloticus from the Philippines8 and O. niloti-

cus from Brazil.9 Amoebae are single-celled organisms that can alter

their overall shape, usually through the extension and contraction of

pseudopodia. They are identified using a combination of morphology,

transmission electron microscopy, histology of host tissues and culture

methods.6,7 Descriptions should also include molecular data following

Milanez et al.8 to confirm identity. There are no records of amoebae

infecting wild tilapia, but this may reflect a lack of studies.

2.1.2 | Pathogenicity

Although Dyková et al.6 noted granulomas in the pancreas of O. niloti-

cus experimentally infected with Vermamoeba (syn. Hartmannella)

(a) (b)

(c) (d)

(e) (f)

F IGURE 1 Protista. (a) Line drawing of Dermocystidium aegyptiacus reported from the intestines of Oreochromis niloticus cultured in Egypt.

(b) Scanning electron microscope image of Ichthyobodo necator on epithelial surfaces. (c) Line drawing of Trypanosoma mukasai reported from the
blood of a number of farmed and wild tilapia species. (d) Line drawing of Goussia vanasi. (e, f) Unidentified coccidian infection within H&E
sections through the intestine of juvenile O. niloticus reared in lined tanks receiving water from a natural earthen reservoir in Brazil. Image (a) after
El-Mansy (2008), image (c) after Baker (1960), image (d) after Molnár et al. (2004), images (e) and (f) courtesy of Leo Galli

SHINN ET AL. 95



vermiformis (Page, 1967), no correlation was found between the pres-

ence of amoebae and lesions in farmed fish in the Czech Republic. A

presumptive Acanthamoeba sp. was isolated from the intestine, gills

and peritoneal fluid of a kill of invasive O. aureus in the USA7 in which

the intestinal mucosa, associated with the amoeba infection, was

severely eroded but with limited inflammatory response.

2.1.3 | Global translocations

Infections reported in farmed tilapia appear to be of free-living amoe-

bae normally found in the areas where tilapia were farmed. It is

unlikely that they were translocated but it does not preclude the pos-

sibility that cryptic infections could be translocated to new areas with

infected fish.

2.1.4 | Research

Reports of amoeba infections in tilapia are sporadic and due to either

specific studies on amoeba or findings from mortality investigations.

Screening fish for infections, confirming species identity, conducting

host susceptibility trials and assessing pathogenicity in new hosts

could clarify the role of amoebae in disease of farmed tilapia.

2.2 | Euglenozoa Cavalier–Smith 1981 (Excavata:
Euglenozoa)

2.2.1 | Taxonomic identity

Euglenozoa are a group of flagellates, mostly with two flagella. Four gen-

era of the group Kinetoplastea: Cryptobia Leidy, 1846, Ichthyobodo Pinto,

1928, Trypanoplasma Laveran et Mesnil, 1901 and Trypanosoma Gruby,

1843 and one genus in the class Euglenida: Phacus Dujardin, 1841, are

reported in farmed and wild tilapia. Euglenozoa was reviewed by Kosty-

gov et al.,10 including data on phylogeny, life-cycles and identification

methods. De Jesus et al.11 provide further methods for the description of

trypanosome infections of tilapia which include morphometric body mea-

surements, DNA sequencing, blood smears and histology to localise and

characterise infections. Kinetoplastids are characterised by one or more

flagella arising from the body and a kinetoplast within the cytoplasm. A

flagellated Phacus sp. from the rectum of O. mossambicus in India has

green pigment in the cytoplasm.12 Cryptobia spp. are recorded from

farmed O. niloticus from the Philippines, Kenya and Indonesia and O. nilo-

ticus � O. aureus from Israel.13–21 Ichthyobodo necator (Henneguy, 1883;

syn. Costia necatrix) and Ichthyobodo sp. (Figure 1b) are found on a wide

range of fish hosts, including farmed O. niloticus from Saudi Arabia,22

Uganda,17,19,23,24 Kenya,17,19,20 Costa Rica25 and Nigeria,26 O. niloticus �
O. aureus from Israel,14 Sarotherodon sp. from Mexico27 and C. zillii from

Iraq.28 Kinetoplastids are usually found on the gills and occasionally the

skin and in the blood. A Trypanoplasma sp. is reported from O. aureus in

Puerto Rico.29 Three Trypanosoma species are recorded from Oreochromis

spp. T. mukasai Hoare, 1932 (syn. T. choudhuryi; Figure 1c) occurs in

farmed O. mossambicus in India12,30 but has also been reported in a range

of wild tilapia in Africa.31–34 Oreochromis niloticus is also infected by T. tila-

piae35 and an undescribed Trypanosoma sp. in Brazil, Egypt and

Sudan.11,36,37 Trypanosoma sp. is also reported from wild tilapia including

Trypanosoma sp. in O. andersonii from Botswana38 and from Namibia,39 in

C. rendalii, O. macrochir and T. sparrmanii from Namibia,39 C. zillii from

Egypt,40 O. niloticus from Kenya,41 T. cyanophilum Mohammed, 1978 and

T. mansouriMohammed, 1978 in C. zillii from Egypt.40

2.2.2 | Pathogenicity

De Jesus et al.11 noted mortalities in farmed O. niloticus infected with

trypanosomes in Brazil. Infected fish darkened and had epidermal hae-

morrhages. Histologically, gills were oedematous with inflammatory

infiltration and lamellar fusion while necrosis and infiltration were also

noted in the liver, spleen and kidney.

2.2.3 | Global translocations

Ichthyobodo and Cryptobia spp. are widespread, but it is difficult to

determine if these parasites have been translocated with tilapia or if

their range is broad. Trypanosoma spp. typically have narrow host speci-

ficity and require a leech intermediate host for transmission. Given the

relatively wide geographical range of some Trypanosoma spp. it is possi-

ble, however, that they have been translocated with their fish hosts.

2.2.4 | Research

The identifications of kinetoplastids in tilapia should be confirmed to

determine the extent of translocations and the host specificity of

those reported. Given the potential pathogenicity of the group, fur-

ther studies should be directed towards development of suitable miti-

gation measures such as identifying effective treatments and life cycle

intervention strategies.

2.3 | Metamonada Grassé, 1952 (Excavata:
Metamonada)

2.3.1 | Taxonomic identity

Metamonads including diplomonads are flagellated protists with

anaerobic metabolism. The diplomonads are flagellated protists nor-

mally composed of two symmetrical cells with two nuclei and four fla-

gella and include recognised pathogens of fish. An unidentified

species of Spironucleus Lavier, 1936 infecting farmed red tilapia (O. mos-

sambicus � O. aureus) in Thailand was described by Supamattaya et al.42

using a combination of light and electron microscopy. Another pathogenic

Spironucleus sp. was reported by El-Khatib and El-Hady43 in the intestine
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of cultured O. niloticus from Egypt and was described using morphology

and experimental trials, and cultured using Eagle's Minimum Essential

Medium supplemented with 10% bovine serum (MEM 10% BS) culture

media. An unidentified species of Hexamita Dujardin, 1838 was identified

in O. niloticus, O. niloticus � O. aureus and S. galilaeus in Israel and Africa

by light microscopy.14,44 Use of transmission electron microscopy and

molecular methods is likely to identify these parasites as Spironucleus.45,46

A diplomonad of concern for human health, Giardia intestinalis Kulda et

Nohýnková, 1995, is a zoonotic parasite found in a range of animals. Gho-

neim et al.47 identified the human strain of G. intestinalis in the faeces of

farmed O. niloticus in Egypt using a strain-specific polymerase chain reac-

tion (PCR) assay. The fish host was considered to contribute to contami-

nation of water and may play a role in the epidemiology of giardiasis.

2.3.2 | Pathogenicity

No pathology was reported for the infections with Hexamita sp. and G.

intestinalis. Oreochromis mossambicus � O. aureus infected with Spironu-

cleus sp. were emaciated and presented with white nodules in the skin.

Infected fish were attacked by healthy individuals in the same ponds

and died from the resultant wounds.42 Spironucleus sp. infections cause

leukocyte infiltration, necrosis of infected tissues and muscle degenera-

tion. Oreochromis niloticus infected with Spironucleus were dark, with

excessive epithelial mucus production, had enteritis, skin lesions along

the lateral lines and focal lesions on the surface of the liver.43

2.3.3 | Global translocations

Spironucleus spp. are rare in tilapia; it is unclear if these have not been

observed due to a lack of appropriate sampling or if they are geo-

graphically restricted.

2.3.4 | Research

To understand disease risk, there is a need to confirm the identity of

Spironucleus and Hexamita in tilapia and studies on the role of fish in

the epidemiology of giardiasis are likely to inform human health risks.

2.4 | Apicomplexa Levine 1980 (SAR: Alveolata:
Apicomplexa)

2.4.1 | Taxonomic identity

Apicomplexans are parasitic alveolates which mostly possess an apico-

plast and an apical complex. They are transmitted directly or through

an intermediate host and are found in a wide range of terrestrial and

aquatic animal hosts, including farmed and wild tilapia. The typical

morphology of a coccidian is shown in Figure 1d, which shows two

sporozoites within each of the sporocysts which are contained within

the oocysts; the number of sporozoites within each sporocyst and the

number of sporocysts within each mature oocyst is used to determine

the genus within the group. In addition to morphology, molecular

methods are used extensively to confirm identity. Most infections in

tilapia are of Goussia cichlidarum Landsberg et Paperna, 1985 in the

swimbladders of C. zillii and O. aureus from Egypt48 and Israel,49 of O.

aureus � O. niloticus and S. galilaeus from Israel49 and of O. niloticus

from Egypt48 and Kenya.17 Goussia (syn. Eimeria) vanasi (Landsberg et

Paperna, 1987; Figure 1d) has been reported from the intestine of

farmed O. aureus � O. niloticus and S. galilaeus from Israel,50–53 and of

O. mossambicus from South Africa,50 and wild T. sparrmanii from

South Africa.50,54 Undescribed coccidian infections are reported in

farmed O. niloticus from the Philippines,55 Iraq56 and Kenya.19 A cocci-

dian infection in the intestine of farmed O. niloticus reared in Brazil is

shown in Figure 1e,f. Cryptosporidium spp. have been reported from

the intestine and stomach of farmed C. zillii from Iraq,56 of O. niloticus

from Papua New Guinea57 and Egypt,58 and of O. aureus and O.

aureus � O. niloticus from Israel.59 Although Paperna and Vilenkin60

proposed the name Piscicryptosporidium for species occurring in fish,

this has not been widely accepted.61,62 The intraerythrocytic Babesio-

soma (syn. Dactylosoma) mariae (Hoare, 1930) occurs in numerous tila-

pias including Oreochromis spp. in Uganda,31,63 Namibia39 and

Botswana.64 It is not reported in farmed fish, but it may have been

overlooked because of its cryptic habitat. The intraerythrocytic, hae-

mogregarine in farmed O. niloticus reported by El-Asely et al.65 may

be conspecific with B. mariae.

2.4.2 | Pathogenicity

Goussia cichlidarum occurs in the swim-bladder of its hosts where it

causes lesions in the thick tissue lining and hypertrophy of the cells

surrounding the gas gland. Sloughing, necrosis and degeneration of

the swimbladder were associated with developing stages of the para-

site.48 Intestinal infections with G. vanasi cause emaciation, growth

retardation and occasionally mortality of juvenile Oreochromis spp.50

2.4.3 | Global translocations

Apicomplexan infections are restricted largely to the African subconti-

nent and there is limited evidence of translocation. It is unclear if the

records of coccidians in the Philippines, Papua New Guinea and

Vietnam represent translocations because the organisms associated

with these records were not identified to species.55,57,66,67

2.4.4 | Research

Wild fish have been surveyed for apicomplexans,64,68 but research on

coccidians of farmed tilapia is limited. Determining the global distribu-

tion of these parasites and confirming the taxonomy of the group

would inform better surveillance and understanding of their
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pathogenesis. Understanding life-cycles and identifying methods of

control would decrease farm losses and improve management

efficiency.

2.5 | Dinoflagellata Bütschli, 1885 (SAR: Alveolata:
Dinoflagellata)

2.5.1 | Taxonomic identity

Dinoflagellates are unicellular algae with two dissimilar flagella arising

from the ventral side. Three dinoflagellate genera are reported in tila-

pia: Amyloodinium Brown et Hovasse, 1946, Piscinoodinium Lom, 1981

and Pfiesteria Steidinger et al., 1996. Amyloodinium ocellatum Brown

et Hovasse, 1946 was noted on the gills, skin and fins of farmed and

wild O. aureus and O. mossambicus in the USA.69–72 Amyloodinium

ocellatum is found globally in numerous hosts from saline environ-

ments.73 Piscinoodinium sp. and P. pillulare (Schaperclaus, 1954) are

reported from the skin, fins and gills of farmed O. niloticus from

Brazil,74–77 the Philippines55 and Thailand78 and O. mossambicus from

India79 and Puerto Rico.29 Pfiesteria shumwayae Glasgow et Bur-

kholder, 2001 is reported from O. mossambicus in the USA80 and P.

piscicida Steidinger et Burkholder, 1996 is reported from O. aureus, O.

mossambicus and O. niloticus in laboratory aquaria in the USA.81,82

2.5.2 | Pathogenicity

Piscinoodinium spp. are pathogens of their fish hosts and are responsi-

ble for mortalities in O. mossambicus in India79 and in O. niloticus in

Brazil74,76 and were associated with high mortality in young (<1-year-

old and less than 13 cm in length) O. mossambicus in the hypersaline

Salton Sea, California, USA.71 Infected fish gasped for air at the water

surface, leapt out of the water and lost their equilibrium before dying.

2.5.3 | Global translocations

The dinozoan infections reported in tilapia also occur in native species

and it is therefore difficult to determine if tilapia are responsible for

any translocations. Wilson et al.83 considered, however, that Piscinoo-

dinium sp. infections in invasive O. mossambicus in Australia were co-

introduced with its host, and Piscinoodinium is also considered invasive

in its new habitat.

2.5.4 | Research

Understanding the role of tilapia in the distribution of dinozoans glob-

ally would aid determining if they have caused or exacerbated infec-

tions in new areas and new hosts. Information on impacts on native

hosts, including susceptibility are lacking and should be addressed.

Development of improved control methods would improve farm

productivity.

2.6 | Ciliophora Doflein, 1901 (SAR: Alveolata:
Ciliophora)

2.6.1 | Taxonomic identity

Ciliates are protozoans characterised by small hair-like organelles

(cilia). Ciliates from nine orders—Chlamydodontida Deroux, 1970,

Endogenida Collin, 1912, Mobilida Kahl, 1933, Ophryoglenida Canella,

1964, Pleurostomatida Schewiakoff, 1896, Prorodontida Corliss,

1974, Sessilida Stein, 1933, Tetrahymenida Fauré-Fremiet in Corliss,

1956 and Vestibuliferida de Puytorac et al., 1974 are reported from

farmed and native and invasive tilapia across their geographical range.

Most records are from Mobilida and Sessilida, reflecting the patho-

genic importance of these two orders. Identifications are based on

morphology including the unifying presence of cilia, although molecu-

lar techniques allow the elucidation of cryptic species and confirm the

identity of species. Although most identifications are correct, caution

should be exercised in inferring translocations of ciliates with tilapia

due to uncertainty over some of the identifications made in the

literature.

Members of the genus Chilodonella Strand, 1926 (Chlamydodontida),

including C. hexasticha (Kiernik, 1909), C. piscicola (Zacharias, 1894) (syn.

C. cyprini) and Chilodonella sp. are recorded on the skin and gills of C.

rendalli from South Africa84,85 and Turkey,86 C. zillii and O. aureus from

Israel85 and from Turkey,86 Oreochromis sp. and O. mossambicus from

Vietnam,67 O. mossambicus from South Africa,84 O. niloticus from

Bangladesh,87 Brazil,88 Costa Rica,25 Egypt,89 Indonesia,21 Kenya,20

Mexico,90 Saudi Arabia91 and Turkey,86 and S. galilaeus from Turkey.86

These parasites have been identified using morphology rather than

molecular methods, which are considered necessary for correct

identification.92,93

Using histology, Afifi et al.22 identified Capriniana (syn. Trichophrya)

sp. (Endogenida) in O. niloticus reared in saline water in Saudi Arabia.

This is the only record of this genus and order occurring in tilapia and

because the identifications appear to be based on histology only, there

is a need to confirm this identification. Similarly, the solitary reports of

Tetrahymena corlissi Thompson, 1955 (Tetrahymenida) from the gills of

O. niloticus in Indonesia21 and of Tetrahymena sp. in O. niloticus from

Nigeria requires confirmation because this ciliate is typically systemic,

occurs rarely on the gills94–96 and is probably a complex of cryptic spe-

cies.97 Experimental infections of O. mossambicus with Cryptocaryon irri-

tans Brown, 1951 (Prorodontida) were used to demonstrate immunity

in the host to the parasite.98,99 Molecular methods were used to con-

firm the identity of the ciliate infection in O. mossambicus although his-

tological methods were used to demonstrate the presence of

Cryptocaryon sp. in farmed O. niloticus from Saudi Arabia.22 The ubiqui-

tous white spot parasite Ichthyophthirius multifiliis Fouquet, 1876

(Ophryoglenida) is recorded from the skin, fins and gills (Figure 2a) of
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cultured C. zillii from the USA,100 Oreochromis sp. from Vietnam,67 O.

aureus from the USA100,101 and Mexico,102,103 O. mossambicus from

Puerto Rico,29 from South Africa,84 from the USA,100 from Vietnam67

and the Philippines,16 O. mossambicus � O. urolepis from the USA,100 O.

niloticus from Brazil,74,77,104–106 Egypt,107–109 Greece,110 Indonesia,21

Nigeria,26 the Philippines,16,55 the USA111 and Vietnam,66,67 O. niloticus

� O. aureus from Israel,14 and O. niloticus � O. mossambicus from

Thailand (Table S2).112 Ichthyophthirius multifiliis is considered native in

most freshwater systems worldwide and it is possible but unlikely that

tilapias are responsible for translocating or exacerbating infections on

wild, native fish.

Mobilida (Figure 2b,c) contains the genera Trichodina Ehrenberg,

1830 (Figure 2d), Trichodinella Srámek-Husek, 1953 (Figure 2e), Para-

trichodina Lom, 1963 (Figure 2f) and Tripartiella (Lom, 1959)

(Figure 2g), representatives of which are parasitic and recorded from

farmed tilapia. The bulk of these infections occur on the skin, fins, or

gills of their hosts. A checklist of trichodinids on tilapia species is pro-

vided by Islas-Ortega et al.113 and Basson and Van As114; Van As and

Basson115 provided diagnostic keys to the genera of Mobilida. Paratri-

chodina africana Kazubski et El-Tantawy, 1986, simultaneously

described from O. niloticus in Egypt and an unidentified tilapia in

Africa has been translocated on O. niloticus and its hybrids to

Brazil,103,105,116–118 Mexico,103 China,119 Egypt120 and Argentina.113

It is possible that the record of P. incissa (Lom, 1959), described from

European minnows from the skin of O. niloticus in Vietnam and

included in the country summary67 is a misidentification of P. africana.

At least 20 Trichodina species have been described from tilapia, mostly

from O. niloticus, with some from O. mossambicus (Table S2). Tricho-

dina spp. are reported from most areas where tilapias are farmed and

on native and invasive wild fish. The taxonomy of the genus is

(a) (b)

(g)(f)(e)(d)

(c)

(h) (i ) (j)

F IGURE 2 Ciliophora. (a) Photomicrograph of Ichthyophthirius multifiliis Fouquet, 1876 trophonts in the fin epithelium and (b) scanning
electron microscopy image of the aboral surface of an unnamed Trichodina sp. collected from farmed O. niloticus from Veracruz, Mexico. Note the
denticles in a radial pattern. (c) Photomicrograph of an unnamed Trichodina sp. from a O. niloticus fingerling and (d) line drawing of the denticles of
a representative Trichodina sp. (e) Line drawing of the denticles of a representative Trichodinella sp. (f) Line drawing of the denticles of a
representative Paratrichodina sp. (g) Line drawing of the denticles of a representative Tripartiella sp. (h) Scanning electron microscope image of a
group of peritrichous ciliates on the epithelium of its host. (i) Photomicrograph of a solitary Apiosoma sp. (j) Histological section of a gill infected
with an Ichthyophthirius multifiliis trophont. Images (a, i, j) Andrew Shinn, (b) courtesy of Greta Hanako Rosas Saito, (c) courtesy of Dong Ha
Thanh, (d–g) after Basson and Van As (1989), (h) courtesy of Giuseppe Paladini. Scale bars: a, j = 300 μm; c, h, i = 20 μm; b, d–g = 10 μm
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relatively stable although some important species have been synony-

mised including T. hypsilepis (syn. heterodentata) Wellborn, 1967, and the

record of T. pediculus Ehrenberg, 1831 recorded by Basson et al. (1983)

was subsequently redescribed as T.magna Van As et Basson, 1989.114,121

Trichodinella epizootica (Raabe, 1950) and an undescribed Trichodinella are

recorded from the gills of farmed O. niloticus from Mexico,113 Egypt,120

Kenya,17 Brazil118 and Uganda,17 and from O. mossambicus and C. zillii

from the Philippines.16 At least six species of Tripartiella are reported from

O. mossambicus from Taiwan Province of China,122 O. niloticus and

hybrids from Vietnam,67 the Philippines,16,123 Brazil,118,124 Mexico103 and

China119 and C. zillii from the Philippines.16,125

At least six genera of Sessilida (Figure 2h) are recorded in tilapia,

including Ambiphrya Raabe, 1952, Apiosoma Blanchard, 1885 (syn. Sco-

pulata in part), Epistylis Ehrenberg, 1830, Heteropolaria Foissner et Schu-

bert, 1977, Riboscyphidia Yankovskij, 1980 (syn. Scyphidia) and Vorticella

(Li, 1767). Ambiphyra ameiuri Thompson, Kirkegarrd et Jahn, 1974 has

been reported from the gills, skin and fins of O. mossambicus from

Puerto Rico29 and O. niloticus from Saudi Arabia126; unidentified Ambi-

phrya spp. have been noted in O. niloticus farmed in Indonesia,21

Mexico,90 Peru127 and the Philippines.55 At least seven Apiosoma spp.

(Figure 2i) are described from tilapia, along with numerous records of

unidentified species. Scopulata Viljoen et Van As, 1985 is considered a

junior synonym of Apiosoma. Apiosoma constricta (Viljoen et Van As,

1985), A. dermatum (Viljoen et Van As, 1985) and A. epibranchialis

(Viljoen et Van As, 1985) were described from the skin of farmed O.

mossambicus and C. rendalli from South Africa,128 Apiosoma sp. are

reported from O. mossambicus from South Africa,84 from O. niloticus

from Costa Rica,25 Indonesia,21 the Philippines13,15,16 and Israel,14 A.

minutum Chen, 1961 was reported from O. niloticus and Oreochromis

sp. from Vietnam,67 A. phiala Viljoen et Van As, 1985 was reported from

O. mossambicus from South Africa,128 A. piscicola (Blanchard, 1885) was

reported from O. aureus and O. mossambicus from Puerto Rico,29 and

from O. mossambicus from South Africa128 and Vietnam67 and A. viridis

Viljoen et Van As, 1985 was reported from O. mossambicus from

South Africa.128 Epistylis colisarum (Foissner et Schubert, 1977) was

reported on the skin of C. rendalii, O. aureus, O. mossambicus, O. mos-

sambicus � O. urolepis and O. niloticus farmed in Puerto Rico29 and

undescribed Epistylis spp. are recorded on O. niloticus from the

Philippines,16 Brazil,74,75,77,88 Egypt89 and Thailand78 and on O. mossam-

bicus from the Philippines16 and South Africa.84 The reports of Hetero-

polaria sp. from farmed O. niloticus from Costa Rica25 and Riboscyphidia

from O. mossambicus in South Africa84 need confirmation due to their

rarity and the potential confusion with other genera. An undescribed

Vorticella sp. on O. niloticus have been recorded from Mexico,13,129 the

Philippines15 and Saudi Arabia126 and unidentified peritrichous ciliates

have been noted on O. niloticus from Kenya18 and Uganda.17

2.6.2 | Pathogenicity

Despite ciliates being known pathogens, there are few reports of mor-

tality or pathology associated with these parasites on farmed tilapia.

Coptodon spp. and O. aureus infected with Chilodonella hexasticha

displayed emaciation, lethargy and some skin abrasions and the gills

had extensive degeneration, necrosis and hyperplastic epithelia85;

similar responses were noted in O. niloticus infected with I. multifiliis

(Figure 2j).109 Inflammatory responses, increased lymphocyte counts

and reduced neutrophil counts were noted in O. niloticus infected with

Epistylis sp.130 Heavy infections with trichodinids may lead to lesions

and sloughing and erosion of the epidermis.127,131,132

2.6.3 | Global translocations

Their direct life-cycles mean that ciliates are readily translocated with

their hosts; discrepancies in parasite identifications can, however, com-

plicate understanding translocations. Ambiphrya spp. and Apiosoma spp.

of tilapia are recorded from several countries as noted above but, due

to lack of specific identification, translocations cannot be confirmed.

Evidence for the translocation of trichodinid infections is clearer. Para-

trichodina africana, originally described from Israel and Africa, has been

translocated to Bangladesh, Argentina, Brazil, Mexico and

China.105,113,116,118–120 Trichodina acuta Lom, 1961, T. centrostrigeata

Basson, Van As et Paperna, 1983, T. hypsilepis Wellborn, 1967, T. siluri

Lom, 1970 and T. velasquezae Bondad-Reantaso et Arthur, 1989 and

Tripartiella clavodonta Basson et Van As, 1987 and T. tilapiae (Duncan,

1977) occur in several countries and are considered to have been intro-

duced to the Philippines with fish from Thailand and Israel.123 Trichodi-

nid ciliates are likely to have been introduced broadly through fish

translocations.

2.6.4 | Research

Species identities need to be confirmed using modern methods to under-

stand the role that these hosts have had in translocating pathogens world-

wide.Methods to treat infections and to render hosts safe for translocation

need to be identified tominimise their impact and further spread.

2.7 | Myxozoa Grassé 1970 (Obazoa:
Opisthokonta: Metazoa: Cnidaria: Myxozoa)

2.7.1 | Taxonomic identity

The myxozoans are obligately parasitic cnidarians comprising one or a

few cells that have a spore comprising valve cells in the life-cycle.

Myxozoans are found in marine and freshwater fish in almost all

organs and show variable host and organ specificity. Life-cycles typi-

cally involve alternating vertebrate and invertebrate hosts. Often the

invertebrate is an annelid or bryozoan but few life-cycles are docu-

mented. In rare cases, direct transmission is demonstrated. Myxozo-

ans are multicellular, spore-forming obligate parasites possessing polar

capsules containing extrudable polar filaments akin to cnidarian nema-

tocysts. Identification is based on a combination of morphology

(including number and arrangement of spore valves and polar
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capsules), size, and use of molecular tools. Methods for identification

include the use of light and electron microscopy, smears and tissue

squashes as well as histology for understanding tissue tropism and path-

ogenicity. Seven genera of myxozoans are reported from farmed tilapia;

Enteromyxum Palenzuela, Redondo et Alvarez-Pellitero, 2002 has been

transmitted experimentally133 and two genera (Ortholinea Shulman, 1962

and Triangula Chen et Hsieh, 1984) are reported in wild tilapia. Sporadic

reports of myxozoans in farmed O. niloticus include an undescribed intes-

tinal Ceratomyxa sp. from Indonesia,134 Sinuolinea niloticus Rodrigues,

Francisco, Biondi et Araújo Júnior, 2016 (Figure 3a) from Brazil,135,136

Sphaerospora melenensis Fomena, Marques et Boiux, 1993 (Figure 3b)

and S. tilapiae Fomena, Marques et Boiux, 1993 (Figure 3c) from

Cameroon,137,138 and an undescribed Sphaerospora sp. from Kenya and

Uganda.17,19 Oreochromis mossambicus from China have intestinal infec-

tions of Thelohanellus talipiae Chen et Ma, 1998 (Figure 3d) and Zschok-

kella tilapiae Chen et Hsieh, 1984 (Figure 3e).139 Zschokkella nilei Abdel-

Ghaffar, El-Tokhy, Al-Quraishy, Al-Rasheid, Abdel-Baki, Hegazy et Bash-

tar, 2008 (Figure 3f), Ortholinea africanus Abdel-Ghaffar, El-Tokhy, Al-

Quraishy, Al-Rasheid, Abdel-Baki, Hegazy et Bashtar, 2008 (Figure 3g),

Thelohanellus valeti Fomena et Bouix, 1987 and Triangula egyptica Abdel-

Ghaffar, El-Tokhy, Al-Quraishy, Al-Rasheid, Abdel-Baki, Hegazy et Bash-

tar, 2008 (Figure 3h) are described from wild O. niloticus in Egypt.44,140–

142 Undescribed Henneguya spp. (Figure 3i) were noted in the gills of

farmed O. niloticus from Brazil104 and Saudi Arabia22; it is not clear if they

are conspecific.

The most speciose myxozoan genus is Myxobolus Bütschli, 1882

with over 40 species reported or described from Coptodon, Oreochromis

and Sarotherodon spp. Some reports are considered dubious and need

re-evaluating including those reported in O. niloticus, such as M. ellip-

soides Thelohan, 1892, which was originally reported from tench, Tinca

tinca (Linnaeus, 1758), in Europe143 but was also recorded from Egypt

and Cameroon.89,144,145 The record of M. exiguus Thelohan, 1895, which

was originally reported from mugilids in Europe146 but noted from

Vietnam,66,67 M. dermatobius Ishii, 1915, originally reported in eels from

Japan but noted in Egypt,147 Myxobolus cyprini Doflein, 1898 originally

reported on European carp species but reported in C. zillii and O. niloticus

from Nigeria in an undated report by Bello-Olusoji et al., and M. pseudo-

dispar Gorbunova, 1936, originally reported in cyprinids in Europe148 but

noted in Cameroon144,145,149 also require re-evaluation. Myxobolus spp.

are reported from tilapia cultured in Cameroon,137,138,150,151 Israel,152,153

Nigeria,154–156 Senegal,138 Benin,157,158 Egypt,36,65,120,159–166

Vietnam,66,67 Ghana,167 Kenya,17,18 Uganda17,23,24 and Burkina Faso168

(Figure 3j–o). Myxobolus spp. occur in a range of organs with some spe-

cies showing organ specificity, with the bulk of these infections being

noted in O. niloticus.

2.7.2 | Pathogenicity

Myxozoans are recognised pathogens of fish, and several species are

responsible for mortalities in farmed and wild fish. Ovaries of tilapia

infected withM. dahomeyensis (Siau, 1971) contain a suppurating thick

liquid that replaced mature oocytes and infection was considered to

sterilise the host.156,157,169 Oreochromis niloticus with ocular infections

of M. sarigi (Landsberg, 1985) showed exophthalmos.156 The gills of

O. niloticus infected with myxozoans typically display hyperplasia or

hypertrophy.65,107,153,161 In O. niloticus, inflammation, degeneration

and necrosis of the kidney and the spleen have been noted in Myxobo-

lus spp. infections,156,159,160,162,164 in Sphaerospora sp. infections of O.

niloticus from Kenya, Uganda and Ethiopia17 and in Sinuolinea niloticus

infections of O. niloticus from Brazil.135

2.7.3 | Global translocations

The obligate requirement for a specific alternate host limits the likeli-

hood that myxozoans will establish in new geographical areas. Myxo-

bolus agolus Landsberg, 1985, M. brachysporus (Baker, 1963), M.

camerounensis Fomena, Marques et Boiux, 1993, M. equatoralis

(Landsberg, 1985), M. heterosporus (Baker, 1963; Figure 3m), M. home-

osporus (Baker, 1963; Figure 3o), M. israelensis Landsberg, 1985, M.

kainjiae (Obiekezie et Okaeme, 1990), M. sarigi (Landsberg, 1985;

Figure 3n), M. tilapiae Abolarin, 1974 and M. zillii Sakiti, Blanc, Mar-

ques, Boiux, 1991 are widespread across Africa and Israel, but have

not been translocated, probably due to the absence of a suitable inter-

mediate host in new localities. The reports of non-tilapia myxozoans

such as M. exiguus, M. pseudodispar, M. dermatobius and M. ellipsoides

likely represent misidentifications rather than evidence of parasite

spillback or infections in other hosts.

2.7.4 | Research

Determining the distribution of myxozoans in tilapia across their range

using a combination of molecular and morphological methods and

including an assessment of pathogenicity would benefit aquaculture

industries by informing responses to detection. Host specificity in the

intermediate host has been little studied and would be key to estimat-

ing risk of establishment in new geographical areas. Although there

are limited apparently pathogenic species in tilapia, efforts should be

made to identify mitigation strategies to minimise impacts including

development of pharmaceutical treatments, vaccines, environmental

manipulation approaches and use of functional feeds.

2.8 | Oomycetes Winter, 1897 (Now
Peronosporomycetes Dick, 2001) and Ascomycota
Cavalier–Smith, 1998 (SAR: Stramenopiles:
Peronosporomycetes and Obazoa: Opisthokonta:
Nucletmycea: Ascomycota)

2.8.1 | Taxonomic identity

Oomycetes, commonly known as water moulds, are filamentous hetero-

trophic microorganisms that reproduce sexually and asexually. Oomy-

cetes are more closely related to chromophyte algae (e.g. brown algae,
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xanthophytes, diatoms, chrysophytes) than to the kingdom Fungi, as indi-

cated by their heterokont ciliary pattern.170 Most of the animal-

pathogenic oomycetes belong to the subclass Saprolegniomycetidae,

consisting of the orders Saprolegniales Fisch, 1892 and Leptomitales

Kanouse, 1927.171 In the Saprolegniales, species of Saprolegnia Nees,

1823, Achlya Nees von Esenbeck, 1823, Aphanomyces de Bary, 1860

and Branchiomyces Plehn, 1912 are known to infect finfish.172–177 This

group of pathogens has low host specificity and therefore, can infect a

diverse range of fish.178,179 The oomycetes are ubiquitously distributed,

form motile zoospores, and their cell walls are composed of cellulose and

glycans rather than chitin.180,181 Oomycete infections in tilapia are

recorded from C. rendalli, C. zillii, O. andersonii, O. macrochir, O. mossambi-

cus, O. niloticus, O. shiranus, Tilapia ruweti (Poll et Thys van den Aude-

naerde, 1965) and T. sparrmanii (Table S2). Diseases caused by

oomycetes and ascomycetes are considered second only to bacterial dis-

eases in economic impacts on aquaculture.182,183 Among these, diseases

caused by oomycetes are more common,184 although diseases caused by

Mesomycetozoea (Ichthyosporea) and true fungi are also important.185

(a) (c)(b) (d)

(e)

(m)

(h)(g)

(i) (j) (k)

(n)

(l)

(f)

(o)

F IGURE 3 Myxozoa. Line drawings of various myxozoan spores reported in tilapia. (a) Sinuolinea niloticus, (b) Sphaerospora melensis,
(c) Sphaerospora tilapiae, (d) Thelohanellus talipiae, (e) Zschokkella tilapiae, (f) Z. nilei, (g) Ortholinea africanus, (h) Triangula egyptica, (i) Henneguya
sarotherodoni, (j) Myxobolus bejeranoi, (k) M. agolus, (l) M. brachysporus, (m) M. heterosporus, (n) M. sarigi and (o) M. homeosporus. Image (a) after
Rodrigues et al. (2016), images (b, c, i, l, m, o) after Fall et al. (2000), images (k, n) after Landsberg (1985), image (d) after Chen and Ma (1998),
image (e) after Matsche et al. (2020), images (f-h) after Abdel-Ghaffar et al. (2008), image (j) after Lövy et al. (2018). Scale bar: 5 μm
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2.8.2 | Diseases caused by Oomycetes

Oomycete infections reported from tilapia include Achlya americana

Humphrey, 1892 from T. zillii in Nigeria186; A. bisexualis Coker, 1927

from O. niloticus in Thailand187,188 and from O. mossambicus in

India174; A. diffusa Harvey, 1942 from T. zillii in Nigeria186 and from O.

niloticus in Thailand188; A. dubia Coker, 1923 from O. niloticus in

Thailand188 and T. zillii in Nigeria186; A. hypogyna Coker et Pemberton,

1908 from T. zillii in Nigeria186; A. klebsiana Pieters, 1915 from T. zillii

in Nigeria,186 and from O. niloticus in Egypt173,189 and Thailand188; A.

megasperma Humphrey, 1893 from T. zillii in Nigeria186; A. prolifera

Nees von Esenbeck, 1823 from T. zillii in Nigeria186 and O. niloticus in

Thailand188; A. proliferoides Coker, 1923 from O. niloticus in Egypt189

and O. mossambicus in India174; and A. racemosa Hildebrand, 1867

from T. zillii in Nigeria.186 It is important to mention that most Achlya

infections have been reported from the skin and only a few cases

regarding infection of the fins. In addition to infection with Achlya sp.,

there are reports of infection with Allomyces arbuscular Butler, 1911

from T. zillii in Nigeria186; Dictyuchus monosporus Leitgeb, 1870 from

O. niloticus in Egypt189; D. sterile Coker, 1923 from T. zillii in

Nigeria186 and O. niloticus in Egypt189; and a species of Pythiopsis de

Bary, 1888 from O. mossambicus in India.174 Infections with Saproleg-

nia sp. have been reported from tilapia and these include: S. aenigma-

tica Sandoval-Sierra et Diéguez-Uribeondo, 2015 from an

undescribed species of tilapia in Brazil190; S. diclina Humphrey, 1892

from O. mossambicus in India,174 from O. niloticus in Egypt173,189 and

T. zillii in Nigeria186; S. ferax Kützing, 1843 from O. niloticus in

Egypt189,191 and from T. zillii in Nigeria186; S. litoralis Coker, 1923 from

T. zillii in Nigeria186; and S. parasitica Coker, 1923 from O. mossambi-

cus in India,174 from O. niloticus in Egypt,175,176,191 and from T. zillii in

Nigeria.186 In addition to these, there are also reports of infection by

an undetermined species of Saprolegnia Nees, 1823 from O. niloticus

in Egypt189,192 and of Thraustotheca clavata Humphrey, 1892 from T.

zillii in Nigeria.186

Infection with Aphanomyces laevis de Bary, 1860 has been reported

from O. mossambicus in India,174 from O. niloticus in Egypt173,189 and T.

zillii in Nigeria186 whereas there is a report of infection with A. stellatus

de Bary, 1860 from T. zillii in Nigeria.186 As with the Achlya species, A.

laevis infections are reported from the skin. Additionally, A. invadans

David et Kirk, 1997, the causative agent of epizootic ulcerative syn-

drome (EUS) has been reported from C. rendalli in Namibia, Zimbabwe

and Botswana; O. andersonii from Namibia, Zambia and Zimbabwe; O.

macrochir from Namibia; O. mossambicus from Zimbabwe; O. shiranus

from Malawi; and T. sparmanii from Namibia and Botswana.177,193 The

A. invadans infections are generally observed in the skin and the under-

lying musculature of the infected fish. Importantly, O. niloticus is resis-

tant to infection with A. invadans.194 Other reports include those of

Branchiomyces demigrans Wundsch, 1929 and B. sanguinis Plehn, 1912

from the gills of O. niloticus from Egypt,195,196 whereas infection by an

undetermined species of Branchiomyces Plehn 1912 has been reported

in the gills of O. niloticus, O. mossambicus and O. aureus from Europe,

Asia, the Middle East, Australia and North America, and also in O. niloti-

cus � O. mossambicus hybrids and O. niloticus � O. aureus hybrids from

Israel (Table S2).172,197

Oomycetes are transmitted by zoospores released from zoospor-

angia that develop from the hyphae in fish tissues at the body surface.

A lack of nutrients and/or a sudden drop in temperature induces spor-

ulation.205 Zoospores can encyst on a host, forming primary cysts and

subsequently releasing secondary zoospores,206 which are more

motile than primary zoospores and crucial for infection.207 Zoospores

exhibit positive chemotactic responses to amino acids in exudates and

metabolites from tissues of susceptible hosts.208,209 Subsequent con-

tact of the zoospore with the host triggers encystment, which in turn

initiates germination and results in infection. During infection, oomy-

cetes secrete effector proteins that modulate its host's immune

responses or inhibit the host's cell functions to the advantage of the

pathogen.210–215 Species of the genera Saprolegnia and Achlya infect

the gills, skin, fins and eggs of fish (Figure 4a,c,d).187,206,216,217 The

infection progresses to the development of large wounds on the body

surface leading to impaired osmoregulation and haemodilution; exten-

sive lesions in the gills cause respiratory failure; both can lead to mor-

tality. In susceptible fish, A. invadans hyphae invade the fish skin and

skeletal muscles causing ulceration, often resulting in death.218–220 In

resistant fish, such as O. niloticus, A. invadans hyphae are unable to

proliferate and lesions are restricted to the site of infection

(Figure 4b). Conversely, infections with species of Branchiomyces

which primarily affect the gills (Figure 4e), result in respiratory distress

with associated high mortalities,221 particularly when infections occur

in waters exceeding 20�C.172

Ascomycetes fungi produce non-motile spores with a chitinous

cell wall, which can survive in unfavourable conditions, and the

resistance of the spores is an important adaptation strategy to infect

susceptible hosts.242 These spores play a crucial role in dispersal

between hosts and dissemination within hosts.185 Infection with

species of Fusarium Link, 1809 causes skin ulcers or can become

systemic causing kidney and brain necrosis.180,243 In O. niloticus,

infection with F. oxysporum (Schlecht. emend. Snyder et Hansen,

1940) has been reported to be associated with subcutaneous myco-

ses.244 Candida albicans Berkhout, 1923 has been reported to colo-

nise the epithelial surface of fish, expanding and invading tissues.

During the invasion, morphogenesis of the pathogen from ovoid

yeast to a filamentous hypha is important in causing tissue damage

and mortality.245 Aspergillus Micheli, 1729 infection in the gills

causes damage to gill lamellae with subsequent respiratory

distress,246 but systemic infections from feed contaminated with

Aspergillus sp. primarily present with high mortality.247 Paecilomyces

sp. infections commence with ingestion of the fungal spores in the

water by the fish.248 Purpureocillium lilacinum (Thom, 1910) infection

has been associated with tilapia wasting disease in wild and farmed

tilapia in Puerto Rico.

2.8.3 | Global translocations

Oomycetes and ascomycote fungi are emerging pathogens with

increasing geographic distribution.222,223 These pathogens have a

broad host range including nonfish hosts, and this could be responsi-

ble for their wide dissemination.185 A major contributor to the global
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spread of oomycetes and ascomycotes is international trade in live

aquatic animals.224,225 Aphanomyces invadans can be transported and

introduced along with resistant exotic hosts such as O. niloticus, intro-

ducing A. invadans to new ecosystems.171 This pathway likely played a

major role in the spread of A. invadans in Africa.226,227 The transport

water containing infective spores is further regarded as a pathway for

dispersal of this pathogen.226 Birds have been speculated to play a

role in spread of A. invadans infection in South Africa.228 The move-

ment of infected fish and/or encysted oomycetes through intercon-

nected water bodies has increased the geographic range of the

pathogen,226 and boats and contaminated fishing equipment have

mechanically spread of the oomycete spores to unaffected

regions.227,228 Once introduced to a new ecosystem, the low host

specificity of oomycetes and fungi increases the likelihood that dis-

ease outbreaks will occur in native species that have not been

recorded as hosts for these pathogens.185,229

2.8.4 | Research

Oomycete and ascomycote diseases are difficult to control. The use

of malachite green, considered the most effective treatment until the

1980s, was proscribed in most countries because of its carcinogenic-

ity and persistent residues. Formalin immersion treatments are consid-

ered effective but may also be proscribed by regulatory processes.185

There is therefore an urgent need to enhance our understanding of

the basic biology of these pathogens to develop alternative methods

to control these diseases. It is unclear if oomycetes can infect only

wounded or immunocompromised animals or if they can cause infec-

tion in healthy fish.209 In addition, the survival of oomycetes outside

the host and during periods between outbreaks is poorly understood.

It is also unknown if fish that recover can act as reservoirs of infec-

tion, if oomycetes can survive in sun-dried or smoked fish, or if the

trade of these fish products can spread infections.226,230 Genomic

studies have mainly focussed on plant–pathogenic oomycetes, and lit-

tle is understood about oomycete pathogens of aquatic animals.

Genomic and proteomic studies of S. parasitica and A. invadans pro-

vide insights into molecular pathogenesis, particularly virulence fac-

tors and host gene expression.212,213,231,232 The identification of

complementary genes and proteins involved in the immune response

of fish would provide an understanding of how to prevent oomycete

diseases through pathogen-informed programmes that breed for

resistance. Elucidating the role of virulence genes and identifying

pathogen proteins that manipulate host immune systems would aid

development of novel control strategies including vaccines.209,233 It

is important to mention that surveillance is key for early detection

and disease control. Therefore, surveillance of oomycete and asco-

mycote pathogens should include natural habitats and reservoirs of

infection. Since these diseases are associated with declines in wild

fish populations, therefore, it is important to understand their eco-

logical impacts for improving conservation strategies.179,233 It is, fur-

thermore, important to identify environmental drivers of fungal and

oomycete diseases for better understanding of the ecological risks

of disease emergence.234

2.9 | Mesomycetozoea Mendoza et al., 2002 (Now
Ichthyosporea Cavalier–Smith, 1998) (Obazoa:
Opisthokonta: Holozoa: Ichthyosporea)

2.9.1 | Taxonomic identity

The Mesomycetozoea (or Ichthyosporea) are an enigmatic group of

parasitic organisms that are phylogenetically grouped with the

fungi.4,198 Mesomycetozoans have spherical spores and occur in a

range of tissues. Methods for identification, along with a host–

parasite list, are included in Rowley et al.199 The group includes recog-

nised animal pathogens including Rhinosporidium seeberi (Wernicke,

1903), species of Ichthyophonus Plehn et Mulsow, 1911, Sphaerothe-

cum destruens Arkush, Mendoza, Adkison et Hedrick, 2003 and Der-

mocystidium Pérez, 1908. Dermocystidium spp. are pathogens of fish

and are typically identified based on a combination of culture, tissue

tropism, host identity, morphology and molecular techniques.199 An

undescribed Dermocystidium sp., which may represent more than one

species, is reported from a range of organs in O. niloticus and O. aureus

� O. niloticus cultured in Brazil, Egypt and Israel.200–203 Dermocysti-

dium aegyptiacus El-Mansy, 2008 was described from the intestines of

O. niloticus farmed in Egypt (Figure 1a).204

2.9.2 | Diseases caused by Mesomycetozoea
(Ichthyosporea)

Mesomycetozoeans are parasitic opisthokonts with large spherical

or ovoid spores. Infection with Ichthyophonus hoferi Plehn et

Mulsow, 1911 is principally transmitted by plasmodia which are

formed by the fragmentation of multinucleated schizonts, the most

common stage of Ichthyophonus in live fish.235 The pathogen mainly

affects internal organs, namely liver, kidneys, spleen and heart

(Figure 4f).236 Infection causes enlargement and the formation of

raised nodules in these organs.221,237 The resulting tissue damage can

cause high mortality.238,239 In case of infection with Dermocystidium sp.,

the zoospores encyst and enlarge to form spherical multinucleate cells

with distinct wall inside the host,198 leading either to gross cutaneous

cysts240,241 or chronic systemic lesions.204

2.9.3 | Pathogenicity

Dermocystidium sp. infections of the gills cause hyperplasia and fusion of

the gill lamellae, although they do not appear to cause mortality.202

Mortalities of O. aureus � O. niloticus cultured in Israel were associated

with a Dermocystidium sp. infection in the liver which manifested as

focal granulomas that occasionally contained a necrotic core.200 Lesions
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were limited to the liver, unlike other Dermocystidium sp. infections. Sys-

temic Dermocystidium sp. infection of O. niloticus was described by Mah-

boub and Shaheen,203 including field sampling and experimental

challenges. Infected animals were sluggish, darkened and exhibited scale

loss and ulceration, as well as skin and fin damage. Multifocal cysts with

minimal inflammatory response were observed in the liver, spleen, stom-

ach and intestines. Ruptured cysts distributed spores into surrounding

tissues, with concomitant infiltration of macrophages and lymphocytes.

2.9.4 | Global translocations

The lack of information on species identity makes it impossible to iden-

tify likely translocations of Dermocystidium spp. with tilapia. Given the

variable tissue tropism and limited records, it is unlikely that Dermocysti-

dium spp. have been translocated widely with tilapia. These parasites

could be translocated to new localities, however, and, particularly for

the pathogenic Dermocystidium sp. described by Mahboub and

Shaheen,203 there is disease risk associated with its translocation.

2.9.5 | Research

To mitigate risks and improve management, research should aim to

improve control, confirm species identities, and assess if transbound-

ary Dermocystidium spp. movements have occurred.

2.10 | Microsporidia Balbiani, 1882 (Obazoa:
Opisthosporidia: Microsporidia)

2.10.1 | Taxonomic identity

Microsporidia are obligate spore-forming intracellular parasites whose

spores contain an extrusion apparatus that has a coiled polar tube

ending in an anchoring disc at the apical part of the spore. Molecular

data identify microsporidians as basal fungi.249,250 Their proliferation

in cells, undergoing merogonous and sporogonous development lead-

ing to the production of thick-walled spores, results in an enlarged cell

termed a xenoma. Generic and specific identification is based on

(a)

(c) (d)

(b)

(e) (f)

F IGURE 4 Oomycete and fungal diseases of tilapias. (a) Oreochromis niloticus showing cotton-wool like growths on the body surface
following an experimental infection with Saprolegnia parasitica Coker, 1923 (image courtesy of Shimaa Ali, WorldFish, Egypt). (b) Oreochromis
niloticus showing a superficial lesion following infection with Aphanomyces invadans (image courtesy of Supranee Chinabut, Thailand). (c) Gross
appearance of O. niloticus infected with Achlya Nees von Esenbeck, 1823, showing ulcers and cotton-like growths on the body surface and caudal
peduncle. (d) Oreochromis niloticus with prominent hyphal growth on the head, dorsal fin and caudal peduncle following experimental infection
with Achlya klebsiana Pieters, 1915. Images (c) and (d) courtesy of Panchai, Nakhon Ratchasima Rajabhat University and Hanjavanit, Khon Kaen
University, Thailand. (e) Fish gills displaying a marble appearance representing an advanced stage of Branchiomyces Plehn, 1912 infection. (f)
Oreochromis niloticus with an enlargement of the liver with dark grey nodules infected with Ichthyophonus Plehn et Mulsow, 1911. Figures (e) and
(f) provided courtesy of Heba H. Mahboub and Adel A. Shaheen, Zagazig University, Egypt)
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morphological characteristics of the coiled polar filament, the number

of nuclei and spore dimensions251,252 and molecular data of 16S

rDNA sequences.253,254 While biorefringent spores can be detected in

haemotoxylin and eosin sections, quicker methods that negate the

need for tissue embedding and sectioning, including the use of Giemsa

or phloxin B can facilitate the rapid detection of spores in fresh mate-

rial.255,256 Spores range from 1 to 20 μm in length and their differenti-

ation from cellular debris in some preparations is difficult. Calcofluor

white specifically binds to chitin in the spore wall, which, with fluores-

cence microscopy, facilitates their identification in host tissues.257

Spores can also be identified using immunohistochemistry258 and/or

in situ hybridization.259–261

Microsporidian infections from tilapia in aquaculture include Loma

camerounensis Fomena, Coste et Bouix, 1992 from the intestinal tract

of farmed O. niloticus in Cameroon262; from farmed O. niloticus in

Kenya20 and from the kidneys of O. aureus and hybrids in Israel200; sys-

temic infection with Neonosemoides [syn. Nosemoides] tilapiae Faye,

Toguebaye et Bouix, 1996 in wild C. zillii and S. melanotheron in

Benin263,264 and Nucleospora braziliensis Rodrigues, Francisco, David, da

Silva et Araújo Júnior, 2017 infecting wild and farmed O. niloticus in São

Paulo State, Brazil.265 Microsporidian infections are recorded from

other tilapia including a species of Glugea Thélohan, 1891 in invasive O.

niloticus in Indonesia266; a species of Pleistophora Gurley, 1893 in the

swimbladder of wild Haplochromis angustifrons Boulenger, 1914 and

Haplochromis elegans Trewavas, 1933 from Uganda19,201,267; N. tilapiae

from the stomach of wild Coptodon guineensis (Günther, 1862) cited as

T. guineensis from Senegal,264 as a systemic infection from the same

host from Benin263; and in wild Coptodon nyongana (van den Aude-

naerde, 1971) cited as T. nyongana from Benin, Cameroon and

Senegal.262 Details of the host–parasites records of tilapia are sum-

marised in Table S2. Taxonomic keys to Microsporidia are provided by

Larsson,268,269 Sprague et al.,270 Canning et al.271 and Cali et al.272

These cases serve as a useful resource for facilitating identification and

supporting the management of infections following the discovery of

further microsporidian infections of cultured tilapia.

2.10.2 | Pathogenicity

Records of microsporidians in tilapia mostly note only their presence

and seasonal prevalence in hosts, but Paperna200 reported that Pleisto-

phora sp. infections in H. angustifrons and H. elegans caused thickening

of the swimbladder walls which contained abundant pansporoblasts.

Rodrigues et al.265 described N. braziliensis at 87%–100% prevalence in

O. niloticus (av. 230–540 g) reared in reservoirs in Brazil. These infec-

tions caused xenomas in the gills with hyperplasia and telangiectasis

and skin melanisation and inflammation, exophthalmos, stomach con-

gestion with marked inflammatory responses associated with lesions,

necrosis and liquefaction of infected muscle and kidney, hepatomegaly,

splenomegaly and hepatic haemorrhages.265 Sakiti and Bouix263

observed N. tilapiae infections in C. zillii, T. guineensis and S. mela-

notheron and found xenomas in the gills and in the mesenteries, gut wall

and liver, but without apparent clinical effect on the fish.

2.10.3 | Global translocations

There are insufficient data to understand transboundary movement of

microsporidian infections with tilapia translocations. Nucleospora bra-

ziliensis is not reported in Africa, and a horizontal transfer from a resi-

dent fish in Brazil is the most likely source of infection, but Rodrigues

et al.,265 did not examine resident fish in the reservoirs.

2.10.4 | Research

Research on microsporidian infections of fish centres on the develop-

ment of diagnostic methods for detection at low abundance that

might be overlooked by histology, understanding routes of transmis-

sion and factors facilitating infection, development of in vivo challenge

models to better understand host–parasite interactions, and the effi-

cacy of management and control strategies.273–275 There are few

effective chemotherapeutic agents for treatment of microsporidians.

A range of products have been assessed in fish including

albendazole,276 beta-glucans,277 monensin278 and quinine hydrochlo-

ride279 against L. salmonae, and fumagillin and toltrazuril against Glu-

gea anomala (Moniez, 1887).280 While feed trials with monensin

significantly reduced xenoma number, the effective dose of 1000 ppm

for up to 3 weeks is above the Oncorhynchus mykiss (Walbaum, 1792)

96-h LC50 of 1.88 mg.281 Trials with albendazole, beta-glucans and

fumagillin also reduced the abundance of xenomas, while quinine

hydrochloride delayed xenoma formation, and toltrazuril destroyed

xenomas. Worldwide, there are, however, no veterinary medicines

licenced for use against microsporidians in aquaculture. An experi-

mental vaccine using freeze-killed spores of a low-virulence strain of

Loma salmonae (Putz, Hoffman et Dunbar, 1965) given intraperitone-

ally, resulted in 85% fewer xenomas in the gills of O. mykiss.282 The

study indicates that non-treatment based approaches can be devel-

oped for control of microsporidian infections in fish.

2.11 | Monopisthocotylea Odhner, 1912
(Monogenea Carus, 1863) (Obazoa: Opisthokonta:
Metazoa: Platyhelminthes)

Monogeneans are flatworms, primarily ectoparasitic on fish, charac-

terised by possessing a haptor (opisthaptor), a specialised structure

that uses hooks or clamps to maintain attachment of the parasite to

the host.

2.11.1 | Taxonomic identity

Species of the genus Gyrodactylus von Nordmann, 1832 are small

(100–200 μm long), transparent, ectoparasitic monogeneans that col-

onise the external surfaces and buccal-opercular cavities of their hosts

(Figures 5–7a). The sclerites of the haptor include a pair of anchors

(hamuli) linked by a thin dorsal bar which articulate over an
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approximately triangular-shaped ventral bar (Figure 7b–d). Eight pairs

of marginals hooks (Figure 7e,f), typically of one morphological type

and size, which are distributed around the periphery of the haptor

function as the principal means of attachment. Gyrodactylus do not

have eye spots, have a bi-lobed head with a pair of head organs that

aid in anterior attachment to the host and are epidermal grazers. Gyro-

dactylus spp. notably are viviparous polyembryonous and progenetic;

the large uterus contains an embryo at birth. Individuals develop a

male copulatory organ (a muscular organ armed with small spines)

after their first parturition. At least 15 species of Gyrodactylus infect

tilapia (Table S2; Figure 8)—although this undoubtedly represents an

underestimate given that seven new species have been described

since 2000,283–287 that cichlids and gyrodactylids are speciose, and

that tilapia—Gyrodactylus host–parasite associations have not been

extensively studied in Africa. Two Gyrodactylus spp. are widely distrib-

uted and associated with aquaculture mortalities: Gyrodactylus cichli-

darum Paperna, 1968 described from S. galilaeus in Ghana, but now

with a global distribution on numerous hosts,287,288; and G. yacatli

García-Vásquez, Hansen, Christison, Bron et Shinn, 2011 described

from Oreochromis spp. and Vieja fenestrata (Günther, 1860) in Mexico,

but originating in Africa, and recorded from Kenya, and possibly

Zimbabwe and China.286,287

Dactylogyrids possess a haptor with two pairs of anchors or ham-

uli, seven pairs of marginal hooks and four eyespots (Figure 9a); the

configuration of the haptoral elements, the morphological shape of

these and the reproductive organs (i.e., vagina and male apparatus)

facilitate the identification of genera and species. They infect the gills

and intestine of their hosts. There are 72 species of dactylogyrid

(a) (b)

(c) (d)

(e) (f)

(g) (h)

F IGURE 5 Light microphotographs of Oreochromis niloticus larvae (~2 cm) with a heavy infection of Gyrodactylus cichlidarum Paperna, 1968.
(a) Head, (b) Caudal fin, (c) Caudal peduncle, (d, f), Eye, (e), Anal fin, (g) Ventrum and (h) Nares. All scale bars = 500 μm

SHINN ET AL. 107



monogeneans described from tilapia (Figure 9a–i) in the genera Cichli-

dogyrus Paperna, 1960 (Figure 9a–d), Enterogyrus Paperna, 1963

(Figure 9f) and Scutogyrus Pariselle et Euzet, 1995 (Figure 9e). Mor-

phological identification of dactylogyrids is typically based on the hard

parts of the haptor (see below) and copulatory organs (Figure 9g–i).

The gill-infecting dactylogyrids of tilapia belong to Cichlidogyrus

and Scutogyrus, and are characterised by a haptor bearing two pairs of

anchors (whereas there is only one pair in gyrodactylids), a V-shaped

ventral transversal bar (in contrast to the ventral bar of members of

Gyrodactylus, which possesses a membrane), a dorsal transversal bar

with two auricles (in contrast to the simple dorsal bar in Gyrodactylus)

and seven pairs of marginal hooks (compared to 8 in Gyrodactylus;

Figure 9c–e, g). Cruz-Laufer et al.289 identified that numerous gill-

infecting species have been co-introduced outside continental Africa

and are reported in the peer-reviewed literature from Latin America,

Asia, Australia or Madagascar. Five of these have been mentioned as

co-introduced in at least 15 publications. Notable species that have

been translocated include C. halli (Price et Kirk, 1967), C. sclerosus

Paperna et Thurston, 1969, C. thurstonae Ergens, 1981, C. tilapiae

Paperna, 1960 and Scutogyrus longicornis (Paperna et Thurston, 1969).

The three species for which only one co-introduction is reported out-

side Africa have a limited natural distribution: C. levequei Pariselle et

Euzet, 1996 on Coptodon coffea (Thys van den Audenaerde, 1970) in

Guinea is reported from O. niloticus in China290; C. quaestio Douëllou,

1993 in Lake Kariba, Zimbabwe291 and the Congo Basin292 is reported

from O. niloticus introduced into Mexico129; and C. rognoni Pariselle,

Bilong Bilong et Euzet, 2003 from Senegal293 and from cultured tilapia

in Côte d'Ivoire293 is reported from O. niloticus introduced into Brazil.

Their limited distribution decreases their likelihood of

translocation.294

(e) (f)

(a) (b)

(c) (d)

F IGURE 6 Scanning electron micrograph of Gyrodactylus cichlidarum Paperna, 1968. (a–e) Attachment on fish skin; (f) Haptoral structure of
the worm after detachment from Oreochromis niloticus. Images a, c-f courtesy of Mrs Greta Hanako Rosas Saito, Instituto de Ecología A.C., Xalapa,
Mexico. Image b courtesy of Giuseppe Paladini, Institute of Aquaculture, University of Stirling, Scotland, UK.
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Species of Enterogyrus infect the stomach of their hosts and can be

identified by the shape and configuration of their haptoral elements

(Figure 9f).295,296 They possess seven pairs of marginal hooks, a simple

transverse bar, and two pairs of anchors of differing morphologies—the

smaller-sized ventral anchors have prominent inner and outer roots, while

the significantly larger dorsal anchors have a morphology closely resem-

bling that of the marginal hooks. Of the 12 described species, nine infect

tilapia. Some of these species have been co-introduced with tilapia outside

Africa, such as E. cichlidarum Paperna, 1963,297 E. coronatus Pariselle, Lam-

bert et Euzet, 1991, E. foratus Pariselle, Lambert et Euzet, 1991 and E.mal-

mbergi Bilong Bilong, 1988298 in Brazil and Mexico299; and E. coronatus

and E.malmbergi in China300 and Cuba.301

Pariselle and Euzet295 provided the most recent morphological

identification key for dactylogyrid monogeneans including those para-

sitising tilapia, but numerous species have been described subse-

quently.302 Cichlidogyrus mbirizei Muterezi Bukinga, Vanhove, Van

Steenberge et Pariselle, 2012 is the only dactylogyrid described after

Pariselle and Euzet295 that commonly infects commercially important

tilapia and has been translocated broadly (Table 1).300,303–305 New

host–parasite records continue to be made from wild populations of

commercially important tilapia. Cichlidogyrus papernastrema Price, Pee-

bles et Bamford, 1969 was recorded from native C. rendalli in the

Upper Congo Basin and C. berradae Pariselle et Euzet, 2003, C. cubitus

Dossou, 1982 and C. flexicolpos Pariselle et Euzet, 1995 were

(b)

(c)

(d) (e)

(f) (g)

(a)

F IGURE 7 Light microphotographs of Gyrodactylus cichlidarum from Oreochromis niloticus. (a) Whole mount, (b) Hamuli, Ventral and dorsal
bars, (c) Dorsal bar, (d) Ventral bar, (e) Marginal hook and (f, g) Marginal hook sickles
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recorded from introduced C. rendalli in the Lower Congo Basin.292

New species also continue to be described from wild populations of

economically important tilapia, such as Enterogyrus mashegoi Luus-

Powell, Madanire-Moyo, Matla et Přikrylová, 2020 and E. multispiralis

Luus-Powell, Madanire-Moyo, Matla et Přikrylová, 2020 from the

stomach of O. mossambicus in South Africa,296 and C. flagellum Ger-

aerts et Muterezi Bukinga, 2020, C. lobus Geraerts et Muterezi

Bukinga, 2020 and C. maeander Geraerts et Muterezi Bukinga, 2020

from the gills of T. sparrmanii in the Democratic Republic of Congo.306

Even for well-studied tilapia species, further dactylogyrid diversity is

F IGURE 8 Light microphotographs under phase contrast of the marginal hook sickles of Gyrodactylus species infecting different species of
tilapia. (a) Gyrodactylus cichlidarum Paperna, 1968. (b) Gyrodactylus ergensi Prikřylová, Matějusová, Musilová et Gelnar, 2009. (c) Gyrodactylus
hildae García-Vásquez, Hansen, Christison, Bron et Shinn, 2011. (d) Gyrodactylus malalai Prikřylová, Blažek et Gelnar, 2012. (e) Gyrodactylus
niloticus Cone, Arthur et Bondad-Reantaso, 1995 (syn. G. cichlidarum). (f) Gyrodactylus nyanzae Paperna, 1973. (g) Gyrodactylus occupatus
Zahradníčková, Barson, Luus-Powell et Prikřylová, 2016. (h) Gyrodactylus parisellei Zahradníčková, Barson, Luus-Powell et Prikřylová, 2016.
(i) Gyrodactylus shariffi Cone, Arthur et Bondad-Reantaso, 1995. (j) Gyrodactylus shinni García-Vásquez, Pinacho-Pinacho, Guzmán-Valdivieso,
Calixto-Rojas et Rubio-Godoy, 2021. (k) Gyrodactylus ulinganisus García-Vásquez, Hansen, Christison, Bron et Shinn, 2011. (l) Gyrodactylus yacatli
García-Vásquez, Hansen, Christison, Bron et Shinn, 2011
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(i) (j)

(g) (h)

(d) (e) (f)

(c)(b)(a)

F IGURE 9 (a) Cichlidogyrus spp. on the gills of Sarotherodon melanotheron (photo A. Pariselle). (b) Cichlidogyrus Paperna, 1960 sp. on the gill of
Oreochromis niloticus from Thailand (photo T. Limakom). (c) Cichlidogyrus dossoui Douellou, 1993 (in toto, glycerine ammonium picrate (GAP)
medium) (photo A. Pariselle). (d) Cichlidogyrus tiberianus Paperna, 1960 (haptor, GAP medium) (photo A. Pariselle). (e) Scutogyrus gravivaginus
(Paperna et Thurston, 1969) (haptor, GAP medium) (photo A. Pariselle). (f) Enterogyrus malmbergi Bilong Bilong, 1988 (haptor, GAP medium)
(photo A. Pariselle). (g) Cichlidogyrus halli (Price et Kirk, 1967) (haptor, left side; male copulatory organ (MCO), right side, digested material; photo
A. García-Vásquez). (h) Cichlidogyrus agnesi Pariselle et Euzet 1995 (MCO, phase contrast) (photo V. Sarabeev). (i) Cichlidogyrus tiberianus (MCO,
scanning electron microscopy) (photo W. Fannes). (j) Histological section of Cichlidogyrus philander Douëllou, 1993 on the gills of
Pseudocrenilabrus philander (Weber, 1897; photo P.C. Igeh/A. Avenant-Oldewage). b, parasite body; h, parasite haptor; il, impacted lamellae; nl,

normal lamellae; black arrow: anchor deeply pushed in the gill lamellae. Scale bars: a = 250 μm; b, c = 100 μm; d–f, j = 50 μm; g = 25 μm;
h = 20 μm; i = 5 μm
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likely to be discovered. Some widespread tilapia monogeneans such

as C. halli and C. tilapiae represent species complexes,307 complicating

identification. Morphological and molecular investigations of C. halli in

the Upper Congo Basin indicate that introduced and native O. niloti-

cus, and local other native tilapia harbour different species.308,309

Monogenean specimens are dissected with the hook-bearing hap-

tor and the anterior genital organ-bearing parts used to facilitate mor-

phological studies and vouchering of specimens, while the parts of the

monogenean not bearing hard structures are used for molecular stud-

ies. Molecular identification of gyrodactylid and dactylogyrid monoge-

neans is largely based on nuclear ribosomal DNA (rDNA) markers.310

Ek-Huchim et al.311,312 designed primer combinations within the

nuclear rDNA for non-invasive identification of monogeneans on

tilapia.

2.11.2 | Pathogenicity

Attachment of gyrodactylids to fish involves the 16 marginal hooks

simultaneously perforating the epithelium and causes damage to the

epidermis.313,314 The two large hamuli contribute to marginal hook

attachment by lifting the centre of the haptor (see Figure 7 of the

haptor of G. cichlidarum) but can also perforate the epithelium. These

parasites also use their muscular pharynx to grab mucus and epider-

mal tissue which creates feeding wounds. Gyrodactylus spp. damage

and erode the fins of infected fish leading to reduced swimming

capacity and increased mortality.315,316 High parasite burdens cause

numerous superficial perforations that cause physiological and histo-

logical disturbances that can induce osmoregulatory failure.317 Gyro-

dactylus cichlidarum is associated with mortality of farmed tilapia

worldwide including Scotland,286 Egypt,318 Mexico287 and various

Latin American countries.319 The combined physical damage from

attachment and feeding constitutes an important breach to the pri-

mary, innate defensive barrier the skin provides, and renders hosts

more susceptible to opportunistic pathogens. Gyrodactylus cichlidarum

feeding and attachment activity damages the epidermis, increasing

the susceptibility of fish to bacterial infection, including with Strepto-

coccus iniae Pier, 1976320 and Aeromonas hydrophila (Chester, 1901)

with subsequent mortality.318

In Cichlidogyrus or Scutogyrus, the sclerites of the haptor pene-

trate the gill epithelium.321,322 Attachment of Cichlidogyrus philander

Douëllou, 1993 in a non-tilapia cichlid caused epithelial rupturing, dis-

turbance and distortion of blood cells, blood cell puncture, distortion

and sometimes penetration of the extracellular cartilaginous matrix in

the gills, surface deformation of gill lamellae, erosion of epithelial cells,

increased mucus production, neutrophilaemia, hyperplasia and fusion

of gill lamellae (Figure 9j).322,323 A humoral immune response324 and

changes in blood biochemistry325 are observed in O. niloticus injected

with extracts of Cichlidogyrus spp. The role of the marginal hooks of

the haptor in attachment to the gills is, however, debated.323,326,327 In

Enterogyrus, attachment creates shallow epithelial perforation, damage

and compression of the stomach epithelium, nuclear anomalies, meta-

plasia, hyperplasia, pleomorphism and vacuolation at the attachment

site.321 The apparently moderate pathology explains the lack of

observed morbidity or mortality associated with these parasites. Noga

and Flowers328 observed a cultured population of O. mossambicus

with specimens of E. cichlidarum attached to abnormal sites such as

the gills, cranial bones, heart, blood vessels, liver, perirenal area, peri-

toneal cavity and liver with sign of systemic host immune response

and severe morbidity and mortality.

Species of Gyrodactylus and Cichlidogyrus commonly co-occur in

fish farms129; co-infection induces host immunosuppression and facili-

tates infection by both parasites.329 Fish concurrently infected with

species of Gyrodactylus, Trichodina and I. multifiliis do not develop

immunity after vaccination for S. iniae and have higher mortality than

uninfected fish.330 Concurrent infection with Gyrodactylus sp. and

Cichlidogyrus sp. has negative effects on hosts; high parasite burdens

correlate with low host condition factor with an estimated 12%–15%

decrease in profit margin.331 Igeh and Avenant-Oldewage322 outlined

that natural infections of Cichlidogyrus are not very harmful. Sandoval-

Gío et al.324 noted little direct evidence for dramatic effects on cul-

tured tilapia. Paperna200 described no ill effects of tilapia dactylogyr-

ids in Africa or Israel. Abundances of up to 800 Cichlidogyrus spp. on

C. guineensis in �Ebrié Lagoon (Côte d'Ivoire) had no apparent negative

effect on the host (A. Pariselle, pers. obs.). Cichlidogyrus spp. are, how-

ever, potentially problematic in aquaculture.332,333 Kabata334 reported

serious gill pathology in tilapia infected with C. sclerosus in the

Philippines. Concurrent infections with species of Cichlidogyrus and

Scutogyrus induce anaemia and decrease fish condition.335 These

impacts combined with their high prevalence and direct life-cycle

caused Akoll et al.23,24 to assess Cichlidogyrus spp. as high-risk para-

sites for aquaculture.

2.11.3 | Global translocations

Gyrodactylus cichlidarum, Cichlidogyrus spp., Scutogyrus spp. and other

monogeneans have been translocated worldwide with tilapia for aqua-

culture (Tables S1 and S2)287,288,300,319,336,337 and infect native fish,

mainly cichlids, but also poeciliid fish in Mexico,287,336,338 in areas

where tilapia and their parasites are introduced. Gyrodactylus cichli-

darum is the most common translocated gyrodactylid of tilapia and

has been established in fish farms in Mexico for decades.287,339 Gyro-

dactylus yacatli is recorded in Mexico and Kenya,287 and probably in

China300 and Zimbabwe,285 although more extensive sampling and

accurate identification of specimens is needed. Translocation of tilapia

parasites has also occurred in Africa, including G. nyanzae Paperna,

1973, which was transferred from introduced O. niloticus to C. rendalli

in the Upper Congo Basin,340 and G. cichlidarum and G. malalai

Přikrylová, Blažek et Gelnar, 2012, which were introduced with O.

niloticus to Lake Victoria, Kenya where they infect local native fish.341

There are many widely cointroduced dactylogyrid tilapia para-

sites. Of these, some have transferred to cichlid hosts in continental

Africa (C. sclerosus, C. tilapiae),340 to Malagasy cichlids (C. halli, C. thur-

stonae, C. tilapiae),337 to American cichlids (C. sclerosus, C. tilapiae, S.

longicornis, E. malmbergi),336,342 and to members of the
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cyprinodontiform families Aplocheilidae in Madagascar (C. tilapiae)337

and Goodeidae in Mexico (C. sclerosus).336 The transmission of mono-

genean parasites to new hosts is rarely reported, and reports mostly

contain little evidence of translocation or transmission routes; infor-

mation is too limited to assess frequency or probability of transfer for

given monogeneans. It is clear, however, that the dactylogyrids that

establish outside their native range can exploit a phylogenetically

broad host range. Fannes et al.343 described that C. dossoui Douëllou,

1993 and C. tiberianus Paperna, 1960, which normally infect coptodo-

nine tilapia occur on other tilapia and cichlids in their introduced

range. These changes in host range can occur wherever tilapias are

translocated, because ecological opportunity and host phylogenetic

history determine the host range.289,344 Introduced populations can

be free of gill monogeneans, such as O. mossambicus in New Caledo-

nia, because of genetic bottlenecks, salinity changes, single introduc-

tion events or treatment of translocated stock.345 Tilapia-infecting

monogeneans may become the most widespread tropical freshwater

fish parasites, given the ubiquity of tilapia and the prevalence of their

monogeneans. Forty helminth species have been introduced to

Mexico with introduced fish; 33 of these are monogeneans; of which

14 were introduced with tilapia.336

2.11.4 | Research

Most studies focus on epizootiology and ecology of the tilapia-

gyrodactylid association. Aquaculture research focuses on the search

for natural treatments and products to improve the ability of fish to

respond to infections and the immune response elicited by infection.

The identification of host immune genes that are activated by G.

cichlidarum infection346 and identification of major histocompatibility

complex II α alleles associated with parasite resistance make

genotype-assisted selection of resistant fish strains possible.347 Bioin-

formatic analysis of monogenean parasite excretory/secretory pro-

teins (secretomes) also provides a novel approach to identify potential

drug targets.348 The lack of reports of detrimental effects may be a

consequence of a lack of study349 and greater attention paid to patho-

gens of more immediate concern. More functional–biological research

on monogenean life history and infection dynamics, physiology,

including host detection and environmental tolerance, and pathoge-

nicity such as attachment and histopathology, and facilitation of sec-

ondary infections would benefit aquaculture.302 Monogenean

phenotyping often focuses on the haptor. In cichlid-infecting dactylo-

gyrids, rapid morphological adaptation of the haptor associated with

host-switches is observed,350 as is haptoral variation within monoge-

nean species infecting populations of the same351 and different352

hosts. Morphological variation is observed in G. cichlidarum from dif-

ferent hosts and/or geographical regions, although this gyrodactylid

displays limited molecular variation.287 Accurately understanding

monogenean translocations and host-switches requires population-

level approaches of hosts and parasites. Understanding the influence

of phenotypic diversity in the haptor and its role in pathogenicity and

host-specificity could aid in predicting and understanding risk and

impacts of lateral parasite transfer after tilapia translocations. Better

understanding of why some tilapia monogeneans are more tolerant of

translocation and more likely to establish could also aid in understand-

ing translocation risks. How anthropogenic translocations alter the

geographic and host range of tilapia parasites is a major question in

cichlid parasitology, and improved baseline surveys and infection

experiments are needed to address it.353 Absence of parasites should

also be more systematically published: reports are rare in the litera-

ture, and published accounts often do not explicitly state whether

hosts were inspected for a parasite taxon that was not reported, prob-

ably because of publication bias against negative results.302,345 Cli-

mate change may help sustain or expand invasive tilapia

populations,354 although its expected impact on directly transmitted

aquatic parasites is unclear.355 A better understanding of any aspect

of the physiology and infection dynamics of tilapia monogeneans

would aid understanding how global change will influence the poorly

understood mechanisms behind monogenean pathology, distribution,

host range and host-switching.

Chemotherapeutic agents are expensive, may leave residues in

fish tissues and have negative environmental effects. Therefore,

assays have been conducted to evaluate the effectivity of various

plant extracts, essential oils and other natural compounds to control

infections, for example, garlic extract, saponins and other products.356

Leaf extracts of Mitracarpus scaber Zucc. (Rubiaceae), a plant com-

monly used in West African traditional medicine, improve growth,

non-specific immunity and resistance of Nile tilapia to G. malalai.357

Leucaena leucocephala (Lam.) (Fabaceae), a plant commonly used as an

anthelminthic in cattle, has also shown promising results in controlling

gyrodactylid infection of tilapia fingerlings.358 Dotta et al.359 found

that combined dietary supplementation with bee propolis and Aloe

barbadensis Miller (Asphodelaceae) extracts reduced abundance of

dactylogyrid monogeneans infecting the gills of O. niloticus. De Oli-

veira Hashimoto et al.360 found that essential oils of a hybrid mint

Mentha piperita Linnaeus (Lamiaceae) were effective against these

parasites.

Taxonomic identification of Gyrodactylus spp. and dactylogyrids is

time consuming and requires detailed morphometric analysis of micro-

scopic structures of the parasite attachment and/or copulatory organs

and specialist knowledge: a practical alternative in aquatic veterinary

medicine could be screening fish mucus using PCR to identify parasite

molecular markers.312 The relevance of this approach is limited to sit-

uations where precise taxonomic identification is required to meet

quarantine regulations for export permits, or where parasite life-cycles

are well documented and approaches to strategic control are estab-

lished. Most reports of farmed tilapia mortality, furthermore, are asso-

ciated with G. cichlidarum. Recent phylogeographic work indicates

that genetic structure and host-specificity of Cichlidogyrus spp. differ

between hosts.309,352 Molecular markers will be crucial in disentan-

gling the mechanisms that structure monogenean populations,

because they are consequential for colonisation dynamics. The wild

relatives of tilapia and their parasites are likely to be excellent disease

models.302,361 Cichlidogyrus berminensis Pariselle, Bitja Nyom et Bilong

Bilong, 2013, for example, infects multiple Coptodon spp. in Lake
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Bermin, Cameroon,362 and closer scrutiny could increase our under-

standing of potential and achieved host-range. More variable markers

than the currently widely used nuclear rDNA fragments are needed,

for instance, the mitochondrial cytochrome c oxidase subunit 1 gene

(COX1), which is highly variable in flatworms and therefore currently

not widely applicable in monogeneans.310 Mitogenomics of monoge-

neans infecting African cichlids363–365 are likely to facilitate the appli-

cation of mitochondrial markers to monogenean parasites of tilapia.

2.12 | Capsalidae Baird, 1853 (Obazoa:
Opisthokonta: Metazoa: Platyhelminthes)

These monopisthocotylean monogeneans are reported from tilapia

grown in brackish and marine systems.

2.12.1 | Taxonomic identity

Capsalids are monogeneans that primarily parasitise the external sur-

faces of fish; possession of accessory sclerites is a synapomorphy for

the family.366 From tilapia, Benedenia monticellii (Parona et Perugia,

1895) was recorded from O. aureus in Israel367 and Neobenedenia mel-

leni (MacCallum, 1927) was recorded from O. aureus in Cuba,368 as

Benedenia sp.,369,370 O. mossambicus in Hawaii,367,371 O. niloticus � O.

aureus in Martinique,372 O. aureus � O. mossambicus in Jamaica333,373

and O. aureus � O. mossambicus in the Bahamas.374–377 A Neobenede-

nia sp. was reported from O. mossambicus and O. niloticus hybrids in

Mexico's Atlantic coast.378 Invasive O. mossambicus and Tilapia mariae

in brackish water in Australia are parasitised by N. girellae (Hargis,

1955; M. Deveney, unpublished data; Figure 10a).

Benedenia monticellii (Figure 10b) possesses a vagina and a trans-

versely ovoid haptor with a muscular periphery and marked indenta-

tions in its posterior edge at the approximate positions of the

posterior hamuli and large anterior attachment organs.369 A key to

Benedenia spp. was provided by Deveney and Whittington,379 but

species have been described subsequently and the key will misidentify

some undescribed species. Neobenedenia spp. lack a vagina, have an

almost circular haptor and small anterior attachment organs.380 Neo-

benedenia Yamaguti, 1963 has a long and convoluted taxonomic his-

tory, but Brazenor et al.,381 using molecular data, resolved distinct

clades within morphologically similar Neobenedenia spp. and con-

cluded that aquaculture infections were N. girellae. Molecular analyses

are needed to identify Neobenedenia spp. and some specific tools have

been developed for this purpose.382

While the life-cycles of benedeniine genera vary, complicating

strategic control, all capsalids are susceptible to standard treatments

such as freshwater (for marine farmed fish), oxidising agents including

hydrogen peroxide, reducing agents such as formalin and anthelmin-

tics including praziquantel, decreasing the importance of precisely

identifying these parasites in aquaculture.

2.12.2 | Pathogenicity

Capsalids are important causes of disease in aquaculture: Neobenede-

nia spp. are regarded as notorious383 and insidious384 pathogens of

cultured fish. Infections damage the epidermis385 and eyes,386

(a) (b)

F IGURE 10 Capsalids from tilapia. (a) Neobenedenia girellae drawn from Queensland Museum specimen G218281 showing circular haptor,
small anterior attachment organs and absence of a vagina. (b) Benedenia monticellii drawn from specimens on Hebrew University of Jerusalem
slide HUJ-MONO1.0 showing laterally ovoid haptor with posterior notches, large anterior attachment organs and vagina with opening posterior
to common genital pore. Scale bar = 750 μm
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decrease epidermal thickness,387 facilitate secondary infections and

can lead to fish death by compromising osmoregulation.386

2.12.3 | Global translocations

Capsalids are not recorded as translocated with their hosts; further-

more, capsalids infect tilapia only in brackish and marine systems.

Stress associated with osmoregulation in seawater aquaculture sys-

tems increases the susceptibility of tilapia to capsalid infections.367

These parasites are part of the fauna that infect tilapia from the envi-

ronment when they are translocated, but it is noteworthy that Neobe-

nedenia spp. are invasive and have been broadly translocated.388

2.12.4 | Research

There are substantial bodies of work on capsalid taxonomy,381 biology

and pathology.386 Capsalid infections increase cost of production,

decrease fish growth and cause mortality with substantial economic

impacts on aquaculture.389 Life-cycle parameters are used as a basis

for temperature and salinity dependant strategic control390,391 that

aims to disrupt life-cycles.386 Although freshwater is an effective, safe

treatment,367,392 substantial efforts have been made to optimise pra-

ziquantel393 and hydrogen peroxide394 treatments for capsalids and

to identify effective natural products.395 Parasite management is

aided by shading396 and increasing the depth at which fish are

held,397 which both decrease infection. Kishimori et al.371 noted a

specific antibody response to Neobenedenia in O. mossambicus,

although Rubio-Godoy et al.378 found that injecting purified worm

extracts did not decrease Neobenedenia infection in tilapia. Ongoing

research is likely to focus on management and decreasing the effects

of infections on cultured fish and of control on the costs of

production.386

2.13 | Digenea Carus, 1863 (Obazoa:
Opisthokonta: Metazoa: Platyhelminthes)

2.13.1 | Taxonomic identity

Trematodes are parasitic flatworms with a ventral disc or a ventral

and an oral sucker. Trematodes infecting ‘tilapia’ of the genera Tilapia,

Coptodon and Oreochromis in their native range in Africa, as well as in

at least 10 countries where they have been introduced, are repre-

sented by at least 45 taxa. Most of them are metacercariae (larvae)

occurring in different tissues and organs of the fish, that is, skin, mus-

cle, gills, operculum, liver, kidney, heart and mesentery. Only two

adults were reported from Africa in one study [Allocreadium ghanensis

Fischthal et Thomas, 1972 and Alloglossidium corti (Lamont, 1921) by

Simon-Oke]398 and another three species were reported from Latin

America [Crassicutis cichlasomae Manter, 1936 by Salgado-Maldonado

(2006),399 Saccocoelioides sogandaresi Lumsden, 1963 by Salgado-

Maldonado et al.,400 and S. cichlidorum (Aguirre-Macedo et Scholz,

2005) by Aguirre-Macedo and Scholz],401 and the validity of these

reports requires confirmation. All these metacercariae require fish to

be consumed by a fish-eating bird or mammal including man to com-

plete their life-cycle. Twenty-seven of the 42 metacercariae are iden-

tified up to species level. Tilapias are mainly parasitised by

metacercariae of the orders Diplostomida (families Diplostomidae

Poirier, 1886–13 spp., Clinostomidae Lühe, 1901–1908 spp.) and Pla-

giorchiida (Heterophyidae Leiper, 1909–15 spp.). The clinostomid

Euclinostomum heterostomum (Rudolphi, 1809) is widely distributed in

African ‘tilapia’ (Figure 11), although the diplostomids occurring on

the skin (Uvulifer Yamaguti, 1934 and Bolbophorus Dubois, 1935) and

in the brain and eyes (Diplostomum von Nordmann, 1832 and Austro-

diplostomum Szidat et Nani, 1951) are of major concern for aquacul-

ture. Among the members of the family Heterophyidae parasitising

tilapia, at least six species are considered economically or medically

important as fish-borne zoonotic trematodes (FZT). Among them, Het-

erophyes heterophyes (Siebold, 1853), Haplorchis pumilio (Looss, 1896)

and Centrocestus formosanus Nishigori, 1924 are the most

important.403

2.13.2 | Pathogenicity

Trematode metacercariae may be free in organs such as brain and

eyes or encysted in different parts of the fish body. The condition

caused by metacercariae of diplostomids in the eye of fish (eye

humours, retina and lens) is known as diplostomiasis; fish develop

impaired vision associated to clinical signs such as cataract formation,

exophthalmia, lens dislocation and eventually blindness. Grobbelaar

et al.404 reported high prevalence of infection by free-moving meta-

cercariae of diplostomids in the aqueous and vitreous humours of T.

sparrmanii and C. rendalli in the Okavango River, Botswana

(Figure 12). Histopathological analyses revealed the rupture of the

inner eye lining. In another study, in individuals of O. mossambicus and

O. aureus infected with the metacercariae of Austrodiplostomum com-

pactum (Lutz, 1928) in Mexico, García-Márquez et al.406 reported

lesions as diffuse corneal edema, severe diffuse eosinophilic optic

neuritis, eosinophilic iridiocyclitis, conjunctivitis and severe cortical

cataracts. Furthermore, the metacercariae encysted on the skin, gill fil-

aments and heart are also of major concern for fish health. For

instance, C. formosanus, considered as a parasite originally from Asian

cyprinids and co-introduced with their hosts across the globe, causes

pathological alterations on the gills leading to respiratory distress and

in severe infections causes mortality (Figure 11).402 The heterophyid

H. pumilio is of special interest because some studies of experimental

infections of tilapia with cercariae of H. pumilio evidenced severe

pathological effects as haemorrhages in skeletal muscles in heavily

infected fish because the cercariae migrate through connective tissue

and the final localisation of the metacercariae is in skeletal structures

(Sommerville, 1982). Finally, the condition caused by metacercariae of

Uvulifer spp. encysted on the skin of the fish causing an external mela-

nised host inflammatory response is known as black spot disease; this
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disease causes slow growth, deformities and increases the mortality

rate of freshwater fish (Figure 12).405 These authors analysed the

effect of black spot disease in O. niloticus in Egypt, and even though

they did not report large mortalities or morphological deformities of

fish, apparently harvest weight of fish declined as severity of infection

increased. They also observed that females were more susceptible to

Uvulifer infections than males, although their loss of harvest weight on

severe infection levels was greater than females.

2.13.3 | Global translocations

In sharp contrast with the pattern shown by monogeneans and the

spillover across the globe along with the introduction of tilapia, trema-

todes associated with this group of cichlids have not been translo-

cated; these parasites are less host-specific in the second

intermediate host, but they possess complex life-cycles which

involves three hosts and greater specificity may occur in the first and

definitive hosts. Even though tilapia act as the second intermediate

host harbouring the metacercarial stage, and fish-eating birds or mam-

mals serve as their definitive hosts increasing the potential of dis-

persal, no species of trematode found thus far in their native range in

Africa has been found in places where tilapia have been introduced.

The lack of the same species of first intermediate host (a mollusc) in

the areas where tilapias are introduced may preclude the completion

of their life cycle. For instance, the metacercariae of E. heterostomum

are widely distributed in Africa; yet, they have never been found in

tilapia introduced in Asia or in the Americas. Even other clinostomids

such as Clinostomum phalacrocoracis Dubois, 1930, C. cutaneum

Paperna, 1964 and C. tilapiae Ukoli, 1966 are also found exclusively in

Africa.407 The fact that species of heterophyids such as C. formosanus

(originally described from Taiwan Province of China) and H. pumilio

(first described in Egypt) are found everywhere in the world is not

related to the translocation of tilapia; most likely the widespread dis-

tribution of these species is due to the translocation of the first inter-

mediate host, the gastropod, Melanoides tuberculata (Müller, 1774) or

definitive hosts. In addition, the metacercariae of both species are

considered as invasive alien species408–410; they display extremely

wide host specificity and are also found in a wide variety of fish spe-

cies across the globe. Conversely, tilapia introduced to the Americas

show evidence of host-switching events of trematodes from native

cichlids (and other freshwater fish) to farmed tilapia. For instance, the

metacercariae of A. compactum, a diplostomid trematode parasite of

cormorants and widely distributed across the Americas and the

(a) (b)

(c) (d)

�

��

F IGURE 11 (a) Encysted metacercariae of Euclinostomum heterostomum (Rudolpi, 1809) (Eh) in the body cavity of Oreochromis niloticus
(image courtesy of Liesl Van As and Andri Grobelaar from the Faculty of Natural and Agricultural Sciences, University of the Free State,
Bloemfontein, Republic of South Africa and the Editorial Office of African Zoology). (b) Photomicrograph of histological gill sections of O. niloticus
infected with numerous metacercarial cysts of Centrocestus formosanus (Nishigori, 1924) within the gill filament. (c) Photomicrograph of gills
showing expansive proliferation of cartilage of gill filament which surrounds the metacercariae of C. formosanus, with subsequent distortion of the
normal gill architecture; (d) Photomicrograph of histological infected O. niloticus gill sections showing extensive edema associated with congestion
of the blood vessels and intense inflammatory cell infiltration (images courtesy of Mahmoud Abou-Okada from the Faculty of Veterinary
Medicine, Cairo University, Egypt reproduced from Abou-Okada et al.402)
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(c)(b)
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F IGURE 12 (a, b) Gross and microscopic examination of Oreochromis niloticus heavily infected with metacercariae of Uvulifer sp. (Trematoda:
Diplostomidae) (black spot disease). (c) Photomicrograph of a histopathological section of O. niloticus skin and muscle infected with Uvulifer
sp. showing the encysted metacercariae; FC, fibrous capsule; M, muscle; MD melanin deposits; PC, parasite cyst. Images courtesy of Harrison

Charo-Karisa, Shimaa E. Ali and John A.H. Benzie from WorldFish, Abbassa, Egypt and Penang, Malaysia. Images reproduced from Charo-Karisa
et al.405 (d) Photomicrograph of a normal, non-infected fish eye with the retinal layers intact; (L) lense. (e) An encapsulated diplostomid (D) within
a blood vessel (BV). (f) Gross examination of the eye of Coptodon rendalli showing a free-moving diplostomid metacercariae. (g) Photomicrograph
of an infected eye of C. rendalli showing the accumulation of blood (BA), which has torn the retina (R) and choroid (C) from the sclera. Images
courtesy of Liesl Van As and Andri Grobelaar from the Faculty of Natural and, University of the Free State, Bloemfontein, Republic of
South Africa. Images reproduced from Grobelaar et al.404).
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causative agent of diplostomiasis is commonly found in native species

of cichlids411; however, it has been reported in wild and farmed Nile

tilapia of Mexico and Brazil.412,413

2.13.4 | Research

Ongoing research on trematodes of tilapias includes the taxonomic

report of their presence as a part of their parasite fauna in fish farms, or

in aquatic environments where tilapia have been disseminated glob-

ally.407,414,415 Investigations that can be applied practically in aquacul-

ture are designed to assess the epidemiology of FZT using O. niloticus

as a model because they are highly consumed in several countries.

Some studies evaluate the risk of FZT because they are potentially

transmissible to humans.416 FZT are highly prevalent in countries where

food traditions include eating raw or improperly cooked fish, such as

Thailand, Cambodia, Laos, Vietnam or Korea.403,417 Oreochromis niloti-

cus and their parasites have, furthermore, been used for biomonitoring.

Some studies have addressed the relationship between some parasitic

infections, including those by trematode metacercariae, and the immu-

nological health condition of O. niloticus through gene expression analy-

sis and the assessment of the toxicity of some heavy metals.166 The use

of antiparasitic agents has been assessed to control O. niloticus infected

with C. formosanus, which causes respiratory distress due to pathologi-

cal alterations to the gills. Abou-Okada et al.402 assessed the efficacy of

acriflavine on O. niloticus infected with C. formosanus (and with Tricho-

dina centrostrigeata Van As et Paperna, 1983) and found that application

of 10 mg/L acriflavine for 7-days provided a 91% reduction in metacer-

cariae colonising the gills. There are, however, regulatory limitations on

use of acriflavine and it appears to have limited efficacy in the treat-

ment of established infections.

2.14 | Cestoda Carus, 1863 (Obazoa:
Opisthokonta: Metazoa: Platyhelminthes)

2.14.1 | Taxonomic identity

Cestodes are flatworms with no digestive system, many of which are

elongated with multiplicated genital organs. Adult tapeworms are rare in

tilapia except for the Asian fish tapeworm Schyzocotyle acheilognathi

(Yamaguti, 1934), one of the most successful invasive freshwater fish par-

asites.418 This invasive parasite is distributed across all continents except

Antarctica, has been reported from >300 freshwater fish species and has

been reported to cause mortality in naïve endemic hosts.418 This parasite

has an indirect life-cycle and uses copepods as its intermediate host and

freshwater fish as its paratenic or definitive host.418 In addition, there is

another finding of another adult tapeworm, Proteocephalus bivitellatus

Woodland, 1937 from Tilapia sp. (probably C. zillii) from Sierra Leone by

Woodland.419 This appears to be a valid species, but no other records of

adult proteocephalids in tilapia have been reported to date.

Cestode larvae (metacestodes) are more commonly reported from

tilapia, however, as their second intermediate or paratenic host. Most

belong to the family Gryporhynchidae (Cyclophyllidea) that use fish-

eating birds as their definitive host and copepods as their first inter-

mediate host.420 The larval stage of gryporhynchids, a merocercoid, is

typically encysted or, rarely, free-moving, and is typically small in size

at around 1–2 mm (with the exception of the non-encysted Amirtha-

lingamia macracantha (Joyeux et Baer, 1935) which can grow up to

17 mm) and can be easily overlooked among internal organs including

mesenteries, intestinal and stomach wall, liver, and/or gall-blad-

der.421–424 Gryporhynchid merocercoids are easily recognised by the

presence of a scolex armed with two rows of rostellar hooks and four

suckers.422,423 The identification of these merocercoids is based

almost entirely on morphology and the number of rostellar hooks, but

accurate identification depends on the proper flattened preparation

of larvae for microscopic evaluation.422,423

There are several other cestode larvae (plerocercoids) that have

rarely been detected in tilapia. These include the bothriocephalid ple-

rocercoids of Tetracampos ciliotheca Wedl, 1861 (syn. Polyonchobo-

thrium ciliotheca) or P. polypteri (Leydig, 1853) from O. niloticus

(Figure 12),425–427 but Eissa et al.428,429 reported the presence of

adult T. ciliotheca in 1%–6% of O. niloticus specimens and their hybrids

from Egypt. This record is unusual and may be incorrect, because T.

ciliotheca typically matures almost exclusively in catfish of the genus

Clarias and those of P. polypteri occur almost exclusively in bichirs of

the genus Polypterus.430 Larvae (plerocercoids) of Proteocephalus glan-

duligerus (Janicki, 1928) (Onchoproteocephalidea) were found in the

intestine of O. mossambicus from the Ndumo Game Reserve in

South Africa (O. Kudlai; personal obs.). Tilapia most likely serve as

accidental or paratenic hosts of this tapeworm that matures in clariid

catfish.431 Additional, clearly erroneous records include those of ple-

rocercoids of the human broad tapeworm Dibothriocephalus latus

(Linnaeus, 1758) (syn. Diphyllobothrium latum) from the intestine of O.

niloticus reported from Côte d'Ivoire,432 Kenya433 and Nigeria434 with-

out supporting evidence. The broad fish tapeworm is not able to

infect tilapia and moreover, does not occur in the tropics.435 In addi-

tion, Cyathocephalus sp. (Spathebothriidea) has been reported from

the internal organs and body cavity of O. shiranus in Malawi,436 a ces-

tode which has a natural distribution only throughout the Palearc-

tic.437 Likewise, the report of Caryophyllaeus sp. (Caryophyllidea) from

tilapias in Nigeria (Ukpai 2001) which also is naturally distributed only

in the Palearctic438 or Wenyonia sp. (Caryophyllidea) from the intes-

tines of O. aureus and other tilapia species in Nigeria439 maturing

exclusively in catfish in Africa440 also represent clear

misidentifications.

2.14.2 | Pathogenicity

The pathological effects S. acheilognathi exerts on cultured tilapia have

not been documented, but it is likely that this cestode causes mechan-

ical damage and inflammation of the intestinal mucosa, resulting in

anorexia, weight loss, abdominal distension, anaemia and, behaviou-

rally, a tendency to swim at the water surface.319,441–443 This tape-

worm is easily identified by its characteristic heart-shaped, unarmed
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scolex bearing two deep, sucker-like bothria (Figure 13a).418 Schyzoco-

tyle acheilognathi is not a typical parasite of tilapia but may be infec-

tive to tilapia because of its low specificity, and the global,

cosmopolitan distribution of both.418

While the risk posed by gryporhynchid merocercoids to the

health of farmed tilapia may be minor, the tissue tropism of some spe-

cies for the liver can have serious negative effects on host health, if

present in sufficient numbers and particularly in juvenile fish.424 Some

unidentified merocercoids are reported from the intestinal wall of cul-

tured and wild O. niloticus from Ethiopia, Kenya and Uganda, typically

with low prevalence except in a wild population of O. niloticus in

Kenya (14%).17 These merocercoids from the intestinal wall of tilapia

are represented by several species, including Cyclustera magna (Baer,

1959), Parvitaenia macropeos (Wedl, 1855) or Neogryporhynchus lasio-

peius Baer et Bona, 1960 (Figure 13c).423 Florio et al.17 examined the

histopathology of these larvae and showed encysted merocercoids

surrounded by epithelioid cells, sometimes by fibroblasts and lympho-

cytes. The cyst showed serrated margins with cell detachments and

the presence of red blood cells, possibly due to mechanical erosion

caused by the larvae. The wall around merocercoids was hypertrophic

and chronically inflamed. The cysts were frequently observed to pro-

trude on the outer surface and/or into the lumen.17

2.14.3 | Global translocations

Schyzocotyle acheilognathi has been reported from both wild and

cultured populations of O. mossambicus and O. niloticus from

South Africa,200 Cuba,319 Mexico399,441 and Nigeria444

(Table S2).

The first record of a gryporhynchid from a tilapia was A. macra-

cantha (Figure 13b) reported by Bray (1974) who isolated speci-

mens from the liver of O. niloticus and the intestine of a reed

cormorant, Microcarbo africanus (Gmelin, 1789), in Sudan. More

recently, this species has also been detected in cultured O. aureus

� O. niloticus hybrids in Israel.424 To date, approximately 10 species

have been recorded from domesticated and wild populations of

tilapia, mainly from Africa, but also from Israel and Puerto

Rico.319,445

2.14.4 | Research

There are no detailed studies on tapeworms in tilapia, because almost

exclusively only gryporhynchid larvae are reported and tapeworms

mostly are not important pathogens of tilapia.

(a) (b) (c) (d)

(e) (f) (g)

F IGURE 13 Cestodes of tilapias. (a) Immature Schyzocotyle acheilognathi (Yamaguti, 1934) from Symphysodon aequifasciatus from culture in
the Czech Republic. (b) Larval Amirthalingamia macracantha (Joyeux et Baer, 1935) from tilapia hybrids in Israel. (c, d) Scolex and whole larva of
Neogryporhynchus lasiopeius Baer et Bona, 1960. (e) Intestine of Oreochromis mossambicus from South Africa infected with gryporhynchid larvae
(red). (f) Larva of Tetracampos ciliothecaWedl, 1861 from the intestine of Clarias gariepinus from Malawi. (g) Larva of Polyonchobothrium polypteri
(Leidig, 1853) Lühe, 1900 from the intestine of Lates niloticus from Kenya.
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2.15 | Nematoda Diesing, 1861 (Obazoa:
Opisthokonta: Metazoa: Ecdysozoa)

2.15.1 | Taxonomic identity

Nematodes are slender, cylindrical helminths characterised by a tubu-

lar digestive system and are covered by a cuticle. There are several

records of nematodes in tilapia, but only a few of adult worms. Most

records of adult nematodes are from their non-native range, such as

Goezia nonipapillata Osorio-Sarabia, 1981 (Anisakidae) reported from

C. zillii, O. aureus and O. mossambicus in Mexico (Michoacan),446,447

Rhabdochona kidderi texensis Moravec et Huffman, 1988

(Rhabdochonidae) from O. mossambicus in the USA (Texas), and

unusual reports of European Schulmanela petruschewskii (Shulman,

1948; Capillariidae) from cultured O. aureus in Cuba.447,448 Only Gen-

dria tilapiae Baylis, 1930 (Quimperiidae) was described from native S.

galilaeus from Mali, but this species has not been reported from tila-

pias since Moravec.449 There are records of camallanid nematodes

such as Paracamallanus cyathopharynx (Baylis, 1923), Paracamallanus

laeviconchus (Wedl, 1861) and Procamallanus (Spirocamallanus) spiralis

Baylis, 1923 from O. niloticus or O. mossambicus in Egypt,428

Nigeria,450 the Republic of Benin451 and South Africa,452 Procamalla-

nus (S.) rebecae (Andrade-Salas, Pineda-L�opez et García-Magaña,

1994) from O. aureus in Mexico447 and Procamallanus (Spirocamalla-

nus) sp. from O. niloticus in Pakistan.453 Identification of these species

may be unclear because these nematodes are not specific parasites of

tilapia.449 Other reports of adult nematodes from tilapia represent

misidentifications, such as Hysterothylacium habena (Linton, 1900)

(Raphidascarididae) reported from O. aureus in freshwater in Mexico

(Michoacan),446,447 because it is a marine nematode whose distribu-

tion does not include Mexico.454 Aplectana chamaeleonis (Baylis,

1929) (Cosmocercidae) was reported by Chen455 from O. niloticus in

Lake Langano, Ethiopia, but this species is a specific parasite of rep-

tiles. Moravec449 mentioned that this finding was probably a misiden-

tification of a Labeonema sp. (Atractidae), but no species of this genus

has been reported in tilapia and this finding may represent a post-

cyclic infection in an atypical host.

Larval nematodes are frequently reported from various tissues of

tilapia worldwide. Most of these reports refer to third-stage larvae

(L3) of Contracaecum spp. (Anisakidae; Figure 14), which use fish-

eating birds as their definitive hosts. These parasites are important

because they have zoonotic potential. These larvae are mostly encap-

sulated in the internal organs and body cavity of tilapia with preva-

lence that can reach >50% and infection intensity that can reach up to

117 individuals per fish.456 These L3 larvae have been frequently

found in wild and farmed O. niloticus and O. mossambicus from

Egypt,457 Ethiopia,456,458 Kenya,459 South Africa,452 Uganda17 or

Zimbabwe,460 and also farms in Brazil, Mexico, El Salvador17 and

Peru.461,462 Identification of Contracaecum spp. is complicated, but

Moravec and Scholz458 designated specimens from African tilapia as

Contracaecum Type 2, although this may include several species.

There are reports of Gnathostoma spp. (Gnathostomatidae) from

the musculature and internal organs of tilapia. Awosolu et al.463

detected G. spinigerum Owen, 1836 in 17% of O. niloticus examined

from Igbokoda River, Nigeria. Most reports are from tilapia in Mexico

(Oaxaca, Puebla, Sinaloa and Veracruz) where three species, including

G. turgidum Stossich, 1902, were reported from O. aureus, O. mossam-

bicus and O. niloticus464 and from O. mossambicus from Thailand.

Third-stage (L3) larvae of Anguillicoloides crassus (Kuwahara, Niimi

et Itagaki, 1974) (Anguillicollidae), a typical eel pathogen, were found

in the peritoneum and abdominal muscles of cultured O. niloticus in

Belgium465 and Egypt.466 Tilapia can serve as a paratenic host for nema-

tode larvae of this species. The fourth-stage (L4) larva of Rhabdochona

(Globochona) paski Baylis, 1928 (Rhabdochonidae) was reported from O.

niloticus from Lake Victoria, Kenya and DR Congo (Zaire) as Rhabdochona

congolensis (Campana-Rouget, 1961) by Moravec449 (Figure 14b). Species

of Amplicaecum Baylis, 1920 (Ascarididae), Camallanus sp., Capillaria

sp. (Capillariidae), Cucullanus sp. (Cucullanidae), Eustrongylides

sp. (Dioctophymidae), Procamallanus sp., Rhabdochona sp., Spiroxys

sp. (Gnathostomatidae) or even Necator americanus (Stiles, 1902)

(a) (b)

F IGURE 14 Nematodes of tilapias. (a) Contracaecum Type 2 larvae from Oreochromis niloticus from Egypt. (b) Stage L4 larva of Rhabdochona
(Globochona) paski Baylis, 1928 from O. niloticus from Lake Victoria, Kenya
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(Ancylostomatidae) and Porrocaecum sp. (Toxocaridae) have been

reported from O. niloticus and O. mossambicus in Africa

(Table S2)439,449,463,467 and the Neotropics,447 but some of these findings

could be misidentifications or accidental infections.

2.15.2 | Pathogenicity

Nematode larvae can invade any tissue of the host, including the peri-

cardium, which can have negative effects on the health of the host.

Tissue response to infection by Contracaecum spp. larvae includes the

formation of epithelioids, the fibrous encapsulation of larvae, which

can lead to mesenteric infections with extensive fibrosis and visceral

adhesions in larger fish.468,469

Gnathostoma spp. use a wide range of vertebrates as paratenic

hosts, including humans, where they can cause a serious disease,

gnathostomiasis, while the adults parasitise in the stomach of mam-

mals.470 Humans become infected by eating raw or undercooked fish

infected with L3 larvae. The disease is characterised by migratory inflam-

matory edema with larvae encapsulated in the stomach or ocular cavity.

Most human cases (about 25,000 reported cases) are caused by G. binu-

cleatum Almeyda-Artigas, 1991 in the Neotropical region and G. spini-

gerumOwen, 1836 with a cosmopolitan distribution, including Africa.470

2.15.3 | Global translocations

The nematodes of tilapia are not well studied or understood. Most

records of adults are not from the native range of tilapia but from the

introduced range,447 except for a few camallanid species, but their identi-

fication should be verified.449 Nematode larvae (mainly those of Contrac-

aecum spp.) are also more frequently reported from the introduced range

of the fish, but their identification requires the use of specific molecular

markers which were not applied in the initial studies.

2.15.4 | Research

The most economically important nematodes in tilapia aquaculture

are L3 of Contracaecum spp., which are widespread. Their control is

difficult because they are associated with fish-eating birds. In addition,

the larvae of the genus Gnathostoma have zoonotic potential and tila-

pia infected with them can also infect humans.

2.16 | Acanthocephala Koelreuter, 1771 (Obazoa:
Opisthokonta: Metazoa: Gnathifera: Syndermata:
Acanthocephala)

Acanthocephalans are a small group of endoparasites closely related

to rotifers (Wey-Fabrizius et al. 2014).471 They are characterised by a

spiny eversible proboscis that anchors the parasite to the intestine of

their definitive vertebrate hosts. Acanthocephalans have an indirect

life-cycle with an intermediate invertebrate host.

2.16.1 | Taxonomic identity

Few species of acanthocephalans are reported from tilapia. These par-

asites can be identified based on morphological characteristics of the

proboscis, the size, shape, number and distribution of proboscis

hooks, the shape and dimensions of the trunk and the presence and

distribution of trunk spines.472 Most records of adult acanthocepha-

lans in tilapia involve Acanthogyrus (Acanthosentis) tilapiae (Baylis,

1947; Quadrigyridae), a widely distributed intestinal parasite of >40

freshwater fish species in Africa.473,474 This species has been reported

from domesticated and wild populations of C. rendalli, C. zillii, O. ander-

sonii, O. aureus, O. leucostictus, O. macrochir, O. niloticus, O. spilurus, S.

galilaeus and S. melanotheron from Burkina Faso, Chad, Egypt,

Ethiopia, Kenya, Madagascar, Nigeria, Congo, Senegal, Uganda and

Zambia (Table S2).473 Adult Acanthogyrus (A.) sp., most probably A. (A.)

tilapiae, are reported from farmed and wild C. zillii, O. macrochir, O.

niloticus, O. mossambicus and S. galilaeus from Egypt, Ethiopia, Kenya,

Nigeria, Uganda and Zimbabwe (Table S2).467,475–477 Tilapia become

infected with A. (A.) tilapiae after consuming its unidentified inverte-

brate intermediate host, copepods of the genus Cyclops Müller,

1785.478 Acanthogyrus (A.) tilapiae has a short cylindrical proboscis

armed with 24 hooks arranged in three circles of eight hooks each

and a trunk armed only anteriorly with circles of spines that are usu-

ally dorsally incomplete.479 This acanthocephalan can occur at high

prevalence in cultured (>65%)480 and wild (>78%)481 tilapia.

Other adult acanthocephalans are infrequently reported from cul-

tured and wild tilapia in Africa, Asia and Oceania. An unidentified spe-

cies of Paragorgorhynchus Golvan, 1957 (Rhadinorhynchidae) was

reported in the intestine of wild C. zillii from Kenya477 and a Telosentis

sp. (Illiosentidae) was detected in wild populations of invasive O. mos-

sambicus in Australia.83 Adult Neoechinorhynchus (Neoechinorhynchus)

rutili (Müller, 1780) (Neoechinorhynchidae) were recorded from wild

C. zillii, O. niloticus and S. galilaeus from Nigeria,482–484 and poorly

described specimens ascribed to N. (N.) quinghaiensis Liu, Wang et

Yang, 1981 were recorded from wild O. niloticus from the

Philippines.485 Neoechinorhynchus (N.) quinghaiensis was reported as

Neoechinorhynchus sp. or Acanthogyrus sp. from cultured and wild O.

niloticus in the Philippines.486–489 Records of N. (N.) rutili and N. (N.)

quinghaiensis in tilapia seem to be erroneous, because most species of

Neoechinorhynchus are morphologically difficult to distinguish.490

Neoechinorhynchus (N.) rutili mature in fresh- and brackish water fish

from the northern Holarctic Region,491 while N. (N.) quinghaiensis

infects cyprinids from China,492 placing doubt on these identifications.

Immature Pallisentis (Pallisentis) nandai Sarkar, 1953

(Quadrigyridae) were reported in the liver of farmed O. niloticus from

Bangladesh.493 In this unusual site of infection this acanthocephalan

could not produce eggs.494 Pallisentis (P.) nandai occurred at 23%

prevalence in farmed O. niloticus from Bangladesh,493 but this parasite

appears unusual in tilapia.

The infective larval cystacanths of acanthocephalans are not typi-

cal parasites of farmed or wild tilapia. Infective stages of Polyacanthor-

hynchus kenyensis Schmidt et Canaris, 1967 (Polyacanthorhynchidae)

use tilapia as paratenic hosts, but the identities of the intermediate

and definitive hosts remain unknown.495 Cystacanths of P. kenyensis
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are reported encapsulated in the liver of 27% of wild C. zillii and 44%

of O. leucostictus from Kenya.496 Cystacanths of Polymorphus spindla-

tus Amin et Heckmann, 1991 (Polymorphidae) were observed free in

the intestine of wild O. niloticus from Peru.497 This species uses black-

crowned night herons (Nycticorax nycticorax [Linnaeus, 1758]) as its

definitive host,498 and represents the only acanthocephalan species

reported in tilapia from the Americas. Briones et al.485 ascribed a sin-

gle specimen of Bolbosoma sp. (Polymorphidae) from the mesenteries

of O. niloticus from the Philippines, but it is obvious from their figure 3

that this worm is a species of Southwellina Witenberg, 1932, which

mature in fish-eating birds.499 Cystacanths of Bolbosoma spp. are, fur-

thermore, recorded from marine fish and adults infect cetaceans.500

2.16.2 | Pathogenicity

The penetration of the proboscis of A. (A.) tilapiae into the intestine

destroys the mucosal folds, causes lacerations of the intestinal villi

from the proboscis hooks and provokes severe degeneration and

necrosis of the mucosal epithelium.327,481 Other changes observed in

infected tilapia include desquamation of the mucosa, interstitial

oedema and enteritis.481,501,502 Aggregated infiltration of eosinophils,

fibroblasts, lymphocytes and macrophages occurs at the site of

attachment in response to chronic inflammation of the tissue.481,502

Little is known about the pathological effects of adults of other acan-

thocephalan species in cultured tilapia, but it is likely that the submu-

cosal lesions, loss of the mucosal layer, decreased haematocrit and red

blood cell counts observed in N. (N.) quinghaiensis (syn. Acanthogyrus

sp.) infections in O. niloticus in the Philippines489 are typical.

The threat that immature P. (P.) nandai poses to the health of cul-

tured tilapia is unknown, but these parasites probably cause mechani-

cal damage, local necrosis, and hepatic inflammation.503 Pathogenesis

of P. kenyensis in tilapia is unknown, but its cystacanths may cause

local necrosis and inflammation of the liver like that caused by cysta-

canths of other acanthocephalan species in other fish.503

2.16.3 | Global translocations

There is insufficient evidence to indicate that acanthocephalans have

been translocated with tilapia, but Golvan504 suggested that A. (A.) tila-

piae was introduced to Madagascar with non-native cichlids from main-

land Africa. Translocation of this parasite to native cichlids of

Madagascar was not confirmed in the thorough survey there by

Šimková et al.337

2.16.4 | Research

To better understand the diversity, distribution and life-cycles of

acanthocephalans of tilapia, molecular and morphological approaches

on larval and adult stages need to be integrated. Sequences of nuclear

and mitochondrial genes are necessary to clarify the identity of acan-

thocephalans505,506 because of interspecific homogeneity of morpho-

logical characters.507 Future research includes histopathological

investigation of alterations caused by larval cystacanths and adult

acanthocephalans in tilapia to identify threats to cultured fish and bet-

ter understand if treatment would be beneficial.

Metabarcoding using high-throughput sequencing technology has

advanced our understanding of the endoparasite diversity of fish.508

Using this technology, Elsaied et al.509 detected a Neoechinorhynchus-

like operational taxonomic unit (OTU) in the gut content of wild O.

niloticus from Lake Nasser, Egypt. The taxonomic assignment of this

OTU as Neoechinorhynchus by Elsaied et al.,509 however, appears erro-

neous; Acanthogyrus (A.) tilapiae is the only acanthocephalan reported

from tilapia in Lake Nasser.502,510 Elsaied et al.509 extracted DNA

from eggs released by gravid females to the lumen of infected O. nilo-

ticus, and this approach has merit for non-destructive detection and

identification of all endoparasites.

2.17 | Pancrustacea Zrzavý et Štys, 1997
(Crustacea) (Obazoa: Opisthokonta: Metazoa:
Ecdysozoa: Pancrustacea)

Four groups of parasitic crustaceans (Copepoda, Branchiura, Pentasto-

mida and Isopoda) can infect tilapias. Copepods have short cylindrical,

segmented bodies. Branchiurans are obligate parasites with hooked

maxillae or sucking discs. Pentastomids are elongate segmented crus-

taceans with five anterior protruberances; two pairs of hooks for

attachment and the mouth. Isopods have rigid, segmented exoskele-

tons, two pairs of antennae, seven pairs of jointed limbs on the thorax

and five pairs of branching appendages on the abdomen that are used

in respiration. Crustaceans are mostly ectoparasites with direct life-

cycles, and only pentastomids are endoparasites of internal organs

with complex life cycles using some fish (including tilapias) as their

intermediate host and tetrapods (e.g. crocodiles) as their definitive

hosts. Some Copepoda Edwards, 1840 and all Branchiura Thorell,

1864 are ectoparasites of fish including tilapia and inhabit the gills,

fins and skin.511,512 The morphology of adult copepod parasites is

adapted for attachment with appendages that are modified into hooks

and suckers or cuticular outgrowths of the carapace. They are loosely

host specific, most species infecting more than one host species.

The most important crustaceans for tilapias are copepods and

branchiurans.

2.18 | Copepoda Edwards, 1840 (Obazoa:
Opisthokonta: Metazoa: Ecdysozoa: Pancrustacea)

The parasitic copepods are a diverse group, and some are highly

modified as adaptations to parasitism. Common features are a
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complete or partial loss of segmentation, paired egg sacs that hang

from the genital somite of the adult females for the duration of

embryonation, some instars are lacking in the larval development

and sexual dimorphism occurs (Figure 15b–d, k–m). Larval stages

in some families have morphology like their free-living relatives

and are free-living for much of their lifecycle. The simplest adapta-

tions to parasitism are observed in Ergasilidae, where adult females

have grasping appendages and retain segmentation of the thorax.

In the highly modified Lernaeidae, however, in females the second

antennae are extensively modified, segmentation is lost, the ova-

ries have attained enormous proportions and the thorax has conse-

quently enlarged, elaborate attachment structures have developed,

and the second maxillae are transformed into powerful attachment

structures.

The adult females of Ergasilus von Nordmann, 1832, Lernaea Lin-

naeus, 1758, Opistholernaea Yin, 1960 and Lamproglena von Nord-

mann, 1832 attach permanently to a host after insemination. A single

female produces up to 30 eggs at a time in egg sacs (Figure 15b–d, k–

m). No intermediate hosts are required; a single egg-bearing female or

two larvae introduced via transportation of infected fish or water can

establish an infection.

Adult female Lamproglena monodi Capart, 1944 attaches with

modified maxillulae on the gills of their hosts (Figure 15a–c). Capart513

reported it from Serranochromis thumbergi (Castelnau, 1861) from

Lake Mweru, and later also from Haplochromis nubilus (Boulenger,

1906) from the Molindi River, Haplochromis macrops (Boulenger,

1911) from the Rutshuru River, Haplochromis eduardii Regan, 1921

and Haplochromis serridens Regan, 1925 from Lake Edward, Pseudocre-

nilabrus philander (Weber, 1897) from the Kafubu River and Hemichro-

mis fasciatus Peters, 1857 from the Legide River, the Congo. In Lake

Victoria, Gobbin et al.514 reported L. monodi from 14 sympatric Lake

Victoria cichlids [Mbipia lutea (Seehausen et Bouton, 1998), M. mbipi

Lippitsch et Bouton, 1998, Neochromis gigas (Seehausen et Lippitsch,

1998), N. omnicaeruleus (Seehausen et Bouton, 1998), Neochromis sp.,

N. rufocaudalis (Seehausen et Bouton, 1998), Pundamilia pundamilia

Seehausen et Bouton, 1998, P. nyererei (Witte-Maas et Witte, 1985),

Pundamilia sp., Lithochromis sp., Haplochromis cyaneus (Trewavas,

1935), Parachromis chilotes (Boulenger, 1911), P. sauvagei (Pfeffer,

1896) and Parachromis sp.].

In Egypt, Ibraheem and Izawa515 reported this species from O.

niloticus, S. galilaeus and C. zilli. In Brazil, Martins et al.516 reported

a Lamproglena sp. in the Guandu River, State of Rio de Janeiro and

in the State of Santa Catarina. It was later identified and rede-

scribed as (co)introduced L. monodi present on the indigenous

Astronotus ocellatus (Agassiz, 1831) and Cichla ocellaris Bloch et

Schneider, 1801, and Azevedo et al.517 reported this species from

introduced O. niloticus and T. rendalli (Boulenger, 1897). In the

Philippines, Yambot and Lopez518 reported L. monodi from cultured

O. niloticus.

Ergasilus species infect tilapia in Africa.511 They attach to their

host's gills or skin with modified antennae and feed on tissue

(Figure 15d–g). They are not strictly host specific.

The anchor worms, Lernaea barnimiana Hartmann, 1865, L. hardingi

Fryer, 1956, L. lophiara Harding, 1950, L. palatiHarding, 1950 and L. tila-

piae Harding, 1950 have been reported on tilapia species in Africa511

but these species have not been recorded outside Africa, except for a

report of L. lophiara on a translocated population of O. mossambicus in

Thailand.334 Female Lernaea spp. can be observed macroscopically, and

the head and anterior part of the thorax are embedded in the host mus-

cle, under scales and on fins (Figure 15h). It attaches firmly with cuticu-

lar outgrowths forming anchors (Figure 15i), the minute head

appendages scrape host tissue into the mouth, while the egg-string

bearing thorax and the abdomen protrude from the host.519

Opistholernaea laterobranchialis (Fryer, 1959) is reported from O.

niloticus, O. andersoni and O. macrochir from the Nile and Zambesi riv-

ers.520–522 The parasite head embeds in the palate of the fish and

grows through the bony tissue to protrude through the eye socket,

where it forms a capsule. The egg-bearing thorax and abdomen hangs

from the roof of the buccal cavity of the host. Grobler522 reported

that the parasite may reach 18 mm in length and can be removed only

after dissection of the bony tissue.

2.18.1 | Pathology

Ibraheen523 described the pathological changes caused by L. monodi

on the gill lamellae: attachment of the females is followed by prolifera-

tion of gill epithelium with fusion of adjacent filaments in heavy infec-

tions (Figure 15c). Lamproglena monodi feed on blood and the filament

tip may become necrotic when blood supply is interrupted.523

Ergasilus spp. feed on gill tissue. Following attachment to the gills,

the antennae may fuse in some instances.524 Encirclement of a gill fil-

ament by the antennae causes compression of the gill tissue,525 which

in some instances constricts blood flow in that gill filament leading to

its eventual atrophy.519 Epithelial hyperplasia is seen in the region

close to the point of parasite attachment; tissue changes at these

points lead to the eventual loss of functionality with subsequent nega-

tive impacts on gas exchange (Figure 15d).525

Lernaea infections cause irritation that induces agitation in hosts

that manifests as rubbing their bodies on objects in their environment.

Adult females can be observed macroscopically and the area sur-

rounding the attachment site usually displays an approximate 1 cm

diameter field of haemorrhagic skin, impacting fish marketability nega-

tively.526 Individual Lernaea remain attached to the site which they

colonise and feed using their appendages to scrape host tissue

towards their buccal cavity. Lesions without parasites are commonly

observed where parasites have been dislodged or have died; these

sites remain inflamed until the wound has healed. Intense infections

cause host fish to become sluggish and chronic infection results in the

production of proliferative hyperplastic connective tissue that can

encapsulate the parasite or may protrude from the skin surface of the

host. Infected fish have reduced haematocrit and condition.334,527

The epidermis surrounding the lesion is spongiotic with eosinophilic

granular cells (EGCs) and lymphocytes, and infection sites often

SHINN ET AL. 123



F IGURE 15 Crustacean copepod parasites of cultured tilapias. (a) Macrograph of Lamproglena monodi Capart, 1944 females on the gills of
Oreochromis niloticus. (b) Scanning electron micrograph of L. monodi with paired egg sacs on the gills of O. niloticus. (c) Scanning electron
micrograph of L. monodi feeding on the gills of O. niloticus. (d) Adult Ergasilus sarsi Capart, 1944 females attached to the gill filaments of its host.
(e) Ergasilus mirabilis Oldewage et Van As, 1987 using their modified antennae in attachment to their host's gill filaments. (f) The antennae of E.
mirabilis as seen from a different aspect. (g) Cross-section through a gill filament with E. sarsi with evident proliferation of the epithelia of the gill
lamellae as well as the host tissue (*) in the parasite's intestinum. (h) Adult females of Lernaea cyprinacea L., 1758 (arrowed) on the skin of
Oreochromis mossambicus. (i) Anterior of L. cyprinacea displaying its anchors. (j) Capsule housing the anterior of Opistholernaea Yin, 1960. (k) The
posterior region of Opistholernaea laterobranchialis (Fryer, 1959) protruding into the buccal cavity. (l) Opistholernaea laterobranchialis released from
the enclosing tissues of its host. (m) Neoergasilus japonicus (Harada, 1930) attached to the gills of O. mossambicus using their modified antennae.
Images (a) and (b) are provided courtesy of Nehemiah Rindoria; images (i)–(k) are provided courtesy of Johan Theron and image (m) courtesy of Dr
Quinton Dos Santos
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become secondarily infected by bacteria and fungi. Blood may ooze

into the water behind the parasite from the attachment lesion.526,528

Larval infections can occur on the gills and cause respiratory distress,

epithelial hyperplasia and telangiectasis.334 Decreased haematocrit is

caused by intense lymphocytopenia, neutrophilia and infiltration of

immature leucocytes, haemorrhaging and haemodilution because of

the ingress of water through the permanently open wound created by

the parasite.528 In small fish this parasite can penetrate the internal

organs and cause mortality.334 Fish that recover resist infection and if

infected, the lesions are markedly smaller, probably due to an anam-

nestic immune response elicited by memory cells.528

The pathology associated with Opistolernaea laterobranchialis was

described by Grobler.522 The head and thorax, up to the level of the

second pair of thoracopods, are surrounded by a large (0.7 mm diame-

ter) bulbous granuloma consisting of three layers; areolar tissue, gran-

ular connective tissue and a multilayered epithelium. The remainder

of the parasite thorax is covered by a simple, thin connective tissue

sleeve containing melanocytes.522

2.18.2 | Treatment

Embedded Lernaea females are difficult to treat; eradication can

require the use of products with strong negative environmental

effects. Insecticides are effective but, in many countries, their use is

not permitted due to the environmental effects of discharge; they are

non-specific, kill non-target organisms and leave residues that can

affect human health.529 Infections can be managed by eradicating

copepodite stages with organophosphate trichlorphon at 0.25 ppm

with repeated treatments at the duration of the infective larval stages;

trichlorphon kills copepodites but not nauplii.334 Treatment with the

carbamate 2-isopropoxyphenyl-N-methylcarbamate (Baygon™) eli-

cited the emergence of resistance in four generations.530 Sodium

chloride eradicates all Lernaea at 20–40 mg/L at pH >6, is non-

residual and is relatively environmentally benign; conditions for its use

may be defined by local regulatory authorities including timing of

treatments, volume and concentration used, discharge conditions,

dilution and so forth. In recirculation systems, sodium chloride also

kills the bacterial populations in biofilters, leading to nitrate build-up

that needs to be managed while the bacterial population in the biofil-

ter re-establishes.531

Woo and Shariff532 reported that 50% of parasite eggs collected

from fish that recovered from infection with Lernaea were viable, indi-

cating a reduction in parasite viability when reinfection occurs. Fish

recovering from infection recovered from subsequent infections fas-

ter, while parasites on fish that had recovered lost more egg sacs than

Lernaea on first infection fish. If no naïve fish are introduced into

closed aquaculture systems, infective larvae will decline with time and

eventually the system should be safe for restocking. This indicates

acquired immunity in the recovered fish. Shariff et al.530 recommend

that the parasite could be managed by removing all fish from a pond

for 7–9 days because the absence of hosts would result in the loss of

all larval stages of the parasite.

2.18.3 | Global translocations

Lernaea cyprinacea L., 1758 is one of the most invasive fish parasites

and has spread to all continents,533 and it is reported from O. mossam-

bicus in South Africa534 and O. mossambicus, Oreochromis placidus and

T. rendalli in Zimbabwe.535

Neoergasilus japonicus (Harada, 1930) attaches predominantly to

the base of the fins of their hosts but also on the operculum

(Figure 15m). It was originally described from Asia,536 but Hudson and

Bowen537 noted that it spread through aquaculture and the aquarium

trade over 20 years. Its occurrence is recorded in Alabama, USA,538

Cuba,539 Mexico,540 Peru541 and South Africa.542 It displays little host

specificity and has been recorded from a wide variety of freshwater

fish including cyprinids, percids, centrarchids, ictalurids and cichlids. In

Japan N. japonicus is reported from redbelly tilapia (C. zillii),

Mozambique tilapia (O. mossambicus) and Nile tilapia (O. niloticus).543

2.18.4 | Research

Parasitic copepod research focuses on parasite taxonomy, biodiversity

and distribution. Research on Lernaea and other copepod parasites is

complicated by their taxonomy being based on the limited morpholog-

ical traits. In Lernaea the morphology of the anchor is used as a taxo-

nomic character and many nominal species are probably synonyms;

experimental infections show that anchor morphology and growth are

affected by host anatomy.544,545 Pallavi et al.546 found that 18S and

28S sequences from four Lernaea specimens assigned to four different

morphological species showed that all specimens were L. cyprinacea.

Hua et al.547 similarly concluded that L. cyprinacea and L. cruciata

Lesueur, 1824 are conspecific based on their molecular data.

Copepod parasites are good bioindicators of metal and organic

pollution.548,549 Crustacean parasites can be collected from living

hosts without harming them, providing further advantages over hel-

minths and fish as indicators of pollution. It may also be possible to

use data on the effect of adverse water quality to inform treatment of

crustacean parasites provided safety margins are understood.

Development of treatment for crustacean parasites is focusing on

natural compounds and application of nanocomposites. The Lernaea

1 h/LC50 for chitosan-silver was 5.495 ppm. When infected fish were

exposed to the LC50 concentration for 24 h, it caused pathological

changes to the Lernaea cuticle that dislodged all females and was fol-

lowed by rapid healing of parasite-induced wounds.526

2.19 | Branchiura Thorell, 1864 (Obazoa:
Opisthokonta: Metazoa: Ecdysozoa: Pancrustacea)

The Branchiura (fish lice) are covered by a dorsal carapace that is

round to oval, with two carapace lobes and a bilobed abdomen. On

average they are 3–7 mm in length, although gravid females may

reach 10 mm. Females are larger than males and the sexes can be dis-

tinguished by the presence of two round spermathecae in the
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abdomen of females, whereas males have one testis per abdomen lobe

and peg and socket copulatory structures are present on the third and

fourth thoracopods. The mouth is carried on a mouth tube, which

extends ventrally, with the mandibles situated just inside the opening.

Males and females of Argulus Müller, 1785 and Dolops Audouin,

1837, as well as all life stages apart from the eggs, are parasitic on fish

hosts. Branchiurans attach with maxillules that are modified to form

suckers (Argulus; Figure 16a) or strong hooks (Dolops; Figure 16c) to

the skin, in the buccal cavity or in the gill chamber (Dolops;

Figure 16c). These parasites retain their ability to swim through life

and can switch hosts; adults and larvae can survive without a host for

up to 9 days.550 Many species have been reported to have low host

specificity.512,551 Argulus japonicus Thiele, 1900, A. foliaceus (Linnaeus,

1758) and A. coregoni Thorell, 1866 are pathogenic and can reach high

numbers in impoundments552,553 or aquaculture.551,554 Branchiurans

deposit their eggs in rows on a substrate. A single female can deposit

hundreds of eggs555 which typically hatch within 21 days at 25�C, but

the time to hatching is temperature dependent.556

Dolops spp. are recorded from South America, Africa, and Tasmania.

Dolops ranarum (Figure 16c) occurs in Africa and infects O. mossambicus

in the Zambezi River (Fryer, 1960), various rivers in the Limpopo River

system in South Africa (Avenant and Van As, 1985) and the Okavango

River, Botswana,557 Oreochromis variabilis and Oreochromis esculentus

(Graham, 1928) in Lake Victoria, Uganda558 and Serranochromis sp. in

the Kafue River, Zambia.558 It was also recorded from O. niloticus in

Lake Tana, Ethiopia (Fryer, 1965).

The Argulus species reported from tilapia are Argulus africanus

Thiele, 1900, A. cunningtoni Fryer, 1965, A. fryeri Rushton-Mellor,

1994, A. jollymani Fryer, 1956, A. kosus Avenant-Oldewage, 1994, A.

monodi Fryer, 1959, A. rhipidiophorus Monod, 1931, A. striatus Cun-

nington, 1913 and A. tristramellae Paperna, 1967 is recorded from

Tristramella sp.559 Argulus japonicus was introduced into Africa with

cyprinids and is also reported from O. mossambicus.552,560

Argulus species transmit viruses, skrjabillanid and daniconematid

nematodes.519,561–563 In Mexico, Moravec et al.447 reported Argulus

mexicanus Pineda, Paramo et del Rio, 1995 collected from the cichlid

Mayaheros urophthalmus (Günther, 1862; syn. Cichlasoma urophthal-

mus) as an intermediate host for daniconematid nematodes. The prev-

alence of infection was low at 1.29% with an intensity of 1–6

nematode larvae/Argulus. This highlights the role of argulids in the

transmission of nematodes and the need for a detailed examination of

Argulus specimens collected from the commercial species of tilapia.

2.19.1 | Pathology

Branchiuran parasites feed on the blood and tissue of their hosts.512

Avenant-Oldewage564 described the pathology caused by Dolops

ranarum (Stuhlmann, 1891). Dolops spp. attach by inserting the hooks

on the maxillules (Figure 16c), which causes local inflammation, dis-

rupting osmotic control and providing a route of entry for secondary

pathogens such as Aeromonas Stanier 1943 and opportunistic fungi.

Avenant-Oldewage564 showed that feeding by D. ranarum removes

the epidermis of the host, leaving the dermis exposed (Figure 16d–f).

Tavares-Dias et al.565 reported that in D. carvalhoi, parasite intensity

of 3–30 was not correlated to reduced haematocrit but was associ-

ated with increased thrombocyte and white blood cell counts and

lower plasma glucose and serum electrolyte levels in infected fish.

In Argulus, the pre-oral and buccal spines are supplied by glands.566

The parasites release digestive enzymes onto the host surface,567 sub-

sequently ingesting the predigested host tissue and blood. The process

of feeding creates open wounds and although fish tolerate low and

moderate levels of Argulus with few signs of disease, localised inflamma-

tion and damage at the affected site may lead to secondary infections.

The parasite's high reproductive rate,556 gravid females laying between

1 and 9 strings of eggs with 5–226 eggs per string, and the ability of

eggs to overwinter two seasons568 can quickly escalate an infection.

Severe infections (i.e., hundreds of parasites per fish) cause extensive

skin damage and inflammation which debilitates the host and reduces

the ability of the host to osmoregulate.569 Although the records of Kru-

ger et al.552 and Avenant-Oldewage560 refer to the infection of wild tila-

pia in the Olifants River System, argulids are noted pathogens of fish

held under culture conditions. Argulus africanus infection was common

on O. niloticus in tanks at Kigera Dam, Lake Kainji, Nigeria (prevalence

of 15%) and their presence resulted in disruption to the gill rakers.156

2.19.2 | Treatment

Fish remove and consume Dolops specimens from each other519 and

occasionally prey on free-swimming Argulus individuals.570 Mechanical

removal of parasites was suggested as a control method by Benz

et al.571 but is impractical for large-scale aquaculture. Hakalathi

et al.572 successfully reduced the number of parasites in ponds by

deploying wooden egg laying plates in fishponds and removing them

before the Argulus hatched, reducing the number of juvenile parasites

in the ponds. Parvez et al.573 painted chlorinated rubber onto the

plates, which attracted more females to the plates, and increased

removal of eggs and improved reduction in infection intensities.

The effect of pesticides on the environment prompted a focus on

natural treatments. Sahoo et al.574 analysed the full transcriptome of

Argulus siamensis, which could direct development of plant-derived

targeted treatments. The number of eggs per oviposition and their

hatching success in Argulus bengalensis was decreased by exposure to

15 mg/L of an aqueous extract of neem, Azadirachta indica A. Juss

(Meliaceae).575 Development of A. japonicus eggs was disrupted after

exposure to Moringa oleifera Lam. (Moringaceae) extract.576

Essential oil of lemon grass, Cymbopogon citratus (de Candolle) (Poa-

ceae) against adult Argulus sp. and Dolops discoidalis was maximally effec-

tive at 140 μg/L. The LC50-24 h for Argulus sp. was 83.98 μg/L and the

LC50-24 h for D. discoidalis was 82.48 μg/L,577 suggesting that plant

products have promise for management of these parasites. They, further-

more, reported that the eggs also lost their sticky cover after 30 days,

dislodged from the substrate, sunk to the bottom and that altered anat-

omy of the ommatidia (eyes) occurred. These studies show promise for

alternatives that consider the environmental impact.
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2.19.3 | Global translocations

It is unclear if branchiurans have been translocated with tilapia, but

several spillback infections have occurred from the environments to

which tilapia are translocated. Argulus japonicus is a cosmopolitan spe-

cies.578 It infects O. mossambicus in South Africa,552,560 while A. core-

goni infects red Oreochromis niloticus � Oreochromis mossambicus in

Malaysia579 and Argulus indicus Weber, 1892, red Oreochromis niloti-

cus � Oreochromis mossambicus in Thailand.580 There is only one

report of an introduction of Dolops, that is from Brazil to Japan and is

that of Dolops carvalhoi Lemos de Castro, 1949 with gulper catfish,

Asterophysus batrachus Kner, 1858.581

2.19.4 | Research

Research on Branchiura investigates biodiversity and new or

improved treatment regimes. Morphological differences in descrip-

tions of branchiurans are not conclusive and frequently poorly docu-

mented. There is, therefore, a drive to clarify the taxonomy582

concurrent with the description of new species583–585 and new hosts

in South America.586 If described species are sequenced, synonymies

can be identified provided DNA sequences are included more fre-

quently in descriptive studies. Saurubh et al.587 reported that Argulus

infection suppresses alpha-2 macroglobulin, serum complement activ-

ity response and ceruplasmin levels, indicative of stress. Ruane

et al.588 reported a humoral response to Argulus foliaceus antigens in

trout and effective vaccines for Argulus are a focus for development.

2.20 | Pentastomida Diesing, 1836 (Obazoa:
Opisthokonta: Metazoa: Ecdysozoa: Pancrustacea)

Pentastomids are dioecious flattened, segmented crustaceans ranging

from 1 to 16 cm in length (males 1–2 cm; females 2–16 cm), and are cov-

ered in a chitinous cuticle, with five anterior appendages: a mouth and

four hook-bearing appendages. The members of the order Cephalobae-

nida Heymons, 1935 have two pairs of appendages that lie behind one

another while in Porocephalida Heymons, 1935 have hooked appendages

aligned in a single row beside the mouth. Adult pentastomids are obligate

parasites of the respiratory tract of vertebrates where they feed on blood

or mucus and epithelial cells. Fish are common intermediate hosts that

are infected by ingesting eggs or are actively infected by free-living larvae

such as in Subtriquetra subtriquetra (Diesing, 1835) Sambon, 1922 which

F IGURE 16 Crustacean branchiuran parasites of cultured tilapias. (a) Male Argulus japonicus Thiele, 1900. The inlay shows an enlarged image
of an attachment sucker. (b) Scanning electron micrograph of the damage to host tissue inflicted by A. japonicus. The image shows an imprint of
the suckers, destruction of the epithelium and open feeding wounds. (c) Dolops ranarum (Stuhlmann, 1891) in situ within the buccal cavity of
Oreochromis mossambicus. (d) Dolops ranarum. The inlay shows the enlarged hook on the maxillulae. (e) Normal skin condition of Clarias gariepinus

Burchell, 1822. (f) The skin of C. gariepinus showing denudement of the epithelium and inflammation as a consequence of D. ranarum attachment
and activity. (g) The attachment of D. ranarum has resulted in extensive damage and haemorrhaging of the host's epithelium
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attach to the skin, break through the epithelium, and ultimately encyst in

the target organ. Larval development in S. subtriquetra includes seven

moults over 70+ days. The final host is infected by ingesting the interme-

diate host, after which the pentastomid then crawls into the respiratory

tract.

2.20.1 | Taxonomic identity

Four porocephalid pentastomid genera are recorded from tila-

pias.589,590 Alofia Giglioli in Sambon, 1922, Leiperia Sambon, 1922,

Sebekia Sambon, 1922 (Sebekidae Sambon, 1922), and Subtriquetra

Sambon, 1922 (Subtriquetridae Fain, 1961), which use freshwater fish

as their intermediate hosts and typically crocodilians as their final

hosts. In South Africa, Alofia sp. Giglioli in Sambon, 1922 is recorded

from the swimbladder of O. mossambicus,590 Leiperia cincinnalis Sam-

bon, 1922 from the mesentery of C. rendalli and O. mossambicus,589

Sebekia minor (Wedl, 1861) (syn. S. wedli) from the swimbladder of C.

rendalli and O. mossambicus,589 and Subtriquetra rileyi Junker, Boomker

et Booyse, 1998 from the swimbladder of C. rendalli589 and O. mos-

sambicus.590 Leiperia cincinnalis is also recorded from O. niloticus from

Africa (unspecified locality)591 and from the Upper Nile.592

2.20.2 | Pathogenicity

Detailed descriptions of pathology in tilapias are lacking, notably of those

associated with non-encysted infective Sebekia larvae within the swim-

bladder. Boyce et al.593 observed that encapsulated nymphs in Gambusia

affinis (Baird et Girard, 1853) tissues surrounding the gastrointestinal tract,

liver, pancreas and mesentery caused a mild inflammatory response

whereas nymph infections in Xiphophorus helleri Heckel, 1848, caused

extensive traumatic damage, granulomatous inflammation with haemor-

rhage, myositis and myodegeneration. It should be noted that the

observed pathologies in the latter resulted from encapsulated larvae and

the trauma associated with migrating larvae. Infections are rarely reported

from the swimbladder and mesentery of wild O. niloticus, O. mossambicus

and C. rendalli from South Africa (Table S2).590 This group has little impact

on tilapias and appears to have no impact on farmed tilapias.

2.20.3 | Global translocation

There is no evidence that pentastomes have been translocated with tilapia.

2.21 | Isopoda Latreille, 1817 (Obazoa:
Opisthokonta: Metazoa: Ecdysozoa: Pancrustacea)

2.21.1 | Taxonomic identity

Isopods are crustaceans that are dorsoventrally flattened with the

body composed of a head, thorax and an abdomen. The head,

containing paired eyes, antennae, antennules, mandible, maxillae

and maxillipeds, is fused to the first thoracic somite. The thorax is

comprised of six or seven somites, each possessing a pair of swim-

ming legs while the abdomen is made up of five pleonites and a

pleotelson that possesses a pair of uropods. All isopods reported

from tilapia (Figure 17) are members of the superfamily Cymothoi-

dea and include the families Aegidae, Corallanidae, Cymothoidae

and Gnathiidae. Six species are reported from tilapia, including Ali-

tropus typus H. Milne Edwards, 1840 (family Aegidae) from O. niloti-

cus cultivated in the Philippines16,594 India595–598 and Thailand599

and from O. mossambicus from India,595,598 Corallana nodosa

Schioedte et Meinert, 1879 (family Corallanidae) from O. mossambi-

cus and O. niloticus hybrids cultivated in Malaysia,600 Braga syn. Phi-

lostomella cigarra (Szidat et Schubart, 1960) experimentally

transmitted to O. niloticus in Brazil,601 Nerocila bivittata (Risso,

1816) and Nerocila orbignyi (Guérin-Méneville, 1832) on wild C. zillii

in Egypt,602–604 Renocila thresherorum Williams et Bunkley-Williams,

1980 (family Cymothoidae) on wild C. zillii from Egypt604,605 and

unidentified larval forms from the family Gnathiidae on O. niloticus

from the Philippines.13,16 Adult members of this group are typically

identified using morphological methods.

2.21.2 | Pathogenicity

Although parasitic isopods can be pathogenic to their host, there are

few examples of pathogenic isopods on tilapia. Typically, they are

parasites of the surface and fins, but some species also invade the

buccal and gill cavities, which can have negative effects on the host,

including mortality and some species can attach to the tongue of the

fish.16 Mass mortality associated with A. typus on farmed Nile tilapia

from the Philippines594 and from Thailand599 are reported; in

Thailand, mortalities were estimated more than 50% of tilapia mea-

suring 50 g each. Mortalities were noted in wild C. zillii from Egypt

infected with N. orbignyi associated with erosion and haemorrhaging

of the gills.602

2.21.3 | Global translocations

There is no evidence of translocation; A. typus has a wide distribution

throughout Indo-China and the infection of tilapia appears to be

opportunistic.

2.21.4 | Research

Given the relatively large size and ease of identification of parasitic

isopods, it is assumed that the low number of records of isopods on

tilapia reflect a genuine rarity of infections on these hosts. Caution

should be exercised, however, because isopods can be transient on

their host and caution should be exercised to minimise loss during

examination of potential hosts. Targeted studies, designed to minimise
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parasite loss, may increase the number of records. Despite few

reports of pathogenic species, studies to identify mechanisms to con-

trol infections should be considered.

2.22 | Hirudinea Lamarck, 1818 (Obazoa:
Opisthokonta: Metazoa: Lophotrochozoa: Annelida:
Clitellata: Hirudinea)

There are few reports of leech infections of tilapia (Table S2) and/or

their treatment. This is probably driven by low prevalence and

impacts.

Leeches are segmented, muscular, clitellum-bearing, hermaphro-

ditic, parasitic hematophagous or predatory annelids possessing an

anterior and posterior sucker. The possession of a proboscis, the num-

ber of eyes, gastric and intestinal caeca, testisacs, body annulation,

patternation, presence of papillae and whether species produce

cocoons or eggs that are brooded are features that are used to classify

species.

2.22.1 | Taxonomic identity

Blood-feeding leeches belong to two orders, the Arhynchobdellida

Blanchard, 1894 (proboscis-less leeches) and the order Rhynchobdel-

lida Blanchard, 1894 (proboscis-bearing leeches). The Rhynchobdellida

contains three families, the Ozobranchidae Pinto, 1921 (leeches of

turtles), the Glossiphoniidae Vaillant, 1890 (leeches of freshwater fish)

and the Piscicolidae Johnston, 1865 (leeches of freshwater and

marine fish). Glossiphoniid and piscicolid leeches are vectors of sev-

eral viral, bacterial and flagellated protistan pathogens of fish.606

Of the glossophoniid leeches infecting farmed tilapia, Batracobdel-

loides tricarinata (Blanchard, 1897) is recorded from O. niloticus in

Egypt,607 and a species of Helobdella Blanchard, 1896 is recorded

from O. niloticus in Brazil (M. Metselaar pers. obs.; Figure 18). Two pis-

cicolid leeches infect O. niloticus: a species of Myzobdella Leidy, 1851

in Malaysia608 and Piscicola geometra (L., 1761) from Nigeria.609 The

ozobranchid, Ozobranchus branchiatus (Menzies, 1791) is reported

from O. aureus in Puerto Rico from a public aquarium and probably

infected the tilapia from a turtle that was also held in the system.610

Arhynchobdellid leeches are recorded from farmed tilapia: Hirudo

michaelseni Augener, 1936 and an unidentified species of Hirudo L.,

1758, and a species of Limnatis Moquin-Tandon, 1827 was described

from freshwater O. niloticus farms in south-eastern Côte d'Ivoire.611

Unidentified leeches are reported to infect farmed O. mossambicus in

Indonesia334 and O. niloticus in Tanzania.612 Given that leeches display

low host specificity,613,614 it is likely that species additional to those

documented here and in Table S2 can also infect tilapia. Zeylanicob-

della arugamensis de Silva, 1963 (Piscicolidae) is reported from inva-

sive O. mossambicus in brackish water in Japan615 and Sri Lanka,616 a

species of Placobdella Blanchard, 1893 (Piscicolidae) was recorded

from invasive freshwater populations of O. mossambicus and O. niloti-

cus in Thailand,334 and Piscicolaria reducta Meyer, 1940 (Piscicolidae)

is reported from invasive populations of O. aureus in freshwater in the

USA.617

2.22.2 | Pathogenicity

The abundance of leech parasites is often inversely proportional to

the size of the host.607,609 Leeches are often considered to not be

pathogenic, but infections can, however, cause mortality from physi-

cal trauma and blood loss, predisposing hosts to secondary infec-

tions, and transmitting pathogenic viruses, bacteria and flagellated

haemoprotistans.334 Leeches are more common in earth pond sys-

tems that more sophisticated aquaculture systems. Some leeches

attach to their hosts temporarily and leave after taking a blood meal,

while others attach for an extended period and take successive

blood meals before detaching to lay their cocoons. Leeches that

attach for extended periods can elicit a substantial host tissue

response at the attachment site, and severe epidermal erosion may

occur in heavy infections. Feeding by rhynchobdellid leeches can

cause localised petechial haemorrhages and blood loss from damage

to epithelia by the proboscis.

Williams et al.610 described mortality of O. mossambicus in

Puerto Rico infected with Myzobdella lugubris Leidy, 1851, but this

was complicated by bacterial infections including Vibrio vulnificus

(Reichelt et al., 1976). Pathology associated with Myzobdella infec-

tions was detailed by Volonterio et al.618 who found that an infec-

tion (av. 12.5 leeches per fish) of M. uruguayensis (Mañé-Garz�on et

Montero, 1977) on the gills of Rhamdia quelen (Quoy et Gaimard,

1824; av. wt. 633 g) in Uruguay caused haemorrhages and formation

of fibrin plaques at the sites of leech attachment. Gill infections

were associated with oedema, hyperplasia and telangiectasis of

nearby lamellae.

Glossiphoniid and piscicolid leeches are noted vectors of a

range of fish pathogens. Feeding by Piscicola geometra can

F IGURE 17 Infection of Nerocila orbignyi in the opercular cavity
of Oreochromis mossambicus from Egypt. Image courtesy of Shimaa El
Sayed Mohamed Ali and Mamdouh Yousif Abd Elaziz Elgendy from
WorldFish, Egypt
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mechanically transmit spring viraemia of carp virus (SVCV) which

causes an acute, contagious haemorrhagic viraemia.619 Piscicola

geometra has a wide distribution throughout freshwaters across

the Holarctic and Neotropic regions; Soliman et al.620 reported

isolating SVCV from O. niloticus from Egypt621 but did not

describe if leeches may have transmitted the virus. A range of bac-

terial pathogens are isolated from leeches: Streptococcus sp. was

isolated from B. tricarinata in Natal, South Africa613; Pseudomonas

punctata (Zimmermann, 1890) was isolated from P. geometra,622

and Negele623 reported Aeromonas hydrophila (Chester, 1901)

from P. geometra. Streptococcus agalactiae Lehmann et Neumann,

1896 and A. hydrophila are significant pathogens of farmed tilapia

with large economic impacts.624 Negm-Eldin and Davies32 demon-

strated in an experiment that B. tricarinata could transmit the api-

complexans Babesiosoma mariae (Hoare, 1930) and Cyrilia nili

Wenyon, 1909 from O. niloticus to Clarias gariepinus (Burch-

ell, 1822).

Leeches are also common vectors of trypanosomes. Davies

et al.38 isolated Trypanosoma mukasai from O. andersonii from

Botswana. Smit et al.34 subsequently characterised trypanosomes

(b)

(c)

(a)

(e)(d) (f)

F IGURE 18 Leech infections of Oreochromis niloticus. (a–d) Helobdella sp. from stock cultured in Brazil showing leeches on (a) the system
pipework, (b) attached to the inner lining of the oral cavity, (c) attached to the pectoral fin and (d) an ethanol fixed specimen of Helobdella sp. and
(e,f) Zeylanicobdella arugamensis de Silva, 1963. Scale bar = 1 mm
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isolated from the blood of South African fish including C. rendalli and

O. mossambicus and from B. tricarinata, and found that the trypano-

somes resembled T. mukasai, suggesting a link between T. mukasai, B.

tricarinata and tilapia.

Zeylanicobdella arugamensis is a problematic leech of cultured

fish in South-East Asia625,626 and is recorded from O. mossambicus

reared in brackish water in Japan615 and Sri Lanka.616 It is a vector

of Haemogregarina curvata Hayes, Smit, Seddon, Wertheim et Davis,

2006 and fish trypanosomes in South Africa.627 This broad distribu-

tion and history of vectoring serious pathogens highlights the biose-

curity risk this leech may have in brackish and marine water tilapia

aquaculture.

2.22.3 | Global translocations

Leeches are unlikely to be translocated with fish, but most pre-export

health inspections prescribe a sample size that is too low to detect

typical prevalences of <2.5%.607 While leeches are readily seen on the

surface of fish, they frequently attach to the gills, buccal and opercular

cavities and may be missed by visual inspection.

2.22.4 | Research

The treatment of leeches in aquaculture has largely been neglected.

Much of this is due to the scale of earth culture systems, the large

volumes of chemotherapeutant required, the environmental con-

cerns regarding the use of certain products and the resistance of

cocoons to treatment and need for repeat treatments.628 For earth

pond systems, leech infections were traditionally controlled using

undesirable, regulated products such as metrifonate or trichlorfon or

by drying and calcium oxide liming ponds to kill leeches and their

cocoons.334,606,629 Strategies for management and control of leech

infections in aquaculture facilities have therefore focused on explor-

ing alternative control strategies including the use of non-chemical

traps to remove leeches and their cocoons (B.C. Kua, unpublished),

in addition to implementing good basic biosecurity and sanitary

practices.

2.23 | Mollusca Linnaeus, 1758 (glochidia)
(Obazoa: Opisthokonta: Metazoa: Lophotrochozoa:
Mollusca)

Glochidia are a microscopic larval stage of some freshwater mussels

(Bivalvia) of the family Unionidae Fleming, 1828 and Margaritiferidae

Haas, 1940. These parasitic larvae are armed with hooks that allow

them to attach to fish (mainly the gills) for a period before detaching

and falling to the substrate. Cristaria plicata Leach, 1815 (Unionidae) is

listed from O. niloticus from the Philippines (Luzon) in the checklist of

Arthur and Lumanlan-Mayo.16 Few details regarding this infection of

tilapia are available.

2.24 | Treaties, standards and guidelines in
international trade of live aquatic organisms and their
products

There are policies, legislation and guidelines, obligatory and voluntary,

about health management and movement of live aquatic animals.630–

632 These controls are frequently revised and therefore change con-

stantly. This is necessary to respond to rapid worldwide developments

in aquaculture and culture-based fisheries, improved knowledge of

diseases of aquatic animals and improved or new diagnostic tools and

procedures. Trade patterns change to reflect the political, social,

industrial and economic environments of countries and regions and

contribute to the dynamics of risk and its sensitivity to assessment.630

The World Trade Organisation (WTO) Agreement on the Applica-

tion of Sanitary and Phyto-Sanitary Measures (SPS)633 is the main reg-

ulatory instrument governing health in relation to international trade.

The three main international standard setting bodies are the Codex

Alimentarius Commission of FAO/WHO for food safety; the World

Organisation for Animal Health (formerly the Office International des

Epizooties [OIE]) for animal (including aquatic animal) health; and the

International Plant Protection Convention (IPPC) for plant health.

Other relevant international agreements are the Convention on Bio-

logical Diversity634 and the Convention on International Trade of

Endangered Species (CITES). Voluntary agreements or guidelines

include that of the International Convention for the Exploration of the

Sea,635 the European Inland Fisheries Advisory Commission636 and

FAO guidelines such as the Code of Conduct for Responsible Fisher-

ies Technical Guidelines on Responsible Movement of Live Aquatic

Animals637 and regional guidelines.638 Voluntary international guide-

lines are often incorporated into national legislation and can therefore

become locally mandatory.632

Health certification is an element of national strategies for health

management and aquaculture biosecurity.637 The objective of certifi-

cation is to facilitate trade of live aquatic animals while decreasing the

risk of spreading infectious diseases to an acceptable level. It also pro-

tects captured fisheries, unexploited species and other natural and

built assets managed by governments. Health certification is relevant

to reportable or notifiable pathogen lists, risk assessment, diagnostics

and surveillance of these strategies.639

Application of these instruments often does not capture the rele-

vance of parasites whose inclusion may be warranted as pathogens of

concern. National, regional and international lists of aquatic pathogens

or diseases include few parasitic and fungal pathogens. This is because

these eukaryotic pathogens do not fulfil the criteria for disease listing,

despite their economic impacts. Redirecting efforts and studies

towards understanding the disease burden, impacts and costs of man-

agement of these agents, the risks posed and development and appli-

cation of better generic approaches to managing their translocation

will increase attention to this important group and decrease ongoing

costs of management. Implementation of basic biosecurity to farm

management can aid in controlling numerous serious and production-

affecting pathogens, and its uptake should be encouraged. Taxonomic

studies are important, and their value will be more significant, if placed

SHINN ET AL. 131



in the context of disease control studies and biosecurity

implementation.

3 | DISCUSSION

This review summarises the parasite fauna of tilapias from at least

73 countries and 3 major international lake systems—45 of which are

in territories away from the native range of tilapias. These global

movements of tilapia are associated with numerous transboundary

introductions of parasites and spillback infections where local para-

sites have infected tilapia in their introduced environments (Table S1).

More than 2500 host–parasite records are provided, raising aware-

ness about the distribution of parasites and their capacity to spread

with translocated fish. Table S2 presents information on 153 protists

and 284 metazoan species summarised by country in Table S3. These

distributional data highlight gaps in knowledge of the parasite fauna

of tilapias in jurisdictions with large aquaculture industries, notably

Cambodia, Guatemala, Lao PDR, Myanmar and Zanzibar (Tanzania),

each with annual aquaculture production exceeding 10,000 tonnes in

2019 (Tables S1 and S3).2 Table S3 further highlights additional coun-

tries and regions with limited information about the parasite fauna

but with large tonnages (i.e. >10,000 in 2019) of tilapia being landed

from aquaculture (e.g. Colombia, Costa Rica, Ecuador, Honduras,

Taiwan Province of China and Tanzania) and capture fishery activities

(e.g. Niger and Sri Lanka; Tables S1 and S3).2 Gambia (1814 tonnes)

and Togo (4507 tonnes) landed modest volumes from capture fishing

activity in 2019, but no parasites are recorded from these countries.

Among the parasites, protists appear to be under-represented,

with no reports from 31 of the 73 countries where parasites are docu-

mented from tilapia, suggesting that many have been overlooked or

ignored. It is, however, appreciated that most diagnosed infections are

treated to manage the infection and to prevent stock losses without

identifying the species or reporting it scientifically. While we aimed to

provide a comprehensive coverage of records, it should be noted that

it includes some evident misidentifications428,429,433,434,436,439,440;

where these were identified they are indicated. The identification of

some species requires revisiting to confirm their translocation, mostly

notably the records of ‘introduced’ coccidians and myxosporeans; in

the absence of reference material, confirming identification of these

must unfortunately await resampling.

There is no evidence of an introduced tilapia parasite having had

a serious impact on indigenous fish fauna. Of translocated parasites,

the most significant mortality event was caused by A. ocellatum from

May 1997 to October 1998 in the hypersaline (46 psu) Salton Sea,

California with massive mortality of young (1–13 cm TL) O. mossambi-

cus in the shallows.71 Assuming an average mortality of 20%–50% of

the total 11 kg ha�1 biomass,640 the value of the loss was estimated

at US$ 6.77–16.93 M.389 Other mortality events are reported but are

in small populations of fish where losses due to a fungal infection of

c. 200 variously sized juvenile O. mossambicus in India174; and

c. 500 � 80 ± 10 g O. niloticus due to an oomycete infection in

Egypt.176

There is also a paucity of information about the impact on intro-

duced tilapia from endemic pathogens/infectious agents in receiving

waters; such events have received less attention and are more likely

to be regarded as caused by translocation stress, poor stock quality or

mishandling.

Infections of G. cichlidarum on juvenile O. niloticus are common and

associated with substantial losses of nursery and pond-reared tilapia in

Egypt, Israel, Mexico, Scotland and Thailand.286,339 Estimating parasite-

associated losses in the early phases of production is complicated by the

interplay of numerous environmental and management factors that are

all difficult to assess. Shinn et al.,641 however, estimated that the eco-

nomic losses of juvenile tilapia attributable to parasites were USD 5.13–

7.05 M at the swim-up stage, USD 5.84–8.02 M at the 21-day post-

monosex stage, and US$ 4.84–6.66 M at the one-inch post-nursery

stage in the 4.82 million metric tonnes per annum industry.

Records of host switching events such as A. compactum infecting

tilapia from native Mexican cichlids and A. crassus infecting tilapia

from eels in Belgium, although tilapia may be a paratenic host, high-

light the vulnerability of translocated tilapia to infectious organisms in

receiving waters. Translocation risks have focussed on obvious exotic

pathogen introductions that infect indigenous hosts in environments

conducive to establishment and spread. This review, however, has not

detailed the ‘spread’ of specific parasites that have been introduced

but instead collates infection records.

3.1 | Parasite species of global concern

A question that naturally emerges from this review, is ‘which parasite

species pose the greatest threat to the security of sustainable tilapia

production?’ While the mortality caused by Amyloodinium ocellatum in

the Salton Sea represents the largest documented parasite-caused fish

kill, and although other A. ocellatum infections are reported

(Table S2),69,70,72 only 17.40% (c. 1,076,612 tonnes) of tilapia in 2019

were cultured in brackish water and <0.002% (115.2 tonnes) in sea-

water. Of the parasites infecting tilapias grown in freshwater

(c. 5,109,230 tonnes),2 the monogenean genera Cichlidogyrus, Gyro-

dactylus and Scutogyrus have a wide geographic distribution, low host

specificity and are pathogenic. Numerous species, furthermore, are

found outside of their native range: G. cichlidarum (13); C. tilapiae (12);

C. sclerosus (11); C. thurstonae (8); S. longicornis (8); C. halli (7); C. longi-

cornis (3); C. dossoui (2); C. haplochromii (2); C. mbirizei (2); C. tiberianus

(2); and G. shinni García-Vásquez, Pinacho-Pinacho, Guzmán-Valdi-

vieso, Calixto-Rojas et Rubio-Godoy, 2021 (2); and G. yacatli (2).

Within tilapia, the broad host specificity of the top six are: G. cichli-

darum (6 hosts); C. tilapiae (9 hosts); C. sclerosus (9 hosts); C. thursto-

nae (6 hosts); S. longicornis (4 hosts); and C. halli (9 hosts) (Table S2).

All have been recorded from hosts in Coptodon, Oreochromis and Sar-

otherodon species, except S. longicornis which is known from three

Oreochromis spp. and one Sarotherodon species.

Although there are insufficient data to define the relative suc-

cesses of each species, the non-obligate ciliated ectocommensals such

as the trichodinids, may be among some of the most successful
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colonisers. It is not a specific parasite that directly poses the greatest

risk to tilapia aquaculture, but rather their role in facilitating the infec-

tion of pathogens of significance such as S. iniae and A.

hydrophila,318,320,642 their role in increasing stress and decreasing pro-

duction efficiency and their effective transmission and increased path-

ogenicity in aquaculture. Trichodina spp. in pond systems serve as an

appropriate example. In pond systems with high(er) stocking densities,

low-to-zero flush or water exchange rates, or in low-tech input sys-

tems without additional aeration and waste management, or in sys-

tems where feeding regimes attempt to maximise growth, high

organic loads, pronounced fluctuations in daily water chemistry and

elevated stress combine to facilitate elevated parasite abundance and

prevalence and increases the probability of disease and mortality.

3.2 | Parasites of tilapias: status quo

The parasite fauna of tilapias from Africa is unexplored in many

regions and studies that have been made need increased visibility.44

Much ground-level aquatic parasitology remains unknown. Our

knowledge of coccidian, myxosporean and nematode infections of

tilapias remains poor, the role of leech infections in parasite life cycles

is implied but undefined, and these knowledge gaps remain as threats

to production.

The global importance of tilapias (i.e. USD 2000 t�1 for Nile tila-

pia and USD 1721 t�1 for tilapias nei) in aquaculture while having a

lower farm gate value than cyprinids (i.e. USD 2326 t�1 for bighead

carp, USD 2050 t�1 common carp, USD 2291 t�1 grass carp, USD

2147 t�1 for silver carp), salmonids (i.e. USD 6524 t�1 for Atlantic

salmon) and shrimp (i.e. USD 5911 t�1 for white leg shrimp)2,643 cre-

ates a self-reinforcing problem in health management where low-

profit margins from production reduce the likelihood of thorough

investigations and the scope of treatments available to either non-

chemical changes to farm practices or to regimes that can be afforded

in low-income systems and compete with other needs in health and

biosecurity. The investment in point-of-care diagnostics

(e.g. microscopes, etc.) and capacity to recognise parasite infections

may be lower and ‘acceptable’ levels of stock loss may be higher.

Thus, the balance between the costs of health intervention versus

profit gain on the number of fish surviving to harvest may be tipped in

favour of taking fewer active steps to manage tilapia health. At the

same time, there is also a need to develop and manage local, regional,

and national fish health strategies to improve diagnostics and veteri-

nary care to support producers.

3.3 | Parasites of tilapias: quo vadis?

Global tilapia production has been growing at 3.73% year-on-year

(2015–2019) and applying a logarithmic trend to 2000–2019 produc-

tion, it is expected to rise to c. 9.6 million tonnes by 2030. Africa has

huge potential for aquaculture; tilapias are biologically suitable and

socially acceptable and could help meet protein demand for growing

populations. With increased African production, an increase in move-

ment of tilapia including genetically improved strains is likely—

increasing the risk of parasite translocations, disease events and,

indeed, of negative impacts on native fauna and biodiversity in Africa.

Over the coming decade, tilapia aquaculture will continue to face risks

from known and emerging pathogens.

The discovery since 2000 of 25 new parasites from O. niloticus

worldwide (Cichlidogyrus mbirizei; C. rognoni; Dermocystidium aegyp-

tiacus; Diplostomum tilapiae Zhokhov, 2014; Gyrodactylus ergensi

Přikrylová, Matejusová, Musilová et Gelnar, 2009; G. hildae García-

Vásquez, Hansen, Christison, Bron et Shinn, 2011; G. malalai; G.

occupatus Zahradníčková, Barson, Luus-Powell et Přikrylová, 2016;

G. parisellei Zahradníčková, Barson, Luus-Powell et Přikrylová, 2016;

G. shinni; G. yacatli; Myxobolus bejeranoi Lovy et al., 2018; M. bran-

chiophilus Abdel-Ghaffar et al., 2008; M. cichlidarum Abakar-Ousman

et al., 2006; M. fomenai Abdel-Ghaffar et al., 2008; M. mapei Fonkwa

et al., 2017; M. nounensis Fomena et Bouix, 2000; M. saintlouisiensis

Diamanka et al., 2007; M. tchadanayei Abakar et al., 2006; Nucleos-

pora braziliensis; Ortholinea africanus; Saccocoelioides cichlidorum

(Aguirre-Macedo et Scholz, 2005); Sinuolinea niloticus; Triangula

egyptica; and, Zschokkella nilei), highlights that there is still much to

discover. Translocations to new locations for aquaculture, without

the appropriate biosecurity measures in place, reinforce that new

host–parasite interactions will increase health threats to both the

introduced tilapia and the native fish in receiving systems.639

There is also potential for the growth of Mozambique tilapia in

coastal aquaculture. From 2015 to 2019, global production increased

26.5% year-on-year from 37,900 tonnes in 2015 to 74,400 in 2019.2

Nile tilapia over the same period increased 3.2% year-on-year but the

size of the industry was 4,590,300 tonnes in 2019.2 Given global con-

cerns regarding saltwater encroachment and competition for land and

freshwater resources, the expansion of aquaculture of saline-tolerant

tilapia may have production and environmental benefits. The potential

threat from pathogenic marine species such as Neobenedenia spp.

(Table S2) needs to be recognised and expanding industries will pro-

duce a concomitant need for investment in biosecurity and disease

mitigation including selective breeding for parasite resistance, vaccine

development and parasite management and control strategies.

The ongoing COVID-19 pandemic and disrupted global supply chains

highlight the need for increased local and national food security. The pan-

demic is likely to drive increased consumption of domestically produced

seafood and tilapia likely have a place in providing this, but increased pro-

duction comes with substantial risks that should be mitigated to achieve

the potential improvements in local food production and utilisation.
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86. Alaş A, Öktener A. Different parasitic phyla of fish from Turkey

excluding helminths and Crustacea. J Entomol Zool Stud. 2015;2:24-

41. doi:10.1007/s11160-006-9005-y

87. Doulah M, Islam S, Rahman M, Islam M, Rashid M, Razzak M. Inves-

tigation of parasite and diseases at cage culture Nile tilapia (Oreo-

chromis niloticus) in southern region of Bangladesh. Res Agric Livest

Fish. 2019;6:431-437. doi:10.3329/ralf.v6i3.44809

88. Pádua SB, Martins ML, Carrijo-Mauad JR, et al. First record of Chilo-

donella hexasticha (Ciliophora: Chilodonellidae) in Brazilian cultured

fish: a morphological and pathological assessment. Vet Parasitol.

2013;191:154-160. doi:10.1016/j.vetpar.2012.07.030

89. Marzouk M, Mahdy O, El-Khati N, Yousef N. A contribution in ecto-

parasitic infection and its control in cultured Oreochromis niloticus in

Egypt. Am J Res Commun. 2013;1:326-338.

90. Jimenez-Garcia I, Rojas-Garcia C, Castro-Jose C, Pavon-Suriano S,

Lango-Reynoso F, Castaneda-Chavez M. Growth enhancement, sur-

vival and decrease of ectoparasitic infections in masculanized Nile

tilapia fry in a recirculating aquaculture system. Trop Subtrop Agroe-

cosystems. 2012;15:S51-S56.

91. Abdel-Baki A, Al-Quraishy S. First record of Chilodonella spp.

(Ciliophora: Chilodonellidae) in cultured Nile tilapia (Oreochromis

niloticus). Pak J Zool. 2014;46:657-660.

92. Bastos Gomes G, Jerry D, Miller T, Hutson K. Current status of parasitic

ciliates Chilodonella spp. (Phyllopharyngea: Chilodonellidae) in freshwater

fish aquaculture. J Fish Dis. 2017a;40:703-715. doi:10.1111/jfd.12523

93. Bastos Gomes G, Miller T, Vaughan D, et al. Evidence of multiple

species of Chilodonella (protozoa, Ciliophora) infecting Australian

farmed freshwater fishes. Vet Parasitol. 2017b;237:8-16. doi:10.

1016/j.vetpar.2017.03.004

94. Hatai K, Chukanhom K, Lawhavinit O, Hanjavanit C, Kunitsune M,

Imai S. Some biological characteristics of Tetrahymena corlissi iso-

lated from guppy in Thailand. Fish Pathol. 2001;36:95-199.

95. Astrofsky KM, Schech JM, Sheppard BJ, et al. High mortality due to

Tetrahymena sp. infection in laboratory-maintained zebrafish (Bra-

chydanio rerio). Comp Med. 2002;52:363-367.

96. Leibowitz MP, Zilberg D. Tetrahymena sp. infection in guppies, Poeci-

lia reticulata Peters: parasite characterization and pathology of

infected fish. J Fish Dis. 2009;32:845-855. doi:10.1111/j.1365-

2761.2009.01062.x

97. Simon EM, Nanney DL, Doerder FP. The “Tetrahymena pyriformis”
complex of cryptic species. Biodivers Conserv. 2008;17:365-380.

98. Misumi I, Lewis T, Takemura A, Leong J. Elicited cross-protection

and specific antibodies in Mozambique tilapia (Oreochromis mossam-

bicus) against two different immobilization serotypes of Cryptocar-

yon irritans isolated in Hawaii. Fish Shellfish Immunol. 2011;30:1152-

1158. doi:10.1016/j.fsi.2011.03.004

99. Misumi I, Leong J, Takemura A, Lewis T. Immune protection of

Mozambique tilapia (Oreochromis mossambicus) exposed to different

infectious doses of ectoparasite (Cryptocaryon irritans). Parasitol Res.

2012;110:363-372. doi:10.1007/s00436-011-2500-7

100. El-Sayed A. Tilapia Culture. CABI Publishing; 2006.

101. Straus DL, Griffin BR. Prevention of an initial infestation of

Ichthyophthirius multifiliis in channel catfish and blue tilapia by potas-

sium permanganate treatment. N Am J Aquac. 2001;63:11-16.

102. Constantino Casas F, Armijo Ortiz A, Osorio Sarabia D, Chavez SL.

Infection due to Aeromonas hydrophila and Ichthyophthirius multifiliis

in rainbow trout (Oncorhynchus mykiss, Walbaum) and tilapia (Oreo-

chromis aureus, L) in Morelos, Mexico. Pathological study and review

of treatment. Vet Mex. 1997;28:59-62.

103. Aguilar-Aguilar R, Islas-Ortega A. A checklist of ciliate parasites

(Ciliophora) of fishes from Mexico. Zootaxa. 2015;4027:270-280.

doi:10.11646/zootaxa.4027.2.6

104. Carvalho ED, de Silva RJ, Ramos IP, et al. Ecological features of large

neotropical reservoirs and its relation to health of cage reared fish.

In: Carvalho E, David G, Silva R, eds. Health and Environment in Aqua-

culture. INTECH; 2012.

105. Pantoja MFW, Neves L, Dias M, Marinho R, Montagner D, Tavares-

Dias M. Protozoan and metazoan parasites of Nile tilapia Oreochro-

mis niloticus cultured in Brazil. Rev MVZ C�ordoba. 2012;17:2812-

2819.

106. Steckert LD, Cardoso L, Jerônimo GT, de Pádua SB, Martins ML.

Investigation of farmed Nile tilapia health through histopathology.

Aquaculture. 2018;486:161-169. doi:10.1016/j.aquaculture.2017.

12.021

107. Mahmoud MA, Abdelsalam M, Mahdy OA, et al. Infectious bacterial

pathogens, parasites and pathological correlations of sewage pollu-

tion as an important threat to farmed fishes in Egypt. Environ Pollut.

2016;219:939-948.

108. Nofal M, Abdel-Latif H. Ectoparasites and bacterial co-infections

causing summer mortalities among cultured fishes at Al-Manzala

with special reference to water quality parameters. Life Sci J. 2017;

14:72-83.

109. Abu-Elala N, Attia M, Abd-Elsalam R, Gamal A, Younis N. Peracetic

acid treatment of Ichthyophthirius multifiliis (Ciliophora:

Ichthyophthiriidae) and Trichodina spp. reduces the infection by

Aeromonas hydrophila and improves survival in Nile tilapia (Oreochro-

mis niloticus). Aquaculture. 2021;538:736591. doi:10.1016/j.

aquaculture.2021.736591

SHINN ET AL. 137

info:doi/10.3923/jfas.2006.181.190
info:doi/10.1590/s1519-69842011000300005
info:doi/10.1590/s1984-29612014041
info:doi/10.1016/j.hal.2011.10.022
info:doi/10.1111/j.0022-3646.1996.00157.x
info:doi/10.3391/ai.2019.14.2.11
info:doi/10.1111/j.1095-8649.1983.tb02924.x
info:doi/10.1007/s11160-006-9005-y
info:doi/10.3329/ralf.v6i3.44809
info:doi/10.1016/j.vetpar.2012.07.030
info:doi/10.1111/jfd.12523
info:doi/10.1016/j.vetpar.2017.03.004
info:doi/10.1016/j.vetpar.2017.03.004
info:doi/10.1111/j.1365-2761.2009.01062.x
info:doi/10.1111/j.1365-2761.2009.01062.x
info:doi/10.1016/j.fsi.2011.03.004
info:doi/10.1007/s00436-011-2500-7
info:doi/10.11646/zootaxa.4027.2.6
info:doi/10.1016/j.aquaculture.2017.12.021
info:doi/10.1016/j.aquaculture.2017.12.021
info:doi/10.1016/j.aquaculture.2021.736591
info:doi/10.1016/j.aquaculture.2021.736591


110. Athanassopoulou F, Billinis C, Prapas T. Important disease condi-

tions of newly cultured species in intensive freshwater farms in

Greece: first incidence of nodavirus infection in Acipenser sp. Dis

Aquat Organ. 2004;60:247-252. doi:10.3354/dao060247

111. Xu DH, Shoemaker CA, Klesius PH. Enhanced mortality in Nile tila-

pia Oreochromis niloticus following coinfections with ichthyophthiria-

sis and streptococcosis. Dis Aquat Organ. 2009;85:187-192. doi:10.

3354/dao02073

112. Nguyen V, Dong HT, Senapin S, et al. Synergistic infection of

Ichthyophthirius multifiliis and Francisella noatunensis subsp. orientalis

in hybrid red tilapia (Oreochromis sp.). Microb Pathog. 2020;147:

104369. doi:10.1016/j.micpath.2020.104369

113. Islas-Ortega AG, Marcotegui PS, Basson L, Aguilar-Aguilar R. A

checklist of trichodinid species (Ciliophora: Trichodinidae) on tilapia

fishes (Cichlidae), with new records from Mexico and the first data

from Argentina. Zootaxa. 2020;4896:451-484. doi:10.11646/

zootaxa.4896.4.1

114. Basson L, Van As JG. Differential diagnosis of the genera in the fam-

ily Trichodinidae (Ciliophora: Peritrichida) with the description of a

new genus ectoparasitic on freshwater fish from southern Africa.

Syst Parasitol. 1989;13:153-160. doi:10.1007/BF00015224

115. Van As JG, Basson L. A further contribution to the taxonomy of the

Trichodinidae (Ciliophora: Peritrichia) and a review of the taxonomic

status of some fish ectoparasitic trichodinids. Syst Parasitol. 1989;

14:157-179. doi:10.1007/BF02187051

116. Valladão GMR, Pádua SB, Gallani SU, et al. Paratrichodina afri-

cana (Ciliophora): a pathogenic gill parasite in farmed Nile tilapia.

Vet Parasitol. 2013;197:705-710. doi:10.1016/j.vetpar.2013.

04.043

117. Pádua S, Menezes Filho R, Martins M, et al. A survey of epitheliocys-

tis disease in farmed Nile tilapia (Oreochromis niloticus Linnaeus,

1758) in Brazil. J Appl Ichthyol. 2015;31:927-930.

118. Rodrigues F, Assane I, Valladão G, et al. First report of Trichodinella

and new geographical records of trichodinids in Nile tilapia (Oreo-

chromis niloticus) farmed in Brazil. Res Bras Parasitol Vet. 2019;28:

229-237.

119. Jiang Y, Zhao Y, Tang F. Studies on the taxonomy and biodiversity

of ectoparasitic trichodinids from cultured tilapia in Guangxi. Sichuan

J Zool. 2015;34:584-593.

120. Younis NA, Attia MM, Saleh NMK. Analysis of TNF alpha and

interlukin-1β genes in Oreochromis niloticus: inflammatory responses

induced by Myxobolus spp. and Trichodina spp, Iranian. J Ichthyol.

2021;8:30-40. doi:10.22034/iji.v8i1.450

121. de Jager G, Basson L. Taxonomic assessment of three north American

trichodinids by reevaluating the taxon validity of Trichodina heteroden-

tata Duncan, 1977 (Peritrichia). Acta Protozool. 2019;58:125-139.

122. Van As JG, Basson L. Trichodinids (Ciliophora: Peritricha) ectopara-

sites of cultured cichlids from Taiwan. Bull Inst Zool Acad Sin. 1986;

25:135-139.

123. Bondad-Reantaso M, Arthur J. Trichodinids (protozoa: Ciliophora:

Peritrichida) of Nile tilapia (Oreochromis niloticus) in The Philippines.

Asian Fish Sci. 1989;3:27-44.

124. Valladão GMR, Alves LO, Pilarski F. Trichodiniasis in Nile tilapia

hatcheries: diagnosis, parasite:host-stage relationship and treatment.

Aquaculture. 2016;451:444-450.

125. Duncan B. Urceolariid ciliates, including three new species, from cul-

tured Philippine fishes. Trans Am Microsc Soc. 1977;96:76-81.

126. Abdel-Baki A, Gewik M, Al-Quraishy S. First records of Ambiphrya

and Vorticella spp. (protozoa, Ciliophora) in cultured Nile tilapia

(Oreochromis niloticus) in the central region of Saudi Arabia. Saudi J

Biol Sci. 2014;21:520-523.

127. Gonzáles Fernández JG. Parasitofauna of tilapia cause mortalities in

fingerlings in two fishfarms, Lima, Peru. Neotrop Helminthol. 2012;6:

219-229.

128. Viljoen S, Van As JG. Sessile peritrichs (Ciliophora: Peritricha) from

freshwater fish in the Transvaal, South Africa. S Afr J Zool. 1985;20:

79-96.

129. Paredes-Trujillo A, Velázquez-Abunader I, Torres-Irineo E,

Romero D, Vidal-Martínez V. Geographical distribution of protozoan

and metazoan parasites of farmed Nile tilapia Oreochromis niloticus

(L.) (Perciformes: Cichlidae) in Yucatán, México. Parasit Vectors.

2016;9:66. doi:10.1186/s13071-016-1332-9

130. Valladão GMR, Levy-Pereira N, Viadanna PHO, Gallani SU,

Farias THV, Pilarski F. Haematology and histopathology of Nile tila-

pia parasitised by Epistylis sp., an emerging pathogen in South Amer-

ica. Bull Eur Assoc Fish Pathol. 2014;35:14-20.

131. Adly M, El-Galil M, Soliman F, Ahmed F. Histopathological studies

on trichodinosis of farmed Oreochromis niloticus. Am J Life Sci. 2015;

3:30-37.

132. Aly S, Fathi M, Youssef E, Mabrok M. Trichodinids and monoge-

neans infestation among Nile tilapia hatcheries in Egypt: prevalence,

therapeutic and prophylactic treatments. Aquacult Int. 2020;28:

1459-1471. doi:10.1007/s10499-020-00537-w

133. Diamant A, Ram S, Paperna I. Experimental transmission of Entero-

myxum leei to freshwater fish. Dis Aquat Organ. 2006;72:171-178.

doi:10.3354/dao072171

134. Sutarni PA, Herawati E, Budiharjo A. Prevalence of endoparasites and

histopathological evaluation of intestine in Nile tilapia, Oreochromis

niloticus (Linnaeus, 1758) from aquaculture pond in Janti, Polanharjo

District, Klaten Regency. J Iktiologi Indones. 2021;21:1-10.

135. Rodrigues M, Francisco C, Biondi G, Júnior J. Sinuolinea niloticus

n. sp., a myxozoan parasite that causes disease in Nile tilapia (Oreo-

chromis niloticus). Parasitol Res. 2016;115:4307-4316. doi:10.1007/

s00436-016-5214-z

136. Battazza A, da Silva Brasileiro FC, Machado EF, et al. Identification

and characterization of Sinuolinea niloticus from Nile tilapia (Oreo-

chromis niloticus) farmed in Botucatu, Brazil. Aquac Int. 2020;28:

1899-1906. doi:10.1007/s10499-020-00565-6

137. Fomena A, Marques A, Bouix G. Myxosporidea (Myxozoa) of Oreo-

chromis niloticus (Linnaeus 1757) (teleost Cichlidae) in fish-farming

pools at Melen (Yaounde, Cameroon, Central Africa). J Afr Zool.

1993;107:45-56.

138. Fall M, Fomena A, Kostoïngué B, Diebakate C, Faye N,

Toguebaye B. Myxosporidies (Myxozoa, Myxosporea) parasites des

poissons cichlidae du Cameroun, du Sénégal et du Tchad avec la

description de deux nouvelles espèces. Ann Sci Nat. 2000;21:81-92.

139. Matsche MA, Yurakhno V, Zhang J, Sato H. Synopsis of the species

of the genus Zschokkella Auerbach, 1910 (Myxozoa: Bivalvulida:

Myxidiidae). Syst Parasitol. 2021;98:25-55. doi:10.1007/s11230-

020-09960-2

140. Abdel-Ghaffar F, El-Toukhy A, Al-Quraishy S, et al. Five new myxos-

porean species (Myxozoa: Myxosporea) infecting the Nile tilapia

Oreochromis niloticus in Bahr Shebin, Nile tributary, Nile Delta,

Egypt. Parasitol Res. 2008;103:1197-1205. doi:10.1007/s00436-

008-1116-z

141. Abdel-Gaber R, Abdel-Ghaffar F, Maher S, El-Mallah A, Al

Quraishy S, Mehlhorn H. Morphological re-description and phyloge-

netic relationship of five myxosporean species of the family Myxo-

bolidae infecting Nile tilapia. Dis Aquat Organ. 2017;124:201-214.

doi:10.3354/dao03118

142. Ali M. Light and scanning electron microscopy (SEM) of Ortholinea

africanus Abdel-Ghaffar et al., 2008 (Myxozoa: Myxosporea) infect-

ing tilapia fish Oreochromis niloticus (Osteichthyes: Cichlidae) with

description of preparation of coelozoic Myxosporea for SEM. Acta

Protozool. 2009;48:185-190.

143. Eiras J, Molnár K, Lu Y. Synopsis of the species of Myxobolus Büts-

chli, 1882 (Myxozoa: Myxosporea: Myxobolidae). Syst Parasitol.

2005;61:1-46. doi:10.1007/s11230-004-6343-9

138 SHINN ET AL.

info:doi/10.3354/dao060247
info:doi/10.3354/dao02073
info:doi/10.3354/dao02073
info:doi/10.1016/j.micpath.2020.104369
info:doi/10.11646/zootaxa.4896.4.1
info:doi/10.11646/zootaxa.4896.4.1
info:doi/10.1007/BF00015224
info:doi/10.1007/BF02187051
info:doi/10.1016/j.vetpar.2013.04.043
info:doi/10.1016/j.vetpar.2013.04.043
info:doi/10.22034/iji.v8i1.450
info:doi/10.1186/s13071-016-1332-9
info:doi/10.1007/s10499-020-00537-w
info:doi/10.3354/dao072171
info:doi/10.1007/s00436-016-5214-z
info:doi/10.1007/s00436-016-5214-z
info:doi/10.1007/s10499-020-00565-6
info:doi/10.1007/s11230-020-09960-2
info:doi/10.1007/s11230-020-09960-2
info:doi/10.1007/s00436-008-1116-z
info:doi/10.1007/s00436-008-1116-z
info:doi/10.3354/dao03118
info:doi/10.1007/s11230-004-6343-9


144. Fonkwa G, Tchuinkam T, Nana Towa A, Tchoumboue J. Prevalence

of Myxosporidiosis in Oreochromis niloticus Linnaeus, 1758

(Cichlidae) at Mapé reservoir dam (Adamawa-Cameroon). J Appl

Biosci. 2018b;123:12332-12345.

145. Fonkwa G, Marc K, Timoléon T, Eyango M, Joseph T. Myxobolus

(Myxosporea: Myxobolidae) polyinfection patterns in Oreochromis

niloticus in Adamawa-Cameroon. Int J Fish Aquat Stud. 2021;9:

123-130.

146. Rocha S, Azevedo C, Oliveira E, et al. Phylogeny and comprehensive

revision of mugiliform-infecting myxobolids (Myxozoa, Myxoboli-

dae), with the morphological and molecular redescription of the

cryptic species Myxobolus exiguus. Parasitology. 2019;146:479-496.

doi:10.1017/S0031182018001671

147. El-Sayed N. Ultrastructural morphology of the Myxobolus dermato-

bius Ishii 1915 (Mixosporea: Myxobolideae) microspores infecting

eyes of Nile tilapia (Oreochromis niloticus) in Egypt. Vet Ital. 2020;56:

251-255.

148. Longshaw M, Frear PA, Feist SW. Descriptions, development and

pathogenicity of myxozoan (Myxozoa: Myxosporea) parasites of

juvenile cyprinids (Pisces: Cyprinidae). J Fish Biol. 2005;28:489-508.

doi:10.1111/j.1365-2761.2005.00656.x

149. Fonkwa G, Benoit L, Timoleon T, Ahmad I, Joseph T. Effect of sea-

son on myxosporean infections in Oreochromis niloticus Linnaeus,

1758 (Cichlidae) at MAPE Dam in Adamawa, Cameroon. J Aquac Res

Dev. 2018;9:5. doi:10.4172/2155-9546.1000533

150. Nchoutpouen E, Benoicirc G, Folefack L, Fomena A. Structure and

population dynamics of myxobolus infections in wild and cultured

Oreochromis niloticus Linnaeus, 1758 in the Noun division

(West-Cameroon). J Cell Anim Biol. 2011;5:254-264. doi:10.5897/

JCAB.9000138

151. Lekeufack Folefack GB, Mala Kengne C, Feudjio Dongmo B,

Fomena A. Prevalence and mean intensity of Myxobolus spp. parasit-

izing Oreochromis niloticus in Cameroon. Int. J Biol. 2019;11:1-35.

doi:10.5539/ijb.v11n2p35

152. Landsberg JH. Myxosporean infections in cultured tilapias in Israel.

J Protozool. 1985;32:194-120. doi:10.1111/j.1550-7408.1985.

tb03038.x

153. Lövy A, Smirnov M, Brekhman V, Ofek T, Lotan T. Morphological

and molecular characterization of a novel myxosporean parasite

Myxobolus bejeranoi n. sp. (Cnidaria: Myxosporea) from hybrid tilapia

in Israel. Parasitol Res. 2018;117:491-499. doi:10.1007/s00436-

017-5725-2

154. Abolarin M. Myxobolus tilapiae sp. nov. (Protozoa: Myxosporidia)

from three species of freshwater tilapia in Nigeria. J West Afr Sci

Assoc. 1974;19:109-114.

155. Fomena A, Bouix G. Myxosporea (Protozoa: Myxozoa) of freshwater

fishes in Africa: keys to genera and species. Syst Parasitol. 1997;37:

161-178. doi:10.1023/A:1005839220014

156. Okaeme AN, Obiekezie AI, Lehman J, Antai EE, Madu CT. Parasites

and diseases of cultured fish of Lake Kainji area, Nigeria. J Fish Biol.

1988;32:479-481. doi:10.1111/j.1095-8649.1988.tb05383.x

157. Gbankoto A, Pampoulie C, Marques A, Sakiti G. Myxobolus daho-

meyensis infection in ovaries of tilapia species from Benin (West

Africa). J Fish Biol. 2001a;58:883-886. doi:10.1111/j.1095-8649.

2001.tb00539.x

158. Gbankoto A, Pampoulie C, Marques A, Sakiti G. Occurrence of myx-

osporean parasites in the gills of two tilapia species from Lake

Nokoue (Benin, West Africa): effect of host size and sex, and sea-

sonal patterns of infection. Dis Aquat Organ. 2001b;44:217-222.

doi:10.3354/dao044217

159. Eissa AE, Mourad A, Ibrahim T. A contribution on myxosoma infec-

tion in cultured Oreochromis niloticus in lower Egypt. Nat Sci. 2006;

4:40-46.

160. Eissa AE, Zaki MM, Aziz AA. Flavobacterium columnare / Myxobolus

tilapiae concurrent infection in the earthen pond reared Nile tilapia

(Oreochromis niloticus) during the early summer. Interdiscipl Bio Cen-

tral. 2010;2:1-10.

161. Eissa AE, Doaa GM, Ismail MM, Qorany R. Diseases caused by hel-

minthes in cultured Oreochromis niloticus and Clarias gariepinus, in

Ismailia province. Int J Fish Aquat Res. 2021;6:17-25.

162. Soror EI, Mahrous KF. Epizotiological studies on proliferative kidney

disease in tilapia (Oreochromis niloticus) and African catfish (Clarias

gariepinus). Benha Vet Med J. 2012;23:150-158.

163. El-Mansy A-S. Effect of processing steps and aqueous extracts of

some medicinal plants on controlling fish parasites in Egypt. Acta

Parasitol Global. 2016;7:27-53. doi:10.5829/idosi.apg.2016.7.2.

103106

164. Ahmed Mahgoub H, Elnaggar A, Sadeyen JR. Implementation of tis-

sue histopathology and parasitic morphometric analysis in the diag-

nosis of Myxobolus fomenai infection in the skeletal muscles Nile

tilapia. Am J Infect Dis Microbiol. 2017;5:137-142.

165. Abdelkhalek N, El-Adl M, Hamed M, Al-Araby M. Myxosporidiosis in

Oreochromis niloticus; molecular identification and oxidative stress

biomarkers. Mansoura Vet Med J. 2017;18:347-363.

166. Younis NA, Laban SE, Al-Mokaddem AK, Attia MM. Immunological

status and histopathological appraisal of farmed Oreochromis niloti-

cus exposed to parasitic infections and heavy metal toxicity. Aquac

Int. 2020;28:2247-2262. doi:10.1007/s10499-020-00589-y

167. Verner-Jeffreys DW, Wallis TJ, Cejas IC, et al. Streptococcus agalac-

tiae multilocus sequence type 261 is associated with mortalities in

the emerging Ghanaian tilapia industry. J Fish Dis. 2018;41:175-179.

doi:10.1111/jfd.12681

168. Boungou M, Kabre G, Sakiti N, Marques A, Sawadogo L. Description

of four new myxosporean species (Myxozoa: Myxosporea) from

genus Myxobolus, fish parasites of Burkina Faso, West Africa. Aust J

Biol Sci. 2006;6:861-867.

169. Okaeme AN, Obiekezie A, Okojie P, Agbontale J. Histopathology of

normal and infected organs of tilapia by Myxobolus ovariae. Annu

Rep Natl Inst Freshwat Fish Res. 1989;37-40.

170. Cavalier-Smith T. The Kingdom Chromista: Origin and systematics.

Progress Phycol Res. 1986;4:309-347.

171. Phillips AJ, Anderson VL, Robertson EJ, Secombes CJ, van West P.

New insights into animal pathogenic oomycetes. Trends Microbiol.

2008;16:13-19. doi:10.1016/j.tim.2007.10.013

172. Goodwin A. 4.2.1 Branchiomycosis. Fish Health Section Blue Book.

American Fisheries Society (AFS); 2012.

173. Hussein MMA, HassanWH, Mahmoud MA. Pathogenicity of Achlya pro-

liferoides and Saprolegnia diclina (Saprolegniaceae) associated with sapro-

legniosis outbreaks in cultured Nile tilapia (Oreochromis niloticus). World J

Fish Mar Sci. 2013;5:188-193. doi:10.5829/idosi.wjfms.2013.05.02.7212

174. Chauhan R. Fungal attack on Tilapia mossambicus in culture pond, lead-

ing to mass mortality of fishes. Int J Pharma Sci Res. 2014;5:425-428.

175. Zahran E, Hafez EE, Ferdaus Hossain M, Elhadidy M, Shaheen A.

Saprolegniosis in Nile tilapia: identification, molecular characteriza-

tion, and phylogenetic analysis of two novel pathogenic Saprolegnia

strains. J Aquat Anim Health. 2017;29:43-49. doi:10.1080/

08997659.2016.1259691

176. Noor El-Deen A, Osman H, Zaki M, AlyAbo-State H. Mass mortality

in cultured Nile tilapia Oreochromis niloticus in Kafr El-Sheikh prov-

ince, Egypt due to saprolegniosis with emphasis on treatment trials.

Aust J Biol Sci. 2018;18:39-45. doi:10.3923/jbs.2018.39.45

177. FAO. What You Need to Know About Epizootic Ulcerative Syndrome

(EUS). FAO, Fisheries and Aquaculture Management Division; 2020.

178. Pradhan PK, Rathore G, Sood N, et al. Emergence of epizootic ulcer-

ative syndrome: large-scale mortalities of cultured and wild fish spe-

cies in Uttar Pradesh, India. Curr Sci. 2014;106:1711-1718. doi:10.

18520/CS/V106/I12/1711-1718

179. Herbert B, Jones JB, Mohan CV, Perera RP. Impacts of epizootic

ulcerative syndrome on subsistence fisheries and wildlife. Rev Sci

Tech. 2019;38:459-475. doi:10.20506/rst.38.2.2998

SHINN ET AL. 139

info:doi/10.1017/S0031182018001671
info:doi/10.1111/j.1365-2761.2005.00656.x
info:doi/10.4172/2155-9546.1000533
info:doi/10.5897/JCAB.9000138
info:doi/10.5897/JCAB.9000138
info:doi/10.5539/ijb.v11n2p35
info:doi/10.1111/j.1550-7408.1985.tb03038.x
info:doi/10.1111/j.1550-7408.1985.tb03038.x
info:doi/10.1007/s00436-017-5725-2
info:doi/10.1007/s00436-017-5725-2
info:doi/10.1023/A:1005839220014
info:doi/10.1111/j.1095-8649.1988.tb05383.x
info:doi/10.1111/j.1095-8649.2001.tb00539.x
info:doi/10.1111/j.1095-8649.2001.tb00539.x
info:doi/10.3354/dao044217
info:doi/10.5829/idosi.apg.2016.7.2.103106
info:doi/10.5829/idosi.apg.2016.7.2.103106
info:doi/10.1007/s10499-020-00589-y
info:doi/10.1111/jfd.12681
info:doi/10.1016/j.tim.2007.10.013
info:doi/10.5829/idosi.wjfms.2013.05.02.7212
info:doi/10.1080/08997659.2016.1259691
info:doi/10.1080/08997659.2016.1259691
info:doi/10.3923/jbs.2018.39.45
info:doi/10.18520/CS/V106/I12/1711-1718
info:doi/10.18520/CS/V106/I12/1711-1718
info:doi/10.20506/rst.38.2.2998


180. Yanong RPE. Fungal diseases of fish. Vet Clin North Am Exot Anim

Pract. 2003;6:377-400. doi:10.1016/s1094-9194(03)00005-7

181. Walker CA, van West P. Zoospore development in the oomycetes.

Fungal Biol Rev. 2007;21:10-18. doi:10.1016/j.fbr.2007.02.001

182. Bruno DW, van West P, Beakes GW. Saprolegnia and other oomy-

cetes. In: Woo P, Bruno D, eds. Fish Diseases and Disorders. CABI

Publishing; 2011.

183. Gonçalves AA, Gagnon GA. Ozone application in recirculating aqua-

culture system: an overview. J Int Ozone Assoc. 2011;33:345-367.

doi:10.1080/01919512.2011.604595

184. Noga E. Fungal diseases of marine and estuarine fishes. In: Couch J,

Fournie J, eds. Pathology of Marine and Estuarine Organisms. CRC

Press; 1992.

185. Gozlan RE, Marshall WL, Lilje O, Jessop CN, Gleason FH,

Andreou D. Current ecological understanding of fungal-like patho-

gens of fish: what lies beneath? Front Microbiol. 2014;5:62. doi:10.

3389/fmicb.2014.00062

186. Ogbonna C, Alabi R. Studies on species of fungi associated with

mycotic infections of fish in a Nigerian freshwater fish pond. Hydro-

biologia. 1991;220:131-135. doi:10.1007/BF00006545

187. Panchai K, Hanjavanit C, Kitacharoen N. Characteristics of Achlya

bisexualis isolated from eggs of Nile tilapia (Oreochromis niloticus).

KKU Res J. 2007;12:195-202.

188. Panchai K, Hanjavanit C, Rujinanont N, Wada S, Kurata O, Hatai K.

Freshwater oomycete isolated from net cage cultures of Oreochro-

mis niloticus with water mold infection in the Nam Phong river, Khon

Kaen province Thailand. Aquac Aquar Conserv Legis Bioflux. 2014;7:

529-542.

189. Ali E, Hashem M, Al-Salahy M. Pathogenicity and oxidative stress in

Nile tilapia caused by Aphanomyces laevis and Phoma herbarum iso-

lated from farmed fish. Dis Aquat Organ. 2011;94:17-28. doi:10.

3354/dao02290

190. Carraschi S, Garlich N, de Souza-Pollo A, Brayer D. Isolation of

Saprolegnia aenigmatica oomycetes and protocol for experimental

infection of pacu (Piaractus mesopotamicus). Acta Sci Biol Sci. 2018;

40:e38186. doi:10.4025/actascibiolsci.v40i1.38186

191. Zahran E, Awadin W. Experimental pathogenicity of two Saproleg-

nia spp. to Nile tilapia (Oreochromis niloticus) in Egypt, with empha-

sis on histopathological alterations. Paper presented at 8th

International Science Conference on MANSOURA 2014; 2014

pp. 81–93.
192. Noor El-Deen A, Zaki M, Razin A, Shalaby S. Field study on the use

of Artemisia cina (Sheih Baladi) and Humates (Humapol-Fis) in the

control of saprolegniosis in fingerlings of Nile tilapias and Mugil

cephalus in freshwater fish farms. Life Sci J. 2010;7:125-128.

193. FAO. Report of the International Emergency Disease Investigation Task

Force on a Serious Fish Disease in Southern Africa. FAO; 2009.

194. World Organisation for Animal Health. OIE epizootic ulcerative syn-

drome. Manual of Diagnostic Tests for Aquatic Animals. World Orga-

nisation for Animal Health; 2021.

195. Khalil R, Talaat T, Saad T, Abo Selema H, Abdel-Latif M. Branchio-

myces demigrans infection in farm-reared common carp (Cyprinus

carpio L.) and Nile tilapia (Oreochromis niloticus) at different localities

in Egypt, with special emphasis to the role of environmental stress

factors. Int J Innov Stud Aquat Biol Fish. 2015;1:15-23.

196. Mahboub H, Shaheen A. Mycological and histopathological identifi-

cation of potential fish pathogens in Nile tilapia. Aquaculture. 2021;

530:735849. doi:10.1016/j.aquaculture.2020.735849

197. Paperna I, Smirnova M. Branchiomyces-like infection in a cultured

tilapia (Oreochromis hybrid, Cichlidae). Dis Aquat Organ. 1997;31:

233-238. doi:10.3354/dao031233

198. Mendoza L, Taylor J, Ajello L. The class Mesomycetozoea: a group

of microorganisms at the animal-fungal boundary. Annu Rev Micro-

biol. 2002;56:315-344. doi:10.1146/annurev.micro.56.012302.

160950

199. Rowley J, Gleason F, Andreou D, Marshall W, Lilje O, Gozlan R.

Impacts of mesomycetozoean parasites on amphibian and freshwa-

ter fish populations. Fungal Biol Rev. 2013;27:100-111. doi:10.

1038/emi.2015.52

200. Paperna I. Parasites, infections and diseases of fishes in Africa—an

update. CIFA Tech Pap. 1996;31:1-220. http://www.fao.org/

docrep/008/v9551e/V9551E00.HTM

201. Paperna I, Kim S, Hammerschlag E. Liver lesions in cultured Oreo-

chromis hybrids caused by amoeboid organisms similar to the aetio-

logical agent of goldfish kidney granuloma. Dis Aquat Organ. 1996;

25:151-153. doi:10.3354/dao025151

202. Steckert LD, Cardoso L, Tancredo KR, Martins ML, Jerônimo GT.

Dermocystidium sp. in the gills of farmed Oreochromis niloticus in

Brazil. An Acad Bras Ciênc. 2019;91:e20180959. doi:10.1590/0001-

3765201920180959

203. Mahboub H, Shaheen A. Prevalence, diagnosis and experimental

challenge of Dermocystidium sp. infection in Nile tilapia (Oreochromis

niloticus) in Egypt. Aquaculture. 2020;516:734556. doi:10.1016/j.

aquaculture.2019.734556

204. El-Mansy A. A new finding of Dermocystidium-like spores in the gut

of cultured Oreochromis niloticus. Global Vet. 2008a;2:369-371.

205. Fuller M, Jaworski A. Zoosporic Fungi in Teaching and Research.

Southeastern Publishing Corporation; 1987.

206. van West P. Saprolegnia parasitica, an oomycete pathogen with a

fishy appetite: new challenges for an old problem. Mycologist. 2006;

20:99-104. doi:10.1016/j.mycol.2006.06.004

207. Beakes G. Oomycete phylogeny: ultrastructural perspectives. In:

Rayner A, Brasier C, Moore D, eds. Evolutionary Biology of the Fungi.

Cambridge University Press; 1987.

208. El-Feki M, Hatai K, Hussein M. Chemotactic and chemokinetic activ-

ities of Saprolegnia parasitica toward different metabolites and fish

tissue extracts. Mycoscience. 2003;44:159-162.

209. Jones E, Hyde K, Pang K-L, eds. Sarowar M. Infection strategies of

pathogenic oomycetes in fish. Freshwater Fungi and Fungal-Like

Organisms. de Gruyter; 2014.

210. Wawra S, Bain J, Durward E, et al. Host-targeting protein 1 (SpHtp1)

from the oomycete Saprolegnia parasitica translocates specifically

into fish cells in a tyrosine-sulphate-dependent manner. Proc Natl

Acad Sci USA. 2012a;109:2096-2101. doi:10.1073/pnas.

1113775109

211. Wawra S, Belmonte R, Löbach L, Saraiva M, Willems A, van

West P. Secretion, delivery and function of oomycete effector

proteins. Curr Opin Microbiol. 2012b;15:685-691. doi:10.1016/j.

mib.2012.10.008

212. Jiang RHY, de Bruijn I, Haas BJ, Belmonte R, Löbach L, Christie J.

Distinctive expansion of potential virulence genes in the genome of

the oomycete fish pathogen Saprolegnia parasitica. PLoS Genet.

2013;9:e1003272. doi:10.1371/journal.pgen.1003272

213. Majeed M, Kumar G, Schlosser S, El-Matbouli M, Saleh M. In vitro

investigations on extracellular proteins secreted by Aphanomyces

invadans, the causative agent of epizootic ulcerative syndrome. Acta

Vet Scand. 2017;59:78.

214. Iberahim NA, Trusch F, van West P. Aphanomyces invadans, the

causal agent of epizootic ulcerative syndrome, is a global threat to

wild and farmed fish. Fungal Biol Rev. 2018;32:118-130. doi:10.

1016/j.fbr.2018.05.002

215. Pradhan PK, Verma DK, Peruzza L, et al. Molecular insights into the

mechanisms of susceptibility of Labeo rohita against oomycete Apha-

nomyces invadans. Sci Rep. 2020;10:19531. doi:10.1038/s41598-

020-76278-w

216. Thoen E, Evensen O, Skaar I. Pathogenicity of Saprolegnia spp. to

Atlantic salmon, Salmo salar L., eggs. J Fish Dis. 2011;34:601-608.

doi:10.1111/j.1365-2761.2011.01273.x

217. Cao H, Zheng W, Xu J, Ou R, He S, Yang X. Identification of an iso-

late of Saprolegnia ferax as the causal agent of saprolegniosis of

140 SHINN ET AL.

info:doi/10.1016/s1094-9194(03)00005-7
info:doi/10.1016/j.fbr.2007.02.001
info:doi/10.1080/01919512.2011.604595
info:doi/10.3389/fmicb.2014.00062
info:doi/10.3389/fmicb.2014.00062
info:doi/10.1007/BF00006545
info:doi/10.3354/dao02290
info:doi/10.3354/dao02290
info:doi/10.4025/actascibiolsci.v40i1.38186
info:doi/10.1016/j.aquaculture.2020.735849
info:doi/10.3354/dao031233
info:doi/10.1146/annurev.micro.56.012302.160950
info:doi/10.1146/annurev.micro.56.012302.160950
info:doi/10.1038/emi.2015.52
info:doi/10.1038/emi.2015.52
http://www.fao.org/docrep/008/v9551e/V9551E00.HTM
http://www.fao.org/docrep/008/v9551e/V9551E00.HTM
info:doi/10.3354/dao025151
info:doi/10.1590/0001-3765201920180959
info:doi/10.1590/0001-3765201920180959
info:doi/10.1016/j.aquaculture.2019.734556
info:doi/10.1016/j.aquaculture.2019.734556
info:doi/10.1016/j.mycol.2006.06.004
info:doi/10.1073/pnas.1113775109
info:doi/10.1073/pnas.1113775109
info:doi/10.1016/j.mib.2012.10.008
info:doi/10.1016/j.mib.2012.10.008
info:doi/10.1371/journal.pgen.1003272
info:doi/10.1016/j.fbr.2018.05.002
info:doi/10.1016/j.fbr.2018.05.002
info:doi/10.1038/s41598-020-76278-w
info:doi/10.1038/s41598-020-76278-w
info:doi/10.1111/j.1365-2761.2011.01273.x


yellow catfish (Pelteobagrus fulvidraco) eggs. Vet Res Commun. 2012;

36:239-244. doi:10.1007/s11259-012-9536-8

218. Lilley JH, Callinan RB, Chinabut S, Kanchanakhan S, MacRae IH,

Phillips MJ. Epizootic Ulcerative Syndrome (EUS) Technical Handbook.

The Aquatic Animal Health Research Institute (AAHRI); 1998.

219. Kiryu Y, Shields J, Vogelbein W, Zwerner D, Kator H, Blazer V.

Induction of skin ulcers in Atlantic menhaden by injection and aque-

ous exposure to the zoospores of Aphanomyces invadans. J Aquat

Anim Health. 2002;14:11-24. doi:10.1577/1548-8667(2002)0142.0.

CO;2

220. Pradhan P, Mohan C, Shankar K, Mohana KB. Susceptibility of fin-

gerlings of Indian major carps to Aphanomyces invadans. Asian Fish

Sci. 2008;21:369-375.

221. Sen K, Mandal R. Fresh-water fish diseases in West Bengal, India. Int

J Fish Aquat Stud. 2018;6:356-362.

222. Peeler E, Oidtmann B, Midtlyng P, Miossec L, Gozlan R. Non-native

aquatic animals introductions have driven disease emergence in

Europe. Biol Invasions. 2010;13:1291-1303. doi:10.1007/s10530-

010-9890-9

223. Cameron SA, Lozier JD, Strange JP, et al. Patterns of widespread

decline in north American bumble bees. Proc Natl Acad Sci USA.

2011;108:662-667. doi:10.1073/pnas.1014743108

224. Balasuriya L. Epizootic ulcerative syndrome in fish in Sri Lanka,

country status report. In: Roberts R, Campbell B, MacRae I, eds.

Proceedings of the ODA Regional Seminar on Epizootic Ulcerative

Syndrome. Aquatic Animal Health Research Institute; 1994:

39-47.

225. Rodgers C, Mohan C, Peeler E. The spread of pathogens through

trade in aquatic animals and their products. Rev Sci Tech. 2011;30:

241-256. doi:10.20506/rst.30.1.2034

226. Huchzermeyer CF, Huchzermeyer KDA, Christison KW, et al. First

record of epizootic ulcerative syndrome from the upper Congo

catchment: an outbreak in the Bangweulu swamps. Zambia J Fish

Dis. 2018;41:87-94.

227. Sibanda S, Pfukenyi D, Barson M, Hang'ombe B, Matope G. Emer-

gence of infection with Aphanomyces invadans in fish in some main

aquatic ecosystems in Zimbabwe: a threat to national fisheries pro-

duction. Transbound Emerg Dis. 2018;65:1648-1656.

228. Boys CA, Rowland SJ, Gabor M, et al. Emergence of epizootic ulcer-

ative syndrome in native fish of the Murray-Darling river system,

Australia: hosts, distribution and possible vectors. PLoS One. 2012;7:

e35568. doi:10.1371/journal.pone.0035568

229. Huchzermeyer KDA, Van der Waal BCW. Epizootic ulcerative syn-

drome: exotic fish disease threatens Africa's aquatic ecosystems. J S

Afr Vet Assoc. 2012;83:1-6.

230. Oidtmann B. Review of biological factors relevant to import risk

assessments for epizootic ulcerative syndrome (Aphanomyces inva-

dans). Transbound Emerg Dis. 2012;59:26-39.

231. Iberahim NA, Sood N, Pradhan PK, van den Boom J, van West P,

Trusch F. The chaperone Lhs1 contributes to the virulence of the

fish pathogenic oomycete Aphanomyces invadans. Fungal Biol. 2020;

124:1024-1031. doi:10.1016/j.funbio.2020.09.003

232. Verma DK, Peruzza L, Trusch F, et al. Transcriptome analysis reveals

immune pathways underlying resistance in the common carp Cypri-

nus carpio against the oomycete Aphanomyces invadans. Genomics.

2021;113:944-956. doi:10.1016/j.ygeno.2020.10.028

233. Derevnina L, Petre B, Kellner R, et al. Emerging oomycete threats to

plants and animals. Philos Trans R Soc B. 2016;371:20150459. doi:

10.1098/rstb.2015.0459

234. Copp G, Villizi L, Gozlan R. Fish movements: the introduction path-

way for top mouth gudgeon Pseudorasbora parva and other non-

native fishes in the UK. Aquat Conserv. 2010;20:269-273.

235. Kocan R. Transmission models for the fish pathogen Ichthyophonus:

synthesis of field observations and empirical studies. Can J Fish

Aquat Sci. 2019;76:636-642.
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and a combination anthelmintic (Adecto®) in bath treatments against

Tagia ecuadori and Neobenedenia melleni (Monogenea), parasites of

Bullseye puffer fish. Aquaculture. 2018;492:361-368. doi:10.1016/j.

aquaculture.2018.04.043

394. Hirazawa N, Hagiwara H, Tsubone S, Takano R. Investigation of the

toxicological effects of hydrogen peroxide bath treatments at different

concentrations on Seriola species and the effectiveness of these treat-

ments on Neobenedenia girellae (Monogenea) infestations. Aquaculture.

2017;479:217-224. doi:10.1016/j.aquaculture.2017.05.019

395. Hutson KS, Mata L, Paul NA, de Nys R. Seaweed extracts as a natu-

ral control against the monogenean parasite Neobenedenia

sp. infecting farmed barramundi (Lates calcarifer). Int J Parasitol.

2012;42:1135-1141. doi:10.1016/j.ijpara.2012.09.007

396. Shirakashi S, Hirano C, binti Asmara A, Ishimaru K, Miyashita S.

Shading reduces Neobenedenia girellae infection on cultured greater

amberjack Seriola dumerili. Fish Pathol. 2013a;48:25-28. doi:10.

3147/jsfp.48.25

397. Shirakashi S, Hirano C, Ishitana H, Ishimaru K. Diurnal pattern of skin

fluke infection in cultured amberjack Seriola dumerili, at different

water depths. Aquaculture. 2013b;402:19-23. doi:10.1016/j.

aquaculture.2013.03.014

398. Simon-Oke IA. Diversity, intensity and prevalence of parasites of

cichlids in polluted and unpolluted sections of Eleyele Dam, Ibadan,

Nigeria. UNED Res J. 2017;9:45-50.

399. Salgado-Maldonado G. Checklist of helminth parasites of freshwater

fishes from Mexico. Zootaxa. 2006;1324:1-357. doi:10.11646/

zootaxa.1324.1.1

400. Salgado-Maldonado G, Cabanas-Carranza G, Soto-Galera E, et al.

Helminth parasites of freshwater fishes of the Pánuco River basin,

east Central Mexico. Comp Parasitol. 2004;71:190-202. doi:10.

1654/4088

401. Aguirre-Macedo ML, Scholz T. Culuwiya cichlidorum n. sp. (Digenea:

Haploporidae) from the black-belt cichlid Vieja maculicauda (Pisces:

Cichlidae) from Nicaragua. J Parasitol. 2005;91:1379-1384. doi:10.

1645/GE-3490.1

402. Abou-Okada M, AbuBakr HO, Hassan A, et al. Efficacy of acriflavine

for controlling parasitic diseases in farmed Nile tilapia with emphasis

on fish health, gene expression analysis, oxidative stress, and histo-

pathological alterations. Aquaculture. 2021;541:736-791. doi:10.

1016/j.aquaculture.2021.736791

403. Chai JY. Human Intestinal Flukes. Springer Nature; 2019.

404. Grobbelaar A, Van As LL, Van As JG, Butler HJB. Pathology of eyes

and brain of fish infected with diplostomids, southern Africa. Afr

Zool. 2015;50:181-186. doi:10.1080/15627020.2015.1055701

405. Charo-Karisa H, Ali S, Marijani E, et al. Genetic parameters for black

spot disease (diplostomiasis) caused by Uvulifer sp. infection in Nile

tilapia (Oreochromis niloticus L.). Aquaculture. 2021;541:736039. doi:

10.1016/j.aquaculture.2020.736039

406. García-Márquez L, Osorio-Sarabia D, Constantino F. Prevalencia de

los parásitos y las alteraciones histol�ogicas que producen a las tila-

pias de la Laguna de Amela, Tecomán, Colima. Vet Mex. 1993;24:

199-205.

407. Hamouda A, Younis A. Characterization of Clinostomum cuta-

neum and Clinostomum phalacrocoracis in tilapia species of

Aswan governorate, Egypt: a morphological, molecular and his-

topathological study. Aquacult Res. 2021;52:6726-6740. doi:10.

1111/are.15543

408. Huston D, Worsham M, Huffman D, Ostrand K. Infection of fishes,

including threatened and endangered species by the trematode par-

asite Haplorchis pumilio (Looss, 1896) (Trematoda: Heterophyidae).

Bioinvasions Rec. 2014;3:189-194. doi:10.3391/bir.2014.3.3.09

409. Martínez-Aquino A, ChanMartin A, García-Teh J, Ceccarelli F,

Aguirre-Macedo M. Metacercariae of Haplorchis pumilio (Looss,

1896) in Carassius auratus (Linnaeus, 1758) from Merida City, Yuca-

tán, Mexico: a cointroduced parasite. Bioinvasions Rec. 2019;8:712-

728. doi:10.3391/bir.2019.8.3.29

410. Lopes AS, Pulido-Murillo EA, Melo AL, Pinto HA. Haplorchis pumilio

(Trematoda: Heterophyidae) as a new fish-borne zoonotic agent

transmitted by Melanoides tuberculata (Mollusca: Thiaridae) in Brazil:

a morphological and molecular study. Infect Genet Evol. 2020;85:

104495. doi:10.1016/j.meegid.2020.104495

411. Pérez-Ponce de Le�on G, Mandoza-Garfias B, García-Prieto L. Trema-

tode parasites (Platyhelminthes) of wildlife vertebrates in Mexico.

Zootaxa. 2007;1534:1-247. doi:10.11646/zootaxa.1534.1.1

412. Violante-González J, García-Varela M, Rojas-Herrera A, Gil-

Guerrero S. Diplostomiasis in cultured wild tilapia Oreochromis niloti-

cus in Guerrero State, Mexico. Parasitol Res. 2009;105:803-807. doi:

10.1007/s00436-009-1458-1

413. Pinto HA, Mati VLT, Melo AL. Metacercarial infection of wild Nile

tilapia (Oreochromis niloticus) from Brazil. Sci World J. 2014;2014:

807492. doi:10.1155/2014/807492

414. Hoogendoorn C, Smit NJ, Kudlai O. Molecular and morphological

characterisation of four diplostomid metacercariae infecting Tilapia

sparrmanii (Perciformes: Cichlidae) in the North West Province,

South Africa. Parasitol Res. 2019;118:1403-1416. doi:10.1007/

s00436-019-06285-y

415. Hoogendoorn C, Smit NJ, Kudlai O. Resolution of the identity of

three species of Diplostomum (Digenea: Diplostomidae) parasitising

freshwater fishes in South Africa, combining molecular and morpho-

logical evidence. Int J Parasitol Parasit Wildl. 2020;11:50-61. doi:10.

1016/j.ijppaw.2019.12.003

416. Mahdy O, Abdel-Maogood S, Abdelsalam M, Shaalan M,

Abdelrahman H, Salem M. Epidemiological study of fish-borne

146 SHINN ET AL.

info:doi/10.3354/dao046079
info:doi/10.3354/dao046079
info:doi/10.1371/journal.pone.0117881
info:doi/10.1111/jfd.12320
info:doi/10.1111/jfd.12320
info:doi/10.1016/j.aquaculture.2008.11.038
info:doi/10.1016/j.aquaculture.2008.11.038
info:doi/10.1007/s00436-015-4375-5
info:doi/10.1007/s00436-019-06460-1
info:doi/10.1007/s00436-019-06460-1
info:doi/10.31817/vjas.2019.2.3.01
info:doi/10.1016/j.aquaculture.2018.04.043
info:doi/10.1016/j.aquaculture.2018.04.043
info:doi/10.1016/j.aquaculture.2017.05.019
info:doi/10.1016/j.ijpara.2012.09.007
info:doi/10.3147/jsfp.48.25
info:doi/10.3147/jsfp.48.25
info:doi/10.1016/j.aquaculture.2013.03.014
info:doi/10.1016/j.aquaculture.2013.03.014
info:doi/10.11646/zootaxa.1324.1.1
info:doi/10.11646/zootaxa.1324.1.1
info:doi/10.1654/4088
info:doi/10.1654/4088
info:doi/10.1645/GE-3490.1
info:doi/10.1645/GE-3490.1
info:doi/10.1016/j.aquaculture.2021.736791
info:doi/10.1016/j.aquaculture.2021.736791
info:doi/10.1080/15627020.2015.1055701
info:doi/10.1016/j.aquaculture.2020.736039
info:doi/10.1111/are.15543
info:doi/10.1111/are.15543
info:doi/10.3391/bir.2014.3.3.09
info:doi/10.3391/bir.2019.8.3.29
info:doi/10.1016/j.meegid.2020.104495
info:doi/10.11646/zootaxa.1534.1.1
info:doi/10.1007/s00436-009-1458-1
info:doi/10.1155/2014/807492
info:doi/10.1007/s00436-019-06285-y
info:doi/10.1007/s00436-019-06285-y
info:doi/10.1016/j.ijppaw.2019.12.003
info:doi/10.1016/j.ijppaw.2019.12.003


zoonotic trematodes infecting Nile tilapia with first molecular char-

acterization of two heterophyid flukes. Aquacult Res. 2020;52:4475-

4488. doi:10.1111/are.15286

417. Wiriya B, Clausen JH, Inpankaewa T, et al. Fish-borne trematodes in

cultured Nile tilapia (Oreochromis niloticus) and wild-caught fish from

Thailand. Vet Parasitol. 2013;198:230-234. doi:10.1016/j.vetpar.

2013.08.008

418. Kuchta R, Choudhury A, Scholz T. Asian fish tapeworm: the most

successful invasive parasite in freshwaters. Trends Parasitol. 2018;

34:511-523. doi:10.1016/j.pt.2018.03.001

419. Woodland WNF. Some cestodes from Sierra Leone. I. On Wenyonia

longicauda, sp. n., and Proteocephalus bivitellatus, sp. n. Proc Zool Soc.

1937;106:931-937. doi:10.1111/j.1469-7998.1936.tb06293.x

420. Mariaux J, Tkach VV, Vasileva GP, et al. Cyclophyllidea. In: Caira J,

Jensen K, eds. Planetary Biodiversity Inventory (2008–2017): Tape-
worms from Vertebrate Bowels of the Earth. University of Kansas,

Natural History Museum; 2017.

421. Chervy L. The terminology of larval cestodes or metacestodes. Syst

Parasitol. 2002;52:1-33. doi:10.1023/A:1015086301717

422. Scholz T, Bray R, Kuchta R, Řepová R. Larval gryporhynchid ces-
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Abstract

Tilapia culture is an important source of income and nutrition to many rural families.

Since 2000, the production of tilapia increased and reached domestic and global mar-

kets. Major farmed species is Nile tilapia (Oreochromis niloticus), in earthen ponds and

cage cultures. Intensification contributed to global tilapia disease outbreaks, with bac-

terial infections causing mortalities and morbidities, threatening sustainable produc-

tion. At tilapia farms, high nutrient concentrations, water temperature and fish
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densities enhance bacterial growth including virulent bacterial clones and potential

zoonotic bacteria. Global warming favours this. This review respectively provides a

comprehensive overview of the most common and emerging bacterial pathogens, dis-

eases, clinical presentations and diagnostics of tilapia, including bacteria and diseases

with zoonotic potential. First, common bacterial disease outbreaks, including strepto-

coccosis, motile Aeromonas septicaemia, francisellosis, columnaris disease and vibrio-

sis are described. Then, information on emerging bacterial infections of concern for

tilapia, like edwardsiellosis through Edwardsiella ictaluri and E. tarda, as well as Aero-

monas schubertii is provided. Reports of infectious bacterial tilapia disease outbreaks

from other bacteria, including Lactococcus garvieae, Aerococcus viridans, Pseudomonas

spp., Mycobacterium marinum and Chlamydia spp., and others are reviewed. Further-

more, bacteria with zoonotic potential, like Streptococcus agalactiae ST283, S. iniae,

Aeromonas sp., E. tarda, Vibrio vulnificus pathovar (pv) piscis and M. marinum are

included in the review, to provide the most current overview of the disease risks

affecting production and post-harvest stages. Additionally, the status and risks of

antimicrobial resistance in bacteria from tilapia and other cultured fish through impru-

dent use of antibiotics, and its future at a global level are provided.

K E YWORD S

AMR, bacterial disease, diagnosis, tilapia, zoonosis

1 | INTRODUCTION

Diseases of aquatic organisms seriously constrain the expansion and devel-

opment of sustainable aquaculture. Globally, in aquaculture, the trend is

that a previously unreported pathogen that causes a new and unknown

disease will emerge, spread rapidly, including across national borders, and

causemajor production losses approximately every 3–5 years.1

The capability to manage health of aquatic organisms has signifi-

cantly increased during the last three decades. However, such capac-

ity did not match the rapid growth of the aquaculture sector.2 Many

of the most serious infectious disease agents affecting cultured spe-

cies in aquaculture are bacteria. Because they rarely act as primary

pathogens and they occur most commonly as opportunistic pathogens

in already damaged or severely immunocompromised hosts, there is

low attention given to this pathogen group. In fact, in the OIE (now

known as WOAH) list of notifiable aquatic animal diseases, there are

very few bacterial pathogens.3

However, bacteria may cause severe losses in tilapia farming.

Bondad-Reantaso et al.4 compiled a list of bacterial species or species

groups affecting cultured finfish, crustaceans and molluscs. Their

importance is growing, thus the need to pay more attention is there,

not only in the context of its impact on production, but also of its zoo-

notic potential and contribution to development of antimicrobial resis-

tance (AMR) through misuse of antibiotic treatments.

Farming of tilapia is primarily done in Asia; additional production

comes from Africa and the Americas. The most predominant species

is Nile tilapia (Oreochromis niloticus) with a 2019 production of 4.6

million tonnes.1 From subsistence farming, tilapias are now commer-

cially produced and tilapia products are traded globally. At a global

level, the top three producers in 2019 are (i) China (1.6 million

tonnes), (ii) Indonesia (1.3 million tonnes) and (iii) Egypt (1.1 million

tonnes).

This article is part of a compendium of papers of a Special Issue in

Reviews in Aquaculture which resulted from a virtual webinar event:

‘Tilapia health: quo vadis’, organized by the Food and Agriculture Orga-

nization of the United Nations (FAO), held from 1–3 December 2021.

The objective is to review the most important bacterial pathogens and

bacterial diseases affecting tilapia, including those that have zoonotic

potential and understand ways to reduce bacterial disease risk for both

fish and humans, with general recommendations of therapeutic and

prevention strategies against the related pathogens, and pointing to the

risk of development of antimicrobial resistance through imprudent use

of antibiotics.

For this literature review, the authors used a systematic approach

to the review, which included the use of relevant keywords

(e.g. streptococcosis and tilapia) in the following databases of literature:

Web of Science, Scopus, PubMed. The scientific literature included peer

review journals, book chapters, health organism's reports, and so forth,

with an initial search covering the last 10 years. Where little data was

available, the temporal search was expanded as appropriate. An inclu-

sive approach was adopted, where each of the authors took responsibil-

ity for a section and worked with those that had most expertise/

experience in each of the sections or bacterial species. This was then

shared with the authors and cross-revised accordingly. Preference was

given to literature that included tilapia, and other fish species were

included where data in tilapia was more limited.

The review work was divided among the authors, per expertise.

Each expert read their database-acquired collection of papers and made
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a draft text, which was altogether reviewed by the co-authors. Although

most of the information was found on bacterial diseases of other fish

than tilapia, we focused as much as possible on tilapia bacterial diseases.

2 | REVIEW

In total, 370 references have been cited for this review paper, from

the years 1970–2022.

2.1 | Current bacterial diseases of significant
importance

Tilapia may be infected with various bacteria, including species of the

genera Vibrio, Aeromonas, Pseudomonas and Streptococcus,5 whereas

some genera may be present also on healthy fish, like species of the

genera Pseudomonas Aeromonas, and Plesiomonas.6 In general, most

fish diseases are induced by a stress factor, like a suboptimal environ-

ment, for instance, bad water quality, and this allows opportunistic

bacteria including Aeromonas hydrophila to infect tilapia and cause

disease.7–9 Moreover, many bacterial diseases are multifactorial.10

We should keep this in mind, when trying to understand the cause of

and finding a way to cure a bacterial fish disease.

The current bacterial tilapia diseases of significance (related to

fish-welfare, economy and society) are streptococcosis, aeromonasis,

francisellosis, columnaris disease and vibriosis.

To compare economic losses in USD due to bacterial disease in

tilapia farming with those in other fish culture species is difficult, as

costs are dependent on the value of the fish species, the production

system, the country, the currency and so forth. A comparison in terms

of % of fish production lost might be meaningful but there is not suffi-

cient data that is collected in a consistent manner to allow for such

comparisons across studies, countries, fish species and production

systems.

2.1.1 | Streptococcosis

Outbreaks of streptococcosis have been widely reported in farmed

tilapia species globally,11–13 described as a septicaemic infection due to

the bacterial species of S. iniae or S. agalactiae.14 These facultatively

anaerobic, Gram-positive bacteria are described as non-motile and non-

spore forming, presenting with varied degrees of haemolysis dictated

by species and strain variation.15 In cultured tilapia, high prevalence of

S. iniae and S. agalactiae infection was usually observed during hot and

dry seasons when the water temperature is ≥27�C.16,17

Streptococcus agalactiae may cause acute15 or chronic disease18

in tilapia. Clinical presentations of the acute form include, but are not

restricted to erratic swimming, c-shaped body of the fish, uni- or bi-

lateral exophthalmia (with or without corneal opacity), distended

abdomen and haemorrhages15 (Figure 1). Meningoencephalitis has

been reported in infected tilapia, as the bacteria cross the blood brain

barrier19,20 and similar clinical signs of disease were reported21 in

F IGURE 1 (a–c) Streptococcosis by S. iniae/S. agalactiae in diseased tilapia in the USA. The tilapia shows exophthalmos and cataract. They
may have a C-shaped body, which causes them to swim spirally (b). Pictures (a–c): Courtesy Dr Joyce Evans, USDA-ARS, Aquatic Animal Health
Research Unit, Auburn, Alabama, USA. Picture (d) Diseased tilapia from an outbreak of S. agalactiae in tilapia in Vietnam. The fish shows
exophthalmos and a congested belly from full sepsis. Courtesy Dr Truong Dinh Hoai (co-author)
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tilapia both naturally and experimentally infected with either S. iniae

or S. agalactiae. In the chronic form, yellow or dark red nodules were

seen in the musculature near the vertebra of Nile tilapia.18 An out-

break or cumulative mortality during chronic, persistent streptococco-

sis in tilapia can reach 80%,22 while monthly prevalence of isolation

ranged from 0% to 32% throughout the year.23 Since S. agalactiae and

S. iniae may be zoonotic,24,25 in case of a chronic infection, the fish

farmers may have a longer exposure to the bacterium, without very

clear clinical signs.18 This imposes a risk for the fish farmers, the fish

processors, and the consumers.

Concurrent Streptococcus infection with other bacteria and tilapia

lake virus (TiLV) has been reported in cultured tilapia.26,27 The esti-

mated economic impact of S. iniae and S. agalactiae infections in tilapia

was around USD 150 million annually in 2000 and further increased

to USD 250 million annually in 2008, representing approximately

5.7% and 6.7% of the total global value of tilapia, respectively.14 How-

ever, no updated value on the economic impacts of streptococcosis in

cultured tilapia is available.

Streptococcus isolated from fish are identified using a combina-

tion of phenotype (biochemical tests), serotype (agglutination test)

and genotype (PCR, multi-locus sequence typing and whole

genome sequencing). Barnes et al.28 serologically and morphologi-

cally typed S. iniae isolates from tilapia (Oreochromis sp.) and hybrid

striped bass (Morone saxitilis � M. chrysops) from the USA. Serolog-

ically distinct isolates of S. iniae identified as serotype I (ADH + ve)

and II (ADH-ve) were isolated from natural disease infections in

Thai tilapia farms.29 Imperi et al.30 reported 10 serotypes of S. aga-

lactiae based on the composition of the capsular polysaccharide,

where serotypes Ia, Ib and III are the most commonly reported

strains in global tilapia outbreaks.31,32 Genotyping studies using

multi-locus sequence typing and whole genome sequencing have

improved the understanding of pathogenesis of both S. iniae and S.

agalactiae.33

In piscine streptococcosis, three major factors influence the path-

ogenesis; the virulence of the agent, the environmental stressors and

the susceptibility of the host. Genetic virulence associated with genes

that encode several protein molecules have been identified.34

Buchanan et al.35 identified the enzyme phosphor-glucomutase as the

virulence factor for S. iniae. This enzyme inter-converts glucose-

6-phosphate and glucose-1-phosphate, which play important roles in

the production of polysaccharide capsule of S. iniae that enhances the

bacterial virulence. In S. agalactiae, virulence gene profiles revealed

that S. agalactiae serotype Ia ST7 lacked lmb, scpB, pavA, fbsB, cyl, bca,

cspA and bac genes, which were present in serotype III ST283.36 Var-

ied routes of transmission have been reported in tilapia infections

including cohabitation of infected and non-infected fish.16 Transmis-

sion of S. agalactiae from a hatchery to a grow-out farm also has been

documented.23 Pradeep et al.37 reported the first evidence demon-

strating parents-to-offspring, vertical transmission of streptococcosis

in tilapia.

Regarding vaccination, Shelby et al.38 tested passive immuniza-

tion of tilapia (O. niloticus) with intraperitoneal (i.p.) injection of anti-S.

iniae whole sera, and this proved to be highly effective. Evans et al.39

produced a S. agalactiae (Group B) vaccine for tilapia, which worked

best after i.p. injection. Vaccination through i.p. injection with a

re-attenuated strain of S. agalactiae (TFJ-ery), from the natural

low-virulence S. agalactiae strain TFJ0901 as basis, gave almost 100%

protection of tilapia.40

Regarding genetic resistance it is difficult to disentangle the role

of tilapia species or strain, environmental conditions, pathogen preva-

lence and fish husbandry in susceptibility to different pathogens

because most descriptions of disease are observational and not based

on systematic comparison under controlled condition. Hence, any

apparent association with species or breed may be due to underlying,

uncontrolled, risk factors. There is, however, opportunity to breed for

resistance to certain pathogens, as demonstrated recently for S. aga-

lactiae, where a reduction in mortality of >50% could be achieved.41,42

The impact of breeding for disease resistance on other desirable

traits, for example, growth rate or flesh quality, is yet to be assessed.

2.1.2 | Aeromoniasis

Aeromonas spp. are ubiquitously found in freshwater environments

and are described as infectious and opportunistic organisms, which

may cause fish disease when stress factors are present in a diverse

range of aquatic farming systems.8 It has been shown, that A. hydro-

phila is one of the main pathogenic bacteria in tilapia culture, which

not only causes high mortality and disease to cultured fish, but also

causes similar problems to wild fish, resulting in huge economic losses,

to both tilapia and wild fish.43–45 It has been reported that aquatic ani-

mals infected with Aeromonas may suffer acute and chronic diseases,

including haemorrhagic septicaemia, skin ulcers, and enteritis, with an

average mortality rate of 30%.46,47

The taxonomy of the genus Aeromonas is subject to constant

change, currently comprising 36 recognized species. The aeromonad

fish pathogens are all motile with the exception of A. salmonicida

subspp.44 Generally, they are all described as Gram-negative, oxidase

positive, facultative anaerobes.48–50 They are non-spore forming, rod-

shaped bacteria of approximately 1–3 μm51,52 in length, capable of

fermenting glucose and characterized by tolerating increasing concen-

trations of NaCl varying from 0.3% to 5%.51

A diverse range of motile aeromonads are reported as opportunis-

tically pathogenic, especially under stressful environmental circum-

stances, resulting in clinical disease outbreaks leading to high levels of

morbidity and mortality in a wide range of tilapia farming systems.43,45

The most common species associated with natural disease outbreaks

in farmed tilapia include A. hydrophila,27,53–55 A. sobria,56 A.

dhakensis,57–59 A. veronii26,60,61 and A. jandaei.60 The A. hydrophila and

A. veronii had the highest prevalence of bacteria isolated from the

liver, spleen, and other organs of infected tilapia.60,62,63 Tilapia

infected by these two species of bacteria showed lethargy, and apa-

thy, ulcerations, pale spots, and haemorrhages along their

body.43,45,60,63 In addition, co-infections of Aeromonas with other bac-

teria is one of the important reasons for mass mortalities of tilapia,

such as co-infection with A jandaei and A. veronii60 (Figure 2),
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Aeromonas sp. and Streptococcus sp.,64,65 and of A. veronii and F.

columnare.26 Furthermore, co-infections with TiLV,66 and with S. aga-

lactiae and TiLV27 (Figure 3) have been described.

The non-motile A. salmonicida salm. may cause furunculosis in sal-

monids and the atypical A. salmonicida is known to cause ulcer disease

or erythrodermatitis in cyprinids67 and in marine flatfish.44 Experimen-

tally induced infection of tilapia of 40 g through i.m. and i.p. injection

of tilapia with atypical A. salmonicida at 28�C caused darkening, ulcers

on the dorsal musculature and trunk region, gill congestion, exophthal-

mus and haemorrhages in the eyes, and reached 100% mortality at an

i.m. dose of �1 � 108 CFU/fish. Internally, a congested liver and kid-

ney were recorded.68 Atypical Aeromonas salmonicida has been iso-

lated from tilapia in Oman, but experimentally induced infection by

intraperitoneal (i.p.) and intramuscular (i.m.) injection of 0.1 � 108 col-

ony forming units (cfu) per 30 g tilapia at 26�C did not cause any dis-

ease or mortality.69 In Bangladesh, a study was done on the presence of

typical A. salmonicida in swamp water where tilapia is cultured, and its

pathogenicity to tilapia of 10g after i.p. injection.70 Results indicated,

that the swamp water contained on average 3.3 � 106 CFU/ml. The

injected tilapia showed 20% mortality at an i.p. dose of 3.3 � 106 CFU/

g, and up to 80% mortality at an i.p. dose of 3.3 � 108 CFU/g at 20–

25�C. They concluded, that natural average bacterial load of

3.3 � 106 CFU/ml or below in tilapia culture water did not produce sig-

nificant mortality in Oreochromis mossambicus.70 Overall, A. salmonicida

may be harmful, but, like with motile aeromonads especially to injured

tilapia under stressful conditions.

Identification of Aeromonas strains to species level is still a chal-

lenge because of the genetic heterogeneity of this genus.71 Pheno-

typic identification of Aeromonas strains is done by physiological,

morphological and biochemical characteristics.48,72,73 Classic pheno-

typic characteristics that identify the genus Aeromonas are Gram-

negative staining, the presence of cytochrome oxidase, and growth in

nutritive broth at 0% NaCl in the presence of the vibriostatic factor

O/129.48,73 Commercial, fast identification systems, such as API 20E,

Vitek, BBL Crystal, MicroScan W/A and others, have commonly been

used to identify Aeromonas spp.74 However, conventional methods

based on the phenotypic properties and automated systems are of

limited utility in identifying some Aeromonas spp.,73 and their accuracy

is affected by constant reclassification among components of this

genus.75

Molecular biological techniques are the best option for the pre-

cise identification and taxonomic classification of the genus

Aeromonas, through amplifying constitutive housekeeping genes (gyrB

and rpoD) genes through polymerase chain reaction and sequencing

the amplified products.75 The 16S rRNA typing method, generally

used in bacteriology76,77 is also accurate for identification of Aeromo-

nas spp.78–80 Dong et al.60 identified A. jandaei and A. veronii based on

phenotypic features and homology of 16S rRNA. However, for certain

species of Aeromonas, 16S rRNA alone will not adequately distinguish

them, as additional sequencing of housekeeping genes such as gyrB is

needed.81

Nile tilapia juveniles, after being exposed to transport-induced

stress, appeared to have 19 responsible isolates of A. hydrophila in

their body, as identified by 16S rRNA testing.9 The A. dhakensis was

firstly identified by phenotypic and 16S rRNA sequencing from dis-

eased Nile tilapia.57 Additionally, other molecular methods, such as

the enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR),

and the amplified fragment length polymorphism (AFLP) are also used

for identification and genotyping of Aeromonas.82–86 The ERIC-PCR is

one of the most popular methods for genotyping Aeromonas because

it is easy to carry out, does not require any expensive equipment, and

is highly reproducible.87

Aeromonas virulence is complex since several factors contribute

significantly to the development of the infection process.88,89 These

virulence factors such as structural components, extracellular prod-

ucts, secretion systems and proteins associated with metals acting

jointly or individually enable the microorganisms to adhere to and

invade host cells, evade host immune defences and compete for nutri-

ents, resulting in an infection that generates the disease.46,48,71,90–94

Four secretory systems have been reported in the genus Aeromonas,

being types II, III, IV and VI. They are responsible for releasing viru-

lence factors produced by bacteria into the extracellular environment

or even directly into the host cell, which is extremely relevant to the

host cell damage and infection processes.46,50

At present, there are no specific data on the transmission mecha-

nism of Aeromonas in fish, but there are data on its transmission in

humans. Holmberg et al.95 studied the clinical and epidemiological

characteristics of human enteritis caused by Aeromonas and believed

that drinking untreated water was the most likely mode of infection

for patients, supported by Moyer96 in a study of Aeromonas isolated

from diarrhoea patients. Ghenghesh et al.97 proposed water and food

transmission in their research on Aeromonas infections in humans in

developing countries, which has certain limitations, compared to in

fish. However, overall, it is recognized, that the transmission routes of

Aeromonas are horizontal, via water, food and faeces.

Certain Aeromonas strains are serious pathogens of tilapia, devas-

tating this industry worldwide. Therefore, proper preventive and con-

trol measures are necessary. Generally, antibiotics are the most

effective and often the main option for tilapia farmers. An example of

antibiotic susceptibility was published for tilapia in Ethiopia.5 How-

ever, antibiotic therapy should always be based on an antibiogram, to

be sure, the therapy is effective. Moreover, frequent use of antibiotics

results in development of antibiotic resistant strains, bio-accumula-

tion, changes in the physiochemical properties of water and imbalance

of bacterial microbiota in the fish bodies or the habitat.63,98,99

F IGURE 2 Nile tilapia (Oreochromis niloticus), co-infected with
Aeromonas veronii and A. jandaei. Courtesy Dr H. T. Dong (co-author)
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Good Aquaculture Practice for tilapia,100 and more specifically,

vaccination may be the choice for prevention and treatment of Aero-

monas infections. Formalin whole cell inactivated live vaccine was suc-

cessfully used for the first time in tilapia in 1986, and the relative

protection level of the vaccine was 100%, within 2 weeks after inocu-

lation.101 Since then, many researchers have been engaged in the

research of fish vaccine against Aeromonas and obtained many achieve-

ments. Pridgeon and Klesius102 prepared live vaccines against different

virulent strains of A. hydrophila, with 100% protection at 14, 28 and

56 days post-vaccination (dpv). Pridgeon et al.103 attempted live vac-

cines against A. hydrophila, E. tarda, S. iniae and S. agalactiae in tilapia

and catfish. After bacterial challenge, the relative percentage of survival

(RPS) of tilapia inoculated at 14 and 28 dpv were 100% and 92%,

respectively. Aly et al.104 developed an inactivated A. hydrophila vaccine

for tilapia. An effective bivalent inactivated vaccine for tilapia brood

stock against S. agalactiae and A. hydrophila resulted in 73.81% RPS

after challenge by A. hydrophila.105 Monir et al.106 proposed an alterna-

tive method to reduce the main infectious diseases of tilapia, namely

feed-based vaccination, and conducted experiments with four different

forms and control groups of bivalent inactivated vaccines against S. iniae

and A. hydrophila of hybrid red tilapia. The results showed that bivalent

vaccines caused significant non-specific and specific immune responses

to hybrid red tilapia, and had a high protective effect. This newly devel-

oped feed-based bivalent vaccine is an effective and large-scale fish

immunization technique in aquaculture.106 Some researchers developed

recombinant fish vaccines to solve the serotype specificity issue.107 The

surface proteins Omp38 and OmpF of A. hydrophila were presented as

vaccine candidates against A. hydrophila.108 An S-layer protein-based

vaccine for tilapia demonstrated a high protection against A.

hydrophila.109 Although some recombinant vaccines have been devel-

oped, these vaccines induce lower protection than whole-cell killed vac-

cines under the same conditions.107

Therefore, further works on recombinant vaccines should focus

not only on optimizing and improving the protective efficacies, but on

cost-effectiveness for commercial-scale to enable it as a viable solution

to motile aeromonad septicaemia. At present, some studies have found

that adding specific plant extracts to feed can prevent and treat some

bacterial diseases in fish. Hardi110 found that when combined extracts

of Boesenbergia pandurata (BP), Solanum ferox (SF) and Zingiber zerumbet

(ZZ) were added to fish diets, in particular, SF50/ZZ50 (50 mg SF

extract/kg feed with 50 mg ZZ/kg feed) had positive effects on the

immune system of tilapia in the treatment and prevention of bacterial

infection. Adding ZLP (Ziziphus mauritiana leaf powder) into the tilapia

diet enhanced the immune and antioxidant capacity to effectively con-

trol A. hydrophila infection of Nile tilapia.111 Plant extracts carvacrol

and cymene at concentrations of 100 or 200 ppm were used as effec-

tive oral treatment of experimentally infected Oreochromis niloticus

with atypical A. salmonicida.68 Kuebutornye used Bacillus isolated from

tilapia, and Phumkhachorn used bacteriophages to control A. hydrophila

infections in tilapia (O. niloticus).54,112

2.1.3 | Francisellosis

Francisella orientalis, formerly known as F. noatunensis subsp.

orientalis,113,114 has been recognized as one of the most serious path-

ogens of tilapia (Oreochromis spp.) and other fish species such as

three-line grunt (Parapristipoma trilineatum) and hybrid striped bass

F IGURE 3 Clinical signs and gross lesions of red hybrid tilapia naturally co-infected with Aeromonas hydrophila, Streptococcus agalactiae and
tilapia lake virus (TiLV). (a) Red skin with haemorrhages in the operculum, body and base of anal fin. (b) Enlarged gall bladder and brownish liver.
(c) Haemorrhages of kidney. Photos: Courtesy: Mohammad Noor Amal Azmai (co-author)
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(Morone chrysops � M. saxatilis), both farmed and wild, from various

geographical regions worldwide.115–120 Occurrence of francisellosis in

farmed tilapia has been documented in Brazil,121 China,122 Costa

Rica,123,124 Indonesia,125 Taiwan Province of China,126 Thailand,127

United States128 and United Kingdom.129 Initially considered a

Rickettsia-like117,126,130 or Piscirickettsia-like organism,130 the

pathogen was later confirmed as a ɤ-Proteobacteria in the family

Francisellaceae, order Thiotrichales.131

The typical gross pathological signs of francisellosis in tilapia and

other species such as three-lined grunt and hybrid striped bass have

been commonly manifested as granulomatosis (Figure 4) causing reno-

megaly and splenomegaly typically ascribed to multiple whitish nod-

ules with comparable lesions in the gills, muscle or liver.126,127

Furthermore, pale body coloration, the presence of numerous white

granulomas on gills and internal organs including the spleen, liver, kid-

ney and intestine have been noted in tilapia infected with F. orienta-

lis.127 Francisellosis could induce 50%–60% mortality in cultured

tilapia which usually occurs in cool season, that is, when water tem-

perature ranges from 23�C to 26�C.127 Notably, coinfection of F.

orientalis and the ciliate parasite Ichthyophthirius multifilis could lead to

more severe mortality compared to the single infection with either F.

orientalis or I. multifilis.132

Francisella spp. are strictly aerobic, facultatively intracellular, non-

motile, Gram-negative coccobacilli to pleomorphic spherical measur-

ing 0.1–1.5 μm in size.131 Members of the genus Francisella are fastidi-

ous in their requirements for growth on laboratory media and require

specific media for in vitro culture. Isolation of F. orientalis from the

blood, spleen, kidney or granulomatous lesions of infected fish has

been successfully attained using enriched blood agar plates supple-

mented with 0.1% cysteine and 1% glucose, cysteine heart agar with

5% sheep blood (CHAB) or cysteine heart agar with 1% haemoglobin

(CHAH) or Thayer–Martin Media,118,124,131 with optimal growth of F.

orientalis on these enriched blood agar plates observed at

28–30�C.124 The addition of polymyxin B (100 μg/mL) with or

without ampicillin (50 μg/ml) to selective agars was successfully used

for the isolation of F. orientalis.124 Additionally, nucleic acid-based

detection methods including conventional polymerase chain reaction

(PCR),113,115,124,127,133 quantitative real-time PCR (qPCR),133–137

duplex PCR, in situ hybridisation,138 recombinase polymerase amplifi-

cation (RPA),139 and loop-mediated isothermal amplification (LAMP)37

have been applied for the detection of F. orientalis in tilapia.

Nile tilapia experimentally infected with F. orientalis via immersion

challenge exhibited the highest number of bacteria, that is, quanti-

fied as F. orientalis genome equivalents by qPCR, in their surface

mucus at 3 h post-infection. Moreover, at 96 h post-infection, sep-

tic fish had marked increases of F. orientalis genome equivalents in

their gills, anterior and posterior kidney, spleen, liver, heart, gastro-

intestinal tract and gonads which corresponded with the appear-

ance, size and number of granulomas typical of francisellosis.140

Homologues of virulence genes associated with the serious, zoo-

notic pathogen F. tularensis, detected in various cold and warm-

blooded animals and humans,141 have also been identified in F.

orientalis including the intracellular growth locus (IGL; iglA, iglB, iglC

and iglD) genes associated with the type 6 secretion system pre-

sent on the F. tularensis pathogenicity island.142 Soto et al.142

reported that a functional iglC gene of Fno was crucial for intra-

macrophage survival, although iglC gene played no role in protec-

tion from serum killing. The iglC gene is by far one of the most

extensively studied genes within the Francisella pathogenicity

island owing to its marked expression during intracellular growth,

demonstrating its significance for pathogenicity and virulence.143

Also, serum complement and host cell mannose receptors have

been recognized as vital for internalization of F. orientalis in macro-

phage.130 Horizontal transmission of F. orientalis via the water-

borne route has been demonstrated by Soto et al.140 in Nile tilapia

fingerlings under experimental condition.

Additionally, Pradeep et al.37 documented that apparently healthy

red tilapia (Oreochromis spp.) broodstock who were asymptomatic

F IGURE 4 Francisellosis in tilapia. (a) Granuloma in head kidney of F. orientalis infected tilapia. (b) Same fish: Granuloma in spleen. (c, d)
Haematoxylin–Eosin stained histological sections of the spleen of a tilapia from indoor recirculation aquaculture in the Netherlands showing
granuloma from a systemic and chronic Francisella-infection. (c): 40� magnification. (d): 400� magnification. Pictures (a, b): courtesy Dr H. T.
Dong (co-author); (c, d): courtesy Dr O. Haenen (leading author)
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carriers of F. orientalis could vertically transmit the pathogen to the

fertilized eggs. Evidence of vertical transmission was subsequently

confirmed in a controlled laboratory challenge.144 Therefore, utiliza-

tion of F. orientalis negative tilapia broodstock is an important strategy

to prevent vertical transmission of F. orientalis to their offspring.

Although commercial vaccines are currently unavailable, there are

promising results from research. In 2019, developed F. noatunensis

subsp. orientalis (Fno) whole-cell vaccines were developed for tila-

pia.145,146 A whole-cell formalin-inactivated autogenous vaccine was

developed using the highly virulent isolate STIR-GUS-F2f7 and the

oil-based adjuvant Montanide™ ISA 763A VG showing 100% RPS (rel-

ative percentage of survival) rates in red tilapia after i.p. injection with

4.0 � 103 CFU/fish.145 Shahin et al.146 compared a 100% RPS giving

Fno vaccine with inactivated whole-cell injection vaccines of Fno,

using bacterial strains from various geographical regions in heterolo-

gous and homologous infection trials by i.p. injecting nile tilapia. They

found RPS values of 65.9%–82.3%, with the highest in homologous

trials.146

Pulpipat et al.147 demonstrated recently the efficacy of a

formalin-killed F. orientalis vaccine in cultured tilapia via intraperito-

neal injection. Vaccinated fish experimentally challenged with F. orien-

talis via intraperitoneal injection and immersion at 6 weeks post-

vaccination led to production of potent antibodies and relative per-

cent survival (RPS) of 71% and 76%, respectively. Transcripts of proin-

flammatory cytokines and immune-related genes, including

interleukin-1β (IL-1β), tumour necrosis factor-alpha (TNFα), C-X-C

motif chemokine ligand 8 (CXCL8) and interleukin-17C (IL-17C), were

significantly upregulated after vaccination. Additionally, vaccinated

fish had lower bacterial loads in the blood and lower granuloma inten-

sities in the kidney, spleen, liver and gill compared with the unvacci-

nated fish. Antibiotic administration of in-feed oxytetracycline and

florfenicol to naturally and experimentally infected tilapia resulted in

lower mortalities148 suggesting efficacious antibiotic treatment. Fur-

thermore, antibiotic treatment was particularly noted to be effective

during the acute stage of infection.148 Accordingly, in the event of an

outbreak, it is prudent to depopulate fish and disinfect the facility

with disinfectants that are effective against planktonic and biofilm

forms of F. orientalis.149

2.1.4 | Flavobacteriosis

Flavobacteriosis, and in this case, columnaris disease caused by F.

columnare (also known as myxobacterial disease, peduncle disease,

saddleback, fin rot, cotton wool disease or black patch necrosis) is one

of the oldest known diseases of freshwater fish species world-

wide.150,151 The F. columnare associated with (or isolated from) tilapia

was recently renamed to F. oreochromis.152

The disease affects various fish species culturing in both cold and

warm water, including tilapia (Oreochromis spp.).153–155 The earliest report

of columnaris disease in farmed Nile tilapia was documented in Egypt156

but remained relatively unrecognized until recent reports in Brazil154 and

Thailand.155,157 The disease affects fish in both hatcheries and grow-out

systems, and resulted in 10%–70% cumulative mortality in natural out-

breaks.155 Experimental challenge resulted in variable levels of mortality

ranging from 0% to 100% in hybrid red tilapia (Oreochromis sp.) fry and

juveniles.157,158 Major gross signs of disease fish were discoloration, fin

and skin erosion and gill necrosis155–157 (Figure 5).

Flavobacterium columnare is a Gram-negative, slender filamentous

bacterium. This bacterium produces flexirubin pigment and forms yel-

low rhizoid colonies on culture media due to the characteristic of glid-

ing motility on solid surface.150,153 Dong et al.155 reported that the

isolates from tilapia exhibited homologous phenotypic characteristics,

but high genetic diversity. Based on the restriction fragment length

polymorphism of the 16S rRNA gene (16S-RFLP), a scheme for

genetic typing F. columnare,159 the isolates from tilapia were classified

into three genomovars (I, II and I/II) with predominance of genomovar

II.155,160 Phylogenetic analysis based on the 16S rRNA suggested that

majority of tilapia isolates belong to a unique genetic group.155,161

Comprehensive genomic comparison of F. columnare isolates derived

from different host species revealed extensive sequence diversity

where the unique strains from tilapia were thought to represent the

forthcoming novel taxa or subtaxa in the genus Flavobacterium.162 In

2022, this was confirmed, as many F. columnare strains were geneti-

cally reclassified by phylogenetic analyses of 16S rRNA and gyrB

genes, and this resulted in four genetic groups, with proposed names

of 4 species: Genogroup 1 = F. columnare, Genogroup 2 = F. covae

sp. nov. (AL-02-36Type strain), Genogroup 3 = F. davisii sp. nov.

(90-106T), and genogroup 4 = F. oreochromis sp. nov (Costa Rica

04-02-TNT), with at least the last species being a tilapia pathogen.152

Apart from gross pathological signs, examination of long rod-

shaped filamentous bacteria through wet-mount and/or rapid Gram-

staining for smeared lesions are useful for presumptive diagnosis of

columnaris disease in tilapia. Bacterial isolation was successful using

selected media such as Anacker and Ordal's agar (AOA), modified

Shield agar (MSA) or tryptone yeast extract salts (TYES) agar supple-

ment with antibiotics either tobramycin or neomycin and

polymyxin B.150,155 Specific PCR,163,164 LAMP,165 and F. columnare-

monoclonal antibodies166 have been used for rapid diagnosis of F.

columnare from clinical samples and bacterial culture. Sequencing of

16S rRNA and/or whole genome represents common approach for

identification and characterization of this bacteria.155,161,162

The tilapia isolates form two different colony morphotypes (rhi-

zoid vs. non-rhizoid). The rhizoid morphotype is highly pathogenic

while the non-rhizoid morphotype has non- or low pathogenic-

ity.157,158 Comparative studies of F. columnare revealed that the adhe-

sion ability to the gill surface, biofilm formation and the production of

capsular polysaccharide are significantly associated with the highly

pathogenic strain of F. columnare.157 Like other F. columnare infec-

tions, the disease in tilapia affects the skin, gills and muscle and is

rarely found in the internal organs.26,155,167 Coinfections of F. colum-

nare and other pathogens have been recorded which may contribute

to increasing disease severity.26,158,168,169 Horizontal transmission

through waterborne routes have been demonstrated by experimental

immersion studies for both Nile tilapia and hybrid red tilapia.138,156,157

It is unclear whether F. columnare transmits vertically. However,
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detection of F. columnare in reproductive organs of apparently healthy

tilapia broodstock, fertilized eggs and newly hatched fry suggested

possible maternal transmission.165

Effective antibiotic therapy against flavobacteriosis in tilapia is

difficult, as mostly other factors, like stress play a role in the disease.

Moreover, findings on antibiotic susceptibility differ. Various fish

strains of the salmonid pathogen F. psychrophilum were found suscep-

tible to ampicillin, erythromycin, streptomycin, tetracycline,

trimethoprim-sulphate, with resistance against neomycin and poly-

myxin.170 The oxytetracycline-treated group showed significant

reduction in these lesions and the treated fish appeared normal. Use

of a probiotic, Bacillus subtilis was tested in water and in fish feed as

prophylaxis and was effective in amelioration of lesions caused by F.

columnare in Egyptian freshwater fish.171 They also stated that oxytet-

racycline was effective to treat columnaris disease.171 In an Egyptian

Master thesis172 strains of F. columnare were found susceptible to tet-

racycline, nalidixic acid, trimethoprim, erythromycin, streptomycin and

doxycycline with high resistance to neomycin. Studied 20 strains of F.

columnare of Nile tilapia were tested for in vitro susceptibility to amox-

icillin, amoxicillin, clavulanic acid, amikacin, cefixime, ciprofloxacin,

novobiocin, neomycin, norfloxacin, nitrofurantion, poly mixin B and

tetracycline: They found multi-resistance in >18/20 strains.173 A

paper on the development of genetic-resistant strains of Nile tilapia

against F. columnare presented promising results as a longer-term

alternative to antibiotic treatment.174

2.1.5 | Vibriosis

Fish vibriosis is referred to as a systemic infection caused by a number

of Vibrio spp., including V. harveyi, V. parahaemolyticus, V. alginolyticus,

V. anguillarum and V. vulnificus.175,176 The genus includes Gram-nega-

tive, oxidase-positive rod-form bacteria with polar flagella, ubiquitous

in marine and estuarine ecosystems. Although vibriosis has multiple

clinical manifestations, depending on the host and bacterial species, in

all cases the acute form is a septicaemia that can lead to death, mainly

in immunocompromised hosts.177–179

Vibriosis is commonly associated with brackish and marine aqua-

culture, and therefore, tilapia cultured in these environments are

susceptible. Although sporadic cases of some and related Vibrio spp.

have been isolated from diseased tilapia (V. parahaemolyticus or Photo-

bacterium damselae subsp. damselae, Phdd [formerly V.

damsela]),180,181 V. vulnificus is the major pathogenic Vibrio spp.175,179

It is important to highlight that, within this species, only pathovar pis-

cis (pv. piscis; formerly Biotype 2) is considered as fish pathogenic,182

and the disease is known as warm-water vibriosis (WWV).179,183

Pv. piscis strains possess a conjugative fish virulence plasmid

(pFv) absent in other strains of the species, and group in several

clades/serovars, Ser E and the recently described Ser T proving

zoonotic potential.184,185 Different authors have reported V. vulni-

ficus as the causative agent of infectious episodes/outbreaks in

Japan,186 Taiwan Province of China,187 Bangladesh,188 India,189 or

eastern Mediterranean farms.185,190 In all cases, the bacterium was

mostly isolated from the diseased fish blood, kidney, liver, spleen,

and brain. Diseased fish showed dark coloration, external haemor-

rhagic areas, exophthalmia and skin ulcers. Internally, a pale liver

F IGURE 5 Tilapia (Oreochromis sp.) infected with Flavobacterium columnare (new, proposed name F. oreochromis152), showing (a) Gill necrosis
(arrow), and (b) Superficial skin necrotic lesions all over the body, with deslimed areas (arrows). Pictures courtesy Dr H. T. Dong (co-author)

F IGURE 6 Vibriosis caused by Vibrio vulnificus pathovar piscis in
Nile tilapia (Oreochromis niloticus). Images correspond to moribund
tilapia after being challenged by immersion. Clinical signs mirror those
of the natural disease, a septicaemia characterized by haemorrhages
in (a) the mouth, head and fins and in (b) the intestine, abdominal
cavity and muscle. Pictures courtesy of Dr B. Fouz (co-author)
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with haemorrhagic lesions, oedematous brain or splenomegaly

were observed. Moreover, some authors have experimentally

induced infections and disease in Nile tilapia after challenges with

pv. piscis strains (specifically serovars/clades E, A and the new one

described T)185,191–193 (Figure 6).

Simple and rapid methods to identify Vibrio spp. causing disease

in cultured fish are essential in order to take fast preventive and cura-

tive decisions. Individuals with clinical signs of septicaemia compatible

with vibriosis should be analysed microbiologically by bacterial isola-

tion, using a general medium such as TSA-1 (1% NaCl concentration),

together with thiosulfate-citrate-bile salts-sucrose (TCBS) and/or V.

vulnificus medium (VVM) agar.179 However, since V. vulnificus is recov-

ered as a pure culture from diseased tilapia, also media, like sheep

blood agar plates may be used to isolate V. vulnificus. Pure cultures

could be tentatively identified to species level using the commercial

phenotypic API 20E system (bioMérieux). Afterwards, PCR- or

protein-based (like MALDI-TOF) methods should be used to confirm

species194 or subspecies identification.195

In the case of V. vulnificus, PCR targeting vvhA, fpcrp and seq61

genes allows to identify strains to species, pv. piscis, and zoonotic

Ser E, respectively.196 V. vulnificus strains could be subtyped for public

health hazard by a PCR that amplifies a variable region located within

the gene pilF.197 Although V. vulnificus is generally sensitive to most

antimicrobials permitted on fish farms in the EU and the USA, an anti-

biogram must be performed to select the most effective antibiotic to

start the treatment as soon as possible.

Fish pathogenic Vibrio spp. exhibit different virulence factors such

as capsular polysaccharides, adhesive factors, cytotoxins, lipopolysac-

charides and flagella.198 In bacterial pathogenesis, the adherence to

the host surface is considered a critical step and can be favoured by

flagella, capsules or loose slime. Resistance to phagocytosis and

complement-mediated killing together with efficient iron acquisition

systems allow bacteria to colonize the host and multiply. Moreover,

toxins and exoenzymes are responsible for host lesions. V. vulnificus

pv. piscis initially colonizes the gill/skin mucus, being protease VvpE and

the capsule involved in this process and invasion is favoured by local

damage and destruction of phagocytes by excreted toxins (mainly toxin

RtxA1).179 When bacteria enter the bloodstream of the fish, they are

able to survive, proliferate, and therefore, induce the fatal septicaemia.

Under iron restriction, the bacterium over-expresses the haemolysin

VvhA and RtxA1 toxins as well as the outer membrane proteins Fpcrp

(fish phagocytosis and complement resistance protein) and Ftbp (fish

transferrin-binding protein), which constitute a ‘survival in fish blood

kit’,199 encoded by plasmidic genes. pFv and closely related plasmids

have probably been acquired in fish farms by different clones which

have been amplified after successive outbreaks.182,185

Vibriosis is a water-borne infection, meaning that the etiological

agent uses the water column as its natural transmission medium. In

fact, experiments with eels and tilapia artificially infected with

pv. piscis by different routes revealed that immersion in water fol-

lowed by ingestion is the primary route for the transmission of

WWV.183,185,191–193 The virulence of the strain is strongly dependent

on the water salinity (maximum at 0.5%–1.5%, depending on the

serovar) and temperature (maximum at 28�C).183,193 Similar observa-

tions were reported in transmission of vibriosis caused by Phdd,200

another potential pathogen for Nile tilapia. Therefore, since Vibrio

spp. can be transmitted horizontally, either from open lesions or as

secretion in the faeces of infected fish and carriers, pathogenic strains

can be easily transferred among fish in the nearby area using water as

transport medium.

Finally, efficient preventive measures in tilapia farms against V.

vulnificus pv. piscis are considered necessary, including both manipula-

tion of physicochemical parameters (use of freshwater and tempera-

ture below 26�C) and specific vaccination. In fact, a patented vaccine

called Vulnivaccine has proven to be highly effective against WWV at

eel farms.179

2.2 | Emerging bacterial diseases of concern

2.2.1 | Edwardsiellosis

Edwardsiella is well known as a genus hosting severe pathogenic bac-

teria affecting global aquaculture with various fish species, including

tilapia.201–203 The genus comprises Gram-negative, rod-shaped bacte-

ria belonging to the family Enterobacteriaceae and the order Entero-

bacteriales.204 The bacterium is a facultative intracellular pathogen

that can survive inside fish phagocytes such as macrophages and neu-

trophils.205,206 Since recently, the genus comprises five species, and

three of them have been reported to infect and cause mortality in

Tilapia including E. ictaluri, E. tarda and E. anguillarum.201,202,203,207,208

2.2.2 | Edwardsiella ictaluri

Edwardsiella ictaluri, is the causative pathogen of enteric septicemia in

channel catfish209 and freshwater catfish species Pangasianodon

hypophthalmus.210 It now has a less restricted host range causing dis-

ease in various catfish species167,211–215 and non-catfish species such

as zebrafish, and wild ayu in Japan.216–218 Natural disease outbreaks

reported in several fish species showed that this pathogen produced

40%–90% mortality,207,219 while experimental infection resulted in up

to 100% mortality,207,216,220,221 indicating that E. ictaluri is a patho-

genic bacteria of multiple freshwater fish species. The first detection

of E. ictaluri in tilapia was in the Western hemisphere.203 Natural dis-

ease cases of E. ictaluri in red tilapia raised in open floating cages were

first detected in Southeast Asia in 2016,207 and truly have become an

emerging disease, widespread to a large region in Vietnam, with high

risk of further national and international spread.208 E. ictaluri-affected

tilapia did not exhibit recognizable external signs, causing misleading

presumptive disease diagnostics and untimely treatment efforts under

active surveillance. Early diagnostic screening and biosecurity mea-

sures are highly recommended to prevent for transboundary spread

and negative impact of this pathogen.

Gross signs with white spots appearing on the spleen and head

kidney are critical features for the first detection (Figure 7). In
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addition, pale gills due to anaemia and the liver due to the reduced fat

reserve in the liver are also helpful for screening affected

fish.203,207,208 Wet-mount with gram staining with the presence of

Gram-negative, rod shape, the intracellular bacterium could be the

first step to confirm the presence of E. ictaluri from fresh fish tissue

such as kidney, spleen. A distinguishing test should be performed

between francisellosis through F. noatunensis and F. orientalis, and

edwardsiellosis through E. ictaluri because the clinical signs of visceral

white spots had always been linked to these diseases. PCRs should be

developed, but currently, the wet-mount technique could help to dis-

tinguish them, since F. noatunensis and F. orientalis have a different

shape as coccobacillus bacteria.133 E. ictaluri grows as typical whitish

pinpoint colonies on culture media. Biochemical characteristics of E.

ictaluri from tilapia were identical to a strain isolated from catfish,

except for the Voges–Proskauer test which was variable among iso-

lates.207,208,210 Thus, the combination of sequencing of 16S-rRNA,

house-keeping genes such as gyrB for phylogenetic analysis222,223 and

specific PCR-based assay224 were accurate for identifying E. ictaluri.

To discriminate E. ictaluri from tilapia from other different hosts and

geographic origins, parallel and combined techniques such as rep-

PCR, 16S, gyrB and sequencing plasmid or whole-genome has been

recommended.225,226

Regarding pathogenesis, varieties of virulence factors for E. icta-

luri have been identified, such as extracellular capsular polysaccharide,

fimbriae-like structures, chondroitinase, lipopolysaccharides O side

chain and outer membrane protein. Other known pathogenicity

islands such as the type III secretion system (T3SS) gene esrC, the

putative T3SS effector eseI and its chaperone escD, the type IV secre-

tion system (T4SS) gene virD4, the type VI secretion system (T6SS)

gene evpC and ureA-C of the urease operon have been determined

also as the virulence factors of this pathogen. However, the distribu-

tion of virulent factors varied between species.214 The screening of

six virulence genes from E. ictaluri isolated from tilapia outbreaks

revealed that the presence of esrC, evpC and ureA-C genes were in all

strains, but they did not have virD, eseI and escD genes which were

present in strains of channel catfish.208,225 The completed pathogenic-

ity test conducted by the latest study from outbreaks in southeast

Asia showed that the lethal dose LD50 of the Asian strain is very low,

<102 CFU/fish, to kill 50% of the tilapia population. The results sug-

gested that new, hyper virulent E. ictaluri strains are circulating and

spreading in this region.208 Thus, the mechanism and virulent gen dis-

tribution of E. ictaluri strains infecting tilapia need to be clarified in

further studies.

The pathogen could be transferred horizontally between fish and

spreads by the water flow. The disease outbreak has existed in both

freshwater ponds203,208 and in floating cage farms on the rivers and

reservoirs.207,208 However, the data from the survey showed that the

open tilapia culture system has a higher risk for the disease than cul-

ture ponds do.208 Disease outbreaks have occurred from fingerling

fish to marketable size,203,207 but fish less than 350 g were more sen-

sitive to this pathogen. The mortality rate from the outbreaks ranged

from 30% to 65%.207,208 E. ictaluri can attach and penetrate host

mucosal membranes rapidly and establish a systemic infection. It is

also a facultative intracellular pathogen, which may survive inside

phagocytic cells, which could be a mechanism of dissemination. This

characteristic plays a vital role in the rapid spread of the disease. The

disease appeared in the temperature range of 23–29�C. The detection

of E. ictaluri associated with disease outbreaks from two different

continents (America and Asia) highlights the risk of transboundary

spread and potential impact on the tilapia industry.

Although the serious fish disease caused by E. ictaluri was first

detected in farmed tilapia in Asia only 5 years ago, the isolated E. icta-

luri show already high levels of antibiotic resistance.208 Nevertheless,

alternatives to antibiotics should be further explored to tackle this

emerging, highly pathogenic bacterium. Current studies investigate

the presence of homologous strains from outbreaks. Thus, an autoge-

nous vaccine might be the best option to combat this emerging dis-

ease in the present time before a better vaccine candidate for a wider

region is discovered.207,208

2.2.3 | Edwardsiella tarda

Edwardsiella tarda is a Gram-negative, motile, short, rod-shaped bacte-

rium (1 μm � 2–3 μm) of the family Enterobacteriaceae. It is a severe

pathogen for a variety of fish.168,227 Principally, E. tarda have been

isolated from different aquatic water environments and affected fish

are common intestinal carriers of this pathogen, thereby resulting in

possible contamination of fish carcasses during fish processing. They

have been found in the intestines of infected humans, after consump-

tion of contaminated fish. This pathogen is often responsible for septi-

caemic fish disease, causing mass mortalities (up to 70%) and high

economic losses in fish farms of freshwater and marine fish in many

countries.228,229 Tilapia is one of the susceptible fish to E. tarda and

disease cases have been reported in several countries201,230 in Nile

tilapia (O. niloticus) and red tilapia.231,232

The clinical, gross and microscopic changes caused by E. tarda

have been relatively well characterized for a range of different fish

species, especially catfish. For tilapia, gross disease signs include cor-

neal opacity and loss of the eyes, reddening of the anal papilla and

marked pallor of the gills (Figure 8). Internally, the kidney and liver

may be pale and seeded with white nodules. The swim bladder and

kidney existed of flocculent material, with congestion and

F IGURE 7 Diseased tilapia by Edwardsiella ictaluri from an
experimentally induced infection. Courtesy Dr Truong Dinh Hoai (co-
author)
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haemorrhage on the intestine.233 Microscopic lesions in the brain and

lymphoid organs of tilapia were also demonstrated.233,234

Edwardsiella tarda is usually identified based on its unique bio-

chemical characteristics after isolation on brain-heart infusion agar or

tryptone soya agar from infected fish. PCR-based detection with gyrB

gene was developed for E. tarda from fish species and successfully

modified to nested PCR and applied to detect affected tilapia using

tissues samples.233,235 Since 2013, E. tarda has been subdivided into

three genetically distinct species regarding infecting fish, E. tarda, E.

piscicida from various fish,236 and E. anguillarum (from eel),237 based

on several identification techniques including sequencing analysis of

gyrB and sodB genes, nested PCR, rep-PCR and matrix-assisted laser

desorption ionization–time of flight (MALDI-TOF), proven effective

for E. tarda identification.238,239 However, the above techniques have

almost not yet been used for tilapia isolates of E. tarda, and further

assessment needs to be done. Also, we should realize, that published

casus with identifications of E. tarda from tilapia from before 2013

may have represented causes of E. anguillarum, or perhaps of E.

piscicida.

Virulent factors of E. tarda were well characterized in fish species

including type III secretion systems (TTSS apparatus protein EsaB-V,

TTSS chaperone protein EcsA-C, TTSS effector protein EseB-G and

TTSS regulator protein EsrA-C), type IV secretion systems (EvpA-P)

and other proteins including autotransporter protein (AidA),

α-hemolysin-modulator like protein (HhaEt), hemolysin A, B (EthA,

EthB), DNA-binding transcriptional regulator and sensor protein QseC

(QseB, QseC), component regulator and sensor proteins (PhoP and

PhoQ).229 In tilapia, the role of regulator FucP regulation of the T3SS

in E. tarda has been demonstrated to contribute to pathogenesis.240

E. tarda isolated from diseased Southern flounder (Paralichthys

lethostigma) has been demonstrated to be virulent to Nile tilapia.241

Edwardsiella tarda could be transferred horizontally between fish

via the faecal–oral route. The wide range of hosts such as inverte-

brates, amphibians, reptiles, birds, a variety of fish, mammals and

humans indicated that it has a wide geographical distribution and is an

important pathogen in terms of public health as an epizootic and zoo-

notic bacterium. In aquaculture, this pathogen commonly exists in the

environment, pond water and sediment. High temperature, poor

water quality and high organic load increase the risks of infection.242

In addition, cross-contamination may occur during manipulation of

fish skin, handling and preparing fish seed, or in integrated farming

where tilapia are reared in conjunction with other animals, or the

cross-infection between other fish species and tilapia in the poly-

culture system.242,243

A variety of chemicals have been tested and demonstrated to be

effective disinfectants against this pathogen, including ethyl alcohol

(30%, 50% or 70%), benzyl-4-chlorophenol/phenylphenol (1%), sodium

hypochlorite (50, 100, 200 or 50,000 mg/L), n-alkyl dimethyl benzyl

F IGURE 8 Edwardsiellosis by Edwardsiella tarda in tilapia or cichlids. (a) Corneal opacity, inflammation and loss of the eyes. (b) Pale organs

with white nodules. (c) Cichlid from a zoo with a systemic E. tarda infection: anorexia and bacterial nodules (arrow) can be seen. Pictures courtesy
(a, b): Dr H. T. Dong (co-author); (c) Dr O. Haenen (leading author)
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ammonium chloride (1:256), povidone–iodine (50 or 100 mg/L), glutar-

aldehyde (2%) and potassium peroxy–monosulphate/sodium chloride

(1%). However, using chemicals may raise concerns about toxicity to

the environment, costs and human health risks, and is impractical in a

large volume of water or cage culture in rivers or lakes.242

Antibiotics have been used popularly for the treatment of the dis-

ease. However, overuse of antibiotics has accounted for a major anti-

biotic resistance of E. tarda in tilapia.232,244,245 Alternatives to

chemical and antibiotic use have been investigated against E. tarda in

tilapia, including use of natural compounds (carvacrol and cymene),246

glucose, polysaccharides, yeast oligosaccharide,247–249 essential

oils,250 ascorbic acid, α-tocopheryl acetate and selenium,251 kugija

Lycium chinense252 and probiotics.253–255 Another affordable alterna-

tive to antibiotics is the use of vaccines. Several developed vaccine

candidates were investigated, including the vaccines E. tarda ghost,256

live cells of E. tarda257 and a glyceraldehyde-3-phosphate dehydroge-

nase (GAPDH) vaccine from E. ictaluri against E. tarda.258

2.2.4 | Edwardsiella anguillarum

Edwardsiella anguillarum shares similar characteristics to other Edward-

siella isolates, such as the growth capability under anaerobic condi-

tions; however, its non-motile nature differentiated it from other

groups.259 E. anguillarum was the last group to be distinguished from

the E. tarda group and demonstrated virulence to a variety of fish spe-

cies, including tilapia in Costa Rica and Korea.202,260

2.2.5 | Aeromonas schubertii

Aeromonas schubertii is a Gram-negative, short rod-shaped bacterium

with a single polar flagellum required for its motility.261 A. schubertii

infection-causing multi-organs necrosis is considered an emerging tila-

pia disease.261,262 Diseased fish usually showed haemorrhages in the

caudal, pectoral and dorsal fins. Internally, affected fish exhibited vis-

ceral white spots in internal organs (i.e. liver, kidney and kidney),261

similar to clinical signs caused by F. orientalis or E. ictaluri infection.

Natural disease outbreaks in both farmed and wild Nile tilapia

were reported in China,261,262 after its emergence in snakehead fish in

2012.263–265 Although there is no evidence of disease outbreak in tila-

pia in other countries, active transferring live tilapia for aquaculture

highlights a potential risk of its transboundary spread and broader dis-

tribution. Increased awareness and active surveillance are required to

gain a better understanding of disease prevalence and impact on tila-

pia farming countries that have relied on imported tilapia stocks.

Presumptive diagnosis is based on observing visceral white necrotic

foci and the presence of short rod-shaped bacteria in smeared tissue

stained with Diff-Quick.261 Previous studies employed trypticase soy

agar supplemented with 5% sheep blood261 or Luria–Bertani

(LB) agar262 for bacterial isolation. An approached combination of phe-

notypic tests, sequencing of 16S rRNA and several housekeeping genes

(e.g. gyrB, rpoB, ela and dnaJ) has been used for bacterial

identification.261,262 Recently, Liu et al.40 reported a highly sensitive

TaqMan MGB probe fluorescence real-time quantitative PCR for

detecting and quantifying A. schubertii from snakehead fish. This

method might be helpful for early screening of an infection in tilapia.

Experimental infection revealed that A. schubertii was capable to

induce disease and acute fish mortalities by both intraperitoneal and

intramuscular injection. In contrast, immersion and oral challenges

have resulted in no or low mortalities.262 Zebrafish is a susceptible

model fish to study the disease pathogenesis of this bacterium.261

Histopathological changes described in diseased fish include vacuoli-

zation in the liver, haemorrhage in the spleen, and swelling capillaries

in the brain. Necrotic lesions filled with a large number of short rod-

shaped bacteria were also found in the liver, spleen and kidney.261,262

Little is known about the transmission of A. schubertii in tilapia.

Ren et al.262 suggested that the damages on the body surface and/or

digestive tract might be natural routes of A. schubertii infection.

2.3 | Other bacterial diseases

2.3.1 | Lactococcosis (Lactococcus garvieae)

Lactococcus garvieae is a facultatively anaerobic, non-motile, non-

spore-forming, Gram-positive, ovoid cocci bacteria belonging to the

family Streptococcaceae. L. garvieae is a significant pathogen of both

freshwater and marine aquaculture species, such as rainbow trout

(Oncorhynchus mykiss), yellowtail (Seriola quinqueradiata)266–268 and

tilapia (Oreochromis spp.).269

In tilapia, L. garvieae infections were reported as an emerging dis-

ease during the last decade in several countries such as Egypt,

Zambia, Brazil, and Singapore.269–272 The experimental challenge of

tilapia showed that the infected fish exhibited ocular opacity,

exophthalmia, haemorrhages and cataract, skin erosion and scale

detachment.270,271,273 Lamellar congestion with necrosis of respira-

tory epithelium of primary and secondary gill lamellae, mild fatty

degeneration of hepatocytes with multiple cell necrosis, sinusoidal

congestion and necrosis in the spleen has been reported.270

To date, the studies on L. garvieae infection in tilapia focused on

isolation, identification and confirmation of suspicion of the dis-

ease.269,271,273 Further studies should investigate the prevalence of

this pathogen in tilapia, the risk factors and geographical distribution

of this pathogen, as well as its pathogenesis. On the other hand, com-

parative analysis of L. garvieae strains from different fish hosts may

shed light on the evolution of this bacterium in tilapia.

2.3.2 | Aerococcosis (Aerococcus viridans)

Aerococcus viridans is a Gram-positive coccoid, order Lactobacillales,

phylum Firmicutes. It is facultatively anaerobic and forms tetrads and

pairs. The bacterium does not grow well on agar. A. viridans causes

greening (alpha haemolysis) on rabbit or horse blood agar. The Gram-

positive tetrads (four bacteria together) are visible by microscopy.

166 HAENEN ET AL.



Also, the co-agglutination technique of Saxegaard and Håstein274 or

the API-Zym may be used for diagnosis. For better understanding of

this disease, further investigation on its prevalence and disease patho-

genesis in tilapia are recommended.

In aquaculture, A. viridans var. homari is known to cause gaffkemia

in farmed European lobster (Homarus gammarus) and American lobster

(H. americanus).275,276 Ke et al.277 described for the first time a tilapia

disease outbreak in 2010 caused by A. viridans in China, with a loss of

30%–40%. The diseased fish showed congested gills and abdomen, a

swollen gall bladder and a severe diffusion in the liver. A. viridans

infections have been subsequently reported in Indonesian,278 and in

Egyptian tilapia farms,279,280 always in combination with other bacte-

ria. In Indonesia, the bacterium was isolated in a screening of water

from a tilapia pond and in faeces of tilapia, and was identified by bio-

chemistry.278 In Egypt, the bacterium was isolated as one of 17 in a

multibacterial infection of wild caught tilapia from the Nile River,279

and it was isolated from diseased tilapia from two tilapia farms, in

combination with Enterococcus faecalis,280 and the A. viridans were

identified by molecular methods, like 16SrRNA typing.

2.3.3 | Pseudomonasis

Pseudomonas spp. are aerobic motile Gram-negative rods and are rep-

resentatives of the order Pseudomonadales.281 Most Pseudomonas

spp. are non-pathogenic, but some cause diseases in fish. Ps. anguilli-

septica is the most pathogenic species, especially to Japanese and

European eel, in which it may cause red spot disease or ‘Sekiten
byo’.282–284 It has also been isolated from diseased tilapia with Ps.

fluorescens,7 and together with Ps. fluorescens, Ps. putida and Ps. aeru-

ginosa.285 The diseased tilapia showed clinical signs of pseudomonas

septicaemia, including reddening of the whole body, abdominal swell-

ing, cloudiness of eyes, loosening scales and congested gills.285 In

another study, Ps. anguilliseptica caused disease in Nile tilapia, show-

ing anorexia, darkening, petechial haemorrhage on the body and at

the base of fins, loose scales, eroded and erected fins, with some fish

showing slight abdominal distension, exophthalmia and pale gills. At

post-mortem enlarged kidneys and spleen were seen.286

Pseudomonas fluorescens is more often described as an opportu-

nistic pathogen of tilapia (Oreochromis spp.) especially under stressful

environmental circumstances.7,230,287–290 Miyazaki et al.291 described

an outbreak of Ps. fluorescens in Nile tilapia in Japan. The systemically

infected fish showed exophthalmia, darkening, spotty or nodular

lesions in the liver, spleen, kidney and gills, and an inflamed swim-

bladder. By histopathology, abscess formation in eyes, spleen and

swim-bladder and focal necrosis in the liver, gills and kidney were

seen in some of the diseased fish. Some other fish showed granuloma

formation in all infected lesions.

Several disease cases in cultured tilapia (O. niloticus) associated

with other Pseudomonas spp. were also reported, including on Ps. aer-

uginosa. The tilapia showed darkening of the body, loss of scales, tail

rot and congestion of all internal organs.292 Pseudomonas aeruginosa is

however not considered to be a primary pathogen for tilapia.

Pseudomonas spp. are found in the aquatic and terrestrial environ-

ment at a global level. Although Pseudomonas infections occur globally,

the Ps. fluorescens cases were described in Japan,230 Philippines,287

Kingdom of Saudi Arabia,288 Egypt289 and Guatemala.290 Pseudomonas

mosselii was described as a fish pathogen of Mozambique tilapia

(O. mossambicus) in Mexico.57 The disease is transmitted horizontally,

via water, gear and by direct fish-to-fish contact.

Pseudomonas fluorescens produces fluorescein. After inoculation

of blood or TSA agar, or Pseudomonas F agar at 22–28�C, the

cream/white fluorescent colonies will appear. Apart from biochemical

identification, API 20E or API 20NE may be used,281 or molecular- or

protein-based diagnostic methods. More research is needed, like

screenings and artificially induced infections studies, to estimate the

real impact of Pseudomonas infections in tilapia culture.

Regarding therapy of pseudomonasis, in general, an antibiogram

is best to test the susceptibility of the isolate. Ps. anguilliseptica

from Nile tilapia was found susceptible to ciprofloxacin, erythromy-

cin, gentamycin, oxytetracycline, streptomycin and trimethoprim and

sulphamethoxazole.286 Additionally, they found the bacterium sensi-

tive to methanolic extracts of Anabaena wisconsinense and Oscilla-

toria curviceps (blue-green algae or cyanobacteria), and ciprofloxacin

and a methanolic extract of Anabaena wisconsinense were highly

effective in the experimental treatment of pseudomonas septicemia

at a dose of 10 mg per kg body weight, after i.p. injection.286 In

another study, lime oil nano-emulsion was tested in vitro and in vivo

against Ps. aeruginosa infection in O. mossambicus, with good

results.293

2.3.4 | Mycobacteriosis (Mycobacterium marinum)

Mycobacterium marinum is one of the fish mycobacteria, Gram-posi-

tive, acid–alcohol-fast, non-motile, non-spore forming rods which may

cause stress-induced chronic and lethal ‘fish tuberculosis’ in warm-

water fish, including in tilapia all over the world, in warmwater fish

from freshwater, brackish and marine waters.294,295 Sonda-Santos &

Lara-Flores296 and Lara-Flores et al.297 reported disease and significant

mortality of tilapia (O. niloticus) in Mexico through M. marinum. Skin dis-

coloration, non-appetite, lethargy, abnormal swimming, cutaneous

ulcerations or erosions, ascites, reduced growth, exophthalmia, grey or

white nodules (granuloma) in internal organs, and hypertrophy of

spleen, kidney and liver are signs of the disease byM. marinum in warm-

water fish.295 Also in indoor warm recirculation systems of fish culture

M. marinum may occur, and clinical signs may only be noted after

weeks, whereas internal disease already caused granuloma in organs.298

As a consequence, fish may show mortality, morbidity and, also in case

of subclinical infection, decreased feed uptake and growth rates, and is

subsequently less marketable.299 Granulomatous melano-macrophage

centres have been described in Nile tilapia in its spleen.300

Diagnosis of mycobacteriosis starts with making a fresh smear of

the inside of fish organs like liver, preferably taken at the site of nod-

ules or granuloma, fixing the smear 3� through a flame, and staining

the smears Ziehl–Neelsen, after which the smear is read by light
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microscopy with a 100� (oil immersion) objective lens for presence of

pink, rod-form bacteria, a sign of the acid-fast mycobacteria.

Identification of mycobacteria in fish was traditionally done based

on time-consuming isolation (weeks, to max 2 months of incubation to

declare a mycobacterial isolation negative) and on biochemical methods.

Dong301 however isolated the M. marinum within days from betta fish,

Betta splendens. Currently, fast and accurate molecular methods are

used for identification of the disease and phylogenetic studies.297,302

Therapy of infected fish requires months of costly antibiotic treatments,

and therefore this is not applied for edible fish, also, because high con-

centrations of residues of antibiotic will accumulate in the fish, which is

then not marketable for consumption.295 There is no vaccine available

for M. marinum. The transmission of M. marinum from fish to fish is not

yet clear, and is at least horizontal, via oral uptake of infected dead fish,

contact with infected fish skin or through gills.303

Mycobacterium marinum is known as a potential contact-zoonotic

bacterium, causing ‘swimming pool granuloma’, ‘fish tank granuloma’,
‘fish handlers/fanciers disease’ or ‘fish TB’ after entry in the skin of

humans through injuries for instance.304 It is not a food zoonosis, as

the bacterium often does not grow at 37�C or above, although there

are exceptions.305 As hospitals incubate at 37�C or above, the diagno-

sis may be missed.298

2.3.5 | Epitheliocystis (Chlamydia spp.)

Epitheliocystis is a fish disease caused by obligate intracellular bacte-

ria (most of them Chlamydia).306 The disease is characterized by

enlarged infected epithelial cells of mostly the gills and skin, which

can be seen as tiny white cysts in the gill or skin epithelium. The dis-

ease has been reported in over 90 fish species, freshwater, marine

and in cold to tropical areas. Characteristic is the presence of a baso-

philic inclusion in the cytoplasm of an enlarged cell. Severe infection

of the gills results in inflammation and respiratory distress.

Although the disease epitheliocystis is widespread, the causative

agents in most species of fish so far found are unique, and therefore

isolates appear to be very host species specific. Chlamydia-like organ-

isms (CLOs) have been the main agents related to this disease.306

Epitheliocystis has been diagnosed in most regions worldwide in salt-

water and freshwater fish. The specific agents causing epitheliocystis,

however, appear more regionally restricted.307 In Brazil, histologically

epitheliocystis was found in rare cases in cultured Nile tilapia.308,309

Individual cysts from skin and gills up to 400 μm can be seen in wet

mounts of gill clippings. Histologically cysts are seen as basophilic inclu-

sions in infected epithelial cells, with a thickened membrane. Sometimes

a host response is seen, as a cell proliferation, which even worsens the

respiratory inefficiency of the affected gills. The pleomorphic develop-

ment cycle of epitheliocystis in organisms obtained from Tilapia mossam-

bica and T. aurea � T. nilotica, and the connection between

epitheliocystis organisms and known chlamydial organisms of (in)verte-

brates are discussed.310 Epitheliocystis may be confirmed by molecular

methods, like amplification of the 16S rRNA gene and sequencing.311

More research is needed, like screenings, to judge the real impact

of Chlamydia infections in tilapia culture. Because there is no established

way to culture Chlamydia in most fish disease labs, there are hardly data

on host range or ways of transmission. At least there is horizontal trans-

mission, from fish to fish, or via water, fish gear and so forth.312 For this

pathogen however also vertical transmission via eggs may be the case,

since genomic presence of the pathogen in pre-hatched eggs, and in

subsequent generations of barramundi suggested this.313 Treatment of

epitheliocystis with antibiotics is not possible, since it is caused by an

intercellular bacterium. Prevention is through good farming manage-

ment, at least by keeping the environmental factors optimal.100

2.3.6 | Nocardiosis (Nocardia spp.)

Nocardia is a genus of Gram-positive rod-shaped bacteria of the Order

Mycobacteriales, Family Nocardiaceae, which show a weak Gram-

staining, and are catalase-positive.

Labrie et al.314 described cases of nocardiosis in freshwater tilapia

(Oreochromis spp.). In general, fish with nocardiosis may show leth-

argy, multiple skin ulcers, and red spots. Brownish or haemorrhagic

gills, abscess inside the operculum, a greyish or haemorrhagic liver

with white nodules, fibromatosis in the abdominal cavity, spleen

necrosis associated with the presence of macroscopic white nodules,

ascites, haemorrhagic brain and swollen kidney often associated with

the presence of white nodules may be seen. On-farm mortality is

mostly chronic and may in cases reach 30%.314

Nocardiosis in fish is caused by N. asteroides and N. seriolae, and

results in septicaemia in many marine species with serious mortality in

some.315 Nocardia in tilapia has been reported in large (>100–600 g)

freshwater tilapia in Indonesia,314 were it could be isolated from the

skin and gills, brain, spleen and liver.

Isolation of the pathogen can be accomplished by taking samples

from fresh lesions and culture them on nutrient-rich media, like Eugon

agar, for N. seriolae. Colonies may appear matt to velvety and dry, with

a granular surface, irregularly shaped edges, and are light brown.

Impression prints represent a fast and reliable method to demonstrate

the presence of Nocardia sp.314 Histopathology may also be used,

showing typical granuloma.314 PCR can be used to confirm the iden-

tity up to species,314,316,317 while LAMP (loop-mediated isothermal

amplification) can be used as well for detection of N. seriolae.318

Nocardia asteroides can be found in soil, but can also be found in

lake and marine sediments, like scum-activated sludge.319 It can be

transmitted via fresh fish feeds to a fish population, and has a horizon-

tal transmission.

As nocardiosis is a chronic disease, which is often discovered in a

late stage only, months of antibiotic treatment would be needed. This

is costly and non-effective, and implies risk of AMR-development.

Therefore, prevention through good husbandry and good manage-

ment practices is the best approach for nocardial infections.100,320

One of the aspects is to avoid the use of uncooked fish feeds (live,

raw or frozen) when rearing fish, as these may transmit the pathogen.

168 HAENEN ET AL.



Diagnosis of nocardiosis is not easy, as special media are neces-

sary, and more research should focus on artificially induced infections,

to estimate the real impact of Nocardia on tilapia culture. Thereby, the

possibility, that nocardiosis may be zoonotic should be considered,

and therefore prevented for, through good hygiene.

2.4 | Zoonotic potential of tilapia bacterial
pathogens

Tilapia is cultured in relatively warm water.100 Some of the pathogenic

bacteria of tilapia grow well at these temperatures of 20–30�C, and may

be contact-zoonotic, that is, also harmful to humans, after direct skin

contact with the infected fish or fish-water, especially when humans

have an injured skin, and are immunocompromised.298 Although this risk

is present in open tilapia (pond) culture, in infected warm water recircu-

lation aquaculture systems, including aquaponics systems this may be

even a bigger risk, as infected water is recirculated and bacteria may

accumulate, being a risk to the fish culture professionals.

Some of the tilapia pathogenic bacteria described in paragraphs

above may cause bacterial contact–zoonotic infections in humans, as

a few of these bacteria have been isolated from wounds, superficial

soft tissue, or even from invasive systemic infections in humans.

Often those diseases were connected to a spine, puncture or expo-

sure event, or after humans ingested the bacterium, the latter being a

food zoonosis. A choice of potential contact- or food-zoonotic bacte-

ria are S. agalactiae ST283, S. dysgalactiae subsp. equisimilis, S. iniae, A.

hydrophila, E. tarda, M. marinum and V. vulnificus.298,304,321–323

2.4.1 | Streptococcus agalactiae ST283

Early evidence for association between fish consumption and S. aga-

lactiae colonisation came from a prospective longitudinal cohort study

among college students living in a dormitory in United States.25 This

study showed that fish consumption increased the risk of S. agalactiae

colonisation with capsular types 1a and 1b combined 7.3-fold.25

Group B Streptococcus (GBS) has been associated with superficial and

invasive infections in immunocompromised non-pregnant adults, and

is the main cause of neonatal sepsis. Invasive infections in non-

pregnant adults without comorbidities came to light after the 2015

fish-associated outbreak in Singapore involving at least 146 people

manifesting as bacteraemia, septic arthritis and meningitis. Through

various researches and official investigations, it was revealed that this

2015 GBS foodborne outbreak in Singapore was caused by Sequence

Type 283 (ST283) belonging to serogroup III-4, as explained below,

and case-control studies found the outbreak to be associated with the

consumption of raw freshwater fish.324,325

While there are different methods that classify GBS types in differ-

ent ways, Capsular typing (serotyping) and multi-locus sequence typing

(MLST) are the major typing systems.22 Serotyping, which is based on

the capsular type of the organism and can be conducted using anti-

bodies or primers targeting the capsular operon, recognizes 10 types (Ia,

Ib, II–IX). In fish, three major serotypes of S. agalactiae are recognized,

that is, type Ia, Ib and III.32 MLST, which is a standardized method based

on the DNA sequence of seven conserved housekeeping genes,326 rec-

ognizes some 2000 Sequence Types (STs) and hence provides more dis-

criminatory identification of S. agalactiae strains across host species and

countries. The major serotypes of S. agalactiae found in fish largely cor-

respond with three STs: isolates of serotype Ia belong to ST7 or closely

related ST, isolates of serotype Ib belong to ST260 or closely related ST,

and isolates of serotype III belong to ST283 or closely related ST.32 The

fish-specific serotype Ib/ST260 clade has never been detected in

humans, whereas the serotype Ia/ST7 clade has been detected in fish,

dolphins and humans.32,327 There is no evidence, however, of direct

fish-to-human transmission. Such evidence only exists or serotype III

(subtype 4)/ST283: Molecular epidemiological studies revealed that

GBS ST283 isolated from freshwater fish (food) samples and

infected patients were identical, supporting the hypothesis of

foodborne transmission of GBS ST283.328–330

Barkham et al.331 showed that GBS ST283 had been present in

human blood cultures in Singapore since 1998. Data and collections of

GBS associated with invasive infections were retrieved from other

South-East Asian countries. Taken together, 29% of human GBS from

Hong Kong, Thailand, Lao PDR, Vietnam and Singapore turned out to

be ST283: the earliest known isolate was from Hong Kong in 1995.

97% of patients with ST283 were adults and 36%–80% did not have

comorbidities. The prevalence of ST283 in invasive GBS infections var-

ied from 11% in Hong Kong to 73% in Thailand and 76% in Lao PDR.329

However, none of 18 isolates from Malaysia and only 5/4198 (0.1%) of

GBS isolates from mainland China, Africa, Europe, North and South

America belonged to ST283.22 FAO convened an expert group which

found insufficient data for a full risk analysis, but published a risk profile

detailing gaps in knowledge that would benefit from more research.22

Identification of GBS ST283 in freshwater fish has been reported

from a number of species such as grass carp (Ctenopharyngodon idella),

silver carp (Hypophthalmichthys molitrix), bighead carp (H. nobilis), Nile

tilapia (Oreochromis niloticus), red and black tilapia (Oreochromis sp.),

Mekong giant catfish (Pangasianodon gigas), freshwater frogs (Hoploba-

trachus rugulosus and H. chinensis) and marine species, Asian seabass

(Lates calcarifer).37,332–334 The outbreak in Singapore was controlled

after advising the public against consumption of raw freshwater fish. It

is well known that consumption of raw fish is associated with risk of

infection with bacterial, viral and parasitic infections. Data indicates that

S. agalactiae can be inactivated by pasteurization and therefore ade-

quately cooked tilapia and other fish would be safe for consumption.22

Remarkable to add, in exceptional cases, fish may get infected from

humans as well, so, in an anthroponosis: Experimental induced infection

of Nile tilapia (O. niloticus) with a human isolate of GBS (serotype Ia,

ST7) was able to cause disease and mortality in the tilapia.335

2.4.2 | Streptococcus dysgalactiae

Only incidental reports have been published on seafood as source of

S. dysgalactiae subspp. zoonosis in humans, especially percutaneous
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injuries, like upper limb cellulitis in humans after skin spine or punc-

ture while cleaning seafood.336,337 Based on genomic sequencing, S.

dysgalactiae, subsp. dysgalactiae (SDSD) is associated with ruminants,

whereas S. dysgalactiae subsp. equisimilis has been found in humans,

companion animals (e.g. dogs and horses) and fish. Subspecies identifi-

cation based on data from individual genes may not be accurate,

resulting in some inaccurate reporting of species identity.323

Streptococcus dysgalactiae has been isolated from diseased farmed

Nile tilapia in Brazil showing septicaemia and subcutaneous abscesses

in the caudal peduncle region338,339 and from tilapia in Egypt.279 In

Brazil, induced infection experiments with the isolated strain of S. dys-

galactiae were performed, causing reproduction of disease in adult

Nile tilapia, showing anorexia, lethargy, tachypnoea and darkened

skin, rapidly leading to mortality rates up to 100% and 83% after intra-

muscular and intraperitoneal injection, respectively, with re-isolation

of bacteria from diseased tilapia.338

2.4.3 | Streptococcus iniae

Streptococcus iniae has not been assigned to any Lancefield group, but

16S rRNA sequencing indicates that these are closely related to GBS.

Human infections have been reported in elderly people and individuals

with underlying conditions like diabetes mellitus, rheumatic heart dis-

ease or cirrhosis handling fresh fish. Infections following fish consump-

tion have not been reported so far. The disease may manifest as

cellulitis following soft tissue injuries while handling fresh tilapia (Sar-

otherodon galilaeus), also known as St. Peter's fish or Hawaiian sunfish.24

But complications such as arthritis, meningitis, endocarditis and osteo-

myelitis may also develop.340 Most infections have been associated

with people of Asian origin, possibly due to the habit of handling whole

tilapia. Studies in Canada using pulse field gel electrophoresis (PFGE)

showed that strains causing fish infections and human infections belong

to same clone.341 S. iniae infections in humans may be under-reported

since identification of this pathogen in clinical laboratories is hampered

by the limitations of the commercial identification systems.342

2.4.4 | Aeromonas spp.

Aeromonas spp. are Gram-negative rods. The motile Aeromonas spp.,

like A. hydrophila and A. sobria, are opportunistic bacteria and can be

found everywhere, in- and outdoor, in soil and in fresh to brackish

water, as aquatic commensals and secondary pathogens.343,344 In

humans, Aeromonas spp. originating from various fish species may

cause acute haemorrhagic diarrhoea. It may also cause invasive skin

and soft tissue infections, after aquatic injuries through spines, punc-

tures and bites of animals. Within 24 h after infection, infected

wounds may show erythema, oedema and purulent discharge, which

may develop into fever in untreated or improperly treated cases,

which may progress into invasive infections, especially in the immuno-

compromised patients, with necrotizing fasciitis, necrotizing myositis

and osteomyelitis.304,322,343

Aeromonas isolates isolated from human infections were found to

be susceptible to various antibiotics, of which sulphonamids were less

effective.48 In serious cases, besides wound drainage and debride-

ment, Aeromonas wound infections should be treated initially with

either a fluoroquinolone or a third-generation cephalosporin, possibly

plus an aminoglycoside until culture and antibiotic sensitivity results

are known, and rule out Pseudomonas coinfections.48,345

2.4.5 | Edwardsiella tarda

Edwardsiella tarda is a Gram-negative rod of the family Enterobacter-

iaceae. It is known as pathogen of various fish, like eel, tilapia and it

causes emphysematous putrefactive disease of catfish.322,346 It may

cause ‘fish gangrene’, ‘emphysematous putrefactive disease of cat-

fish’ or ‘red disease of eels’, referred to as Edwardsiella septicaemia

(ES), a systemic disease of fish.298

Edwardsiella tarda from cold-blooded animals like marine, brackish

and freshwater fish, reptiles and amphibians may also cause disease in

humans.347 Slaven et al.348 described various zoonosis cases in the

1990s in humans in Louisiana by E. tarda: 11 extraintestinal infections,

with five wound infections (three with exposures to marine fish or fish

bones), five abscesses requiring surgical drainage and one case of bac-

teraemia. In severe and scarce cases, extensive myonecrosis and fatal

septic shock in immunocompromised patients, especially in patients

with chronic liver disease was seen. Therapy recommended consisted

of antibiotics, like ampicillin, cepahalosporins, such as cefazolin and

ceftazidime, aminoglycosides and fluoroquinolones.348

2.4.6 | Vibrio vulnificus

Vibrio vulnificus is a multi-host fish pathogen that inhabits coastal eco-

systems in temperate, subtropical and tropical areas (>18�C) and

likes low to moderate salinities.179,349 It is a zoonotic agent as vibri-

osis can be transmitted directly from diseased fish to humans by

contact.184,322,350 In humans, V. vulnificus may cause a range of dis-

eases with variable clinical manifestations, like acute gastroenteritis

from eating undercooked shellfish, progressing into acute sepsis, or,

in rare cases, primary sepsis and severe wound infections from

marine injuries and water exposures, which may develop into life-

threatening necrotizing fasciitis.179,184,298,322,350–353 Historically,

the species was divided into three biotypes (Bt), all of which con-

tained human pathogenic strains. Pathovar piscis (pv. piscis; formerly

Bt 2), is considered as primary fish pathogen and is subdivided into

several clades/serovars, from which Ser E and Ser T have proven

zoonotic potential and thus represent a risk to also aquaculture

professionals.184,185

Regarding zoonosis through V. vulnificus infected tilapia, several

clinical cases have been reported. Chan et al.354 described a case of a

septicaemia that progressed into necrotizing fasciitis after the patient

experienced a puncture by the dorsal fin of an infected tilapia. Nudel-

man et al.355 and Bisharat et al.356 described wound infections after
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injuries in extremities by the sharp spines of infected tilapia in Israel.

Vinh et al.357 also reported a fatal case of V. vulnificus sepsis devel-

oped in a patient with chronic hepatitis B and chronic renal failure

after handling and ingesting tilapia.

Other authors experimentally challenged Nile tilapia with the zoo-

notic pv. piscis Ser E and fish developed a haemorrhagic septicaemia

similar to eel vibriosis, warning that this bacterium could constitute a

serious health hazard for tilapia and, indirectly for humans.191,193

Interestingly, there have been reports of the isolation of V. vulnificus

from diseased tilapia cultured in Indian and eastern Mediterranean

farms, all of them potentially dangerous for humans.185,189,190 More-

over, it has been demonstrated that human clinical isolates which had

not been linked to fish vibriosis or to zoonosis cases, also belong to

pv. piscis, demonstrating their zoonotic nature.185 Thus, apart from

the risk for tilapia, these facts might also imply a risk to humans and,

thus, the species should be higher estimated as a zoonotic pathogen.

Therefore, tilapia farm environments, with high nutrient concen-

trations and host densities, may clearly contribute to an increase in V.

vulnificus populations and provide advantageous conditions for the

emergence of genetically more diverse and more virulent strains

and/or the expansion of particular lineages/clades, including the zoo-

notic ones.185,188 Moreover, under the climate change scenario, the

increased water temperatures may favour these events.179,188,358

Regarding therapy of diseased humans, prompt intervention with

antibiotics should be performed, as sepsis and fasciitis necroticans may

be fatal within 48–72 h. The U.S. Centers for Disease Control and Pre-

vention359 recommended a third-generation cephalosporin, especially

ceftazidime, plus doxycycline, as initial empiric antibiotic combinations

for suspected V. vulnificus infections; see their website. Other cephalo-

sporins can be used as well, as well as fluoroquinolones like ciprofloxa-

cin, see CDC.359 The treatment may include early surgery for wound

debridement and monitoring for compartment syndromes, as these

increase the survival rate when a systemic human infection is the case.

Development of effective control and preventive measures in fish

farms against V. vulnificus, the most infectious of all zoonotic Vibrio

spp., is considered highly necessary, including development of effec-

tive vaccines.

2.4.7 | Mycobacterium marinum

Mycobacterium marinum is one of the fish mycobacteria, Gram-posi-

tive, acid–alcohol-fast, non-motile, non-spore forming rods that may

cause chronic and lethal fish tuberculosis in warmwater fish, including

tilapia.294,303

In humans, M. marinum may cause ‘swimmer granuloma’, ‘fish
tank granuloma’ or ‘fish handler's disease’,294,298,303,304,360–362 which

may be chronic infections of hands and feet, but not easily lethal

(Figure 9). M. marinum has an optimum temperature of 30�C (Haenen,

own findings), and is inhibited at 37�C. This means, in humans, almost

exclusively, skin infections occur in extremities, which are cooler. The

incubation time for mycobacteriosis in the skin is 7–21 days after skin

injury.322

In a later phase, granulomatous nodules will develop on the skin,

which may become secondary infected. Also deeper, invasive infec-

tions may develop, like septic arthritis, bursitis, tenosynovitis and

osteoarthritis.363 Yacisin et al.364 monitored M. marinum skin or soft

tissue infections cases at Chinese markets in New York City, and con-

cluded, the highest risk of acquiring the zoonosis was through skin

injury of the finger or hand during fish handling.

Fast preliminary diagnostics is done by acid-fast staining smears

of nodules and lesions, and through culture from nodules. PCR identi-

fication M. marinum is confusing322 and requires more than one PCR.

Only chronic treatments are considered effective.365 According to

Aubry et al.366 clarithromycin, cyclines and rifampin were the most

commonly prescribed antibiotics, with an effective cure of 87% of the

63 patients. M. marinum is susceptible to macrolides like clarithromy-

cin, sulfonamides/trimethoprim-sulfamethoxazole, ethambutol and

rifampin/rifabutin.367 A typical treatment consists of a combination of

two of these drugs (i.e. clarithromycin plus ethambutol, or clarithro-

mycin plus rifampin) for approximately 3–4 months, to be ended only

4–8 weeks after symptoms have vanished.

2.5 | Status of antimicrobial resistance in fish
culture through imprudent antibiotic use, and its
future

In semi-intensive and intensive aquaculture, access to safe and effec-

tive veterinary medicines or drugs is essential to a successful opera-

tion. However, if used imprudently, antibiotics used to treat bacterial

diseases may be ineffective and may lead to unacceptable residue

levels in aquaculture products that can result in bans on importation,

import rejections and detentions.2 Misuse of veterinary medicines

may lead to the development of antibacterial-resistant genes in bacte-

ria, and this may therefore cause antimicrobial resistance (AMR). This

F IGURE 9 Swimmer granuloma on the right hand, after infection
by Mycobacterium marinum through skin contact with warmwater fish
and fish water. Picture courtesy Dr Cassetty and Dr Sanchez, 2004;

details in Dermatology Online Journal361
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consequence happens across all food-producing sectors, including

aquaculture. There are many examples, like a joint 97% antibiotic

resistance to ampicillin, erythromycin, and oxytetracycline in 173 bac-

terial isolates from apparently healthy tilapia in Trinidad.6 Therefore, if

antibiotics are to be used, the choice of antibiotic must always be

based on the results of an antibiogram, to be sure, the therapy is

effective.

There is increased global attention through various assemblies,

meetings and conferences where AMR has been specifically men-

tioned as a vital and growing problem. The Global Action Plan (GAP)

on AMR (with contributions from FAO and OIE) was adopted during

the 68th World Health Assembly in 2015.368 In the same year, the

World Assembly of the OIE delegates adopted the strategy, and the

39th FAO Conference adopted Resolution 4/2015. A political declara-

tion was made during a high-level meeting on AMR at the 71st United

Nations General Assembly (UNGA, September 2016). The UNGA

called upon the Tripartite (i.e. FAO as global leader for food and agri-

culture, the OIE as global leader for animal health and welfare and the

World Health Organization [WHO] as global leader for human health)

and other intergovernmental organizations to support the develop-

ment and implementation of National Action Plans (NAPs) and AMR

activities at the national, regional and global levels under the One

Health platform. The FAO, OIE and WHO agreed to step up a joint

action to combat health threats associated with interactions between

humans, animals and the environment.

A memorandum of understanding was signed in May 2018 to

strengthen their long-standing partnership, with a strong focus on

tackling AMR. In addition, the United Nations Secretary-General con-

vened the Interagency Coordination Group (IACG) on AMR in May

2017 in consultation with Tripartite members to provide guidance on

approaches for ensuring sustained global action on AMR, and

reported back to the Secretary-General during the 73rd General

Assembly in 2019. This mandate included making recommendations

on enhancing coordinated action across sectors and countries, build-

ing political momentum, future governance and mobilizing

stakeholders.2

Countries are now encouraged to develop National Action Plans

(NAP) on AMR. In the development of the aquaculture component of

a country's NAP on AMR, understanding and increasing knowledge of

bacterial diseases affecting the sector, how they are being managed,

complexities associated with AMR in the aquatic environment and

how to achieve One Health goals are essential.369

These developments should now serve as a signal of the urgent

need for aquaculture countries, especially those with substantial aqua-

culture production and food security objectives through aquaculture,

to pay high attention to the emergence of antimicrobial-resistant

organisms that can result from antimicrobial (specifically antibiotics)

imprudent and irresponsible use in the aquaculture sector.

Hanson370 provided practical management measures to minimize

AMR from bacterial diseases of finfish by reducing the use of antibi-

otics and ensuring its prudent use when it is needed. Good husbandry

(good seed, adequate nutrition, good water quality and environment,

minimizing stress, etc.) and biosecurity practices (e.g. health

monitoring, rapid action on first signs of abnormal observations or

clinical signs of disease, vaccination, breaking disease transmission

pathways) through all phases of production should be part of normal

practice. Disease prevention can be achieved by managing the envi-

ronment and host, by pathogen avoidance and by having a biosecurity

plan, as parts of Good Aquaculture Practice.2,100

FAO2 listed several biosecurity measures that may reduce or

eliminate AMR. These include avoidance, using clean facilities, use of

immunostimulants to enhance innate immunity, inclusion of probiotics

in feeds, vaccination, phage therapy via feeds and the use of plant

extracts. Of these, vaccines have been widely used against fish infec-

tions. Avoidance of AMR can also be achieved by farming high-value

SPF (Specific Pathogen Free) fish species in a controlled way.

3 | CONCLUSIONS

There are many microbial agents in the aquatic environment, some of

which are potential pathogens to tilapia, depending on a variety of

factors specific to the host, pathogen and environment.

Since decades, some bacterial species, belonging to at least four

genera, are considered important pathogens for tilapia: S. agalactiae, S.

dysgalactiae and S. iniae, motile Aeromonas species, F. orientalis, F.

columnare (new name: F. oreochromis) and V. vulnificus pv. piscis and

some other Vibrio species. Additionally, at least two bacterial tilapia

diseases are emerging, edwardsiellosis through E. ictaluri and E. tarda

as well as disease by A. schubertii. Furthermore, bacteria with zoonotic

potential, like S. agalactiae ST283, S. dysgalactiae subsp. equisimilis, S.

iniae, Aeromonas sp., E. tarda, V. vulnificus pv. piscis and M. marinum

are included in the review, to provide altogether the current overview

of the disease risks affecting production and post-harvest stages.

Various other bacteria may be opportunistic and pathogenic to

tilapia as well, especially under favourable conditions of the environ-

ment (water at a high temperature, with high loads of organic material,

low oxygen and other stress factors), and vulnerable fish (low in

immune status, in too high stocking densities, too variable in size,

etc.), like L. garvieae, A. viridans, Pseudomonas spp. and Chlamydia spp.

The important role played by aquaculture in providing high-

quality nutrition, improving livelihoods, stimulating and creating

decent work and economic growth and alleviating poverty, particularly

in low-income food-deficit countries will be only possible, if disease

challenges (including bacterial diseases) affecting production can be

addressed in a decent way. It is of utmost importance to train the tila-

pia farmers in good aquaculture practices (GAP), including hygiene at

the fish farm, to avoid spread of fish bacterial disease and fish mortal-

ity. For this, it is very important to educate fish health professionals

for field work, to be able to control bacterial diseases in tilapia farming

and avoid spread.

Regarding bacterial zoonosis, cases from tilapia culture are mostly

not recorded on a global scale. For sure they occur, from mild (myco-

bacteriosis, swimmer granuloma, i.e. chronic skin infections by M. mar-

inum) to serious (necrotic fasciitis through systemic infection by V.

vulnificus), depending on the patient's immune status, and they can be
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prevented for through good hygiene. Awareness of One Health and

Good Hygiene Practice should be in place in aquaculture, including in

the whole tilapia production chain up to the consumer. This means

avoiding direct contact of potential zoonotic pathogens with the human

skin, and avoid inhalation and ingestion of those pathogens. At tilapia

farms, slaughter facilities and packing sites this means special clothing,

wearing gloves and face masks and regularly wash hands and skin with

soap after any contact with fish and fish water. It also means, that when

professionals would develop signs of a contact or food safety zoonosis

they should mention to the medics, that they work with warmwater

fish, and may have acquired a zoonotic infection from the fish.

Regarding antimicrobial resistance (AMR), responsible use of anti-

microbial agents is an important part of farm biosecurity to ensure

that pathogen challenges are minimized, that the natural defence

mechanisms of the cultured stocks are maximized, and that disease

and mortality, including costs of containing, treating and/or eradicat-

ing diseases, are reduced.2 Therefore, the use of antimicrobial agents

should be minimized, and be consistent with established principles of

prudent use, to safeguard public and animal health.2 Furthermore,

apart from Good Aquaculture Practice (GAP), development and use of

effective and economically favourable vaccines is recommended.
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Abstract

Tilapia is an affordable protein source farmed in over 140 countries with the majority

of production in low- and middle-income countries. Intensification of tilapia farming

has exacerbated losses caused by emerging and re-emerging infectious diseases.

Disease diagnostics play a crucial role in biosecurity and health management to

mitigate disease loss and improve animal welfare in aquaculture. Three continuous

levels of diagnostics (I, II and III) for aquatic species have been proposed by Food and

Agriculture Organization of the United Nations (FAO) and the Network of Aquacul-

ture Centers in Asia and the Pacific (NACA) to promote the integration of basic and

advanced methods to achieve accurate and meaningful interpretation of diagnostic

results. However, the recent proliferation of cutting-edge molecular methods applied

Abbreviations: AI, artificial intelligence; ARG, antimicrobial resistant gene; AST, antimicrobial susceptibility test; AuNP, gold nanoparticles; Cas, CRISPR-associated protein; CPA, cross-priming

amplification; CRISPR, clustered regularly interspaced short palindromic repeats; Ct, cycle threshold; dPCR, digital polymerase chain reaction; eDNA, environmental deoxyribonucleic acid; ELISA,

enzyme-linked immunosorbent assay; eRNA, environmental ribonucleic acid; HAD, helicase-dependent amplification; IAM, isothermal amplification method; iiPCR, insulated isothermal PCR; IR,

infra-red; ISH, in situ hybridization; LAMP, loop-mediated isothermal amplification; LFIA, lateral flow immunoassay; LoD, limit detection; MLST, multilocus sequence typing; mNGS, metagenomic

next generation sequencing; NASBA, nucleic acid sequence-based amplification; NGS, next generation sequencing; ONT, Oxford Nanopore Technologies; PCR, polymerase chain reaction; POCT,

point-of-care testing; qPCR, quantitative real-time polymerase chain reaction; RCA, rolling circle amplification; RPA, recombinase polymerase amplification; RT-LAMP, reverse transcriptase loop-

mediated isothermal amplification; RT-PCR, reverse transcriptase-polymerase chain reaction; RT-qPCR, reverse transcription quantitative real-time polymerase chain reaction; RT-RPA, reverse

transcriptase recombinase polymerase amplification; SMRT, single molecule real-time; TEM, transmission electron microscopy; TGS, third generation sequencing; WGS, whole genome
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in the diagnosis of diseases of aquacultured animals has shifted the focus of

researchers and users away from basic approaches and toward molecular diagnostics,

despite the fact that many diseases can be rapidly diagnosed using inexpensive,

simple microscopic examination and that most emerging diseases in aquaculture were

discovered by histopathology. This review, therefore, revisits and highlights the impor-

tance of the three levels of diagnostics for diseases of tilapia, particularly the frequently

overlooked basic procedures (e.g., case history records, gross pathology, presumptive

diagnostic methods and histopathology). The review also covers current and emerging

molecular diagnostic technologies for tilapia pathogens including polymerase chain

reaction methods (conventional, quantitative, digital), isothermal amplification methods

Loop-mediated Isothermal Amplification (LAMP), recombinase polymerase amplifica-

tion (RPA), clustered regularly interspaced short palindromic repeats (CRISPR)-based

detection, lateral flow immunoassays, as well as discussing what is on the horizon for

tilapia disease diagnostics (next generation sequencing, artificial intelligence, environ-

mental Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) and point-of-care

testing) providing a future vision for transferring these technologies to farmers and

stakeholders for a sustainable aquatic food system transformation.

K E YWORD S

disease, basic diagnostics, emerging technologies, tilapia

1 | OVERVIEW OF TILAPIA
AQUACULTURE, DISEASES AND
IMPORTANCE OF DIAGNOSTICS

Aquatic foods, both farmed and caught, distributed through various

supply chains, have significantly contributed to the improvement and

diversification of diets, as well as the promotion of nutritional

well-being for many people.1 Recognition of the critical role of aquatic

foods in nourishing nations and transforming food systems is increas-

ing with the recent tabling of a discussion paper by the United

Nations (UN) on the role of aquatic foods for nutrition gaining global

attention.2 In addition to underpinning local nutritional needs and

livelihoods for tens of millions of people, aquatic commodities are

some of the most traded food products in the world. The value of

global fish exports increased from USD 7.8 billion in 1976 to USD

164 billion in 2018.3 Producing aquatic foods that are safe, healthy,

accessible and affordable is the need of the hour to meet the nutri-

tional needs of millions of people. This is where the farming of carps,

tilapias and catfish assumes significance and presently supply 35.84%

of world aquaculture production with a value of 83 billion dollars.3,4

Tilapia, by virtue of their overall resilience, have been species of

choice for farming in a diverse range of farming systems, from simple

backyard/homestead ponds to highly intensive raceways. Today, tilapia

is the second most commercially important finfish group after carps,

farmed in over 140 countries.3,5–7 In 2018, global tilapia production by

volume was estimated at 6.5 million metric tonnes (MMT) with the top

four producers being China (1.78 MMT), Indonesia (1.11 MMT), Egypt

(0.88 MMT) and Bangladesh (0.32 MMT).3 The global tilapia industry

and its associated value chains are currently estimated to be worth

about US$ 7.9 billion.8,9 Access to genetically improved elite strains of

Nile tilapia (Oreochromis niloticus) is further fuelling the growth of the

tilapia industry across the globe. Members of the genus Oreochromis

are important not only for providing food and employment for local

people, including women and youth, but also for earnings from

domestic market and international export.10–12 Today, Nile tilapia has

become the third-most produced fish of all finfish species, representing

a major source of affordable protein nutrients for multitude of

consumers in many low- and middle-income countries (LMICs) across

Asia, Africa, America and the Pacific.

Infectious diseases remain a serious bottleneck for aquaculture

development, particularly in Asia where over 89% of the global

production takes place.3 Globally, disease-related losses in the

aquaculture sector were estimated to exceed USD 6 billion in

2017.13,14 Finfish aquaculture alone suffered annual losses ranging

from USD 1.05 to USD 9.58 billion per year.15,16 For many years, tila-

pia was perceived as hardy and disease resistant but this has changed

in the face of intensification, climate change and global trade of live

aquatic species, where global tilapia farming is now affected by

serious disease problems caused by parasites (e.g., protozoan, mono-

genean), bacteria (e.g., Streptococcus spp., Aeromonas spp., Edwardsiella

spp., Flavobacterium columnare, Francisella orientalis) and viruses

(e.g., tilapia lake virus [TiLV], infectious spleen and kidney necrosis

virus [ISKNV], tilapia parvovirus [TiPV] and nervous necrosis virus

[NNV]) that are impacting the performance of the industry globally.

The true economic cost of diseases in the tilapia industry is hard to

estimate, but based on selected case studies15,17–19 disease-related

losses could run up to several billion dollars annually. For example, the

value of 300,000 tonnes of tilapia lost due to disease caused by
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Streptococcus spp. infections was estimated at USD 500 million.20

Disease is also seen as a primary driver for increased use (misuse) of

antimicrobials contributing to antimicrobial resistance (AMR) problems

in aquatic food systems.21–25

Global outbreaks of Streptococcosis and recent outbreaks caused

by TiLV and ISKNV in farmed and wild tilapia have drawn the atten-

tion of aquatic health specialists and policy makers worldwide to call

for more research and better understanding of diseases and their

management in tilapia aquaculture. Adoption of disease management

practices such as routine diagnostics and biosecurity measures with

other disease prevention approaches are going to be central to ensure

sustainability of tilapia farming. Compared with high value salmonids

and shrimp, the global research and development investment toward

disease diagnostics and health management in low value but afford-

able species like tilapia, carps and catfish is less. As a result, adoption

of effective health management and biosecurity practices relatively

weak in LMIC undertaking farming of low value species.

Diagnostics may be defined as the determination of the cause or

nature of a disease through the examination of signs, symptoms and

diagnostic tests.26 Diagnostic tests include both straightforward,

pond-side methods and more advanced laboratory-based techniques

requiring a high level of expertise and infrastructure. Disease

diagnostics play three essential roles in aquaculture health

management and disease control.27,28 Firstly, diagnostics for screen-

ing healthy animals to ensure that they are not inapparent carriers of

pathogens is aimed at disease prevention and is typically used to

identify populations that have tested negative for specific pathogens

as required for domestic or international translocation. This helps to

limit the risk of disease transmission from farm to farm at national and

international levels. Diagnostics play a crucial role in avoiding the

transboundary transmission of a significant number of pathogens

between countries and continents. Secondly, diagnostics have been

used for routine health monitoring of farmed animals in order to

detect infection/illness at an early stage. This facilitates timely

intervention on the host–pathogen–environment complex to avoid a

scenario of disease outbreak and substantial economic losses.

Thirdly, diagnostics are used to diagnose diseases in animals that

have clinical signs of illness. In this scenario, determining the

cause(s) quickly and accurately is crucial for implementing

appropriate management actions (e.g., treatment decisions,

emergency harvest, etc.) to limit the negative impact on aquaculture

farms in the short- and long-term. Diagnostics is particularly

important in national disease monitoring programs, which provide

the scientific foundation for development of national policies,

emergency responses, risk management and biosecurity

measures.28–30 Such policies protects the sector from disease risks

underpin international trade agreements in biological commodities.

The Snieszko circle,26,31 also known as the epidemiological

triad,32,33 shows the relationship between the host, the pathogen and

the environment in disease development (Figure 1a). However, in the

triad, anthropogenic factors are incorporated into the environment circle

of the Venn diagram which underplays their importance in the onset

and outcomes of infectious disease, particularly in modern aquaculture.

In 2013, Shields updated the triad to an epidemiological tetrad to reflect

the significant anthropogenic drivers behind outbreaks of lobster dis-

eases in Long Island Sound, The United States.34 These included exten-

sive eutrophication leading to hypoxia, exposure to metals and

pesticides and various fisheries induced stressors.34 Here we adapt the

tetrad to reflect farmed rather than wild animal disease investigation,

although there is substantial overlap (Figure 1b). There are many human

impacts on farm animal health. These include actions of the farmer such

as water management, animal handling, stocking practice, feed storage

and feeding regimes.35,36 There are directly connected actors such as

feed companies, where diet provided to farms may not be optimally

F IGURE 1 (a) The epidemiological triad31 and (b) the epidemiological tetrad modified from Shields (2013).34 The tetrad is based upon the
original triad of Sniezsko,31 but is modified to separate anthropogenic drivers of disease outbreaks from those that are purely environmental. This
is an important consideration for disease investigation in fish farms where multiple stakeholders may have direct and indirect influence on farming
conditions and consequently animal health. It highlights the importance of a broad based framework for diagnostic investigation and subsequent
mitigation of disease. (Image A by M.G. Bondad-Reantaso and Paulo Padre, image B by A. C. Barnes and J. Delamare-Deboutteville.)
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formulated leading to immune compromise.36 Finally, agriculture and

urban water that are indirectly connected through shared water

resource that may adversely impact the water available to the farm in

terms of quantity (leading to inadequate water exchange and resulting

hypoxia) and quality. Indeed, many pesticides and other pollutants are

known to suppress the immune systems of aquatic organisms leading to

disease.34,37 The importance of the tetrad to disease diagnosis lies in

the emphasis of a broad based investigation to establish cause and

effect. The outcome of diagnosis, ultimately, is establishment of cause

for effective treatment and prevention.

Diagnostics is an important element of a national strategy on

aquatic animal health38,39 (now called national aquatic organism

health strategy) (Figure 2) and supports the other elements such as for

example, policy, legislation and enforcement, risk analysis, pathogen list,

border inspection, health certification, quarantine, farm-level biosecurity

and health management, use of veterinary drugs, disease surveillance,

emergency preparedness and contingency planning and others.

Availability of accurate diagnostic tools is an important criterion

for listing of diseases in the OIE (currently known as the World

Organisation for Animal Health, WOAH) Aquatic Animal Health

Code.40 Article 1.2.1 of the WOAH Aquatic Animal Health Code lists

four criteria for listing an aquatic animal disease. These are:

(i) significant production losses, negative affect on wild populations,

zoonotic; (ii) infectious aetiology proven, strong association;

(iii) capacity for international spread and (iv) diagnostic methods exist.

Diagnostic testing is an essential part (checklist no. 6) of a 12-point

surveillance checklist for surveillance of diseases of aquatic organisms.28

The choice of diagnostic technique needs to account for the following:

• analytical sensitivity which refers to the limit of detection for a

disease agent

• analytical specificity which refers to the ability to distinguish the

targeted disease agent from another

• diagnostic sensitivity which refers to the probability of test to

correctly identify diseased individuals

• diagnostic specificity which refers to the probability of test to

correctly identify non-diseased individuals

Quality assurance of a diagnostic system is also an essential part

(checklist no. 11) of the surveillance checklist. Diagnostic laboratories

that support surveillance could be any accredited laboratory

recognized by the competent authority as having the appropriate

technical competence in disease diagnostic work. Thus, proficiency

ring tests, accreditation and analytical methods are all essential com-

ponents of an overall quality assurance system.28 ISO 17025 is the

accepted international standard by which laboratories are accredited

as being technically competent for specific diagnostic analyses.

Due to their significant benefits in terms of short turnaround time,

high specificity and sensitivity, molecular diagnostic methods (e.g., poly-

merase chain reaction [PCR], quantitative real-time PCR [qPCR], digital

droplet PCR [dPCR], loop-mediated isothermal amplification [LAMP],

recombinase polymerase amplification [RPA] and others) have emerged

as important technologies for improving disease diagnosis in aquacul-

ture. Disease diagnosis in aquaculture was mainly reliant on clinical

observation, rapid microscopic inspection by wet-mount and/or quick

staining of smears or imprinted tissue, histopathology and culturing of

infectious agents prior to the expansion and adoption of molecular

F IGURE 2 Important elements or components of a national aquatic organism health strategy where each element is not a stand-alone
component but rather supports each other. (Image by M.G. Bondad-Reantaso and Paulo Padre)
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methods in the early 2000s.41,42 Importantly, many infectious diseases

in fish and shrimp are initially discovered and diagnosed based on Level I

(see Section 2, below) gross clinical observations and traditional histopa-

thology (Level II). For example, disease caused by TiLV was detected and

defined for the first time as syncytial hepatitis of tilapia (SHT) based on a

pathognomonic lesion identified in the liver of sick tilapia using classical

histology.43 Similarly, an unknown viral disease, scale drop syndrome, in

Asian sea bass was discovered based on gross pathology and histopath-

ological findings of viral inclusion.44 The shrimp microsporidian Enterocy-

tozoon hepatopenaei (EHP) was discovered as a novel microsporidian

based on histopathological observation of cytoplasmic spores and multi-

nucleated plasmodia in the shrimp hepatopancreas.45 In these cases, the

disease was identified histopathologically before its causative agent

became known to science and before any molecular diagnostic

procedures were available for the causative agents. Recent widespread

use of molecular diagnostics (Level III) in aquaculture has shifted the

focus of diagnostic application away from observational approaches

(Level I and II). However, there has been some evidence indicating that

molecular diagnostic methods, including those from published papers,

The WOAH recommended protocols and commercial kits, sometimes

give false-positive results (see Refs. [46–48]). Clinical observations and

microscopic examination, on the other hand, are useful for presumptive

diagnostics, which guides the choice of the appropriate level II diagnostic

test(s) and serves as a clinical judgment in diagnostic error(s). Thus,

disease diagnostics should involve a combination of fundamental and

sophisticated procedures, including macroscopic, microscopic and

molecular investigation, to achieve accurate and meaningful results. In

this review, we therefore revisit and emphasize the necessity for

fundamental diagnostic procedures for tilapia diseases. Furthermore,

current and emerging molecular diagnostic methods are discussed, and

their future prospects are critically addressed.

2 | BACK TO BASICS: THREE LEVELS OF
DIAGNOSTICS FOR INFECTIOUS DISEASES
IN AQUACULTURE

Disease diagnostics is the procedure by which the causative agent of an

infectious disease is identified. The Food and Agriculture Organization

of the United Nations (FAO) and the Network of Aquaculture Centers

in Asia and the Pacific (NACA) have long promoted the use of levels I, II

and III for disease diagnosis39,49 (Figure 3). The principle being that none

of the three diagnostic levels function in isolation. They form a contin-

uum of observations (Figure 3) with strong linkages needed for accurate

and rapid diagnosis (e.g., for general health surveillance, health certifica-

tion of import stock and to reduce the risk of disease introduction into

disease-free areas) so that appropriate and effective management mea-

sures can be rapidly applied.

Level I provides the foundation and is the basis for accurate inter-

pretation of results obtained from Levels II and III laboratory findings.

It also sets the foundation for ‘presumptive’ and ‘confirmatory’
diagnostic test reporting. Presumptive tests establish if a sample is not

infected by a pathogen, or that it is likely infected by a pathogen. In

the latter case, it may remain presumptive where the test cannot

distinguish pathogenicity (just presence/absence) or the exact identity

of the pathogen (e.g., endemic from exotic strain/species). Confirma-

tory tests are then required to confirm (or refute) the presumptive

analysis. Level I may be sufficient for recurrent, pathognomonic

F IGURE 3 The three diagnostic levels (I, II and III) are a continuum of observations; each level builds on the other and contributes valuable
data and information to build a diagnostic case for optimum diagnostic accuracy. (Image by M.G. Bondad-Reantaso.)
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(i.e., clinical signs are specific to a particular pathogen or environmen-

tal stressor) infection. However, confirmatory diagnoses, most com-

monly, require Level II or III equipment and expertise to distinguish

significant pathogens from more benign, infectious species or strains.

Level II laboratories include the equipment and experienced per-

sonnel to undertake analyses that can detect and/or identify a range

of pathogens. Level II laboratory personnel can perform parasitology,

histopathology, bacteriology and mycology examinations. Level II,

particularly histopathology, remains the gold standard, especially for

unknown and emerging diseases.

Level III diagnostics encompass techniques that target a specialized

pathogen or group of pathogens or require highly specialized equipment.

Level III laboratories are highly specialized and many such laboratories

are accredited nationally or by the WOAH as ‘Reference Laboratories’.50

These laboratories can also be used to confirm disease-freedom to rein-

force national health certification for import-export purposes. Use of

Level III techniques support Koch's postulate to prove that a particular

organism causes a particular infectious disease is important, especially

for first time diagnosis of an unknown disease in a country.

Level III diagnostics rarely consider interactions at the

host–pathogen interface (pathogenicity) as it relies on detection of

molecular signals of these interactions and does not take environmental

parameters into account. Thus, any correlation falls on linkage with Level

I or II diagnostic observations. The increasing availability of field rapid test

kits has been a major advantage for field extension officers, aquatic

animal health specialists and farm veterinarians, but brings into play the

risk of false/negative results without adequate user training and

interpretation. Thus, the importance of conclusive diagnoses being based

on more than a single test cannot be under-estimated, and is now clearly

outlined by the WOAH50 for their listed diseases. Accuracy of results is

significantly augmented by two or more consistent results, especially of

new or previously unknown disease outbreaks.

Three levels of diagnostics can be flexibly applied for infectious

diseases of tilapia including bacterial, viral, parasitic and fungal

diseases (Figures 4 and 5). At level I, presumptive diagnostics

comprises observation of abnormal behaviours, clinical presentation,

historical record, environmental parameters and preservation of

samples for subsequent analyses in levels II and III. Fish from an

affected pond/cage usually exhibit abnormal swimming behaviour,

such as failure to school, with separation of sick individuals in the

corner or bottom of the pond or cage. Diseased fish may show pale

colouration, dark colouration, reddish gill opercula, skin haemorrhage

and scale protrusion. Internally, clinically sick fish can exhibit a pale,

watery and necrotic liver, accumulation of yellow ascetic liquid in the

peritoneal cavity and gas in the intestine.11,43,51 At level II, presence

of syncytial hepatitis is considered pathognomonic for TiLV infection,

while intracytoplasmic inclusion bodies may also, occasionally, be

observed.43 More recently, liver tissue smears stained with

Haematoxylin and Eosin (H and E) has been found to be a simple and

effective approach for rapid screening of syncytial hepatitis (or giant

cells) (experience from HT Dong, see Figure 4). Several molecular

techniques including reverse transcription PCR (RT-PCR), nested or

semi-nested RT-PCR, RT-qPCR, RT-LAMP and in situ hybridization

(ISH)11,47,52–57 culturing of virus using cell line,11,56,58 TEM11,43,59 and

enzyme-linked immunosorbent assay (ELISA)60 have been applied for

diagnostics of TiLV at level III.

Similarly, bacterial diseases (e.g., Streptococcosis, Columnaris,

Edwardsiellosis, Francisellosis and Aeromonasis) in tilapia can be

F IGURE 4 Illustration of three levels of disease diagnostics for tilapia lake virus disease in tilapia. (Image by H.T. Dong.)
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presumptively diagnosed using levels I and II, including clinical signs,

wet-mount and smeared tissues stained with Giemsa or Gram stain.

Further analysis using level II (histopathology, bacterial culture,

biochemical screens) and level III (molecular methods) approaches is

usually employed for confirmatory diagnosis of suspected bacterial

diseases.61,62 An example of three diagnostic levels in the context of

Streptococcosis is shown in Figure 5. At level I, erratic swimming and

exophthalmia were considered important clinical signs for presumptive

diagnostic of Streptococcus sp. infection. Internally, diseased fish

presented with ascites, accumulation of liquid in the intestine and dark

brown and necrotic liver. At Level II, Gram or Giemsa-stained tissue

smears from head kidney was useful for visualization of extra- and

intracellular Gram-positive cocci. Histopathologically, diseased fish exhib-

ited increasing melanomacrophage centres and granulomatous inflamma-

tion with overload of melanophores in the liver. Streptococcus sp. could

be isolated from diseased fish using general culture medium such as blood

agar (BA), nutrient agar (NA), tryptic soy agar (TSA) or brain heart infusion

agar (BHIA), morphologically identified by microscopy of Gram stained

samples and biochemically characterized by commercial processes such

as API 20 Strep or Vitek. Several methods can be employed at level III for

confirmatory diagnostic of Streptococcosis including conventional specific

PCR,63 qPCR,64 LAMP,65–67 sequencing of 16S rRNA,68 ISH and TEM.

In reality, it is unlikely that disease outbreaks in tilapia farms in

LMIC are currently diagnosed in a timely manner by rigorous

diagnostic tests. Therefore, level I diagnostics should be considered

through observation of clinical signs,69 case history records, outbreak

description as part of the syndromic surveillance to support early

presumptive diagnosis and also to make informed evidence-based

decisions on appropriate further sampling and diagnostic approaches,

as well as immediate management actions. Preservation of biological

samples (biobanking) might be useful for retrospective diagnostics as

well as epidemiology and evolution of infectious agents.70–72 In the

context of tilapia disease diagnosis, the term ‘biobanking’ refers to

the systematic preservation of biological materials in a suitable man-

ner for later examination using advanced diagnostic methods. Fixed

tissues or blood (e.g., in ethanol 95% or RNA later for molecular test-

ing) and nonfixed frozen tissues or serum (e.g., storing at minus 80�C

or liquid nitrogen for later recovery of infectious agents) are examples

of these samples. The biological samples also include pathogens

(isolates/strains) recovered from diseased animals, extracted genetic

materials (DNA or RNA) and paraffin-embedded samples. Appropriate

biobanked samples provide the necessary materials for interconnect-

ing three diagnostic levels (I, II and III) which are required to progress

from presumptive to conclusive diagnoses.

3 | CURRENT AND EMERGING
MOLECULAR DIAGNOSTIC TECHNOLOGIES

The field of molecular diagnostics has, in recent years, developed rap-

idly and contributed substantially to our ability to detect and identify

microbial pathogens of aquatic organisms, most importantly the

detection of sub-clinical carriers. Various nucleic acid-based amplifica-

tion techniques are commonly used in detecting aquatic pathogens,

including conventional PCR, qPCR, dPCR, LAMP and CRISPR. The

strengths and limits of each technology, and their current and poten-

tial application for disease diagnosis in tilapia aquaculture is discussed

below.

F IGURE 5 Example of three levels of disease diagnostics for Streptococcosis in tilapia. (Image by H.T. Dong.)
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3.1 | Polymerase chain reaction

3.1.1 | Conventional polymerase chain reaction

Polymerase chain reaction (PCR) is a method that employs a

thermostable polymerase to amplify a specific region of DNA defined

by a pair of primers. PCR relies on thermal cycling; the DNA templates

are exposed to repeated cycles of heating and cooling to permit DNA

melting, annealing of the primers and DNA synthesis by the

polymerase. This reaction generates large numbers of DNA synthetic

copies from a small amount of DNA template (Figure 6a). When the

reaction is 100% efficient, approximately 109 copies of DNA target

can be produced per template after 30 cycles. As primer and

deoxynucleotide triphosphate (dNTP) are consumed during the reac-

tion, single-step PCR has limited sensitivity. Nested PCR, two succes-

sive PCR reactions, using second round primers specific to the first-

round amplicon, provides increased sensitivity and specificity, and has

been developed for detecting pathogens in sub-clinically infected ani-

mals. The PCR procedure involves extraction of DNA (or RNA) from

host tissue samples, followed by amplification of target DNA. A Taq

polymerase, a major component of PCR, will not work on an RNA

template, so PCR cannot be used to directly amplify an RNA molecule.

For detecting RNA viruses, extracted RNA must be first transcribed

into its complementary DNA (cDNA) by the enzyme reverse transcrip-

tase (RT). This method of RNA amplification is called reverse

transcriptase-polymerase chain reaction (RT-PCR).

Advantages of PCR-based diagnosis include their high sensitivity

and specificity, rapid turnaround, elimination of the need for prior

isolation or culturing of microorganisms and relatively low cost. The

method is especially useful for detecting pathogens in inapparent

infected individuals and in identifying pathogens that are unculturable,

such as shrimp or molluscan viruses, or difficult to culture, such as

intracellular bacteria. However, PCR requires trained technicians for

optimization and reliable diagnostic results, along with well-equipped

facilities with strict protocols for nucleic acid extraction and

processing. PCR is susceptible to contamination and requires strict

consistency of procedures for high throughput automation.

Conventional end-point PCR/RT-PCR (including single, semi-

nested, nested PCR, duplex and multiplex PCR) has been commonly

used for the detection of infectious pathogens in tilapia such as

TiLV,11,47,57,73 TiPV,74 NNV,75 S. agalactiae,76,77 S. iniae.78,79 In tilapia,

S. agalactiae and S. iniae are the two most frequently detected

F IGURE 6 Illustrations depicting the backbones of conventional PCR (a), quantitative PCR (b) and digital PCR (c). (Images by
T. Chaijarasphong and H.T. Dong.)
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bacteria that cause streptococcosis. Both cause similar clinical signs,

thus a duplex PCR using two primer pairs and a differential PCR using

a single primer pair were developed for detecting and differentiating

these two bacteria.63,80 Multiplex PCR was also developed for

serotyping of S. agalactiae.81

PCR methods have also been developed for detecting F. orientalis

and F. columnare,82,83 which are fastidious bacteria that require

time-consuming, complex culture media and biochemical assays for

non-molecular infection diagnosis in tilapia.

Edwardsiellosis and motile Aeromonas septicemia (MAS) are

among the most prevalent bacteria detected following mortality in

freshwater fish, including tilapia. PCR-based methods were developed

for detecting of E. ictaluri and E. tarda84 and applied for tilapia.85 For

Aeromonas bacteria, PCRs targeting the virulence-associated genes,

hemolysin and aerolysin, were developed to identify A. hydrophila

isolated from tilapia with MAS.86

3.1.2 | Quantitative real-time PCR

Quantitative real-time PCR (qPCR) is a well-established method for

diagnosis of aquatic animal diseases. Amplification of target nucleic

acids can be detected in real-time during PCR through the use of

either sequence-specific fluorescent-labelled oligonucleotide probes

(e.g., TaqMan), or sequence-independent fluorescent dyes (e.g., SYBR

Green I).87 The presence and quantity of a target DNA can be

determined by its cycle threshold (Ct) value, which corresponds to the

cycle number when the fluorescence level is significantly above a

pre-defined, experimentally determined threshold (Figure 6b). This

method eliminates post-PCR gel electrophoresis and thus reduces the

risk of cross-contamination between samples during loading of the

gel. Usually, a cut-off Ct value is determined based on a limit of

detection established experimentally. This helps to eliminate false

positives based on non-specific amplifications, and the test is

interpreted as positive if the Ct value is less than the cut-off Ct. If the

Ct value is greater than the cut-off value (i.e., below the limit of

detection), the test may be interpreted as negative.

Quantitative real-time PCR measures fluorescence intensity and

can be used to quantify the number of copies of target nucleic acids

present in a tissue sample to determine the viral (or other microorgan-

ism) loads. Quantification of a specific virus in tissues of infected

animals is one of the most important means of monitoring the pro-

gression of a disease. Cell culture-based methods of quantifying path-

ogens are time-consuming and not applicable to some aquatic

organisms, such as shrimp, for which cell culture systems have not

been developed. qPCR has the advantages of rapid, high-throughput

and a wide dynamic range (7–8 log10) for quantification; it can be

multiplexed to detect several targets in a single reaction.

RT-qPCR or qPCR procedures have been developed and

optimized for the detection and quantification of viral or bacterial

loads in infected tilapia. Target pathogens include TiLV,55,56,88

ISKNV,89 TiPV,74 S. agalactiae64,90 and F. orientalis.91–93 Several

multiplex TaqMan qPCR assays have also been developed to detect

and quantify three to four pathogen species in a single PCR test, such

as F. orientalis, S. iniae and S. agalactiae94; A. hydrophila, A. veronii and

A. schubertii95; and E. ictaluri, E. tarda, E. anguillarum and E. piscicida.96

3.1.3 | Digital PCR

Digital PCR (dPCR) uses the same analytical process as qPCR, but is used

to quantify the absolute number of target DNA molecules.97 In dPCR, the

DNA template and reagents (identical to the qPCR reaction mixture,

including pathogen-specific primers and probe) are mixed and then parti-

tioned, either in emulsion droplets or in wells, on a nanofluidics chip.

dPCR amplification is then performed on each of the partitions. At the

end of the dPCR, each partition is read, and the absolute quantification of

DNA template is calculated with Poisson statistical analysis. The process

is ‘digital’ in that each partition is scored as either 1 (positive) or 0

(negative) (Figure 6c). It is important that the DNA template be

adequately diluted, as most partitions contain one or no target DNA

molecules.98,99

Digital PCR has advantages over qPCR in that dPCR does not

require a standard curve for quantifying the DNA template and

provides more accurate quantitative results, because the presence of

PCR inhibitors has little effect. There are two disadvantages to dPCR:

(1) it is laborious and has a lower throughput, and (2) it has a smaller

dynamic range than qPCR, so samples need to be diluted within a

specific range to generate accurate results.

Digital PCR is relatively new to aquaculture so has only been

applied to few fish pathogens. dPCR methods are available for

ISKNV100 and S. agalactiae.101 The detection limit of ISKNV dPCR

was determined to be 1.5 copies/μl, which is substantially lower than

the 34 copies/μl of a TaqMan qPCR. This assay was used to detect

ISKNV in mandarin fish (Siniperca chuatsi) and shown to have a higher

positive rate (65%) than that of qPCR (30%).100 Similarly, the latter

method was developed for absolute enumeration of S. agalactiae in

tilapia tissue which is more sensitive than conventional plate count

method and qPCR.101 These results suggest that dPCR presents a

promising diagnostic platform for other tilapia pathogens.

3.2 | Isothermal amplification

Isothermal amplification methods (IAM) present a powerful class of

nucleic acid detection analytics that provide streamlined workflows and

rapid turnaround times, while preserving the diagnostic merits of

conventional PCR. By using polymerases capable of replicating nucleic

acids at a constant temperature, IAM avoid the thermal cycling

associated with PCR, making them ideal for on-site diagnosis in areas

lacking scientific resources and manpower. To date, a plethora of IAM

have been developed and implemented with varying degrees of success,

including loop-mediated isothermal amplification (LAMP), recombinase

polymerase amplification (RPA), nucleic acid sequence-based

amplification (NASBA), helicase-dependent amplification (HDA), rolling

circle amplification (RCA) and cross-priming amplification (CPA). This

section of the review will focus on two IAM that show potential for rapid

detection of tilapia diseases: (1) LAMP, by far the most frequently used
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IAM, and (2) RPA, which has grown in use over the last decade as a result

of its improvements over LAMP's shortcomings. Additionally, we will

discuss the combination of isothermal amplification and Clustered

Regularly Interspaced Short Palindromic Repeats (CRISPR) diagnostic

analyses, which open up new potential applications currently not feasible

with IAM alone.

3.2.1 | Loop-mediated isothermal amplification

A typical loop-mediated isothermal amplification (LAMP) reaction

consists of a DNA template, four to six primers targeting six to eight

distinct regions along the target DNA, and the large fragment of Bacillus

stearothermophilus (Bst) strand-displacing DNA polymerase.102,103 The

reaction is typically completed within an hour at a temperature of

60�C–65�C and progresses exponentially through characteristic,

dumbbell-shaped DNA intermediates, eventually generating concatemers

of various sizes harbouring the target sequence (Figure 7a). This size

heterogeneity of LAMP products manifests as ladder-like bands when

analysed by agarose gel electrophoresis. To detect RNA viruses such as

TiLV, reverse transcription step by reverse transcriptase (RT) must be

incorporated into the procedure to produce cDNA from the RNA target

prior to LAMP. Alternatively, a newer generation of Bst polymerase, Bst

3.0, that shows high reverse transcriptase activity, could be utilized for

single-enzyme RT-LAMP protocols.104 LAMP platforms have been

described for the detection of tilapia pathogens, including Streptococcus

agalactiae,65–67 Flavobacterium columnare,105 Shewanella putrifaciens,106

ISKNV107 and TiLV.54,108,109 These applications exhibit high sensitivity

and specificity for their respective targets, with the lowest limit of

detection reported at 1 viral copy per reaction, approximately 100 times

lower than that typically obtained using conventional PCR.54

While different LAMP assays use similar nucleic acid amplification

procedures, they vary in their visualization methods, which range from

being laboratory oriented to field compatible. Agarose gel electrophoresis,

for example, is commonly employed in laboratory settings, but it is

time-consuming and requires extensive reagent preparation and handling.

While it can be used to validate amplicon size in PCR, this advantage is

lost in LAMP due to the products' ladder-like appearance precluding

direct size comparison. To further streamline detection, colorimetric dyes

such as SYBR Green,109 calcein105,106,108 and hydroxynapthol blue107 can

be incorporated to LAMP reactions. The use of these reporters enhances

field deployability of the assay, but they are sequence-independent and

F IGURE 7 Illustrations depicting the backbones of RPA (a), LAMP (b) and CRISPR-based detection (c). (Images by T. Chaijarasphong.)
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thus incapable of discriminating between specific and spurious

amplification products. To exclude non-specific amplicons,

sequence-specific hybridization probes, such as gold nanoparticles (AuNP)

coated with single-stranded DNA (ssDNA), can be used.54 Upon

denaturing and reannealing of LAMP products, the gold-conjugated

ssDNA hybridizes to its complementary region in the valid amplicon,

preventing AuNP from aggregating in the presence of high salts. As a

result, a positive reaction retains the pink colour of dispersed AuNP, while

a negative sample precipitates AuNP and loses its solution colour.

3.2.2 | Recombinase polymerase amplification

While LAMP has substantially improved the convenience of tilapia

disease detection, the technique still faces a number of limitations

including the large number of primers required, which increases the

likelihood of primer–dimer formation, and the reaction temperature

that, while constant, is still sufficiently high to require a heating

device.110 In comparison, a relatively recent IAM called recombinase

polymerase amplification (RPA) requires a relatively low temperature

between 35� and 42�C that can be supplied instrument-free, has a

short reaction time of 5–20 min, and requires only two primers, similar

to PCR.111 This assay relies on a bacterial recombinase protein to

partially unwind the target DNA duplex and enable primer annealing

to the complementary regions.112 The reaction also contains

single-stranded DNA-binding proteins that sequester the displaced

DNA strand and prevent it from reannealing (Figure 7b). With primers

in place, DNA polymerase initiates exponential DNA amplification and

generates a large amount of daughter DNA that can be visualized by

agarose gel electrophoresis, fluorescence or lateral flow

detection.113,114 To detect RNA, a preincubation step with reverse

transcriptase at 42�C can be directly incorporated into an RPA

reaction, yielding an RT-RPA workflow. Thus far, RPA methods have

been used to detect a number of pathogens affecting tilapia, such as

Aeromonas hydrophila, Flavobacterium columnare and Francisella

noatunensis subsp. orientalis, with an analytical sensitivity of up to

15 DNA copies per reaction.115–118

3.2.3 | CRISPR detection

Due to their low reaction temperatures, IAM like LAMP and RPA are

intrinsically susceptible to primer dimer formation and non-specific

amplification. Additionally, the sensitivity of the assays is highly

target-dependent, with challenging targets needing extensive,

iterative optimization to enhance sensitivity. Integrated with CRISPR

detection, specificity and sensitivity of IAM can be raised in a

plug-and-play manner.119,120 The CRISPR detection method begins

with an RNA-guided CRISPR-associated protein (Cas) endonuclease,

such as Cas12a or Cas13a, recognizing and cleaving the target nucleic

acid (e.g., IAM amplicon). This on-target cleavage induces a conforma-

tional change in the Cas protein, causing it to indiscriminately digest

the ssDNA (in case of Cas12a) or ssRNA (in case of Cas13a) that

connects a fluorophore and its quencher in the synthetic reporter,

resulting in unquenching and consequent fluorescence emission121,122

(Figure 7c). Thus, the presence of the positive amplicon is converted

into a fluorescent signal observable by the naked eye, or, with some

modification, a colorimetric signal on a lateral flow dipstick.123,124 It

should be noted that Cas13a, which exclusively targets ssRNA,

requires the addition of RNA polymerase and nucleoside

triphosphates (NTP) as well as the presence of a promoter sequence

in one of the IAM primers to allow transcription. This CRISPR detec-

tion step may be preceded with practically any IAM, although RPA is

most commonly chosen due to its optimal temperature being close to

that of Cas proteins (37�C).125 On the other hand, the choice of Cas

proteins is restricted to a small number of Cas homologues capable of

carrying out reporter cleavage in the manner described

above.119,120,126 Indeed, Cas9, the most widely used homologue for

genome editing, lacks nonspecific secondary cleavage activity so

cannot readily be repurposed for diagnostic applications.119,127,128

Along with providing several modes of simple visual detection,

integration with CRISPR may improve the sensitivity and specificity of

IAM. The diagnostic Cas endonucleases are capable of increasing

sensitivity owing to their multiple-turnover kinetics, whereby the

cleavage of a single target DNA/RNA molecule activates Cas protein

for digestion of several reporter molecules, resulting in signal

amplification.119,123 Nonetheless, this sensitivity enhancement effect

is not always observed and is more frequently found with Cas13a

than Cas12a, presumably due to the superior reporter cleavage

kinetics of the former.124,129–131 In terms of increasing specificity, by

tailoring the CRISPR assay to target an area within the correct

amplicon, it is possible to filter out nonspecific amplification products

from IAM.129 Moreover, Cas endonucleases are exceptionally strin-

gent in their target recognition—a 2-bp mismatch between guide RNA

and target nucleic acid has been shown to drastically reduce the

cleavage activity.120,132 This low mismatch tolerance can be used to

genotype closely related pathogen strains whose sequences may be

too similar for traditional PCR or IAM alone to differentiate. CRISPR

detection, therefore, may allow for easy identification of geographical

isolates or genotypes of RNA viruses such as TiLV, which may grow

more diverse in sequence and virulence in the future due to their fast

mutation rates. While CRISPR detection has been extensively applied

to high-impact pathogens such as SARS-CoV-2, it has not yet been

harnessed for disease detection in tilapia, highlighting an untapped

opportunity for improving the efficacy and utility of the present

diagnostic toolbox.133,134

3.3 | Lateral flow immunoassays

Although nucleic acid detection approaches are highly sensitive and

specific, they are limited by long processing time, extensive liquid

handling and the requirement for scientific instruments. While IAM

have simplified overall procedures, some liquid handling and wait time

remain necessary. In comparison, lateral flow immunoassays (LFIA)

allow the user to simply apply the analyte to a ready-to-use strip and
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wait for 5–10 min before reading the result, which is colorimetric and

interpretable by eye. The analytic materials also have long shelf-life

and can be stored at room temperature. Therefore, despite their

generally lower sensitivity and specificity than comparable nucleic

acid detection technologies,135–138 the convenience of LFIA greatly

aid screening of diseases and presumptive disease diagnosis in tilapia,

as well as adoption by stakeholders who may be hesitant to use more

laborious, time-consuming, diagnostic platforms.

To perform an LFIA, the sample must first be isolated from the

source specimen. The extraction protocol varies depending on the

target organ, but generally involves briefly homogenizing the tissue in

a lysis buffer and collecting the supernatant.139,140 The supernatant is

then applied to a sample pad on a membrane-bound strip, before it is

immersed in a running buffer. Alternatively, some LFIA kits use the

lysis buffer for strip development, obviating the need for a dedicated

running buffer and reducing liquid handling steps. Through capillary

action, the analyte is drawn up the strip and comes into contact with

different antibodies along the way. In the ‘sandwich’ assay

format—the most used type—the analyte interacts with the first

monoclonal antibody at the conjugate pad. This antibody binds to an

antigenic site on the analyte with high affinity, and is labelled with a

reporter, commonly gold nanoparticles (AuNP). The antigen-antibody

complex and unbound labelled antibody travel to the first detection

line (test line) where another monoclonal antibody is embedded. This

antibody targets a different epitope on the analyte, causing the latter

to become sandwiched between two antibodies and yielding an

intense purple band (colour of nanogold) at the test line. Excess

AuNP-tagged antibody, on other hand, continues migrating to the

second detection line (control line) and gets captured by the embed-

ded antibody specific for the labelled antibody (Figure 8a). Thus, a

positive sample generates two coloured bands on the strip, whereas a

negative sample produces only one band at the control line. If the

control band is not visible, the result is deemed invalid.

If two monoclonal antibodies to the analyte are not available,

or if the analyte is too small to be bound by two antibodies

simultaneously, the ‘competitive’ assay format can be employed.

In this format, the test line is coated with the target analyte

instead of an antibody. If the analyte is present in the sample, it

sequesters the labelled antibody and prevents it from interacting with

the embedded analyte at the test line. In contrast, when the target

analyte is absent, the labelled antibody is free to bind to the embedded

analyte. Consequently, in this format, a positive result is represented by

F IGURE 8 Schematic showing the composition and mechanism of sandwich (a) and competitive (b) LFIA. (Images by T. Chaijarasphong.)
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a single band at the control line while a negative result yields two bands

on the strip (Figure 8b).

To date, LFIA tests have been developed for detection of diseases

in a variety of fish species,140–142 but so far only two are for tilapia

pathogens, Streptococcus agalactiae and Edwardsiella tarda.140,143

Although some pathogens, such as TiLV and Flavobacterium

columnare, lack dedicated LFIA, effective antibodies against them have

been identified and utilized to develop other immunoassays such as

immunohistochemistry, enzyme-linked immunosorbent assay (ELISA)

and fluorescence microscopy.144,145 In addition, antibodies capable of

recognizing host antibody directed against a specific pathogen have

been identified, which may be useful for interrogating the present and

past infection statuses of a fish population.60,146 While these

antibodies may serve as a good starting point for future development

of LFIA, further optimization may be required, as an antibody that

performs well in one type of assay may not perform well in another,

due to differences in antibody affinity and concentration, chemical

modification and microenvironment.

Although LFIA tests show great promise for routine disease

diagnosis in the tilapia farming industry, there are still some issues

that require attention. Currently available for only two tilapia

pathogens, the cost of lateral flow strips constitutes a large fraction of

the LFIA price per assay. Multiplex LFIA, capable of testing several

pathogens at once, will significantly reduce cost. With greater utility

and economic viability of the technology, LFIA should become more

accessible and of greater use to tilapia farmers for disease diagnosis,

improving protection from delayed detection or misdiagnosis of

disease outbreaks.

3.4 | Next generation sequencing for fish disease
diagnosis and epidemiology

Next generation sequencing (NGS) targeting molecular information

from infectious organisms for diagnostic purposes has a long history,

with the majority of standard methods for determination of infection

status in humans, animals and plants now dependent on thoroughly

validated PCR tests. These methods target highly specific loci of

differentiation within the target pathogen, but provide little

information beyond a well-defined case-positive or -negative within

specified detection limits. Whole genome sequencing (WGS), on the

other hand, provides the total information encoded in the genome of

the pathogen, which contains a wealth of clinically relevant data; from

antimicrobial susceptibility147 to high resolution strain identity, that is

valuable for epidemiology assessment and related disease

control.148–151 The value of such epidemiological detail has been

highlighted through the global severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) pandemic, where genomic information,

provided in near real-time, was employed to identify case origins, and

define quarantine controls which, in some cases, prevented further

spread.149,152,153 Indeed, epidemiological use of genomic data has

attained global awareness as a result of daily updates from

public health authorities.

In addition to targeted genome sequencing, NGS technology also

lends itself to non-targeted or metagenomic NGS (mNGS), where total

nucleic acid from a sample is sequenced directly, or generic regions

such as 16S ribosomal RNA (16S rRNA) are amplified and then

sequenced.154 The resulting pool of sequence data can be de-noised,

TABLE 1 Pros and cons of available sequencing technologies

Technology Read length Total data Pros Cons

Illumina iSeq, MiniSeq,

MiSeq and NextSeq,

Novaseq*

2 � 150 bp

2 � 250 bp*

1.2–6000 Gbp Becoming ‘standard’ for short reads.
Accurate data, random error can be

polished out.

Established and well-validated,

open source/community

data analysis tools

Short reads

High capital cost

Requirement for laboratory

infrastructure even for

‘benchtop’ units

Ion Torrent Personal

Genome

Machine (Thermo Fisher)

200 or 400 bp 30 Mbp to 2 Gbp Fast output (2.3–7.3 h)

Moderately priced

Short reads

Limited community analysis tools

Requirement for lab infrastructure

Pacbio Sequel II, Sequel IIe 30–40 kbp 160 Gbp per SMRT cell Long reads, low systematic error

rate (~0.1% for HiFi reads)

High capital cost

Large footprint

Requirement for lab infrastructure

High run cost

Oxford Nanopore

Technologies

MinION

Up to 2.3 Mbp164 ~30 Gbp per MinION flow cell

(~10 Gbp per cell per day)

Long reads

Low cost

Pocket sized instrument

No requirement for lab infrastructure

or mains power

Consensus error rate <0.005%

(R10.4 flow cell)

Open source/community data

analysis tools

Systematic error rate

~5% for raw reads

Note: Data from manufacturers' websites, October 2021.
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assembled and analysed for presence and prevalence of possible

pathogens. The non-targeted nature of mNGS makes it particularly

useful for pathogen discovery. Indeed, the complete genome

sequence of TiLV was first identified from metagenomic data derived

from Illumina sequencing,52 while a novel tilapia parvovirus

HMU-HKU-1 was also discovered by Illumina sequencing from

metagenomic libraries enriched for viral nucleic acids.155

While the advantages of genomic and metagenomic information

to disease diagnostics and epidemiology are evident, they are

relatively recent additions to the clinician's toolkit, largely due to the

cost and time required to generate the information. Sequencing costs

have fallen dramatically in the last two decades, greatly out-pacing

Moore's law.156 For example, it is estimated that the first human

genome cost in excess of $100 million US. In contrast, the sequencing

cost for the whole human exome (about 6 giga base pairs [Gbp] of

data) is now around $1500 US. Sequencing cost is somewhat

proportional to the amount of data required. Bacterial genomes are

1000 times smaller than a human exome at 2–6 megabase pairs

(Mbp), and viral genomes even smaller, just 2–3 kilobase pairs (kbp)

for nodaviruses, and 9–10 kb for TiLV.157 Consequently, with

adequate multiplexing, it is possible to generate sequence data for a

bacterial genome for substantially less than $100 US. However,

sequencing is only one part of the cost, so there is a strong tendency

to underestimate the true cost of generating useful clinical genomic

information, including sample preparation and downstream

bioinformatics analysis.158

Current NGS technologies can be separated into two paradigms:

(1) short-read and (2) long read sequencing.159 There are pros and

cons to each of the technologies and instruments currently in general

use (Table 1). Short read sequencing is now dominated by the Illumina

platform with very well-established laboratory preparation protocols

and a wide range of well tested, open-source, data analysis tools and

complete pipelines for mapping and assembly.160 Moreover, there are

excellent open-source tools for variant calling and clinically relevant

typing, much of which can be performed directly from Illumina read

data without need for time consuming assembly.161,162 Short reads

become problematic when structural elements need to be correctly

resolved.163 These might include critical plasmids, transposons or

structures of long variant regions such as lipopolysaccharide (LPS)

O-antigen and capsular polysaccharide (CPS) where rearrangement

can lead to clinically relevant serotype switching. Pacbio Single

Molecule Real-Time (SMRT) and Oxford Nanopore Technologies

(ONT) nanopore sequencing are the major ‘third generation sequenc-

ing’ (TGS) platforms for generation of long read data that can fully

resolve genomes to chromosome level. Because SMRT is polymerase-

based, read-length is constrained by the enzyme chemistry and

currently generates up to 30 kbp reads. SMRT provides high

consensus accuracy due to effectively re-sequencing the same circular

DNA constructs by the immobilised polymerase within the SMRT cell

waveguide enabling highly accurate chromosome-level closure of

genomes.163 Nanopore directly sequences DNA molecules by actively

drawing them through a biological pore in a solid state membrane

while measuring the charge across the pore. The length of read

generated is therefore only limited by the integrity of the DNA

loaded, with the longest read recorded to date being 2,272,580 base

pairs (bp).164 The compromise with nanopore sequencing is relatively

high systematic sequencing error (~5%) in raw reads, as the electrical

resistance across the pore is influenced by several bases in the pore

and their methylation state.165 Nevertheless, the latest version of the

nanopore MinION flow cells chemistry (R10.4), coupled with

continuously improving base-calling algorithms, can provide a

consensus accuracy of 99.995% from nanopore sequencing runs. The

major advantage of the nanopore platform is the very low Minion

instrument cost ($1000 US), and capability to operate the instrument

under field conditions to generate clinical data in real time.166

3.5 | Application of WGS to fish disease diagnosis
and epidemiology

In infectious disease investigation, genomic data is most useful for the

high resolution it can deliver for epidemiology. The origins of disease

introduction and most likely routes of transmission have been

well-illustrated by WGS for some fish pathogens. For example, the trans-

Atlantic dissemination of Renibacterium salmoninarum was postulated by

genomic investigation,167 while presence of serotype O2 Yersinia ruckeri

in Tasmania and likely transmission of serotype O1b with salmonid eggs

from Tasmania to Chile was also identified using NGS.168 Introduction of

piscine Streptococcus agalactiae serotype Ib into Australia, probably with

imported tilapia in the 1970s and 1980s, and subsequent dissemination

and evolution in wild marine fish populations was determined using

Illumina short read sequencing.169 However, NGS platforms have utility

beyond WGS. Often, useful epidemiological and clinical information can

be derived by sequencing amplicons generated by diagnostic PCR

methods. For example, nanopore-based sequencing was recently

employed to sequence diagnostic PCR amplicons for rapid genotyping of

TiLV isolated from disease outbreaks in farmed tilapia.170 The ability to

conduct the sequencing locally and in near real time may be particularly

advantageous in evidence-based outbreak control. Thus, a simple

workflow for field application of nanopore sequencing in aquaculture

may become a useful tool in the near future (Figure 9). In addition to sim-

ple field sample collection and processing protocols, utility of the tech-

nology will depend upon user-friendly interfaces that can interpret and

correct read-data in real-time direct from the instrument and provide

clinically relevant information back to the user, for example via a

smartphone.

4 | WHAT IS ON THE HORIZON FOR
EMERGING TECHNOLOGIES AND TILAPIA
DISEASE DIAGNOSTICS?

4.1 | Artificial intelligent and machine learning

The rapid evolution of sequencing capabilities and costs, coupled to

simplified analytical workflows, makes them accessible to fish disease
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diagnostics with capacity to generate a mass of genomic data.

Translating such data into clinical decisions or, at least, to information

that is useful to clinical decision making by personnel on the ground,

however, remains challenging. In the human genome context, the

‘$1000 genome and the $100,000 analysis’ has been discussed.171

Solutions, or partial solutions to this problem may lie in increasing use

of artificial intelligence (AI). AI can be divided into expert systems and

machine learning. Expert systems are devised around pre-defined sets

of rules derived from clinical or veterinary experts to create a

knowledge base that is mined by the expert system to provide

computer-aided decision support.172 However, as scenarios become

more complex, as indeed they are in the diagnosis of infectious

diseases in aquaculture environments, expert systems are clearly

limited by the information in the knowledge-base. Machine learning

overcomes this constraint by employing algorithms that devise and

refine their own sets of rules from data, allowing them to learn as

more data become available. Ensuring the quality of the training data

then becomes the major limitation.172 Machine learning is already

integrated into the ONT' base calling algorithms for interpretation of

the current signal into bases, with several available nanopore

community and open source bioinformatics post-processing

applications, all based on artificial neural networks.165 To get from

sequence to clinically relevant actionable information is more

challenging. For example, predicting antimicrobial susceptibility to

enable rapid evidence-based therapeutic intervention is feasible from

whole genome or metagenomic data using neural networks.173

Predicting antibiotic susceptibility direct from raw nanopore

sequencing reads was an early application of the technology.174 To

provide comprehensive clinical and epidemiological information on

infectious agent, serotype, sequence type and antimicrobial

susceptibility, direct from sequence reads is feasible by taking a k-mer

approach.175 Although there is a high computational overhead to

k-mer based analysis as datasets become large, by using an

application-specific database (e.g., fish pathogens) and binning k-mers

into differentially descriptive subsets,175 a classifier based on this

approach is highly feasible for fish infectious disease diagnostics.

Indeed, there is an open access development release of a k-mer

classifier and associated database for pathogens of aquatic organisms

including tilapia available from WorldFish.176 This is a field that is

moving very rapidly and the choice of online tools that are easy and

free to use is growing. The Danish Technical University provides a

suite of online tools and databases through their Centre for Genomic

Epidemiology portal including, for example, pathogen identity,

antimicrobial resistant genes (ARG) prediction and multilocus

sequence typing (MLST) direct from raw sequence data.177,178

Artificial Intelligence may also become applicable to Level I and

Level II diagnostics through interpretation of real-time environmental

and behavioural cues (level I) to alert to potential problems, although

perhaps not to the level of specific disease diagnostics. Sensor arrays

for water and environmental monitoring, measuring and controlling

feed intake and in-tank/cage camera systems for morphometric

analysis are already widely deployed throughout salmonid aquaculture

for automation. Coupling to AI is therefore highly plausible to provide

computer-assisted level I diagnostic alerts. For tilapia aquaculture, the

costs of sensor infrastructure will need to fall substantially to enable

adoption in the most important producing nations. Level II diagnostics

F IGURE 9 A hypothetical workflow for real-time field diagnostics using Oxford Nanopore sequencing. (Images by A. C. Barnes and
J. Delamare-Deboutteville.)
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are already assisted by AI in human clinical medicine, particularly

cancer diagnostics, where screening of histopathological samples may

be aided by deep neural network-based machine learning algo-

rithms.179 It is also possible to combine AI with other more rapid

Level II laboratory methods such as infra-red (IR) spectroscopy

(30 min)180 or flow cytometry (3h)181 to provide same-day antimicro-

bial susceptibility test (AST) results and predict bacterial abundance.

Indeed biomarkers from blood measured by IR-spectroscopy coupled

to artificial neural networks can provide rapid non-invasive diagnosis

of Helicobacter pylori infection in children.182

4.2 | High throughput diagnostic systems

For local diagnostic testing of fish farm disease outbreaks, high

throughput of sample numbers is not a major factor, and high capacity

instrumentation can be expensive to operate when not used at

capacity. However, there is a use-case for high throughput diagnostics

in pathogen surveillance for biosecurity. For example, the screening of

broodstock and seedstock to certify specific pathogen free (SPF)

status, or for the screening of live or uncooked seafood prior to

international shipping for compliance with trade legislation to limit

transboundary spread of endemic diseases. For advances in high sample

number throughput for pathogen detection, we return to the SARS-CoV-2

pandemic. Here, rapid testing of hundreds of thousands of samples per day

by health authorities and the private sector has informed lockdowns and

tracked dissemination of new virus variants.149,183 For aquaculture

biosecurity, the need is somewhat different, in that testing fewer samples

for a cohort of pathogens of concern is more important than testing high

sample numbers for a single pathogen. But there are important advances

made during the pandemic that can be applied equally well to fish disease

diagnostics. For example, one of the major constraints (and costs) of

diagnostics is in sample preparation with many recommended molecular

assays stipulating particular extraction kits.184 Recent findings indicate that

for qPCR-detection of SAR-CoV-2 from clinical samples, the extraction

process can be substituted for a short high temperature treatment without

adversely impacting sensitivity.184 Molecular assays lend themselves very

well to high throughput as the small reaction volumes that are required

facilitate use of microwell plates (e.g., 384 wells) and array type

technologies. qPCR methods are standardised for many pathogens of fish

and are readily multiplexed by using different fluorochromes in probe-based

qPCR such as TaqMan. For tilapia, multiplexed qPCR detection of common

bacterial pathogen, Francisella spp., Edwardsiella spp. and Streptococcus spp.

was effectively used for disease surveillance on hatcheries in Costa Rica.94

The extent to which assays can be multiplexed in this way is quite severely

limited by the range of fluorochromes and the number of channels on the

instrument that can detect the differing wavelength emissions. Once

internal controls are accounted for, four to five pathogens per sample is the

limit to which the assay can be multiplexed. This problem can be reduced

by coupling the qPCR to electrospray mass spectrometry, in which the

qPCR amplicons from the multiplexed primer reaction are fed to a mass

spectrometer which then identifies which amplicons are present in each

sample by mass, eliminating the need for fluorochrome probes.185 This

method may enable quantitative detection of 13 or 14 different pathogens

per sample in a single reaction and is limited by the biochemistry of the

qPCR reaction with higher numbers of multiplexed primer sets. For

increased pathogen multiplexing, microarray-based chips may include

thousands of genetic loci with potential to identify tens to hundreds of

pathogens to variant level.186 Such arrays are quite costly but have been

used in human medicine for screening blood samples,187 and DNA

microarray genus-species 16S rRNA analysis for multiplexed detection of

key pathogenic bacteria have been explored in aquaculture.188 High

throughput microarray methods for tilapia disease diagnosis are limited but

may offer future perspectives to cover all key pathogens of tilapia including

bacteria, viruses and parasites.

4.3 | Environmental DNA and RNA for early
detection of pathogens from water

Environmental DNA and RNA (eDNA and eRNA) refer to genetic

materials found in environments such as water, soil, sediment, snow

or even the air. eDNA/eRNA include those within or shed and

excreted from any living or dead organisms, from viruses to unicellular

and multicellular organisms.189 Sample collection for eDNA/eRNA

investigation can be done once, or on a regular basis at a certain

timeframe and location for continuous monitoring. Following that, the

samples are treated to appropriate concentration processes

(commonly filtration, centrifugation or coagulation) before DNA, RNA

or total nucleic acid are extracted190,191 (Figure 10). The obtained

eDNA/eRNA is then subjected to either a metagenomic NGS

(or metabarcoding) approach, in which the contribution of organism

taxa can be identified simultaneously, primarily at the genus level, or a

target-specific conventional or quantitative PCR for detection of

species of interest189,192,193 (Figure 10). Application of eDNA/eRNA

has played an increasingly important role in both common and unusual

circumstances in aquatic ecosystems and aquaculture. Monitoring

eDNA, for example, can be used to look at organism diversity in the

context of natural conservation or to assess the biological impact of

climate change, changes in environmental parameters and

anthropogenic activities (e.g., oil spill, drilling and mining).194,195

eDNA/eRNA can be applied for disease screening to ensure free

status of any pathogens of concern particularly for biosecurity in the

fish/shrimp trade.196 eDNA monitoring can help identify invasive

species and assess endangered species in aquatic habitats.197–199

Furthermore, eDNA/eRNA has been used to assess the distribution

and abundances of waterborne pathogens, as well as the presence of

pathogenic agents in the environment.191,200

The application of eDNA/eRNA for tilapia disease diagnosis is still

limited, however, a straightforward approach for TiLV detection and

quantification from water that employed a simple iron flocculation

method for viral concentration coupled with a probe-based RT-qPCR

has been described.55 TiLV nucleic acid was detected and quantified

in water collected from affected ponds/cages as well as sewage, and a

reservoir. This approach might be effective for noninvasive monitoring

of TiLV in aquaculture environments, and allow suitable biosecurity
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interventions.201 Potential applications of eDNA/eRNA in disease

diagnosis have also been described in other fish species and their

pathogens, including the use of pathogen-specific detection

approaches, metabarcoding strategies and a combination of both. For

instance, the detection and quantification of red sea bream iridovirus

(RSIV) in a challenge model with Japanese amberjack (Seriola

quinqueradiata) and farmed red sea bream (Pagrus major) revealed high

viral loads at least 5 days before fish mortality, suggesting potential

application of eDNA assay for early forecast of disease.55,202,203

Multiple target pathogens were detected using eDNA samples

collected from Atlantic salmon (Salmo salar) farm sites to assess the

potential of pathogen transmission from domesticated to wild fish

populations sharing the same habitat.204 The use of universal

metabarcoding markers (e.g., mitochondrial genes, internal transcribed

spacer (ITS) sequences and small-subunit ribosomal RNA gene) as

potential monitoring tools for harmful parasites and microalgae in

cultured fish have been described.205 A synergistic association of

bacterial microbiome and abundance of the parasitic ciliate

Chilodonella hexasticha with mortality in barramundi (Lates calcarifer)

has been demonstrated using a combination of metabarcoding- and

targeting-based approaches.206 eDNA assays, on the other hand, have

indicated an antagonistic effect between bacterial loads and viral

pathogens.207,208 As aquaculture is an interactive complex system,

environmental parameters together with host and pathogen factors

should be taken into account for eDNA/eRNA data analysis and

interpretation. The advancement of technology in the eDNA/eRNA

methods described in other fish species can easily be used for tilapia

health monitoring and disease diagnosis. Availability of curated

genomic sequence databases of tilapia pathogens and other aquatic

organisms characterized from healthy and diseased tilapia culturing

environments will support accurate eDNA/eRNA species-level

identification and interpretation of complex microbial assemblages. In

the near future, more accessible and inexpensive NGS and

qPCR/dPCR facilities and services will promote a rise in the use of

eDNA/eRNA for early diagnoses and disease forecasting in tilapia

farming systems.

4.4 | Point-of-care or pond-side testing

The term ‘point-of-care testing’ (POCT) describes diagnostic tests, or

any other tests, that are not confined to a laboratory setting and, thus,

can be conducted close to/in the direct proximity of the testing

subjects, typically by people without professional training. Different

circumstances may require different POCT solutions involving

different testing devices or regimes. For fish farmers, POCT allows

F IGURE 10 eDNA/eRNA application in tilapia disease diagnosis. Pathogen(s) collected with water samples from fish culture systems are
usually concentrated prior to nucleic acid extraction. Pathogen(s) of concern can be detected by species-specific or metabarcoding approaches.
(Images by S. Senapin and S. Taengphu created in BioRender.com.)
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anyone to easily and quickly perform accurate testing close to or at

the pond side. POCT may also be undertaken in many locations such

as fish processing plants, wet-markets or by customs biosecurity

officers for monitoring and screening purposes. In summary, its

relevance in aquaculture may include ‘pond-side testing,

‘point-of-need testing’, ‘remote rapid testing’ or ‘decentralized
testing’.209,210

Accurate diagnostics for effective treatments are not available

for many infectious diseases in tilapia, making good farm practices

and prevention the best strategies for achieving optimum

performance results. A rapid, accurate and reliable diagnosis allows

the farmers to make immediate and informed decisions and take

appropriate actions in the fastest manner possible to better manage

and control diseases, especially at early stages when clinical signs

may not be easily identified by the farmers.211 However, most tilapia

farms exist in relatively remote locations with limited accessibility to

laboratory testing facilities. Sending clinical samples to specialized

laboratories has the drawback that it usually takes a long time (days

to weeks) to obtain test results. For diseases that quickly lead to

high morbidity and/or mortality, having results one or two weeks

after sample submission is not optimal. Therefore, POCT tools that

provide quick and reliable testing results at the tilapia farm level are

much needed to shorten the test turn-around time for timely

decision-making.14

An ideal POCT should meet the ‘ASSURED’ guidelines (Affordable,

Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and

Delivered)212 put forward by the WHO.213 POCT should provide test

sensitivity and specificity comparable to those of laboratory testing in

a short time under a wide range of conditions. The equipment, when

needed, should be compact, work with a simple operating protocol,

with battery and built-in calibration and provide means for data

management (such as test results, date, time, sample, operator,

location, quality control and device info).214 Ideally, the reagent

should be provided in single-dose and ready-to-use format and

require no cold chain for shipping and storage. Concerns about POCT

focus mainly on risk of poor test performance due to oversights, such

as potential user errors, insufficient quality control and inadequate

storage of reagents and maintenance of devices (if any). Therefore,

clear instruction guides, user training, user-friendly design and

usability validation are some measures known to ensure correct use

of POCT.

Lateral flow immunoassay (LFIA) is the most widely commercially

available POCT platform. Working with little or no supporting

infrastructure, LFIA has advantages of being simple, rapid and

cost-effective. These features are very useful, especially in settings

with low resources, to improve decision making and turn-around time.

LFIA can be used to screen for infection and antibiotic resistant

markers to facilitate responsible and prudent use of antimicrobial

agents.215–217 However, to the best of our knowledge, no LFIA tests

for infectious diseases of tilapia are commercially available at time of

print.

Current LFIA tests are, in general, not consistently sensitive and

specific enough to meet the needs of early disease detection,

especially sub-clinical infections.218 Therefore, tests based on

molecular technologies are considered more reliable with greater

sensitivity for this purpose. Laboratory molecular technologies

mentioned in the previous sections, such as PCR, LAMP, RPA, CRISPR

and the Nanopore MinION sequencing platform, have all been

automated into single use commercial POCT assays prepacked with

required reagents for diagnosis of COVID-19 infection.219 The

automated steps include sample preparation, nucleic acid extraction,

amplification, signal detection, recording and processing and result

interpretation and presentation. Besides being able to improve

test specificity with its ability for strain identification with

single-nucleotide specificity through CRISPR base-pair matching,

CRISPR-based diagnostics for pathogen detection also hold great

promise in facilitating equipment-free diagnostics to allow POCT to be

easily accessible to more users.220,221 However, the majority of available

CRISPR-based platforms require an amplification step to enhance

sensitivity, significantly lengthening test turn-around time.222 Although a

number of PCR, LAMP and RPA assays have been reported for

detection of TiLV, ISKNV, S. agalactiae, S. iniae, L. garvieae and

F. columnare,67,105,107,223 to the best of our knowledge, only one

POCT RT-PCR test that works on the compact POCKIT platform

(GeneReach, USA) is commercially available for TiLV detection in tila-

pia. Designed to work with the fluorescence-based insulated isother-

mal PCR (iiPCR) technology,224,225 this compact platform provides

fast binary (positive/negative) results. Based on this platform, semi-

automated (POCKIT Combo) and fully automated (POCKIT Central)

systems are available for pond-side PCR testing at different settings.

The semi-automated POCT system generates results within two hours

with a protocol requiring minimal manual steps; one nucleic acid

extract can be used flexibly for simultaneous PCR testing of different

pathogens. The sample-in-answer-out POCT system, on the other

hand, fully automates the nucleic acid extraction and iiPCR steps and

works with preloaded single-use cartridges to provide results within

90 min, meeting particularly the needs of settings with limited human

resources.

The TiLV POCT RT-iiPCR assay is available in a lyophilized format

for easy shipping and storage. On the fully automated POCKIT Central

system, LoD 95% (limit of detection) of the POCT assay was

determined to be 12 genome equivalents. The POCT assay was

comparable to a reference semi-nested RT-PCR assay47 in analytical and

clinical performance. The two RT-PCR assays have similar analytical

sensitivity as their detection end points were within one log in a test

using a serial dilution of a TiLV-positive sample. A study testing

92 tilapia liver, brain, gill, muscle or mixed samples showed that

diagnostic performance of the two assays was also comparable. Positive

percentage agreement and negative percentage agreement were

94.44% (95% CI, 78.72%–100%) and 95.95% (95% CI, 90.4%–100%),

respectively (GeneReach Biotechnology Corporation data).

Development of commercial LFIA tests for the tilapia industry

may consider incorporating dedicated LFI readers and alternative

detection methods (fluorescence, chemiluminescence, electrochemical

signals, surface-enhanced Raman spectroscopy).216,226 These

technologies have potential to improve test sensitivity and enable
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quantitative testing. The use of readers also makes data digitalization,

tracking, storage and transmission possible.

The functions of POCT are being improved to enhance its

usability for different applications at various point-of-care settings.

First, the ability of multiplexing is favourable to improve testing

efficiency of POCT.227,228 Second, integration of easy, or no, sample

preparation enhances user-friendliness of POCT.229 Thirdly,

miniaturized integrated devices are being developed to enhance test

portability and user-friendliness.230 In the last decade, huge

progress has been made in microfluidics and microfabrication

technologies that enable automated pipetting, mixing, separation

and amplification in a single miniaturized device, with significant

reduction in sample and reagent volume, test turn-around time,

energy consumption and waste production.230 Fourthly, improving

connectivity of POCT to allow integration of accurate outbreak

reporting systems via a mobile app or computer connections, can

help with timely and accurate reporting of outbreaks to competent

authorities.214 Moreover, cloud-based reporting and artificial

intelligence (AI) have potential to further bridge what scientists

and aquatic health professionals can offer to meet the needs of

tilapia farmers at remote locations.231 The momentum

accumulated in the last decade in amplification, multiplexing,

microfluidics and data connectivity technologies, could be

integrated realistically and in different ways to build cost-effective

POCT for the tilapia aquaculture industry in the near future.

Continuous research and enhancement of POCT with the goal of

providing end-users with better and simpler access to biodetection

techniques will assist farmers in disease management and control

enhancing future tilapia productivity. Currently available techniques

are not widely used in aquaculture settings, owing mostly to their

relatively expensive prices, thus, efforts are also required to reduce

the costs of POCT.

5 | CONCLUSION

In aquaculture, diagnostic techniques are constantly evolving and

becoming more complex. The level I-III approach established over

20 years ago highlights the importance of the diagnostic continuum as

a quality control mechanism, especially for exotic or previously

unreported mortality events. They remain meaningful in light of

diagnostic technology advances and increasing recognition of the role

of the aquatic environment on both host physiology and pathogen

virulence. Accurate diagnosis of a disease can rarely be achieved by a

single test. A presumptive diagnosis, indicating a strong likelihood of

disease identification, is usually made with multiple tests to be

considered for confirmatory diagnosis (100% certainty of

identification of the causative pathogen). In order to reduce the risk

of misdiagnosis, inclusion of three levels of diagnostic observations

and use of a matrix of results gives the most solid foundation possible

for accurate diagnosis. This is essential for effective risk assessments

at the farm, regional, national and international levels of aquaculture

production, as well as for effective disease response and control.

Accurate diagnosis forms the basis for determining what the disease

condition is, the severity and cause(s) of the condition. Inaccurate

diagnoses can lead to ineffective or inappropriate control measures,

delay treatment and may cause severe economic loss. The choice of

diagnostic technique should follow the principles of being ‘fit-for-use,
fit-for-purpose’ with defined sensitivity and specificity and

cost-effectiveness within the pathogen–host–aquatic environmental

interaction framework. Diagnostic challenges to detect ‘unknowns’
and ‘emerging diseases’ will persist, however, our increasing

molecular databases and analytical tools should enhance our capability

to detect and identify these new pathogenic agents more rapidly and

accurately in the future compared with the present.

The intrinsic qualities of tilapia, as well as its biology, farming

needs and nutritional values, give it the inherent potential to become

one of the world's most important future food fish groups. The

inter-relationship of human, animal and environmental health

enshrined in the One Health philosophy, that is beginning to underpin

global health policy, means that the future of tilapia aquaculture must

centre on sustainable health management and biosecurity. There has

been a rapid proliferation in the development of novel diagnostic

methods, with many technical challenges having been overcome. The

major hurdle that faces the adoption of such powerful aids to

diagnosis is likely to be the rigorous validation required for them to be

accepted for transboundary animal movement and product entry into

supply chains. We recognize the potential for misapplication of new

technologies in aquaculture disease diagnostics, including tilapia, in

the absence of other diagnostic information and we emphasize the

importance of three continuous levels of disease diagnostics that

incorporate fundamental (Level I and II) and advanced (Level III)

approaches to optimize the diagnostic data value. It is likely that

LAMP, and NGS methods for tilapia pathogens will be validated and

join WOAH standard diagnostic tests, such as qPCR, in the near

future. We also expect to see incorporation of artificial intelligence,

machine learning, high throughput diagnostic systems and POCT into

diagnostic workflows in the relatively near future. Non-invasive sam-

pling using eDNA, in conjunction with highly sensitive diagnostic

technologies such as qPCR and dPCR for early pathogen detection

and disease forecast, should also be incorporated in the coming years.

Regulatory and socio-economic hurdles aside, the technology for fast,

easy, accurate and farmer-accessible diagnostic tools for future

sustainable aquatic food is already here.
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