Particle size measurement
 03/11/2006 A. Trunschke

Further reading

T. Allen, Particle Size Measurement, Volume 1, Powder sampling and particle size measurement methods, Chapmann \& Hall, London 1997.
C. Bernhardt, Particle Size Analysis, Classification and Sedimentation methods, Chapmann \& Hall, London 1994.
J.P.M. Syvitski (Ed.), Principles, methods, and application of particle size analysis, Cambridge University Press, Cambridge 1991.
J.B.J. Berne, R. Pecora, Dynamic Light Scattering, John Wiley \& Sons, Inc. NY, 1976.
H.-D. Dörfler, Grenzflächen- und Kolloidchemie, VCH, Weiheim, 1994.
G. Ertl, H. Knözinger, J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis, VCH, Weinheim, 1997.

Outline

1. Definitions
2. Classification of methods
3. Particles of an active phase - supported metal particles
3.1. Chemisorption

3.2. LBA

3.3. EM

4. Dispersions, colloids, bulk catalysts
4.1. Sieving
4.2. Sedimentation
4.3. Light scattering
4.4. Acoustic methods
4.5. SAXS
5. General remarks and recommendations

Particle
small object of any size from the macroscopic scale ($10^{-3} \mathrm{~m}$) to the atomic scale ($10^{-10} \mathrm{~m}$)

Continuous phase	Disperse phase	Denomination	Examples / applications
Gaseous	Solid	Aerosol	Synthesis of oxides
Liquid	Liquid	Emulsion	Extraction
Liquid	Solid	Suspension Sol Gel	Precipitation Sol-gel chemistry Colloidal metals
Solid	Gaseous	Xerogel, Aerogel, Foam	Supports, bulk catalysts (zeolites)
Solid	Solid	Alloy Dispersed metals	Pt-Rh gauze for NH_{3} oxidation Pt-Sn/Al O_{3}

Particle small object of any size from the macroscopic scale $\left(10^{-3} \mathrm{~m}\right)$ to the atomic scale $\left(10^{-10} \mathrm{~m}\right)$

Heterogeneous catalysis
Sasol aluminas of different particle size
http://www.sasoltechdata.com/alum ina_group.asp

Primary particles of catalyst supports

Metal

Crystallite

Primary particles
small single crystal primary catalyst particles could be formed by one or more crystallites

Secondary

Grains, shaped catalysts

CuZn hydroxycarbonate precipitated

Agglomerates of $\mathrm{MoVTeNbO}_{x}$ crystals (M1) spray-dried

Particle size catalyst particles present a size distrilbution

Complications
\rightarrow Shape is not spherical
\rightarrow Shape is not homogeneous

Size distribution of Cu particles in a methanol synthesis catalyst

Nanoparticles
Very small particles ($1-20 \mathrm{~nm}$) of an active component dispersed on high-surface-area solids

$\mathrm{Ag}-\mathrm{TiO} 2-40$

Classification of methods - Particle diversity

Embedded Cu particles in catalysts for methanol synthesis

Bulk catalyst precursor

Bulk catalysts

$\mathrm{MoV}_{0.3} \mathrm{Te}_{0.23} \mathrm{Nb}_{0.125} \mathrm{O}_{\mathrm{x}}$

1. Materials chemistry, catalyst preparation
+Precipitation
\rightarrow Nucleation
\rightarrow Crystal growth
-Recrystallization
-Dispersions
-Colloids
+Impregnation/incipient wetness
+Surface charge

2. Catalyst

Particle size is related to
\rightarrow Active surface area
\rightarrow Electronic properties
\rightarrow Exposed crystal faces
*Metal-support interaction
\rightarrow Deactivation
\rightarrow Sintering
\rightarrow Coverage

-Solid state

Particle shape is related to
-Exposed active planes (structure sensitive catalytic reactions)
\rightarrow Particle shape and morphology determine the relative amount of edge and corner atoms

Examples from literature

Fig. 2. Effects of particle size on the activity of titania-supported Au for the oxidation of CO (5).
M. Valden, X. Lai, D. W. Goodman, Science 281, 1647 (1998).

Examples from literature

Problem of sintering for catalysts operating at high temperature, e.g., catalysts for
-catalytic combustion of methane
\rightarrow close-coupled automotive exhaust catalysts
\rightarrow steam reforming of methane

Investigation of the sintering mechanism

```
A.K. Datye et al., Catalysis Today
111 (2006) 59-67.
```


Particle size distributions after sintering at $900^{\circ} \mathrm{C}$ for differing lengths of time. All data have been fitted using a log normal distribution: $7 \mathrm{wt} . \%$ Pd/alumina

Examples from literature

Fig. 1. Gruim size as a function of veparszturation/sol.mbility.

Investigation of the particle formation process during precipitation

free-jet SAXS measurements were taken at a distance of 11.5 and 56.5 cm from the mixing point, which corresponds to residence times of 40 and 200 ms

Fig. 2. Dasign for time-rasolved messuraments on fros-jot maspensions. Onlime SAXS and cryo-TEM experiments for studying pracipitation resctions at time $r_{r}=s / v$.
H. Haberkorn et al., Journal of Colloid and Interface Science 259 (2003) 112.

Active phase	Bulk materials / colloids
\rightarrow Chemisorption (essentially	\rightarrow Sieving
restricted to metal particles)	\rightarrow Sedimentation
\rightarrow X-ray diffraction - Line	\rightarrow Light scattering
broadening analysis	\rightarrow Acoustic methods
(crystallite size)	\rightarrow Time-of flight techniques
\rightarrow Small-angle X-ray scattering	\rightarrow Small-angle X-ray
(SAXS) (particle size)	scattering
\rightarrow Electron microscopy	\rightarrow X-ray diffraction - Line
	broadening analysis
	(crystallite size)
	\rightarrow Elecron microscopy

Active phase	Bulk materials / colloids
\rightarrow Chemisorption (essentially restricted to metal particles) \rightarrow X-ray diffraction - Line broadening analysis (crystallite size) -Small-angle X-ray scattering (SAXS) (particle size) \rightarrow Electron microscopy	+ Sieving -Sedimentation \rightarrow Light scattering \rightarrow Acoustic methods \rightarrow Time-of flight techniques \rightarrow Small-angle X-ray scattering -X-ray diffraction - Line broadening analysis (crystallite size) \uparrow Elecron microscopy

Assumptions, if microstructural analysis is not available:
collection of n_{i} particles particles are spherical

Surface area of the spheres
Volume of the spheres

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{i}}=\pi \mathrm{d}_{\mathrm{i}}^{2} \\
& \mathrm{~V}_{\mathrm{i}}=\pi \mathrm{d}^{3} / \mathrm{i}
\end{aligned}
$$

Two mean particle sizes are usually considered:
length-number
volume-area

d_{LN}	$=$	$\Sigma \mathrm{n}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}} / \Sigma \mathrm{n}_{\mathrm{i}}$
d_{VA}	$=$	$6\left(\Sigma \mathrm{n}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}} / \Sigma \mathrm{n}_{\mathrm{i}} \mathrm{A}_{\mathrm{i}}\right)$
	$=\quad \Sigma \mathrm{n}_{\mathrm{i}} \mathrm{d}^{3} / \Sigma \mathrm{n}_{\mathrm{i}} \mathrm{d}^{2}{ }_{\mathrm{i}}$	
$\mathrm{D}(\%)$	$=\quad \quad\left(\mathrm{N}_{\mathrm{s}} / \mathrm{N}_{\mathrm{t}}\right) 100$	
$\mathrm{~N}_{\mathrm{s}}$	number of surface atoms	
N_{t}	total number of atoms 	(bulk and surface)

$=\quad \Sigma \mathrm{n}_{\mathrm{i}} \mathrm{d}^{3} / \Sigma \mathrm{n}_{\mathrm{i}} \mathrm{d}^{2}{ }_{\mathrm{i}}$
$D(\%)=\left(N_{s} / N_{t}\right) 100$
(fraction of surface atoms)

Number of atoms per unit surface area in the three low index planes of copper
(fcc structure with $a=3.615 \times 10^{-10} \mathrm{~m}$)

M atomic mass ($63.55 \mathrm{~g} \mathrm{~mol}^{-1}$)
ρ density $\left(8.92 \mathrm{~g} \mathrm{~cm}^{-3}\right.$)
$\mathrm{N}_{\mathrm{A}} 6.022 \times 10^{23} \mathrm{~mol}^{-1}$

Plane	Surface cell	Area	Area $/ \mathrm{m}^{2}$	Atoms per cell	Atoms per m^{2}
(111)	triangular	$\left(a^{2} \sqrt{ } 3\right) / 2$	11.32×10^{-20}	2	1.77×10^{19}
(100)	square	a^{2}	13.07×10^{-20}	2	1.53×10^{19}
(110)	rectangular	$\mathrm{a}^{2} \sqrt{ } 2$	18.48×10^{-20}	2	1.08×10^{19}
Mean number of atoms per unit area n_{s}	1.46×10^{19}				

Surface area occupied by a Cu atom
Volume occupied by a Cu atom
Specific surface area

Dispersion

$$
\begin{array}{lll}
\text { If } \mathrm{d}_{\mathrm{VA}}=5 \mathrm{~nm}, & \mathrm{~S}_{\mathrm{sp}}= & 134.5 \mathrm{~m}^{2} \mathrm{~g}^{-1} \\
& \mathrm{D}= & 6\left(\mathrm{v}_{\mathrm{m}} / \mathrm{a}_{\mathrm{m}}\right) / \mathrm{d}_{\mathrm{VA}} \\
\text { If } \mathrm{d}_{\mathrm{VA}}=5 \mathrm{~nm} & \mathrm{D}= & 21 \%
\end{array}
$$

Metal particles

Plot of dispersion D as a function of mean diameter d_{VA} for copper, palladium and gold.

Plot of specific surface area $S_{s p}$ as a function of mean diameter d_{VA} for copper, palladium and gold

Metal particles

$A_{\mathcal{O}}=\sqrt{3} a^{2} \approx 1,73 a^{2}$

$A_{O}=2 \sqrt{3} a^{2} \approx 3,46 a^{2}$

$A_{O}=5 \sqrt{3} a^{2} \approx 8,66 a^{2}$

Clusters of cubic metals

891 atom octahedron
\$Spherical geometry should not be used for particles smaller than ca. 1.2 nm
\downarrow For smaller particles, geometrical models should be considered

1289 atom Wulff polyhedron (minimum energy shape)

Metal particle size measurements
-Chemisorption
\rightarrow X-ray diffraction - Line broadening analysis (crystallite size)
-Small-angle X-ray scattering (SAXS) (particle size)
-Electron microscopy

Exposed surface area (esp. of metals)

Other probes
$\mathrm{O}_{2}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{H}_{2} \mathrm{~S}$, $\mathrm{CS}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}, \ldots$

Principle

Formation of an irreversibly, selectively adsorbed monolayer
Stoichiometry of the chemisorption reaction is known

Measurement of the amount adsorbed
+Static methods
\rightarrow Volumetry
\rightarrow Gravimetry
\rightarrow Dynamic methods
\rightarrow Continuous flow
\rightarrow Pulse adsorption
\rightarrow Temperature-programmed desorption / MS

```
S Sp
D (%) = (Vm
Vm
am
n chemisorption stoichiometry
m mass of catalyst (g)
wt metal loading (%)
```


Complications

-Equilibrium coverage increases with adsorption pressure
*Non-selective chemisorption (chemisorption on the support, spillover)
\rightarrow Reversible chemisorption

$$
\mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{Cu}_{\mathrm{s}}{ }^{3} \rightarrow(\mathrm{Cu}-\mathrm{O}-\mathrm{Cu})_{\mathrm{s}}+\mathrm{N}_{2}(\mathrm{~g})
$$

> G.C. Chinchen et al.,
> J. Catal. 103 (1987) 79.
E.D. Batyrev et al., J. Catal. 229 (1) (2005) 136.
M.J. Luys et al., Appl. Catal. 46 (1989) 161.
\rightarrow Chemisorption: Flow of $2 \mathrm{~cm}^{3} / \mathrm{s} 1 \% \mathrm{~N}_{2} \mathrm{O} / 99 \% \mathrm{Ar}$ at 363 K during 50 min *Amount of oxygen consumed was determined from the weight gain of the sample \downarrow Linear extrapolation of the subsurface contribution to $t=0$
\rightarrow Assumtions: $\mathrm{Cu}_{\mathrm{s}} / \mathrm{O}_{\mathrm{ads}}=2,1.46 \times 10^{19} \mathrm{Cu}_{\mathrm{s}}$ atoms $/ \mathrm{m}^{2}$

\rightarrow Increasing the $\mathrm{N}_{2} \mathrm{O}$ concentration, surface oxidation but not subsurface oxidation is increased
-Subsurface oxidation rate increases with temperature (local T during $\mathrm{N}_{2} \mathrm{O}$ chemisorption depends on Cu dispersion as well as thermal properties of the system!)

Continuous flow technique (frontal sorption method)

$$
\mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{Cu}_{\mathrm{s}}^{0} \rightarrow(\mathrm{Cu}-\mathrm{O}-\mathrm{Cu})_{\mathrm{s}}+\mathrm{N}_{2}(\mathrm{~g})
$$

$$
\begin{aligned}
& \Delta_{\mathrm{R}} \mathrm{H}=317 \mathrm{~kJ} / \mathrm{mol} \\
& \left(\mathrm{~N}_{2} \mathrm{O}, \mathrm{Cu} / \mathrm{ZnO}\right)
\end{aligned}
$$

$\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst
\star Flow of $10 \mathrm{Nml} / \mathrm{min}$ $1 \% \mathrm{~N}_{2} \mathrm{O} / \mathrm{He}$ at 300 K , $\mathrm{p}=0.1 \mathrm{MPa}, \mathrm{m}_{\text {cat }}=0.2 \mathrm{~g}$ bed height $=20 \mathrm{~mm}$ contact time $=1.4 \mathrm{~s}$ Δ T approx. 1 K
\rightarrow Determination of N_{2} formed as product of molar flow and peak area
O. Hinrichsen, T. Genger, and M. Muhler, Chem. Eng. Technol. 23 (2000) 11.

Pulse technique (pulse sorption method)
$\mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{Cu}_{\mathrm{s}}{ }^{3} \rightarrow(\mathrm{Cu}-\mathrm{O}-\mathrm{Cu})_{\mathrm{s}}+\mathrm{N}_{2}(\mathrm{~g})$

Injection of successive small pulses of known volume into the flow of an inert gas
\rightarrow Flow of $20 \mathrm{Nml} / \mathrm{min} \mathrm{He}$ $\mathrm{V}=1.0 \mathrm{ml} \mathrm{N}_{2} \mathrm{O}$
$\mathrm{T}=300 \mathrm{~K}$ $\mathrm{p}=0.1 \mathrm{MPa}$
*\#66 $=125 \mu \mathrm{~mol} / \mathrm{g} \mathrm{N}_{2}$
$\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst
O. Hinrichsen, T. Genger, and M. Muhler, Chem. Eng. Technol. 23 (2000) 11.

$$
\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{Cu}_{\mathrm{s}}^{0} \rightarrow(\mathrm{Cu}-\mathrm{H}-\mathrm{Cu})_{\mathrm{s}}
$$

\rightarrow Saturation with H_{2} at 1.5 MPa, T=240K, cooling down in H_{2} flow to 78 K , purging with He
+TPD:
Flow He $100 \mathrm{Nml} / \mathrm{min}$ heating rate $6 \mathrm{~K} / \mathrm{min}$
$\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst
M.Muhler et al., Catal. Lett. 14
(1992) 241.
O. Hinrichsen, T. Genger, and M. Muhler
Chem. Eng. Technol. 23 (2000) 11.

Sequence of experiment	Amount of desorbed N_{2} or $\mathrm{H}_{2}(\mu \mathrm{~mol} / \mathrm{g})$	Specific Cu metal surface area $\left(\mathrm{m}^{2} / \mathrm{g}\right)$
H_{2} TPD	115	18.8
$1 \% \mathrm{~N}_{2} \mathrm{O}$ RFC	217	17.8
H_{2} TPD	115	18.8

-Convenient method for routine measurements
\rightarrow Chemisorption probes the exposed surface $=$ surface relevant for catalysis
\rightarrow Measured surface areas depend on the catalyst pretreatment
-Absolute value of particle size involves many assumptions

Recommendations

Minimization of
\rightarrow Reversible chemisorption
\rightarrow Chemisorption at the support
\rightarrow Reactive chemisorption
By application of proper operating conditions, established by other methods (TPD, FTIR)
\rightarrow Chemisorption of different probe molecules
\rightarrow Investigation of the catalyst with additional/complementary methods helps to avoid misinterpretation of the chemisorption results

Crystallite size (from 1.5-2 nm to 100 nm)
Breadth of a X-ray reflection depends upon
\rightarrow Size of the crystallite

- Defects in the lattice (microstrains or stacking faults)
- Instrumental factors (slit witdth, sample size, penetration of the beam,...)

The Scherrer Formula		
$\mathrm{L}_{\mathrm{hkl}}=\mathrm{k} \lambda /\left(\mathrm{\beta} \cos \theta_{0}\right)$	$\mathrm{L}_{\text {hkl }}$	thickness of the crystallite in the direction perpendicular to the diffracting planes ($h k /$)
	k	shape factor; $\mathrm{k}=1$ (integral); (0.9 for $\beta_{1 / 2}$)
	λ	wavelength of the diffraction line
	β	breadth of the diffraction profile in radians
	θ_{0}	angular position of the peak maximum

Complete Line Profile Analysis

1. Correction for the effects of instrumental broadening
2. Separation between size and strain broadening
3. Derivation of size parameters

For further information, see X-ray diffraction lecture, F. Girgsdies, 20/10/06

Limitations of LBA

- Overlap of different diffraction lines (e.g., reflections from different phases, neighboring reflections of fcc metals are overlapping when the crystals become very small)
\rightarrow Lack of contrast between the intensity of reflections and that of overall scattering, particulary for metals with low atomic number
\rightarrow Upper limit: Broadening of the signal due to crystallite size becomes too small with respect to the instrumental broadening
- Crystallite size is not necessarily particle size
\rightarrow LBA is a bulk analysis !

	$\begin{gathered} \mathbf{S}_{\mathrm{Cu}-\mathrm{RFC}} \\ {\left[\mathrm{~m}^{2} / \mathbf{g}_{\mathrm{cat}}\right]} \end{gathered}$	$\begin{aligned} & \mathbf{S}_{\mathrm{cu}-} \text { XRD } \\ & {\left[\mathrm{m}^{2} / \mathbf{g}_{\mathrm{cat}}\right]} \end{aligned}$
$\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}-1$	17,53 +/-1,47	17,2
$\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}-2$	5,26	20,1
$\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}-3$	8,27	16,3
$\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}-4$	5,72	14,4
$\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}-5$	8,02	17,9
$\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}-6$	4,78	14,2
$\mathrm{Cu} / \mathrm{ZnO-1}$	13,13	30,5
$\mathrm{Cu} / \mathrm{ZnO}-2$	22,07	22,9

RFC: 1 vol- $\% \mathrm{~N}_{2} \mathrm{O}$ (He), flow: $10 \mathrm{ml} / \mathrm{min}$, temperature: $30^{\circ} \mathrm{C}$, sample: $\mathrm{m}_{\text {cat }}=12 \mathrm{mg}+100 \mathrm{mg}$ BN

Cu crystallite size

Size of Cu (111) and Cu (200) crystal planes from the XRD spectra of $\mathrm{Cu} / \mathrm{SiO}_{2}$ (solid symbols) from the XRD spectra of $\mathrm{Cu} / \mathrm{SiO}_{2}$ (solid symbol
and $\mathrm{Cu} / \mathrm{ZnO} / \mathrm{SiO}_{2}$ (open symbols) catalysts at increasing reduction temperature. Assignment: triangles for Cu (111), circles for Cu (200).

$$
\mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{Cu}_{\mathrm{s}}^{0} \rightarrow(\mathrm{Cu}-\mathrm{O}-\mathrm{Cu})_{\mathrm{s}}+\mathrm{N}_{2}(\mathrm{~g})
$$

Equivalent metal surface area of the ZnO -promoted catalyst (triangles) and unpromoted catalyst (circles) as a function of the reduction temperature.
The $\mathrm{ZnO} / \mathrm{SiO}_{2}$ reference is also included (squares).
\rightarrow Powerful technique for understanding the properties of heterogeneous catalysts
\rightarrow Practical industrial catalysts can be directly examined in an electron microscope
-Atomic resolution images (exposed faces, structural defects, surface atomic structure)
\rightarrow Diffraction patterns from nanometer regions
\rightarrow Nanometer-scale spectroscopy - elemental composition, electronic structure, oxidation state (EELS, XEDS, AES, ...)

Limitations

\rightarrow Results generally have poor statistical value, due to the high spatial resolution
+Supported metal catalyst: approx. 1×10^{9} metal particles per cm^{3}
-Accurate determination of size distribution is difficult -high-throughput image analyzers are needed +Sample preparation \rightarrow UHV / beam damage

For further information, see EM lectures, R.Tesche, 19/01/07 D.S.Su, 26/01/07

Combination of methods for characterization of Cu catalysts

	Cu lattice spacing $[\AA]$	Cu lattice strain $[\%]$	$\mathrm{D}_{v} \mathrm{Cu}^{0}$ $[\mathrm{~nm}]$	$\mathrm{Cu}-\mathrm{S}_{0}$ $\left[\mathrm{~m}^{2} / \mathrm{g}\right]$ $-\mathrm{XRD}-$	$\mathrm{Cu} \mathrm{S}_{\circ}$ $\left[\mathrm{m}^{2} / \mathrm{g}\right]$ $-\mathrm{TEM}-$	RFC $\left[\mathrm{m}^{2} / \mathrm{g}\right]$
Cat-1	3.619	0.0123	5.2	31.0	24.0	-
Cat-2	3.618	0.0110	5.8	26.9	-	
Cat-3	3.618	0.0110	5.8	26.9	24.5	32
Cat-4	3.618	0.0137	3.8	41.4	23.2	-
Cat-5	3.616	0.0150	4.2	37.1	26.7	-
Cat-6	3.618	0.0152	4.3	36.8	27.1	-
Cat-7	3.618	0.0128	5.0	31.4	24.7	-

Active phase	Bulk materials / colloids
\rightarrow Chemisorption (essentially restricted to metal particles) \rightarrow X-ray diffraction - Line broadening analysis (crystallite size) \rightarrow Small-angle X-ray scattering (SAXS) (particle size) \downarrow Electron microscopy	+Sieving -Sedimentation \rightarrow Light scattering -Acoustic methods \rightarrow Time-of flight techniques -Small-angle X-ray scattering \rightarrow X-ray diffraction - Line broadening analysis (crystallite size) \rightarrow Elecron microscopy

"Sieving is the Cinderella (Aschenputtel) of particle size analyzing methods."
H. Heywood, Proc. Particle size Anal. Conf., Bradford, Soc. Anal. Chem, 186 (1970) 1.

Mesh size $=$ number of wires per linear inch

sieve designation standard	sieve designation alternate "mesh"	nominal sieve opening (in.)	nominal wire diameter (mm)
125 mm	5	5	8
75 mm	3	3	6.3
63 mm	$21 / 2$	2.5	5.6
53 mm	2.12	2.12	5
50 mm	2	2	5
2 mm	No. 10	0.0787	0.9
1 mm	No. 18	0.0394	0.56
$850 \mu \mathrm{~m}$	No. 20	0.0331	0.5
$500 \mu \mathrm{~m}$	No. 35	0.0197	0.315
$150 \mu \mathrm{~m}$	No. 100	0.0059	0.1
$53 \mu \mathrm{~m}$	No. 270	0.0021	0.036
$20 \mu \mathrm{~m}$	No. 635	0.0008	0.02

-Hard work, but simple and inexpensive
\rightarrow Important for accuracy and reproducibility
\rightarrow Calibration with a calibration powder
\rightarrow Standard operating procedures should be adopted

T. Allen, Particle Size

Measurement, Volume 1, Powder
sampling and particle size
measurement methods,
Chapmann \& Hall, London 1997.

Particle sizing by measurement of settling velocity

Classification
I. According to the position of theparticles at the beginning of the measurement
a) Homogeneous methods

b) Line-start methods
II. Place of quantity measurement
a) Incremental methods (thin layer)
b) Cumulative methods
III. Force field
a) Gravitational methods
b) Centrifugal methods ($\mathrm{d}<1 \mu \mathrm{~m}$)
IV. Measurement principle
a) Gravimetric
b) Absorption of electromagnetic radiation

c) Suspension density
C. Bernhardt, Particle Size Analysis, Classification and Sedimentation methods, Chapmann \& Hall, London 1994.

Static light scattering (Laser diffraction)

Measurement of time-averaged intensity of scattered light
\rightarrow Rayleigh scattering $d<\lambda / 20$
$\mathrm{I}_{\mathrm{s}}=(8 / 3) \pi \mathrm{I}_{0}\left(2 \pi / \lambda_{0}\right)^{4} \alpha^{2}$
\rightarrow Mie scattering $\mathrm{d} \geq \lambda / 20$
Multiple photon scattering at the particle \rightarrow interference \rightarrow angular dependende of the sample scattering intensity and between particles and continuum (solvent)

Dynamic light scattering

Measures Brownian motion and relates this to the size of the particles

From Laser

The particles are moving due to Brownian motion

The correlation is reducing with time Time scale: nanoseconds or microseconds

Speckle pattern
The scattered light falling on the detector.

Average Average
intensity

Dynamic Light Scattering (DLS)

Correlation $=$ degree of similarity between the intensity at t and $(\mathrm{t}+\delta \mathrm{t})$

The relationship between the size of a particle and its speed due to Brownian motion is given by the Stokes-Einstein equation

The rate of decay for the correlation function is related to the particle size

$$
D_{0}=\frac{k T}{6 \pi \eta R}
$$

$D=$ Diffusion coefficient
$\mathrm{k}=$ Boltzmann constant
$\mathrm{T}=$ absolute temperature
$\eta=$ dynamic viscosity of the solvent
$R=$ radius of the particle

DLS - precipitation of CuZn hydroxycarbonates

DLS - precipitation of CuZn hydroxycarbonates

5h sedimentation

Dynamic Light Scattering (DLS)

Limitations

\rightarrow Only diluted suspensions can be measured to prevent multiple scattering of the light after scattered off the particle
$\rightarrow 173^{\circ}$ detection optics - backscatter detection
(Zetasizer Nano ZS) reduces multiple scattering

\rightarrow Implementation of Diffusing Wave Spectroscopy (DWS) analysis of autocorrelation functions from multiply scattered light
-Analysis of concentrated suspensions using fiber-optic probes
\rightarrow Discremination between primary particles and agglomerates not possible

Acoustic methods

http://www.quantachrome.de/messmethoden/index_partikelgroessenbestimmung.html

Small-Angle \underline{X}-ray Scattering Analysis (SAXS)

Mean particle size (from 1 nm to 100 nm), specific surface area and particle shape

Principle:
Scattering of X-rays by small domains of uniform matter (crystalline or amorphous), for which the electron density ρ^{e} is different from the continuous medium

Small-Angle \underline{X}-ray Scattering Analysis (SAXS)

Thin monochromatic X-ray beam
Synchrotron radiation
Neutrons
H.-D. Dörfler, Grenzflächen- und Kolloidchemie, VCH, Weiheim, 1994.

Small-Angle X-ray Scattering Analysis (SAXS)

The central peak scattered intensity gets broader as the domain size (particles, voids) decreases
SAXS parameters (mean size / size distribution / specific surface area) are derived from analysis of the profile of the SAXS curve
I(s) scattered intensity s scattering vector $s=(2 \sin \theta) / \lambda \approx 2 \theta / \lambda$
Guinier
In case of dilute system and identical particle shape the SAXS curve can be represented by an exponetial approximation:

$$
I(s)=\left(\rho_{1}^{e}-\rho_{2}^{e}\right)^{2} V^{2} \exp \left(-4 \pi^{2} s^{2} R_{G}^{2} / 3\right)
$$

$R_{\mathrm{G}} \quad$ radius of gyration $=$ radius of a hypothetical sphere around the center of symmetry
$V \quad$ volume of the domain Relation between R_{G} and the dimension of regular solids: $R_{G}{ }^{2}=(3 / 5) R^{2}$
$R \quad$ radius of a sphere
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right] \rightarrow 2 \mathrm{AlOOH}+\mathrm{Na}_{2} \mathrm{SO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$
starting solutions:
Educt $\mathrm{A}: \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]+\mathrm{NaOH}$ in $\mathrm{H}_{2} \mathrm{O}(\mathrm{pH}$ 13.5)
Educt B: $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{~mol} / \mathrm{l})$
$\mathrm{T}=65^{\circ} \mathrm{C}, \mathrm{pH} 9$, solid concentration of boehmite of about 1.5% by weight

Fig. 17. Online and offline SAXS results on free-jet and on ripened suspensions. Effect of the residence and ripening time t_{r} on the coherence lengths l_{c} and l_{c}^{*} (standard precipitation conditions).
H. Haberkorn et al., Journal of Colloid and Interface Science 259 (2003) 112.

Advantages of SAXS

\rightarrow The method can be used for analysis of powders in either dry state or when suspended in a dispersing medium
\rightarrow Little interference due to multiple scattering in dispersions with high solids concentrations
\rightarrow Sensitive to the presence of agglomerates, hence, the technique can be used to distiguish primary particles from agglomerates and in some cases the morphology of the agglomerates
\rightarrow Complementary to LBA
No routine analysis!

Heterogeneous catalysis

\rightarrow The diversity of particles sizes (from mm to nm) and states of aggregation (solid, liquid, gaseous) account for a large variety of particle size measurement methods.
\rightarrow A combination of two or more methods would be necessary to obtain an unambiguous evaluation of particle size.
-Size distribution,
-Spatial distribution (accessibility/ phase interaction) and
+Particle shape / microstructure are more critical for the performance of a catalysts than the mean particle size.

Acknowledgements

Experimental data for illustration were obtained by
Thomas Hansen
Di Wang
Igor Kasatkin
Gisela Weinberg
Patrick Kurr
Andreas Furche Almudena Celaya Sanfiz Sakthivel Ayyamperumal Olaf Timpe

Rolf Nitzsche, MALVERN Instruments GmbH
Thanks to Doreen Steffen, Gisela Lorenz, Manfred Swoboda
Thank you for your attention!

