

# Socio-ecological suitability for fish production in small water bodies in South Western Uganda, East Africa

**D. Mbabazi**, D., H. Nakiyende, A. M. Taabu, E. Rukuunya, J. Efitre, T. Hyuha, M. Nkambo, P. Tibihikwa, J. Twinamatsiko, S. Bassa, E. Muhumuza, J. Tazibirwa, A. Nankabirwa, V. Mpomwenda J. Twebaze, D. Bilungi & J. S. Balirwa

A paper presented at the NARO-MAK dissemination conference, Speke Resort Hotel Munyonyo, Kampala 21-24<sup>th</sup> November 2016



## **Outline of presentation**

- Introduction
- 2. Methods and Materials
- 3. Results
- 4. Conclusions
- 5. Proposed approaches for fish production
- 6. Implications for Research and Management

#### Introduction

- Abundant water resources in the SWU <u>BUT</u> very low fish supply region
- Fish consumption in the Zone = 4 kg/Person/Year; compared National Average = 8kg/year; Recommended consumption
  - a) FAO 17kgs
  - b) WHO 25kgs
- 3. Region rely on fish supply from Lake Victoria, at unaffordable prices
- 4. FAO estimates that the increased demand of fish will be 35-40 million tones by 2030.

#### Introduction (contd)

- In Uganda alone there is an immediate gap in fish supply of 330,000 tonnes
- This increase cannot be met by only fisheries, but a combination of approaches including aquaculture
- 7. Despite the abundance of small water bodies in SWU their potential for commercial fisheries remains largely unknown

#### **Objective**

This study therefore contributed to that effort by examining the suitability of the SWB in SWU aimed at determining approaches to actualise their potential for fisheries production

#### **Materials and Methods**



Map of study lakes in SWU (4 in Kisoro) and (1 in Kabale)

## Materials and Methods (contd)

- The physico-chemical, phytoplankton and Invertebrates requirements for fish growth were determined using described methods (Kiziito et al. 1993, Wetzel & Likens, 2000; Eftire 2007 respectively),
- Fisheries data was obtained through lake-wide censuses of fishing inputs, commercial Catch Assessments and experimental fishing (gill netting, electro-fishing and basket trapping) following SOPs (LVFO, 2007)
- Community perceptions and socio-economics were obtained through structured questionnaires and FGD
- 4. All the sampling aimed at covering the dry and wet seasons (Dry Season July 2014; Wet season April 2015/March 2016)

#### **Methods and Materials Cont'd**





Electro-fishing



Gillnetting



Focused Group Discussion

## Results – Key Physico-chemical variable

|                                 | Bunyonyi | Chahafi | Kayumbu | Mulehe  | Mutanda | Optimum    |
|---------------------------------|----------|---------|---------|---------|---------|------------|
| Surface area (Km <sup>2</sup> ) | 61       | 1.0     | 2.2     | 4.1     | 26.4    |            |
| Depth (m)                       | 3.3-41.5 | 0.5-5.4 | 0.5-5.3 | 0.5-6.0 | 1.2-60  | >2 and <20 |
| Temp (°C)                       | 21.5     | 21.6    | 21.5    | 21.4    | 22.1    | 21-32      |
| DO (mg/L)                       | 6.4      | 6.8     | 6.1     | 8.2     | 8.4     | > 3.0      |
| рН                              | 7.1      | 7.9     | 7.8     | 7.7     | 7.1     | 6.8-9.5    |
| Cond (µS/cm)                    | 236.6    | 218.6   | 142.7   | 230.7   | 247.4   | 100-2,000  |
| SD (m)                          | 1.6      | 0.6     | 0.6     | 0.5     | 2.0     | 0.5- 0.6   |
| TP (mgL-1)                      | 0.08     | 0.09    | 0.16    | 0.19    | 0.10    | <1.0       |
| NO <sub>3</sub> -N (mgL-1)      | 0.06     | 0.06    | 0.07    | 0.09    | 0.06    | 0-1        |
| NO <sub>2</sub> -N (mgL-1)      | 0.004    | 0.006   | 0.009   | 0.006   | 0.006   | <4         |
| Salinity (ppt)                  | 6.5      | 16.2    | 14.6    | 10.1    | 2.6     | 15-33      |
| TSS ( mgL-1)                    | 3.1      | 5.4     | 6.9     | 5.4     | 2.6     | >10        |

## Results – Biological components –Fish

| Fish group                   | Bunyonyi | Chahafi | Kayumbu | Mulehe | Mutanda |
|------------------------------|----------|---------|---------|--------|---------|
| Mosquito fish                | 1        | 1       | 1       | 0      | 1       |
| Haplochromines (Obuyamba)    | 3        | 4       | 5       | 4      | 4       |
| Tilapiines (Ngenge)          | 1        | 2       | 1       | 2      | 2       |
| Clarias spp (Cat fishes)     | 2        | 2       | 3       | 2      | 2       |
| Barbals spp (Enjuguri)       | 2        | 1       | 1       | 1      | 1       |
| Cray fish                    | 1        | 1       | 1       | 0      | 1       |
| Total number of species      | 10       | 11      | 12      | 9      | 11      |
| Number of individuals        | 924      | 672     | 1593    | 4598   | 1706    |
| Density (individuals/sq. km) | 15       | 672     | 724     | 1121   | 65      |

## Some fish species in the study area



Procambarus clarkii

10/2/2011

## Results – Biological components –Fish food

| Macro-invertebrates groups   | Bunyonyi | Chahafi | Kayumbu | Mulehe | Mutanda |
|------------------------------|----------|---------|---------|--------|---------|
| Ephemeroptera (May flies)    | 0        | 0       | 0       | 0      | 1       |
| Odonata (Dragon flies)       | 0        | 0       | 0       | 0      | 1       |
| Diptera (two winged insects) | 4        | 4       | 4       | 4      | 7       |
| Hirudenia (Leeches)          | 0        | 0       | 0       | 1      | 0       |
| Oligachaetes (Earth worms)   | 0        | 1       | 1       | 0      | 1       |
| Total Number of species      | 4        | 5       | 5       | 5      | 10      |
| Density (individuals/m²)     | 565      | 133     | 1745    | 2498   | 171     |

## Results – Biological components –Fish food

| Algal groups                                  | Bunyonyi | Chahafi | Kayumbu | Mulehe | Mutanda |
|-----------------------------------------------|----------|---------|---------|--------|---------|
| Blue Green                                    | 14       | 15      | 15      | 23     | 13      |
| Green algae                                   | 9        | 12      | 14      | 16     | 10      |
| Diatoms                                       | 7        | 3       | 4       | 8      | 8       |
| Dinoflagellates                               | 1        | 0       | 1       | 1      | 1       |
| Total Number of species                       | 31       | 30      | 34      | 48     | 32      |
| Bio-volume (mm <sup>3</sup> L <sup>-1</sup> ) | 1356     | 389     | 312     | 2626   | 1460    |
| Productivity (Bio-volume                      | 22.2     | 388.5   | 141.9   | 640.6  | 55.3    |
| per Sq. Km)                                   |          |         |         |        |         |

## Fishing effort

| Name of Lake              | Bunyonyi | Chahafi | Kayumbu | Mulehe | Mutanda | Total |
|---------------------------|----------|---------|---------|--------|---------|-------|
| No. of landing sites      | 20       | 1       | 1       | 6      | 26      | 54    |
| No. of fishing crafts     |          |         |         |        |         |       |
| (Dug-outs)                | 119      | 8       | 25      | 27     | 172     | 351   |
| No. of fishers (crew)     | 142      | 8       | 25      | 42     | 306     | 523   |
| Total number of gill nets | 180      | 10      | 82      | 76     | 295     | 643   |
| % gillnets < 4"           | 50.6     | 40.0    | 62.2    | 98.7   | 82.7    | 72.3  |
| % gillnets > 4"           | 49.4     | 60.0    | 37.8    | 1.3    | 17.3    | 27.7  |
| Other fishing gears       |          |         |         |        |         |       |
| Long-line hooks           | 480      |         |         | 600    | 555     | 1635  |
| Hand-line hooks           |          | 2       |         | 5      | 94      | 101   |
| Traps                     | 1255     | 110     | 100     | 35     | 545     | 2045  |
| Spears                    | 7        |         |         |        |         | 7     |
| Mosquito nets             | 6        |         |         |        |         | 6     |

## Distribution of fishing Effort (Landing sites)



Common fishing boats on the lakes

## Fish catch (t) and Beach Value (000 UGX)

|                      | Bunyonyi  | Chahafi | Kayumbu | Mulehe | Mutanda | Av.       |
|----------------------|-----------|---------|---------|--------|---------|-----------|
|                      |           |         |         |        |         | Price/Kg  |
| Clarias              |           |         |         |        | 20.8    | 6,000     |
| Cray fish            | 255.3     | 0.0     | 1.9     |        |         | 20,000    |
| Haplochromines       |           | 0.0     | 0.1     | 11.2   |         | 2,000     |
| Tilapias             |           | 0.4     |         | 3.9    |         | 6,000     |
|                      |           |         |         |        |         |           |
| Total fish catch (t) | 255.3     | 0.4     | 2.0     | 15.0   | 20.8    | 293.5     |
| Total Value of catch |           |         |         |        |         |           |
| (000 UGX)            | 2,552,914 | 2,663   | 37,441  | 45,675 | 124,860 | 2,763,553 |

#### Community concerns, perceptions and impacts

- Open access fishery
- Ineffective fisheries management
- Decline in fish catch= low fish supply

4. Largely depend on fish supplies from far areas (Lake Victoria)





## Community concerns, perceptions and impacts

#### 5. Predation by otters





6. Infestation by fish parasites



## Community concerns, perceptions and impacts

7. Cultivation up to the lake shorelines and sand mining in some cases



8. No gazzetted breeding/nursery grounds



#### **Conclusions**

- Generally all the lakes were suitable for fish production in terms food availability (primary and secondary production) and habitat
- 2. The study lakes were found to have low levels of fish production and supported subsistence fishing
- 3. The region was found to have high fish demand with over 95% of fish sourced from the far districts of Kampala, Masaka and Rakai
- 4. All stakeholders showed total support for the project to realize fish production in the region
- Community practices e.g. destruction of the lake catchment threaten fish biodiversity and water quality

## Proposed approaches for enhancing and sustaining fisheries productivity

- 1. Cage aquaculture (O. niloticus, O. esculentus and Clarias gariepinus) for the deep lakes (Bunyonyi and Mutanda)
- Restocking with herbivorous fishes (O. niloticus, O. esculentus) initially beginning with the shallow lakes (Mulehe, Kayumbu and Chahafi)
- Licensing, gazzetment and protection of fish breeding sites and closed season in all the lakes (especially after restocking initiatives)
- Improved management (effort regulation and habitat protection/restoration) for all the lakes

## Implications for Research and Management

- 1. Package and submit a fish restocking concept/proposal to the DiFR for implementation **(R)**
- 2. Undertake site specific suitability and carrying capacity for Cage Aquaculture for lakes Bunyonyi and Mutanda (R)
- 3. Further research to identify and map fish breeding/nursery sites and seasons to guide gazzetment and protection in all the lakes (especially after restocking initiatives) Licensing (R)
- Strengthen fisheries monitoring, control and surveillance for all the lakes (M)
- 5. Build capacity of the community in cage aquaculture skills to facilitate up scaling and sustainability of the project.





## Acknowledgement



**Makerere University** 

**NaFIRRI** 

KaZARDI

Government of Uganda

Directorate of Fisheries Resources

Local Governments of Kabale and Kisoro Districts

Fisher communities & BMUs





