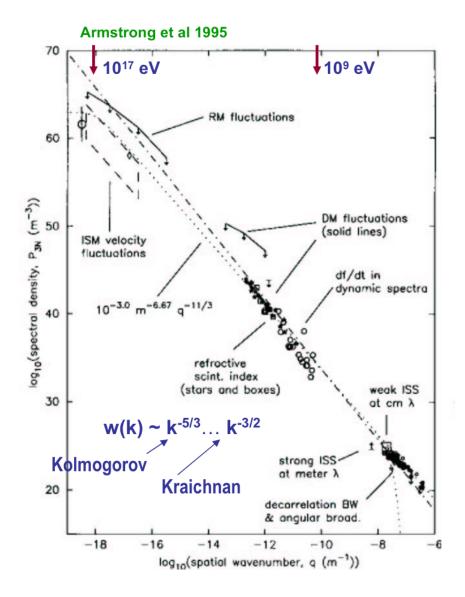

Lecture 6 241018

- Il pdf delle lezioni puo' essere scaricato da
- http://www.fisgeo.unipg.it/~fiandrin/didattica_fisica/ cosmic_rays1819/



Come congequence si he inversione del	Tufetti nel piono I a B, francicatation
moto e variazione di angolo di pitch a	mel nif. del centro di quide con assi e, e. ez
Infetti $v^2 = v_1^2 + v_2^2 = cost.$ perchi	$\vec{P}_c = p(\vec{e}_r \sin \alpha t + \vec{e}_s \cos \alpha t)$
l'unice forzo du agisce à guelle di Lorentz	$e^{quindi}_{\vec{p}} = \alpha p(\hat{e}_{z} \cos \alpha t - \hat{e}_{z} \sin \alpha t) + \sin \alpha t d(p\hat{e}_{z}) + \cos \alpha d(p\hat{e}_{z})$
Quindri sina cosa = VIII -> 0	
quando VII->0	$\vec{p} = \Omega^2 p(-\hat{e}_2 \sin \Omega t - \hat{e}_3 \cos \Omega t) + \Omega p(\hat{e}_2 \cos \Omega t - \hat{e}_3 \sin \Omega t)$
Man Mano che le porticelle avanze mel qued.	+ 2.9 cos atd ($p\hat{e}_2$) - 2.2 sin at d ($p\hat{e}_3$) + sin at d ² ($p\hat{e}_2$) dt
Un diminuisce e « annenta 1/2	$+\cos\Omega t \frac{d^2}{dt^2}(p\hat{e}_3)$
Un diminuisce e « anmenta 1/2 Quando Un=0 -> U_= U e la forze	Dato che < sim at> = < cosat> = 0 => =2p>=2p>=2p>=2p>=0
$F = F = -\frac{1}{2} \frac{u^2}{B} \frac{v^2}{B}$ max	E Termini com px (p. V) contempono
La porticella inverte il moto	siterimien sin ² at cos? at du
the politicade in home the junit	dommo < > = 0
Vi dilai mit a - K/2	
TOODUR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
"Mirron Point" Vi aumente Punto di inv. del	and the second sec
Se J. B. Se J. B. Se J.	The BREAK STREET BALL
Se the the the	
	SB = 1 AXAX SECOSE(X)
si può avere uno treppole magnetice	

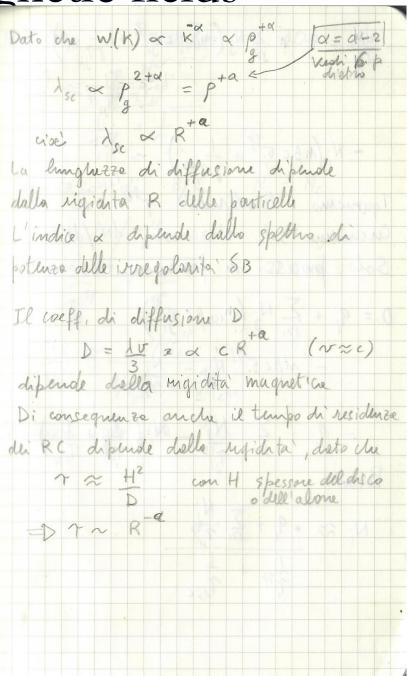
L'emergie totale del campo e Pitch angle scattering Quando il campo presente irrigolinte gha $E_{+} = \int_{-\infty}^{3} u = \frac{4}{8\pi} \int_{-\infty}^{3} \delta B^{2} =$ diente con une distribuzione casuale, $\frac{1}{(2\pi)^3} d^3 k d^3 k' SB_K SB_{K'} \ell$ può esseri rappresentato come $B(\vec{n},t) = \vec{B}_{a} + \vec{\delta B}(\vec{n},t)$ l'integr, su d³r de $S^{3}(k-k')(2\pi)^{3}$ Camp medio Irregolenta random in Ret $E_{T} = \frac{1}{3\pi} \int SB(\vec{k}) d^{3}k = \frac{1}{8\pi} \left(\frac{k^{2}SB(\vec{k})}{k^{2}} dk d\Omega \right)$ La densite di energia à u = B $w(k) = \frac{1}{8\pi} \int k^2 \delta B(\vec{k}) d\Omega = \left[\frac{T^2}{m} \right]$ i le densita' splittale di potenze Siamo interessati ai valmi medi" (p. es. nel $\begin{array}{c} \langle n \rangle = \langle \underline{B}^2 \rangle \\ \overline{B}^2 - \overline{B} \cdot \overline{B} = \overline{B} \cdot \overline{B} = \overline{B}^2 + \delta \overline{B}^2 + 2 \overline{B}^2 \cdot \delta \overline{B} \\ \overline{B} = \overline{B} \cdot \overline{B} = \overline{B}^2 + \delta \overline{B}^2 + 2 \overline{B}^2 \cdot \delta \overline{B} \\ \end{array}$ Dwinch ESB= (W(k) dK $\langle B^2 \rangle = \langle B_2 \rangle + \langle \delta B^2 \rangle + 2 B_2 \cdot \langle \delta B \rangle$ NB: allo vett. K à associata w = KV con V = vel, di popag. dell'ondo. Scriviano il compo 63 come sovra posie. \star K = $2\pi/\lambda$ di mole prome $\delta \vec{B} = \frac{1}{(2\pi)^{3/2}} \int d^{3}K \,\delta \vec{B}(k) e^{i\vec{k}\cdot\vec{m}} \quad Rucio$ $\delta B^{2} = \frac{1}{(2\pi)^{3}} \int d^{3}k d^{3}k' \delta \tilde{B}(k) \delta \tilde{B}(k') e^{i\vec{R}\cdot(\vec{k}-k')}$

((w(k) da l'energie associata a ciaschme	Il campo i quindi representato come la
comp. di Fourier	some pois. di onde con mumino d'onde
- A ciascurre componente k è associate une à du definisce l'ampiezze delle regione spaziale su un l'onde	$k \neq freq. w = w(k)$, ciascime delle quali trasporte una energie $\sim W(k) dk =$ $\delta B(k)$
agisa, r.e. la "scole" tipice della onda componente Di solito w(k) ~ K con l'india a	CKOOD B.
che in generale diplude de K_ La distrib. W(K) dipluse dal tipo diturbo	Possions, a scopo illustrativo, considerare une SB L Bo che si propre pa l'ungo las linere del compo medro Bo-
1 1/3 Kolingrov	"In tel ceso SB "ruota" intorno alla
$\frac{1}{12} = \frac{1}{12} $	direzione di B. con frequenza w
w(k) a = 1 1/2 Knarchman a Roudom disc.	Data taka k a a harrage parates any and
1 white moise	
	and a state way all a way and a state
k	

interstellar turbulence

Velocità v t.c. abbie une comp. Ju lungo	$\delta \vec{B}(k)$ V_n V_{ll}
Bo JSB JU Bo Vah	Pete Bo Bo Bo Bo Bo Bo Bo
La particella oscilla intorno a Bo com la fregu.	Forza $\delta \vec{F}_{L} = \vec{q} \vec{v}_{J} \times \vec{\delta B}(k)$, diretta come \vec{B}_{o} Ren cuis $\vec{q} \vec{v}_{II} = \vec{q} \vec{v}_{J} \vec{\delta B}$
di Larmor SL = #P/AB = Mac BS	La variazione di angolo di pitch
Quando onde e portrella collidoro, il compo SB esercita uno forze di Lorentz sulla porti ella Dato che port. e onde si misvo no l'une verso	$cosd = \frac{5\pi}{5} \implies -sina \delta \alpha = \frac{55\pi}{5} (s=cost.)$ $\implies \delta \alpha = -\frac{55\pi}{5} = -\frac{55\pi}{5}$
l'altre, fo frequ, dell'onde "vista" della poit. subisce uno spost. Doppler w'= $\gamma(w - \vec{k} \cdot \vec{v})$ Per sumplicite supporniano β 5<4< $\Rightarrow \gamma \approx 1$	Rencio $\delta \alpha = \underline{9y} \delta B \delta t = (\underline{9B}) (\underline{\delta B}) \delta t$ $\underline{ny} = \underline{my} \delta B \delta t = (\underline{9B}) (\underline{\delta B}) \delta t$ $\underline{nz} = \underline{9B}_{0} freq. di Larmon$
Dato che K e & hanno versi opposti	$\delta \alpha = -2\delta t \left(\frac{\delta B}{B_{p}}\right)$
w ≈ w+ k J ₁₁ Pa facilitare la Msualizz., separiamo in comp V ₁ e V ₁₁ della vel. della portralla Nel caso di angoli di pitch arbitrori l'interez zione è una compinazione delle due componenti	Et à l'intervallo di tempo in cm parti- cella e compo SB sono in fase e 2St à la froz. di tempo che sono in fase in un periodo di Larmor

NOR P. I F. I	
11. Nella fig. part. e onde sons in fase	o'Se $R \gg 0$ $w = w + kw_{\parallel} \gg 2$ $R \approx w'$
In generale c'e'una fase relative tra campo	In un periodo di Loruna 1/52, il compo
e porticelle $\psi = (\omega + k \sigma_1 - \alpha)t + \phi$	B oscillo molte volte intorno a Bo => Assume
che dipende della fase freque relativa	tutte le possibile orientazioni rispetto a i
$R = w + k v_{1} - 2$	per un (SF) = 0_
Se $R \neq 0$ $\psi = \psi(t)$, le diff. di fase varia meltlupo	La porticelle rede un compo
Se R=0 $\psi = \phi = cost.$, la diff. difese	158 alla fuq, w; deto che w >> re u 160 il valore andre di cossi(t) in
non diplade del tempo	15 100 il valore medio di cos 4(+) in 53 100 m priodo di Larmon e Vi < cos 42 = 1 (cos WE dt =0
0 ASB. La forza di Lorente e	me puisdo di Lamma é
$\partial A \delta B$ $\partial A \delta B$ $\partial F = q \sigma_1 \delta B^2$ aioe $\delta F = q \sigma_1 \delta B \sin \theta$ $Ma \ \partial = \psi + \pi/2 \Rightarrow$	$V_{j} < \cos 4 \\ \lambda_{animon} = \frac{1}{7} \int \cos 4 dt \approx 0$
$\delta F = q \sigma_1 \delta B \sin \theta$	· Se R << O w' << se e R == -se
$Ma \ \theta = \psi + \pi/2 \Rightarrow$	In tal caso, in un periodo di Larmor, la
$\delta F = q v_1 \delta B \cos \psi$	fase dell'onda varia di paco, cise la dir ?.
Se $f = \pi$ si ottiene une diffusione opposta	di SB e = fissa mentre V, le ruota intorno
a quella in cui 4=0 perdie la foiza di Louitz	TI ASB => I assame tutte le possi-
vi to verso opposto al prece- dente	(1 88 0 50 bill' overtazioni rispetto a SB
dente	In tal caso T
	JASB => Jassame tutte le possi- JB B => Jassame tutte le possi- Jassame tutte le
	$= \mathcal{Q} \int \cos \mathcal{Q} t dt = 0$
	- 14 j costeliar - 0


Part IRING I ISIN I	-
l'énció se IRI >> 0, in un periodo la forza	· · Dal d
netta é a o e non c'é deflessione in a	quello
R = W - KV - Q = 0	utilizza
$\overline{v_1} + 8B$ $(p - \overline{v_1} + 8B)$ $(p - \overline{v_1} + 8B)$ $(p - \overline{v_1} + 8B)$ $(p - \overline{v_1} + 8B)$	che de
1 SB e porticello sono in Lace	la com
o, mantenens inalterate la	Lo spet
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	associa
un plando di la plano	
Allone $SF = 95$ $SB \cos \phi = cost. e$	· Per l
δα = - a δt (SB) cos φ in un tempo δt	moquet
Bal ila	Larmo
$\delta_{\alpha_{\text{Lenkon}}} = \int \delta_{\alpha_{\text{Lenkon}}} \int \delta_{\alpha_{\text{Lenkon}}} = -\int \alpha_{\text{St}} \left(\frac{\delta B}{B_{0}}\right) \cos \phi$	La con
$= \cdot \left(\frac{\delta B}{B_0}\right) \cos \Phi$	si tradu
= 1 B ₀ / curv	per ave
In un periodo di Lormor o su une distanze	e ponti
h k = 2 m/k, la partialle cambia l'angalo di	Se w m
pitch di une quantita netta (SB) cos à	mteregis
La foise reletive of determino l'intensita delle	l camp
deflessione. Se p è random, anche bx lo e	

tominio della frequ. si può passare a "spaziale" dei numeri d'onda k = 2 T/2 canche $\omega = K V_{ph} \Rightarrow \lambda = 2\pi V_{ph}$ efinisce la scale fisice su un agrice $mp \delta B(k)$ the dipotenza w(k) formisce la energia ata alle irregolande magneticles in funzione low scala fisica le particelle che si nopagoroo rel campo etico, la scela associata alla freguedi n é il raggio di Larmon p.ndizione di risonouza di giclothone uce wells conditione by ~ 2 rere interazione significativo tra onda ticella P a -> p an & la partiella um sce in media con le irregalatita e segue po medio B

me	da	risa	na	120	e - Tu	Mau	a in	qu						0			sign	C C Land					10	D.
					l'a							-			1		int				1			
				X	n P	R											no h				1			
	6				no d						with	ha'					devi					1000		
	D																ve l							2
cial		p2 S	ma	~	cost.	on	ero	sin	2 =	cos	1.	121	que	lle	di	scel	Herin	g * /	sc				1	
Qu	mol		B	-			1	B				1	Dat	o ch	e	P =	cp =	R		R=	CP :	= rig	dite	L
	and l		2 31	ha c	esolda.	- 51	nda	AB =	=0				P	D D	1	8 dece	ck = 1Bo iamo	Bo	ación	1) (a)	9	mo	m.	-
		0.0	IR	p	(01	× 50	D.						F	1)	4022	100 0000	0.25	ooran	a voo	and the second	myn	con pa	-
	old Fad	=20	2		ox	= 19	a op																	
	da tga	=20	3		vesti esoiddi Sox	= 19	B						ma	preti	ce a	con (riascu	me.	scal	a fis	sice	nel		
	da Fga	=20	2		00	= 19	B						mo	preti tho	ce a di	com i	hascu ze :	ne. J.	~ B/1	e fis Bo	sice	nel	llo	
	da Fga		P'			100							ma spl Son	preti	ce c di ques	com l poten te ir	riascu ze : regoli	ne. J.	~ B/1 che	e fis 3. for	si'ce misc	mel	i	
	<u>ola</u> Fgx					100							ma Spl Son cer	preti tho no itri	ce a di ques di	com l poten te ir	hascu ze :	ne. J.	~ B/1 che	e fis 3. for	si'ce misc	mel	i	
	<u>ola</u> Fgx					100							ma Spl Son cer	preti	ce a di ques di	com l poten te ir	riascu ze : regoli	ne. J.	~ B/1 che	e fis 3. for	si'ce misc	mel	i	
	old Fgx					100							ma Spl Son cer	preti tho no itri	ce a di ques di	com l poten te ir	riascu ze : regoli	ne. J.	~ B/1 che	e fis 3. for	si'ce misc	mel	i	
	tgx					100							ma Spl Son cer	preti tho no itri	ce a di ques di	com l poten te ir	riascu ze : regoli	ne. J.	~ B/1 che	e fis 3. for	si'ce misc	mel	i	
	tgx					100							ma Spl Son cer	preti tho no itri	ce a di ques di	com l poten te ir	riascu ze : regoli	ne. J.	~ B/1 che	e fis 3. for	si'ce misc	mel	i	
	<u>da</u> Fgx					100							ma Spl Son cer	preti tho no itri	ce a di ques di	com l poten te ir	riascu ze : regoli	ne. J.	~ B/1 che	e fis 3. for	si'ce misc	mel	i	

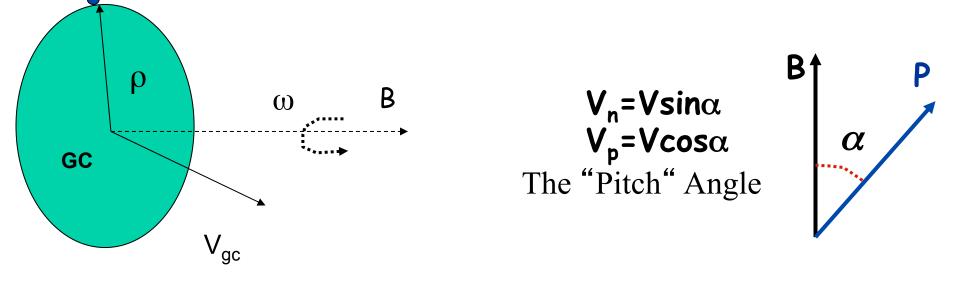
Possicino immeginare il compo nell'ISM	La variatione da Vimplile me spostamento
come un campo predio Bo con sovrepposta	del centro di quide Srica 2 8 Sa; a
treni d'ande dre si propregans in tutte le	le porticelle si spostano in modo cascale
direzioni con fasi cascali. Possiono immedinore du ciascune porticelle	attraverso le line di campo pregn, + ciae diffondorro nel campo B
subisce l'aziane di une porticolare comp.	Dops aver interagito con N ande ABE
del compo solo per une lunghette d'oride	della stesse i aier un la stesse 5 12
1 prime di incentrare un'altre onde con le	densità di energie me fesi
stessa i ma con face arbitrarie rispetto all'ando precedente.	Dops aver interagite con Nonde Alla stesse à orier un la stesse station Ampita di energie me fesi cascuali, la in crascure Alle quali subisce une deviazione
Cosi le partielle interegiscomo successivamente	$\delta_{\alpha} \approx \left(\frac{\delta_{B}}{B}\right)$, le deviazione media
con "molte" onde di lingh. d'onde i con fasi	
relative casuali (equinali casuale repetto alla	$\delta \phi = \frac{1}{2} \delta \alpha_{i} (m < \delta \phi) = 0$
fase delle porticelle) viaggiando rapidamente mel compo finche la deviazione cumulative	$\frac{e}{\langle S \phi^2 \rangle} = \frac{N}{1} \left(\frac{S \omega}{\delta} \right)^2 = \frac{N}{\delta} \frac{\delta \omega^2}{\delta \omega^2} = \frac{N}{1} \left(\frac{\delta B}{B \delta} \right)^2$
dell'angolo di pit de divente grande e le porti	
d'onde	> (S\$) = (28) = (SB) VN Punis per avere une deviazione di 11/2
	sono massarie $N = \pi^2 \left(\frac{B_0}{\delta B}\right)^2$ interationi
	o "collisioni" un le onde

$\frac{1}{4} \frac{1}{8} \frac{1}{4} \frac{1}{8} \frac{1}$
necessarie affindu la portielle "puda
memoria " della sue direzione iniziale_
no La distanzo che la porticelle deve percorre
re per perdere memoria delle sus diretione
iniziale, cioè la lunghezza di diffusione
(o scattering) et
$\left(\begin{array}{c} \text{oscattering}\end{array}\right) e^{\lambda}$ $\lambda_{sc} = N\lambda \approx \frac{\pi^{2}}{4} \frac{\beta_{g}}{g} \left[\frac{\beta_{o}}{\delta \beta(k)}\right]^{2}$
[[1. e. ricorde de alle risonance 2 x By]
Asc dipende de BB(K), la densité di E
associata alla scula fisice en/k = L_
Lo spettro di potenza del campo e dato in
T^2/m^1 , ciae' $B^2(k) = W(k)dk \sim W(k)k$
$\Rightarrow \lambda_{sc} \approx \pi^{2} \beta \frac{B_{0}^{2}}{W(k)k}$
$k = \frac{k}{p} \qquad \Rightarrow \qquad \lambda_{sc} \approx \frac{\pi}{8} \qquad P_{g} \qquad \qquad$
$P_{3} = \frac{CP}{9B_{0}} = \frac{R}{B_{0}} \longrightarrow \frac{\lambda_{3}}{8} \frac{\pi}{8} \frac{R}{W(k)}$
2 980 B0 ~ & W(K)
2 2

Motion in B fields: classical approach

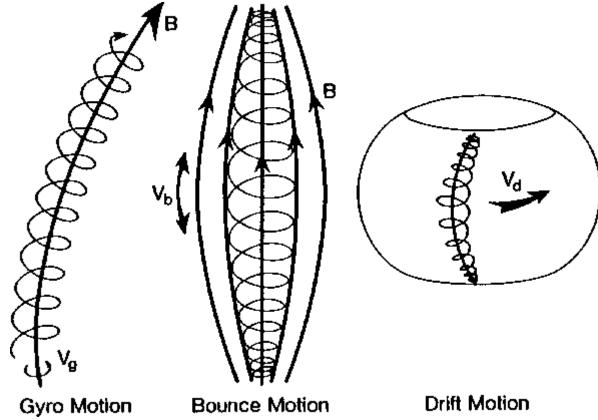
Guiding center decomposition:

Parallel and normal components to the field line: $V=V_p + V_n$ and


 V_n is decomposed in a drift and a gyration with Larmor radius $\rho = P_n/Bq$ and frequency

$$\omega = qB/m \rightarrow V = V_p + V_D + \omega x \rho = V_{gc} + \omega x \rho$$

The motion is then described by a traslation of a point, the Guiding Center, plus a gyration around GC normal to B

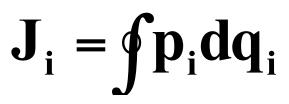

Parallel and normal components are decoupled

If dB/Bdt $< \omega/2\pi$

Motion in B fields: classical approach

- As a consequence of the decoupling, the motion can be decomposed in 3 quasi-periodic components:
- gyration around the field line
- bouncing between the mirror points along the field line
- · drifting normal to the field line and to the field gradient

A more powerful approach: adiabatic invariants in B fields (1)


Guiding center equations are an enormous improvement wrt the Lorenz equation but drift and mirroring equations do not allow long-range predictions of particle location, if no axial simmetry is present

> What is missing? The "constants of motion", analogous to the conservation of E, P, and angular momentum

Fortunately,in mechanical systems undergoing to periodic motion in which the force changes slightly over a period, approximate constants do exist→ the adiabatic invariants

A more powerful approach: adiabatic invariants in B fields

The classical Hamilton-Jacobi theory defines adiabatic invariants for periodic motion: the actionangle variables

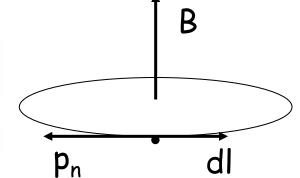
With p_i and q_i action angle variables canonically conjugated and the integral is taken over a full period of motion

dJ/dt~0 provided that changes in the variables occur slowly compared to the relevant periods of the system and the rate of change is constant

Because there are 3 periodic motions, 3 adiabatic invariants can be defined

For a charged particle in a magnetic field, the conjugate momentum is $\underline{P}=\underline{p} + \underline{qA}$, with A vector potential of magn field

Simple example → Mechanical pendulus: if the lenght increases only weakly during one swing, then Energy x Period, E•T, is a quasi-constant of motion, i.e. an adiabatic invariant


1st invariant: gyromotion

The so-called first adiabatic invariant is obtained by integrating P from equation (4.10) around the gyration orbit, where dl is an element of the particle path around the orbit.

$$J_{1} = \oint [\mathbf{p} + q\mathbf{A}] \cdot d\mathbf{I}$$

$$= p_{\perp} \cdot 2\pi\rho + q \oint \mathbf{A} \cdot d\mathbf{I}$$

$$= p_{\perp} \cdot 2\pi \frac{p_{\perp}}{Bq} + q \oint \nabla \times \mathbf{A} \cdot d\mathbf{S}$$
(4.11)

where dS is an element of the area enclosed by the path. Therefore,

$$J_{1} = \frac{2\pi p_{\perp}^{2}}{Bq} + q \oint \mathbf{B} \cdot d\mathbf{S}$$

= $\frac{2\pi p_{\perp}^{2}}{Bq} - qB\pi\rho^{2}$
= $\frac{2\pi p_{\perp}^{2}}{Bq} - \frac{\pi p_{\perp}^{2}}{Bq} = \frac{\pi p_{\perp}^{2}}{qB}$ (4.12)

)

The second term in (4.12) is negative because dS as defined by the particle orbit points in the opposite direction to **B**.

1st invariant: gyromotion

$$\frac{dJ_1}{dt} = \frac{\pi d}{qdt} \left(\frac{p_n^2}{B}\right) \qquad \frac{d}{dt} \left(\frac{p_n^2}{B}\right) = \left(\frac{dp_n^2}{Bdt} - \frac{p_n^2}{B^2}\frac{\partial B}{\partial t}\right)$$

Moltiplico per B/p²
$$\frac{B}{p_n^2} \frac{d}{dt} \left(\frac{p_n^2}{B}\right) = \left(\frac{dp_n^2}{p_n^2 dt} - \frac{1}{B} \frac{\partial B}{\partial t}\right)$$

Let |B| vary in time uniformly. Because B varies in time, there an induction field such that

$$\oint \nabla \times \mathbf{E} \cdot d\mathbf{S} = \oint \mathbf{E} \cdot d\mathbf{l} = -\oint \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S} = -\pi \rho^2 \frac{\partial B}{\partial t} \qquad (4.14)$$

The energy change in one revolution or in one gyroperiod τ_g is therefore
$$\Delta W = -q \oint \mathbf{E} \cdot d\mathbf{l} = q \pi \rho^2 \frac{\partial B}{\partial t} \qquad (4.15)$$

undamental assumption is that dB/dt does not vary over a gyroperiod, dB/dt~cost per t < \tau_g

The ft ence

$$\frac{\mathrm{d}W}{\mathrm{d}t} = \frac{\Delta W}{\tau_{\rm g}} = q\pi\rho^2 \frac{\partial B}{\partial t} \cdot \frac{Bq}{2\pi \ \mathrm{m_o}\gamma} \qquad \tau_{\rm g} = 2\pi/\omega = 2\pi \mathrm{m_o}\gamma/\mathrm{qB}$$
$$= \left(\frac{p_n^2}{2m_o\gamma B}\right) \frac{\partial B}{\partial t} \qquad (4.16)$$

1st invariant: gyromotion

Also, $\frac{\mathrm{d}W}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(\gamma m_0 c^2) = m_0 c^2 \frac{\mathrm{d}\gamma}{\mathrm{d}t}$ (4.17)where $\gamma = E_n / m_o c^2$ $\frac{d\gamma}{dt} = \frac{d}{dt} \left[1 + \frac{p_{\perp}^2}{m_0^2 c^2} \right]^{1/2} = \left[p_n^2 + (m_0 c^2)^2 \right]^{1/2} / m_0 c^2 = \left[(p_n / m_0 c^2)^2 + 1 \right]^{1/2}$ $=\frac{1}{2m_0^2c^2\gamma}\frac{\mathrm{d}p_\perp^2}{\mathrm{d}t}$ (4.18)Equate (4.16) and (4.17) using (4.18) for $d\gamma/dt$ to obtain $1 \partial B = 1 d p_{\perp}^2$ $\frac{\overline{B} \ \partial t}{p_n^2} \frac{d}{dt} \left(\frac{p_n^2}{B}\right) = \left(\frac{dp_n^2}{p_n^2 dt} - \frac{1}{B} \frac{\partial B}{\partial t}\right) = 0$ Therefore $\frac{p_{\perp}^2}{p_{\perp}} = \text{constant}$ and (4.19)and it follows that $\mu = p_{\perp}^2/2m_0 B$ is also constant.

Adiabatic invariants in B fields: 1st invariant

If B field varies only weakly in 1 gyroradius, i.e. $dB/Bdt << w_L/2\pi$, or $Bd\rho/dB << \rho$, then

$$\mu = \frac{p_{\perp}^{2}}{2m_{o}B} \approx \text{const.} \quad \text{or} \quad I_{1} = J_{1}/p = \sin^{2}\alpha/B \approx \text{const.}$$

$$\cdot \text{When } \alpha = 90^{\circ}, \text{ mirroring occurs,}$$

$$\text{and } B_{m} = B/\sin^{2}\alpha \text{ defines the mirror field value}$$

$$\text{which is the same at all the mirror points along the}$$

$$\text{particle trajectory, i.e. particle reflection occurs}$$

$$always at B_{m} = \text{constant.}$$

$$\text{At magn equator, } \alpha \text{ is minimum and}$$

$$\sin^{2}\alpha_{eq} = B_{eq}/B_{m}$$

$$\sin^{2}\alpha = B/B_{m}$$
any field value $\rightarrow \alpha$ depends only on the field

$$B_{m} \text{ is an adiabatic invariant because}$$

$$\text{identical to an adiabatic invariant and}$$

$$\text{because } B_{eq} \text{ is a constant } \alpha_{eq} \text{ is an}$$

$$\text{adiabatic invariant too}$$

Adiabatic invariants in B fields: 2nd invariant

Bouncing
$$\rightarrow \mathbf{J}_2 = \oint \left(\vec{p} + q\vec{A} \right) \cdot \mathbf{d}\vec{s}$$

with ds element of path along the field line

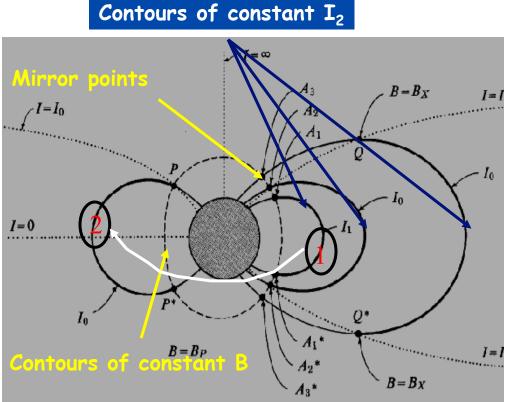
(4.30)

If B field varies weakly on a scale comparable with the distance traveled along the field by the particle during one gyration $\rightarrow \nabla_p B/B \ll \omega_L/2\pi v_p$ then J₂~const.

The 2nd term gives
$$\oint q \mathbf{A} \cdot d\mathbf{s} = q \int \nabla \times \mathbf{A} \cdot d\mathbf{S}$$
$$= q \int \mathbf{B} \cdot d\mathbf{S}$$
$$= 0$$

since the integration path along the field line encloses a negligible area and no magnetic flux.

Therefore


$$J_2 = \oint \mathbf{p} \cdot d\mathbf{s} = \oint p \cos \alpha \, ds = \oint p_{\parallel} \, ds = \text{constant}$$

Da dimostrare..

Adiabatic invariants in B fields: 2nd invariant

J₂ does not depend on particle properties but only on field structure, because $\cos\alpha = (1-\sin^2\alpha)^{1/2} = [1-B(s)/B_m]^{1/2}$

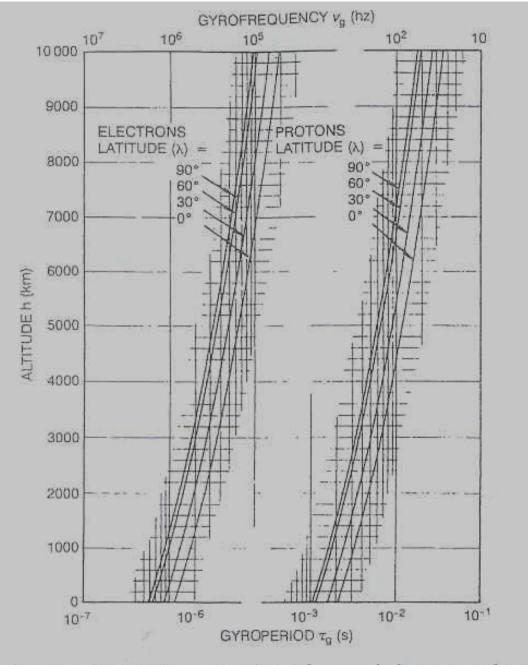
$$J_2 = p \int_{s'}^{s} \sqrt{1 - B(s)/B_m} ds \rightarrow I_2 = \frac{J_2}{2p} \approx const$$

The primary use of I_2 is to find surfaces mapped out during bouncing and drifting. A particle initially on curve 1, with a given I, will drift on curve 2 (with the same I) and return to 1, mirroring at B_m in both the hemispheres throughout the drifting. At each longitude there is ONLY one curve –or field line segment- having the required value of I. The particle will follow a trajectory made of field line segments such that I is constant. Adiabatic invariants in B fields: 3rd invariant

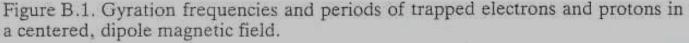
Drifting
$$\rightarrow \mathbf{J}_3 = \oint (\vec{p} + q\vec{A}) \cdot \mathbf{d}\vec{l}_D$$
 with dl_D element along the long drift path

If B field varies only weakly in the area encircled by particle during the gyration or drift motion i.e. $\nabla \mathbf{B}_n / \mathbf{B} \ll \omega_L / 2\pi v_n$ or $\nabla \mathbf{B}_n / \mathbf{B} \ll \omega_L / 2\pi v_D$

then $J_3 \sim \text{const.}$


$$\mathbf{J}_{3} = \oint_{drift} (\mathbf{q}\vec{\mathbf{A}} + \vec{\mathbf{p}}) \cdot \mathbf{d}\vec{\mathbf{l}}_{\mathbf{D}} \approx \oint_{drift} \mathbf{q}\vec{\mathbf{A}} \cdot \mathbf{d}\vec{\mathbf{l}}_{\mathbf{D}} = \int (\nabla \times \vec{A}) \cdot dS = \int \vec{B} \cdot d\vec{S} = \mathbf{q}\boldsymbol{\Phi} \approx \mathbf{const}$$

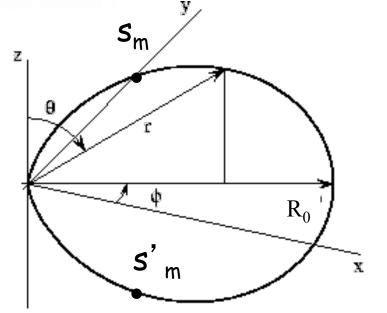
The 3rd invariant is prop to magnetic flux Φ enclosed by drift path


Important to describe drifts paths during slow changes of B.
In slowly changing fields 1st and 2nd invariant are conserved
but E can change, e.g. due to slow compression/expansion of field or secular variations of the field.
Conservation of Φ requires particles to move inward/outward reversibly on the orbit during changes.
Rapid changes, i.e. dB/dt>

Motion periods: gyration

- The periods of three components are characteristic with a precise hierarchy: $\tau_L \ll \tau_b \ll \tau_D$ at the approximation of guiding center and of adiabatic invariant approach. Gyration motion: an istantaneous circular motion normal to the field line.
- The frequency of the motion is given by the Larmor frequency $\tau_L = 2\pi/\omega = 2\pi m/qB$ with a Larmor radius $\rho = p_n/qB = p \sin \alpha/qB$. For relativistic particles $\tau_L = 2\pi m_o \gamma /qB$ and $\gamma = E/m_o c^2 \rightarrow \tau_L = 2\pi E /qBc^2$
- Typical ranges are $10^{-3} 10^{-6}$ sec (i.e. kHz Mhz freq. range)

Motion periods: bouncing


Bouncing motion: between the mirror points S, S' where $\alpha = 90^{\circ}$. The period is given by

$$\tau_{\rm b} = 2 \int_{s_{\rm m}}^{s_{\rm m}'} \frac{\mathrm{d}s}{v_{\parallel}(s)} = \frac{2}{v} \int_{s_{\rm m}}^{s_{\rm m}'} \frac{\mathrm{d}s}{\cos \alpha(s)}$$
$$= \frac{2}{v} \int_{s_{\rm m}}^{s_{\rm m}'} \frac{\mathrm{d}s}{\sqrt{\left[1 - \frac{B(s)}{B_{\rm m}}\right]}} = \frac{2}{v} \int_{s_{\rm m}}^{s_{\rm m}'} \frac{\mathrm{d}s}{\sqrt{\left[1 - \frac{B(s)}{B_{\rm eq}}\sin^2 \alpha_{\rm eq}\right]}}$$

For a dipole field

$$\tau_{\rm b} = 0.117 \left(\frac{R_0}{R_{\rm E}}\right) \frac{1}{\beta} [1 - 0.4635 (\sin \alpha_{\rm eq})^{3/4}] \, {\rm s}$$

It depends only on R_0 , the equatorial distance of the field line from the dipole center and on the particle speed β . There is only a weak dependence on the pitch angle

Motion periods: drift

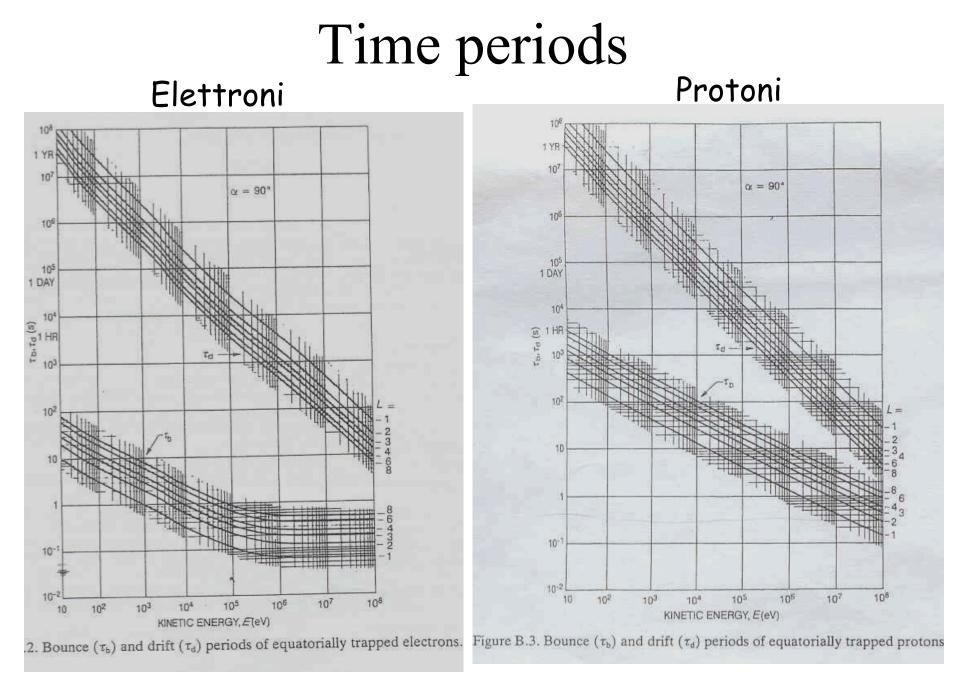
The drift period is given the average drift speed over a bounce period $\langle d\Phi/dt \rangle = \Delta \Phi/\tau_b$ as $\tau_D = 2\pi/\langle d\Phi/dt \rangle$.

In a dipole, after a numerical integration, the drift period is given by

$$\tau_{\rm d} = \frac{2\pi q B_0 R_{\rm E}^3}{mv^2} \frac{1}{R_0} [1 - 0.3333(\sin \alpha_{\rm eq})^{0.62}]$$
(4.46)

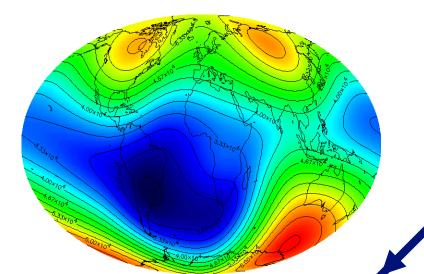
This approximation can be simplified by collecting all constant factors to give

$$\tau_{\rm d} = C_{\rm d} \cdot \left(\frac{R_{\rm E}}{R_0}\right) \frac{1}{\gamma \beta^2} [1 - 0.3333(\sin \alpha_{\rm eq})^{0.62}]$$
(4.47)


where

 $C_{\rm d} = 1.557 \times 10^4 \, {\rm s}$ for electrons

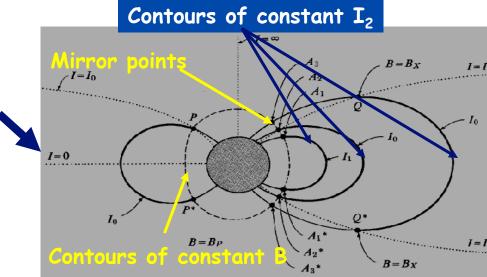
and


 $C_{\rm d} = 8.481$ s for protons

 $\gamma\beta^2 = (E/m_oc^2)[E^2 - (m_oc^2)^2]/E^2 = E/m_oc^2 - m_oc^2/E \rightarrow$ for relativistic particles the period scales as 1/E

Adiabatic invariants in B fields: coordinates

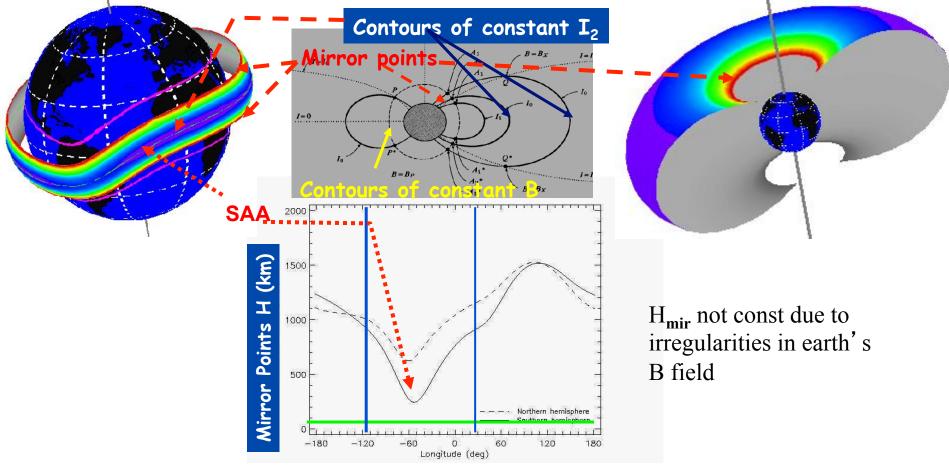
Any reference system based on geocentric coordinates does not allow insights into the relationships between the particle distributions at different locations due to lack of simmetry in the irregular geomagnetic



field

What is needed is a coord system based on trapped particle motion which will have naturally identical values for equivalent magnetic positions

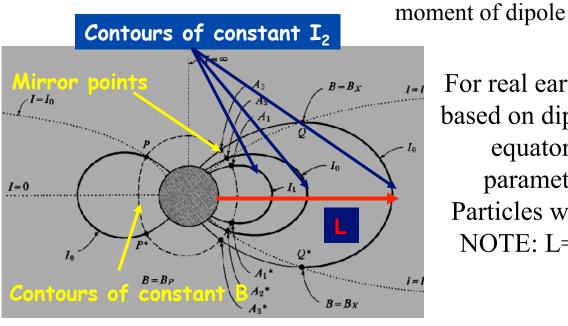
Adiabatic invariants provide


such a coordinates system

To conserve invariants particles will move following segments of field lines such that B_m (or α_o), L, Φ are conserved

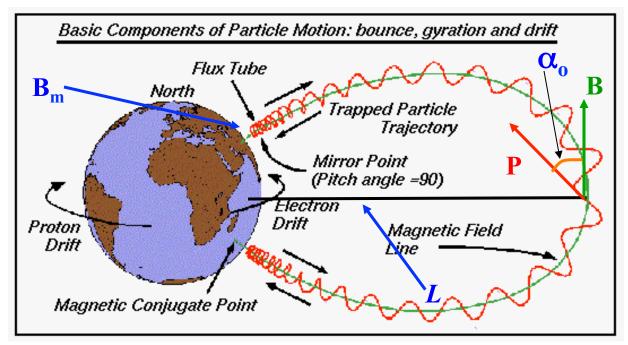
Adiabatic invariants in B fields:drift shells (1)

The ensemble of field lines segments of constant invariants forms the surface mapped out by the guiding center of a particle during its motion: the drift shell



<u>All the particles with the same invariants map out the same</u> <u>drift shell, i.e. are equivalent from magnetic point of view</u>

Adiabatic invariants in B fields:drift shells (2)


Adiabatic Invariants are difficult to visualize and interpret
in a simple way, due to their complicate definition what is needed is to build more easily readable coords derived from AI:
μ → B_m or α_{eq}, because are very easy to interpret and are still AI
→ all the particles with same B_m and α_{eq} will mirror at same location

For I₂ a dipole analogy: in a dipole field, all particles with same AI will cross magn. equator at same distance R₀ from dipole axis, i.e. particles will remain on field lines having the same R₀ \Rightarrow R₀=f_D(I_D,B_D,M_D) with f_D known function of dipole AI of the particle and magn

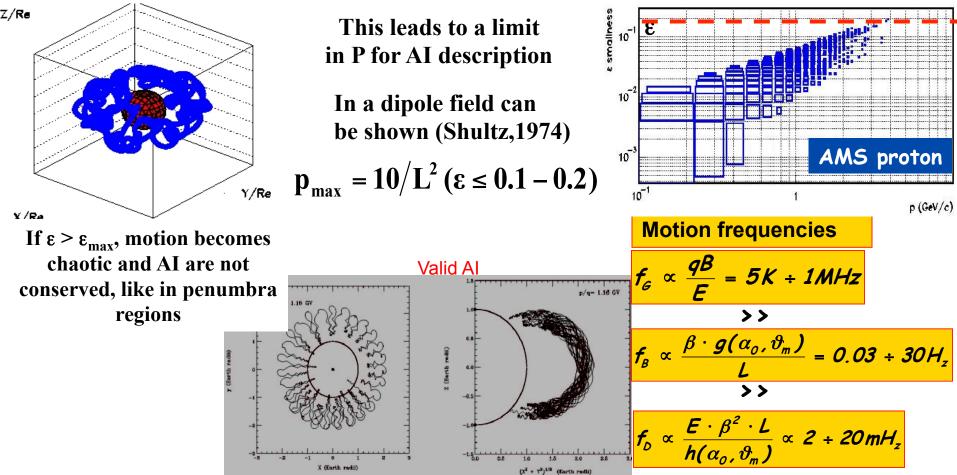
For real earth's field a new variable is defined based on dipole f_D : by definition the equivalent equatorial radius, L, called McIllwain parameter, is given by $LR_E=f_D(I,B,M_E)$ Particles will follow paths such that L=const. NOTE: L=const. does not imply R const.!!!

Motion in Earth's Magnetic Field

 3 quasi-periodic motion comp.
 Adiab. Invariants

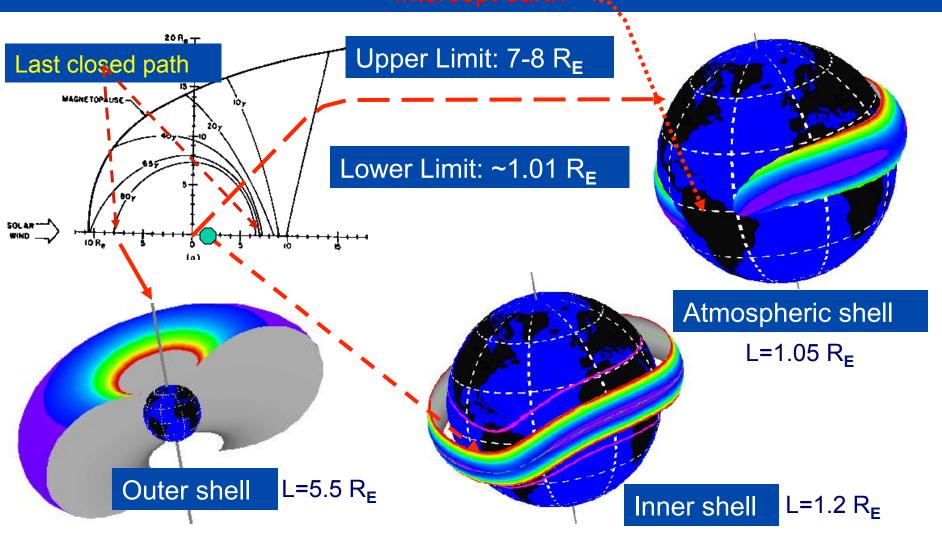
 > Gyration with Larmor freq.
 $\longrightarrow B_m$ or α_o

 > Bouncing betw. mirror points
 \longrightarrow Shell Par. L


 > East-West drift
 \longleftarrow Mag. Flux Φ

Particles with the same adiabatic invariants (*L*,a_o) or (*L*,*B*_m) have same motion in the Earth's field

Adiabatic invariants in B fields:validity


Adiabatic approach is an approximate description and validity requires small changes during relevant motion periods

Validity of AI requires time scale for gyration, bouncing and drifting to be well separated by a smallness parameter $1/\epsilon(p)=1/(\rho_{eq}/R_{eq})>>1$ with ρ and R Larmor and field line curvature at equ and momentum p.

The Radiation Belts (1)

The radiation belts are formed by all the drift shells envelopped from last closed path down to atmosphere limit where shells intercept earth

Bibliografia:

Roederer, Dynamics of geomagnetically trapped radiation, Springer-Verlag 1970,

Walt, Introduction to geomagnetically trapped radiation, University Press, Cambridge, 1994.

http://www.spenvis.oma.be/spenvis/help/background/traprad/traprad.html