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Motion in B fields: classical approach 
Guiding center decomposition: 

Parallel and normal components to the field line: V=Vp + Vn and 
Vn is decomposed in a drift and a gyration with Larmor radius ρ=Pn/Bq and frequency 

ω=qB/m è V= Vp + VD + ωxρ = Vgc + ωxρ 
The motion is then described by a traslation of a point, the Guiding Center, plus a 

gyration around GC normal to B 
Parallel and normal components are decoupled 

If dB/Bdt<<ω/2π

Vgc 

B ω

GC 

ρ B 

α
Vn=Vsinα
Vp=Vcosα

The “Pitch“ Angle 

P 



Motion in B fields: classical approach 

As a consequence of the decoupling, the motion can be 
decomposed in 3 quasi-periodic components: 
•  gyration around the field line  
•  bouncing between the mirror points along the field line 
•  drifting normal to the field line and to the field gradient 



A more powerful approach: adiabatic invariants in B 
fields (1) 

Guiding center equations are an enormous improvement wrt the Lorenz 
equation but drift and mirroring equations do not allow long-range 
predictions of particle location, if no axial simmetry is present 

What is missing? The “constants of motion”, 
analogous to the conservation of E, P, and angular 

momentum 

Fortunately,in mechanical systems undergoing to periodic motion in which 
the force changes slightly over a period, approximate constants do  

existè the adiabatic invariants 



A more powerful approach: adiabatic invariants in B fields  
The classical Hamilton-Jacobi 

theory defines adiabatic invariants 
for periodic motion: the action-

angle variables 
∫= iii dqpJ

With pi and qi action angle variables canonically 
conjugated and the integral is taken over a full 

period of motion 

dJ/dt~0 provided that changes in the variables occur 
slowly compared to the relevant periods of the system and 

the rate of change is constant 

Simple exampleà Mechanical pendulus: if the lenght increases only 
weakly during one swing, then Energy x Period, E•T, is a quasi-constant  

of motion, i.e. an adiabatic invariant 

For a charged particle in a magnetic field, the conjugate momentum  
 is P=p + qA , with A vector potential of magn field 

Because there are 3 periodic motions, 3 adiabatic invariants can be defined 



1st invariant: gyromotion 
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1st invariant: gyromotion 
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Let |B| vary in time uniformly. Because B varies in time, there an induction field such that 

τg= 2π/ω=2πmoγ/qB 

The fundamental assumption is that dB/dt does not vary over a gyroperiod, dB/dt~cost per t < τg 
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1st invariant: gyromotion 
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Adiabatic invariants in B fields: 1st invariant 

If B field varies only weakly in 1 gyroradius, i.e. dB/Bdt<<wL/2π, or 
Bdρ/dB<<ρ, then 

const.
B2m

pµ
o

2

≈= ⊥ .const≈== BαsinpJI 2
11or 

• When α=90o, mirroring occurs, 
  and Bm=B/sin2α defines the mirror field value 
which is the same at all the mirror points along the 

particle trajectory, i.e. particle reflection occurs 
always at Bm =constant. 

  At magn  equator, α is minimum and 
  sin2αeq=Beq/Bm 

  sin2α=B/Bm  
  at any field valueàα depends only on the field 

Bm is an adiabatic invariant because 
identical to an adiabatic invariant and 

because Beq is a constant αeq is an 
adiabatic invariant too 

When B      , α       

αeq 
α1 α2 



Adiabatic invariants in B fields: 2nd invariant 

with ds element of path along the field line Bouncingà  J2 =
!p+ q
!
A( ) ⋅d!s!∫

If B field varies weakly on a scale comparable with the distance traveled along the field by the 
particle during one gyration à  pLp πv2/ωB/B <<∇ then J2~const. 

The 2nd term gives 

Da dimostrare.. 



Adiabatic invariants in B fields: 2nd invariant 
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 J2 does not depend on particle properties but only on field structure, because 
cosα=(1-sin2α)1/2= [1-B(s)/Bm]1/2 

The primary use of I2 is to find surfaces 
mapped out during bouncing and drifting. A 
particle initially on curve 1, with a given I, 
will drift on curve 2 (with the same I) and 
return to 1, mirroring at Bm in both the 
hemispheres throughout the drifting. 
At each longitude there is ONLY one curve 
–or field line segment- having the required 
value of I. The particle will follow a 
trajectory made of field line segments 
such that I is constant. 

Contours of constant I2 

Contours of constant B 

Mirror points 
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Adiabatic invariants in B fields: 3rd invariant 

with dlD  element along the long drift path Driftingà  

then J3~const. 

If B field varies only weakly in the area encircled by particle during the gyration 
or drift motion i.e.                                          or  

nn v/2πω/BB L<<∇ Dn v/2πω/BB L<<∇

constqΦldAqld)pA(qJ DD3 ≈=⋅=⋅×∇=⋅≈⋅+= ∫∫∫∫ SdBdSA
driftdrift

!!!!!!
)(

The 3rd invariant is prop to magnetic flux Φ enclosed by drift path 

Important to describe drifts paths during slow changes of B. 
In slowly changing fields 1st and 2nd invariant are conserved 

but E can change, e.g. due to slow compression/expansion of field 
or secular variations of the field. 

Conservation of Φ requires particles to move inward/outward 
reversibly on the orbit during changes. 

Rapid changes, i.e. dB/dt>>BwD, will cause permanent changes in 
Φ and therefore in particle orbits, e.g. solar storms, CME,… 

( )∫ ⋅+= DlAqp
!!! dJ3



Motion periods: gyration 

The periods of three components are characteristic with a precise hierarchy: τL<<τb<<τD at the 
approximation of guiding center and of adiabatic invariant approach. 
Gyration motion: an istantaneous circular motion normal to the field line. 
The frequency of the motion is given by the Larmor frequency τL =2π/ω= 2π m/qB with a 
Larmor radius ρ=pn/qB=psinα/qB. 
For relativistic particles τL= 2π moγ /qB and γ=E/moc2 à τL= 2πE /qBc2  
Typical ranges are 10-3 – 10-6 sec (i.e. kHz - Mhz freq. range)
 



Larmor 
period 



Bouncing motion: between the mirror points S, S’ where α=90o. The period is given by 

Motion periods: bouncing 

R0 

• 

• 

sm 

s’m 

It depends only on R0, the equatorial distance of the 
field line from the dipole center and on the particle 
speed β. There is only a weak dependence on the pitch 
angle 

For a dipole field  



Motion periods: drift 
The drift period is given the average drift speed over a bounce period <dΦ/dt>=ΔΦ/τb as 
τD =2π/ <dΦ/dt>. 
In a dipole, after a numerical integration, the drift period is given by 

γβ2=(E/moc2)[E2-(moc2) 2]/E2= E/moc2  - moc2/Eà for relativistic particles the period 
scales as 1/E 



Time periods 
Elettroni  Protoni 



Adiabatic invariants in B fields: coordinates 

To conserve invariants particles will 
move following segments of field lines 
such that Bm (or αo), L, Φ are conserved  

Any reference system based on geocentric coordinates does not allow  
insights into the relationships between the particle distributions at 

different locations due to lack of simmetry in the irregular geomagnetic 
field 

What is needed is a coord system based 
on trapped particle motion which will 

have naturally identical values for  
equivalent magnetic positions 

   Adiabatic invariants provide     
such a coordinates system 

Contours of constant I2 

Contours of constant B 

Mirror points 



Adiabatic invariants in B fields:drift shells (1) 
The ensemble of field lines segments of constant invariants forms the surface 

mapped out by the guiding center of a particle during its motion:  
the drift shell 

All the particles with the same invariants map out the same 
drift shell, i.e. are equivalent from magnetic point of view 
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Contours of constant I2 

Contours of constant B 

Mirror points 

SAA 

Hmir not const due to 
irregularities in earth’s  
B field 



Adiabatic invariants in B fields:drift shells (2) 

Adiabatic Invariants are difficult to visualize and interpret 
in a simple way, due to their complicate definition what is needed is to 

 build more easily readable coords derived from AI: 
µ  è Bm or αeq, because are very easy to interpret and are still AI 

      àall the particles with same Bm and αeq will mirror at same location 

For I2 a dipole analogy: in a dipole field, all particles with same AI will cross magn. equator at 
same distance Ro from dipole axis, i.e. particles will remain on field lines having the same R0 
è R0=fD(ID,BD,MD) with fD  known function of dipole AI of the particle and magn 

moment of dipole 
Contours of constant I2 

Contours of constant B 

Mirror points 

L 

For real earth’s field a new variable is defined 
based on dipole fD: by definition the equivalent 

equatorial radius, L, called McIllwain 
parameter, is given by LRE=fD(I,B,ME)  

Particles will follow paths such that L=const. 
NOTE: L=const. does not imply R const.!!! 



Motion in Earth’s Magnetic Field 

Adiab. Invariants 
Bm or αo 

Shell Par. L 
Mag. Flux Φ

3 quasi-periodic  motion comp. 
Ø Gyration with Larmor freq.  
Ø Bouncing betw. mirror points 
Ø East-West drift  

L 

αo 

Particles with the same adiabatic invariants (L,ao) or (L,Bm) have same 
motion in the Earth’s field 

P 

B Bm 



Adiabatic invariants in B fields:validity 
Adiabatic approach is an approximate description and validity requires small changes 

during relevant motion periods 

Validity of AI requires time scale for gyration,bouncing and drifting to be well 
separated by a smallness parameter 1/ε(p)=1/(ρeq/Req)>>1 with ρ and R Larmor and 

field line curvature at equ and momentum p. 

Valid AI 

In a dipole field can  
be shown (Shultz,1974) 

This leads to a limit 
in P for AI description 

If ε > εmax, motion becomes 
chaotic and AI are not 

conserved, like in penumbra 
regions  
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The Radiation Belts (1) 
The radiation belts are formed by all the drift shells envelopped 

from last closed path down to atmosphere limit where shells 
intercept earth 

Last closed path 

Outer shell Inner shell 

Atmospheric shell 

L=5.5 RE L=1.2 RE 

L=1.05 RE 

Upper Limit: 7-8 RE 

Lower Limit: ~1.01 RE 
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