Fascia The Under Appreciated Tissue

Skin (Integument)

Overview of the Skin

- Largest organ of the body (15% of body weight)
- Skin thickness variable, normally 1-2 mm
- Protection
 - chemical barrier (waterproof)
 - physical barrier (tough)
 - immune system activator
- Body temperature regulation
 - blood flow through the skin
 - sweat glands
 - hairs
- Sensation
 - sense touch, temperature and pain
 - provides information outside of the body

Assessment of Skin Color

- Cyanosis is a bluish discoloration of the skin or mucous membranes
 - caused by lack of oxygen in the blood.
- Yellowish color
 - may indicate cirrhosis of the liver due to accumulating bile pigments in body tissue
- Pallor or Blanching:
 - can be sign of anemia or emotional or physical stress
- Black and Blues:
 - Bruises caused by blood escapes circulation and clots underneath the skin.
- Red color(erythema)
 - indicate fever, allergy, infection inflammation and embarrassment.

Fascia

- Connective tissues that plays an important role in human function.
 - 16% of total body weight and stores 23% of total water composition
- It connects all the tissues of the human body together including the muscles, organs nerves and vessels of the body.
- Fascia is a dynamic connective tissue that changes based on the stresses placed on it.

www.fisiokinesiterapia.biz

Roles of Fascia

- The fascia plays a major role in circulation of blood and lymph.
 - The fascia is important for the nutrition and metabolism of every cell in the body. (vise versa)
- The fascia is the first line of defense in immune function.
- Disruptions and restrictions within the fascia are associated with disease and movement impairments.
 - Interrupts the flow of blood and lymph
 - Can cause pain and poor compensatory patterns.

Roles of Fascia

- The fascia is a major contributor of both sensory and proprioception.
 - Matrix of communication between all cells, organs and whole body systems.
 - Provide a tensile support for muscles important to generate force.
- Embryology helps explain how all the fascial system connects all major systems including the nervous system.
- The cells in early in development differentiate into 3 germ layers.
 - Ectoderm: nervous system and the skin.
 - Mesoderm: bones, muscles, fascial tissue and CV system
 - Endoderm: various internal organs and endothelial linings

Embryology Leading to Stem Cells

Trophoblast Differentiates Into 3 Germ Layers

- Trophoblast give rise to
 - Ectoderm: skin, sensory
 receptors and the nervous
 system
 - Mesoderm: bone, muscles and connective tissue,
 - Endoderm: respiratory airway and much of the digestive system.
 - Early reticular fibers
 connecting the 3 layers will
 eventually be replaced with
 stronger collagen fibers .

Migratory Patterns of Germ Layers

- The mesoderm encapsulates the endermal structures anteriorly and nervous system posteriorly.
- The space between the layers is the various layers is filled with connective tissue such as fascia.
 - The fascia has sensory receptors that project to the skin. It also has its own receptors located within it

Recipe for Fascia

Fascia at a Cellular Level

• Cells include:

- Fibroblast: synthesize collagen, elastin, reticulum and ground substance.
- Fibrocyte: mature fibroblast that maintains connective tissue.
- Macrophage: cells active during inflammation and infections to assist in cleaning up cellular waste products and foreign antigens.
- Mast Cells: secrete histamine (vasodilator) and heparin (anticoagulant)
- White blood cells : destroy antigens and produce antibodies in response to infection

Connective Tissue Ground Substance

- Viscous watery gel that provides a scaffold that creates the framework for collagen and various cells.
 - Important for the diffusion of nutrients and waste products.
 - Provides lubrication between collagen fibers
 - Glycoaminoglycans helps maintain interfiber distance.
 - Proteoglycans: assist (GAGS)by binding water.

Proteoglycans

Mechanical Properties of Fascia

- Collagen fibers:
 - tensile strength
 - elastic fibers contribute to its ability to recoil.
- Ground substance:
 - allows the fascia the to compress and expand.
- The amount of collagen, elastic and ground substance varies in different types of tissue.
 - ITB, Subcutaneous fascia of gluteus maximus and ligamentum flavum.

Tensegrity Man

Superficial Fascia

- Fascia can be dividedinto different types.
 - Superficial: 3 distinct layers:
 - Superficial layer
 - adipose connective tissue and collagen fibers .
 - Membranous layer
 - collagen and elastic fibers run parallel to the skin.
 - Deep superficial layer
 - Loose connective tissue
 - Anchors superficial fascia to deep fascia.

Light Passing Through Superficial Fascia

Connective Tissue Anchoring Superficial Fascia to Deep Fascia

Deep Fascia

Note the deep fascial alignment.

Dura Matar

Deep Fascia

- Deep fascia is continuous connective tissue sleeve that covers the muscles throughout the body.
 - Fascia is integral to individual muscle fibers
 - Epimysium
 - Perimysium
 - Endomysium.
- Fascial recoil works synergistically with their muscles.
 - plyometric training

Fascial Mess Between Various Muscle Fibers

Fascial Receptors

- Fascia roles as a sensory organ was originally postulated by A. T. Still in 1899.
- The sensory role is critical for proprioception and giving the brain a 3 dimensional construct of the body.
- Studies demonstrate there are 4 major types of infrafascial mechanoreceptors. (Schleip)
 - Golgi
 - Pacini
 - Ruffini
 - Interstitial

- Pacini: Respond to rapid pressure changes.
- They are located in deep capsular layers, spinal ligaments, and muscle tendon.
 - They play a major role in proprioceptive feedback.
 - Stimulate them with:
 - high velocity adjustments,
 - rocking, shaking,
 - vibratory tools and rhythmic joint compression.

- Ruffini: respond to lateral shearing.
 - Inhibit the sympathetic activity in the entire body.
 - Located in ligaments of peripheral joints,
 dura mater, outer capsular layers.
 - Slow steady shearing pressure is needed
 - Suboccipital release

- Golgi: located in muscle tendons, aponeuroses, ligaments and joint capsules.
 - They are stimulated with slow sustained stretching close to muscular attachments.
 - Active movements may be more effective in stimulating these receptors
 - Myofascial and active release techniques can stimulate these receptors
 - Active stretching : yoga, Feldenkraus and myofascial unwinding

- •A typical muscle nerve there are almost three times as many sensory neurons than motor neurons.
- •Type 1 &2 afferents include muscle spindles, Golgi receptors, Pacinian and Ruffini endings.
- •The majority of the sensory input are type 3&4 afferents
 - •Interstitial Receptors which are intimately linked with the Autonomic Nervous System.

Schleip R

- Interstitial: Smaller multimodal receptors that function as thermal, chemo-receptors, pain and mechanoreceptors.
- 50 % of mechanoreceptors are high threshold pressure (HTP)
- 50% Low threshold pressure units (LTP)respond to gentle stimulation.
 - They are highly concentrated in the periosteum.
 - Stimulation can promote vasodilatation and enhance tissue nutrition. (ANS)
 - They are influenced by neurotransmitters and neuropeptides
 - Lower threshold which stimulates rapid firing of pain receptors contributing to chronic central pain.
 - Stimulate periosteum structures ,interosseous membranes and other fascia associated with bones.

Fascial Response to Stretching Schleip

- Comprised mostly of water.
 - Ground substances that is very hydrophilic.
- Stretching studies show that when you stretch fascia water initially is squeezed out but as it relaxes more will enter.
- The higher composition of water increases fascial stiffness
 - assist in the muscles to generate more force.

Stress-Strain Curve of Collagen Fiber

Break collagen cross-links and increase inter-fiber distance.

Repeated Elongation

Fascial Tonicity

(Schleip)

- Fascia appears to have smooth muscle located in the following:
 - 1. ligaments and tendons,
 - 2. dura mater
 - 3. meniscus and intervertebral discs
 - 4.visceral ligaments
 - 5.bronchial connective tissue
 - 6. Ganglia of the wrist.

Repetitive Trauma to Connective

Tissue Chronic irritant

abnormal movement dysfunction

macrophages activated

shrinkage of connective tissue A

increased vascularity

increased myofibroblastic

Fibrosis

Myofibroblasts Associated Diseases

- Pathological diseases such as frozen shoulder or club feet
 - facilitated by over excitation of myofibroblasts.
 - These cells respond under tension.
 - Adrenaline has no effect in relaxation of myofibroblast.
 - Nitric oxide appears to relaxes theses muscles.
 - How can we increase nitric oxide in these tissues.

Connective Tissue and Nerves

- Proper nerve function needs:
- Mobility:
 - within nerve and surrounding tissue.
- Nutrition
 - DM, alcoholics perifascial restrictions
- Abnormal neurodynamics
 - Pain
 - Numbness/tingling
 - Worse with movement

Continuity of the Nervous System

Myofascial Trigger Points

- There may be dysfunction within the muscles and their associated fascia.
- Trigger points are discrete, hypersensitive nodule within tight band of muscle or fascia.
- Classified as latent or active
- Latent trigger point
 - Does not cause spontaneous pain unless palpated.
 - May restrict movement or cause muscle weakness

- Active trigger point
 - Causes pain at rest and when palpated.
 - Palpation with referred pain helps determine if it's a tender point vs. trigger point
 - Found most commonly in muscles involved in postural support.
- Develop as the result of mechanical stress
 - Either acute trauma or microtrauma
- Trigger point development Theories : ATP deficit, ↑
 Ach ,↓ cholinesterase ↑ Ca++ release from SR, ANS dysfunction (stress)

Trigger Point Theories

Dysfunctional Endplate Region

Perpetuating factors

- Chronic mechanical stress and postural habits
 - The body lays down fascia based on repetitive use patterns.
 - Inefficient movement patterns trigger abnormal muscle tonus.
- overuse of a specific muscle group-
 - a tennis player's gets lateral epicondylitis
- psychological distress or sleep deprivation.
 - SNS reduces blood flow to skin and fascia.
 - Reduced NO needed for smooth fascial muscle to relax.

HEAD AND NECK PAIN

Nutritional Considerations

- Proper hydration : The main ingredient in all tissues.
- Key electrolytes and vitamins
 - B- vitamins, Na, K, Ca and Mg play important roles in muscle physiology
- Processed foods are deficient in many of the nutrients necessary for all types of cellular and enzymatic functions.
 - Artificial sweeteners are know triggers for myofascial dysorders.
- A variety whole nutrient rich foods provide the body with all the nutrients known to be important in tissue physiology
 - It also provides the body with nutrients not yet discovered.
 - Provides nutrients in a appropriate ratios which we have evolved to metabolize.

Fibromyalgia

- When a patient complains of pain in multiple areas.
 - Do you really think they have18 individual problem areas.
- We need to look at the whole person and not treat their symptoms.
 - Be a lumper not a splitter!
- Where it hurts is where it works!
 - Look elsewhere for the origin of the pain!!

Fibromyalgia Tender Points

General locations of the 18 tender points that make up the criteria for identifying fibromyalgia.

Sympathetic Nervous System — Lacrimal gland Eye Overview Salivary glands Cardiac and pulmonary plexuses Heart Lung Liver and gallbladder Stomach Spleen **Pancreas** ① Celiac ganglion Postganglionic fibers to skin, blood vessels, adipose tissue ② Superior Small intestine mesenteric ganglion Large intestine Rectum ③ Inferior Sympathetic chain Adrenal medulla ganglia mesenteric Kidney ganglion Spinal cord Preganglionic neurons = red Ovary-Postganglionic neurons = black

Scrotum

Bladder

Somatovisceral and Viscerosomatic

- <u>Somatovisceral pain syndromes</u>: myofascial restrictions can cause visceral dysfunctions.
 - Myofascial restrictions in the abdominal muscles can cause vomiting, bowel and bladder problems.
 - The warm water experiment.
- <u>Viscerosomatic pain syndromes</u>: occurs when dysfunctional visceral may cause myofascial constrictions of somatic structures.
 - Appendicitis may cause the abdominal muscles to go into spasm.
 - Prostate cause HS pain

Acupuncture points

- Acupuncture points appeared to correlate with areas of greater amounts of connective tissue.
- These points are located where nerves artery and veins collectively penetrate the fascia.
- Twisting the needle appears to manipulate the fascia which help reduce pain.
 - Body work also appears to work in this way.

The majority (82%) of perforation points are topographically identical with the 361 classical acupuncture points in traditional Chinese acupuncture.

Acupuncture Points

Anatomy Trains

Myofascial Meridian

Kidney Meridian

Myofascial Meridian

Liver Meridian

Generalized Cell "The Mini You"

Cellular Functions

- Comparing human to cells:
 - •The cell membrane and cytosol is analogous to the skin and fascia.
 - •The cell membrane
 - receives sensory input through receptors. i.e. hormones, neurotransmitters.
 - •That will produce a cellular response
 - •The science of epigenetics suggest the cellular functions are more dictated by environmental influences.

The Fascial System Relation to Cellular Structures.

- •Skin and Fascia are analogous to the cell membrane of the cell.
 - •Just as the cell membrane is critical for intracellular functions and communication.
 - •The fascial system plays a similar role in both form and function in the human body.
 - Skin and fascia are both rich in various types of receptors.
 - •They provide proprioceptive and sensory input which will effect the motor output of the system.

Patient's Responsibility

- HEP: includes self stretches for myofascial restricted tissues, Cardio and resistive training.
- Nutrition: Plenty of water especially post tx and a diet rich in fresh (organic if possible) fruits and vegetables.
- Stress management: diaphragmatic breathing, meditation and getting enough sleep.

Fascial Take Home Messages

- Fascia is continuous from head to toe.
- Muscles and associated fascia are richly innervated with various receptors making it the largest sense organ.
 - which is important for proprioception and motor control.
- Injury and poor posture can create imbalances which can contribute to chronic injuries.
- Fascial research in still in its infancy.

SHOULDER, THORAX, AND ARM PAIN

SHOULDER, THORAX, AND ARM PAIN

BACK AND ABDOMINAL PAIN

PELVIC, GLUTEAL, AND THIGH PAIN

LEG, ANKLE, AND FOOT PAIN

First dorsal interosseous

HIP, THIGH, AND KNEE PAIN

FOREARM AND HAND PAIN

Brachioradialis

Extensor carpi carpi ulnaris

radialis longus HAND EXTENSORS

Anconeus

FINGER EXTENSORS

Radial head

Humeral head FLEXOR DIGITORUM

Pronator teres

Flexor pollicis

INTEROSSEI

HEAD AND NECK PAIN

