

—www.forgottenbooks.com

Copyright © 2016 FB \&c Ltd.
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law.

THE HUMAN BONES OF THE HEMENWAY COLLECTION IN THE UNITED sTaTES ARMY MEDICAL MUSEUM aT WASHINGTON,

DR. WASHINGTON M়̦ ATTHEWS, SURGEON, U. S. ARMY;

WITH OBSERVATIONS ON THE HYOID BONES OF THIS COLLECTION
BY
DR. J. L. WORTMAN.

REPORTS PRESENTED TO THE NATIONAL ACADEMY OF SCIENCES, WITH THE APPROVAL OF THE SURGEON-GENERAL OF THE UNITED STATES ARMY,

DR. JOHN S. BILLINGS, SURGEON, ர. S. ARMT.

In 1887 an expedition was fitted out under the direction of Mr. Frank Cushing, with funds supplied by the liberality of Mrs. Mary Hemenway, of Boston, for exploring certain ruins in the valley of the Gila River, in the Territory of Arizona.

The work of exploration was commenced with a mound of large size, apparently little nore than a rude pile of earth, in the valley of the Salado, or Salt River, a tributary of the Gila. This proved to be the ruins of a large earthen house, apparently analogous in structure to the still standing Casa Grande, which lies about 35 miles to the southeast, and these ruins were found to be a part of a congregation of houses or a city, extending about 6 miles in length, aud from half a mile to a mile in width along the valley. A large number of human bones were found under the floors of the houses, so large a number, in fact, that Mr. Cushing gave the place the name of Los Muertos, or the town of the dead.

When the work was fairly under way Mr. Cushing was taken sick, and application was made by the Hemenway Exploring Expedition to the Surgeon-General to allow Dr. Washingtou -Matthews, of the Army, to go out and take Mr. Cushing's place during his illness, to supervise the explorations. Dr. Matthews went to Los Muertos in the month of August, 1887. He found that no attention had been paid to the collection or.preservation of human bones, which were extremely fragile, crumbling to dust upon a touch, and which had been thrown about and trampled under foot by curious visitors, so that but little remained of value from the work which had been previously done. Recognizing the importance and interest of these remains, he set to work to preserve the bones excavated after his arrival as far as possible, and reported the facts to me, suggesting that, if possible, the anatomist of the Army Medical Museum, Dr. J. L. Wortman, should be sent out furnished with means for preserving these bones as fast as they were excavated, and carefully collecting and forwarding them to the Army Medical Museum for study.

In accordance with these suggestions Dr. Wortman went out in November, 1887, taking with him a supply of silicate of soda, glue, paraffin, and other materials for saturating and preserving the bones which should be discovered, and remained with the expedition, visiting several other localities, until June, 1888, when he returned to Washington.

The specimens of human bones thus obtained were carefully packed and forwarded to the Army Medical Museum, and after having been repaired and put in the best possible form, were examined and measured by Dr. Matthews, and his report of the results is herewith presented by authority of the Surgeon-General.

John S. Billings, Surgeon, U. S. Army, Curator Army Medical Museum.

INTRODUCTION.

When we began the study of the bones described in this work we had reason to hope that a full general account of the expedition on which they were discovered, with its archæological labors and achievements, would be published simultaneously with, or in advance of, this report; in which case we should have embodied in this essay the results of our anthropometric studies only. But the continued illness of the director of the expedition, Mr. Frank Hamilton Cushing, has caused the indefinite postponement of the preparation of a general report, and we consequently have considered it advisable to present here a short introduction, setting forth the inception, objects, and results of that scholarly enterprise, short-lived, but fruitful in its results, which was known as the Hemenway Southwestern Archæological Expedition.

Along the great cordillera of the American Continent on both sides of the equator, through 75° of latitude, from W yoming to Chile, extends a land abounding in ancient ruins.

A large part of this land of ruins lies within the boundaries of the United States. It contains the Territory of Arizona, most of Utah, more than half of New Mexico, extensive parts of the States of Colorado and Nevada, with small portions of Texas, and, perhaps, of California. Its precise boundaries are not known, for on its outskirts there is much wild and imperfectly explored country where the existence of ruins can neither be affirmed nor denied. Its approximate boundaries are: On the east, longitude 28° west (from Washington); on the west, longitude 38° west; on the north, latitude 41° north, and on the south the northern boundary of the republic of Mexico, 31.20° to $32^{\circ} \mathrm{N}$. L. It covers about 400,000 square miles.

The great rivers which drain it into the ocean are the Colorado on the west and the Rio Grande on the east; the former flowing toward the Pacific, the latter toward the Atlantic. But much of the rain which falls on its surface does not reach the ocean; some is received in salty lakes which have no outlets; some goes to form streams which reach the great rivers only in seasons of abundant rain, but which at other times after a brief course are absorbed by desert sands. It is an arid region, but not an absolute desert such as Gobi and Sahara. There is no part of it where rain does not fall some time during every year; but it is on the high mountains only that it descends abundantly; on the lower levels the precipitation of moisture is scanty, the dry seasons are long, and irrigation is essential to success in agriculture.

It has long been known that there were ruins in this arid region of the southwest. The earliest travelers, beginning with the Spanish conquerors of A. D. 1540 , make mention of them; and their existence is noted in the reports of various military expeditions and pablic surveys which have entered this region since it was acquired by the United States from Mexico in 1848. The ruins have been known to the world for three centuries and a half; they have been in the possession of the United States for over forty years, yet it is only within the past four years (since April, 1887) that any attempt at systematic excavation has been made among them. In many of the better preserved ruins those portions which remained above the ground liad been sketched, lithographed, photographed, engraved, surveyed, measured, modeled, and described, but the surface of the grourd around and within them had not been broken. This method of examining them remained for the Hemenway Expedition to initiate.

The reasons for this tardiness on the part of our archæ̈ologists are numerous. This land of ruins was until recently wild, barren, and difficult of access; it was held largely by tribes of hostile Indians who to this day are not perfectly subdued. It is only within the last decade that

lilg. l. -Map of sonthwestern portion of United States showing Geld of operations of the llemenway Sonthwestern archeulugical Expedi:ion.
it has been crossed by railroads. Explorations within its borders were attended with manik physical difficulties. The parties of topographical surveyors who entered the country had very short seasons in which to work, and they had neither the time nor means, had they had the inclination, to make the needed excavations. But besides physical hindrances there were others equally potent. The importance of excavation to the proper understanding of the archeology of this region was not appreciated; surface finds were numerous and interesting, and it was thought that excavation could yield uothing further. The majority of antiquarians in Awerica were more deeply interested, as they still are, in the exploration of the old world than in that of the new. Money which was readily forthcoming for the one was withheld from the other by patrons of sciance in America.

The few explorers who were interested in work within our own borders found sufficient field for their labors and speculations in the mounds and kitchen-middens of the Eastern States. It was at length, through the unsatisfied curiosity of the ethnographer, not through the zeal of the archæologist, that the systematic exploration of the Western ruins was begun.

The region in question abounds in finely stratified sandstone, which with little labor may be prepared for building, and most of the ruins so far discovered are the remains of houses built of such stones. These may be found in all stages of decay-in some cases the walls are still standing many stories high, as in the valley of the Chaco; in other cases the sites are marked only by low heaps of lichen-covered stones, indistinguishable, save to the trained scientific eye, from natural accumulations of rocky débris with which the country abounds. Some of these ruins were

Fig. 2. The Casa Grande of the Gila.
inhabited by Indians within the brief historic period of New Mexico and Arizona, which extends over less than four centuries, but the vast majority are prehistoric. A number of the ruins are those of houses whose walls were of clay (adobe and a variety of pisé). Some of these in the valley of the Rio Grande were built since the Spanish occupation of the country and many have been erected under civilized guidance, but others, particularly those in the valley of the Colorado, are undoubtedly of prehistoric and aboriginal origin. As might be expected the earthen walls are in many cases reduced to the common level of the ground and are to be traced only, as in the ruined cities of the Salado, by digging beneath the surface of the earth; yet one of the best preserved and most imposing of the prehistoric ruins within our borders, the Casa Grande of the Gila (Fig. 2), is built of clay. This ruin was long supposed to be the remains of a structure without counterpart within the boundaries of the United States; but, as will hereafter be shown, it is now known to be but one of many such buildings which once towered over the wide flood-plains of the Gila aud its tributaries.

In studying the folklore and religious practices of the people of Zuñi during his residence of about five years in their pueblo, Mr. Cushing found himself confronted by many perplexing questions for which no satisfactory explanation could theu be found; but he was led to believe from
the traditions of this people that some key to the problems might be discovered by exploring ruins far to the southwest of the Zuñi villages, where the people of Zuñi averred their ancestors once dwelled. We can not enter into a detailed account of these perplexing questions, nor can we relate how or why the explorer considers that he has solved them. It must be left for him to explain these matters fully at some future time.

EXPLORATIONS IN THE SALADO VALLEY.

It was not until the year 1886 that he found the pecuniary means to conduct the desired explorations, these being amply supplied by Mrs. Mary Hemenway, of Boston. Mr. Cushing set out with a party of assistants, to which others were afterwards added, and, in February, 1887, arrived in the neighborhood of the town of Tempe, in the valley of the Salado or Salt River, a tributary of the Gila, in the Territory of Arizona. Here he began by excavating some stone ruins on the rocky uplands, without any extraordinary results, While thus engaged his attention was attracted to certain earthen mounds situated on the level flood-plain of the Salado, and in particular to one of large size about 8 or 9 miles by road from Tempe. - Ho proceeded to examine this mound and its vicinity.

Fig. 3.-Map showing a part of tho Selt Kiver Valley, Maricupa County, Arizona, with modern towns, canals, and locations of ancient cities.
This mound seemed at first to be little more than a rude pile of earth. It had an irregular rectangular form, and had some appearance of being terraced. The surrounding level plain, covered with an abundant growth of that leguminous shrub or small tree, the mesquite (Prosopis juliflora D. C.), which is so common in the arid lauds along our southwesteru borders, presented to the untrained eye no remains of human habitation; but from fragments of pottery and other objects strewn over the ground, the explorer was led to believe that something of importance was hidden uuder the surface. He caused a trench to be dug and soon brought to light the foundations of earthen walls. Without delay he established his camp at this place and pursued his excavations with energy. The result was the discovery of an extensive collection of habitations-a city it might be called-some 6 miles in length and from half a mile to a mile in width. The mound proved to be the débris of a great earthen house of many stories and many chambers and analogous in structure to the still standing Casa Grande before referred to, which is distant from the mound to the southeast less than 35 miles in a direct line. In the course of excavation at this place so many skeletons were found under the floors of the houses that Mr. Cushing devised for it the Spanish name of Pueblo de los Muertos, or, briefly, Los Muertos, the town of the dead; and this name was retained for it, although he subsequently found other ruined cities in the vicinity where skeletons were as common as here.

Work was continued in the valley of the Salado or Salt River until June 1888, a period of about sixteen months. During this time, besides isolated ruins and small groups of ruius, the party discovered the remains of six other large cities within a distance of about 10 miles from that first discovered. Of these, three were named: First, Las Acequias from the number, size, and distinct appearance in its vicinity of the old acequias or irrigating ditches through which the departed iuhabitants conducted water to their fields; second, Los Hornos or The Ovens, from the number of earthen ovens found there, and third, Los Guanacos, because in it were found small terra-cotta images of animals thought to resemble the guanaco of South America. In these ruined cities the remains of other buildings like the Casa Grande were found.

houses.

The houses in these cities were of four kinds, designated by Mr. Cushing as follows: 1, priest temples; (2) sun temples; (3) communal dwellings aud (4) ultra-mural houses.

The priest temples.-These were the most conspicuous buildings in the ancient cities. As a rule there was only one to each city, and this was centrally located; but in one of the cities observed there were seven such buildings, the largest of which was centrally located. The reasons for this peculiar distribution, Mr. Cushing believes, are explained by Zuñi folklore and modern Zuñi customs. The ruins gave evidence that the buildings, when standing, were many stories high-from four to seven stories it is estimated The Casa Grande on the Gila is said to show traces of five floors in that portion of its walls which still remain, and it is probable that one or two stories have fallen. Each building was surrounded by a high rectangular wall from 5 to 10 feet thick. A portion of this wall remains, and, being filled with the debris of the fallen building within, lends to the mound-like ruin that terraced appearance before alluded to. The lower story in each building was divided into six apartments, four great and two lesser. These apartmeuts, the explorer believes, were used as store rooms for the priestly tithes in maize, etc. The other stories are supposed to have been used for priestly residences and for sacerdotal purposes. The entire building is thought to have served, not only as a storehouse and temple, but as a fortress in times of danger. Besides these in Arizona, there are great houses of similar construction in Souora and Chihuahua, in northern Mexico.

The manner in which these buildings were constructed is perhaps peculiar. They might be regarded as great mud-covered baskets. For the thicker walls two rows of posts were erected and secured, one post to another, in different directions, by means of smaller sticks firmly lashed to them. The framework thus constructed was wattled with reeds, so as to form two upright hurdles braced together. The space between these was filled with well-packed mud, and the hurdles were thickly plastered within and without with the same substance. The thickness of the wall depended on the distance between the hurdles. For the thinnest walls, the internal partitions, but oue hurdle was erected, and this was plastered on both sides. These structures of wood aud reed no longer remained when the excavations were made, but the cavities found in the walls gave evidence of their former existence.

Sun temples.-The buildings which Mr. Cushing designates by this name, though not as lofty as the priest temples, covered a greater superficial area. The smallest measured was 50 feet in width by nearly 100 feet in length. One was discovered whose dimensions were about 150 fect in width by over 200 feet in length. Like the priest-temples they were built of earth on a great basket form or frame of hurdles; but the basket form instead of being rectangular was elliptical in shape. There is evidence that this frame of hurdles gradually tapered toward the top, and that the structure was roofed in with a dome made of a spirally contracting coil of reeds, resembling the coil baskets now so commonly made by the various tribes of the southwest. This spiral coil, as well as the rest of the frame, was heavily covered outside with mud, so that the structure when finished must have appeared, as Mr. Cushing expresses it, like an unburned, inverted and elongated terra-cotta bowl. The floor was elevated at its edges so as to form a sort of amphitheater and in the center was a hearth. It is thought that in these buildings the public rites of esoteric societies were performed as well as the sun drama and other ceremonies. The sun temples were usually in close proximity to the priest temples, and their ruins presented the appearanco of low oval mounds depressed in the center.

Communal houses.-The great structures thus designated were the principal dwelling places. They were built of mud without the central frame of hurdles on which the walls of the temples were raised. They contained many rooms on the ground floor, and, as there is evidence that they were sometimes more than one story high, it is not improbable that they resembled much the modern terraced pueblos of New Mexico and Arizona. They were too large for the dwellings of single families, and for this and other reasons they are thought to have been each the home of a separate gens, clan, or some other large subtribal division. Each was surrounded by a separate high earthen wall and generally by a separate canal or acequia, although, in a few instances, two or more communal dwellings were included in the same encircling canal. Each had its single appropriate water reservoir with a branch canal leading into it, its one separate pyral mound or place of cremation, and its one great underground oven for the preparation of food. In Los Muertos at least fifty of these great buildings were wholly or partially unearthed, and it is likely that many more remained unrevealed beneath the surface of the ground.

Ultra-mural houses.-These were small, low huts, not rectangular in form, made of sticks, reeds, and similar perishable material, lightly coated with mud, and they probably resembled much the modern jakal or hut of the lower classes in many parts of Mexico, or the houses of the present Pima Indians of the Gila Valley. Mr. Cushing calls them ultra-mural or ultra-urban because they were situated outside the limits of the towns of earthen houses and not mingled with them; they formed separate groups. He conjectures that they may have been residences of an outcast population such as exists at Zuñi to-day. As each contained a central fireplace it is evident that they were occupied in winter as well as in summer, and were, therefore, not like certain houses s?attered through the fields of the modern Zuñis, used only as temporary shelter for laborers while the crops are growing. These ultra-mural dwellings were very numerous; in one place constituting, of themselves, a town of considerable size, which contained a sun temple but no priest temple. In estimating the age and character of some, at least, of these houses, it must not be forgotten that as late as the seventeeuth and eighteenth centuries we have records of the existence of Pima villages in the lower part of the Salt River Valley. I make this statement on the authority of Mr. Bandelier.

AGRICULTURE AND WATER. SUPPLY.

When these ruins were inhabited cities, the land in which they lie was, as it now is, an arid region, where agriculture could not be conducted without irrigation. The works constructed by the ancient inhabitants to establish irrigation are as noteworthy monuments to their industry and intelligence as are their stupendous buildings. The explorers have traced in this particular realm in the Salado Valley, they estimate, over 150 miles of the larger canals-the mother acequias or acequias madres, as the Spanish-Americans call them. Their remains have been found at distances of 12 and 15 miles from the present bed of the river, and there is no evidence that the river has materially changed its course since the days of the ancient inhabitants. The miles of smaller acequias could uot be estimated.

The larger canals varied in width from 10 to 30 feet and in depth from 3 to 12 feet. Their banks were terraced in such form as to secure always a uniform central current in the canal when the rains ceased in the mountains and the waters diminished. It is thought that this device was to facilitate navigation, and that the canals were used not only for irrigation, but for the transportation of the produce of the fields and of the great timbers from the mountains which the people must have needed in the construction of their tall temples and other houses.

In various parts of our arid region the old Indian canalsmay be still easily traced where they are cut through hard soil or where they are so exposed and situated, with regard to the prevailing winds, that the sand is blown out of them rather than drifted into them. There are places in Arizona where the American settlers utilize old canal beds for wagon roads. But in most cases the canals have been filled with sand and clay to the level of the surrounding soil and, to the ordinary observer, no vestige of them remains. Yet Mr. Cushing, guided by his knowledge of a custom which exists among the Zuñi Indians, was able to trace the course of these obliterated channels. These Indiaus, he relates, have observed that wherever there is running water there are rounded pebbles and boulders; reasoning, as mau is so apt to do, inversely to the natural order
of causation, they suppose not that the waters shape and deposit the pebbles, but that the pebbles control and direct the flow of the waters. For this reason they place such stones on the margins of their artificial water courses to hasten and direct the current. The presence of these pebbles disposed in lines, at the surface of the ground, caused the explorer to surmise that they marked the sites of irrigating ditches, and excavation proved the surmise to be correct. Pebbles which had once been used as implements and become worn out or broken in service were those most usually employed for this purpose.

Within the past twenty years, siuce the wild Indians of westeru Arizona have been subdued and order has been established within that region, the locality in which Los Muertos and its neighboring cities lay has been again restored to cultivation-this time by the white race, who utilize, through new chamels, the waters of the same Salt River that fed the fields of the departed races. The canals of the moderns follow straight lines; those of the ancients were tortuous; but the ancient people used the water to greater advantage thau their successors and covered with their system a wider territory. In the old canals the fall was about 1 foot to the mile, in the new it is 2 feet to the mile. The ancients constructed great reservoirs to store the excess of water when the river was high; the present occupants have no such works. Since this region has been reclaimed it has proved one of the most fruitful within the boundaries of the United States and is adapted to a wide rauge of vegetation, temperate and tropical.

In one place, near the present Mormon settlement of Mesa City, about 10 miles from the ruins of Los Muertos, the caual was dug through a hard, rocky layer. The Mormon community made use of the prehistoric cut when constructing their own irrigating ditch. I have heard on good authority that the Mormons estimate the labor thus saved to them at $\$ 20,000$. Who will calculate the equivaleut of this in human hands and days of work during the age of stone and when man was his own beast of burthen?

In addition to the river irrigation the ancient Saladoans bad a system of rain-water irrigation. In the woodless mountains immediately surrounding their homos, the Superstition Mountains, the Estrellas Mountains, etc., brief but heavy rains sometimes fall, which flow at once into the plain, causing heavy floods and doing more damage than benefit to the crops. In these mountains there are ueither springs nor constant water courses and only a desert flora. The heights which give birth to the Salado and the Gila are farther away and of much greater altitude. To conserve the waters of these sudden rains in the neighboring hills the people built dams in the ravines and large reservoirs in suitable places in and near the neighboring foothills. From these reservoirs the waters were, when needed, allowed to flow gradually over the fields. This may be regarded as evidence that the waters of the rivers, abundant though they were, were not sufficient for the needs of the population.

BURIALS.

The bodics of the dead were buried both with and without previous cremation. Those buried without cremation were always buried in the houses, either under the ground floors or in the walls. The cremated remains were interred outside of the houses.

The wall or mural burials were found mostly in the priest temples, in what remained of the first and secoud stories; a few were discovered in the communal dwellings. The body in such a burial was inclosed in an adobe case, and a niche was cut in the wall for its reception, which was afterwards filled and plastered over with mud, so as to leave no external evidence of the burial.

The burials under the floors were confined to the communal dwellings. The graves were constructed with different degrees of care; the more perfect being rectangular holes carefully plastered on the sides with mud and sealed over with the same material. The dead were usually placed with their heads to the east and slightly raised or pillowed so that the faces were turned toward the west. The hands were laid at the sides or over the breast. The lower extremities were placed as we place those of our dead except in one instauce, that of an adulescent female who was supposed to have beeu sacrificed to the gods to avert earthquake. She was buried with the limbs abducted.

In a few iustances in the commual dwellings the body was buried partly under the floor and partly in the wall. This was supposed to be for the purpose of economizing space. The truuk,
in a supine position was buried close to the wall; the lower linnss, elevated at right angles to the trunk, were placed in a niche in the wall which was then filled up with mad.

Among those buried under the floors, many were children, and these were found always buried near the kitchen hearths. This is a custom which is found to have prevailed in other parts of the world and is variously accounted for. Mr. Cushing's explanation derived from Zuūi folklore and belief is this: "The matriarchal grandmother or matron of the household deities is the fire. It is considered the guardian as it is also, being used for cooking, the principal 'source of life' of the family. The little children, being considered unable to care for themselves, were placed, literally, under the protection of the family fire that their soul-life might be nourished, sustained, and increased."

Fig. 4.-Pyral comotery, unearthed.
Within both the underground and wall sepulchers were found deposited various household utensils, articles of personal adorument and others of a sacerdotal character. In the mural burials of the temples the articles of sacerdotal use were particularly numerous and elaborate. This is one of the many reasons Mr. Cushing has for believing that those buried without cremation were of a sacerdutal and higher class of the community, while those who were cremated were of a lower class, and laymen. The pottery buried with the adults in the graves, was left whole and not broken or "killed" in the manner to be described when speaking of burials after cremation; that buried in graves with children was, however usually "killed" or broken. The sacred paraphernalia referred to were so similar to those used in Zuñi to-day that Mr. Cushing "was often able, through the knowledge of the Zuñi priesthoods to identify the medicine or priestly rank of the silent occupant of a sepulcher."

The great majority of the dead were cremated. Each communal dwelling had in close prox. imity to it, its own pyral mound and, situated at the base of the latter, a collection of earthen vessels containing the remains of the dead-a pyral cemetery (Fig. 4). The mounds consisted of ashes, cinders, and fragments of charred and broken mortuary sacrifices; they were from 60 to 100 feet in diameter, from 3 to 9 feet high and showed evidence of having had from 2 to 6 locations for pyres in each. That each pyral mound was appropriate to its neighboring commuual house
was inferred from the correspondence of certain special marks and desigus on the pottery in the pyral cemetery with desigus found on pottery in the graves of the contiguous dwellings.

The burnt bones and charred remains of some of the more valued articles of personal property were placed in pots of suitable size, which were covered by inverted bowls or broken pieces of pottery and surrounded by other articles of pottery buried as presents to the dead. These mortuary gifts were broken or drilled before burial, probably in order that the souls they were thought to possess might escape aud accompany the dead to the spirit land. The custom of breaking.the pottery sacrificed with the dead is called by the people of modern Zuñi "killing" the vessels, and is still practiced among them.

It is believed that those of the priestly race were not cremated because they lad the power to release their own souls from their bodies while the laity, having no such power, had to have their bodies burned to effect the desired release. Whatever may have been the creed that thus preserved some bodies for simple interment, anthropology owes it gratitude, for without it the unique skeletons of this archaic race would not have been preserved for modern study and comparison. It is thought, too, that the pots buried with the uncremated adults were not broken or "killed" because the priests knew how to release the souls of the pots and take them with them to the undiscovered country, while to the laity such knowledge was denied.

Double burials were found both with the cremated and the uncremated remains; but were much more common with the latter than with the former. When two skeletons were discovered in oue grave or incinerary vessel they were invariably adult, and, whenever the sex could be determined, one was always found to be a male and the other a female-presumably man and wife. This might lie thought to indicate that the wife had been sacrificed at the death of the husband; but in the house-graves there was often evidence that the interments were not simultaneous, the upper grave not being dug exactly over the lower and the bodies having been apparently wrapped in different cerements. It was a rare thing to find three buried in one grave. Fig. 5 shows a double burial, male and female, in which the interments, and probably the deaths, were simultaneous.

ARTS.

Nearly all the implements and tools discovered were of stone, but of beautiful finish and great variety of form. No metal tools, whatever, were found. The only articles of metal were little rude copper bells.

Fig. 6. -Small water-jar, found in hearth sepulcher, baried with child, in Los Muertos.
A copper bell consisted of a plate of the metal wrought into leaflets. These leaflets were brought together at the apices so as to form a hollow ball with meridional openings. In this ball a pebble was imprisoned for a clapper. The handle, or stem, was soldered on in a manner which

Fir. 7.-Sraall water-jar, found baried with child in house sepulcher, southern portion of Halonawan, ancient Cibola.
indicated a knowledge of a soldering material and the use of the blowpipe; and indications are not wanting that the bells were not introduced from a distance by trade, but were manufactured where found.

Pottery was found in great abundance in the house graves, in the pyral cemeteries, and on the floors of the houses, where it seemed to have been abandoned, as if the dwellings were suddenly deserted. It consisted of food vessels and water vessels in a great variety of shapes and sizes, and of well-executed images of animals of the chase which once inhabited the surrounding

Fig. 8.-Ancient Cibola cating bowl, showing "exit trail of life."
country. The vessels were decorated in a manner closely resembling those of the modern Pueblos of New Mexico and Arizona, especially those of the Zuũi and Moqui (see Figs. 6, 7, 8, 9, and 10). The more commonly employed symbolic decorations were alike in all.

Fic. 9.-Modern Zuñi food bowl, showing "exit trail of life."

Flig. 10.-Moderu Zuñi water vessel, showing "exit trail of life."

One of these, worthy of especial note, is what the Zuñis call the exit trail of life. It is found inside of food vessels and outside of water vessels; it consists of an opening or hiatus in the single or double encircling paint bands near the margiu of the vessel, as shown at a in Figs. 8, 9, 10. It is a symbol based on the idea before alluded to of vessels having souls.*

[^0]Another decoration, shown in Figs. 11, 12, 13, may here be mentioned. It is undoubtedly an animal figure which in textiles and basketry has been necessarily conventionalized into a figure

Fig. 11.-Oruamental zone on water jar from Los Muertos.
bounded by straight lines, and from the woven forms transferred, more or less modified, in paint to the pottery. It is common on both the ancient and modern pottery of our southwestern land of ruins, and is frequently seen in the cloths of ancient Peru. (See Fig. 14.)

Fig. 12.-Symbolic decoration in white-bordered black, adapted from ornamental zone on water jar of red slip ware from Los Muertos.

The articles of personal adornment which remain are principally of shell and consist of rings, 'bracelets, pendants, etc. Some of these were ornamented with geometrical designs and inlaid

Fig. 13.-Medinm sized eating bowl of red slip ware, with white-bordered black paint decoration. From Helonawan, one of the ancient seven cities of Cibola.
with turquois and other precious or semiprecious stones. Sea shells carved in the form of a frog were common and one or two of these frog images were beautifully inlaid with turquois and other
stones of brilliant color. The inlaying was accomplished by coating the shell with some black vegetable gum (supposed to be that of greasewood) which hardened on drying; the gems were stuck into this coating and, when the latter became hard, the whole was rubbed down to a smooth surface. An accurate chromo-lithographic illustration of one of these artistic objects has appeared in Gems and Precious Stones of North America, by George Frederick Kunz, New York, 1890.

Everything susceptible of decay in these ruins had disappeared; hence, with two or three trifling exceptions of charred and defaced articles, nothing was left of their woven stuffis, their basketry, their woodwork, or the featherwork. But that they wove cloth, wrought baskets and made useful and ornamental objects in various perishable materials, we have abundance of collateral evidence.

During the first fifteen months of the work of the expedition from 17,000 to 20,000 specimens of various kinds were collected, and many fragments rejected. But the collection would have been far richer were it not for the wanton destruction of much material by visitors. Sometimes when

Fig. 14.-Mummy from cemetery at Ancon, Peru.
a pyral cemetery or the floor of a large dwelling had been unearthed, and all the articles discovered laid in their original positions to be photographed, a party of sightseers would appear and, either in the absence of the workmen or in spite of their remonstrances when present, trample the objects uuder foot or deliberately kick the pottery to pieces to "see what was inside." In the earlier days of the work many fine skeletons were lost in this way. Some persons even appropriated handsome objects and carried them away, maintaining that, as these things were found on public land, all had an equal right to them.

POPULATION.

What was the population which in ancient days subsisted on the crops watered by the Salado or Salt River and the stored rains of the neighboring mountains? What was the population of the old Salado settlement? Opinion is divided on this subject, and will probably long continue to be divided. Some who have had the best opportunities of observing the ancient works and studying the problem estimate the population at from 80,000 to 100,000 souls. Los Muertos, it is calculated, covered an area of over 2 square miles and contained about 13,000 inhabitants. There were six other groups of buildings in the region as large or larger than this, and there are indications that they were simultaneously occupied. If it could be shown that they were not occupied at the same time, a much lower estimate of the population would have to be made. As the land is
now becoming rapidly filled with white settlers, and the ancient town sites are being covered with farms and crossed with irrigating ditches, all antiquarian problems become more difficult of solution every day.

ANTIQUITY.

In 1539, when Friar Marcos made his journey to Zuñi, and when, a year later, Coronado marched with an army to the same point, they passed within about 100 miles of these towns. Had they been inhabited in those days, the travelers would doubtless have heard of them, for the fame of the less significant Seven Cities of Cibola reached them in the heart of Mexico and induced them to travel 200 miles further northeast than the mouth of the Salado. They were ruins, no doubt, three hundred aud fifty years ago, or at the beginning of the historic period of Arizona. No vestige of anything belonging to the iron age or of European origin was brought to light in the excavation. The writer knows of other ruins in New Mexico and Arizona which, from recorded

Fia. 15.-Skeleton of man supposed to have been killed by earthquake.
evidence, are known to have fallen to decay and been abandonied long before the historic period; yet in these textile fabrics and other perishable articles are still found fairly preserved, and particularly the hair of the dead has survived the process of decay. In Los Muertos were found no hair, no cerements, nothing that might have escaped destruction in a thousand years. It is thought by Mr. Cushing that from one thousand to two thousand years may easily have clapsed since the priests of Los Muertos worshiped in its standing temples. The Casa Grande of the Gila was a ruin standing in the sixteenth century probably much as it stands to day; three and a half centuries have wrought little change in it; but the similar priest-temples of the neighboring Salt River are mere mounds of earth. The writer has seen two photographs of the Casa Grande of the Gila taken from the same point of view, one twenty years after the other; yet in the pictures no difference can be discerned in the most minute points and prominences of the ruin, which were subject only to the modifying influences of rain and wind, though the parts within the easy reach of human hands have suffered notably.

It must be remembered that earthquake may have hastened the fall of the Salado temples. The explorers have found many indications that these cities were abandoned on account of earthquake, and Zuni myth and tradition point to former migrations of the people induced by seismic disturbances. One skeleton in Los Muertos was found lying on its face, evidently of a person never formally buried, and apparently crushed by falling walls.* (See Fig. 15.)

Fig. 1G.-Outliue drawing, full size, of terra cotta image of animal, supposed to bo allied to the vienna.
It has been indicated in the previous pages that an intimate relationship in arts, civilization, religion, etc., has been found to exist between the ancient Saladoans and the ancient sedentary people of Arizona and New Mexico in general, as well as the still extant sedentary tribes of this region. A relationship, less intimate perhaps, may be shown to exist between them and the

Fir. 17. -Rock inscription thought to represent vicuinalike animals and man throwing bolas.
ancient house-building tribes of old Mexico and Central America. There are many facts, too, which point to a close connection between the Saladoans and the ancient Peruvians-a connecdion more close perhaps than that between the former and many races who lived nearer to them, geographically, than the Peruvians. Environment may have had its influence on this affinity, for

[^1]
THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

*Fair usage policy applies

it is thought that the petrographs afford additional testimony. Where these vicuña-like animals are delineated on the ancient rock-carvings, they are often associated with the figure of a man holding in hishand a peculiar four-branched instrument; one of the branches is held by its extremity in the haud, the others are in the air (Figs. 17, 18, and 19). This is thought to depict a herdsman 'or hunter in the act of casting the bolas. The bolas have, as far as can be ascertained, not been in use in North America south of the Artic circle siuce the Columbian discovery, although an implement, analogous in use but dilferent in form, is employed by the Eskimo.

Fig. 19.-Rock inscription of supposed bola-thrower, dancing men, nnd other objects.

Fig. 20 is a copy of a rock inscription showing a number of these animals associated with a hunter bearing a bow. Fig. 21, also from a rock carving, represents a supposed bola-thrower in conuection with a flock of turkeys. The turkey is found wild in Arizona and was probably domes. ticated by the ancient inhabitants of the country.

Fig. 20.-Rock inscription of vicuña-like animals and hunter.
3. In sacrificial caves in mountains surrounding the Salado cities, knotted cords have been found which are much like the quipus used by the ancient Peruvians. Similar knotted cords are still in use by the people of Zuñi and are by them called kispuwe, a name very similar in sound to the Peruvian.
4. In addition to these indications we must consider the great and closely corresponding prevalence of the os Ince in the skulls of these two widely separated peoples. This is a subject discussed more fully in thesomatological part of this work.

EXPLORATIONS NEAR ZUÑI.

The expedition left the Salt River Valley in June, 1888, and arrived at Zuñi in the following month. The work was continued in the vicinity of this place under the direction of Mr. Cushing until October 20, 1888, when he left for the East. His physical condition was such that he was not able to return; but the work of excavation was continued in his absence until July, 1889, at which time the expedition was disbanded.

The location of the Seven Cities of Cibola, visited by Coronado in 1541, was long a question for scientific discussion, and many arguments were advanced in favor of different places; but the ethnologic researches of Mr. Cushing and the historical investigations of Prof. Ad. F. Bandelier have settled the question beyond a reasonable doubt. The Seven Cities were situated in the valley of the Zuñi River in the neighborhood of the present pueblo of Zuñi, in Valencia County, N. Mex. The accompanying map (Fig. 22) shows very approximately the location of each. It was prepared with the assistance of Mr. F. Webb Hodge, of Washington, formerly secretary of the expedition.

Fig. 21.-Rock inscription, turkeys, supposed bola-thrower, etc.
We give below a list of the names of the cities in the modern Zuñi language, as noted by Mr. Cushing, and in the old Zuñi or Cibola language, as noted by Coronado and other Spanish travelers aud writers of the sixteenth and seventeenth centuries. If we make due allowance for the difference between a carefully devised modern orthography and a haphazard spelling of three hundred years ago we need not suppose that the language of Cibola has changed materially during the intervening time.

NAMES Óf the seven cities of clbola.
Modern.
Sixteenth and seventeenth centuries.

1. Hawiku Ahacus, Avicn, Aquico, Jahuica, Havico.
2. Kyànawe, Hampasawan Canabo.
3. Katchupawe, Kwàkina
4. Apina, Pinawan Aquinga.
5. Hàlona, Hàlonawan....................... Alona.

6. KyàkimaCaquina, Kyakima.

It was the original intention to explore all the ruins of the Seven Cities; but the illness of the director and the consequent recall of the expedition prevented the fultillment of this plan. Ouly one of the ruins of the seven cities was explored to any extent, namely, the ruin of Hallona. This town occupied in part at least the site of the present pueblo of Zuñi. The excavatious were made
upon the opposite bank, from Zuñi, of that meager and inconstant desert streamlet known as the Zañi River and in the neighborhood of houses occupied by the present ultra-urban population of the Zuñi tribe.

Explorations were conducted in other ruins in the neighborhood. Some slight digging was done in those on the top of Inscription Rock; but the most work was accomplished at Hèshotaùthla, a ruin on the road to Wingate, some 12 miles in a northwesterly direction from Zuñi. Hèshota-ùthla was in its day a compactly built, many-storied stronghold of stone containing a

Fig. 22. -Zuñi towns, ruins of Cibola and other ruins.
population of probably more than a thousand people. It was not one of the Seven Cities; but, according to the traditions (corroborated by archæological investigation) of the Zuñi Indians, it was occupied by their people in a remote antiquity. From this ruin was derived the greater part of the "Cibola" skeletons described in the second part of the following report.

In preparing this introduction, the writer has had access to some of Mr. Cushing's notes, especially to the original manuscript of a paper contributed to the Berlin meeting of the Congress of Americanists in October, 1888, and he has consulted a pampllet cntitled "The old New World," an account of the explorations of the Hemenway Southwestern Archwological Expedition in

1887-'88, by Sylvester Baxter (Salem, 1888). In addition to all this he has had the advantage of a personal knowledge of the southwestern country, its antiquities and its people, extending over a period of teu years. He has had an equally long intimate persoual acquaintance with the director of the Hemenway Expedition. In the autumn of 1887 he had the rare good fortune to spend about a month with Mr. Cushing at Camp Hemenway, in the Salado Valley, while the excavatious at Los Muertos were being carried on.

He might, therefore, had he so desired, have made of this introduction a more extensive and pretentious essay. This is intended, however, not as a contribution to American archæology, but merely for the convenience of the anthropologist who may desire to know something of the people to the description of whose osseous remains this work is chiefly devoted. The author has introduced ouly some of the more easily explained discoveries of the expedition, and he has made many statements without setting forth all the facts and arguments on which they are based. The reader must take some things for granted until Mr. Cushing's final report appears. In referring to the early Spanish writers and travelers the writer has been obliged to omit the proper bibliographical notes, for the reason that he had not access to their books at the time of writing.

In studying the crauia and other bones described in the following pages, and in preparing this report, I must acknowledge my great indebtedness to the following gentlemen of the staff of the Army Medical Museum: To Dr.Jacob L. Wortman (who spent many months in the field collecting and preserving the bones), for assistance in preparing the sections on the teeth and hyoid bone; to Dr. D. S. Lamb, for assistance in preparing the section on the olecranon perforation; to Mr. Porter Tracy, for his labor in taking measurements and his help in many other ways, and to Dr. J. C. McConnell, for preparing the illustrations.

Washington Matthews,
Surgeon, U. S. Army.

Fort Wingate, New Mexico, September 1, 1890.
S. Mis. 169——11

HUMAN BONES

OF

THE HEMENWAY COLLECTION.

PART I.

THE SERIES OF SALADO.

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer Alibrary in your pocket for $\$ 8.99 /$ month

Continue

*Fair usage policy applies
anticipating an extended use of this system in the future, we have taken many measurements according to this agreement.

Our decisions as to what to adopt and what to discard in different systems may appear occasionally somewhat arbitrary; but they have usually been made in accordance with certain rules which we have been constrained to adopt. We have not undertaken to sit in judgment on the general relative merits of any system. All the systems extant are the results of more thought and study than we have been able to devote to the subject of craniometry. We have accepted that which seemed best suited to the scope of our work aud to the character and extent of the series to be studied. We have also had to take into consideration the limited time at our disposal.

Any measurement which we believed to be identical or practically the same in different systems we have taken but once and, in taking it, we have followed whichever rule seemed the most explicit or laid down the most definite landmarks. Thus, in taking such a short dimension as the interorbital width, where a suall error may count for much, we have chosen for our landmark the definite dacryon as directed by Broca, instead of the less certain "inner border of the orbit," which the Frankfort agreemeut prescribes for us.

On some occasions we have discarded a dimension which had been made, or might be made, the basis of exteusive and valuable study, for the simple reason that we did not regard the given directions as sufficiently explicit. While they might be clear to the scientist who wrote them, or to the student who saw him apply them, they were not clear to the reader who had nothing but the text to guide him. Thus we have taken no vertical measurements from the ophryon, because no one tells us in what plane the connecting line between the frontal ridges should lie. Two or more equally short lines between these ridges might, in some skulls, be described at some distance from one another on the median line. In other words, we might have two ophryons so far apart as to give materially different facial heights. We thought it better to be silent than to fill our pages with material which might prove worthless. Had we had unlimited space, time, and assistance we might have included such measurements, though not without comment.

Some measurements were forbidden by the character of the skulls. The bistephanic diameter was put aside because the temporal ridges in this series are indistinct, the indistinctness being due, possibly, to the general use of boiled vegetable food among the Saladoans and the consequent limited exercise of the temporal muscles. Moreover, the stephanion lies in a region especially liable to be broken, and frequently was broken in the series. We have substituted for this dimension the maximum frontal diameter of Emil Schmidt.* The upper incisors were so often missing that we neglected dimeusions into which they entered. On the other hand, we took measurements from the metopiou, which is a very uncertain guiding point on these skulls in consequence of the subdued character of the frontal bosses.

We felt a great temptation to present to the reader such opinions concerning all the measurements as we formed in the progress of our work, and to give our reasons in each case for adopting this or abandoning that method; but on mature reflection we felt that this would lead us beyond the proper scope of our work. In the more important cases, comments ou the methods are given in connection with the discussions of particular dimensions or indices. In some instances we advanced far in the work of securing a dimension before we found practical reasons for abandoning it. In other cases we have taken a measurement on all the skulls of the series and compiled our tables and indices before we concluded to suppress our results. This we did, for instance, in the case of the horizontal and vertical measurements of the orbit.

We have, with some incousistency, perhaps, adopted dimensions and followed rules of whose exactuess we felt no less uncertain than we felt of some which we discarded. Such instances are, perhaps, to be classed among our arbitrary decisions. But we can partly atone for our errors, if such exist, by telling exactly what our own methods were. For instance, we have recorded measarements which have the superior border of the meatus auditorius for a guiding point, and we must coufess that we know not where to locate this point with accuracy. The rule for our own

[^2]guidance has been the contour of the processus auditorius or tympanic bone. Where this was complete in its upper portion, as it rarely is in man even in the lower races, we had no trouble in establishing our point. Where a good vestige of the upper part remained, not too far out of place, we were contented to take such vestige for our guide; but where a large segment of the bune was completely missing we joined the upper horns of the remaining portion by means of a peucil mark described as directly as possible from one horn to the other on the roof of the meatus and took the highest point of this arched line for our landmark. In leveling the skull for the German horizontal plane and in taking the auricular heights we felt less hesitancy in depending on this guiding point than in taking vertical arcs. Here it was most doubtful.

Table I is intended not only to answer the purposes of the present investigation, but possibly to serve as a model for future catalogues which may be issued by the Surgeon-General's Office. It has been designed with a view of economizing space and making reference easy. The peculiarities of its plan require little explanation. On the first page of the table and on its duplicate fly-leaf we have given a condensed description or indication of each measurement, index, or other item sufficieut, we believe, for ready reference. In order to get each description within the space of one line we have rarely used the exact words of the original authors. For the measurement of the German anthropologists we have been especially compelled to reject the circumlocutions of the Frankfort agreement in describing guiding marks and have adopted instead the specific terminology of craniometric science. "Frankfort," in the table, denotes that the preceding rule is to be found, in substance, in the Frankfort agreement.* "Topinard" denotes that it is to be found in the work of this author already referred to. The number or letter which follows either of these names corresponds with that given to the item by the quoted authority; thus "Fraukfort 1" refers to the first measurement of the Frankfort agreement. Feeling that our brief references to rules might often be insufficient for those who had not at hand copies of the oft-quoted Frankfort agreement and of the rules of Topinard, we have supplied these in Appendices A and B of this work.

§3. THE PICTURES OF THE SKULLS.

The outline tracings of the skulls shown in plates 1 to 54 , inclusive, are reductions to half size, made by means of a pantograph from orthogonal or geometric drawings.

It seems proper that we should here describe the apparatus and the method in use for the past five years in the Army Medical Museum, ${ }^{*}$ by which these orthogonal tracings were made, since both seem to differ in many respects from those in use elsewhere, as far as we may judge from published descriptions.

Fig. 23 represents the complete apparatus in use. It consists of a frame (a, a, a), inside of which is an open box (b) nearly filled with dry sharp saud (so arrauged that it may be raised aud lowered by means of a lever (c), a movable and adjustable mounted pin (d), an ordinary carpenter's or draughtsman's square, and a tracer of peculiar construction, which has been named the periglyph (e). The frame is surmounted by a movable plate of glass, thinly varnished on both sides to receive the tracing.

The periglyph is shown reduced in Fig. 24. It consists of a standard (a), a base (b) (both made preferably of vulcanite or hard wood), supported by two padded points (c), and by the sharp steel style (d), which makes the tracing; vertically above the extreme point of the style is a pin hole on an adjustable arm (e).

In other laboratories they use diopters, somewhat similar to this instrument in appearance, with which the outline is drawn by means of a pen or pencil held in hand. It needs but a single trial to convince one that our instrument, with its fixed steel tracer, is vastly more reliable and convenient. Of course the steel point would not trace on plain glass as the pen does; the thin coat of varnish renders the use of the style practicable.

[^3]To ascertain if the pin hole is truly vertical to the apex of the style, we take sight through the former over the latter on some point of the object to be depicted under the glass, and wheel the instrument around-the point acting as the center- 180 degrees. If the pin hole is vertical, the apex of the style will still cover the point on the object; if it is not vertical, we loosen the binding screw (f, Fig. 24) and adjust the arm (e).

The frame of our apparatus is 35^{cn} long, 28^{cm} broad, and 43^{cm} high; but some approximate size will do as well. The cross pieces which secure the upright supports are not placed at the top of the frame, but some 12^{cm} from it. There are two reasons for this: first, that no shadow may fall on the skull to obscure the vision of the operator, and second, that a horizontal surface may be afforded to support the mounted needle. The plane of the cross pieces must be perfectly parallel with that of the plate of glass.

Fra. 23.-Apparatus for orthogonal tracings.

Fia. 24..-The periglyph.

The mounted needle (Fig. 23, d) alone is used when the datum plane lies horizontally, as in outlining the vertex, side, and base of the skull; but when the plane stands vertically, as in tracing the anterior and posterior views, the square is also employed to secure the desired adjustment.

For facilitating the adjustment of the skull accurately and readily in any position, and for maintaining it in position, we have found nothing to excel the sand box. The most elaborate mechanical contrivance could not, we imagine, answer the purpose better.

In this series, furthermore, the skulls were so fragile that they did not admit of the application of any craniphore that would produce the least pressure.

The following is the method of operation: Place the skull on the bed of sand, pressing it down until it stands firmly. By means of the lever raise the sand box until the skull is nearly or quite on a level with the slots in which the glass is to fit. Orient the skull in the sand with the aid of the mounted needle, or the square, as the case may require; put the varnished glass in place; by means of the periglyph make the desired tracing; take off the glass. If a positive picture is desired, trace over the scratched drawing on the reversed side of the glass with ink. When the ink is dry, proceed to make the imprint. Lay unglazed paper on the inked figure and press it firmly down with one hand to prevent slipping; raise a small portion of the paper with the other hand; breathe in one spot upon the ink sufficiently to moisten it; replace. the paper and rub it
briskly over the moistened surface with the thumb nail. Treat the entire figure in this way. If a reverse picture is wanted, which is usually the case when a fimished drawing is to be prepared for engraving, ink the scratched line and take the imprint therefrom.

If it is desired to prove the correctness of a positive picture, wash away the ink from which the imprint has been made, ink the scratched drawing and place it right side up over the positive on the paper. The two should correspond. In no instance where we have made this test have we found the slightest error.

We have used an ordinary black ink, and have been able to take three good impressions from oue drawing. If it were desirable to take a large number of copies, other inks could be found to accomplish the purpose.

Dr. Paul Topinard tell us* that with Broca's stereograph the five views of the skull may be made in an hour. It takes nearly twice that time to do the same with our contrivance, operating with proper care; but as a partial compensation for this we have a drawing which furnishes many duplicates.

No special skill or lightness of hand is required with our apparatus; any person possessed of ordinary intelligence and eyesight can use it successfully at the first trial. It is not complicated; it requires no highly skilled workman to construct it; it may be made by any carpenter and its cost is insignificant.

Even the periglyph may be made by any handy individual with an ordinary pocket knife. We have two periglyphs, one manufactured of metal by a practical model-maker, the other rudely whittled out of wood by a medical gentleman connected with the Museum; both are perfectly accurate, but the latter is the more easily handled and the favorite instrument.

Several outlines may, without confusion, be drawn on the same varnished surface. The varnish should be of such a character that wheu dry it becomes crisp and brittle, breaking up in the course of the stylus-not dragging after the instrument and clogging it. Of many mixtures tried that known in the trade as Berry Brothers' (Detroit) hard-oil finish, diluted with one-third turpentine, gave the best results.

In making all but six of these tracings we adjusted the skulls on the German horizontal plane, or plane of the Frankfort agreement, partly for the reason that with the sand box we could find this plane more readily than we could find the alveolo condylean plane. But for purposes of comparison we sketched the norma verticalis parallel with the alveolo-condylean plane in six specimens, the type skull and five which approximated the type. The reduced tracings are shown in plate 51.

The five views of the type skulli (Pls. 55-59, incl.) were made on the basis of elaborate orthogonal tracings, the shading being added by the artist from nature. They are natural size. It is greatly to be regretted that the nasal bones in the type skull were broken, and that we were obliged to make a plaster restoration. The shape of the nasal aperture is only approximate.

There were but few skulls in this series in which all the points of the German horizontal plane or any other horizontal plane could be found to coincide with a true horizon, while the sagittal plane was perfectly vertical to such horizon. The variance was most marked at the upper borders of the auditory meatuses. In order to approximate uniformity we always aligned our facial guiding marks, not with the upper margin of the right meatus, but with that of the left, the side ou which the norma lateralis was taken.

The views of the lower jaws in plates 52,53 , and 54 were taken with the same apparatus and by the same method as were those of the skulls, and similarly reduced by the pantograph. When each was drawn the plate of glass on which the tracing was made was parallel to the plane on which the lower margin of the jaw rested at equilibrium.

Areas in the drawings marked with parallel straight lines show where there are holes in the skulls, neither bone nor plaster being present. Dottéd areas indicate plaster restorations-all such repairs, whether deep or superficial, being thus shown.

§4. SEX.

In twenty-one cases the skulls are accompanied by enough of the remaining bones to let the sex be stated with considerable confidence. These twenty-one skulls are the following:

Males: Nos. H. 6, H. 7, Н. 14, Н. 18, Н. 19, Н. 24, Н. 25, Н. 26, Н. 32, H. 34, H. 41-total, 11.
Females: Н. 1, Н. 5, Н. 8, Н. 10, Н. 15, Н. 21, Н. 36, Н. 39, Н. 45, Н. 57-total, 10.
These groups appear to be so scattered through the various ordinations that it can not with safety be said that the sexes are distinguished from each other by any metrical characteristics.

Although it is universally attempted to distinguish the sex of, say, four skulls in five, we do not consider it possible, in the present case at least, to do so; for, firstly, the number of known sex is so small that it is not possible to say that there is a constant sexual difference in any particular dimensional relation; secondly, there is apparently no constant difference of anatomical detail, such as prominent processes, "strong narking," or the like. The sex of H.40, the type skull, can not be certainly stated, but, very reservedly, of course, we may suggest the probability of its being female. In this connection it is interesting to note that H. 7 and H. 25, males, also closely represent the type and closely resemble one another.

§5. PATHOLOGY.

Of the Salado collection about 69 sets of bones, representing each a complete individual skeleton, or the majority of bones of one individual, have come to us; but, as these sets are sometimes mixed with bones which do not belong to them, and as there are many miscellaneous bones in the collection, percentages of pathological formations must in some cases be only approximate. The collection shows some interesting anomalies, diseases, and injuries.

Fig. 25.-Fraguicnt of skull, showing spheno-jterygoid foramen.
Anomalies.-The more important anomalies, those supposed to be of anthropological significance, are discussed more fully elsewhere, under separate headings. Some of those of minor importance will be considered here. In one case (fragment) the occipital bone showed two small, smooth, rounded condyloid prominences close to each other at the anterior part of the foramen magnum. The coudyles proper were somewhat broken, but appeared to be smaller than usual, though normally located.

In one case (H.21, Pl. 21) the foramen magnum was of unusual size: At least the portion of its border, the posterior half, which remained, indicated that the foramen was very large. The basilar portiou of the occipital bone was missing.-

The spheno-pterygoid foramen, complete or incomplete, was not found in any of the restored skulls; but in one small fragment a complete foramen was found, where the two processes which formed its boundaries touched but were not cö̈ssified (Fig. 25).

In H. 33 the occipital bone showed behind the right condyle, from which it was separated by a narrow groove, a small, smooth surface which articulated with a corresponding small, smooth surface on the atlas, behind the usual kidney-shaped articular surface. In the case of the atlas also there was an absence of the spinous process and of a small part of the posterior arch on each side, leaving a gap in the bone. There was no sigu of intlammatory action.

In several instances the groove on the atlas for the suboccipital artery and nerve was converted into a foramen more or less complete, sometimes on both sides in the same subject. In H. 25 there are very complete foramina on both sides. In a number of cases the vertebral foramen was subdivided into two openings, and sometimes it was much smaller on one side than on the other.

Amoug the vertebræ there were five instances of what might have been congenital union; in two the occipital bone was united with the atlas; in two others the axis was united with the third cervical vertebra, and in one, two adjoining dorsal vertebræ were soldered together. The lines of union in these cases were even and smooth and there were no exostotic growths adjacent to sug. gest the existence of inflammation. In one other case of union of the axis and third cervical ver. tebra, more doubtfully of congenital origin, there was partial destruction of the posterior arch of the axis, apparently due to suppuration.

There were four cases of union of the first and second pieces of the sternum, showing the usual incompleteness by the small cavity in the articulation. There were also some cases of fissure of the lower part of the sternum, and the shape of the ossified portion of the ensiform appendix varied as usual.

One rib was bifurcated anteriorly.
The tibiæ and fibulæ on both sides in H. 90 exhibited a marked uniform symmetrical anterior curvature. The index of the right tibia, as shown in Table lxxiv, was 53.03, a very low index, yet exceeded in this respect by several of the series. The index of the left tibia was not com. pated, as the bone was so split that it was feared the normal dimensions could not be obtained. These were the ouly leg bones that showed this curvature to any noteworthy degree. They were better entitled to the name of saber bones than any in the series. There was no certain sign of inflammation or degeneration in these bones. The skeleton unfortunately was quite incomplete, but what remained showed the following lesions: A healed fracture of the outer third of the right clavicle; small exostoses on the articular surfaces of the condyles of the lower jaw; bouy growths on the sites of many tendinous insertions; a few of the vertebral bodies were very friable and a large osteophyte bound them together anteriorly: This is the only case which suggested the pos. sibility of rickets, but the symmetry of the curvature disposes one to doubt that this disease exisied.

Still it is possible that the case comes under the class described by Agnew" as "mild form of rickets."

Injuries.-There were some specimens showing the healing of fractures, three of the clavicle and one of the tibia; the latter had healed with marked deformity. Recent fractures could not of course be recognized because of the general fragmentary character of the bones.

In one case, where unfortunately most of the vertebræ were absent, one of the dorsal vertebræ, apparently the eleventh, showed the condition somewhat like that seen in cheesy degeneration and caries of the vertebral bodies. The body of the bone was shaped likeatruncated wedge (vide inf $f_{r a}$). In the same case three ribs, apparently the sixth, seventh, and eighth, right side, showed poste. riorly from the head to the angle a rough surface with exostotic growths, as if the ribs liad formed the wall of an abscess. There was also an impacted fracture of the neck of the right femur, and the right ulva aud both fibulx showed an uneven surface that might possibly have resulted from a contusion with consequent inflammation. Altogether I regard the condition as one general injury, probably from a fall on the right side.

There was one case of fracture of rib with good union and no deformity excent a slight over. lapping.

There was one case of anchylosis of astragalus and os calcis, and another of the second metatarsal aud middle cuneiform bones, both probably traumatic.

Disease.-In about one-third of the cases periosteal fringes of new bone were found along the edges of the bodies, and sometimes of the laminæ of the vertebre. In view of the incompleteness of the individual sets, it is impossible to state with any accuracy the relative frequency with which the disease occurred in the different regions. Apparently it affected most frequently the lumbar region, next the dorsal, then the cervical, and least of all the sacral. In two cases only there

[^4]were actual bridges of bone, and these connected adjoining lumbar vertebræ. These exostotic growths resembled those seen in the bones of individuals who hafe worked hard and been exposed to cold and wet, those often found in the bones of the dissecting room subjects. The condition may be termed "rheumatoid." It is worthy of observation that the vertebræ were much more frequently affected than the other bones of the skeleton.

The frequency of this rheumatoid condition in the people represented by these bones may seem rather surprising in view of the mild character of the climate at the present day, which is probably similar to what it was in their time; but, granting the existence of this condition, it is easy to understand its predominance along the spine. The Saladoans were a hard-working people, whose labor was of such a character as to cause much bending of the back, to make them perspire freely, and to subject them to sudden changes of temperature while perspiration was active. In short, they lived in many respects under conditions similar to those of our own laboring classes, and we need not wonder that they suffered from similar maladies of the vertebral column.

There was one case of antero-posterior curvature of the spine in an adult which merits special description. In the dorsal region a number of adjoining vertebree had their bodies symmetrically and bilaterally diminished from behind forwards; they had the shape of a truncated wedge with its base posterior. No distinct evidence of caries could be discovered, as in Potts disease, but the friable and injured condition of the bones did not permit us to aunounce a positive opinion on this point. The change in shape seemed more probably due to an interstitial absorbtion than to caries. We should he'sitate to say that it was a case of tubercular degeneration; there was no satisfactory evidence of the existence of such a condition in any bone in the collection. There were many fringes of new bone along the bodies of the diseased vertebræ, and there was firm coössification of adjoining bones at the left sacro-iliac synchondrosis. There may be other skeletons in this series which had similar lesions, but the loss or destruction of some of the vertebro forbid us to speak with certainty. We have in the general collection of the Museum a skeleton from Alaska showing a condition similar to that described, and we will anticipate Part II of this work by saying that we have another such skeleton in the series of Cibola.

A disease exists in Zuñi which Mr. Cushing, freely translating the Zuñi name, calls the " warps." It consists of a gradually increasing, symmetrical, antero-posterior curvature of the spine, which, when it reaches completion, after years of progress, brings the knees in close proximity to the chest and renders walking impossible. The patient is obliged to go around on short crutches and is reduced to a helpless condition, his only useful occupation being the kuitting of stockings. The disease is not accompanied by abscesses or sinuses, and the general health of the afflicted person is not seriously impaired. It is said that on the first appearance of the malady, if the patient will permit himself to be tied night and day to a straight board, he may avoid the worst consequences; but either this is not an infallible remedy or there are some who have not the fortitude to submit to it, for the writer has seen at least half a dozen sufferers in the pueblo of Zuñi, all adults and mostly males. The connection, if any exists, between this disease aud the spinal curvature of the Saladoans and Cibolans, referred to above, is worthy of investigation.

In several cases the conditions suggested the possibility, but by no means demonstrated the certainty, of syphilitic disease. Thus in one there was irregular nodular hypertrophy of the shafts of both tibia, more especially the right, of the lower part of the right fibula, and of the shafts of both ulnæ, while the sternal ends of the first ribs showed exostotic growths. In some cases there was hypertrophy of the tibial shafts without any other evidence of disease.

The fragmentary and worn conditions of the skulls interfere with the recognition of disease and injury. There were, however, abundant evidences of alveolar abscess, more especially in the lower jaw; and in a few cases the alveolar wall was perforated. In one case the left lower incisor and part of the alveolus were absent, probably from abscess or injury, but in this situation giving a very peculiar appearance to the jaw.

In 2 or 3 cases the eminentia articularis was eroded on one side, and the corresponding coindyle was also largely destroyed. It seemed to be rather the result of atrophy than inflammation.

The lesions of the jaws and teeth are futher considered in the section on teeth.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

*Fair usage policy applies

These groups are believed to be not devoid of significance, and will be made the basis of future comparative study of A merican races. It has been already found, for instance, that in skulls dug from American mounds, where occipital flattening is often encountered, that total posterior flattening (Group A) is much the rarest form. In 68 mound skulls, with sagittal depression, the groups are distributed as follows: Group A, 7; Group B, 51 ; Group C, 10. It may be, too, that our future studies will compel us to establish another class, in which the depression is below the lambda.

Fig. 26.-Occipital depression. Gronp A.
Besides these sagittal variations in depression, we have different forms and degrees of lateral depression, i. e., the depression, iustead of having its center on the median line, has it more or less to one side. This character naturally divides itself into two groups-right and left. In forming these groups we have depended upon a mere inspection of the skull and not upon measurements, only a skinll which had an obvious lateral deformity being included in either group.

These lateral deformities are not to be profitably cousidered under the head of plagiocephaly as defined by Broca. According to this author a certain depression of the frontalbone on one side accompanies a depressiou of the parietal on the opposite side in the condition to which he applies this name. While in this collection there are some true plagiocephalic skulls, the majority having the posterior lateral flattening have not the accompanying frontal flattening. Hence they have been all first studied together with regard to the posterior flatteniug only. Of a skull thus

flattened on the left side we say it has left posterior flattening, although it may have right plagiocephaly, and of a skull thus flattened on the right side we say it has right posterior flattenme, although it may have left plagiocephaly. In short we study this deformity first without regard to plagiocephaly.

Out of 28 skulls showing the lateral posterior depression, 19 are flattened on the left side and 9 ou the right. These deformities are illustrated in Figs. 29 and 30, which represent superimposed outlines adjusted on the median line and the maximum occipital point.

Thus we see that the skulls flattened on the left side are twice as many as those flattened on the right. Right-handed women carry the child usually ou the left arm, and therefore suckle it mostly at the left breast,* and right-handed people predominate greatly over the left-handed in all

$$
\mathscr{N}_{0 .} 19.41 .44 .52
$$

Slepretion moxdy above lambda.

Fia. 28.-Occipital depression. Group C.
races. When lying on the hard cradle-board, then, the heads of the great majority of infants should more frequently incline to the right than to the left, aud should therefore, we would suppose, be more likely to become flattened on the right side. In our mound skulls the flattening is much more frequent on the right side than on the left, in the proportion of 62 right to 39 left in 101 skulls in which lateral posterior flattening is found.

[^5]One peculiar effect of the occipital flattening is observed in the horizontal circumference. In certain of these skulls ($\mathrm{H} .4, \mathrm{H}, 10$, and H .47) a curious difficulty has been encountered concerning the horizontal circumference. It is prescribed that this circumference, which is supposd to be the maximum, be taken on a line passing above the supraciliary ridges aud through the maximum occipital point; thus the posterior segment of the circumference encircles, so to speak, the posterior end of the maximum length. But in these skulls the line indicating the greatest circumference passes high up toward the obelion, and is drawn through so high a plane of the skull that the greater breadth of the skull at points below that plane more than compensates for its slightly less length; therefore the maximum circumference does not lie in the same plane as the maximum length.

Fig. 29.-Occipital depression, right lateral.
Again; suppose that we take a skull of any ordinary shape and paint a line around it in the horizontal plane of its greatest length. If we then look downward upon the vertex of the skull we shall hardly see the line at all, because it corresponds so nearly to the outline of the skull in norma verticalis; but if we take one of the deformed skulls in question and paint a line correspondingly related to the maximum length and then look down upon the skull, we shall see painted upon it an ovoid figure which coincides with the outline of the skull only at its posterior extremity. This is owing to the fact that the most protuberant regions of the cranial parietes are situated much below the horizontal plane of the greatest length.

In these cases both the maximum circumference and the circumference around the maximum occipital point have been recorded, although it has been a matter of great difficulty to determine exactly the maximum circumference, and a series of measurements of the same made at long intervals of time would probably show considerable variation.
S. Mis. 169-12

§8. APPARENTLY NORMAL SKULLS.

There are 16 skulls which, if never seen in connection with the rest of the collection, might readily be regarded as normal skulls. Taken by themselves, the fact that they are deformed is not obvious; studied along with the rest of the group, where there is every gradation from the most unquestionably flattened to the apparently normal, the observer bas no doubt that the causes which operated in distorting the former class have had their effect too in slaping the latter, and he feels uncertain where, in auy shortened skulls, he is to draw the dividing line between the normal and the abnormal. To what extent do the pillow and cradle of civilization affect the skull? In our great collection of Indian crania, those which are the longest, without obvious artificial deformity, and those which have the best developed occipital shells belong to tribes which

Fig. 30.-Occipital depression, left lateral.
use $n o$ cradle-boards or baby baskets; but carry their children in soft bandles, on the back, in blankets or in frames which present a flexible surface of stretched cloth or buckskin to the occiput of the infant.

It is evident (see Tables IV and v) that these apparently normal skulls partake fully of the brachycephaly of the whole group. They represent neither the longest nor the shortest of the entire series; their extremes bring 78.40 and 94.66 , and their average cranial index (86.94) is but little lower than the average of all (88.47).

Many craniometricians advise that the deformed skulls like most in this collection should not have their cranial measurements taken or placed on recond for comparison. Such advice las not been followed here. All that do not show decided post-mortem distortion have been measured. This has been done because of the uncertainty referred to above in distinguishing between the normal
and the abnormal, because the occipital distortion is found in the skulls of so many of our Ameri-, can races, and because it is felt that its careful study by measurement may eventually prove of great value in comparing the races. In some cases, however, separate tables have been arranged for the apparently normal skulls, which are desiguated as follows: Numbers H. 7, H. 12, H. 15, H. 18, Н. 19, Н. 21, Н. 23, Н. 25, Н. 26, Н. 34, Н. 36, Н. 39, Н. 40, Н. 44, Н. 54, Н. 57. (See Tables iv and v).

§9. POSITION OF MAXIMUM OCCIPITAL POINT.

A feature, probably the effect of occipital distortion, which is usual in these skulls is the elevated position of the maximum occipital point. ' In 50 specimens in which the position of the lambda may be determined, we find that the maximum occipital point lies above it in 10 , and at it or less than 5^{mm} below it in 10 more. In other words, the maximum occipital point lies without the occipital bone in 20 per cent of the specimens and is barely included in the latter in another 20 per cent. In 3 of the former 10 skulls the point is seen in the region of the obelion. In the remaining 30 skulls, while it is found on the occipital bone, it is usually found high on it. In only 5 cases (10 per cent of all) does the point appear in the region of that usually ill-defined locality, in these skulls, the inion.

§10. THE LENGTH-BREADTH INDEX.

The equality in this collection of the cephalic index of Broca to the length-breadth index of the Frankfort agreement is remarkable and is due no doubt to the occipital flattening. The maximum occipital point being unusually elevated by reason of the flattening ($\$ 9$), it often coincides, or nearly coincides, with the posterior extremity of the German horizontal length, thus approximating the only factors of these two indices that differ. In 13^{*} out of 47 eases these two indices are exactly equal to one another; in one-half \dagger of the 34 remaining cases the indices differ less than one unit. According to this index the longest skull is again H. 23, and it is one of those skulls in which both indices are alike. H. 46 is again the shortest skull, but its horizontal length being shorter than its greatest length, we have the higher leugth-breadth index of 99.31 . According to the "agreement" concerning this index, 3 skulls only are mesocephalic, 8 are brachycephalic, and 36 are hyperbrachycephalic. The average, closely approximating that of the analogous ver-tico-transverse index, is 88.75 , an extreme grade of brachycephaly.

In 10 instances \ddagger we have the confusing record of a vertico-transverse index higher than a length-breadth index. This involves the paradox of a length greater than the maximum length. A reference to measurements 6 and 7, in Table I, will show, furthermore, that such is our actual entry in the cases where footnotes are referred to. This apparent inconsistency arises from the following conditions: First, the occiputs of these skulls are so distorted that one side of them projects posteriorly beyond not only the other side but beyond any point in the posterior part of the sagittal plane, so that the profile of the skull does not correspond in outline to a section in the sagittal plane. Hence, second, the longest dimension parallel to the horizontal plane is not in the sagittal plane. We do not, however, measure directly from the glabella to the most prominent side of the occiput, which would give us an oblique measurement, but by means of the vertical plates of Spengel's craniometer we measure that which is a line parallel to the sagittal plane but lying to one side of it. Imagining this line to be projected upon the sagittal plane, we reckon our indices according to the accepted formula. We might have so modified the results or the modes of measurement as to remove this discrepaucy from the record, but we considered it more candid as well as more scientific to give the results as originally determined.

§11. THE VERTICAL INDICES.

The occipital depression referred to not only directly shortens the antero-posterior diameter, but increases the height and width of the skulls actually as well as comparatively. As a consequence, not only is the cephalic index very large throughout the group, but the vertical indices are correspondingly exaggerated.

[^6]The vertico-longitudinal index was obtained in 40 skulls (Table vini). Its extremes in adult skulls are 78.79 and 97.29. We have a child's skull, however, which has an index of but 77.70 , and it is well to observe that the maximum index (skull H. 32) is far removed from the rest of the group, the next greatest being 92.56 . The average of 39 adult skulls is 83.24 .

Our lowest index is within the limit of high skulls as given by any known authority. Sir William Turner applies the term acrocephalic to all crania with an index of 77 or above.*

In the list of the vertico-transverse index (which may be computed in 39 skulls) the lowest is 84.82 , the highest is 105.88 . This belongs to the same skull, which has the highest length-height index, namely, H. 32. In respect to the index now under consideration, H. 32 is not so far removed from the rest of the group as it is in the length-height index, as will be seen in Table xIv, where the highest five indices are: 105.88, 104.47, 103.62, 102.27, and 101.39.

In 36 skulls both the vertico-longitudinal aud the vertico-transverse indices were ascertained, aud from those we were able to determine the mixed index of height of Topiuard. \dagger Of these 36 skulls the average vertico-longitudinal index is 85.40 , the average vertico-transverse index 96.49 , and the mixed index 90.94 . (See Table xvir.)

A casual glance at the above figures might lead to the conclusion that the pressure on the occipital tended more to increase the width than the height of the skull, but such is probably not the case. The transverse measurement is taken wherever the maximum width falls; the height measurement is taken from basion to bregma, and the latter is in no case the highest point on the sagittal suture in this group-it rarely approximates the highest point. If a series of vertical measurements were taken from either the German horizontal plane or the alveolo-condylean plane extended, the most distant point of the sagittal suture would usually be found posterior both to the bregma and the vertex of Broca, and often nearer to the obelion than to either. Thus it probably is that the vertico-transverse index is the greater of the vertical indices.

§ 12. THE PLANE OF THE FORAMEN MAGNUM OR OPISTHIO-BASILAR PLANE.

In 29 skulls, where the landmarks were intact, we have determined the degree of inclination of this plane according to the three methods usually employed, i.e., we have taken the angle of Daubenton, the occipital augle of Broca, and the basilar angle of Broca. Tables Xviif-xxini give the results of our measurements, recording in uo case less than half a degree.

We are told \ddagger of the angle of Daubenton that its lowest recorded expression is $\mathbf{- 1 6}$ in an Auvergnean, and its highest +19 in a Hottentot. In the Hemenway collection we have no minus quantities for this angle; our lowest is $+4^{\circ} 30^{\prime}$, while our highest far exceeds this exemplary Hottentot, being $+23^{\circ}$. The highest average we have seen mentioned is +9.34 in Nubians, but the average of the Saladoans is 13.30 .

The occipital and basilar angles of Broca are, of course, correspondingly exaggerated in our series, the mean and extreme of the former being respectively $24^{\circ} 15^{\prime}$ and 35°, and of the latter $32^{\circ} 15^{\prime}$ and $46^{\circ} 30^{\prime}$ (Tables Xx and xxir). The mean of the Nubian basilar angle is $26^{\circ} 32^{\prime}$.

The opisthio-basilar line is very approximately a continuation of the alveolo-basilar line in skulls H. 10 and H. 23, whose angle is, of Daubeuton, $18^{\circ} 30^{\prime}$. A straightedge applied to the median line at the base may be made to almost touch at the same time the alveolar point, the basion, and the opisthion. We may say, then, that the plane of the foramen magnum in these two cases looks directly downward. In skulls H. 18, H. 24, and H. 25 , whose angles exceed $18^{\circ} 30^{\prime}$ the plane looks downward and backward. In the rest of the series it looks downward and more or less forward.

If the inclination of the plane of the foramen magnum were accepted as a measure of evolution, the Saladoaus would stand at the bottom of the human scale. We are inclined either to regard their peculiarity in this respect as additional evideuce in support of Topinard's opinion that the

[^7]

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer Alibrary in your pocket for $\$ 8.99 /$ month

Continue

*Fair usage policy applies
of the whole series, this average may be far from the true average capacity of all; but we have the following reason for thinking otherwise: That capacity $(1,330)$ which comes nearest to the above average, belongs to skull H. 7, and this it is, that next after the " type" (H.40) is the most typical skull of the whole series as shown by its various indices.

The table of Broca, with which we have to compare this average, gives separate figures for the males and the females of each, race. We have calculated the combined averages and made our comparisons with these. Broca gives 29 series including the most diverse races, but no American Indiaus. We find but three of his series having a lower cranial capacity than the Saladoans; these are the "Hottentots and Bushmen," the "Australians," and "Parias of Allipoor (Calcutta)." Such inferior races as the Negroes of Africa, the Papuans, the New Caledonians, and the Tasmanians seem to rank in this character above the Saladoans.

Our Table xxiv presents some small series of average cranial capacities of (lower) races represeuted in the Army Medical Museum. They are taken from the series of 101 (see Table Lxxxi)-2 Navajos and 10 Peruvians being added. 'All the races, not American Iudians, mentioued in this table, viz, Sandwich Islanders, Mongoliaus, New Zealanders, Americau Negroes, and Eskimos, it will be seen, have larger brain cases than our Saladoans. The position of the latter with regard to other autochthones of both North and South America is shown in the following extract from the table:
(1) Siouau tribes 1463
(2) Pah Utes 1367
(3) Apaches 1331
(4) Ancient Californians 1323
(5) Navajos 1315
(6) Saladoans 1313
(7) Peruvians 1295

It is not in accordance with current theories that a people as advauced in arts and social organ. ization as that of the Salado Valley evidently was should have a cranial capacity superior only to such low races as the Hottentots and Australians. It must be borne in mind, too, that the uncremated remains of the Saladoans probably represent a superior class of this community. Still, small as is their cranial capacity, it is greater than that of the Peruvians, who were a race more advanced thau the Saladoans. We have little to suggest in explauation of these facts. Perhaps the subject of cranial capacity in relation to culture may have to be reconsidered. The Saladoans were a people of low stature and rather slight physique, and the relation which the skull bears to the rest of the skeleton may be a factor in the problem. We have as yet no evidence to show that distortion reduces the capacity of the cranium.

§14. THE TYPE SKULL

The following method is the one we have adopted for selecting a type skull from the series: First. Let all the sets of indices be arranged in ordination. Second. Subtract the lowest index in one ordination from the highest. Third. Divide the difference by 2 , and add the quotient thus obtained to the lowest index. This gives the theoretical mean of variation. Example: Suppose we have a series of skulls with cephalic indices ranging from 80.00 to 90.00 . The first step, subtraction, gives us 10.00 ; the second step, division, gives us 5.00 , and the third step, addition, gives us 85.00 , which is the theoretical mean of variation. The sknll, if any, having this index is the type of the series as far as concerns the cephalic index. In practice, however, where we calculate indices to the second decinal place, it is not usual to find any skull with the index exactly expressing the theoretical mean. The skull most nearly expressiug it is taken as the type.

It follows that if we take many different series of indices upon the same skulls we have to determine what skull stands in the plurality of instances nearest the theoretical meau. Suppose we calculate ten different series of indices upon 9 skulls (an odd number is easier for the purpose of explanation). If 1 particular skull expresses the theoretical mean of variation in
each and every series, it is, of course, the type skull of the lot in every respect, so far as the investigation has gone.

But if, as must always be the case, no skull expresses the theoretical mean of every series of indices, then we take the skull which averages nearest the theoretical mean. Therefore, of our supposed lot of 9 skulls we select, let us say, from the first series of indices, 3-the skull having an index most nearly expressing the mean of variation, the skull having an index next greater than this, and the skull having an index next smaller. Now, supposing that we have ten series of indices, let us say that the skull which expresses the theoretical mean of the first series comes nowhere near it in any other series, while the skull next below the theoretical mean in the series of indices under consideration is the theoretical mean of two other series of indices, and stauds either just above or just below the mean in every series. The latter, then, is very likely the type sought.

To state it more methodically: We have measured a lot of skulls, have reckoned their indices, and have arranged the several different kinds of iudices in as many different ordinations. In each ordination we select the index most nearly expressing the mean of variation and call it No. 1 ; the index next above and index next below this we call No. 2. The index next above the greater No. 2 , and the iudex uext below the lesser No. 2 we call No. 3, and so on. Now let us add together, for each skull separately, the Nos. $1,2,3$, etc., expressing the position of the several indices with regard to the theoretical meau of radiation of each series of indices. Divide the sum thus obtained by the number of series of indices. The skull whose indices thus treated give the lowest quotient is the type.

In the present case, however, it must be remembered that the Salado skulls are much broken, so that only a few can yield a complete series of measuremeuts. The type skull, therefore, in part owes its selection to its good preservation, it being represented in every series of indices. It can not be said to be the type of 57 skulls, perhaps, but in a general way, all things considered, it is the best representative of the characteristic dimeusional relations of crania of the people in question. Its most aberrant feature consists in the unusal height of the orbits, shown by the orbital index 96.05 , while the theoretical mean of the orbital indices is 90.90 .

The type skull thus selected is H .40 ; its five views are shown in plates 55 to 59 , inclusive. Of skulls in good coudition H. 7 and $H .15$ approach nearest to the type.

§15. PROCESSES AT BASE OF SKULL.

There is evidence, in the archæologic find of Los Muertos and Las Acequias in the shapes of the pottery, etc., that this people, like the modern Pueblos, were accustomed to carry heavy burdens on the head. Such being the case, we might reasonably expect to find the various processes for muscular and ligamentary attachments at the base of the skull strong and prominent; but, on the contrary, we fiud them unusually subdued and weak. It may be that our expectatious are unfounded; that the load on the head, once well balanced, required little muscular exertion to sustain it.

The Inion.-In 46 adult skulls, with this process well preserved, compared with the five forms of Broca,* we tiud that 27 agree with his zero or lowest form, that 19 resemble his No. 1, and that none are to be considered of a higher grade than this. It has been conjectured that the general pressure which has flattened the occiput in these skulls may have hindered the full development of the inion; but the fact that all the processes of the base are weak, and that the inion is ill-developed in skulls where the pressure did not fall upon it, seems to indicate that pres. sure can at most account for only a part of the subdued features of the inion in this series.

\$16. THE PTERION.

Of the pteria 32 are sufficiently preserved to be studied with profit. They occur in 24 skulls, 13 on the right side, 19 on the left. Four exhibit the character plainly, but can not be measured. The remaining 28 (see Table XXV) are easily measured. Ouly 8 skulls have the pteria intact on both sides.

All are of that form called by Broca pterion in H. Wormian bones complicate their char: acters.

Of the 11 measurable right pteria the longest is 20^{mm} (the maximum of the group) and the shortest is 5^{mm}. Of the 17 measurable left pteria the longest is 18^{mm} and the shortest $3^{\text {min }}$ (the minimum of the group). The average length of the right pteria is 12.90^{mm}; the average of the left pteria is 11.35; the average of all, 11.96 .

There are but two pteria of less than 8^{mm} in length, a percentage of 6.5 , which is smaller than any on Anoutchine's* table except that of the Peruvians, which is 3.4. There is but one pterion which does not exceed $3^{\text {nmm }}$, but with our small total of 28 this gives us a percentage of 3.5.

On the whole the character of the pterion is of a very high type.

§17. UNIQUE SAGItTAL SYNOSTOSIS.

The presence among the Saladoans of 4 skulls showing unique sagittal synostosis, one of them adolescent, has naturally led us to inquire if an early sagittal synostosis can be a physiological characteristic of this people, or if, at whatever age synostosis begins, it affects first the sagittal suture. With this point in mind we have investigated several other series of American skulls with the following results (the description applies solely to the outer table except in cases where the inner is expressly mentioned):

Saladoans.-The Saladoans present four cases of unique sagittal synostosis as follows:
No. H. 15, a fairly well-preserved skull, female; basilar suture closed; third molars cut except left lower (?); right lower second premolar and first molar shed and alveoli absorbed; right upper third molar decayed away; the two third molars still visible; lower right and upper left one only slightly worn, especially the latter; premolars and first molars worn just into the enamel. Sagittal suture completely obliterated; no other synostosis. A line of porosity across the pre-occipital may possibly indicate previous existence of an os epactale.

No. H. 17, a well-preserved skull of a youth; basilar suture open; all milk teeth shed; no third molars cut; no permanent teeth lost ante-mortem; enamel of first molars a little worn; entire obliteration of sagittal suture; no other synostosis of brain capsule.

No. H. 45, a fairly well-preserved female skull; basilar suture closed; full set of permanent tecth cut and none of them lost ante-mortem; wear of enamel very slight; complete sagittal obliteration; no other synostosis.

No. H. 49, a much warped and laterally flattened skull; post-mortem distortion; basi-occipital broken away; full set of teeth, except lower third molars, cut and none shed ante-mortem; lower third molars point forward and are impacted against second molars, probably never would have been erupted through gum; first molars worn, but not into dentine; obliteration of sagittal suture; probably no other synostosis; sutures of cranial vault all very simple.

Peruvians.-Among the Peruvians the following cases are to be noted in connection with sagittal synostosis:

No. 2315, a well-preserved skull without mandible; basilar suture closed ; permanent teeth all erupted and none lost ante-mortem; all teeth lost post-mortem except left upper first premolar and molar; these teeth worn into the dentine; posterior two-thirds of sagittal suture obliterated; anterior third ossified in spots; no other synostosis; there is a slight ridge about the anterior part of the sagittal suture; the left temporal sends a process to join the frontal bone.

No. 2506, a well-preserved skull without mandible; basilar suture closed; teeth all cut, but third molars lost ante-mortem; all teeth which are present are worn down to the dentine; complete sagittal obliteration; a very little commencing synostosis of the lambdoid and left occipito-mastoid sutures; no other synostosis; sagittal ridge; a process joins right temporal and frontal.

No. 2945 , a well-preserved skull with mandible; basilar suture closed; all permanent teeth cut; both upper third molars and left lower third molar shed ante-mortem; teeth worn down to the dentine; complete obliteration of sagittal and complete obliteration of right squamous suture; no other synostosis; sagittal ridge.

[^8]It is seen from these notes that the Peruvians offer no case of sagittal synostosis comparable to that of the Saladoans. This is the conclusion arrived at by considering that all three of the above skulls are at least mature and show a sagittal ridge.

Yucatecs.-The Yucatecs offer the following specimens of unique sagittal synostosis:
No. 626, a well-preserved skull without mandible; basilar suture closed; all permanent teeth cut; second upper right promolar shed ante-mortem; teeth not worn; sagittal suture obliterated; no other synostosis.

No. 628, a well-preserved skull without mandible; basilar suture closed; all permanent teeth cut; left upper third molar lost, probably ante-mortem; enamel of teeth not worn; sagittal suture obliterated; a little commencing synostosis just above the lambda; no other synostosis.

Calfornians.-No. 1415, small, rather heavy and well-preserved; basilar suture closed; third upper molars cut (lower jaw not found); right upper third molar lost; the teeth show wear sufficient to slightly expose the dentine except in the case of the left upper third molar, of which the enamel alone is worn; the sagittal is coössified throughout its entire length on the inner table, and all but its anterior fifth on the outer table; no other synostosis.

No. 1430, medium size; facial bones separated from cranium and only right side of mandible preserved; third molars cut; but all but right lower have been lost; basilar suture closed; the enamel only of the teeth is worn; sagittal entirely obliterated; no other synostosis.

No. 1507, small skull; right temporal and cerebellar regions broken away; mandible broken across the symphysis; basilar suture closed; all third molars cut, but right upper one has been lost; the second and third molars have their enamel only worn; some other teeth have their dentine slightly worn. The sagittal is coössified entirely on the inner table and all but its most anterior portion on the outer table; no other synostosis; lambdoid quite complicated.

No. 1748, consists of the cranial vault, only, from a good-sized, rather scaphoid specimen; sagittal completely obliterated on each table; coronal and lambdoid fully open; no way of judging age.

A skull which is less satisfactory to discuss, as all its teeth have dropped out post-mortem, is. No. 802, a. well-preserved recent skull; basilar suture closed; third molars cut; all teeth dropped, but there is no alveolar absorption.` There bas been a large os epactale; it is now firmly coössified to the parietals, and they in turn to each other, the sutures being thoroughly obliterated; other sutures, including that between the epactal and occipital, open. Rather a scaphoid skull.

In many of the Californian skulls there is a prominence, sometimes prolonged into a ridge, just behind the bregma; none of the above synostotic skulls show this peculiarity except No. 802, which has a slight ridge. In some skulls, however, where synostosis is more general and probably a purely senile change, it is evident enough.

Mound builders.-No. 556, a mutilated skull of a Floridian without mandible; state of basilar suture indeterminable; upper set of permanent teeth all cut; right upper third molar shed antemortem, teeth all deeply worn; complete sagittal obliteration; no other synostosis.

No. 1110, a mutilated skull of a Floridian without mandible; basilar suture closed; teeth mostly shed ante-mortem and rear alveoli much absorbed; sagittal obliterated except at its anterior half centimeter; very slight commencing synostosis of lambdoid; no other synostosis of brain capsule. This is probably the skull of quite an old person.

No. 730, a fairly well-preserved skull from Kentucky with mandible; basilar sutare open; all permanent teeth cut except third molars; no teeth shed ante-mortem; all teeth lost postmortem except right upper first molar and both lower first molars; these teeth are not worn; sagittal suture open anteriorly for its first 18 millimeters; behind this it is obliterated to within 16 millimeters of the lambda, and the space of these last 16 millimeters is partially co-ossified; no other synostosis. As far as age and a globose appearance are concerned, this skull is essentially similar to the Saladoan, H. 17.

No. 1012, a large, well preserved skull, with mandible, from Illinois; basilar suture closed; all permanent teeth cut; right upper molars, left upper first and third molars, and both lower first molars shed ante-mortem and alveoli absorbed; teeth somewhat worn; complete sagittal oblitera-
tion; synostosis of coronal right and left between stephanion aud pterion; fronto-sphenoid sutures coössified right and left; very slight commencing lambdoid coössification. This skull is interesting, not because the sagittal synostosis is unique, but because it is so complete and apparently so much in ad vance of the other synostoses, while it retains a globose shape, being notably rounded in its outline.)
No. 1662, a well-preserved skull, with mandible, from Dakota; basilar suture closed; permanent teeth all cut and noue of them shed ante-mortem; teeth show some wear; sagittal suture obliterated except its anterior two ceutimeters; no other synostosis.

Alaskans.-Sagittal synostosis unaccompanied by other synostoses is not conspicuous. Only the following two, the first of which is very remarkable, are worthy of note:

No. 2454, perfectly preserved, from a child between 7 and 10 years old; basilar suture open; sutures between basi-occipital and exoccipitals partly open; premaxillary suture visible on palatine vault; first permanent molars cut and second appearing; upper median, lower median, and lateral incisors cut but lost; no permanent cauines or premolars; posterior two thirds of sagittal suture entirely closed on outer and inner tables; for one-half of the remaining third there is partial synostosis on both tables, while the anterior sixth is open; no other synostosis.

No. 2486, a perfectly preserved skull of an adult; basilar suture not quite closed; lower third molars not cut; posterior two-thirds of sagittal firmly coössified; half the remainder partially so; anterior extremity open; coössification also, but less complete, of right coronal between sagittal and temporal line, right lambdoid and left parieto-mastoid.

Eskimos.-Among the Greenland Eskimos there is no case of sagittal synostosis, alone, comparable with that of the Arizoniaus. There is found, however, the following extraordinary specimen:

No. 1226, a skull without mandible, of light weight and well preserved; basilar suture open; teeth lost post mortem, except the right upper molars, three in number, and left upper first molar; both third molars cut. The one remaining in the skull is not worn, nor is the second molar much worn; deutine of first molar worn a little; complete sagittal obliteration; also complete lambdoid obliteration except about $5^{\prime \prime \prime \prime \prime}$ of the left lateral end; no other syuostosis. Thus the whole posterior end of the skull from the coronal suture above to the basilar suture below is a single bone.

We conclude then: First, that unique sagittal synostosis may take place at a very early age; second, that it does not necessarily produce a scaphoid skull; third, that it may or may not be accompanied by a sagittal ridge; fourth, that at present it can not be said to be peculiarly characteristic of any American race.

Percentages representing the number of cases of unique sagittal synostosis in relation to the total number of skulls in each given series might be reckoned; but they would probably not accurately represent the tendency to unique sagittal synostosis for the following reasous:

First. It is most likely true that under a certain age no skull is liable to sagittal synostosis except for pathological reasons. Diseased skulls should of course be excluded from consideration and not be allowed to affect the percentage. But, inasmuch as we have learned that sagittal synostosis may take place before the skull is matured in any other respect, we must confess ourselves at a loss to determine exactly what that age is. So then we must either draw an arbitrary line between two supposed classes of skulls, the oue of which is liable and the other not liable to sagittal synostosis, or we must consider every skull as liable to it. In neither case can our per centage exactly represent the facts.

Second. Cases of sagittal obliteration may occur which are striking in their completeness, but which are accompanied by very slight disseminated syuostosis of other sutures. In determining whether such cases are to be allowed to affect the percentage or uot, personal judgment-always a little arbitrary-must be used.

Third. Cases may occur where the sagittal is coössified but not entirely obliterated, while all other sutures are completely open. This occurrence in a young skull merits mention; but here again fallible judgment is called into play to pass upon the age of the skull and the minimum amount of synostosis entitled to mention.

In an article entitled " Nachtrag zur Anatomie der Schädelnähte," by Dr. E. Zuckerkandl,* in a series of 134 skulls, mostly Negroes, Negritos, and Malays, we find the following notable cases:

No. 98: Iudian (American?), sagittal suture obliterated in places. No synostosis of coronal, lambdoid, or mastoid sutures.

No. 104: Peruvian, sagittal totally obliterated; other sutures open.
No. 124: Alfuru, sagittal obliterated in places; other sutures open.
No. 128: Javanese womau, sagittal totally syuostosed; other sutures open.
In none of these cases does the author note a senile appearauce of a skull, as seems to have been done when required throughout the article.

Unfortunately we do not possess a copy of Dr. Davis's work \dagger on synostosis of cranial sutures where this subject is discussed. He refers to it, however, in his "Thesaurus Craniorum," which we quote:

- I have * * * * * pointed out that scaphocephalism is far from being the usual result of the early ossification of the sagittal suture. This position is maintained by an analysis of the twenty-seven skulls in this collection which present no appearance of sagittal suture, but ouly four of which are true scaphocephali. \ddagger

Continuing, he refers particularly to four of these cases of synostosis, which we quote accordingly, omitting the measurements.

No. 100: African negro, male, æt. c. 30; presents a complete obliteratiou of the sagittal suture bat no scapho cephatism or othor deformity. The alisphenoids and parietals only just touch.

No. 378. Pokomame; imperfect calv. * * * an instance of premature ossification of the sagittal suture which is totally obliterated. The other sutures are all open. * * * In the synostosis of the parietals in the case of a calvarium artificially deformed in so extreme a degree and in a direction running parallel to the sagittal suture; it is, I believe, unique. There is not the slightest approach to scaphocephalism.

No. 915: Australian, female, æt. c. 17. This small cranium is synostotic from premature obliteration of tho sagittal suture, which has not materially changed its form. It can not be denominated scaphocephalic at all. It exhibits marks of old injuries on the frontal, parictal, and occipital bones, and has no spheno-parietal sutures.

No. 789: Fatuhivan, male, iet.c.17. This calvarium of a young subject is very large, thin, and in appearance swolleu out as if it had been hydrocephalic. It is also synostotic, the sagittal suture being totally obliterated; yet the calvarium is not scaphocephalic, nor indeed deformed in any way. $\$$

§18. THE INCA BONE AND ALLIED FORMATIONS.\|

Perhaps the most interesting feature discovered in this series is the great prevalence of the Inca boue and its kindred anomalies. This was first observed by Dr. Wortman while he was engaged in collecting and preserving the bones as they were exhumed at Camp Hemenway in the Salado Valley in 1887. He had, however, no opportunity in the field for making a careful study and determining the comparative frequency of the anomalies; besides, the bones when unearthed were in such a friable condition that they could not properly be examined until they were strengthened and repaired. Since they have been repaired at the Army Medical Museum we have found, among complete skulls and fragments, a series of 88 occipital bones in a sufficieut state of preservation to be examined for these formations.

We need not enter into an elaborate déscription of these anomalies, nor discuss at length their morphological characters. Such elaboration is not within the general plan of our work. The accompanying illustrations will, we hope, serve to make clear to the reader, when the text may be too concise, the full meaning of the terms we employ. Those who desire to consult the original authors whom we have followed are referred to the works of Virchow, $\|$ Anoutchine,** and Topinard. $\dagger \dagger$

[^9]In the first place we will consider the true epactal bone, or os Inca. It exists in all races; it becomes a characteristic of the Peruvian or Inca race only by reason of its great frequency among them. How often it is found in them more than among other peoples hitherto studied will be seen in the accompanying table (Table A).

Fig. 31-Inca bone (No. H. 13).

Fig. 32--Inca bone (No. FI. 29).

Figs. 31 and 32 represent typical forms of this bone in two varieties described by Virchow.* In one the persistent transverse occipital suture runs directly from one asterion to the other, and seems but a continuation of the parieto mastoid suture. In the other the ends of the transverse

Fig. 33 -Incomplete Inca bone (No. H. 14).
suture join the lambdoidal on each side, a short distance above the asterion. The epactal bone shown in Fig. 31 was complicated with a multitude of Wormian bones, many of which, very minute, pertained to the outer table only, and, falling out, left the broad, indefinite border shown

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

*Fair usage policy applies

The following table is made up of four of A noutchine's tables, consolidated, with the following modifications: (1) All the races are placed in one order and are called by one name. (2) A title in his table of "Americans in general" is omitted; it would serve in connection with this paper to confuse rather than to enlighten the reader; its figures are obtained merely by adding those of the "Peruvians" to those of "Americans not Peruvians." (3) The Saladoans have been added and placed at the head of the list. Anoutchine's percentages are based on a liberal number of specimens, rangivg from 157 in Australians and Tasmanians to 6,871 in Caucasians, in general. The Peruvian specimens are 664, and the Americans (not Peruvians) are 390 in number.

Table A.-Shoring the percentage of the Inca bone and alliediformations as ${ }^{\prime}$ found in various races.

Races.	Complete ox Inca.	Completo and iucomplete os luce.	Os quadratum.	Os triquetrum set apicis.
Saladoans	5.68	6.81	1. 13	18.1
Peruvians	5. 46	6.08	1.05	10.5
Americans, not Peruvians	1.30	3.86	0.26	5. 63
Negrioes .	1.53	2.65	2.11	1.19
Malays and Polynesiaus	1.09	1. 42	0.76	0.43
Mongolians......	0.56	2.26	0.57	3. 02
Papuans	0.57			
Caucasiaus in general	0.46	1. 19	0.18 ?	1.59
Calucasians of Asia ...	0.51	1. 70	0.41	$\underline{2} .36$
Europeans.	0.45	1.09	0.13 ?	1. 42
Melanesians.		1.65	0.62	2.87
Australians and Tasmaniaus	0.0 ?	$0.64{ }^{\text {P }}$	0.64	0.649

The above table speaks for itself and but little comment is necessary. It shows a most remarkable correspondence in the frequency of these anomalies between the Saladoan and Peruvian races. It shows also that, while in respect to three of the anomalies the Peruvians are widely separated from the rest of the human race, as heretofore studied, the Saladoans are still farther removed. In short, they out-Inca the Incas.

It has been maintained* that the artificial pressure to which Peruvian skulls were subjected produced the anowaly of the epactal bone. We consider that the arguments in favor of this theory are already successfully refuted, but will nevertheless add to the refutation such testimony as the Hemenway collection offers. The Saladoan skulls bear not the slightest evidence of intentional. depression or distortion of any kind, especially of that sort produced by the application to the forehead of the head board, such as the Peruvians once used and some Indians of the northwest coast still use. A certain amount of accidental or unintentional occipital depression is to be found in the majority of the skulls, due apparently to the use of a wooden-backed baby basket with an insufficient pillow; but it is a depression of no greater degree or frequency than is found in many American races among which the epactal boue is comparatively rare. Furthermore, it is not in the most depressed occiputs of the Saladoan skulls that the epactal bone is most common, but in those that are fairly rounded and prominent.

§ 19. FACIAL InDICES.

Being somewhat uncertain as to the true position of the ophryon in these skulls, we took neither the ophryo-mental nor the ophryo-alveolar measurements of Broca, and hence we were unable to compute the facial indices of that author. We have contented ourselves with securing the facial heights of the Frankfurt agreement, which have the definite point of the nasion for their upper landmark, and from these we have computed four indices prescribed by the agreement, namely: The total facial index of Virchow, the total facial index of Kollmann, the upper facial index of Virchow, and the upper facial index of Kollmann. (Tables xxvi to xxxiir, inclusive.)

As much as we have gained in precision by this selection we have lost in another way, since

[^10]the data for comparison of the French measurements are rich, while those for the measurements of the German school are meager. Scattered through the pages of the Zeitschrift fïr Ethnologie and the accompanying Verhandlung der Berliner Gesellschaftıfïr Anthropologie, Ethnologie und Urgeschichte there are many separate papers by Prof. Virchow (see Table lxxix). From these we have prepared, with the expenditure of considerable time and care, Table No. Lxxx, and from this we quote a few items for comparison in the facial indices.

We have compiled the following eight tables of comparison, which appear in this section, largely from our own very insufficient special series of 101 before referred to (Table Lxxxi). Tables B, D, F, H, show the relations of this Saladoan collection to various races of the world, and Tables C, E, G, I, show its relations to other Indian tribes. Where anything is added from Table No. LXXX the source is indicated in a footnote.

The facial index of Virchow, which is the product of the naso-mental height multiplied by 100 and divided by the facial width of Virchow-a line uniting the inferior extremities of the malo-maxillary sutures-has been computed in 19 skulls. These indices are shown in Tables xxvr, xxvir, where it appears that they vary from 102.85 to 131.25 , and that their average is 117.64 . For this index, according to the "agreement," the dividing point between the two classes of broad faces and narrow faces is an index of 90 , all above this being narrow and all below, broad. These skulls are therefore decidedly narrow faced, but so it would appear are all races as represented in our series of 101, as shown in the following tables:

Table B.-Facial index of Virchow among various races.

Races.	$\begin{array}{\|l} \text { Number } \\ \text { of skulls. } \end{array}$	Average index.
Europeans	5	131.77
Negroes	3	127.83
Chinese	2	118.78
Fiji Islanders	2	118.61
Eskimos	6	118. 35
Saladoans	19	117.64
Australians	2	117.02
Japanese.	2	116.6. ${ }^{\text {d }}$
Saudwich Islanders.	2	115.71
North American, Indians exc	30	114.83
Malays (Virchow)	3	*111.50

*From Tablo Lxxx.
Table C.-Facial index of Virchow among American tribes.

Racos.	$\begin{gathered} \text { Number } \\ \text { of skulls. } \end{gathered}$	$\begin{aligned} & \text { Average } \\ & \text { index. } \end{aligned}$
Pawnees	1	123.15
Pah Utes.	5	117.72
Saladoans	19	117.64
Sioux .	4	116.01
Californians.	8	115.91
Apaches	4	114.72
Chippewas	2	113.63
Navajos	3	110.29
Poncas.	3	108.31

We have been able to compute the upper facial index of Virchow in 34 skulls. This index is the product of the naso-alveolar height multiplied by 100 and divided by the facial width of Virchow: In the tables of this measurement (Tables Xxviif, Xxix) we find that the minimum is 62.22, the maximum 79.59, and the average 69.82. For this index 50 constitutes the point of division between broad and narrow apper faces. The skulls in this group, then, are all distinctly of the latter class. In the tables below it will be seen that there are no averages below 50 . In other words, there are no broad upper faces in our special series of 101.

Table D.-Upperlfacial index of Virchow among various races.

Races.	Number of skulls.	Average index.
Europeans	14	75.82
Negroes.	6	74.35
Chuck chees	2	73.48
Eskimos	11	72.90
Fiji Islanders	2	72.48
Chinese.....	2	72.02
Australians	3	71.49
North American Indiaus, ex	44	70.70
Botocudos	11	* 70.00
Suladoans.	34	69.82
Japanese ...	2	68. 94
Saudwich Islanders	6	68.19
Various Malaysians	24	* 67.90
New Zealanders...	4	66.85
Motilo	1	*66.00
Yucatecs	1	*65. 70

* See Table Lxxx.

Table E.-Upperifacial index of Virchow among American tribes.

Races.	Number of skulls.	A verage index.
Seminoles.	2	81.17
Minnetarees.	2	79.36
Pah Utes	7	72.49
Sioux	4	71.99
Californians	10	70.96
Pawnees	2	70.66
Saladoans.	34	69.82
Apaches	6	69.01
Ponkas.	4	68.51
Navajoes.	4	66.88
Chippewas.	2	65.94
Cheyenne....	1	65.13

In 17 skulls we have beeu able to ascertain the total facial index of Kollmann, which is found by multiplyiug the uaso-mental height by 100 and dividing the product by the bi-jugal width. The tables of this index (xxx, xxxi,) present a minimum of 81.53 , a maximum of 97.65 , and an average of 88.01 . The classes of this index, like that of the facial index of Virchow, have their dividing point at 90 ; all skulls with an index below that being chamæprosopic or low-faced, and all above that being leptoprosopic or high-faced, the equivalent of Virchow's narrow-faced skulls. Our Saladoan skulls, therefore, which, according to the classification of the Virchow index, are all narrow, are, according to the classification of the Kollmann index, mostly broad (low) and have a slightly broad average.

In the following table (F) of ten different races, in which ouly two races-Europeans and Negroes-have high faces, the 'Saladoans appear in a median position and nearer the true Mongolians than to other Indian tribes:

Table F.-Facial index of Kollmann among various races.

Races.	No. of skulls.	Average index.
Negroes of Africa...........................-. -	6	*95. 40
Europeans ..	5	92.80
Negroes of America............-..........................	3	91.95
Fiji Islander ...	1	89.58
Botocudos of Brazil	3	*89.10
Japauese..........-. .-. .-. .-. .-.	2	88.95
Chiuese-.-.	2	88.63
	17	88.01
Eskinos -	6	87.71
Sandwich Islanders .	2	84.86
Australians-................	2	84.59
Various Malaysians	8	*84. 30
North American Indians (exclucling Saladoans)..	29	83.74
Goaziros of Venezuela..................................	8	*83.30

In the following table (G) of nine North American tribes it would appear that the Saladoans have higher faces than any other tribe:

Table G.-Upper $I_{\text {facial index of Kollmann among various tribes. }}^{\text {I }}$.

Races.	Number of skulls.	Averago index.
Saladoans	17	88.01
The Rock Jhinf skull	1	*86.50
Californians.	8	85.66
Apaches	4	84.87
Pawnees	1	84.78
Pah Utes.	5	83.48
Navajoes	3	83.22
Sioux	4	82.39
Ponkas	3	80.74
Chippewas	1	80.00
The Calaveras skull	1	* 76.30

*From Table Lxax.

In 27 skulls the upper facial index of Kollmann has been computed (Tables xxxir, xxxin) its minimum is 47.05 , its maximum 60.93 , and its average 52.48 . In this index, as in the analogous index of Virchow, the highest figure for low or broad upper faces is 50 . Of the Salatoans 6 out of 27 belong to this class; the rest have high upper faces, and the average is leptoprosopic. As shown in Table I, the Saladoans for this index have higher upper faces than other Americans in geveral; but three American tribes exceed them in this particular.

Table H.- Upper facial index of Kollmann among various races.

*From Table LXXX.
Table I.-Upperifacial index of Kollmann among American tribes.

${ }^{\star}$ From Table LXXX.
The upper facial index of Virchow is sometimes called "Oberkieferindex," an excellent name, for it is indeed an index of height and willh of the superior maxillary bone. Now if this shows
narrow indices, and Kollmann's method shows broad indices, it is evident that the cause is consid: crable lateral development of the inalar bones.

§20. GERMAN PROFILE ANGLE.

In 44 skulls we have determined the German profile angle or Profilwinkel of the Frankfurt agreement. We place these angles on record (tables xxxiv, xxxv) more for the advautage of future students than for any benefit they may be to us in the comparative study of this collection, since among the craniometrical literature to which we have access we tind few data on this point. The following table we have compiled from works of Wieger* and Tarenetzky, \dagger including in its proper order the average of the Salado series:

Table J.-German profile angle in various races.

Race.	Numher of skulls.	Average index.
Russians (Tarenetzky)	184	87.70
Americans (Wieger).	15	85.21
Peruvians (included in Americans)	3	84.33
Europeans (Wieger).................	15	84.13
Saladoans.	44	83.25
Egyptians (Wieger)	19	82.31
Negroes (Wieger)	16	80.52

These figures are somewhat contradictory to those of the gnathic index of Flower, which is designed to express the same character, still the relation of the Saladoans to the Europeans is much the same according to both systems of measurement.

The following is a table of profile angles taken from skulls of various races and tribes in the Army Medical Museum and arranged in order from the highest to the lowest.

Table K.—German profile angle among various races, Army Medical Museum.

Races.	Average index.
Europeans	86.25
Mongolians	84.75
Sandwich Islanders	83.66
North American.Iudians (exc	83.51
Saladoans.	83.25
Eskimos.	82.60
Fiji Islanders.	82.00
New Zealanders.	81.50
Negroes	80.10
Australians	78.75

The "North American Indians" grouped under one head in the above table are divided into their separate tribes in the following table, the Saladoans being included in their proper order.

Table L.-German profile angle among American tribes.

Tribes.	Number of skills.	A verage index.
Minnetarees.	2	86.00
Ponkas.	4	86.00
Pawnees	2	85.75
Seminoles	2	85.50
Cheyennes	1	85.50
Navajoes..	4	85.25
Sioux	4	85.25
Chippewas	2	84.25
Apaches...	6	83.58
Pah Utes..	6	83.25
Saladoans	44	83.25
Californians.	10	79.55

* Die anthropologische Sanmulung des anatomischen Instituts der Universität Breslan, bearbeitet von Dr. G. WIEGER, in Archiv für Anthropologie, Vol. xv, Supplement, 1885.
\dagger Review of article by A. Tarenftzky, in Archiv für Anthropologie, Vol. xvi, 1886.

NOTE ON THE MANNER OF TAKING THE GERMAN PROFILE ANGLE.
This measurement is taken by Spengel's craniometer, an instrument of great accuracy but of rather limited usefulness. A close description of its mechanism is too long to be given here; for such we refer to Harless's Lehrbuch der Plastischen Anatomic, zweite Auflage, Stuttgart, 1876, pp. 506 et seq.

It is sufficient for our purpose to say that, as regards the facial angle, the craniometer consists of a strong metal table whereon the skull is placed vertex downwards with its right side facing toward the operator and adjusted in the plane of the Frankfurt agreement; and of a goniometer in a plane vertical to that of the table.

It is not often that the skull is sufficiently symmetrical to allow the four points, two supra-auricular and two suborbital, of the required plane to be placed in the same level. It is practically impossible in cases where this may be done to then find the points de repère of the sagittal plane vertically one above another. As the goniometer is vertical to the table which serves as a fixed point from which to determine the desired plane, it is evident that in order to use it, the points in the sagittal plane must be vertically disposed. Therefore we place the skull so that the alveolar point is exactly above the nasion while both are on the midline of the machine and face the goniometer. Care is taken to see that some points in the posterior part of the sagittal plane are also in the midline. The skull is then so adjusted that the supra-auricular aud suborbital points of the right side, which, as stated, faces the operator, are in the same horizontal plane. The gonioncter is put in position aud the angle is read.

To sum up: The angle given in this report is, except in cases of skulls with the right side broken away, taken with the skull in such a position that the sagittal plane is vertical and the right side of the Frankfurt plano is horizontal.

§21. GNATHIC INDEX.

In 39 cases we have been able to calculate the gnathic index of Busk and Flower, which is found by multiplying the length of the basilo-alveolar radius by 100 and dividing the product by the length of the basilo-nasal radius. The results are shown in Tables xxxvi, xxxvir, and xxxviir, in which we find (according to Flower's classification) but two skulls that are proguathous (above 103). There are 10 mesognathous ; 98 to 103) and the remaining 27 are orthognathous (98 and below). The minimum of the series is 88.78 and the maximum 110.11. The average, 95.92 , is ${ }^{\circ}$ orthognathous to a high degree and allows us, in respect to the character expressed by the guathic index, to class this people along with the highest European races.*

Gosse states that one of the effects of the occipital deformation, such as these skulls exhibit (tête deprimée par derrière), is to diminish the projection of the lower part of the face. \dagger Possibly we may thus explain the marked orthognathism of the Saladoans. Nevertheless we fail to discover any direct relation between the facial angle and the occipital contour in this group. Exceedingly flattened occiputs may be found as often among skulls having high as among those having low indices, and the average index of the apparently normal skulls (94.10) is less than that of the obviously flattened, when, as an inference from Gosse's proposition, we might expect it to be higher.

\$22. ALVEOLO-SUBNASAL PROGNATHISM.

The important cbaracter of alveolo-subnasal prognathism we have examined in 27 skulls, according to the rules established by Topinard, \ddagger and we have tabulated the angle and the index of this prognathism with the vertical and horizontal measurements which constitute the factors of the latter. (Tables xxxix-xLiI.)

Skull H. 43 has the lowest index, 14.28, and the greatest angle, 82ㅇ. Skull H. 57 (Plate L) has the highest index, 61.53 , and the smallest angle, 591_{2}°.

The average index of the series is 37.27° and the average angle 70.03°. In the tables given by Topinard§ Americans are not included. His average index of the Malays, 37.42 , is nearest to that of the Saladoans, and the factors of the index are much the same, the horizontal being 6.5 in both races. The Malay angle, 69.7°, though not the nearest to that of our collection, is but little removed from it. The angle of the Polynesians, 70.8°, and the angle of the Indo-Chinese, 70.1°, are nearest to that of our collection. Angles of other Mongoloid races, 72.6 to 71.0, are slightly higher, and consequently may be supposed to indicate some evolutionary advancement. His highest average Caucasian angle of 81.8 is not as high as the highest Saladoan, and his lowest average Namaquois of 58.2 is lower than the Saladoan lowest.

[^11]
§23. THE ORBITAL APERTURE.

Orbital apertures to the number of $3 S$ have been measured according to Broca's instructions, and the indices computed. (See Tables Xlini, xliv.) Of this number but 2 come within the limit of Broca's class of microseme, or orbit with a low index (below 83.0). These are in skull H. 1 with an index of 82.92 , and in skull H. 22 with an index of 81.81 . There are 11 in the class of mesoseme, or orbits with medium indices (88.9 to 83.0) ranging from 86.61 in skull H. 6 to 88.75 , in skull H. 13. The remaining 25 are megaseme, having high indices (89.0 and above). One orbit skull H. 36, is as high as it is broad, having an index of 100 , which is the maximum of this group.

In his monograph on the orbital index Broca gives average iudices for 66 tribes and divisions of the human family.* Twenty-six of these are megaseme, and to this class all the American races which he mentions, 15 in number, belong. Here, too, belongs our group with its average index of 91.10 .

The people having an average index nearest to that of our group are the Iudians of our Northwest coast (91.12), while the flatheaded Peruvians (91.50), ancient Yucatecs (91.41), modern Mexicans (90.82), Patagonians (90.81), and North American Indians in general (90.75) are not far removed.

There are some items in the table of Broca which seen to show that antero-posterior deformation of the skulls tends to decrease the orbital index. Thus in nondeformed Peruvian skulls the index is 92.20 , while in the deformed it is 91.50 , and in ancient Mexican skulls the nondeformed have an index of 93.12 , the deformed an index of 90.02 . These are instances of deformity from intentional frontal pressure ($d e f$ ormation relevée). From the testimony of our collection it does not appear that the accidental occipital pressure has any effect. Of the 38 skulls whose orbital measurenients are recorded in the tables (xlint, xLiv) 11 belong to the apparently normal group. The average index of the latter is 91.06 , which agrees closely with that of the rest of the group.

- §24. NASAL CHARACTERS.

Nasal index.-Forty-four skulls were in a sufficient state of preservation to allow the measurements of the nasal orifice to be taken. As will be seen by the accompauying tables (xly, xLVI) the average is 51.66 , which would place them in the mesorrhinian divisiou of Broca, i.e., where representatives of the Mongoloid races uspally stand. The variation in this index is wide, however, extending from leptorrhinian to extreme platyrrhiniau.

Inferior lorder of nasal aperture. -The iuferior border of the nasal aperture, èchancrure, is of a pretty'high type, to judge from the meager statistics of other races to which we have access. Topinard in his Eléments d'antliropologict, gives six standards of comparison or classes for this feature as follows: A, the sharp border; A^{\prime}, the slightly rounded border; B, the thick rounded border; C, the border divided into two lips or sometimes three or level (plate-forme); D , the depressed border, first stage of the simian groove; E, the simian groove. These six variants are named in the order of their supposed morphological advancement, A being the highest and E the lowest. Elsewhere \ddagger in a monograph older than his last text-book he recognizes but five types, as he had not then apparently made a distinction between A and A^{\prime}. Hence, in the comparisons which follow these forms are given both separately and combined. In our collection we find so many grades of difference between these standards that it is often difficult to assign a specimen to one or the other; our decisions are often arbitrary, still we do not think we could improve the classificatiou if wo would and in all doubtful cases we have decided with special care.

In the Salado series among 48 nares in which the inferior borders can be studied we find them divided as follows: Class $A, 15$; Class $\mathrm{A}^{\prime}, 13$; Class B, 8 ; Class C, 6 ; Class D, 5 ; Class E, 1 . The statistics given by Topinard are in numbers only. We have computed them in percentages (as we have also computed those of the Salado series), in order that we might more easily make com-

[^12]

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer Alibrary in your pocket for $\$ 8.99 /$ month

Continue

*Fair usage policy applies

As it is not reasonable in the present state of our knowledge to regard nasal synostosis as possible in children, we disregard four of their skulls, not letting them affect the figures either way.

It is to be noted that there is a partial synostosis in H. 17, a young skull with the basilar suture open and third molars uncut. This is the skull which is so very notable for showing utter disappearance of the sagittal suture.

§25.-THE PALATE.

While we have taken four measurements of the palate and one palato alveolar measurement we have computed only one index, that of Virchow, which depends on the palatal length, from the inner alveolar border between the incisors to the point of the posterior nasal spine, and on the palatal width, taken at the level of the second molars. This we find to be essentially a maximum width, and we prefer in this case the directions of the Frankfurt agreement to those of Topinard as being the more exact. The index is computed by multiplying the width by 100 and dividing the product by the length.

In 32 skulls whose palatine indices we have been able to compute (Tables xlviif, xlix) the minimum index is 62.74 -which indicates a very long palate-the maximum 84.61 , and the average 72.94. Only 3 indices exceed 80 , and, therefore, 29 out of 32 are leptostaphylin or long-palate. As none reach the figure 85 the remaining 3 are mesostaphylin or median-palate, while none are brachystaphylin or short-palate.

This series may be said to throw no light on the question of the relationship between the palatine and cephalic indices. It has bceu shown that in some races a long palate goes with a long skull. In the Saladoans we have a long palate associated with a short skull; but if we admit that the skulls are shortened by artificial means applied to the brain-case, only, we must consider even this negative evidence worthless.

With regard to a correspondence between the face and the palate our series offers better testimony. All the faces, as expressed by their indices, are long; so also are all the palates.

Not only is there this general agreement, but there is to a certain extent an individual agreement in this respect. In order to elucidate this point we have prepared a table (O) given below, in which we have selected for comparison with the palatine index the upper facial index of Virchow for the reason that its table gives a larger number of examples than that of any other facial index.

In columns 1 and 4 of Table O, the number of the skulls are arrauged according to the ordination of the facial index but inversely, i.e., the skull having the longest face comes first, aud that having the shortest comes last. In columns 3 and 6 we give the order in which each skull would come if arranged according to the length of the palate, for instance: Skull H. 27 has the second longest face and the longest palate, while skull H. 19 has the seventh longest face and the shortest palate.

Table O.-Relation of palatine index to upperlfacial index of Virchow.

Place (inverted) in facial index series.	No. of skull.	Place in palatine index series.	Place (inverted) in facial index serics.	No. of skull.	Place in ppalatine index scries.
1	H. 14	9	12	H. 2	10
2	H. 27	1	13	H. 28	18
3	H. 43	7	14	H. 4	20
4	H. 20	2	15	H. 5	4
5	H. 10	5	16	H. 17	12
6	H. 8	13	17	H. 7	11
7	H. 19	22	18	H. 33	14
8	H. 1	3	19	H. 16	21
9	H. 11	6	20	H. 41	19
10	II. 40	15	21	H. 50	16
11	11. 45	8	22	H. 29	17

In a glance at the above table it will be seen that the longer palates, whose relative position is expressed by one figure, belong mostly to the first half of the series of 22 , while those having the shorter palates belong to the second half of the series. The sums of columns 3 and 6 show
this in another way. The sum of the numbers of ordination of the higher-faced half of the series is little more than half the sum of the analogous numbers of the lower-faced half, the proportion being $56.17: 100$. The most aberrant palate in the first half is that of skull H. 19; the most aberrant in the second half is that of skull H. 5 .

A list of palatine depths is given in Table L.

§ 26. THE TEETH.

Dr. G. V. Black in the introduction to his article on "Dental Caries"* observes that "caries of the teeth has been known in all historic ages of the world, and wherever prehistoric haman remains have been discovered traces of this disease have been found. 'It seems to be and to have been universal iu the sense of affecting all nations and tribes of the human race. * * * It has been thought that the savage races were not so much afllicted as the civilized, but my own study of the remains of ancient peoples will not bear out this opinion. This research has, however, been limited within comparatively narrow bounds-too narrow, perhaps, to serve as the basis of conclusions. Unfortunately the literature of the subject furnishes no data that are of much value in this direction, but what there are strongly support the statements made above. * * * The studies I have been able to make in this direction indicate that the races of men that have eaten largely of acid fruits have had less decay of the teeth than those who have been debarred by their position or climate from the use of such articles of food. Generally those tribes that have subsisted largely upon flesh aud grain have suffered more from caries than those that have had a more exclusively vegetable or fruit diet. Our knowledge upou this point is, however, too meager to warrant any lengthy discussion of it."

In the following study of the teeth of the ancient inhabitants of the Salado Valley we have taken occasion to make accurate notes not only of caries but also of all deformities of the dental arch, as well as the tuberculation of the superior molars. The materials afforded are fairly abundant and quite sufficient to iustitute an extended comparison in these respects with other races, with whose remains the Arıny Medical Museum is so well provided. Unfortunately the materials illustrative of those races whose diet consists exclusively of vegetables and fruits are not abundant in our collections, and it has been deemed best to limit the comparisons to peoples subsisting almost wholly upon flesh or upon a more mixed class of food. The series selected for this purpose are as follows: A series of the Alaskan Indians, whose dietetic habits are well known and who afford an excellent example of an almost exclusively carnivorous race; an unusually large series of aucient dwellers of the Pacific coast region in the vicinity of Santa Barbara, whose food was, in all probability, of a somewhat mixed character; a good series of skulls of Sioux, who furnish a typical example of the carnivorous tribes of the plains; a series of the so-called mound-builders of the Mississippi valley; and a series of the ancient Peruvians, who lived largely on vegetable food.

It is proper to state in this conuection that only iudividuals at or below middle life have been selected, siuce in those races where the wear is rapid, owing, perhaps, to grit contained in the food, the pulp cavity is soon exposed, or the nutrition of the tooth is affected and disease is set up which can not be attributed, properly speaking, to premature decay or caries. We have taken as a mark of middle life the bony uniou or synostosis of the cranial sutures, either the sagittal or coronal, and there can be little doubt that it is usually expressive of an age of forty or fifty years Accurate comparisons beyond this limit are difficult, if not impossible, and are therefore not attempted.

The Saladoans, so far as we arغ able to judge, were a sedentary people, who dwelt in cities and subsisted almost wholly upon the products of the soil, which they extensively cultivated. Indian corn, squash, and other vegetable products must have formed the chief article of their diet, although the presence of charred animal remains in the ruins of their cities indicate that flesh was occasionally consumed. That their remains are pre-Columbian, and that their occupancy of the Salado Valley exteuded over many geuerations appear to be well-established facts. As explained in our introduction, it has been pretty clearly shown that some of the modern Pueblos are very

[^13]closely allied to them in both their habits and customs. Unfortunately paucity of material for the latter precludes comparison of their dental organs, which there can be little doubt, would furnisilh additional evidence of value.

Caries.-The subject of dental caries among the ancient inhabitants of the Salado Valley forms an interesting study, inasmuch as it furnishes us with an excellent example of the effect of a given kiud of food operating for a long period in the production of tooth decay. It should not be forgotten, however, that other influences may have been in a measure responsible for much of this disease. Their skeletons generally show a remarkable prevalence of osseous disease, and if we are to judge of them by their nearest living allies the lowered vitality of the whole race had at this early date already begun to manifest itself.

Out of some 80 or more skulls we have been able to select 35 in which the sutures indicate them to have been at or under the middle period of life. Of this number 18, or about 51 per cent, exhibit caries, which in some instances has resulted in almost complete destruction of the teeth. Among this number there are also 7 , or 16 per cent, in which there has been loss of teeth and absorption of the alveoli without any evidence of caries being present. Seeing the remarkable prevalence of this disease it is but fair to presume that the loss of teeth in these 7 cases is also due to decay which would bring the total up to something like 70 per cent. Out of the remaining 10 , which show no evidence of caries, 2 were of very young persons, betwcen 9 and 12 years, in whom we could not reasonably expect to find the disease developed. If therefore these should be excluded the percentage would still be further increased. Among those skulls beyond the middle period of life, fully 90 per cent show caries and loss of teeth; but of these we have not attempted accurate comparisons.

Of the aucient Peruvians we have been able to examine a much larger series-66 in allwherein there was no bony union of either coronal, sagittal, or lambdoid sutures. In many of them, as in all the other series, teeth had been lost after death so that doubtless in some instanceswhere the skull has been cousidered in the category of "no caries"-if all the teeth were present, caries would sometimes be found and the percentage would be thus affected. These cases, however, would probably be few and little change would be necessary.

In this series there are some 8 or 10 examples in which teeth have been lost without any evidence of caries existing. It is fair to presume that some of these at least if not all are the results of dental decay. Out of the 66 there are 29 , or about 44 per cent, which show caries, and if 8 , in which there is loss, be added, we bave the percentage brought to 56 . It is proper to mention here that in this series at least half of the skulls examined were not accompanied by the lower jaw, which if present would doubtless show caries frequently, where it does not occur, iu the upper jaw, and raise the average of dental caries in these people to at least 50 per cent, if not higher. Respecting the food of these people the early chroniclers are very explicit and we can not do better than quote Garcilasso de la Vega, who has described it at considerable length. He says: "The maize was the principal food of the Indians." They also ate vegetables of various species which he enumerates and describes. Of their meat diet he says (Bk. vi):

[^14]
F. de Xeres* tells us:

The coast people eat flesh aid fish all raw, and maize boiled aud toasted.*

[^15]We have selected a series of 42 skulls of the so-called Mound-Builders of the Mississippi Valley. These have been collected for the most part in Illiuois, Kentucky, Tennessee, and Wisconsin. Whether or not they represent a homogenous race has not been accurately determined; but it appears to be pretty well established that they lived largely upou the products of the soil of which maize formed the chief staple. It is also probable that they subsisted to a certain extent upon fish and game, but it is believed that they were tillers of the soil rather than hunters. An examina. tion of this series reveals 16 , or about 38 per cent, in which caries is present. Of the remaining 96 , in 4 cases there was aute-mortem loss with obliteration of the alveoli which, if due to decay, would increase the percentage to about 47.

Passing now to the California Coast Indians we find a people whose diet probably consisted largely of fish, although it is well known that berries, grass seeds, acorns, and various vegetable substances formed a part of their food. In this series of 38 skulls 5 , or over 13 per cent, exhibit deutal caries.

Of the dwellers of the open plains we include 34 skulls of the Sioux. As is well known these people have lived for many generations upon an almost purely animal diet. The Buffalo, until recently furnished their chief staple of food, very little vegetable substance being cousumed. Among this number but 3 , nearly 9 per cent, out of 34 , show any caries. These skulls were gathered over twenty years ago while game was still abundant in the Sioux country. Those with carious teeth areall from eastern bands who had, even then, begun to use the food of white people to some extent.

Lastly we come to the Alaskan Iudians, who were probably the most exclusively carnivorous people in existence except the Eskimo. Out of 42 skulls examined we have failed to find a single case of caries, although abscess and premature loss of teeth are present in 8 cases. We are inclined to believe that abscess and premature loss of tecth is more due to accident and violence than decay. It las often been noted of these people that the teeth are extensively used as a sort of vise for many operations, and it would not be at all surprising if they sustained occasional injuries leading to the formation of abscess and not infrequent loss.

With this evidence before us it cau not said that a meat diet is injurious to the teeth or a vegetable diet especially beneficial.

Table P.-Dental caries among different American peoples.

Peoples.	Total skulls exauineal.	Number sboring carles prescnt.	Number Kuowing absencoo caries.	$\begin{gathered} \text { Number i } \\ \text { showing } \\ \text { clos with } \\ \text { outcaries. } \end{gathered}$	Percentage without los8.	Percentage with loss.
Saladoans.	35	18	10	7	51.1	71.1
Peruvians	66	29	29	8	43.9	56.0
Mound Builders	42	16	22	4	38.0	47.6
Californians	38	5	33		13.1	
Sioux	34	3	31		8.8	
Alaskans.	42		42		

Deformity. -The malposition of the teeth or deformity of the dental arch is of very frequent occurrence in the skulls of the Salado Valley people. Out of 30 skulls it is found to a greater or less extent in 16, makiug over 53 per cent. If we divide thein up into incisor, cuspid, bicuspid, and molar deformities we find that there are nine cases of malposition of the incisors, six in which the cuspids are affected, five of the bicuspids, and three of the molars. There is me interesting case in which the canine of the left side had been displaced outward by the persistence of a milk tooth occupying a position between the lateral incisor and the first bicuspid.

There are many of these cases of deformity associated with caries of the teeth, more especially in those situatious favorable to the lodgment of particles of food. Deformity appears to have been a fruitful cause of decay.

Among the Peruvians, out of 65 skulls we are able to find only 7 , or nearly 11 per cent, in which there was any deformity of the dental arch. In these skulls the arch is well rounded and the teeth are very regular, resembling in this respect the form of arch displayed by the Alaskans.

Among the Mound Builders, in a series of 41 skulls there are 6 , or over 14.2 per cent, of which nearly all referred to the incisors.

The series of Californians, 30 in all, exhibit but 4 deformities, or a trifle over 11 per cent.
Among the Sioux there were found 4 deformities of the dental arch in 34 skulls, or over $11 \frac{1}{2}$ per cent.

The Alaskan Indians on the other hand display a much higher percentage of deformity; for out of 41 skulls 8 deformities were found, making nearly 20 per cent.

> Table Q.-Dental deformity among different American peoples.

Peoples.	Total number of skulls examined.	Namber of skulls show ing dental defuriuity.	$\begin{aligned} & \text { Percentage } \\ & \text { of } \\ & \text { deformity. } \end{aligned}$
Saladoans	30	16	53.3
Alaskans	41	8	19.5
Mound Builders	41	6	14.6
Sioux	34	4	11.7
Californians.	36	4	11.1
Peruvians	65	7	10.9

Tuberculation.-Prof. Cope* has recently called attention to the abseuce or slight development of the postero-internal tubercle of the second upper molar in certain races. According to his researches the Eskimos generally have but three tubercles upon the grinding surface of the last two superior molars, representing the tritubercular condition, while the Negroes and Malays display four tubercles upon these teeth, which are, therefore, quadritubercular. These differences are marked and very constant in these races and serve to distinguish two extremes of tubercula tion. Amoug the various tribes of American Indians, however, certain intermediate steps are met with, which in the groups considered we have endeavored to represent by percentages.

Upou the first molar there are always four principal tubercles (two external and two internal) and the grinding face of the crown is always square. 'In the Negro and Malay the second, and not infrequently the third, molars are similarly constituted; but in the Eskimos the second and third molars bear only three principal tubercles, of which two are external and one interual. The internal cusp is large and crescentic in outline and covers the entire internal aspect of the grinding surface; but it sometimes happens that a faint trace of the fourth cusp is present in the form of a slight ledge or ciugulum at the postero-internal angle of the crown. Those skulls in which the second molar has its full complement of tubercles we have marked 4; those in which the tooth displays a trace of the fourth cusp we have marked $3 \frac{1}{2}$, while those in which there are only three tubercles we have marked 3.

Taking the Alaskans as the extreme of the tri-tubercular type we bave in 43 exanined skulls 29 , or over 67 per ceut, in which the second molar bears 3 tubercles; 8 of the 43 , or over $18 \frac{1}{2}$ per cent, display traces of the fourth cusp, and 6 of the series, or nearly 14 per cent, have the fourth cusp fairly well developed.

Out of a series of 71 skulls of the ancient Californians 44 , or nearly 62 per cent, are tritubercular; 15 , or about 21 per cent, have traces of the fourth cusp, and 12 , or nearly 17 per cent, have all the tubercles developed.

The series showing the next highest percentage of the tri-tubercular type is that of the MoundBuilders, in which out of 37 skulls 15 , or $40 \&$ per cent, are tri-tubercular; 4, or nearly 11 per cent, have the tubercles $3 \frac{1}{2}$; and 18 , or over $48 . \frac{1}{2}$ per cent, have all the tubercles present.

The coudition of the second molar in the Saladoan skulls gives the following results: Ont of 23 examples 9 , or about 39 per cent, are tritubercular, and the remaining 14, or nearly 61 per cent, are more or less quadritubercular.

Next come the Peruvians, in whom 19 out of 53 skulls, or about 36 per cent, are tri-tubercular, 14 or nearly 26.2 per cent have the 3.2 tubercle, and 20 or over $37 \frac{1}{2}$ per cent are quadri tubercular.

Lastly we come to the Sioux, of whose skulls 37 are represented in this series. In these 6 or

[^16]over 16 per ceut are tritubercular, 18 or over $48 \frac{1}{2}$ per cent have tubercles $3 \frac{1}{2}$, and the remaining or slightly over 35 per cent have four tubercles well developed.

From a careful consideration of the facts here set forth it would seem that the nearest allies of the ancient inhabitants of the Salado Valley, if we judge from the prevalence of dental decay, are the Peruvians upon the one hand, in whom caries was almost as frequent, and the Mound Builders of the Mississippi Valley on the other, who also suffered to a considerable extent from tooth-decay. Whether we are to accept the dental condition described as indicating affinity or whether they are to be regarded as the effects of climate, food, and general habits of life we are not prepared to say; but it is more than probable that they have a certain value as expressing race affinity.

The facts relating to the structure of the teeth themselves are important, and we are disposed to attach more weight to them, so far at least as evidence of affinity is concerned, than to the other two classes combined. The high percentage of the tritubercular second molar in the Alaskan Indians, 67 per cent, is significant aud betokens either much commingling or a very near relationship with Eskimos. In a like manner the percentage of 62 among the Californians is suggestive of near affinity with the inhabitants of Alaska. The Mound Builders, Salado Valley people, and Peruvians on the other hand are very closely related in this respect, as is indicated by the percentages 40,39 , and 36 , while the Sioux stand considerably apart from the rest with a percentage of only 10.

Table R.-Tuberculation among different American peoples.

Peoples.	Total number of skulls examb ined.	Number showing 3 tubercles.	Number showing $3 \underline{2}$ tubercles.	Numbor showing 4 tubercles.	$\begin{gathered} \text { Perceutage } \\ \text { of } 3 \\ \text { tubercles. } \end{gathered}$	Porcentage of 31 tubercles.	$\begin{gathered} \text { Porcentage } \\ \text { of } 4 \\ \text { tubercles. } \end{gathered}$
Alaskans.	43	29	8	6	67.4	18.6	13.9
Californians	71	44	15	12	61.9	21.1	16.9
Mound Builders	37	15	4	18	40.5	10.8	48.6
Saladoans	23	9		14	39.1		60.8
Peruvians	53	19	14	20	35.8	26.4	37.7
Sioux	37	6	18	13	16.2	48.6	35.1

§27. THE HYOID BONE.
[By Jacob L. Wortman, M. D., Anatomist of the Army Medical Museam.]
The following study of the human hyoid arch has been undertaken with a view to the determination of the more exact value of this series of bones in matters of anthropological research. The subject has received so little attention at the hands of anatomists, especially from this particular standpoint, that there is little or no literature upon it, and we are as yet in comparative ignorance regarding the conditions and characteristics of this chain of bones, even in the best anatomically known races of mankind.

The history of this undertaking dates from the author's connection with the Hemenway Southwestern Archæological Expedition to the valley of the Salado, Arizona, in 1887, whither he was sent by the United States Army Medical Museum to obtain a full series of skeletons of the ancient dwellers of this region. While engaged in the collection of this material it was noticed that the body or middle piece of the hyoid bone was almost always free, and that the separate pieces, of which the hyoid arch is made up, seldom united into a single bone, even in the most aged individuals. The hyoid, as the writer had been accustomed to see it in skeletons of whites and negroes, consisted usually of a single U-shaped bone, especially if the individual had passed the middle point of life; and upon consulting a few staudard text-books on human auatomy which had been taken into the field for ready reference it was found that this was regarded as the usual or normal condition.
d. The attention of Dr. Herman ten Kate, the anthropologist of the expedition, was called to the subject, and together we took accurate note of the probable ages, conditions of bone disease, etc., of all the individuals whose hyoids were secured. In all there were obtained some 97 speci-
mens of various ages, which are now preserved in the collection of the United States Army Medical Museum at Washington.

Upon our return to Washington we searched the literature carefully for any statement that would throw light upon the subject, but were uuable to find that anything had been said or written upon the subject other than the general statements contained in works upon human anatomy. We accordingly prepared a paper setting forth the principal facts, which was presented to and read before the Congress of Americanists held in Berlin.

One of the chief difficulties with which we had to contend in discussing the general bearing and importance of our discoveries was the lack of materials for comparison. Since theu the writer has been actively engaged in collecting materials illustrative of the characteristics of the hyoids in the negroes and whites, and he is now in a position to discuss the subject upon a more accurate basis. The sources of materials have been as follows: From Prof. Thomas Dwight, of the Harvard medical school, the Museum has received a record of 33 cases, of which 4 were black, 28 white, and 1 of mixed Mexican and Indian parentage. These specimens were from individuals ranging from 17 to 82 years of age, and iuclude both sexes. From Prof. Towles, of the University of Virginia, the Museum has received 12 specimens of hyoid bones, all from negroes, with the ages attached. From Prof. Matas, of the Tulane University, New Orleans, there are 17 specimeas, of which 12 are from negroes, 4 from whites, and 1 from a Chinese. From a personal collection there are 23 specimens, of which 21 are of colored people and 2 are \bar{o} f whites.

What may be considered as a typical hyoid arch of the higher mammalia is to be found in the dog, Fig. 37, which is taken from Prof. Flower's "Osteology of the Mammalia." We prefer to follow

Fig. 37.-Extracradial portion of hyoidean apparatus of a dog, front view ; sh, stylohyal; eh, epibyal; ch, (these threo cons coratoly, "anterior cornu"); bitute basihyal, or "body" of hyoid; th, thyrohyal, or "posterior cornu." [After Flower.] this author in the nomenclature of the several elements composing it, which is essentially that proposed by Prof. Oweu many years ago. In this we observe first a central unpaired piece or body, which is denominated the "basihyal;" from the outer extremities of this central piece two long sleuder rods of bone project backwards over the upper edge of the thyroid cartilage and are called the "thyrohyals" or greater cornua. Near the junction of the thyrohyals with the basihyal are attached the distal pieces of two chains of bones which connect the basihyal piece or body with the temporal bones of the skull. The first piece of this series, counting from the basihyal, is the lesser cornu or "ceratohyal"; the second is the "epihyal," the third is the "stylohyal," and the last piece, which finally joins the skull, is that called by Prof. Flower the "tympanohyal."

While this might be called the typical arrangement of the mammalian hyoid apparatus, it so happens that in many forms, including moukeys and mau, the complete bouy connection between the basihyal and the base of the skull does not exist, owing either to the absence in this chain of bones of certain elements or their rudimentary coudition. In this case a ligament may take the place of one or more of these elements, which in human anatomy is known as the stylohyoid ligament.
Prof. Flower, in speaking of the human hyoid apparatus, says:*
The stylohyal, at first a long styliform piece of cartilage continnous with the tympanohyal, commences to ossify by a separate center before birth, aud at a very variable period afterwards is often (but by no means constantly) anchylosed with the tympanohyal and surrounding cranial bones, constituting the so-called "styloid process." This is a condition not met with in any other mammal. Below the stylohyal the greater part of the anterior hyoid arch is represented by a slender ligament (the "styloid" ligament), there being no ossification corresponding to the dog's epihyal.

This view has been generally accepted and it is now commonly taught that the epihyal element of the dog is missing in the human hyoid arch.

A different conclusion upon this important point has been reached by Thomas (de Tours), \dagger who, in speaking of the human hyoid arch, says:

The londy is the strongest piece of the entire apparatus. This is an osseons lamina curved in the form of an aror. Its anterior fice, very irregular, is convex from side to side and from above downwards, and is composed of two ob-

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

*Fair usage policy applies

edge of the vaginal process and sometimes quite within its folds. Below this nodosity there can sometimes be seeu a second swelling with the same evidences of a suture. Then, again, there are many skulls in which the first nodosity is preseut, and the process is terminated by a truncated extremity, as if a piece bad been attached to it, but had been

Fig. 38.-Hyoidean apparatus of mad. [After Thomas.] lost in preparatiou; and, finally, in some ferr cases the styloid composed of three distinct pieces was observed, as described by Thomas.

There can be little doubt that the part spoken of by Thomas as the "hyoid prolongation" is the tympanohyal element of Flower, which, there is good reason to believe, is variable in length. There is also little doubt that not uncommonly there is a distinct ossification intervening between the lower end of the true stylohyal element and the ceratohyal piece, or small cornu of the hyoid, which can not be accounted for upon any hypothesis other than that it is the strict homologue of the missing epihyal so constant in the lower forms. It would be a matter of no little interest to determine the frequency of its occurrence in the various races of mankind. (See Figs. 38 and 39.)

Passing now to the hyoid bone proper, we have to consider the several elements of which it is composed. As is well known, it is generally described in works on human anatoiny as cousisting of a single U-shaped bone, formed by the union of five pieces. These are known as the body and the greater and lesser cornua. Although there does not appear to be absolute unanimity of opinion among anatomical writers regarding the particular time of life when these elements coössify, we can not do better than to quote here the statements made by the leading anatomical authorities upon this point.

Among the German anatomists Meckel, in his Manual of Anatomy, says:
"The hyoid bones, or the hyoid bone, forms an arch which is convex forwards. It is situated behind and below he maxillary, beneath the root of the tongue and the upper part of the neck. It is generally considered a single bone, and is divided into a central portion, or body and four horns, two upon each side; but as these parts remain distinct throughout life it is better to admit five distinct boues, a middle and four lateral. The inferior hyoid bones, or the greater cornua of the hyoid, often vary considerably in form and size upon the different sides in the same subject. They articulate with the central piece by a fibro-cartilaginous mass and sometimes unite in the latter periods of life in one bone."

Fig. 39.-Styloid Process of man.
[After Thomas.]

Henle, in his Human Anatomy, says:
"The great horns of the hyoid bone can also be connected with the body by joint. Many hold this to be the rule."
Hyrtle, in his Lehrbuch der Anatomie des Menschen, says, quoting from Meckel:
"The os hyoid is divided into central or body andtwo lateral cornua, which parts, as they are united by movable articulation or by synchondrosis, and often in old age not coössified, can be cousidered as so many different or separate hyoids."

Gegenbaur, in his Lehrbuch der Anatomie des Menschen, says:
"The great cornua often coössify with the body."
Hàrtmann, in his Handbuch der Anatomie des Menschen, says:
"The five parts of the hyoid bone articnlate by movable joint at the small horns and with syuchoudrosis at the large horns. In old age these parts are ofttimes anchylosed."

Krause, in his Menschliche Anatomie, says:
"The great horns are united with the body by capsular ligament, and the joint is an amphiartbrosis. Very often it is ouly a synchondrosis."

Walter, Human Osteology, Berlin, 1798, says:
"It is rare that the entire bone is ossified. It occurs only in very advanced age."
The conclusion which one draws from these statements is that the great cornua of the hyoid bone remain free even in old age in the majority of examples upon which these observations have been made, and all these authorities seem to agree that it is only at a very advanced period of life that any of the hyoidean elements coüssify. Taking for granted that the observations of German anatomists have been made upon German materials for the most part, one can safely say, if these statements be correct, that this is the normal condition of the German hyoid.

Freuch anatomists make a different statement. Sappey, in his Traité d'anatomie descriptive, 1867-72, says:
"At 40 or 50 years, ofttimes before that period, the great cornua are joined to the body. The little horns are also sometimes joined to the body, but only iu old age."

Boyer, Traité d'anatomie, 1803-'9, says:
"with age the great cornua are joined to the body. The small cornaa also unite, but this happens much later."
Cruveilhier, Anatomie descriptive, 1844, says:
"All the pieces are at first separated by considerable portions of cartilage, afterwards by a very thin layer, which sometimes remains during life."

Portal, Cours d'anatomie médicale, 1803, says:
"The borders of the body and the middle of the greater horns ossify first, bat they remain epiphyses for a long time, or separated from the body of the bone by a portion not ossified, and which hardens with age. The small cornua remain still longer without ossifying; but in old age not only are all the pieces of the hyoid united, but the stylohyoid ligament is ossified."

Beaunis and Bouchard, Nouveaux Éléments d'anatomie descriptive, 1873, say:
"The great cornua are sometimes united to the body by a true movable articulation. The small cornua are habitually movable upon the rest of the bone."

One would be led to infer from these statements that the normal condition of the French hyoid, allowing that the observations of the French anatomists have been made upon French subjects, is the complete consolidation of all the five elements and, if Sappey's statement can be trusted, at a comparatively early period of life, so far at least as the great cornua are concerned.

It is a difficult matter to reconcile these statements of the French and German anatomists otherwise than upon the ground of difference in the structure of the hyoid itself in these two peoples. It would be interesting to determine the truth or falsity of this supposition.

English anatomists agree more nearly with the French in their statements of the hyoidean pieces. Flower, in his Osteology of the Mammalia, 1870, says of the human hyoid:
"The thyrohyals or great cornua of the hyoid bone are olongated, nearly straight, and somewhat compressed. They usually become anchylosed before middle life with the outer extremity of the basihyal."

Holden, Human Osteology, 1885, says:
"Until the middle period of life the great cornua are united to the body by cartilage, bat this ossifies in the progress of ago."
H. Hyde Salter, in Todd's Cyclopcedia of Anatomy and Physiology, article, "Tongues," says:
"Ossification begins in the greater cornua; it then takes place in the body, where it begins soon after birth, and finally in the lesser coruua, where it does not commence until some time after. It proceeds but slowly, and generally leaves a thin lamina of cartilage unossified, so that complete anchylosis into one bone is comparatively rare."

Erasmus Wilson, Human Anatomy, 1859, says:
"In early age and in the adult the cornua are connected with the body by cartilaginous surfaces and ligamentous fibres, but in old age they become united by boue."

In Gray's Anatomy it is stated:
"In youth the cornua are connected to the body by cartilaginons surfaces and held together by ligaments; in middle life the body and greater cornua usually become joined, and in old age all the segments are united together, forming a single bone."

Morton, Human Anatomy, 1849, says :
"The coruua are connected to the body by a distinct movable articulation, which generally, however, becomes anchylosed later in life."

Just how far the statement of any of the preceding authorities is the result of individual knowledge and experience, or to what extent the infurmation was drawn from previous authors, or the number of cases upon which the observations were made, does not appear, and for this reason the exact authropological value of the statements is difficult to estimate. In order to reach the question in a more defiuite manner we give the results of an exanination of 32 specimens of hyoids from whites whose ages are known. For this series the lowest limit in age taken is 35 years, which, although somewhat below the middle point of life, will yet be more nearly comparable to the series of the Saladoans and the negroes which will be referred to later.

The sexes from which the specimens were taken are about equally represented; but the nationality is not given further than that they were white. Of these 21 show bony union of the greater cornua with the body, and in 11 the cornua are free, giving a percentage of 65 and a fraction for those that are joived. For 24 of the specimens the age given is 45 years and upward, and of these 18 are joined and six are free, making a percentage of 75 . A more detailed aualysis of the uniou and non-union is as follows: United upon both sides, 17; united upon the left side, 3 ; united upon the right side, 1 ; both cornua free, 11. It may be remarked that in the remaining five specimens under 35 years of age there is one (age 31) which shows union of one of the greater cornua, namely, upon the left side. If this was added to the list the percentage would be increased to 66 and over. However, the percentage of 65 may be regarded as a fair expression of the condition of the hyoid of the white so far as the bony union of the greater cornua is concerned. In those of 45 years and upwards 75 per cent is probably a fair estimate of this condition.

Turning now to the negro, we have altogether a series of $3 \overline{5}$ hyoids which pertain to persons of 35 years and upward. Of these 27 show bouy union of the greater cornua with the body and 8 are free, giving a percentage of 77 and over; 21 are joined upon both sides; 3 are joined upon the left side; 3 are joined upon the right side, and 8 are entirely free. We have previously reported upon a series of 25 negro hyoids,* in which the percentage of bony union of the greater cornua was found to be 60 . If now we include these 35 , we have a series of 60 specimeus in which the mean percentage is 70 . Of the 35 there are $1 \geq$ of 45 years and upward, of which 10 are joined aud 9 are free, giving $83 \frac{1}{3}$ per cent. This examination dnes not take into consideration those cases of mixed blood, since some of the specimens are known to be from mulattoes. Just how this has influenced the percentage is not easy to determine, but it is no more than reasonable to suppose that it has had some effect, and may account in a measure for the close correspondence between the white and the negro in the matter of union of the greater cornua.

In the light of these facts we come lastly to cousider the hyoids of the ancient Saladoans, of which there are 97 in all, many of them being complete. Some of this number are not accompanied by the skeletons to which they belong, owing to the advanced stage of decay in which they were found rendering their preservation impossible. In all cases where the skull could not be preserved a careful examination was made with a view to the determination of the age from the condition of the tecth, the synostosis of the sutures of the skull, and the angle of the jaw.

We have adopted the system of labeling them Young, Adult, Old, and Very Old. In the category of "Young" we havo placed all those speciineus under the age of 21 years, or those in which the last molar had not been crupted, the tecth themselves little worn, and the evidence of epiphyses had not yet been obliterated. In the class "Adult" we have placed all examples in which the teeth were fully erupted and all evidence of epiphyses obliterated, but which do not show ally bony union of the cranial sutures. In the class "Old" we have placed all those in which the teeth are very considerably worn and the sagittal or coronal suture shows bony union. The class marked "Very Old" we have made to include all those specimens in which the sagittal, coronal, and lambdoidal sutures were synostosed, in which the teeth were entirely gone-theiralveoli being absorbed-or were reduced to inconsiderable stubs, and the angle at which the horizoutal ramus of the lower jaw joins the perpendicular portion was very open or obtuse. In most of the examples of this class all the sutures of the skull had disappeared, indicating great age.

That part of our material in which the greatest amount of interest centers is, of course, in the classes marked "Old" and "Very Old," and it is more than possible that a certain umber of

[^17]anomalies in the premature union of the cranial sutures, as well as the loss of the teeth and the absorption of the alveoli, exist; but we are persuaded to believe that the series is a fairly typical one and exhibits the normal condition of this race in these particulars.

It may be urged that the determination of age upon the basis which we have adopted is not sufficiently accurate for purposes of this kind; but there are few anatomists who would hesitate to pronounce judgment upon the age of a skull from the evidences which we have cited. At all events, we feel that we are entirely within the bounds of reasouable judgment when we say that the classes "Old" and "Very Old" pertain to individuals not under 35 years of age.

Of the class "Very Old" there are 13 examples of the hyoid, in which union of the great cornua with the body is found in 3. In these 3 cases the union is partial, for it is only upon the left side that it exists. It should be stated that in 1 other of these 13 cases the hyoid is. represented by oue of the great cornua only, so that it is impossible to say whether partial union existed or not upon the opposite side in the case.

Of the class "Old" we have 44 specimens in which bony union of the great cornua with the body of the hyoid exists on both sides in 2 , on the left side in 1 , and on the right side in 1 , making 4 in all. Of these examples 9 are represented by one of the great cornua only, so that it is impossible to say whether partial bony union existed upou the opposite side or not. In all the 4 cases in which partial or complete bony union is found we have discovered skeletal disturbances in the way of exostoses, unusual anchylosis, etc., which would naturally lead to the belief that the union of the hyoid elements was an abnormal condition as well. Be this as it may, however, it will be seen that the percentage of union is very small. Taking both classes in which there are 7 cöossifications in 57 specimens, we have a percentage of only over 12 as against 65 and 77 of the white and negro, respectively.

This difference is marked, and in our judgment can not be accounted for upon any other hypothesis than that of a natural anatomical distinction which these people possess. In the paper which Dr. teu Kate and the writer prepared upon this material we stated at that time-

That owing to the lack of materials for proper comparison we are unable to make any satisfactory deduction respecting the hyoid at this particular time, and what we here note must be regarded as merely a statement of fact to be correlated in its proper place. * *If, on the other hand, we are to accept the statements of many of the anatomists we have already quoted, then we can say that the very high percentage of free hyoidean elements which we have found in these ancient people distinguishes them markediy from some other races. If, again, it is found that this condition of the hyoid is general in North Amorican Indians, as well perhaps as some other races, it would be interesting to know in what way, if any, it is associated with their language.

These surmises were probably correct, and there appear to be marked distinctions between the hyoidean apparatus of these ancient Saladoaus on the one hand and the whites and negroes on the other, a distinction which is indicated by the percentages already set forth.

In a series of 17 specimens recently received from the ancient cemeteries in the vicinity of Zuñi, New Mexico, there are 4 showing bony union of the great cornua and 13 are free. A careful inspection of the skeletons to which they belong gives an indication of age from at least 35 years and upwards. The percentage in this case is 23 and a little over.

From a few specimens (9 in all) of hyoids of the so-called Mound Builders there are 4 coössifications, giving a percentage of 44 and a fraction; but this series is too small to be of much value to us.

Regarding the lesser cornua we have not devoted that attention to them that we have given to the greater cornua and body of the hyoid: but if we are to judge from what Prof. Thomas Dwight, of the Harvard Medical School, says, it would seen that they may be entirely absent. In a letter transmitting the record of observations given above, he writes:

[^18]shown beyond question that one or both of these horns may be wanting. One was wanting in a girl of 17 and both in a man of 55 . In a woman, said to be 80 , one was wanting and the other probably wanting. In a man of 37 and another of 39 one was probably wanting. In a woman 50 and a man 55 both were probably wauring. When a joint was found upon the body it was clear that the lesser horns had been lost, which occurred two or threc times; but the absence of a joint does not show beyond question that the horn was wanting as it may have been held by ligament. It is thought most probable that where the entry has been made " lost or wanting," the bone was originally wanting.

We come now to consider the body of the hyoid bone, and we regret to say that the soft parts, particularly the larynx, could not be included in this study since our materiai refers almost exclu. sively to the dry bone itself. The body of the hyoid in monkeyshas a distinctive and characteristic form, which according to Flower* has a greater vertical than transverse diameter (see figs. 40 and 41). This form of the hyoid body is associated-in many of the lower types of monkeys with a membranous sack which occupies the concavity of the bone and protrudes between the lower edge of the body and the upper edge of the thyroid cartilage. It was called the hyothyroidean sac by Cuvier, and the succus membranaceus by Wolf. It has an opening at the base of the epiglottis and is said to sometimes communicate with the laryngeal sac which lies just above the vocal chords. According to Eckhard, \dagger this hyothyroidean sac is absent in the anthropoid apes, with the possible exception of the gibbon. We are not sufficiently familiar with the anatomy of the laryux of the anthropoids to state whether any rudiment of this condition is to be found in them; but it would not be at all surprising if this eventually tarns out to be the case. We are led to infer that the true significance of the great depth of the body of the hyoid in the monkey is to be explained primarily upon the basis of this sac, whatever its function may be, and that the depth of the body in proportion to its width furnishes an index of this distinctively simian feature, which we propose to call the basihyal index.

Fra. 40.-Hyoid of baboon; $b h$, basihyal; th, thy-
rohyal. [After Flower.]

Fio. 41.-Hyoid of an American monkey; th, thyrohyal; ch, ceratohyal; eh, epihyal. [After Flower.]

It is therefore with no small amount of interest that we come to examine this question in the light of our present material. We have been necessarily compelled to limit our researches to the Negro and Saladoan, for the reason that our materials have proven insufficient as regards other races, which are therefore not included. Some difficulty has been experienced in determining just where the measurements should be taken in case the greater cornua are coössified with the body, which is, as we have seen, the usual condition of the adult Negro hyoid. After careful atteution to this point we have determined upon the following measurements: The vertical depth is obtained by placing the bone flatwise upon its posterior surface and measuring with a pair of calipers or other suitable instrument its greatest diameter in this direction. The transverse diameter is taken by placing one arm of the dividers upon the point of union of the anterior ridge with the lingual or superior border and measuring to the corresponding point upon the opposite side. In some instances the anterior transverse ridge is not well defined and the point where it terminates is not easily made out. In such cases, if there remain any traces of the suture joining the great cornua with the body we measure from this suture where it crosses the superior border to the same point upon the opposite side.

Among the Saladoans the bodies are mostly free and we have had little difficulty in determiniug the proportion of the depth to the width. In one instance we measured the greatest diameters and found that the proportion of the depth to the width is 52 per cent and a fraction in 45 specimens. In the same series measured between the points indicated above for the transverse diameter the proportion is 54 per cent.

[^19]In a series of 36 negroes the proportion of the depth to the width is 65 per cent and a fraction, or between 11 and 12 per cent more simian. In one case (Fig. 42) the proportion goes as high as 90 per cent, while 75 per cent is not at all unusual in the series.
. In the few specimens of the white hyoids which we have the proportion seems to be about 50 per cent, although we have not been able to determine this with any degree of exactness. (See Fig. 43.)

Fig. 42.-Anterior and Posterior viows of negro hyoid.
In conclusion we will say that in the present state of our knowledge it is well-nigh impossible to give any intelligent explanation of the facts which have been set forth above, with the possible exception that the greater basihyal index of the Negro is to be accounted for ou the basis of his nearer relationship to the monkey. Regarding the coössification of the greater cornua with the body little can be said, butit might be suggested that, since the chief function of the hyoidean appa-

Fig. 43.-Anterior and Posterior views of Earopenn hyoid.
ratus is the support of the muscles of the tongue, one would be led to infer that it has something to do with language. It is supposable that in those races where rapid talking and much talking was the rule the hyoidean clements would coössify early, while among those people who speak slowly, deliberately, and comparatively little, the hyoidean elements would unite late in life, if at all. The complexity and modification of sounds depending largely upon the use of the tongue would also furnish sufficient reasons for early or late coössification.

§ 28. INDICES OF THE LONG BONES.

The indices of the long bones (Table Li) which have been taken are the antibrachial and the tibio-femoral. The measurements from which these were computed have been taken by means of the planche osteométrique in use in France and according to the directions given by Topinard.* These directions require that all the bones except the tibia shall be so measured as to obtain their maximum length. The tibia is measured from the superior articular surface to the internal malleolus; thus the length of the intercondylar spine for the insertion of the cruciform ligaments is subtracted. The measurements have been taken with great care and are correct to a millimeter.

The indices are reckoned by means of the following formulæ: For the antibrachial index the length of the radius is multiplied by 100 and the product divided by the length of the humerus; for the tibio-femoral the length of the tibia is multiplied by 100 and the product is divided by the length of the femur.

Very few of the skeletons have complete sets of long bones. In many cases only one remains whole. Therefore, in order to obtain the greatest possible results, we have adopted the following plan:

Method I. We compute the indices from bones belonging to the same limb of the same skeleton.

[^20]Method II. Not having in a given case the material to do this, owing to the absence of one of the necessary bones, we use the calculated average length of the missing bone in place of the factor which the peculiar length of it would constitute if it were present. For instance, suppose we desire to calculate the autibrachial index for a limb of which the radius is missing, we multiply the average length of all the radii by 100 and divide the product by the length of the humerus; and if the humerus, instead of the radius, is missing, we multiply the length of the radius by 100 and divide the product by the average length of the humeri. Relatively corresponding formulæ are used for the posterior limb.

Thus we obtain two sets of figures, one which definitely states the relations of the bones in a given in dividual to whose skeleton both bones belonged, and oue which states that a bone of a certain individual bears such and such a relation to the general average of certain related bones, whatever they may be, of his race.

In the synopsis (Table LiI) giving the average osteometric indices the results obtained from the complete limbs by method 1 are given first, then those obtained by method ir, namely, by the lengths of the bones compared to the averages. These two groups of figures, which sum up with very little difference, are then combined to give a general average for the race. In each of these groups of indices there are three subdivisions, one for the right side, one for the left, and one for the total of both sides. The figures found at the bottoms of the columns of individual indices are the totals obtained from both methods. They reappear in the synopsis.

The extremes of the indices obtained by method II are preposterous and should be allowed no weight in discussing the variations in relative length of the segments of the limbs. The cause of the great variation in question is almost selfevident. They are from those cases where the individual was much above or much below the normal stature of the race. The cases where the index upon one side of a skeleton is calculated from two of its own proper bones, while upon the other side it is calculated from the relation of a bone's length to the average, often gives a startling difference between the right index and the left index, for which the above explanation accounts; but when we come to the average indices all these difficulties disappear and the figures obtained by method in come close to those obtained by method 1 . This we regard as sufficient justification for the adoption of method in as a means of increasing the number of individuals with whom our figures deal.

The reader is liable to think that he finds some obscurity with regard to the number of individuals concerned in the combined right and left or total index obtained by method in, and the same index obtained by methods i and II combined. Taking the antibrachial index as an instance, however (see Synopsis of Indices, Table LII), the cross line beginning with the words "computed by method Π " and giving the number of total indices as 15 must not be read as if it ought to mean that there are 15 indices of each side combined to form a total of 15 indices of both sides but that the index derived from combining the aggregate of each side represents the average of a sum which consists of 30 factors.

A reference to the tables of antibrachial and tibio-femoral indices in Topinard's Anthropology* will show that the variation per cent of these indices is small. His minimum and maximum of the antibrachial index are 69.8 in a male Eskimo and 81.7 in a female Andamanese, respectively; hence only $\mathbf{1 1 . 9}$ per cent-this, be it noted, between individuals, not between racial averages. The tibiofemoral index varies from 78.6 in 9 male Esthonians to 89.0 in 1 female Negrito, or 10.4 per cent.

The maximum and minimum of series which contain five or more (individuals or limbs $\%$) \dagger are as follows: For the antibrachial index the maximum is 79.1 in 32 male African Negroes, the minimum is 72.4 in 26 female Europeans. For the tibio-femoral index the maximum is 84.4 in 10 African Negresses, the minimum is 80.2 in 5 male Chinese.

Continuing our study of Dr. Topinard's tables, we find that the sexual differences with regard to these indices are not great. As to the antibrachial index, the sexual difference ranges from 0.1 in Europeans to 3.0 in South Americans, the males having the higher index in each case. As to the tibio-femoral index, the sexual difference ranges from 0.3 in Europeans to 1.5 in negroes, the

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer Alibrary in your pocket for $\$ 8.99 /$ month

Continue

*Fair usage policy applies
sufficiently valuable to justify a conclusion. Indeed, if we rightly interpret the spirit of previous writers upon the subject, we should be inclined to believe that the series of Europeans given above is the only series large enough to be of undoubted value.

Broca* says:

* * * There is but a very slight difference between the human average and the averages of the great anthropoids, a difference so feeble that it disappears often when one considers, instead of the averages, the individual cases.

§ 30. TORSION OF THE HUMERUS.

Notwithstanding the opinion of Topinard, that the angle of torsion of the humerus gives "a good zoölogic character and a bad anthropologic character," \dagger we have determined it in all the humeri of this collection (41 in number), in which the necessary guiding marks as laid down by Broca \ddagger were found intact. Of this number 21 were from the right side and 20 from the left; but there were only 15 complete pairs. Of the lat.

Fig. 44.-Apparatus for determining torsion of the humerus.

The angle of torsion is obtained in the followi lines of its two extremities. Secure the bone in a vertical position at the middle of the shaft by means of the clamp, let us say with the head of the humerus upwards at first; make a tracing of the head by means of the periglyph (c) on the varnished glass (d), being careful to include a tracing of the axial line and the parallel lines drawn on the stage. Invert the stage by turning it on its axle, inverting at the same time the bone and bringing the lower surface close to the varnished glass, where the outline with the axial and parallel lines may be sketched with the periglyph as before; ink the tracings and transfer to the paper in the manner described in $\S 3$.

[^21]In making the transfers to paper superimpose one sketch on the other in such a way that the axial lines shall cross or touch, and the parallel lines shall exactly coincide. Apply the protractor and read off the angle of torsion.*

In every case where we have applied this method we have, as a matter of record and identification, drawn the outlines of the extremities, an easy task; but it would have been sufficient to draw only the axial and parallel lines.

Figure 45 shows the character of the tracing. The outline of the head is broadened in order to distinguish it more plainly from that of the opposite extremity.

The general results of our measurements are shown in. Tables LV to LVini, inclusive, and in diagram shown below. Tables Lix and Lx give the augles of other humeri in our Museum. A number of tables prepared by Broca and Manouvrier have been consulted which, though the measurements were taken by a different process, will, we believe, admit of comparison with our results. From all these sources the following facts are collated:

A statement of Broca's, \dagger based upon abundant data, is that the average torsion is greater in females than in males, and his Table D shows that not only in the general average, but that in the average for each side the female exceeds the male, there being but one insignificant exception in the series of Californians. In this respect the Saladoans seem to be at variance with the rest of the human race. In Table LViII it will be observed that humeral torsiou in the males is greater on both sides, and therefore greater in the total average, than it is in the females.

Auother couclusion of Broca's \ddagger is that in nearly all the series (studied by him) the left humerus is, on an average, more twisted than the right; such, too, is the evidence of our general collection (Table Lx) even with regard to American races. In the Salado skeletons, on the contrary, the average is almost the same on both sides, that of the right being slightly in excess of that of the left. Anong the humeri in pairs, also, there is a slight excess on the right side. The variation, too, is greater on the right than on the left side in this series, the former showing both higher and lower angles than the latter.

In 75.8 per cent of Broca's series the maximum of torsion is on the left side.§ Here again the Salado series ranges itself with the small minority. Not only the maximum but the highest

FiG. 45.-Tracing showing torsion of humerne. three angles are found on the right side. It belongs to the majority, however, with regard to the minimum, which is on the right side as in 72.4 per cent of Broca's series.

In comparing the humeri of this series (Table LV) with those of our general series (Table LIX) we discover that three angles of the former ($1770,174^{\circ}, 174^{\circ}$, all dexter) are higher than the maximum of any other race except the French, and that they are higher than several of the French angles. If we study this series in conuection with Broca's Table $\mathbf{C}, \|$ in which is given a list of 29 series, comprising the most varied races in the world, the maximum angle of the Saladoans would still seem to have the same relative importance-standing next to the French.

The average torsion of the left humerus ($159^{\circ} 30^{\prime}$), the average of the right humerus ($159^{\circ} 45^{\prime}$), and the average of all the humeri $\left(159 \circ 30^{\prime}+\right)$ are higher than the corresponding averages in any series (representing more than one individual) of our collection except the French and Lapps.

[^22]Dotted line = right; single line = left; double line=both.

They are also higher than any of the averages in Broca's Table B,* except the modern Europeans and some of the ancient Parisians. They are higher than those of the French of the Polished Stone period. This Table B of Broca's shows 29 series, representing the most diverse races of the world, and is therefore an excellent basis for comparison.

§31. THE OLECRANON PERFORATION.

In the prevalence of the olecranon perforation the ancient inhabitants of the Salt River Valley stand, so far as we can learu, at the head of the human race. The following table shows the percentage of this anomaly in 24 series, of more than 15 humeri each, representing many different races and periods of time and arranged in order from the highest to the lowest percentage. It will be seen that the ancient Saladoans stand easily at the head of the list. We might have enlarged this table from our researches into the literature of the subject and by including smaller series, and yet have given no race precedence over the Saladoans.

Table S.-Showing percentages of olecranon perforation in different peoples.

Num ber of hume hi. ri.	$\left\lvert\, \begin{gathered} \text { Num } \\ \text { ber } \\ \text { of } \\ \text { fora- } \\ \text { mina. } \end{gathered}\right.$	Per	Authority or collection.	Race or source.
89	48	53.9	U. S. Army Medical M	Ancient Saladoans (Hemenway collection).
150	69	46	Bulletins de la Société d'Anthropologie. Paris, 1878, Vol. I, p. 433.	Guanches, Canary Islands (Verneau).
30		36.2	Topinard, Eléments d'Anthropologie Générale, p. 1016.	Yellow and American races.
32		34.3	,	Polynesians.
80		31.2 do...	From Indian mounds in the United States (Wyman).
20	6	30	Private collection of Dr. D. S. Lamb	Dissecting-room specimens, mostly nogro and mulatto.
62	17	27.4	U. S. Army Medical Museum.	From Indiau mounds in the United States.
122	25.6	Topinard, Eléments d'Anthropologie Générale, p. 1016.	Guanches of Canary Islands.
156 97		21.8	do	Dolmens and grottoes around Paris (Polished Stone period).
97		21.7	$\cdots \mathrm{do}$	African negroes.
$\stackrel{61}{28}$	12	19.6	U. S. Army Medical Museum	Ancient Cibolans (Hemenway collectiou).
28		14.1	Topinard, Eléments d'Anthropologie Géuérale, p. 1016.	Melauesians.
30		12.1	do.	Dolmens of Imberon.
66		10.6	do	Caverne de l'Homme-mort, Lozère (Polished Stone period).
388		10.6	S.do..	Dolmens of La Lozere (Polished Stoue period).
288	22	7.9	U. S. Armv Medical Museum	Pathological specimens, mostly from white soldiers.
27	2	7.4	Bulletins de la Societé d'Anthropologie. Paris, Vol. v, p. 640.	From Chamont (Stone age).
16	1	6.2	U. S. Army Medical Museum.	American negroes and mulattoes.
200		5.5	Topinard, Eléments d'Anthropologie Générale, p. 1016.	Parisians from fourth to twelfth centuries.
${ }_{1} 96$	5	5.2	U. S. Army Medical Mnseum	Modern American Indians. .
150		4.6	Topinard, Eléments d'Anthropologie Générale, p. 1016.	Parisians, Cemetery of the Innocents (Hamyand Sauvage).
218		4.1do..	Parisians of the Middle Ages (Broca and Bataillard).
		3.9	Revue d'Anthropologie. Vol. ix, p. 147	Europeans of America (Wyman, Peabody Mnseum reports).
30	0	0	Topinard, Eléments d'Anthropologie Generale, p. 1016.	Long barrows of England (Bronze age).

Perhaps some of the perforations were not counted. The bones of the Salado series, as before remarked, were very fragile, and the thin partition between the fossa of the humerus was sometimes broken by accident. Pains were taken to distinguish betweeu the natural and the accidental
nerforations. There was usually no great difficulty in doing this, as the margins of the former were smooth and bounded a fenestration, regular or subregular in shape-often oval, while the irregular and fractured character of the margins of the latter

Fig. 46.-Lower end of hamerus showing largel olecranon perforation. was readily discernible. But it is probable that bones once perforated naturally were afterwards perforated post-mortem by fractures which included the natural fenestrations, or that the smooth edges of natural openings may have been abraded so as to give them the appearance of accidental openings; such cases would be excluded from the list.

Not only is the perforation more common in this than in any other race, but, as far as our observations among the various series in the Army Medical Museum teach us, the number of large perforations is proportionally greater. Such, at least, was the impression gained during the examination; but we did not determiue this by actual measurement. Fig. 46 represents, natural size, the lower extremity of a left humerus of an ancient Saladoan in the Hemenway collection. It exhibits an olecravon perforation 11 milimeters in length by 7 in width.

The following table of five series in the Army Medical Museum shows that the perforation is more commonly found on the left side than on the right; yet even in this particular the Saladoans differ much from the rest of the races. While with them, as with others, the perforation is more commonly found on the right side, the difference between the two sides is not so great. This is shown in the last column of the table.

The subject of the olecrauon perforation has been so extensively discussed* that we deem it well to do little more than give the results of our studies of the Hemenway series and other series in the Army Medical Museum, and indicate how our discoveries bear on the whole subject.

Table T.—showing percentages of olecranon perforation, on the right and on the left side, in different peoples.

Race or collection.	Right.			Left.			Proportion of right to 100 left. Approx-imate.
	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { oferi. } \end{aligned}$	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { foramina. } \end{gathered}$	Per cent.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { oferi. } \end{aligned}$	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { foramina. } \end{gathered}$	Per cent.	
Ancient Saladoans, Hemenway collection	43	19	44.1	46	29	63	70
Indian mounds, Uniter States.............	35	7	20	27	10	37	54
Aucient Cibolans, Hemenway collection	30	2	6.7	31	10	32.2	20
Dr. Lamb's collection, mostly negro and mulatto	11	2	18.1	9	4	44.4	40
Pathological collection, mostly white soldiers..	160	6	3.7	138	16	11.5	32
Total	279	30	12.9	242	69	24.3	53

We will attempt neither to cite the various theories which have been proposed to explain the nature and origin of the perforation, nor to quote the many arguments advanced to sustain these theories. We will merely announce that we are among those who believe that the perforation is not congenital but acquired; and that it bas no connection with the rank a people may hold in the scale of races, but is the result of some mechanical cause connected with their occupations. We believe, furthermore, that it results from repeated and forcible extension of the forearm, in which the summit of the olecranon process of the ulna impinges against that thin bony partition which

[^23]ordinarily separates the coronoid from the olecranon fossa of the humerus. The absorption of this partition and the consequent formation of a perforation connecting the two fosse naturally follows.

Fig. 47 represents the anterior aspects of the distal extremities of both humeri from the skeleton of a young subject in the Salado series. The right humerus has a single large olecranon opening. In the left humerus the partition between the two fosse is of a translucent thinness and is perforated by a number of small orifices which outline a space larger than the perforation in the right humerus. This left humerus is believed to present an olecranon perforation in the first stages of its formation. No other specimen of this character has been seen by us.

Our whole museum collection shows the perforation in two adolescents but in no infants. As far as we can learn the same fact has been observed with regard to children in other collections, and this is one of the facts ou which rests the theory that the perforation is acquired and not inherited.

If it be granted that the perforation arises from mechanical causes and is the result of labor which requires repeated and forcible exteusion of the forearm, we need not search long to discover

Fig. 47.-Lower ends of hnmeri showing olecranon perforations. the existence of such labor among the aborigines of the south west, both ancient and modern. The females of the modern pueblos are engaged during the greater part of their time in griuding corn, and they begin to perform this labor while they are yet very young. The grinding is done on a metate or large flat stone, by means of a smaller stone which is held in the hands of the operator and moved back and forth. The chief extension is made in moving the stone forward, and this requires the most forcible extension of the forearm. The motion is made chiefly by the muscles of the back. The discovery of numerous metates and upper grinding stones in the ruins of the Salado cities shows that the people practiced a method of grinding similar to that of the modern sedentary Indians of the same region. There were, no doubt, other labors which required great extension of the forearm, but this we believe was the most important.

Modern agricultural tribes of the North and East ground their corn in wooden mortars with wooden pestles; and in so doing made motions very different to those employed in operating with the metate.

Pruner Bey expresses the opinion that this peculiarity is, in the human race, to be found only in females, because all the humeri in which he noted the perforation were small. We can not say, for certain, that it is found only in female humeri, in the Salado series, because we can so rarely determine the sex of these skeletons; but it is not improbable that the perforation may be shown to occur more frequently among the females than among the males. Although the men did much hard labor of various kinds the work of grinding the corn was, in all probability, with the ancient Saladoans, as with the modern pueblo Indians, performed exclusively by the women.

That the perforation is not a peculiarity of females in all races is evidenced by the pathological series of the Army Medical Museum. In this series is a percentage of 7.9 perforations in 288 humeri, and these bones are, with few exceptions, derived from American soldiers of the Caucasian race. It is easy to conceive that many of our modern mechanical employments, such as that of the carpenter propelling the plane, in which the arm is forcibly extended, might cause the perforation we speak of. We have in our anatomical series the skeleton of a Frenchman showing the perforation on one side.

On the supposition that the perforation is produced by mechanical causes, we can account for its preponderance on the left side only by supposing that the left arm, in many occupations, is
more frequently and forcibly extended than the right. For the majority of human manual tasks we are not prepared to demonstrate this, although we might do so in some instances. In the work of grinding on the metate, however, it appears that the left hand is used the more. When the grist is lifted from the trough aud placed on the metate-and this is very frequently done-the right hand is employed while the left hand is not released from the grinding.stone.

§ 32. THE PELVIS.

Pelvic measurements have been practiced upon 19 articulated pelves besides one pair of innominate bones, 2 innominate bones of separate individuals with their corresponding sacra, 1 without sacrum, and 8 separate sacra (Tables LXI to LXVIII, inclusive).

The measurements are as accurate as could be hoped for in pelvimetry where landmarks are relatively quite indistinct.

No measurement has been permitted to originate with us. The series of 19 measurements are compiled from Garson* and Verneau. \dagger Fritsch, \ddagger Davis,§ and Bacarisse, $\|$ have also been consulted and the choice of each measurement determined by its frequency in use and its clear definition fully as much as by its apparent morphological utility. It was our orginal intention to exteud the number of measurements to 21 by including a measurement of the height of the entire articulated pelvis and the subpubic angle; but although both these measurements have often beeu taken by investigators, we could not find sufficiently exact definitions to warrant our adoption of them.

The indices which have been calculated by different authors are very varied. In view of this fact, and also because all published series of measurements which we have examined deal with series which compared to craniological series are absurdly small, we have limited our indices to the two which Topinard especially recommends, \uparrow and a few others which appear most usefil in the discrimination of sex.

Verneau, however, seems to base his discussion of sex on anatomical differences and absolute measurements, while J. G. Garson and most other writers have given us practically no iuformation concerning the male pelvis. Hence as we are dealing with an unknown people, indeed almost all American tribes are unknown to pelvimetricians, and a people of probably conspicuously smali stature, we might very readily go astray in applying to any great exteut the canons or results of Europeau anthropometry.

With these considerations in view we have decided upon the following indices:
First.--The breadth-height index or relation of the maximum external width of the pelvis at the iliac crest to its maximum height, or, which is the same thing, the maximum length of the innominate bone.

$$
\text { Formula: } \frac{\text { Pelvic width } \times 100}{\text { Pelvic height. }}
$$

Secoud.-Index of the superior strait.
Formula: $\frac{\text { Antero-posterior diameter of brim } \times 100}{\text { Trausverse diameter of brim. }}$
Third.-Index of the puho-ischiatic depth.
Formula: $\frac{\text { Pubo-ischiatic depth } \times 100}{\text { Maximum width of superior strait. }}$
Fourth.-Index of sacral length.
Formula: $\frac{\text { Sacral length } \times 100}{\text { Maximum width of superior strait. }}$

[^24]
THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

*Fair usage policy applies

15. Acetabulo-symphysial width.-Width between the posterior margin of the acetabulum and the symphysis pubis.
16. Sacral length.-Vertical length of the 5 sacral vertebræ.
17. Sacral breadth.-Maximum breadth of first sacral vertebra.
18. Width of sacrum at brim.-Width of the superior strait at the reunion of the anterior face and the base.
19. Inferior width of sacrum.-Width of the sacrum below (at the inferior part of the auricular surface).

§33. THE COLUMNAR OR PILASTER FEMUR, FEMUR A COLONNE.

We have studied this peculiar form of the femur, not by classifying the bones according to 6 different degrees as first recommended by Broca, but by finding au index as he later advises. (See Tables Lxix to Lxxiri.) In order to obtain this index we took two transverse measurements of the diaphysis at its center-one antero-posterior, the other lateral; we multiplied the former by 100 and divided the product by the latter as directed by Topinard.* Our results, therefore, may be compared with a table given by Topinard. Our maximum index is $\mathbf{1 4 7 . 6 1}$. Our average indices are for 66 right femurs, 114.74 , for 65 left femurs, 116.94 , and for 131 femurs of both sides, 115.83 (Table lxxir). In 15 series which Topinard gives us, representing ancient and modern Europeans, Negroes, New Caledonians, and authropoids, but three are higher than the Saladoan. These are: 1 nameless femur, 158; 1 femur from Cro-Magnon, 128, and 5 femurs from the Grand Canaries, 117.5. These series are all so small that they can not be compared with ours to good advantage. Indeed, Topinard has no series approaching ours numerically; his highest is 20 African negroes. We are not, then, able to judge with any degree of exactness where the Saladoans stand among the various human races and the lower orders of animals in respect to lateral compression of the shaft of the femur, and prominence of the linea aspera; but we may safely say that few, if any, races of men possess these peculiarities to a more exaggerated degree, and that few if any are further removed in these particulars from the anthropoids. Whatever, then, are the causes which produce the pilaster femur, they may be sought among the Saladoans.

It has been often observed among other races that the pilaster femur and the flattened tibia are associated features, and the Saladoans offer no exception to this rule. The flatteuing of the tibia is perhaps more remarkable among them than the lateral compression of the femur. We have some evidence, too, that, in this series at least, these features are associated in a direct though not symmetrical or constant ratio. This is shown in Table lxxini, in preparing which we have selected 5 skeletons whose tibiæ showed the lowest indices, i. e., the greatest lateral compression, and 5 other adult skeletons whose (normal) tibiæ exhibited the highest indices and the least lateral compression. For these 10 skeletons we have presented•side by side the tibial and femoral indices, and computed averages for the two groups separately. It will be seen by consulting the table that the low tibial indices are accompanied by high femoral indices, and vice versa; in other words, the lateral compression of the femur is in a general ray proportionate to the lateral compression of the corresponding tibia. Since the lateral diameter is employed as the dividend in computing the index of the tibia, and the antero-posterior diameter is so employed in the index of the femur, the indices of these bones bear an inverse relation to one another, i.e., the narrower laterally the tibia, the lower the index; the narrower the femur, the higher the index. These observatious lead us to the conclusion that whatever causes operate to produce the platycnemic tibia operate as well to produce the pilaster femur. Uuder the next section (§ 34) we consider these causes with regard to the tibia, because in that counection we fancy we can discover their operation more plainly.

§ 34. PLATYCNEMIA, OR FLATTENED TIBIA.

There is probably no single series of bones in any collection which offers better advantages for the study of platycuemia than the bones of the Salado. They belong to a race apparently very homogeneous, whose general habits of life are well understood, and they present this peculiar

[^25]formation more constantly and in a higher degree than those of any other collection of which we have scen a record. Furthermore, the series is extensive.

In obtaining the index of the tibia for this study we have adopted the method of Broca; that is, we have measured the bone at the level of the nutrient foramen, have multiplied the transverse dimension by 100 and divided the product by the antero-posterior dimension. We bave found in the Salado collection 116 tibie sufficiently preserved to admit of these measurements. Ninety of these, which were collected along with the skulls or other bones of the same skeletons, and which were conserved immediately on being disinterred, are given in Table lyxiv. Twenty-six of the tibiæ form a miscellaneous group; they were gathered singly and belong mostly to skeletons which in the earlier days of the work of excavation were allowed to disintegrate from exposure to the weather or were crushed under the feet of thoughtless visitors. Since many of this miscellaneous set are cracked and warped, we repose less confidence in their dimensions than we do in the dimensions of the series of 90 ; hence we devote to them a separate table (LXxV).

It is a recognized fact that the flattened tibia does not occur in childhood, but that the peculiarity is acquired as years advauce. To include immature tibire in the general average may therefore be thought to improperly diminish the average of platycnemia and increase the average index. We have two skeletons in which there is an exostotic crest, appareutly the result of unusual muscular traction, posteriorly near the junction of the perpendicular with the oblique line. This formation, on the other haud, by falsely iucreasing the antero posterior diameter, may be thought to improperly increase the average of platycnemia and decrease the average index. In Table Lxxiv we have noted under the head of "Remarks" allinstances of these disturbing factors, and we have calculated averages both inclusive and exclusive of such iustances.

If we take an index of 75 as representing a normal tibia (and this may be regarded as a low standard) we find but four adult tibæ in 116 which may be regarded as normal. The lowest American index we have seen recorded is one of 48 in a tibia from a mound in Michigan. This instance is mentioned by Jeffries Wyman,* who expresses the index by saying that the transverse diameter is 0.48 of the antero-posterior diameter. In this connection he never uses more than two decimal figures; consequently the index, if expressed in the manner adopted by us, might have been a fraction higher. We may safely say then that two tibie of the Salado series (those of H. 19) are as low as the lowest American known. Absolutely the lowest for all races we have seen recorded are 3 mentioned by Kuhff, one from Caverne de l'Homme Mort, having index 47, and two from the Grand Cauaries, having indices 42 and 36.

The most extensive table of averages we have observed is one of 39 series given by Dr. Kuhff.t In this the lowest averages are in series having but 1 or 2 specimens in each, aud they therefore do not admit of comparison with ours. The lowest average he gives in any series comprising more than 2 specimens is that of certain prehistoric bones ("Lehm de Kollwiller") from Alsace, of which there are 11 specimens. The average index is stated at 63 ; but Dr. Kuhtf gives no decimals in his table. The average of all our 116 tịbia is 63.54 (Table Lxxv); the average of 90 of the more perfect part of the collection, as shown in Table lxxiv, is 62.71; while the average of 78 adults free from complicating exostoses is only 61.88 . We may safely say that no series of equal size in aus collection will be found to show a higher average grade of flattening of the tibia than our Salado series.

The most satisfactory explanation which we have noted of the origin of platycnemia is that of Manouvrier. \ddagger We regret that we have never seen his, original paper on this subject; we derive a knowledge of his work entirely from a review.§ He has concluded from a careful study of the tibia in its anatomical relations that the flattening is entirely due to "lengthening and straightening of the postero external surface of this bone; that is to say, of the surface of insertion of the posterior tibial muscle," and this lengthening and flattening, Mr. Manouvrier wisely main-

[^26]tains, is due, not to the direct but to the inverse action of the muscle, produced under the infla.: ence of repeated, almost constant work. He shows that the flattening is not similar to that observed in the anthropoids; that it results from the action of a diftereut set of muscles; that it is not one of the "simian characteristics" which we are so prone to find in races whom we consider iuferior to ourselves; that it is an evidence not of inferiority, but of superiority, since it is produced under the influence of a cause essentially human.

This inverse action of the tibialis posticus is exerted when the foot is fixed and the tibia raised, as in the act of rising from a kneeling position. "This traction," says the reviewer, probably following Manouvrier, "is produced in the upright position; more still in walking, above all up inclined planes, both in mounting and descending them, and infinitely more in running and jumping. It is, therefore, very probable that platycnemia should be found in great walkers, amongst the peoples of a varied country, living a savage life, hunting, etc. Children not presenting it shows it to be an acquired characteristic which is developed only at a certain age, under the influence of special conditions. We can explain thuswhy it is less marked in the women, and why it presents in a given race very different individual degrees."

All the above suggestions as to causal activity are pertinent; but it seems to us that one of great importance remains to be made. When the tibialis posticus assumes the inverse action, the tibia becomes a lever of the second class, with the fulcrum at the ankle joint, the power at the insertion of the muscle, and the weight (which in ordinary cases is but the weight of the body and the clothing) at the knee-joint. There are three ways (besides frequency of impulse) in which the muscle that supplies the power may be called into increased action: First, by increasing the distance through which the lever moves, as in climbing hills; second, by diminishing the time in which it moves, as in running and jumping; third, by increasing the weight, as in lifting and carrying heavy loads. Largely to the third way we are inclined to attribute the prevalence of platycnemia amoug various American races, including the Saladoans. The latter lived in a wide plain some distance (10 miles at Los Muertos) from the nearest mountains, which are neither remarkably high nor steep, and it is probable that, except for religious pilgrimages, they resorted rarely to these barren summits-as unproductive, no doubt, in ancient days as they are now. The Saladoans were, then, not mountain-climbers. As they did not subsist to any great extent on game, their exercise in running was probably mostly confined to their sports. But they had no large domestic animals and were obliged to be their own burden-bearers. The burdens, too, were not dragged after them in vehicles, but were carried on the head or the back. Thus was the harvest brought home; thus were the materials collected and elevated to construct their tall houses, and the earth that was taken from their vast canals and reservoirs was carried out in baskets on the backs of men and women. The work done in this way by the Saladoans must have been ouormous.

We have now in mind many facts connected with the customs of other peoples which tend to streugthen this theory, but we will not take the present occasion to mention them. To those who are considering the problem of platycnemia in Europe we would suggest that they inquire what effect the introduction of large beasts of burden may have had on the form of the human tibia, and what effect such occupations as those of the porter and the hod-carrier may have in preserving the flattened form to a limited extent to the present generation.

We have not seen elsewhere noted a feature that is apparent on a slight inspection of the bones of this series, namely, that there is a flattening of the fibula which corresponds with that of the tibia. This correspondence is general but not uniform, i.e., while no constant ratio can be shown to exist between the indices of associated leg bones, a very flat tibia is generally accompanied by a very flat fibula, an average tibia by an average fibula, and a normal tibia by a normal fibula. The index of the fibula is usually less than that of its companion tibia. To elucidate these points we give a short table, in preparing which we have selected for illustration, from the Salado series, two very flat, two average, and two normal tibix. We have added oue European tibia. All are from the right side.

Table U.-Flattening of tibia and corresponding fibula.

Designation of skeleton.	Ante:o.pos terior dimension of fibula.	'ransverse dimension of itbula.	Index of Gibula.	Index of associated tibia.
H. 19.	19.	$9 \frac{1}{1}$	40.87	48.75
H. 6.	$16 \frac{1}{2}$	$10 \frac{1}{2}$	63.63	49.29
H. 15	13	7	53.84	62.26
H. 14	17	10	58.82	62.50
H. 36.	14	9	64.28	75.43
H. $74 . \ldots$.......	15	$10 \frac{1}{3}$	70.00	79.03
Caucasian.....	15	107	70.00	75.75

The measurements of the fibula were taken at the point where the maximum antero-posterior diameter was found. It is possible that, had some other point been selected for measurement, a ratio more nearly constant between the indices of the two bones might have been discovered.

The flatteuing of the fibula is accompanied by the following changes in the form of the bone: The entire shaft is twisted outward on its axis; the anterior portion of the internal surface is. brought more to the front, almost forming a true anterior surface to the bone; the interosseous ridge, becoming more permanent and advancing to the front, divides the interual surface more sharply into two surfaces; the internal border becomes less distinct and allows the posterior surface, which largely loses its identity, to become merged with the posterior part of the internal surface. The bone is thus apparently compressed between the insertion of the tibialis posticus on the inside and the insertions of the peroneus longus and peroneus brevis on the outside. The two latter muscles are in their action adjuncts of the first. The "channeling" of the fibula noted by other observers is also found associated with these changes.

The columnar $1 f_{\text {femur }}$ and platycnemia in various races.-Measurements have been taken to determine the relation of the various races as far as they are represented in our collections at the Army Medical Museum. This investigation has been fairly exhaustive and has embraced the large majority of all our accessible skeletons in good condition. In all 62 skeletons have been measured.

But even with all this number of individuals we find buttwo, or at most three, series which are sufficiently large to serve as the foundations of generalized assertions. These series are:

First, twenty four Sioux Indians; second, twenty three other Indians; third, six Negroes. (See Table Lxxviin.)

The reason why the Sioux are separated from the other Indians is simply because they form a sufficiently large series and not on account of any presupposed differences as to platycnemia and the pilaster femur.' It might be as well in the present state of our knowledge to reckon all the Indians together and hence we have said above that the number of our comparative series of indices may be considered as either two or three.

The facts to be noted are that the Saladoans stand between our negroes and Indians with regard to the pilaster femar, while they possess tibiæ of a higher degree of platycnemia than any of the other races.

From the lists of the individual measurements and indices some curious data may be culled. We note the following as regards the columnar femur. (See Table Lxxvi.)

Both the maximum and the minimum of the series are represented by bones of hunchbacks. The minimum index, that of the eft femur of a white male, No. 5433, amounts to only 92.15 . The maximum, which to the best of our knowledge is the highest index of the kind on record, is that of the right femur of the female negro, No. 5432, and amounts to 159.18. This surpasses by 1.18 per cent the femur of unknown origin which Topinard mentions as having the highest index of which he has ever been made aware.* There is nothing about this remarkable bone to suggest the action of disease. It is true that most of the arching forward, which we observe in all femora, is localized in this bone at about the junction of the upper and middle thirds. But this is a com-

[^27]S. Mis. $169-15$
mon form. Indeed, judging from a plaster cast in the Army Medical Museum, we believe it to be the form of the celebrated femur of Cro-Magnon, whereof the index is 128. There is uo suggestion of disease about the coxæ nor about the leg bones of this negress's skeleton, nor is there any peculiarity of the skeleton as a whole which in any conceivable mechanical means could have brought about such a result.

Two other hunchbacks, the one mentioned as having the minimum index of the section of the fenur, and also No. 938, an Alaskan, show no such peculiarity.

In connection with platycnemia let us mention the Bannock male, No. 2133 (Table Lxxvir). The indices of his tibiæ are 85.07 for the right and 93.75 for the left. These figures, while not the highest on record, are nevertheless very high, and show an entire lack of platycnemia if we may so express it. This is not what we should expect to find in an Indian skeleton, according to the facts learned in pursuing our investigation.

It happened thrice in our series of tibiæ that the nutrient foramen of a certain tibia was so very far out of normal place that it would falsify any measurement. Upon finding such a bone we would compare it to its fellow of the opposite leg of the same individual and measure it at a position corresponding to the level of the foramen in the latter. This is indicated on the margin of our tables.

HUMAN BONES
 OF

 THE HEMENWAY COLLECTION.

 THE HEMENWAY COLLECTION.
 PART II.
 THE SERIES OF CIBOLA.

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer Alibrary in your pocket for $\$ 8.99 /$ month

Continue

*Fair usage policy applies
whose highest index is 97.97 . We have seen record of but few indices higher than the above of 100.69. The average cephalic iudex of this group (88.86) is higher than that of the Saladoans by a small fraction, notwithstanding that there are 5 Cibolan skulls longer than the longest Saladoan.

The minimum index, 74.54, which is dolichocephalic according to some authorities, belongs to a skull apparently normal and possibly of an alien race.

The supposed reasons for this shortening have already been declared.

§ 37. OCCIPItAL FLATTENING. CIBOLA.

This deformation, whatever be its significance, is the rule in the collection under consideration. Only 4 skulls, indeed, Nos. H. 201, H. 204, H. 221, and H. 229, can be called normal in outline.

Of the deformity of the remaining skulls it may be said that it can be most impressively explained by imagining it to have been made by a flat rigid surface moving in a plane vertical or tilted a little forward with reference to the antero-postero-horizontal plane of the skull, coming in contact with the occiput. Hence we find the flatteuing in the less notable cases involving only the most prominent part of the occiput, that is, from inion to lambda. Then we find a number flattened from inion to obelion, and lastly a few in which the whole occiput is affected. But this plane, while always approximately vertical to the aforesaid horizontal plane, may be either parallel to or at any angle with the transverso-vertical plane of the skull.

Hence the flattening may be strictly unilateral; or the flattening may affect both sides, but preponderate upon one; or the flattening may be bilaterally symmetrical. There are 10 skulls in which the flattening is nearly or quite bilaterally symmetrical. Eight skulls are flattened on the left side of the occiput, and twelve skulls are flatteued on the right side of the occiput.

There is no skull exemplifying that occipital flattening wherein the occiput seems to have been in contact with a force pressing upward and forward. The resultant form is one in which the obelion is, or tends to be, the most posterior part of the skull, while the surface from the lambda to the inferior curved line, or even to the opisthion, forms a nearly continuous plaue.

§38. VERTICO-LONGITUDINAL INDEX. CIBOLA.

The general remarks under the title "Vertical indices" (§11) made on the Saladoan skulls apply as well to the Cibolan, although we have placed on record for the latter only one vertical index, the vertico-longitudinal, whose factors are the greatest length and the basi-bregmatic height. (See Tables Lxxxiri, Lxxxiv.)

We found it possible to compute this index in 31 skulls only. The extremely short skull, H . 216, which gave such a high cephalic index, gave the still higher vertico-longitudinal index of 101.39, which was the maximum of the series; but it was not the normal skull with the lowest cephalic index (H. 209) that had the minimum vertico-longitudinal of. 74.05. The variation of this index in the series of 31 is greater than in the Saladoan series of 39 , and the average of the one series exceeds that of the other by 5 units.

The cephalic index and the vertico-longitudinal index of the Cibolan group are exactly the same in two cases" and they are within a unit of one another in 5 cases more.i The close correspondence of the maxima, the minima, and the averages in both indices may be seen by consulting Table Lxxxim.

§ 39. Plane of the foramen magnum. CIbola.

In 27 skulls of this series we have been able to estimate the angle of Daubenton and the analogous basilar and occipital angles of Broca. (See Tables Lxxxir, Lxxxv.)

We found in the skulls of the Salado the highest expressions of these angles-higher than any previously on record, and we had thought that this might be a concomitant of the occipital distortion and due to pressure on the occiput in infancy, which caused the plane of the foramen magnum to incline more posteriorly. In the skulls of Cibola there is, to judge from the cephalic indices, as much of this flattening as among those of the Salado, yet the angles which indicate the inclination of the plane of the foramen magnum are not nearly so great in the former as in the
latter. They are the same among the Cibolans as they are in races with long heads who have no practices that result in flattening. For instance, according to Topinard,* the average angle of Daubenton is among Esquimaux, Hottentots, and Australians 6°, and among Javanese, Polynesians, aud New Caledonians 7°, while among the Cibolans it is intermediate between these two, or 62°. But it must be stated that Topinard omits fractions.

§40. Processes at base of skull. the InIon. CIbola.

In general, the processes at the base of the skull are somewhat more prominent in the Cibolan than in the Saladoan skulls. This is particularly noticeable in the case of the inion, or, more properly speaking, the superior curved line in the region of the inion.

We have estimated the degree of projection of the inion indirectly from orthogonal drawings of the occiput. These drawings represent the most prominent points, whether they be in the sagittal plane or not. Hence if any part of the superior curved line of the occiput be more prominent than the inion proper, it is that which is represented upon the drawing and compared with the standard. This greater prominence of the superior curved line at one side of the insertion of the ligamentum nuchæ is met with several times (well marked in 8 cases; see Table Lxxxvi) in the skulls under discussion. In general, the inion does not project much downward as a free process from the occiput, but is part of a large elevated bone area, quite distinct, and corresponding to the median part of the superior curved line. In short, it is the insertion of the trapezius muscle rather than the insertion of the ligamentum nuchæ which is exaggerated.

This greater prominence of the inial region of the Cibolan over the Saladoan skulls may be due to the fact that the pressure which flattened the skulls seems to have been exerted in the former entirely on a surface above the inion, while in the latter it was usually on a surface which included the iuion. This remark must be taken in connection with what we have said in § 9 .

In the Saladoan skulls none of the inia are more prominent than Broca's No.1. In the Cibolan skulls (see Tables Lxxxvi and Lxxxvir) 12 out of 32 , or three-eighths of all, correspond with higher numbers of Broca's scale. There is one which we consider as equaling his No. 4.

§41. THE PTERION. CIbola.

We have found in this series 40 pteria which admitted of measurement. They are equally distributed between the right and left sides. Eighteen skulls have both pteria intact. They are all of the form "pterion in H," but two are complicated with epipteric bones. (See Table lexxviri.)

The longest right pterion is 18^{mm}; the longest left pterion, 24^{mm}. There are two pteria of the right side measuring 9^{mm}, but none measuring less. There are two of the left side measuring 7^{amm}, and this is the minimum of the whole group. The average length of the right is 14.60^{mm}, of the left 13.55^{mm}, of all 14.07^{mm}. These averages are higher than those of Salado.

In the Cibola, as in the Salado group, there are but two pteria less than $8^{\text {min }}$ in length, but, as the Cibolan series is greater, it shows a smaller percentage, which is only 5.

Placing the above figure along with Anoutchine's tables, previously quoted, we find that the Peruvians have of all races the smallest percentage (3.4) of pteria-less than $8^{\text {nnu }}$ in length; that the Cibolans come next, with 5 per cent; the Saladoans third, with 6.5 per cent; the "People of the Caucasus, Turkestan, and Turko-Finnish" fourth, with 6.9 per cent, and that all other races have higher percentages, the highest being the Australians and Tasmanians, 24.6 per cent.

Like the Saladoans, the Cibolans show no frontal apophyses at the pterion, and they show but two epipteric bones (5 per cent), less even than the Peruvians, whose per cent (6) is the lowest on Anoutchine's table of 10 series.

In making this comparison it should be remembered that both of the series described in this report are much smaller than any of Anoutchine's, his lowest Australians and Tasmanians being 102.

Anoutchine gives in another table a list of 12 series of diverse races, in which there are pteria less than 3^{nmm} in percentages, ranging from 0.5 to 8.2 (Chinese). Since the Peruvians do not appear on this table, we presume their percentage is zero. Such is the case with the Cibolans, but, as before stated, we found one of these small pteria in a Saladoan skull.

§42. INCA BONE AND KINDRED FORMATIONS. CIBOLA.

As we have not secured illustrations to show for this series the anomalies involving the superior angles of the vertical portions of the occipital bone, we have prepared a list of these anomalies, 12 in all, with a detailed description of each case.

List.-H. 203: In the left limb of the lambdoid suture there are Wormian bones, one of which sends a process across the apex.
H. 206: A typical os apicis 32^{mm} high by 51^{mm} broad. It has Wormian bones at its lower angles.
H. 207: A very curious multiple apicial bone reaching to within 3^{mm} of the obelion. It consists of nine principal and many smaller portions. The whole group is $43^{\text {mio }}$ high and 51^{mm} wide, and might by some be considered an os Incre. The bone forming the apex is $21^{\prime \prime \mathrm{mm}}$ by 17^{mm}.
H. 210: Fine tortuous Wormian boues in both limbs of the lambdoid suture. There is one of this set at the apex, a small irregular ossicle, which might be regarded as an os sagittale.
H. 212: A large compound bone at the apex, mostly to the right of the median line. The lower part of it, about 40^{mm} by 32^{mm}, is partly coössified to the rest of the occipital. The upper part, about 22^{mm} by 9^{mm}, forims a small apicial bone. A few Wormian bones of small size complicate the lambdoid.
H. 213: A row of medium-sized Wormian bones in each limb of the lambdoid suture; one of these bones is on each side of the apex; 12^{mm} above the apex is an os sagittale $18^{\prime \mathrm{mm}}$ by $9^{m \mathrm{~mm}}$.
H. 218: An apical bone in two parts slightly coössified. The total size is 25^{mm} high and $47^{\text {min }}$ wide.
H. 223: A row of medium-sized Wormian bones, all of remarkably simple outline, in each limb of the lambdoid suture. One of these bones situated at the apex measures 14^{mm} by 16^{mm}. .
H. 227: A large typical Inca bone 46^{mm} high and 73^{mm} wide. Above it is a small bone 7^{mm} by $10^{\text {mom }}$, which may be regarded as an os sagittale.
H. 231: A triangular os apicis, 27^{mm} by 53^{min}.
H. 232: A row of long, very irregular Wormian bones occupies the lambdoid suture throughout from the left asterion almost to the right; one of these bones, situated in the median line, is about 8^{mm} by 14^{mm}, and may be considered an apicial bone.
H. 233: A row of Wormian bones occupies the upper half of the right limb of the lambdoid suture; one of these, 13^{mm} by $14^{1 \mathrm{~mm}}$, touches the median line at the apex.

From the above list we learn that there are in this series the following anomalies: 1 typical Inca bone, H. 227; 5 typical apicial bones, Nos. H. 206, H. 207, H. 212, H. 218, H. 231; 6 doubtful apicial bones, Nos. H. 203, H. 210, H. 213 , H. 223 , H. 232 , H. 233 , or 11 apicial bones of both classes- 12 anomalies in all. The above numbers give us, in a series of 35 , the following percentages: Inca bone, 2.85 per cent; true apicial bones, 14.28 per cent; doubtful apicial bones, 17.14 per cent; both classes of apicial bones, 31.42 per cent; total of all anomalies 34.28 per cent. From these percentages, from those given in paragraph 18, and from percentages obtained from our own collection we have prepared the following table:

Table W.-Frequency of Inca bone in various peoples.

While this series is too small to enable us to institute a perfectly satisfactory comparison between it and others, we have nevertheless obtained data sufficient to allow us to conclude that, with regard to this class of anomalies, the Cibolans are in close relation to the Saladoans and the Peruvians, and widely separated from other American races and from the rest of the world.
§ 43. NASAL CHARASTERS. NASAL INDEX. CIBOLA.
The average nasal index is nearly the same in both the Saladoan and the Cibolan series; that of the former being 51.66 , and that of the latter 51.88 (Table Lxxxiv). The remarks, therefore, which apply to the one apply as well to the other. In respect to the maximum and minimum of this index, also, the two series correspond closely. The maxima are: For the Saladoan 61.11; for the Cibolan 60.46. The minima are: For the former 44.23; for the latter 45.09.

The character of the lower border of the nasal aperture or échancrure of the Cibolans seems from such evidence as we possess to be iuferior only to that of the Europeans and Saladoans. For the two highest classes $\mathbf{A}+\mathrm{A}^{\prime}$ (see Table Lxxixix) their percentage is 38.23 . The lowest class, E , simian gutter, has no representative. Over one-third of the series belong to class B. The relation with regard to this charasteristic, which the Cibolans sustain to other races, will be seen by comparing Table Lxxxix with the tables in § 24.
$\S 44$. TORSION OF THE HUMERUS. CIBOLA.
The average angle of torsion (154.27°) of all the humeri, 48 in number, of this series is higher than that of any race recorded by Broca except the Mexicans (155°) and the Europeans. As his Mexican series numbers only 2 it is scarcely worthy of being cited in comparison. Excluding the Mexicans, the Cibolaus follow in respect to this feature next after the Saladoans and Europeans in the category of the human race, as far as we have seen the record. They are widely separated from other American races. (See Tables xc and xcr.)

Like the majority of mankind, and unlike the Saladoans, the Cibolans have the maximum angle of torsion on the left side. Not 1 but 5 angles on the left are higher thau the highest angle on the right. The minumum is on the right side and there are 3 angles of the right lower than the lowest of the left.

The maximum angle of torsion of the Cibolans $\left(178^{\circ}\right)$ is higher than the maximum angle of Saladoans and, as far as Broca's tables inform us higher than the maximum of any people except the French. But the average of the highest 3 angles $\left(173^{\circ}\right)$ is not so great as the average of the highest 3 Saladoau angles (175°).

The average of all the left humeri, 23 in number, is 159.20°, while that of all the right humeri, 25 in number, is but 149.40°, a difference in favor of the left of nearly 10°. This is a higher differeuce than exists in any one of Broca's series, which represents more than two bones, except the Arabians and Kabyles + El Goleah, in which the difference is 10.27°.

The variation is greater on the left than on the right; on the one side it has a range of 35°, on the other a range of 20°.
§45. THE OLECRANON PERFORATION. CIBOLA.
The Cibolans present this anomaly in a much less degree than the ancient people of the Salt River Valley, the so-called Mound-Builders, the Guauches, and other peoples. The perforations appear in ouly 19.6 per cent of the humeri of the Cibolans, while the humeri of the Saladoans show 53.9 per cent.

The ancient people of the Zuñi Valley, no doubt, ground their corn in the same manner as did the ancient inhabitants of the Salt River Valley, and it may very pertinently be asked why the humeri of the former are not so often perforated as those of the latter. Retaining the hypothesis before mentioned that the method of grinding corn was an important factor in producing the olecranon perforation, we account for this difference by supposing' that the Cibolans subsisted less on corn, and hence had less occasion to grind it than their more Western congeners. The land around Zuñi is not nearly so prolific as that of the Salt River Valley, the climate is colder, and agriculture is far less remunerative. The mountains adjacent to Zuñi, heavily timberad, abound in game, and it is probable that the ancient Cibolans lived more by the chase and less by agriculture than the ancient Saladoans.

Table I.-General Measurements.*-Salado.

1. Special number.
2. Museum number
3. Age, in the 6 periods of Broca: 1st, 0 to $6 \mathrm{yrs} ; 2 \mathrm{nd}, 6$ to 14 yrs ; 3rd, 14 to $25 \mathrm{yrs} ; 4 \mathrm{th}, 25$ to $40 \mathrm{yrs} ; 6$ th, 40 to $60 \mathrm{yrs} ; 6 \mathrm{th}, 60 \mathrm{yrs} \mathrm{up}$
4. Sex: M for male; F for female; 1 for doubtful.
5. Capacity in cubic centinetres.
6. Horizontal length : from glabella parallel with horizontal plane to a perpendicular tangent to maximum occipital point. Frankfurt 1.
7. Greatest leagth: from the glabella to the maximum occipital point. Frankfurt 2. Topinard l. p. 354.
8. Metopic length : from tho metopion to the maximum occipital point. Frankfurt 3. Topinard A.
9. Greatest width: perpoulicular to sagittal plane (not over mastoid process or at posterior temporal ridge). Frankfurt 4; Topinard 2.
10. Biastoric or maximum occipital width. Topinard B.
11. Bujugular or inferior occipital width. Topinard C.
12. Bimastoid width or width of the cranial bases; distance between the ends of the mastoid procosses. Frankfurt 13 a.
13. Inferior subtemporal wilth : from one subtemporal point to the other. Topinard E.
14. Two froutal widths: 1st, smallest frontal, Frankfart 5, Topiuard 4; 2nd, maximurn frontal or greatest of frontal bone; Emil Schmidt. 1
15. Two auricular hoights : 1st auricular height, Frankfurt 8. 2ud auxiliary auricular height, Frankfurt 8.
16. Horizontal circumforence: above the superciliary ridge and over the most prominent part of the occiput. Frankfurt 14; Topinard 5.
17. Two Divisions of the horizontal circumference: 1st, anterior; 2nd, posterior. Separated by supra-auricular curve. Topinard G.
18. Sagittal circurnferenco: from nasion to opisthion. Frankfurt 15.
19. Threo divisions of the sagittal circumference: 1st, frontal; 2nd, purietal; 3d, occipital. Topınard E.
20. Two vertical circumferences: 1st, vertical circamference perpendicular to borizontal plane. Frankfurt 16. 2nd, supra-auricular curve.
21. Two dimensions of the foramen magnum : 1st, length in sagittal plane; 2nd, width perpendicular to sagittal plane.
22. Zygonatic width: greatest distance between the zygomatic arches. Frankfurt 18; Topinard 8.
23. Bimalar width : from external extremity of small fronto-malar suture to same point opposite. Topinard 9.
24. Fucial width : from inferior extremity of maxillo-malar suture to corresponding opposite point. Frankfurt 17; Topinard 11.
25. Inter-orbital width: Distance from one dacryon to the other; Topinard H.
26. Two fucial heights: 1st, total, nasion to lower border of inferior maxilla; 2nd, apper, nasion to alveolar point. Frankfurt $19,20$.
27. Two nasal dimensions: 18t, length, nasion to upper border of nasal spine; 2nd, maximum width. Frankfurt 21, 22; Topinarl $17,18$.
28. Two orbital dimensions: 1st, dacryon to opposite margin in grand axis; 2nd, greatest height perpendicular to preceding. Topinard 19, 20.
29. Tivo palital dimensions: 1st, length of bony palate; 2nd, modian width of palate. Frankfurt 27, 28; Topinard O, L (less exact).
30. 'Two palatine widths: 1st, posterior. Frankfurt 29; Tupinard M; 2nd, antorior, between canine and socond incisur; Topinard K.
31. Depth of palatine arch : maximum, from alveolar edgo, avoiding posterior palatine foramina. Topinard.
32. 'Two alvcolar widths: 1st, external maximum, taken at level of malar region; 2ud, external posterior. Topinard.
33. Superior facial projection, or projoction of the ophryon with regard to the alveolo-condylean plane. Topinard f.
34. Two widths of the lower jaw : 1st, external bicondy.ar; 2nd, external bigonial. Topinard 12.
35. Two dimensions of the ranus: 1st, height from angle to upper edge of condyle; 2nd, width, perpendicular to height. Topinard Q.
36. Jasilo-mental radius: basion to mental point. Topinard S.
37. Saporior alveolar radius: basion to alveolar point. Kollmann's "length of profle of face." Frankfurt 30; Topiuard.
38. Nasal radius: basion to nasion. Topinard V, 7. "Length of cramial basis." Frankfurt 10.
39. Intersuperciliary radius: basion to glabella. Topinard W.
40. Metopic radius: basion to metopion. Topinard X.
41. Two vortical ralii: 1st, "basilo-bregmatic diameter," Topinard 3; "auxiliaryheight," Frankfurt 7; 2nd, "Entire height" ufter Virchow.
42. Obelic radius: basion to obelion. Topinard Y.
43. Inital radius: basion to Inion. Topinard Z.
44. Occipito alveolar length : from maximum occipital point to alveolar point. Topinard 22.
45. Occipito-8pinal length: from maximum occipital point to inferior boriter of nasal aportare. Topinard 23.
46. 'Two cranial projections: 1st, antorior or prebasilar; 2nd, posterior or post-busilar; both alveolo-condylean plane. Topinard d, e.
47. Profle angle (Geman) : angle of naso-alveolar line on andito-orbital plane. Frankfurt.
48. Augle of Daubenton : sub-orbito opisthiac line with plane of foramen magnum.
49. Two other angles of plane of furamen magnum: 1st, occipital angle with naso-opisthiac line; 2nd, basilar augle with naso-basilar line.
50. Cophalic index: No. $9 \times 100 \div$ No. 7 .
51. Vortico-longitadinal index: No. 41, 1st, $\times 100 \div$ No. 7 .
52. Index of the foramen magnum: No. 21,2 nd, $\times 100 \div 21$, 18 s.
53. Facial index of Virchow : No. 26, 1st, $\times 100 \div$ No. 24.
54. Upper facial iudex of Virchow: No. 26, 2 nd, $\times 100 \div$ No. 24.
55. Facial index of Kollmann: No. 26, 18t, $\times 100 \div$ No. 22.
56. Upper facial index of Kollmann: No. $26,2 \mathrm{nd}, \times 100 \div$ No. 22 .
57. Nasal index: No. 27,2 nd, $\times 100 \div$ No. 27 , 1st.
58. Orbital index: No. 28, 2nd, $\times 100 \div$ No. 28,1 st.
59. Palatine index: No. 20, 2nd, $\times 100 \div$ No. 29, 1st.
60. Guathic index: No. $37 \times 100+\mathrm{N} .38$.

* All measurements in this table, not otherwise specifed, aro given iu millimeters. IFor further particulars as to measurements seo \& 2.

Table I-Continued.

1	H, 1.	H, 2.	H, 3,	H, 4	H,5.	H, 6.	- H,7.
2							
3	${ }_{\text {4 }}^{\text {4 }}$	4th	6th	$3 d$	$\stackrel{4}{\text { th }}$	5 th	4 th
4	F.	\%	9	9	F.	M.	M.
6	154	157	157	147	168	159	162
7	154	160	157	150	168	159	162
8	150		152	139	160	158	152
9		144	151	145	147	149	139
10		106		98		103	100
11	77	86	85	81	.87c	86 c	72
12	100	103	110	109		110	100
13	83	86			88		85
14	84	86; 119	97	82; 108	100; 123c	84; 119	93; 121
15	115; 115	125; 125	116; 116	114; 114	120; 120	120; 120	117; 117
16		483	491	459*	504	486	480
17		208; 275		205; 254	-230; 274	246; 240	217; 263
18	330	349	339	329	11854	342 c	111 332
19		118; 126; 105		119; 112; 98	125; 113; 116		120; 111; 101
20		345; 319	322	325; 295	340; 320	343	334; 311
21			32; -	-; 29	36; 35c		35; 30
22	126	--	139				131
23	97	106	105	95	110	99	106
24	93	95	97	98	113	98	100
25		25	$23 \frac{1}{2}$	181		20	22
26	109; 68	-; 65	-; 71	110; 66	1140; 68	-; 68	-; 66
27	477; 23	47; 24	51; 27	46; 25	50; 26	50; 23	50; 24
28	41; 34		39; 34	37; 36	41; 35	39; 33	40; 351
29	56; 37	50; 36	50 ; -	49; 40	57; 38		52; 38
30	37; 25	37; -	--; 24	40; 26	39; 24		41; -
31	13	13		14	18		13
32	62; 49	62 ; 50	-; 52	67; 51	65; 49		63; 51
33	- 24	23	12	28	190	15	19
34	114; 97		-; 97	-; 89	122; 95	-; 101	116; 99
35	56; 35	63; 32	55; 30	57; 29	60; 32	64; 32	56; 29
36	110		111	108		
37	100	99	92	98	99	105	97
38	99	97	101				
39	107	105	109	102	112	118	111
40	113	121	121	109	119	127	119
41	133; 134	144; 148	-; 138	128; 133	140c; 141c	-; 142	135; 136
42		141		122	135		123
43	54	76	65	57	68	65	64
44	186	199	180	201	203	176	193
45	174	187	168	184	189	170	183
46	105; 78	102; 88	94; 81	100; 86	101; 91	106; 72	99; 87
47	792°	78°	861°	77°	87°	86°	84°
48			15°		11°	10°	
49			$24^{\circ} ; 317^{\circ}$		20°; 26°	19°; 24°	$27{ }^{\circ}{ }^{\circ}$; $36{ }^{\text {² }}$
50		90	96.17	96.00	87.50	93.71	85.80
51	86.36	90	88.59	85.33	83.33		83.33
52					97.22		85.71
53	111.65			112.24	110.67	-----......	
54	72.72	68.42	73.71	67.34	66.01	69. 32	66.00
55	86.50						
56	53.96		51.43				50.38
57	48.42	51.06	52.94	54.34	52.00	46.00	48.00
58	82.92		87.17	97.29	85.36	84.61	88.75
$\stackrel{59}{60}$	65.48	73.00		81.63	66.66	-.............	73.07
60	101.01	102.06	92.07	110.11	96.11	95.45	97.00

*This is at the maximum occipital point; the circumference at lambda is 462.

Table I-Continued.

1	H, 8.	H, 9.	H, 10.	H, 11.	H, 12.	H, 13.	H, 14.
3	5 th	5 th	4th	4 th	5th	4th	4th
4	F.	9	F.	\%	P	+	M.
5 6	161	152	155	157	176	$1170{ }^{15}$	${ }_{156}$
7	163	151	158	157	176	153	166
8	157	143	146	145	168	142	162
9	144 c	132	143	138	139	134	147
10	104	105	103	111	109c	100 c	99
11	76	85	87	83c	85 c		82
12	109	112	115		108	107	110
13	80	85	82	83	86	84	86
14	91; -	89; 108c	88; 121	86; 111	94;	84; 111	83; 118
15	119; 119	120; 120	123; 123	114; 114	116; 116	115; 115	122; 122
16	487	451	472*	463	1194	15; 455	- 488
17	213; 274	204; 247	204; 279	231; 230	229; 265	207; 248	229; 259
18	350	319	342	326c	370c	, 335	353
19	120; 128; 102	116; - ; -	110; 133; 99	112; 108; 105	132; - -	111; 112; 112	128; 123; 102
20	- 334	301; 283	336; 314	328; 294	332; 313	316; 292	350; 319
21	32; 30	341; 33	35; 31			-; 29	361 ${ }^{2}$; 30
22	131	126	196	129		- 127	128
23	105	103	104	101	109	101	101
24	90	101	93	100 c	101	100	98
25	25		22	21	26	22	191 ${ }^{\frac{1}{2}}$
26	-; 66	-; 69	-; 71	118; 71	-; 60c	-; 67	125; 78
27	47; 24	49; 22-	49; $23 \frac{1}{2}$	49; 24	-; 25d		53; 24
28	381 ; 34 ${ }^{\frac{1}{3}}$		42; 37	39; 37	40; 38	3912 $; 35 \frac{1}{2}$	37; 36ı
29	51; 38	51; -	51; 36	51; 36	52;		57; 41
30	38;	36; 23	38; 22	39; 25			40; 25
31			18	14			18
32	52; 45	-; 49	62; 49	60; 52	-; 46	-; 51	62; 47
33		22		27	12	17c	25
34	115; 91		114; 95				116; 94
35	59; 33	56; 31	59; 27	61; $30 \frac{1}{2}$	63; 31	51; 30	63; 29
36				100			105
37	94	96	96	98		94	99
38				98		100	101
39	106	109	110	109		109	114
40	113	116	117	115		116	121
41	-; 140	135; 136	145; 147	133; 136		140; 143	138; 142
42		132				135	134
43	66	71	69	64		75	71
44	193	184	203	199	197	191	195
45	185	168 c	186	185	193		184
46	95; 90	97; ${ }^{2}$	96; 92	100; 91		99; 70	100; 98
47	844잉	78°	80°	80°		810	86°
48	1010		$18 \frac{1}{2}{ }^{\circ}$				$15{ }^{\circ}$
49	21120 ${ }^{\circ}$ 2880		30°, $38{ }^{\circ}$				25°; $33 \frac{1}{2}^{\circ}$
50	${ }^{88.07}$	87.41	90.50	87.89	78.97	87.58	88.55
51		89.40	91.77	84.71		91.30	83.13
52	93.75	95.65	88.57				82.19
53				118.00			127.55
54	72.92	68.31	76.34	71.20	59.54 c	67.00	79.59
55				91.47			97.65
56	50.38	54.76	56.34	55.03		52. 75	60.93
57	51.06	45.91	47.95	48.97			45.28
58	89.61		88.09	94.87	95.00	89.87	98.64
59	74.50		70.58	70.58			71.92
60	95.91	91.83	96.00	100.00		94.00	98.01

*The maximum circumfercnce is 476.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

*Fair usage policy applies

Table I-Continued.

1	H, 22.	H, 23.	H, 24.	H, 25.	H, 26.	H, 27.	H, 28.
3	4th	4th	4 th	5th	5th		1st
4		?	M	M	M	\%	1
6	160	176	154	166*	155	163	*160
7	161	176	158	165 c	156	164	157
8	155	165	150		150	153	1581
9		138	144	147	140 c	136	132
10.		100?	104		104		99
11		87	79	81 c		72	72
12		113	103	112c	110	95	95
13			81	890		86	76
1.4	89; -	86; 120	93c;		85; 112	89; 111c	86; 107
15		115, 115	122; 122		112; 112	111; 111	110; 110
16 17	480c	${ }^{2} 498$	${ }^{484}$		-467	483	${ }^{460}$
17 18		254; 244	224; ${ }_{345}$		210; 257	233; 250	203; 257
19	120;134;	139; 107; 104	124; 121; 100	;-....... 96	108; $110 \cdot{ }^{309 \mathrm{c}}$	350	111; 117; ${ }^{328}$
20	, 131	130, $320 ; 307$	124 345; 319	; - ; 96	108; 110; 109c	318; 300	111; 117; 100
21		39; 31	331 ${ }_{\frac{1}{3}} ; 30 \frac{1}{2}$	372; 33	-; 28	31; 28	361; 30
22			129	141c		125	
23	106	104c	101	108c	101	105	89
24	104	105	95			95	79
25	$21 \frac{1}{2}$		23	23		23	18
26	-; 68	108; 66	129; 72	125; 76		-; 75	92; 54
27	46; 26	51; -	50; 25	55; 27	48; 251 $\frac{1}{2} \mathrm{c}$	53e; 24	40; 221
28	382 ; 31		+38; 39 ${ }_{\text {2 }}$	41; 37	382¢ ; 33	40; 38	35; 31
29	55; -	-; 38	49; 35	57; 36	-; 38	$54 ; 34$	38, 30
30		38; 23	38; 23	37; 23	39;	34; 25	32; 23
31 32 32			$\begin{array}{r}\text { 59. } \\ \hline 17 \\ \hline 1\end{array}$	63. 49	13	61. 14	
32 3 3		63; 49	59; 52	63; 49		61; ${ }^{44}$	-; 37
3		122c; 100	114; 105	116; 99		31	
35		68; 37	59; 29	66; 33	-; 31		424; 23
36		113	109	113			- 86
37		99	89	99		$97 \frac{1}{4}$	80
38		105	95	105	98c	97	85
39		120	108		105c	108	96
40		125	117		113 c	114	106
41		139; 139	143; 146		129; 131c	134; 135	122; 124
42		132	140	134	124 c		117
43		75	72?	72	66 c	78	
44	197	201	- 201	198		206	172
45	184	193	190c	188	172 c	193c	168
46		106; 93	90; 97	101; 93	94c; 83c	103; 95	82; 85
47	76°	840	83°	84°		80°	88°
48		$18 \mathrm{t}^{\circ}$	21 ¢ 0	23°		8°	$9 \frac{1}{3}^{\circ}$
49		$28{\frac{1}{}{ }^{\circ}}^{\circ}$; 38°	34°; 45°	35°; 46 ${ }^{\circ} \mathrm{O}$		20°; 26°	$18 \frac{1}{2}^{\circ}$; $26 \frac{1}{2}{ }^{\text {O }}$.
50		78.40	91.13	89.09	89.74	82.92	84.07
51		78.97	90.50		82. 69	81.70	77.70
52		79.48	91.04	88.00		90.32	82.19
53		102.85	128.42				116.45
54	65.38	62.85	75.78			78.94	68.35
55			94.57	88.65			
50			55.81	53.19		60.00	
57	56.52		50.00	49.09	53.12	45.28	55.55
58	81.81		93.42	90.24	85.71	95.00	88.57
59			71.42	63.15		62.96	78.94
60		94. 28	93.68	94.28	100.51	94.11

*Not strictly in sagittal plane.
| Not parallel to either border

Table I-Continued.

1	H, 29.	H, 32.*	H, 33.	H, 34.	H, 35.	H, 36.	H, 37.
3	2nd	$4 \mathrm{th}{ }^{\text {a }}$	4 th	6th.	5 th	6th	4th
4		M.	?	M.	?	F.	9
6	149	$\dagger 148$	164	169	+157	$\dagger 160$	16.5
7	151	148	166c	171	157	159	166
8	145	139	153 ?	164	144	157	162
9	141	136c	145	143	135	135	143
10	95		111			100	
11	75		819	84		74	
12	97	110	106	105	102	104	114
13	78	80?	83\%	85			92c
14	90; 113	85; 112	92c; --	92; 118		90; -	96c; 120 ${ }^{\text {g }}$
15	112; 112	121; 121	113; 113	119; 119	112; 112	117; 117	124: 124
16	463	- 448	495	499	${ }^{461}$	472	492
17	208; 255	215 ; 233	230; 295	232c; 269c	207; 254		241; 251
18	323	338	361	361	333	343 c	366 c
19	114; 92; 117	120; 124; 94	133; 117; 111	127e;113; 121	123; 115; 95		135; 116; 115c
20	333; 300	334; 311	327; 311	337; 313	319; 296	322;	350; 326
21	351 $; 30$		31; $\ddagger 32$	34; 302		34; 28	-; 35
22	114	122	'133				
23	93	99	106c	107e		101c	
24	90	92	99	98			
25	21	24 c	30c	24		
26	98; 56	-; 64	-; 65c		116; 71		111c; 66
$\stackrel{27}{ }$	42; 22 ${ }^{\frac{1}{2}}$	47; 24		55; 24,	48; 25		471 ; 26
28	35; 32	38c; 36				36tc; 361	38; 36
29 30	43; 33	48;	53; 40	50; -	53; 37		55; 37
30 31	11		38; $\begin{aligned} & 24 \\ & 21\end{aligned}$		38; 23		-; 25
32	61; 41	-; 44	64; 47	-; 49	-; 47	-; 51	61;
33			21 c	10c	23		25c
34	103; 70	110; 95				119; 92	113; 97
35	46; 30	58; 27	65; 32	63; 32	66; 30	57; 30	61; 35
36	86				105 c		
37	80	92	96c	§93	979		102
38	85	1016	95c	102	98	95 c	95
39	95	113c	108c	114	109	106	106
40	102	119 c	119%	119	117	111	115
41	125; 131	144c; 148c	137; 137	43; 143	136; 138	-; 136	144; 143
42	132	130c	136	138	128	124	135 c
43	60	640		72		66	69
44	182 c	188	202 c		202 c		202
45	175	181	193	194	184	182	190%
46	81; 85	93; 61	97; 101	95; 84	99 ; 89	94; 81	-; 95c
47		85°	79°		$77 t^{\text {c }}$		80°
48	- $11{ }^{\circ}$		$11{ }^{\circ}$	- 13°		12°	
49	20°; 28°		$23 \frac{1}{2}^{\circ} \mathrm{B} \mathrm{S}^{30^{\circ}}$	$23 \frac{1}{2}^{\circ}$; 31°		$21 \frac{1}{3}^{\circ}$; 28°	
50	93.37	91.89	87.34	83.62 -	85.92	84.90	86.14
51.	83.78	97.29	82.53	83.62	86.62		86.74
52	84.50		103.22	89.70		82.35	
53	108.88						
54	62.22	69.56	65.65				
55	85.96						
56	49.12	52.45	48.87				
57	53.17	51.06	56.66	44.54	- 52.08	59.34	54.73
58	91.42	94.73				100.00	94.73
59	77.90		75.47		69.81		67.67
60	94.11	91.08	101.05	- 91.17	98.36		107.36

[^28]Table I-Continued.

*Not in sagittal plane at occiput.

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer Alibrary in your pocket for $\$ 8.99 /$ month

Continue

*Fair usage policy applies

Table I-Concluded.

* Not in sagittal plane at occiput.

Table II.-Ordination of 48 cephalic indices.-Salado.

	of $\begin{gathered}\text { No. } \\ \text { skull. }\end{gathered}$	Index.		$\begin{gathered} \text { No. } \\ \text { of skull. } \end{gathered}$	Index.		$\begin{gathered} \text { No. } \\ \text { of \&kill. } \end{gathered}$	Index.
1	H. 23	78.40	17	H. 40	86.53	33	H. 50	90.56
2	H. 55	78.72	18	H. 19	86.54	34	H. 45	90.79
3	H. 12	78.97	19	H. 33	87.34	35	H. 24	91.13
4	H. 42	82.28	20	H. 9	87.41	36	H. 32	91.89
5	H. 27	82.92	21	H. 5	87.50	37	H. 53	91.89
6	H. 34	83.62	22	H. 13	87.58	38	H. 41	91. 97
7	H. 28	84.07	23	H. 11	87.89	39	H. 21	92. 45
8	H. 15	84.27	24	H. 8	88.07	40	H. 47	92. 45
9	H. 16	84.27	25	H. 17	88.41	41	H. 29	93.37
10	H. 36	84.90	26	H. 14	88.55	42	H. 6	93.71
11	H. 44	85.11	27	H. 25	89.09	43	H. 51	93.91
12	H. 52	85.62	28	H. 26	89.74	44	H. 39	94.66
13	H. 18	85.79	29	H. 2	90.00	45	H. 57	94. 66
14	H. 7	85.80	30	H. 10	90.50	46	H. 4	96.00
15	H. 35	85.92	31	H. 56	90.50	47	H. 3	96.17
16	H. 37	86.14	32	H. 54	90.54	48	H. 46	97.97

Variation, 19 57. Theoretical mean of variation, 88.19. Skull nearest to mean, H. 8. Average, 88.47.

Table III.—Seriation of 48 cephalic indices.—Salado.

	Index.	Number of skulls.			
1	77 to 78	1	12	Index.	Number of skulls.
2	78	2	12	88	3
3	79	0	13	89	2
4	80	0	14	90	6
5	81	0	16	91	4
6	82	2	17	92	2
7	83	1	18	93	3
8	84	4	19	94	2
9	85	5	20	96	0
10	86	3	21	97 to 98	2
11	87	5			1

Maximum of frequency, 90.
Table IV.—Ordination of 16 cephalic indices of apparently normal skulls.-Salado.

	No.	Index.		No.	Index.
1	H. 23	78.40	9	H. 40	86.53
2	H. 12	78.97	10	H. 19	86.54
3	H. 34	83.62	11	H. 25	89.09
4	H. 15	84.27	12	H. 26	89.74
5	H. 36	84.90	13	H. 54	90.54
6	H. 44	85.11	14	H. 21	92.45
7	H. 18	85.79	15	H. 39	94.66
8	H. 7	85.80	16	H. 57	94.66

Variation, 16.20. Theoretical mean of variation, 86.53. Skulls nearest to mean, H. 7 and H. 40. Average, 86.94.

No. H. 55, an apparently normal skull, of which the vault only is preserved, has a normal index of 78.72, but it is aberrant as regards the rest of the group by reason of its much greater size and different configuration.

No. H. 23 , having lowest cephalic index, has next to lowest vertico-transverse index. The lowest vertico-transverse index is in the skull of a child.

Table V.—Seriation of 16 cephalic indices of apparently normal skulls.-Salado.

	Index.	Number of skulls.		Index.	Namber of skulls.
1	78 to 79	2	10	87	0
2	79	0	11	88	0
3	80	0	12	89	2
4	81	0	13	90	1
5	82	0	14	91	0
6	83	1	15	92	1
7	84	2	16	93	0
8	85 to 86	3	17	94 to 95	2
9	86	2			

Maximum of frequency, 85 to 86.
Table VI.-Of the cephalic indices of all the skulls.—Salado.

Number of indices \qquad Number below 80.00. Number from 80.00 to 89.99 Number from 90.00 up....	48	Per cent.
	3	6. 25
	25	52.09
	20	41.66
	48	100.00

Minimum index, 77.65. Maximum index, 97.97.
Table VI.—Ordination of 47 length-breadth indices (German).-Salado.

	Number of skull.	Index.		Number of skull.	Index.		Number of skull.	Index.
1	H. 23	78.40	17	H. 35	85.98	33	H. 21	91.87
2	H. 55	78.72	18	H. 37	86.66	34	H. 32	91.89
3	H. 12	78.97	. 19	H. 9	86.84	35	H. 45	91.92
4	H. 42	81.81	20	H. 5	87.50	36	H. 10	92. 25
5	H. 28	82.50	21	H. 11	87.89	37	H. 54	92. 41
6	H. 27	83.43	22	H. 13	88.15	38	H. 41	92. 54
7	H. 36	84.37	23	H. 33	88.41	39	H. 57	93.42
8	H. 19	84. 57	24	H. 14	88.55	40	H. 24	93. 50
9	H. 34	84.61	25	H. 25	88.65	41	H. 6	93.71
10	H. 15	84.81	26	H. 8	89.44	42	H. 29	94.63
11	H. 16	84.81	27	H. 56	89.93	43	H. 51	95.86
12	H. 44	85.11	28	H. 26	90.32	44	H. 47	96. 07
13	H. 40	85.44	29	H. 17	90.62	45	H. 3	96. 17
14	H. 52	85. 62	30	H. 50	90.66	46	H. 4	98. 63
15	H. 18	85.79	31	H. 53	91.27	47	H. 46	99.31
16	H. 7	85.80	32	H. 2	91.72			

Variation, 20.91. Theoretical mean of variation, 88.86. Skulls nearest to mean, H. 14 and H. 25. A verage, 88.75.

Table VIII.—Ordination of 38 vertico-longitudinal indices.-Salado.

	Number of skall.	Iudex.		Number of skull.	Index.		umber f skull	Index.
1	H. 23	78.79	14	H. 56	83.54	27	H. 37	86.74
2	11. 15	79.87	15	H. 34	83. 62	28	H. 54	87.16
3	H. 42	80.00	16	H. 41	84.56	29	H. 50	87.33
4	H. 27	81.70	17	H. 40	84.61	30	H. 51	88.51
5	H. 33	82. 53	18	H. 11	84.71	31	H. 3	88.59
6	H. 26	82.69	19	1. 44	85.11	32	H. 9	89.40
7	H. 29	82.78	20	H. 4	85.33	33	H. 2	90.00
8	1I. 45	82.82	21	11. 57	85.33	34	H. 24	90.50
9	H. 17	82.92	22	H. 19	85.38	35	H. 47	90.56
10	H. 46	83.10	$\because 3$	H. 52	86. 25	36	H. 13	91. 50
11	H. 14	83.13	24	H. 1	86.36	37	H. 10	91.77
12	H. 5	83.33	25	H. 18	86.39	38	H. 53	92.56
13	H. 7	83.33	26	H. 35	86.62			

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

*Fair usage policy applies

Table XIV.-Ordination of vertico-transverse indices.—Salado.

	of No. $\begin{gathered}\text { No. } \\ \text { skull. }\end{gathered}$	Width.	Height.	Index.		No. of skull.	Width.	Height.	Index.
1	H. 46	14.5	12.3	84.82	21	H. 40	13.5	13.2	97.77
2	H. 4	14.5	12.8	88.27	22	H. 47	14.7	14.4	97.95
3	H. 29	14.1	12.5	88.65	23	H. 27	13.6	13.4	98.52
4	H. 57	14.2	12.8	90.14	24	H. 19	14.8	14.6	98.64
5	H. 45	14.8	13.5	91.21	25	H. 24	14.4	14.3	99. 30
6	H. 41	14.9	13.7	91.94	26	H. 2	14.4	14.4	100.00
7	H. 26	14.0	12.9	92.14	27	H. 34	14.3	14.3	100.00
8	H. 56	14.3	13.2	92.30	28	H. 44	14.3	14.3	100.00
9	H. 28	13.2	12.2	92.42	29	H. 18	14.5	14.6	100.68
10	H. 17	14.5	13.6	93.79	30	H. 37	14.3	14.4	100.69
11	H. 14	14.7	13.8	93.87	31	H. 23	13.8	13.9	100. 72
12	H. 51	13.9	13.1	94.24	32	H. 52	13.7	13.8	100.72
13	H. 33	14.5	13.7	94.48	33	H. 53	13.6	13.7	100. 73
14	H. 15	13.4	12.7	94.77	34	H. 35	13.5	13.6	100.74
15	H. 5	14.7	14.0	95.23	35	H. 10	14.3	14.5	101. 39
16	H. 54	13.4	12.9	96.26	36	H. 9	13.2	13.5	102. 27
17	H. 50	13.6	13.1	96.32	37	H. 38	13.8	14.3	103.62
18	H. 11	13.8	13.3	96.37	38	H. 13	13.4	14.0	104. 47
19	H. 7	13.9	13.5	97.12	39	H. 32	13.6	14.4	105.88
20	H. 42	14.4	14.0	97.22					

Table XV.—Of the vertico-transverse indices of all the skulls.—Salado.

Minimum index, 77.70; maximum index, 97.29. Neither of these two indices come in the normal series, as the minimum is that of a child, the maximum aberrant. They therefore do not appear in the ordination.

Table XVI.—Ordination of the apparently normal skulls, with refference to the differences between their respective cephalic and vertico-transverse indices, expressed in per cent of the greatest leng th.-Salado.
[The sign + indicates that the cephalic inilex is greater than the vertico-transverse. The sign - indicates that the vertico-transverse index is greater thau the cephalic.]

	No.	Difference.		No.	Difference.
1	H. 23	-. 57	7	H. 7	+2.47
2	H. 18	$-.50$	8	H. 54	+3.38
3	H. 34	. 00	9	H. 15	+4.40
4	H. 44	. 00	10	H. 26	$+7.05$
5	H. 19	+1.16	11	H. 57	+9.33
6	H. 40	+1.92			

Variation, 9.90. Theoretical mean of variation, 4.38. Skull nearest to mean, H. 15. This skull then shows what may be arithmetically regarded as a typical relation of vertico-transverse and cephalic indices.

Table XVII.-Ordination of mixed indices.-Salado.

	No. of skall.	Verticotransverse index.	$\left\|\begin{array}{c} \text { Vertico- } \\ \text { longitudinal } \\ \text { index. } \end{array}\right\|$	Mixed index.
1	H. 46	84.82	83.10	83.96
2	H. 29	88.65	82.78	85.71
3	H. 4	88.27	85.33	86.80
4	H. 45	91.21	82.82	87.01
5	H. 26	92.14	82.69	87.41
6	H. 15	94.97	79.87	87.42
7	H. 57	90.14	85.33	87.73
8	H. 56	92.30	83.54	87.92
9	H. 41	91.94	84.56	88.25
10	H. 17	93.79	82.92	88.35
11	H. 33	94.48	82.53	88.50
12	H. 14	93.87	83.13	88.50
13	H. 42	97.22	80.00	88.61
14	H. 5	95. 23	83.33	89.28
15	H. 23	100.72	78.79	89.75
16	H. 27	98.52	81.70	90.11
17	H. 7	97.12	83.33	90.22
18	H. 11	96.37	84.71	90.54
19	H. 40	97.77	84.61	91.19
20	H. 51	94.24	88.51	91.37
21	H. 54	96. 26	87.16	91.71
22	H. 34	100.00	83.62	91.81
23	H. 50	96.32	87.33	91.82
24	H. 19	98.64	85.38	92.01
25	H. 44	100.00	85.11	92.55
26	H. 52	100.72	86.25	93.48
27	H. 18	100.68	86.39	93.53
28	H. 35	100.74	86.62	93.68
29	H. 37	100. 69	86.74	93.71
30	H. 47	97.95	90.56	94.25
31	H. 24	99. 30	90. 30	94.90
32	H. 2	100.00	90.00	95.00
33	H. 9	102. 27	89.40	95.83
34	H. 10	101. 39	91.77	96.58
35	H. 53	100.73	92.56	96.64
36	H. 13	104.47	91.50	97.98
	Average..	96.46	85.40	90. 94

Table XVIII.-Ordination of 29 angles of Daubenton.-Salado.

	$\begin{gathered} \text { Namber } \\ \text { of } \\ \text { skull. } \end{gathered}$	Angle.			Number of skull.	Angle.	
			9			\bigcirc	1
1	H. 15	4	30	16	H. 19	14	00
2	H. 16	7	30	17	H. 40	14	00
3	H. 27	8	00	18	H. 43	14	30
4	H. 28	9	30	19	H. 46	14	30
5	H. 53	9	30	20	H. 50	14	30
6	H. 6	10	$(10$	21	H. 3	15	00
7	H. 8	10	30	22	H. 14	15	30
8	H. 5	11	00	23	H. 7	16	00
9	H. 29	11	00	24	H. 17	17.	00
10	H. 33	11	30	25	H. 10	18	30
11	H. 57	11	30	26	1I. 23	18	30
12	H. 36	12	00	27	H. 18	20	00
13	H. 20	13	30	28	H. 24	21	30
14	H. 34	13	00	29	H. 25	23	00
15	H. 52						

Variation, $18^{\circ} 30^{\prime}$. Theoretical mean, $13^{\circ} 45^{\prime}$. Skulls nearest to mean, H. 19 and H. 40. Average, $13^{\circ} 30^{\prime}$

Table XIX.—Seriation of 29 angles of Daulenton.—Salado.

	Angle.	Number of skulls.		Angle.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { skulls. } \end{aligned}$
1	4° to 5°	1	11	14°	5
2		0	12	15	2
5	6	0	13	16	1
4	7	1	14	17	1
5	8	1	15	18	2
6	9	2	16	19	0
7	. 10	2	17	20	1
8	11	4	18	21	1
9	12	2	19	22	0
10	13	2	20	23 to 24	1

Maximum of frequency, 14°.
Table XX.—Ordination of 29 occipital angles.--Salado.

	No. of skull	Angle.		No. of $\begin{aligned} & \text { No. } \\ & \text { skull. }\end{aligned}$	Angle.
		- ,			-
1	H. 15	1330	16	H. 3	2400
2	H. 28	1830	17	H. 52	2400
3	H. 6	1900	18	H. 50	2430
4	H. 16	1900	19	H. 14	2500
5	H. 5	2000	20	H. 19	2530
6	H. 27	2000	21	H. 43	2600
7	H. 29	2000	22	H. 7	2730
8	H. 53	2000	23	H. 46	2800
9	H. 8	2130	24	H. 23	2830
10	H. 36	2130	25	H. 17	2900
11	H. 57	2200	26	H. 10	3000
12	H. 40	2230	27	H. 18	3030
13	H. 20	2300	28	H. 24	3400
14	H. 33	2330	29	H. 25	3500
15	H. 34	2330			

Variation, $21^{\circ} 30^{\prime}$. Theoretical mean, $24^{\circ} 15^{\prime}$. Skulls nearest to mean, H. 3, H. 52, H. 50 Average, $24^{\circ} 6^{\prime}$.

Table XXI.—Seriation of 29 occipital angles.-Salado.

	Angle.	Number of skulls.		Angle.	Number of skulls.
1	13° to 140	1	13	25	2
2	14	0	14	26	1
3	15	0	15	27	1
4	16	0	16	28	2
5	17	0	17	29	1
6	18	1	18	30	2
7	19	2	19	31	0
8	20	4	20	32	0
9	21	2	21	33	0
10	22	2	22	34	1
11	23	3	23	35 to 36	1
12	24	3			

Maximam of frequency, 20°

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer Alibrary in your pocket for $\$ 8.99 /$ month

Continue

*Fair usage policy applies

Table XXV.—Length in millimetres of 28 pteria.—Salado.

No. of skull.	Right side.	Left side.	No. of skull.	Right side.	Left side.
H. 7		11	H. 19	10	12
H. 10	10	9	H. 22		9
H. 11		9	H. 24		8
H. 12		16	H. 28	13	12
H. 13	5	--	H. 29	13	16
H. 14		12	H. 38	10	
H. 15		3	H. 40		6
H. 16	11	12	H. 42	19	
H. 17	20	18	H. 50		14
H. 18	15	10	H. 51	16	16

Table XXVI.—Ordination of 19 facial indices according to Virchow.-Salado.

	No. of skull	Index.		No. of skull.	Index.
1	H. 23	102.85	11	H. 11	118.00
2	H. 16	106.45	12	H. 18	120.40
3	H. 29	108.88	13	H. 19	121.21
4	H. 17	109.00	14	H. 40	122.58
5	H. 5	110.67	15	H. 43	127.17
6	H. 1	111.65	16	H. 14	127.55
7	H. 4	112.24	17	H. 24	128.42
8	H. 45	113.54	18	H. 15	129.67
9	H. 28	116.45	19	H. 20	131.25
10	H. 41	117.34			

Variation, 28.40. Theoretical mean of variation, 117.05. Skull nearest to mean and median of ordination, H. 41. Average, 117.64.

Table XXVII.—Seriation of 19 facial indices according to Virchow.-Salado.

Index.	Number of skulls.	Index.	Number of skulls.	Index. of skulls.	
102 to 103	1	112	1	122	1
103	0	113	1	123	0
104	0	114	0	124	0
105	0	115	0	125	0
106	1	116	1	126	0
107	0	117	1	127	2
108	1	118	1	128	1
109	1	119	0	129	1
110	1	120	1	130	0
111	1	121	1	131 to 132	1

Maximum of frequency, 127. The seriation is so incoherent that the discussion of variation as dependent on it has little significance.

Table XXVIII.—Ordination of 34 upperlfacial indices according to Virchow.—Salado.

	No. of skull.	Index.		No. of skull.	Index.		No. of skall	Index.
1	H. 29	62.22	13	H. 51	67.05	25	H. 19	72.72
2	H. 23	62.85	14	H. 4	67.34	26	H. 8	72.92
3	H. 50	65.21	15	H. 9	68.31	27	H. 3	73.71
4	H. 41	65.30	16	H. 28	68.85	28	H. 15	74.72
5	H. 22	65.38	17	H. 2	68.42	29	H. 24	75.78
6	H. 16	65.59	18	H. 45	68.75	30	H. 10	76.34
7	H. 33	65.65	19	H. 6	69. 32	31	H. 20	77.08
8	H. 7	66.00	20	H. 32	69.56	32	H. 43	77.17
9	H. 17	66.00	21	H. 40	69.89	33	H. 27	78.94
10	H. 5	66.01	22	H. 18	70.40	34	H. 14	79.59
11	H. 21	66. 66	23	H. 11	71.00			
12	H. 13	67.00	24	H. 1	72.72		-	

Variation, 17.37. Theoretical mean of variation, 70.90. Skull nearest to mean, H. 11. Average, 69.82.

Table XXIX.—Seriation of 34 upper 1 facial indices according to Virchow.-Salado.

Index.	No. of skulls.	Index.	No. of skulls.
to 63	2	71	1
63	0	72	3
64	0	73	1
65	5	74	1
66	4	75	1
67	3	76	1
68	4	77	2
69	3	78	1
70	1	79 to 80	1

Maximum of frequency, 65.
Table XXX.—Ordination of 17 facial indices according to Kollmann.-Salado.

Variation, 16.12. Theoretical mean of variation, 89.59. Skull nearest to mean, H. 25. Aver. age, 88.01.

Table XXXI.—Seriation of 17 facial indices according to Kollmann.—Salado.

	Index.	Number of skulls.		Index.	Number of skulls.
1	81 to 82	2	10	90	1
2	82	1	11	91	1
3	83	0	12	92	1
4	84	2	13	93	1
5	85	2	14	94	1
6	86	2	15	95	0
7	87	1	16	96	0
8	88	1	17	97 to 98	1
9	89	- 0		-.......	

Maximum of frequency, 84,85 , and 86.
Table XXXI.-Ordination of 27 upperlfacial indices according to Kollmann.—Salado.

	No. of skull.	Index.		No. of skull.	Index.
1	H. 41	47.05	15	H. 13	52.75
2	H. 33	48.87	16	H. 40	52. 84
3	H. 21	48.92	17	H. 25	53.19
4	H. 29	49.13	18	H. 20	53.23
5	H. 56	49.23	19	H. 43	53.38
6	H. 19	49.31	20	H. 1	53.96
7	H. 18	50.36	21	H. 15	53.96
8	H. 7	50.38	22	11. 9	54.76
9	H. 8	50.38	23	H. 11	55.03
10	H. 16	50.41	24	H. 24	55.81
11	H. 45	51.15	25	H. 10	56.34
12	H. 3	51.43	26	H. 27	60.00
13	H. 17	51.96	27	H. 14	60.93
14	H. 32	52.45			

Variation, 13.88. Theoretical mean of variation, 53.99. Skulls nearest to mean, H. 1 and. H. 15. Average, 52.48.

Excluding H. 27 and H. 14 the variation is 9.27 , the mean 51.69 , the skull nearest the mean H. 3, and the average 51.85.

Table XXXLII.—Seriation of 27 upperlfacial indices according to Kollmann.—Salado.

	Index.	Number of skulls.		Index.
1	47 to 48	1	Number of skulls.	
2	48	2	9	54
3	49	3	10	55
4	50	4	11	56
5	51	3	12	57
6	52	3	13	1
7	53	5	14	60 to 61

Maximum of frequency, 53.
Table XXXIV.—Ordination of 44 German profile angles.—Salado.

	No. of skull.	Angle.		No. of skull.	Angle.			No. of skull.	Angle.	
		\bigcirc							\bigcirc	
1	II. 22	7600	16	F. 46	82	30	31	H. 32	85	00
2	H. 4	$77 \quad 00$	17	H. 24	83	00	32	H. 50	85	00
3	H. 35	$77 \quad 30$	18	H. 40		00	33	H. 52	85	00
4	H. 2	$78 \quad 00$	19	H. 49	83	00	34	H. 6	86	00
5	H. 9	$78 \quad 00$	20	H. 7	84	00	35	H. 14	86	00
6	H. 33	. 7900	21	H. 15	84	00	36	H. 51	86	00
7	H. 1	$79 \quad 30$	22	H. 16	84	00	37	H. 3	86	30
8	H. 10	$80 \quad 00$	23	H. 23	84	00	38	H. 44	86	30
9	H. 11	$80 \quad 00$	24	H. 25	84	00	39	H. 5	87	00
10	H. 27	$80 \quad 00$	25	H. 41	84	00	40	H. 43	87	00
11	H. 37	$80 \quad 00$	26	H. 42	84	00	41	H. 18	88	00
12	H. 13	8100	27	H. 54	84	00	42	H. 28	88	00
13	H. 45	8200	28	H. 56	84	00	43	H. 17	88	30
14	H. 57	8200	29	H. 8	84	30	44	H. 19	89	00
15	H. 20	8230	30	H. 21	85					

Variation, 13°. Theoretical mean, $82^{\circ} 30^{\prime}$. Skulls nearest to mean, H. 20 aud H. 46. Average, $83^{\circ} 25^{\prime}$. Skulls nearest to average, H. 24, H. 40, H. 49.

Table XXXV.—Seriation of 44 German profile angles.—Salado.

	Angle.	Number of skulls.		Angle.	Number of skulls.
1	76° to 77°	1	8	83°	3
2	77	2	9	84	10
- 3	78	2	10	85	4
4	79	2	11	86	5
5	80	4	12	87	2
6	81	1	13	88	3
7	82	4	14	89 to 90	1

Maximum of frequency, 84°.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

*Fair usage policy applies

Table XXXIX.—List of indices and angles of alveolo-subnasal prognathism.-Salado.

No. of skull.	Vertical measure ment.	Horizontal measurement.	Index.	Angle.	No. of skull.	Vertical measure ment.	Horizontal measurement.	Index.	Angle.
	mm.	mm.		\bigcirc		mm.	$m m$.		\bigcirc
H. 2	15	7.5	50.00	$63 \frac{1}{2}$	H. 23	15	5	33.33	72
H. 3	19	4	21.05	78	H. 24	16	5	31.25	73
H. 4	15	8	53.33	62	H. 25	22	6	27.27	75
H. 5	21	9	42.85	67	H. 33	21	6	28.57	74.3
H. 7	14	6.5	46.42	66	H. 35	20	9	45.00	66
H. 10	20	6.5	32.50	72	H. 37	16	9	56.25	62
H. 11	19	7.5	39.47	68	H. 42	22	7	31.81	$72 \frac{1}{2}$
H. 14	18	8	44.44	66	H. 43	21	3	14.28	82
H. 15	17	10	58.82	60	H. 45	16	5	31.25	73
H. 16	16	5	31.25	73	H. 46	15	7	46. 66	66
H. 17	17	3	17.64	793	H. 54	17	7	41.17	68
H. 18	20	6	30.00	73	H. 56	16	5	31.25	73
H. 19	17	4	23.52	76	H. 57	13	8	61.53	591
H. 20	24	8.5	$\cdot 35.41$	702					

Table XL.-Ordination of 27 indices of alveolo-subnasal prognathism.-Salatlo.

	No. of skull.	Index.		No. of skull.	Index.		No. of skull.	Index.
1	H. 43	14.28	10	H. 45	31.25	19	H. 14	44.44
2	H. 17	17.64	11	H. 56	31.25	20	H. 35	45. 00
3	H. 3	21.05	12	H. 42	31.81	21	H. 7	46. 42
4	H. 19	23.52	13	H. 10	32.50	22	H. 46	46.66
5	H. 25	27.27	14	H. 23	33.33	23	H. 2	50.00
6	H. 33	28.57	15	.H. 20	$35.41{ }^{\circ}$	24	H. 4	53.33
7	H. 18	30.00	16	H. 11	39.47	25	H. 37	56.25
8	H. 16	31.25	17	H. 54	41.17	26	H. 15	58.82
9	H. 24	31.25	18	H. 5	42.85	27	H. 57	61.53

Variation, 47.25. Theoretical mean of variation, 37.90. Skull nearest to mean, H. 11. Average, 37.27.

Table XLI.—Ordination of 27 angles of alveolo-subnasal prognathism.-Salado.

	No. of skull.	Angle.		No. of skull.	Angle.		No. of skull.	Angle.
		\bigcirc						\bigcirc
1	H. 57	$59+$	10	H. 5	67	19	H. 24	73
2	H. 15	60	11	H. 11	68	20	H. $4 \overline{5}$	73
3	H. 4	62	12	11.54	68	21	H. 56	73
4	H. 37	62	13	H. 20	702	22	H. 33	$74 \frac{1}{2}$
5	H. 2	63.	14	H. 10	72^{-}	23	H. 95	75
6	11. 7	66	15	H. 23	72	24	H. 19	76
7	H. 14	66	16	H. 42	721	25	H. 3	78
8	H. 35	66	17	H. 16	73	26	H. 17	79.1
9	H. 46	66	18	H. 18	73	27	H. 43	82

Variation, 2210. Theoretical mean of variation, 703°. Average, $70+{ }^{\circ}$. Skull nearest to meau and average, H. 20

Table XLII.—Seriation of 27 angles of alveolo-subnasal prognathism.-Salado.

	Angle.	Number of skulls.		Angle.	Number of skinlls.
1	59 to 60	1	13	71	0
2	60	1	14	72	3
3	61	0	15	73	5
4	62	2	16	74	1
5	63	1	17	75	1
6	64	0	18	76	1
7	65	0	19	77	0
8	66	4	20	78	1
9	67	1	21	79	1
10	68	2	22	80	0
11	69	0	23	81	0
12	70	1	24	82	1

Maximum of seriation, 73.
Table XLIII.—Ordination of 38 orbital indices.—Salado.

	No. of sknill.	Index.		No. of skull.	Index.		No. of skull.	Index.
1	H. 22	81.81	14	H. 18	89.18	27	H. 41	94.66
2	H. 1	82.92	15	H. 8	89.61	28	H. 32	94.73
3	H. 6	84.61	16	H. 13	89.87	29	H. 37	94.73
4	H. 5	85.36	17	H. 25	90.24	30	H. 20	94.80
5	H. 19	85.71	18	H. 17	90.78	31	H. 11	94.87
6	H. 26	85.71	19	H. 51	90.90	32	H. 12	95.00
7	H. 21	85.89	20	H. 29	91.42	33	H. 27	95.00
8	H. 3	87.17	21	H. 43	91.66	34	H. 40	96.05
9	H. 57	87.83	22	H. 16	91. 89	35	H. 4	97.29
10	H. 10	88.09	23	H. 56	92.10	36	H. 15	97.29
11	H. 45	88.15	24	H. 53	92.75	37	H. 14	98.64
12	H. 28	88.57	25	H. 24	93.42	38	H. 36	100.00
13	H. 7	88.75	26	H. 49	94.44			

Variation, 18.19. Theoretical mean of variation, 90.90. Skull nearest to mean, H. 51. Average, 91.10.

Among the above skulls, H. 19, Н. 26, H. 21, Н. 57, Н. 7, Н. 18, Н. 25, Н. 12, H. 40, H. 15, and H. 36, eleven in all, belong to apparently normal skulls; their average index is 91.06 .

Table XLIV:-Seriation of 38 orbital indices.-Salado.

Index.	Number of skulls.	Index.	Number of skulls.
81 to 82	1	91	3
89	1	92	2
83	0	93	1
84	1	94	6
85	4	95	2
86	0	96	1
87	2	97	2
88	4	98	1
89	3	99	0
90	3	100 to 101	1

Maximum of frequency, 94.

Tiblip XIVmenchandion of 44 nasal indices．－Salado．

	Numbeist	Ipdeas：		Number．	Index．	
1	H． 43	44.28	18	－ HE^{24}	50.00	31
2	H． 34	44.54	17	E． 2	51.06	32
3	H． 14	45.88	18	的 8	51.06	33
4.	H． 27	45.88	19.	－${ }^{\text {c }}$	51.06	34
5	H． 52	45.28	20	，${ }^{\text {E }} 40$	51.11	35
6	H． 9	45．91	21	RE42	51.92	36
7	H． 6	46.00	22	－E． 5	52.00	37
8	H． 15	46．07	23	\％最 35	52．08	38
9	H． 51	47.05	24	栜45	52.13	39
10	H． 10	47.85	25	－E． 3	52.91	40
11	H． 7	48.00	28	E． 17	53.06	41
12	H． 01	48.42	27	\therefore E． 26	53.12	42
13	H． 21	48.92	28	H44	53.12	43
14	H． 11.	48.97	39	－स 56	53.26	44
15	H． 25	49．09	30	寊50	53.33	

Variation，16．88．Theoreticàl meàì of variation，52．67．Skull nearest to mean，H．3．Aver－ age，51．66．

Table XLVI．—Seriation of 44 nasal indices．—Salado．

	Index．	$\begin{gathered} \text { Númber } \\ \text { of itulle. } \end{gathered}$	\because	Index．	Number of skulls．
1	44 to 45	2	10	8	7
2	45	4	－11	A	4
3	46	2.	$\cdots 18$	\cdots	1
4	－ 47	$\therefore 2$	$\therefore 18$	\because	3
5	48	4	$\therefore 14$	0	
6	49	1	16	18	
7	50	1	16	\because 気	2
8	51	5	17	$\because 6$	1
9	－ 52	4	18	6 tax	1
				$\underline{\square}$	

Maximum of frequency， 53.
Skull，H．30，with nose deflected to one side，as by a blow，has ap thete of 42.34 ．
Table XLVII．—Anterior nasal spine．—Salado．${ }^{-\quad \text { A．}}$

No．of skull．	Deacrip tivo No．	No．of skull．	$\begin{aligned} & \text { Damorlp } \\ & \text { tive No. } \end{aligned}$	Fo．of stran．	
H． 1	2	H． 19	2	H． 88	1
H． 2	2	H． 20	2	H． 37	2
H． 3	3	H． 21	3	H． 49	1
H． 4	3	H． 22	2	H． 43	5
H． 5	2	H． 23	2	H． 44	4
H． 6	1	H． 24	1	FI． 46	8
H． 7	3	H． 25	3	H． 46	8
H． 8	1	H． 26	1	H． 48	8
H． 10	3	H． 28	2	H： 49	2
H． 11	1	H． 29	2	－7． 50	8
H． 12	2	H． 30	3	H． 54	1
H． 14	3	H． 32	3	H． 56	8
H． 16	2	E¢33	3	H． 57	8
H． 17	2	H． 34	2		
H． 18	1	H． 35	2		

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer Alibrary in your pocket for $\$ 8.99 /$ month

Continue

*Fair usage policy applies

Table LI．－Osteometrical measurements and indices of the long bones．－Salado．

Designation of skeleton．	Hum	rus．	Tadius．		Una．				Femur．		Tibia．		Fibula．			
		$\stackrel{\rightharpoonup}{3}$			䒠	＋				芯	$\begin{aligned} & \dot{B} \\ & \stackrel{B}{B} \\ & \stackrel{B}{B n} \end{aligned}$	遃	管	灾		
	282	278	216	215	235	237	76.59	77.33				330	c． 321			70
H． 5	302	310	2.59	237			79.13	79.00	426	431		354	347	341	$\times 89.16$	82.13
H． 6	307	304	24	245	963	263	79.47	8059	c． 424	421	359		337	336	84．66	＊81． 18
H． 7	312	311	246	247	264	c． 265	78.84	79.45	434	437	369		356	360	85． 00	＊80． 07
H． 8	290	279	226	226	249	245	77.93	81.00	399	403	335		326	324	85.02	$\star 86.82$
H． 10			239	2：37	$\because 56$	254	＊79．10	＊79．64								
H． 14	327		273	2617	292	288	＊84． 09	＊89． 72						397		
H． 15	273	277		218	c． 240	235	\％ 36.33	73.64	381	390		329	327	326	＊92．98	84．35
H． 18	314	3198	245		259		78.02	＊76．15	428		363	363	355	352	84.81	＊86． 57
H． 19	323	320	2.7	253	271		79． 56	79.06	332	423			c． 364	364	± 82.00	＊82．72
］． 21		328	258		271		＊ 85.39	＊71． 51		c． 456						＊76．73
H． 25	327	330	269	265	281		82.26	80．30								
11． 32	318	317					－74．28	＊73．99					375			
H． 33	275		224	220			81.45	＊73．93	393				c． 325		＊90．14	
H． 36			210			224	${ }^{\prime} 69.50$		388	388	331	331	324		85.30	85． 30
H． 39	266	2 mb	205	202		218	77.06	76． 51	370	372	303		292	292	81.89	＊94．08
H． 41	298	294					＊9．27	＊ 79.78	410		355		349	345	86． 58	
H． 45	309	307	235				76.05	＊76． 40								
H． 48											403				＊97．04	
H． 57		270				235		86.87	374	376	321	323	315	319	85.82	85.90
H． 59	284	980		$2 \cdot 5$		243	＊g3． 17	80.35	400	401		343	328	330	＊88． 57	85.53
H． 60		298	231	228			76.45	76.51	410	415	350	350			85.36	84． 33
H． 61					260	$2: 7$										
H． 63	332					268	$\because 71.15$									
H． 64	310	307					＊76．20	$\times 76.40$								
H． 67 H． 68	278	4			230	297								307		
H． 70	280	278	c． 214	214			76.42 76	76.97	384	389	323	326		c． 309	84.11	83.80
H． 71													355			
H． 72		$3 \div 8$	263	262		278	＊ 87.05	79.87	463	464		402	391	387	＊76． 51	86.63
H． 77											c． 386				${ }^{*} 92.94$	
H． 79				231	247			＊84． 34	430	433	368	c． 364		362	80.55	84.08
H． 85					24				423				353		＊83． 75	80． 84
II． 86	333				284		＊ 70.93		449	451	394	395			87．75	87.58
H． 87	322						＊73．36			435						＊80． 44
H． 88					272											
H． 91									479	480				400	＊73．96	－72．90
H． 92													354			
H． 93.	298						＊79．27									
吴 $\begin{aligned} & \text { Set I } \\ & \text { Set II }\end{aligned}$									c． 424	c． 391					＊83． 55	$\left\lvert\, \begin{aligned} & * 81.37 \\ & * 89.49 \end{aligned}\right.$
若 Nett III ．．．						240										
	237						＋ 75.28									
$\stackrel{\sim}{=}$ Humerus．	316						＊74．75									
予 Randius．．．			249				＊82．41									
关 Radins			211				＊66．52									
窘 $\begin{aligned} & \text { Radius } \\ & \text { ribula．}\end{aligned}$				242				＊81．32								
lribula．														380		
Average．	302.12	297． 17	236． 23	$234.57: 261.06$		246.41	78.18	78.86	415.28	419．30	354.28	349.92	$3+1.78$	344.85	85． 28	83.54

Note．－All the indices thas（＂）marked were obtained by using in the calculation the average length of the respective series in place of the length of the missing bune．

Table LU．—Synopsis of average indices of the long bones．—Salado．

	Antibrachial．						Tibio－femoral．					
	Of right arm．		Of left arm．		Of tota or botb armes．		Of right leg．		Of left leg．		Of total of bothlegs．	
	为											\％ － － 4 4
Computed by method I． Computed by method II	14	$\begin{aligned} & 78.66 \\ & 77.81 \end{aligned}$		$\begin{aligned} & 78.60 \\ & 79.17 \end{aligned}$	14	$\begin{aligned} & 78.63 \\ & 78.35 \end{aligned}$	12	$\begin{aligned} & 84.73 \\ & 85.87 \end{aligned}$	10	$\begin{aligned} & 84.96 \\ & 82.45 \end{aligned}$	11	$\begin{aligned} & 84.83 \\ & 84.02 \end{aligned}$
Total	32	78.18	26	78.86	． 29	78.49	23	85． 28	23	83.54	23	84.41

Table LIII.-Antibrachial and tibiolfemoral indices in various races.

Antibrachial index.	Tibiofemoral indox.
111 Europeans 72.47	9 Esthonians.......................... 78.60
9 Esthonians........................... 73.10	6 Tartars 79.6
6 Egyptians . 7 - 74.60	72 Europeans 81.02
6 Tartars 74.70	6 Chinese and Javanese 81.03
7 Arabs and Berbers 74.85	5 Polynesians 82.
5 Koorgans in Russia.................. $\quad 75.40$	7 Arabs and Berbers................... 8.8 .61
11 South Americans................... 75.77	42 African Negroes 83.26
11 New Caledonians................... 75.94	11 New Caledonians................... 83.48
7 Hindoos 76.25	11 South Americans 83.55
7 9 Chinese, Annamites, and Javanese	23 Saladoans............................ 81.41
29 Saladoans.......................... 78.49	
42 African Negroes.................... 78.83	
Note.-The nimber 29, referring to the Saladoans, means 29 indices of various individuals, not the indices of 29 individuals.	Note.-The number 23 , referring to the Saladoans, means 23 indices of varions individuals, not the indices of 23 individuals.

All the figures in the above table, except those concerning Saladoans, are from Topinard.* We have not copied all his figures, however, but only those which deal with five or more individuals. To make his data more comparable with ours we have combined the indices of the two sexes which he gives separately.

Table LIV.—Dimensions and indices of 11. Scapule.—Salado

Designation of skeletons.	Longth.		Width.		Indices.	
	$\underset{\text { scapule }}{\text { Right }}$	$\begin{gathered} \text { Left } \\ \text { scapulæ. } \end{gathered}$	$\underset{\text { Rcapulæ. }}{\text { Right }}$	$\underset{\text { scapulis. }}{\text { Left }}$	$\underset{\text { scapule. }}{\text { Right }}$	$\begin{gathered} \text { Left } \\ \text { scapule. } \end{gathered}$
H. 1	135ca		93		68.86	
H. 6	142	147	99	101	69.71	68.70
H. 8	136	137	97	101	71.32	73.72
H. 21		152		102		67.10
H. 25	161	160	105	110	63. 21	68.75
H. 33	130		94		72. 30	
H. 36	120		98		81.66	
H. 45		138		103ca		74.63
H. 68	132	130	90	92	68.18	70.76
H. 70	123		97		78. 86	
H. 72	162		108		66.66	
Average index					71.42	70.61

General average index, 71.09.
Table LV.—Angle of torsion of humerus.-Ordination according to right humerus.-Salado

	No.	Sex.	Right.	Left.		No.	Sex.	Right.	Left.
			$\bigcirc \quad 1$	-				\bigcirc	-
1			14600	14830	12			16000	
2			14800	15500	13	H. 15	F.	16030	15400
3	H. 26	M.	14830		14		M.	16100	
4	II. 5	F.	15130	15100	15	H. 41 (\%)	M.	16130	15300
5			15330	16600	16	H. 8	${ }^{\text {F }}$.	16130	16230
6		F.	15500	15730	17	H. 25	M.	16600	$\begin{array}{ll}166 & 00\end{array}$
7	H. 33		15500		18	H. 6	M.	$170 \quad 00$	16830
8	H. 39	F.	15700	16900	19	H. 33		17400	
9	H. 19	M.	15830	15000	20	H. 45		17400	$169 \quad 00$
10	H. 1	F .	15830	15200	21			17700	
11	H. 32	M.	15830	16130					

Average of 21 right humeri $=159^{\circ} 45^{\prime}$.
Average of 41 humeri, both sides $=159{ }^{\circ} 30^{\prime}+$.

Table LVI.—Angle of torsion of humerus.—Ordination according to left humerus.--Salado.

	Namber. Sex.	Left.	Right.		Number.	Sex.	Left.	right.
		$\bigcirc \quad 1$	\bigcirc,				$0 \quad 1$	\bigcirc,
1		14830	14600	11	H. 32	M.	16130	15830
2	H. 19 M.	$150 \quad 00$	15830	12			16130	
3	H. 5 F.	15100	15130	13	H. 8	F.	16230	16130
4	H. 1 F.	15200	15830	14			16400	
5	H. 7 M.	15230		15			16600	15330
6	H. 41 (?)	15300	16130	16	H. 25	M.	16600	16600
7	H. 15 F.	15400	$160 \quad 30$	17	H. 6	M.	16830	17000
8		15500	14800	18	H. 39	F.	16900	$157 \quad 00$
9	H. 57	15700		19	H. 45		16900	17400
10		15730	15500	20			17200	

Average of 20 left humeri $=159^{\circ} 30^{\prime}$.
Table LVII.-Mean angles of torsion of pairs of humeri.—Salado.

	Designa- tiou.	Sex.	Mean angle of pair.	Variation between right and left humerus.
			\bigcirc,	$\bigcirc 1$
1			$147 \quad 15$	230
2	H. 5	F.	$151 \quad 15$	30
3			15130	700
4	H. 19	M.	15415	830
5	H. 1	F.	15515	630
6		F.	15615	130
7	H. 41(q)		15715	830
8	H. 15		$\begin{array}{ll}157 & 15\end{array}$	630
9			15945	1230
10	H. 32	M.	$160 \quad 00$	300
11	H. 8	F.	16200	100
12	H. 39	F .	16300	1200
13	H. 25	M.	16600	
14	II. 6	M.	$169 \quad 15$	130
15	H. 45		17130	500

Average mean angle of 15 pairs $=158^{\circ} 47^{\prime}$.
Average variation between right and left humerus, $5^{\circ} 6^{\prime}$.
Table LVLI.-Torsion of the humerus with regard to sex.—Salado.

Male.			Female.		
Desigration of skeleton.	$\begin{gathered} \text { Right } \\ \text { humeri. } \end{gathered}$	Left humeri.	Designation of skeloton.	Right humeri.	$\begin{gathered} \text { Left } \\ \text { hameri. } \end{gathered}$
	-	$\bigcirc 1$		-	\bigcirc
H. 19	15830	15000	H. 5	15130	15100
H. 32	15830	16130		15500	15730
H. 25	16600	16600	H. 39	15700	16900
H. 6	$170 \quad 00$	16830	H. 1	15830	15200
			H. 15	$160 \quad 30$	15400
			H. 8	16130	16230
Average...	$163 \quad 15$	16130	Aervage.	15720	$157 \quad 30$

Total average of males, $162^{\circ} 29^{\prime}$.
Total average of females, $157{ }^{\circ} 30^{\prime}$.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

*Fair usage policy applies

Table LXI.-Indices of 19 pelves-Salado.

$\left\|\begin{array}{c} \text { Desiguation } \\ \text { skeleton. } \end{array}\right\|$	Breadthheight index.	Superior Strait index.	Pubo-isch iatic depth index.	Sacral length index.
H. 1		77.95	65.35	72.44
H. 5	135.32	84. 72	66.66	77.08
H. 6	136. 36	91.45	76. 06	94.87
H. 7	145.83	74.04	71.75	67.93
H. 8	142.32	85.82	66.14	80.31
H. 10	148.92	80.41	66.43	65.03
H. 14	131.77	103.44	77.58	83.62
H. 15	152.09	74.61	59.23	73.84
H. 18		86.03	68.99	
H. 19		89.65	81.89	95.68
H. 25	140.60	82.81	81.25	
H. 36	149.42	76.92	70.76	76.92
H. 39	152.38	69.04	66.66	
H. 41	131.18	78. 63	80.34	86.32
H. 45		82.26	63.12	73.75
H. 57	152.66	82.53	64.28	76. 98
H. 59	137.07	69.06	62.58	66.18
H. 72	146.96	80.14	69.85	82.35
H. 96	130.17	78.21	75.24	89.10

Table LXII.—Ordination of breadth-height indices of 14 pelves-Salado.

	Designation of skeletun.	Iudex.	Sex.		Deaignation of skeleton.	Index.	Sex.
1	H. 41	131.18	Male.	8	H. 7	145.83	Male.
2	H. 14	131.77	Male.	9	H. 72	146.96	Male.
3	H. 5	135.32	Female.	10	H. 10	148.92	Female ${ }^{\text {- }}$
4	H. 6	136.36	Male.	11	H. 36	149.42	Female.
5	H. 59	137.07	Female.	12	H. 15	152.09	Female.
6	H. 25	140.60	Male.	13	H. 39	152.38	Female.
7	H. 8	142.32	Female.	14.	H. 57	152.66	Female.

Table LXIII.—Ordination of superior strait indices of 18 pelves.-Salado.

	Designation of skeleton.	Index.	Sex.		Desirua tion of skeleton.	Index.	Sex.
1	H. 39	69.04	Female.	10	H. 45	82.26	Female.
2	H. 59	69.06	Female.	11	H. 57	82.53	Female.
3	H. 7	74.04	Male.	12	H. 25	82.81	Male.
4	H. 15	74.61	Female.	13	H. 5	84.72	Female.
5	H. 36	76.92	Female.	14	H. 8	85.82	Female.
6	H. 1	77.95	Female.	15	H. 18	86.03	Male.
7	H. 41	78.63	Male.	16	H. 19	89.65	Male.
8	H. 72	80.14	Male.	17	H. 6	91.45	Male.
9	H. 10	80.41	Female.	18	H. 14	103.44	Male.

Table LXIV.—Ordination of 18 pubo-ischiatic indices.—Salado.

	Designation of skel eton.	Index.	Sex.		Desiguation of skeleton.	Indor.	Sex.
1	H. 15	59.23	Female.	10	H. 18	68.99	Male.
2	H. 59	62.58	Female.	11	H. 72	69.85	Male.
3	H. 45	63.12	Female.	12	H. 36	70. 76	Female.
4	H. 57	64.28	Female.	13	H. 7	71.75	Malo.
5	H. 1	65.35	Female.	14	H. 6	76.06	Male.
6	H. 8	66.14	Female.	15	H. 14	77.58	Male.
7	H. 10	66.43	Female.	16	H. 41	80.34	Male.
8	H. 5	66.66	Female.	17	H. 25	81.25	Male.
9	H. 39	66.66	Female.	18	H. 19	81.89	Male.

Table LXV.-Ordination of 15 sacral length indices.-Salado.

	Designation of skel eton.	Index.	Sex.		$\begin{aligned} & \text { Dosigna- } \\ & \text { tion of sxel- } \\ & \text { eton. } \end{aligned}$	Index.	Sex.
1	H. 10	65.03	Female.	9	H. 5	77.08	Female.
2	H. 59	66.18	Female.	10	H. 8	80.31	Female.
3	H. 7	67.93	Male.	11	H. 72	82.35	Male.
4	H. 1	72.44	Female.	12	H. 14	83.63	Male.
5	H. 45	73.75	Female.	13	H. 41	86.32	Male.
6	H. 15	73.84	Female.	14	H. 6	94.87	Male.
7	H. 36	76.92	Female.	15	H. 19	95.68	Male.
8	H. 57	76.98	Female.				

Table LXVI.-Breadth-height indices (general index of the pelvis) in various races.

NOTE.-With the exception of the Saladoan these data are from TopinArd's Eloments d'anthropologie, p. 1049.
Table LXVII.—Indices of the superior strait in various races.

Note.-With the exception of the figures on the Saladoans, these data are from TopiNArD's Elements d'anthro. pologie, p. 1050.

Table LXVIII.-19 different measurements of 30 pelves.-Salado.

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer Alibrary in your pocket for $\$ 8.99 /$ month

Continue

*Fair usage policy applies
 Salado.

Designation of skeleton.	Right, 17.			Left, 18.			Kemarks.
	Anteroposterior diwension.	Lateral dimen. sion.	Index.	Anteroposterior sion.	Lateral dimension.	Index.	
S I	27	24	112.50	28	23	121.73	
S II	$25 \frac{1}{2}$	$25 \frac{1}{2}$	100.00	25	$24 \frac{1}{2}$	102. 04	
A	29.	$20 \frac{1}{}$	143.90	28	21	133.33	
B	25	$22 \frac{1}{2}$	111.11	24	23	104. 34	
C	27	27	100.00	27	26	103.84	
D	171 $\frac{1}{2}$	161	106.06	181	16	115.62	Child.
E				28	22	127.27	
F	26	23	113.04	$25 \frac{1}{2}$	23	110.86	
G	25	23	108. 69	26	221	115.55	
H	26	23	113.04				
I	31	$\stackrel{27}{ }$	114.81	31	$28 \frac{1}{2}$	108.77	
${ }_{\text {K }}$	26	$24 \pm$	106.12	. 33	25 -	129.41	
M	$25 \frac{1}{3}$	22	115.90				
N	27	25	108.00				
\bigcirc				294	$25 \frac{1}{2}$	115.68	
P				27	24	112.50	
Q	2ct		11276	25	20	120.00	
$\stackrel{\mathrm{R}}{\mathrm{S}}$	26	$23 \frac{1}{2}$	112.76	25	23	108.69	
T		$25 \frac{1}{2}$	$22 \frac{1}{2}$	111.11	
U				24	20	120.00	Both diameters a little oblique.
V	32	$25 \frac{1}{3}$	125.45	-.......			
X			104.16	- 21	17	123.52	Child.
Y	$20 \underline{1}$	191	105.12				
Average index.......			111.80			115.79	

Average index of total, $\mathbf{1 1 3 . 8 5}$.
Table LXXI.—Indices of section of the'femur in 16 Peruvian skeletons in Army Medioal Museum.

Average index of total, 106.84 .

Table LXXII.-Of indices of transverse section of shaft of femur-entire collection of Salado.
Average of 66 femora of right side
114.74
Average of 65 femora of left side
116.94
Average of 131 femora of both sides
115.83
Maximim (H.6, left)
147.61
Minimum (H. 64, right)
93. 10

Table LXXIII.—Relations existing between pilaster $1 f_{\text {emur }}$ and platyonemic tibia.—Salado.
[The first 5 skeletons have the lowest average tibial iudex and the highest average femoral index. In the last 5 the conditions are reversed.]

	Desig. nation of skeleton.	Tibie.			Femora.		
		Right.	Left.	Both.	Right.	Left.	Both.
2							
Lowest	H. 6	51.42	49. 29	50.35	139.53	147.61	143.57
	H. 19	48.75	48.75	48.75	122. 44	124.00	123.22
	H. 21	59.15	50.60	54.87	116.36	122.22	119.29
	H. 30	54.54	51.47	53.00	116.00	134.78	125.39
	H. 87	52.11	50.00	51.05	132.60	130.43	131.51
Total averag ${ }^{\text {a }}$		53.19	50.02	51.60	125.38	131.80	128.59
Highest	H. 5	73.33	70.49	71.91	132.60	125.00	128.80
	H. 36	76.28	75.43	75.85	117.39	115.21	116.30
	H. 63	62.16	68.57	63. 36	124.00	126.53	125.26
	1I. 70	69.49	68.75	69.12	106.52	108.51	107.51
	H. 74	74.19	79.03	76.61	97.95	100.00	98.97
Total average		71.09	72.45	71.77	115.69	115.05	115.37

TABLE LXXIV.—Platycnemia.—Indices of transverse section of shdft in 90 tibiou $f_{\text {rom }} 52$ skeletons more or less complete.-Salado.

Desig. nation of skeleton.	Right side.			Left side.			Remarks.
	Anteroposterior dimension.	Lateral dimen. sion.	Index.	Anteroposterior dimension.	Lateral dimension.	Index.	
H. 1	261	16	60.37	27	17	62.96	
H. 2				33	21	63.63	
H. 5	30	22	73.33	$30 \frac{1}{2}$	211	70.49	
H. 6	35	18	51.42	$35 \frac{1}{2}$	$17 \frac{1}{2}$	49.29	
H. 7	36	19	52.77	35	20	57.14	
H. 9	29	182	63.79	$30 \frac{1}{2}$	$20 \frac{1}{2}$	67.21	
H. 10	34	20	58.82	34	22	64. 70	
H. 14	30	20	66.66	33	20	62.50	
H. 15	27	17	62.96	$26 \frac{1}{2}$	$16 \frac{1}{2}$	63.26	
H. 19	40	1912	48.75	40	194	48.75	
H. 21	$35 \frac{1}{2}$	21	59.15	41\%	21	50.60	Muscular exostosis.
H. 26	25	19	76.00	28	20	71.42	Youth.
H. 29	20	13현	67.50	$18 \frac{1}{2}$	14	75.67	Child.
H. 30	33	18	54.54	34	17%	51.47	
H. 32				31	$21 \frac{1}{2}$	69.35	
H. 33	27	17	62.96				
H. 34	$35 \frac{1}{2}$	23	64.78	$34 \frac{1}{2}$	23	66.66	
H. 36	28	$21 \frac{1}{2}$	76.28	$28 \frac{1}{3}$	$21 \frac{1}{2}$	75.43	
H. 39	27	15	55.55	$26 \frac{7}{2}$	15	56.60	
H. 41	322	21	64.61	32	20	62.50	
H. 42	37	$22 \frac{1}{2}$	60.81	$35 \frac{1}{3}$	29	61.97	,
H. 45	$31 \frac{1}{2}$	$19 \frac{1}{3}$	61.90	31	21	67.74	
H. 48	36	$21 \frac{1}{2}$	59.72				
H. 57	27	17	62.96	29	18	62.06	
H. 58	32t	23	70.76	$33 \pm$	$24 \frac{1}{2}$	73.13	
H. 59				$26 \frac{1}{2}$	18	67.92	
H. 60				31	$19 \frac{1}{2}$	62.90	
H. 61	38	22	57.89				
H. 62	$36 \frac{1}{2}$	21	57.53				
H. 63	37	23	62. 16	35	24	68.57	
H. 64	$36 \frac{1}{2}$	194	53.42	37	207	55.40	
H. 65	37	21交	58.10	36	$20 \frac{1}{2}$	56.94	
H. 67				29	19	65.51	

Table LXXIV－Continued．

Desig． nation of skeleton，	Right side．			Left side．			Bemarks．
	Antero－ posterior sion．	Lateral dimen－ sion．	Index．	Aitero－ posterior dimen－ sion．	Lateral dimen sion	Index．	
H． 68				$27 \frac{1}{2}$	19	69.09	
H． 69	21	15	71． 42	19	$14 \frac{1}{2}$	76． 31	Child．
H． 70	29 交	－204	69.49	32	22	68.75	
H． 71	$30 \frac{1}{2}$	$20 \frac{1}{2}$	67.21				
H． 72				$35 \frac{1}{2}$	22	61.97	
H． 73	$38 \frac{1}{2}$	21	54.54	36	20	55.55	
H． 74	31	23	74． 19	31	24균	79.03	
H． 77	29	20	68.96				
H． 78 H． 79	31	20	64.51 58.82	33	19	57.57 64.61	－
H． 81	$31+\frac{1}{2}$	17	53.96	32	17	63.12	
H． 82	$25 \frac{2}{2}$	17	66.66	25	$18 \frac{1}{2}$	74.00	Slight exostosis．
H． 84	$32 \frac{1}{2}$	21	64.61	31	19	61.29	
H． 85				29	20	68.96	
H． 86	$38 \frac{1}{2}$	20	51.94	$37 \frac{1}{2}$	$19 \frac{1}{2}$	52.00	
H． 87	$35 \frac{1}{2}$	$18 \frac{3}{2}$	52.11	36	18	50.00	
H． 88				39	22	56.41	
H． 89	29	$16 \pm$	56． 89	－．．．．．．．			
H． 90	${ }_{34}^{34}$	${ }_{24} 17$	53.03 69.56	37	$25 \frac{1}{2}$		Deformed．
	31			$15 \frac{1}{2}$	12	77.41	Child．
Average．．			61.78			63.60	

Average of all tibix，62．71．Average of 78 normal adult tibiæ，61．88．
Table LXXV．—Platycnemia．—Indices of transverse section of shaft in 26 miscellaneous tibice．－ Salado．

Designation of skeleton．	Right side．			Left side．			Remarks．
	Antero－ posterior dimen． sion．	Lateral dimen． sion．	Index．	Antero－ posterior dimen． sion．	Lateral dimen－ sion．	Index．	
A				39	26	66.66	
B				27⿺𠃊	19	69.09	
C				34	19	55.88	
D				32	22	68.75	
E				$28 \frac{1}{2}$	191 $\frac{1}{2}$	68.42	
F	29	171	60.34			．．．．．．	
G	$37 \frac{1}{2}$	21	56.00	．－．		－－－－－	
H	35	22	62.85			－－－－－－	
I	38	21	55.26				
K				298	21	71． 18	
L				$30 \frac{1}{2}$	17	55.73	
M	$36 \frac{1}{2}$	$22+\frac{1}{2}$	61.64				
N and O	40	23	57.50	39	242	60.28	Pair．
P	\therefore			27	19	70.37	
Q and R	$22 \frac{1}{2}$	15	66.66	22	15	68.18	Child．
S and ${ }^{\prime} \mathrm{I}$	21	17	80.95	21	17	80.95	Child．
U	14	12.	89.28				Very joung child．
V and W	29	19	65.51 ＇	29	19	65.51	Probably a pair．
\mathbf{X}				30	193	65.00	
Y	28	20	71.42				
$\mathrm{Z} \operatorname{and} \mathrm{A}^{2}$	$28 \frac{1}{2}$	$20 \frac{1}{2}$	71.92	29	20	68.96	Probably a pair．
Average．．．．．．．－．．．．．．．			66.61			66.78	

Average of total，66．70．Average of 116 tibiæ of both series（regular and miscellaneous），63．54．

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

*Fair usage policy applies

Table LXXVII.—Platycnemia.—Indices of transverse section of shaft of tibia in 62 skeletons of various races in the Army Medical Museum.

Races.	$\underset{\text { specimen. }}{\text { No. of }}$	Sex.	Right tibia.			Left tibia.			liemarks.
			 Antero- poste- pimor dimen- sion.	Lateral dimension.	Index.	Antero- poste- rior dimen- sion.	Lateral dimension.	Index.	
White	5433	M.	282	23	80.70	29	23	79.31	Hunchback.
Do	6414	F.	304	23	75.40	28	23	82.14	
Negro	552	F.	27	19	70.37	28	191	69.64	15 years of age.
Do	2037	F.	$30 \frac{1}{2}$	$22 \frac{1}{2}$	73. 77	33	$22 \frac{1}{2}$	68.18	70 years of age.
Do	2041	M.	34	$26 \frac{1}{2}$	77.94	35	27	77.14	
Do	2103	M.	35	$27 \frac{1}{2}$	78.57	$35 \frac{1}{2}$	$27 \pm$	77.46	
Do	3301	$\stackrel{\mathrm{F}}{\mathrm{F}}$	30	22	73.33	31	22	70.96	Barely au adalt.
Mulatto	1835	M.	${ }_{35}^{35}$	25	71.42	${ }_{34} 3{ }^{\text {a }}$	24	74.64 69.56	Hunchback.
Do.	2040	M.	31	23	74.19	32	231	73.43	
Mexican	1834	M.	26	21	80.76	26	$21 \frac{1}{2}$	82.69	Youth.
Mahlemut Eskimo.....	756		30	20	66.66	29	$20 \frac{1}{2}$	70.68	
North American Indians.									
Alaskan.	814	M.	$38 \frac{1}{2}$	20.	53.24				
Do.	938	M .	34	23	67.64	$34 \frac{1}{2}$	$22 \frac{1}{2}$	65.21	Hunchback.
Apache	1473	F^{F}.	27	$18 \frac{1}{2}$	68.51	$29 \frac{1}{2}$	20	67.79	
Do.	1530	M.	34	24	70.58	33	237	71. 21	
Arapaho	6499	M.	37	23	62.16	$38 \frac{1}{2}$	$24 \frac{1}{2}$	63.63	
Bannock	2133	M.	$33 \frac{1}{3}$	$28 \frac{1}{2}$	85.07	32	30	93.75	
Cheyenne	2036	M.	$32 \frac{1}{2}$	23	70.76	$33 \frac{1}{2}$	23	68.65	
Do.	2066	M.	41	25	60.97	42	23.	54.76	
Do.	6966	M.	$34 \frac{1}{2}$	242	71. 01	35	25.	71.42	Adolescent.
Chippewa	1257	M .	33	22	66.66	34	233	69.11	
Choctaw	622	F.	$32 \frac{1}{2}$	20	61.53	$31 \frac{1}{2}$	$21 \frac{1}{4}$	68.25	
Do.	623	F .	$31 \pm$	21	66.66	$3{ }^{3} \frac{1}{2}$	21	68.65	
Dakota	945	M.	$\stackrel{4}{40 . t}$	19	67.90 67.15	402	27	66.86 66.66	
Modoe	6287	M.	35	$23 \frac{1}{2}$	67.14	35	22	62.85	
Mound-builders:	165	M.	381	247	63.63	387	25	64.93	
Do....	1121	M.	42	$24 \frac{2}{3}$	58. 33	39	243	62.02	
From Mississippi	400	M.	$42 \frac{1}{2}$	30	70.58	$39 \frac{1}{2}$	$27 \frac{1}{2}$	69.62	
Do.	644	M.	33	24	72. 72	$34 \frac{1}{2}$	25	72.46	
Navajo...	788	M.	:33	$21 \frac{1}{2}$	65.15	34	224	66.17	Right foramen abnormal; measurement taken on a level to correspond with foramen of opposite side.
Pawnee	778	F.	32	231	73.43	$31 \frac{1}{2}$	$21 \frac{1}{3}$	68.25	
Pah Ute.	963	M.	35	21	60.00	35	22	62.85	
Do	964	F.	30	17	56.66	$28 \frac{1}{2}$	17	59.64	
Sioux	13	M .	$36 \frac{1}{2}$	244	67.12	36	25	69.44	
Do.	2046	F.	31	24	77.41	31	24	77.41	
Do.	2071	M.	34	$23 \frac{1}{2}$	69.11	35	$23+$	67.14	
Do.	2072	F.	$32{ }^{\frac{1}{4}}$	24	73.84	$33 \frac{1}{2}$	$23{ }^{2}$	70.14	
Brule Sioux	1852	M.	34	25	73.52	$34 \frac{1}{2}$	23	66.66	Left foramen abnormal; measurement taken on a level to correspond with foramen of opposite side.
Do.	1895	M.	$34 \frac{4}{3}$	24	69. 56	36	23	63.88	
Do	1896	M.	36	27	73.97	37	29	78.37	
Do.	1897	F.	35	27	77.14	36	$25 \frac{1}{2}$	70.83	
Do.	1898	M.	41	28	68.29	41	27	65.85	
Do.	1899	M.	43	23	53.48	42 t	$23 \frac{1}{2}$	55.29	
Do.	1900	$\mathrm{F}^{\text {F }}$	30	$21 \pm$	71. 66	30	21	70.00	30 years of age.
Do.	1901	M.	38.	24.	63.63	38	24	63.15	
Do.	${ }_{2}^{2061}$	M.	35.	$24 \frac{1}{2}$	69.01	35	238	67.14	Adolescent.
Do.	2063	M.	28	$21 \pm$	76.78	294	22	74.57	Adolescent.
Do.	2068	F .	36	$24 \frac{1}{2}$	68.05	33	242	74.24	
Ogalalla Sioux	1851	F .	27	21	77.77	27	$20 \frac{1}{2}$	75.92	About 15 years of age.
Do..	1853	F.	31	$20 \frac{1}{2}$	66.12	32	$20 \frac{1}{2}$	64.06	Left foramen abuormal; weasurement taken ou a level to correspond with foramen on oppositeside.
Do.	1854	F.	$32 \frac{1}{3}$	$21 \frac{1}{2}$	66.15	33	$21 \frac{1}{2}$	65.15	
Do.......	1856	M.	264	$19 \frac{1}{2}$	73.58	$\stackrel{27}{301}$	20	74.0	About 16 years of age.
Sisseton Sioux Do..............	1790	F.	30 40	22	73.33 57.50	304	22	72.13 62.33	
Do......................	1792	M.	38	$28 \frac{1}{3}$	75.00	3×2	29	73.32	
Yankton Sioux	926	M.	391	25	6 3.29	36	25	69.44	

Table LXXVII-Continued.

Table LIXXVIII.—Synopsis of average indices of section of the $1 f_{\text {femur }}$ and of section of the tibia in certain numbers of skeletons in the Army Medical Museum.

Racea.	Average indices of section of femur.				A verage indices of section of tibia.			
	No. of femora.	Right side.	No. of femora.	Left side.	No. of tibia.	Right side.	No. of tibise.	Left sido.
Sioux Indians	24	112.48	24	110.33	24	69.54	24	69.33
Other North American Indians \qquad	23	113.00	21	111.89	23	66.44	22	67.54
Negroes................	6	120.53	6	119.10	6	75.00	6	73.00

The following formulæ are found used in the various articles on craniology in the Zeitschrift für Ethnologie, from 1879 to 1889, inclusive, to reckon various facial indices. A few articles conceruing very small numbers of skulls are omitted. The page given is that on which the article begins. The articles sometimes are made up by two or three men, but Virchow generally writes the craniometrical part.

In these articles (rejecting two articles where, if the formulæ indicated are correct, gross arithmetical errors have been made; also two where the formulæ have been reversed-a clerical error perhaps-and the translation of the article in Italian by Raf. Zampa, where the terminology is a little suspicious) we have the various formulæ occurring as follows:

Table LXXIX.

Year.	Page.	Title.	Author.	Formula.
1879	118	Livländische Schädel	Virchow	$\left\{\begin{array}{c} \text { Gesichtghöhe } \times 100 . \\ \text { Gesichtsbreite (b) Bizygom } \\ \text { and } \\ \text { Obergesichtshöhe } \times 100 . \\ \text { Gesichtsbreite (b) Bizygom. } \end{array}\right.$
1879	136	Ueber Schädel von Ophrynium	Vil	$\left\{\begin{array}{c} \text { Gesichtshöhe } \times 100 . \\ \text { Gesichtsbreite, Sut. zyg. max } \\ \text { and } \\ \text { Obergesichtshöhe } \times 100 . \\ \text { Gesichtsbreite, Sut. zyg. max } \end{array}\right.$
1879	422	Vier Schädel von Cagraray (Phillipinoll).	Virchow	$\left\{\begin{array}{l} \frac{\text { Mittelgesiehtshöhe } \times 100 .}{\text { Gesichtsireite, Malar }} \\ \text { and } \\ \frac{\text { Mittelgesichtshohe } \times 100 .}{\text { Gesichtsbreite, jugal. }} \end{array}\right.$
1880	52	Höhlenschädel aus dem oberen Weichnelgeliet .	Virchor	$\left\{\begin{array}{c} \text { Gesichtshöhe (b Alveoliar- } \\ \frac{\text { rand }) \times 100 .}{} \text { Malarbreite (Bizygom). } \end{array}\right.$
1880		Schädel von Tebu und Westafrikanern	Virchow	$\left\{\frac{\text { Breite des Gesichts } \times 100 .}{\text { Höhe des Gesichts. }}\right.$

Table LXXIX-Continued.

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer Alibrary in your pocket for $\$ 8.99 /$ month

Continue

*Fair usage policy applies

TABLE LXXIX: -Summary showingfrequency of use of the various German indicesin table LLXXIX.

Name of index from "Verständigung."	Fornula.	No. of arti. oles.
Facial index of Kollmann........	Mento nasal height $\times 100$ Bizygomatic width	22
Upper facial intex of Kollmann..	Alveolo-nasal height $\times 100$ lizygomatic width	8
Facial index of Vircho	Mento-nasal height $\times 100$ Bimaxilliary width	4
Upper facial index of Virchow.	$\frac{\text { Alveolo-nasil height } \times 100}{\text { Bimaxillary width }}$	14

Table LXXIXb.-Facial indices of Virchow from Europeans.

Facial 119.1	Upper facial 73.1
Average of............ 11.0	Average of............ 27.0

TABLE LXXX.—Craniometrical data according to Franßfurt agreement, computed $\mathrm{If}_{\text {fom }}$ data quoted
in Table LXXIX.

Races.	Lengthbrealth index.		Length-heirhtia. dex.		Facial index of Kollmann.		Upper facial index of Kollmann.		Facialindex of Virchow.		Upper facial index of Virchow.		Nasal index.		Palatine index.		Facial angle.	
	Average.		$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$		$\begin{aligned} & \text { Arer- } \\ & \text { agye. } \end{aligned}$		Aver-		$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$		$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$		$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$		$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$		$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$	
Malays	77.2	28	77.0	25	84.3	8	48.6	16	111.5	3	67.9	24	53.2	28	72.1	22		
Veddahs	76.8	5	78.2	5			53.8	3										
Negroes.	75.9	21	78.1	12	95.4						67.8	15	34.9	19	69.2	17	$69^{\circ} 12^{\prime}$	10
Botocudos	74.5	17	76.2	17	89.1	3	52.6	11			70.0	11	47.3	18	71.3	3	$80^{\circ} 30^{\prime}$	10
Goajiros skulls	81.2	8	73.8	8	83.3	8							47.2	8	72.5	7		
Motilo skull	79.0		75.6	...	80.0						66.0		48.8		78.0			
Yucatan skull.	90.2		75.7								65.7		49.0		80.3			
Calaverasskull					76.3		42.6						58.6		100.0			
$\begin{array}{r} \text { Rock B ock } \begin{array}{c} \text { skull......... } \end{array} \end{array}$	74.0		71.5		86.5		47.0						50.9		84.8			
Lagoa Santa skulls......	72.2	5	80.2	5	84.2	4	47.0	4					50.2	5	98.3			

Table LXXXI.—Special series of 101 skulls in the general collection of the Army Medical Museum.
Note.-Frequent reference is made in this work to our series of 101. This is a collcetion of 101 adult skulls, representing 27 different tribes and races, which we measured exactly on the same system that the Hemenway collection was measured, just previous to commencing the study of the latter. Although it is a small series, we have found it useful for making comparisons in preparing this essay.

The composition of the series of 101 is as follows:

Table LXXXI.-General measurements.-Cibola.

											$\begin{aligned} & \overrightarrow{y y} \\ & =0 \\ & =0.0 \\ & 0 \\ & 0 \end{aligned}$				
												\bigcirc	\bigcirc	-	\bigcirc
H. 201	174	132	133	92	97			44	25	38	31	89			
H. 202	165	152	151	95	102	121	108	49	24	43	34	$88 \frac{1}{2}$	$4 \frac{1}{2}$	14	17
H. 203	164	155	146	102	101	123	107	51	26	41	34	85	9	$20 \frac{1}{2}$	26
H. 204	185	140	138		103					40	33		9	17	22
H. 205	145	140	133	92	92	109	103	49	25	38	34	84	6	$18 \frac{1}{2}$	24
H. 206	146	144	138	93	94	114	96	50	25	39	36	85	5	15	20
H. 207	163	131				98	95	43	26	39	35	81			
H. 208	169	130				109	88	51	23	37	35	87			
H. 209	165	123	133	96	97	106	93	47	25	37	34	82	$6 \frac{1}{2}$	18	24
H. 210	146	142	133	90	90	107	91	44	23	36	34	$86 \frac{1}{2}$	4	16	214
H. 211	167	145	147	108	105	124	113	52	28	41	35	85			
H. 212	155	146	136	95	95		98	47	26	38	34	80	2	13	18
H. 213	170	142	141	93	101	118	106	48	27	39	36	88	$10 \frac{1}{2}$	221	30
H. 214	163	145				109	101	49	26	38	33	$88 \frac{1}{2}$			
H. 215	157	135	135	98	99	112	101	51	25	41	35	87			
H. 216	143	144	145	91	95		95	48	24	38	32	88	6	17	23
H. 217	152	146	147		99		100	45	27	40	35		$8 \frac{1}{2}$	$18 \frac{1}{2}$	25
H. 218	174	151	147	97	103		107	54	28	40	35		7	182	$24 \frac{1}{3}$
H. 219	163	141	144	97	101		88	46	23	36	33	85			
H. 220	151	142	138	99	96	118	95	49	23	38	35	85	$8 \frac{1}{2}$	201	$27 \frac{1}{8}$
H. 221	163	133	131	98	96	112	99	50	25	36	34	83	1	$10 \frac{1}{2}$	14
H. 222	151	134	138	89	97	106	99	47	26	39	36	89	11	22	30
H. 223	166	145	138	97	98	109	94	48	25	37	33	86	11 ${ }_{1}$	11	15
H. 224	148	141	145	100	100	119	101	50	26	40	35	81	13	$24 \frac{1}{2}$	32
H. 225	152	139	137			112	91	47	24	40	34	83	$10 \frac{1}{2}$	22	29
H. 226	167	144	145	96	102	120	101	51	24	36	33	91	10	$20 \frac{1}{2}$	264
H. 227	147	139	136	88	95	102	100	48	24	37	34	89	4	$14 \frac{1}{2}$	192
H. 228	157	146	146	95	97	119	106	50	28	40	36	84	$2 \frac{1}{2}$	13	17
H. 229	166	129	132	90	96	118	95	51	23	38	35	911	2	$13 \frac{3}{2}$	18
H. 230	157	144	134	97	98	114	104	51	26	38	34	85	1012	$20 \frac{1}{2}$	27
H. 231	162	139				101	92	42	23	37	34	81			
H. 232	159	140	137	95	97	118	103	50	28	39	33	84	11	$21 \frac{1}{2}$	29
H. 233	163	150	144	99	100	122	101	54	25	38	30	$88 \frac{1}{3}$	$5 \frac{1}{2}$	16	22
H. 234	159	152	146	95	95	111	97	48	25	35	32	88	7	17	22
H. 235	147	140	138	89	96	106	94	46	24	39	34	86	10	23	31

Table LXXXIII.-Indices of 35 skulls.-Cibola.

No. of skull.	Cophalic.	Vertico-longitudinal.	Gnathic.	Facial of Virchow.	Nasal.	Orbital.
H. 201	75.86	76.43	94.84		56.81	81.57
H. 202	92.12	91.51	93.13	112.03	48.16	79.06
H. 203	94.51	89.02	100.99	114.95	50.98	82.92
H. 204	75.67	74.05				82.50
H. 205	96.55	91.72	100.00	105.82	51.02	89.47
H. 206	98.63	94.92	98.93	118.75	50.00	92.30
H. 207	80.36			103.15	60.46	89.74
H. 208	76.92			123.86	45.09	94.59
H. 209	74.54	80.60	98.96	113.97	52.19	91.89
H. 210	97.26	91.09	100.00	117.58	52.27	94.44
H. 211	86.82	88.02	102.85	109.73	53.84	85.36
H. 212	94.19	87.74	100.00		55.31	89.47
H. 213	83.52	82.94	92.07	111.32	56.25	92.30
H. 214	88.95			107.92	53.06	86.84
H. 215	85.98	85.98	98.98	110.89	49.01	85.36
H. 216	100.69	101. 39	95.78		50.00	84.21
H. 217	96.05	96.71			60.00	87.50
H. 218	86.78	84.48	94.17		51.85	87.50
H. 219	86.50	88.34	96.03		50.00	91.66
H. 920	94.03	91.39	103.12	124.21	46.93	92.10
H. 221	81.59	80.36	102.08	113.13	50.00	94.44
H. 222	88.74	91.39	91.75	107.07	55.31	92.30
H. 223	87.34	83.13	98.97	115.95	52.08	89.18
H. 224	95.27	97.97	100.00	117.82	52.00	87.50
H. 225	91.44	90.13		123.07	51.06	85.00
H. 226	86.22	86.82	94.11	118.81	47.05	91.66
H. 227	94.55	92.51	92.63	102.00	50.00	91.89
H. 228	92.99	92.99	97.93	112. 26	56.00	90.00
H. 229	77.71	79.51	93.75	124. 21	45.09	92.10
H. 230	91.71	85.35	98.97	109. 61	50.98	89.47
H. 231	85.80			109.78	54.76	91.89
H. 232	$88: 05$	86.16	97.93	114.56	56.00	84.61
H. 233	92. 02	. 88.34	99.00	120.79	46.29	78.94
H. 234	95.59	91.88	100.00	114.43	52.08	91.42
H. 235	95.23	93.88	92.70	112.76	52.17	87.17

Table LXXXIV.-Summary of indices of skulls.-Cibola.

Indices.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { skulls. } \end{gathered}$	Maximum.	Minimam.	Average.
Cephalic	35	100.69	74.54	88.86
Vertico-longitudinal	31	101.39	74.05	88.28
Gnathic	28	103.12	91.75	97.48
Facial of Virchow	28	124.21	102.00	113.94
Nas:1	34	60.46	45.09	51.88
Orbital	35	94.59	78.94	88.52

H. 220 and H. 229 both show maximum $\mathrm{f}_{\text {acial }}$ indices.
H. 208 and H. 229 both show minimum nasal indices.

Table LXXXV.—Summary of angles of skulls.-Cibola.

Augles.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { skulls. } \end{aligned}$	Maximum,	Minimam.	Average.
		\bigcirc	\bigcirc	\bigcirc
Profile angle	32	912	80	$85 \frac{1}{4}+$
Angle of Daubenton.	27	13	1	617
Occipital angle...............	27	$24 \pm$	101	171+
Basilar angle...................	27	$3{ }^{3}$	14	$23 \frac{1}{3}$

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

*Fair usage policy applies

Table XC.-Ordination of the angles of torsion of the humeri arranged according to the left humeri.-Cibola.

	Designa tion.	Left hameri		Right humeri.			Designation.	Lefthumeri		Right humeri.	
		-	1		1			\bigcirc	,	c	,
1	H. 233	143	00	145	00	13	H. 221	160	00	148	00
2	H. 209	149	00	144	00	14	H. 224	160	00	149	00
3	H. 214	150	30	-		15	H. 216	161	00	158	30
4	H. 207	151	00	136	30	16	H. 227	161	00	157	00
5	H. 213	152	30	137	00	17	H. 226	163	00	146	30
6	H. 217	153	00			18	H. 212	165	00	162	30
7	H. 215	154	00	137	00	19	H. 211	170	00	151	00
8	H. 206	154	30	150	00	20	H. 218	170	00	148	30
9	H. 234	155	00	152	00	21	H. 228	170	30		
10	H. 220	157	00	146	00	22	H. 229	171	00	154	00
11	H. 204	157	30		00	23	H. 222	178	00	165	00
12	H. 205	158	30		00						

Average angle of left humerus $=159^{\circ} 20^{\prime}$.
Table XCI.—Ordination of the angles of torsion of the humeri arranged according to the right humeri.-Cibola.

	Designation.	$\underset{\text { humerus. }}{\text { Right }}$		$\begin{gathered} \text { Left } \\ \text { hamerus. } \end{gathered}$			Designa- tion.	$\begin{gathered} \text { Right } \\ \text { humerus. } \end{gathered}$		Left humeras.	
		\bigcirc	1					-	,	0	
1	H. 207	136	30	151	00	14	H. 206	150		154	
2	H. 213	137	00	152	30	15	H. 205	151		158	
3	H. 215	137	00	154	00	16	H. 211	151	00	170	
4	H. 203	143	00			17	H. 234	152	00	155	
5	H. 209	144	00			18	H. 204	153	00	157	30
6	H. 233	145	00	143	00	19	H. 202	154	00		
7	H. 223	145	30			20	H. 229	154	00	171	
8	H. 232	145	30			21	H. 227	157	00	161	
9	H. 220	146	00	157	00	22	H. 216	158	30	161	00
10	H. 226	146	30	163	00	23	H. 208	162	30		
11	H. 221	148	00	160	00	24	H. 212	162	30		
12	H. 218	148	30	170		25	H. 222			178	
13	H. 224	149									

Average angle of right humerus $=149{ }^{\circ} 40^{\prime}$.

Appendix A.

CRANIOMETRICAL DIRECTIONS OF TOPINARD.*

Those which we use, only, are here given.

Essential measurements.

1. Greatest antero-posterior length: From the glabella to the maximum occipital point.
2. Greatest transverse width: Upon the parietal or squamous portion of temporal, no matter where the maximum may fall.
3. Basilo-bregmatic diameter: From the basion to bregma.
4. Smallest frontal width: Shortest distance betweed the temporal ridges of the frontal bone.
5. Horizontal circumference: Horizontal circumference of the cranium directly above the superciliary ridge and across the most prominent point of the occiput.
6. Naso-basilar line: Nasion to basion.
7. Maximum bizygomatic width: Greatest distance between the. 7y romatic arches.
8. Biorbital width: Maximum external biorbital or bimalar width from extermal extremity of small fronto-malar suture to same point opposite.
9. Maximum bimaxillary width: Maximum distance between the iuferior extremity of the maxillo-malar suture to the corresponding opposite point.
10. Bigonial width: From the external portion of one angle of the jaw to another.
11. Nasal height or naso-spinal height: From the nasion to the middle of the upper border of the lower nasal spine or lower border of nasal aperture.
12. Maximum width of nasal aperture.
13. Width of orbit: From the dacryon to the opposite external margin following the direction of the grand axis.
14. Height of orbit: Perpendicular to the preceding, beginning at middle of inferior border.
15. Occipito-alveolar length: From the maximum occipital point to the alveolar point.
16. Occipito-spinal length: From the maximum occipital point to the inferior border of the nasal aperture.
17. Capacity of the cranium : Broca's method.

Complimentary measurements.

A. Antero-posterior metopic length : From the metopion to the maximum point of the occiput.
B. Biasteric or maximum occipital width.
C. Bijugular or inferior occipital width.
E. Bitemporal.width: From one subtemporal point to another.
F. Vertical circumference or supra-auricular curve: Between the two supra-auricular points, passing upon the bregma.
G. Anterior and posterior parts of horizontal circumference separated by the supra-auricular curve.
H. Interorbital width : Distance from one dacryon to the other.
I. Alveolar external maximum width: Taken at the level of the molar region.
J. Alveolar external posterior width: Taken at the junction of the exterior arch and the pan coupé which is behind the wisdom tooth beneath the articulation of the pterygoid apophysis.
K. Anterior palatine width: Taken between canine and second incisor.
M. Posterior palatine width.
P. Palatine depth.
Q. Height and width of the posterior branch of mandible: Height from angle to upper edge of condyle; width at right angle with the above.
R. External bicondylar width: Taken between the outer edges of the condyles of mandible.
S. Basilo-mental radius.
U. Superior alveolar radius.
V. Nasal radius.
W. Intersuperciliary radius.
X. Metopic radius.
Y. Obelic radius.
Z. Inial radius.
d. Anterior projection of the cranium or pre-basilar projection.
e. Posterior projection of the cranium or post basilar projection.
f. Superior facial projection or projection of the ophryon.
The above three (d, e, and $1 f$) should be taken with regard to alveolo-condylean plane.

Never be without a book!
Forgotten Books Full Membership gives universal access to 797,885 books from our apps and website, across all your devices: tablet, phone,e-reader, laptop and desktop computer Alibrary in your pocket for $\$ 8.99 /$ month

Continue

*Fair usage policy applies
2. Greatest length (longitudinal diameter) from the center point between the superciliary ridges to the most prominent part of the occiput (without regard to horizontal plane); calipers.
3. Intertubal length from the central point between the frontal eminences and the most prominent part of the occiput (without regard to the horizontal plane); measured with calipers.
4. Greatest width, B. B., Fig. 3, perpendicular to sagittal plane, measured with calipers (not over the mastoid processes or at the posterior temporal ridge); the points measured must be on the same horizontal plane.
5. Smallest frontal breadth, S. S., Fig. 4; shortest distance between the temporal ridges of the frontal bone.
6. Height, called entire height after Virchow, H, Fig. 1: From the center of the anterior border of the foramen magnum to the parietal curve, perpendicular to horizontal plane. The difference between the height of the posterior border of the foramen magnum and the anterior should be indicated from which the height according to Baer-Ecker is ascertained. (Meas ured with calipers.)
7. Auxiliary height: As in crania, in which the bones of the face are missing, the horizontal plane can not be accurately indicated, the following shall be measured as the auxiliary height: From the center of the anterior border of the foramen magnum to jutiction of coronal and sagittal sutures; this always nearly corresponds with the height as in 6.

Fig. 3.

Fig. 4.
8. Auricular height: From the upper margin of the meatus auditorius to a point of the vertex perpendicularly above the meatus, perpendicular to the horizontal plane.
9. Auxiliary auricular height: From the same starting point to the highest point of the parie al curve, about 2 or 3 centimeters behind the coronal suture.
10. Length of cranial basis: From the center of the anterior border of the foramen magnum to the middle of the naso-frontal suture. (Measured with calipers.)
12 and 13. Greatest length and breadth of foramen maguum to be measured in the sagittal plane and perpendicular thereto.
13a. Breadth of cranial basis: Distance between the ends of the mastoid processes.
14. Horizontal circumference of cranium: Directly above the superciliary ridge and over the most prominent part of the occiput. Steel-tape.
15. Sagittal circumference of cranium: From the naso-frontal suture to the posterior margin of the foramen maguum along the sagittal suture. Steel-tape.
16. Vertical circumference from one upper margin of the meatus auditorius to the other, perpendicular to horizontal plane (about 2 or 3 centimeters behind coronal suture). Steel tape.

LINEAL MEASURES OF FACE.

17. Facial width after Virchow: Distance between the maxillo-malar sutures; should be measured from the lower anterior corver of one malar bone to the other.
18. Zygomatic width: Greatest distance between the zygomatic arches.

18a. Interorbital width: Shortest distance between the inner borders of the orbits.
19. Facial height from the center of the fronto-nasal suture to the center of the lower border of the inferior maxilla. (G. H.-W, Fig. 2.)
20. Upper (or middle) facial height: From the middle of the naso frontal suture to the middle of the alveolar edge of the superior maxilla, between the middle incisors. (O. K.-W, Fig. 2.)
21. Nasal height (W.-N. H., Fig. 2): From the middle of the naso-frontal suture to the middle of the upper border of the lower nasal spine.
22. Greatest breadth of nasal cavity (wherever it is found, see Fig. 4) to be measured horizontally.
23. Greatest breadth of orbit (a Fig. 4): From middle of median border to lateral border of orbit.
25. Greatest height of orbit (Fig. 4, b): Perpendicular to greatest breadth.
27. Leugth of palate bone: From the extreme point of the posterior nasal spine to the inner lamella of the alveolar border between the middle incisors.
28. Median width of palate: Between the inner alveolar walls of the second molars.
29. Width of posterior end of palate: On both posterior ends of palate, between the inner alveolar walls.
30. Length of profile of face) Kollmaun's (G. L., Fig. 2): From the most prominent part of the middle of the exterual alveolar border of the upper maxilla to the anterior margin of the foranen magnum (in the mediau plane).
31. Profile angle ($\mathbf{\Gamma}<$, Fig. 1) is the angle formed by profile line Pf with the horizontal.

MEȦSUREMENT OF CAPACITY OF.CRANIUM.

32. The capacity of the cranium is measured with shot (in fragile crania with millet). The manuer of measuring to be agreed upon hereafter.

CRANIAL INDICES.
I. Length-width index $\frac{100 \text { width }}{\text { length. }}$

Dolichocephalic.. to 75.0
Mesocephalic . \quad 75.1-79.9
Brachycephalic 80.0 . 85.0
Hyperbrachycephalic.. 85.1 and over.
1I. Length-height index $\frac{100 \text { height }}{\text { length. }}$
Chamæcephalic (flat crania) to 70.0

Hypsicephalic (high crania)... 75.1 and over.
III. Profile angle.

The inchnation of the profile line to the horizontal is divided in the following three grades:

1. Prognathic .. to 82.0
2. Mesognathic or orthognathic . 8 83.0-90.0
3. Hyperorthognathic ... 91.0 and above.
IV. Facial index (after Virchow) $\frac{100 \text { facial height }}{\text { facial width, }}$ calculated from the linear distance of the facial breadth (No.17) and the facial height(No.19) (like the facial index of von Hölder). Broad-face crania to 90.0 Small-face crania... 90.1 and over.
V. Upper facial index (after Virchow) ${ }_{\text {facial width. }}^{100}$ upper facial height calculated from the linear
distance of the facial width (No. 17) and the upper facial height (No. 20).
Broad upper face crania, index
to 50.0
Narrow upper face crania, index
50.1 and over.
VI. Zygomatic face index (after Kollmann). $\frac{100 \text { facial height. }}{\text { Zygomatic breadth. }}$ calculated from the greatest
distance between the zygomatic arches (No.18) and facial height (No. 19), gives two grades:
Low, chamæprosopic, face crania to 90.0
High, leptoprosopic, face crania 90.1 and above.
VII. Zygomatic upper face-height index (after Kollmann). $\frac{100 \text { upper face height. }}{\text { Zygomatic breadth. }}$
Chamæprosopic upper face with index to 50.0
Leptoprosopic upper face with index 50.1 and above.
VIII. Orbital index. $\frac{100 \text { orbital height. }}{\text { Orbital width. }}$
Chamækonchic to 80.0
Mesokonchic 80.1—85
Hypsikonchic 85.1 and over.
IX. Nasal iudex. $\frac{100 \text { width of nasal cavity. }}{\text { Nasal height. }}$ Nasal height.
Leptorrhinic to 47.0
Mesorrhinic. 47.1-51.0
Platyrrhinic 51.1-58. 0
Hyperplatyrrlinic 58.1 and over.
X. Palate index (after Virchow). $\frac{100 \text { palate breadth. }}{\text { Palate length. }}$Leptostaphylinto 80.0
Mesostaphylin 80. 1-85.0
Brachystaphylin 85.1 and over.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

*Fair usage policy applies

Second. The wearing away of the teeth which are yet in place is very pronounced. The alveolar point mounts almost up to the level of the nasal spinc; the mandible reduces itself to its basilar portion; the height of the symphysis of the chiu is found reduced wore than onehalf, and finally the angle of the jaw becomes very obtuse.

Third. The bones of the cranial vault of old persons sometimes are subject to an interstitial resorption of the spongy tissue; the two compact tables of the bone become fused in one compact and semitransparent plate, and from this result the undulating depressions characteristic of senile atrophy, which are the certain signs of an advanced old age. The most ordinary seat of these senile atrophies is the zone of the parietal comprised between the sagittal sature and the superior temporal line of that bone.

[^0]: * See Fourth Annual Report of the Bureau of Ethnolog'y, p. 510.

[^1]: *Since the above was written it has become apparent that we may attribute the sudden destruction of these earthen buildings to foods as reasonably as to earthquakes. In the spring of 1801 this region was visited by a great flood, which covered much of the Salt River lood-plain and ruined many of tho adobe houses of the white settlers.

[^2]: * Emil Schmidt: Catalog der im anatomischen Institut der Uuiversität Leipzig aufgestellten craniologischen Sammlung; Archiv fiir Anthropologie, Braunschweig, 1887-'88, p. v.

[^3]: *Verständigung iuber ein gemeinsames craniometrisches Verfahren; Archiv für Anthropologie, Bd. xv, Brannschweig, 1884, pp. 1-8. (See Appendix B.)
 \dagger W. MAtthews: Apparatus for tracing orthogonal projections of the skull, in the United States Army Medical Museum. Journal of Anatomy and Physiology, vol. xxi, London, 1886-'87, pp.42-45.

[^4]: * AGNew: Principles and Practice of Surgery, Philadelphia, 1878; Vol. I, p. 1032.

[^5]: *John A. Wyeth. "Anatomical Reasons for Dextral Preference in Man." Annals of Anatomical and Surgical Society, Brooklyn, N. Y., Vol. II, 1880, p. 129.

[^6]: * Nos. H. 3, H. 5, H. 6, H. 7, H. 11, H. 12, H. 14, H. 18, H. 23, H. 32, H. 44, H. 52, H. 55.
 \dagger Nos. H. 9, II. 13, H. 15, H. 16, H. 21, H. 25, H. 26, H. 27 , H 34, H. 35, H. 36, H. 37, H. 41, H. 42, H. 50, H. 53, H. 56.
 \ddagger Nos. H. 9, H. 19, H. 21, H. 25, H. 28, H. 40, H. 42, H. 53, H. 56, H. 57.

[^7]: *TurNer: The zoölogy of the voyage of H. M. S. Challenger, Part xxix, Report on the Human Skelotons-The Srania. London, 1884, p. 5.
 \dagger Op. cit., p. 683.
 \ddagger Broca: Sur l'angle orbito-occipital, Revue d'Authropologie, t. 6, Paris, 1877, p. 394.

[^8]: *Anoutchine: Sur quelques anomalies du crâne humain et de leur fréquence daus les races. Review by C. de M6́rejkowsky in Revne d'Anthropologie, 2d series, vol. 5 (1882), p. 359, et. 8eq.

[^9]: * Zuckerkandl, E. in Mittheilungen der Anthropologishen Gesellschaft in Wien, Band iv, 1874, p. 144 et 8eq.
 †Davis: On synostotic crania amoug Aboriginal Races of Man. Haarlein, 1865.
 \ddagger Davis: Thesaurus Craviorım, London, 1867, p. 57.
 §Davis, op. cit., pp. 195, 235, 261, and 321.
 $\|$ Much of the material in this section has appeared previonsly in an article, by the author, entitled "Tbe Inca bone and kindred formations among the ancient Arizonians." American Anthropolocist, Washington, D. C., Vol. if, p. 337 (October, 1889).

 介 VIrchow: Ueber einige Merkmale niederer Menschenrassen am Schädel. Berlin, 1875. Zeitschrift für Ethnologie, v. 20, 1888, p. 470.
 ** Revue d'antluropologio, 1883, p. 140 (Review).
 $\dagger \mid$ Op. cit., p. 769, p. 791, foot note.

[^10]: * Dissertation sur les races qui composaient l'ancienue population du Pérou. Par M. L.-A. Gosse, Docteur en Médecine. Mémoires de la Société d'anthropologie, vol. i.

[^11]: *TopinARd; op. oit., p. 94.
 \dagger Essai sur les deformations artificielles du crane, Paris, 1855, p. 68.
 \ddagger "Du prognathism alveolo-sous-nasal." Revue d'anthropologie. Paris, Vol. i, 1872, p. 642 et seq.
 $\$$ Op.cit., p. 668, and Eléments d'anthropologie, p. 888.

[^12]: * Recherche sur l'indice orbitaire, Revue d'anthropologie, Vol. iv, 1875, pp. 616, 617.
 \dagger P. 800 et seq.
 \ddagger Du prognathisme alvélo-sous-nasal, in Revne d'authr., 1872, pp. 634-639. Du bordinféricur dcs narines sur le cráne et des caractères de supériorité et d'infériorité qu'il fournit, in Bull. Soc. anthe., 1881, pp. $184-192$.

[^13]: * American system of Dentistry, Philadelphia, 1886, vol. 1, p. 730.

[^14]: The common people were in general poor in flocks (except in the Collao where they had plenty), and hence they ouly ate meat when they received it as a gift from the Curacas, or when, on some great occasion, they killed oue of the guinea pigs they bred in their houses, called Ccoz. In order to alleviate this general want the Ynca ordored these hunts to take place, and that the flesh should be distributed among all the prople. They made dried meat of it, called "charqui," which kept good until the nexthunt; for the Indians were very abstemions and very carefnl in preserving their dried meat. * * * It would naturally le supposed that as there is so much water there would be plenty of fish; but in reality there is very little. * * * In the great lake of Titicaca, however, there are many fish. * * * There are several kivds of wild bees, but the Indians did notraise them in hives. The bees in temperate and lot climates, enjoying good herbage, make excellent houey, white, clean, and sweet. * * * The Indians value it much not ouly for eating, but also for several medicinal purposes.

[^15]: * Quoted from the Spauish historians in Herbert Spencer's Descriptive Sociology, Division iI, Part 1 BNew York (18749).

[^16]: *Journal of Morphology, Boston, 1888, 1889, Vol. II, pp. 7, etc.

[^17]: * Amorican Anthropologist.

[^18]: The result of the examination of the lesser horns is rather surprising, as it shows that they are very rarely united to the body of the boue, that the mode of connection with the body varies, and that one or both may be eutirely wanting. In only one of the 33 hyoids were both lesser horns cöossified, and in only 4 others was a single horn thus united. It is generally taught that the joint between the body and lesser horn is synovial. This is certainly true in many cases but not in all. Sometimes the lesser horn is attached by ligament, and at least in one case I have found it held by muscular fibers. In other cases, owing chiefly to the parts having become dry, it was impossible to decide whether this was a true synovial joint or not. In several cases one or both the lesser horns were not found, and it was not always possible to determine whether the absent piece had been lost or had never existed. It was, however,

[^19]: * Flower: Osteology of the Mammalia, p. 140.
 \dagger MUller: Archiv für Anatomie and Physiologie, 1847, p. 44.

[^20]: * TopinArd, op. cit., p. 1033.

[^21]: "P. BrocA: Indices de Largear de l'omoplate. Bulletins de la Societé d'Anthropologie, Paris, 1878, p. 77. † Op. cit., p. 1048.
 \ddagger La torsion de l'hnmerus. Revue d'Anthropologie, Paris, 1881. T. 2 serie, pp. 389 et seq.
 § Lucae: Die Stellung des Humeruskopfes zum Ellenbogengelenk beim Europüer and Neger, in Archiv für Anthropologie, 1860; 1, 'p. 237 et seq.

[^22]: " Journal of Anatomy and Physiology, vol. xxr, p. 536.
 \dagger La torsion de l'humérus. Revue d'Anthropologie, 2° Série, T. 10, Paris, 1881; pp. 577 et seq.
 ! Loc. cit., p. 383.
 \$ Loc. cii., p. 584.
 || Loc. cit., p. 583.

[^23]: "For a synopsis of the discussion and a bibliography of 49 titles, see "The Olecranon Perforation," by Dr. D. S. Lamb, in The American Anthropologist for April, 1890.

[^24]: *Garson : Pelvimetry; Journal of Anatomy and Physiology, London, 1881-'82; pp. 106 et $86 q$.

 + Vehneau: Le Bassin; Paris, 1875.
 \ddagger Fritsch: Die Eiugeboreneu Süd-Afrika's, Breslau, 1872, Tabelle u.
 \oint Davis: Thesauras Craniorum, London, 1867, Appendix B.
 || Bacarisse: Du Sacrum, Paris, 1873; Thèse pour le doctorat.
 IT Topinard: Elémente d'Anthropologie Générale, Paris, 1885, p. 1049.

[^25]: *Op. cit., p. 1019.

[^26]: * Fourth annual report of the trustecs of the Peabody Museum of Americ:an Archroology and Ethnology, Boston, 1871, pp. 21, 22.
 \dagger De la platyćnémic dans les races humaines. Revie d'anthropologio, second series, vol. iv, p. 255.
 \ddagger Platyenemia in men aud anthropoids. Mcmoirs of the Anthropological society of Paris, $2 d$ series, Vol. IIr.
 §Revue d'anthropologic, third serios, vol. iv, 1889, pp. 207-210.

[^27]: *Topinard, op. cit., 1019.

[^28]: *The conditions of Nus. 30 and 31 admitted of so fow measurements that these are not tabulated.
 1 Not in sagittal plane at occiput.
 Taken at first permanent molars, the only molars erupted.
 Groneral absorption of the alveoli. This is practically a basilo-subnasal line.

