

www.forgottenbooks.com

Copyright (C) 2016 FB \&c Ltd.
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law.

Biol J

JOURNAL OF BOTANY,

11

BRITISH AND FOREIGN.

EDITED BY

JAMES BRITTEN, K.S.G., F.'L.S.,
Senior Assistant, Department of Botany, British Museum (Natural History).
VOL. XXXVIII.
illustrated with plates and cuts.

LONDON:

WEST, NEWMAN \& CO., 54, HATTON GARDEN. 1900.

LONDON
west, Newman and Co., PriNters,
HATTON GARDEN, E.C.

CONTRIBUTORS

TO THE PRESENT VOLUME.

Eleanora Armitage.
C. R. P. Andrews, M.A.
E. G. Bager, F.L.S.
F. Baker.

Ethel S. Barton.
E. A. L: Batters, LL.B., F.L.S. Arthur Bennett, F.L.S.
G. S. Boulger, F.L.S.

James Brebner.
S. A. Brenan, M.A.

James Britten, F.L.S.
Charles E. Britton.
Robert Brown.
William Carruthers, F.R.S.
A. Craig Christie, F.L.S.
C. B. Claree, M.A., F.R.S.
S. J. Coley.
N. Colgan, M.R.I.A.
F. V. Coville.
F. H. Davey.
H. N. Dixon, M.A., F.L.S.

Antony Gepp, M.A., F.L.S.
John Gerard, S.J., F.L.S.
Henry Groves, F.L.S.
James Groves, F.L.S.
Stanley Guiton.
W. P. Hiern, M.A., F.L.S.
E. C. Horrell.
W. Ingham, B.A.
A. B. Jackson.
B. Daydon Jackson, Sec.L.S. Otto Kuntze, Ph. D.
H. W. Lett.

Augustin Lex, M.A.
E. F. Linton, M.A.

Arthur Lister, F.R.S.
Symers M. Madioar.
J. C. Mansel-Pleydell, M.A., F.L.S.
E. S. Marshall, M.A., F.L.S. M. T. Masters, M.D., F.R.S. W. F. Miller.
H. W. Monington, F.L.S.

Spencer le M. Moore, F.L.S. G. R. M. Murray, F.R.S.
W. E. Nicholson.
W. H. Painter.
W. H, Pearson.

Edward Potts.
H. W. Pugsley.

Carleton Rea.
H. P. Reader, O.P.
A. B. Rendle, D. Sc., F.L.S.
H. N. Ridley, M.A., F.L.S.
J. N. Rose.
T. H. Russell.
C. E. Salmon, F.L.S.
E. S. Salmon, F.L.S.

James Saunders, A.L.S.
W. A. Shoolbred, M.R.C.S.

Annie L. Smith.
W. G. Smite, F.L.S.

Richard F. Towndrow.
Fredericy Townsend, M.A., F.L.S.
C. H. Waddell.

Thomas Wainwright.
G. S. West, B.A.
W. West, F.L.S.

James W. White, F.L.S.
J. A. Wheldon.
W. Whitwell, F.L.S.
W. H. Wileinson.

Albert Wilson.
A. H. Wolley-Dod, R.A.
B. B. Woodward, F.G.S.

Directions to Binder.

Or all may be placed together at the end of the volume.

SW.Monington del.
West, Newrnan imp R Norgan lith.

Sphagnum medium Limpr.

J O URNAL OF B OTANY
 BRITISH AND FOREIGN.

SPHAGNUM MEDIUM Limpr. IN BRITAIN.

By Harold W. Monington, F.L.S.
(Plate 405.)
While recently looking through some Sphagna gathered by Mr. E. C. Horrell last August in Teesdale, I was much struck with the beauty of a plant clearly referable to Sphagnum medium Limpr., and, as this fine bog-moss is apparently little known in this country, I have felt justified in making a few remarks upon its history, and in giving a short description supplemented by a plate.
S. medium has been long known as the purple form of S. cymbifolium, the var. purpurascens of Russow, but the identity of this plant with Limpricht's species appears to have escaped notice. It has been frequently gathered and is generally distributed throughout these islands. The first record seems to be that from Witherslack Moss, Westmoreland, specimens from which, gathered by Barnes in 1872, were issued in Braithwaite's Sphagn. Brit. Exsicc. as S. cymbifolium var. purpurascens Russ. To Mr. Stabler belongs the credit of first recognizing S. medium as a British species, it being included in his "Hepaticæ and Musci of Westmoreland" (Naturalist, 1898, 124).
S. cymbifolium var. β congestum was described by Schimper in 1858 (Entw.-Gesch. d. Torfm. 69) as follows: "dense cæspitosum, cæspites rufo- et viridi-variegati vel pallide rufo-rubelli." I have not yet been able to examine Schimper's specimens of this variety, but I can see in the above description little more than a rather denser form than usual of the type, and nothing to exclude the forms of the var. purpurascens. This was distinguished by Russow in 1865 (Beitr. z. Kenntn. d. 'Torfm. 78), thus: " β purpurascens, Astböschel sehr genähert; abstehende Aeste kurz, dick spindelförmig, aufwarts strebend. Meist in tiefen Mooren mit Sph. acutifoiium var. purpureum, doch an nicht sehr feuchten stellen, äusserst dichte, kuppenförmige, und der Oberfäche dunkel bläulich rothe, seltener grün und rothe, im unteren Theile stark gebleichte, meist schmutzig gelbe Rasen bildend."

Dr. Braithwaite's Sphaynacea of Europe and Noוth America appeared in 1880, and included both Bridel's var. compuctum Journal of Botany.—Vol. 38. [Jan. 1900.]
and the var. purpurascens Russ. under var. β congestum Schp. This is referred to (p.41) as occurring in two forms: one "in extremely dense cushions of large size," the other "laxer and of a more rosy tint above and pale below, very conspicuous by the abundant heads of deep purple male inflorescence." The former is apparently the plant distributed in the Exsiccata as the var. "congestum"; the latter agrees with the var. "purpurascens," specimens of which Dr. Braithwaite has kindly sent me. Of the specimens sent out as the latter all are probably S. medium, but some at least of the var. congestum are truly referable to S. cymbifilium.

Limpricht, in Bot. Centralbl. 1881, 313, followed Braithwaite in combining these varieties, uniting them under an older name of Sendtner's, as S. medium, n. sp., mainly upon the strength of the important character of the enclosed chlorophyllose cells. A full and detailed description subsequently appeared in the same author's Laubmoose.

Warnstorf gives an excellent description of S. medium in the Botanical Guzette, 1890, 252-4, from which I quote the following :-
"Dioicous; male branchlets purple. Size and habit of S.cymbifolinm, but with the tufts vai iegated, dappled with green and red to violet-purple, often only the male amentula faintly suffused with red : rarely pure green or white. Branches not more than four, of which two are spreading, strong thick-fusiform, horizontal or ascending, often curved, obtuse, more rarely short-pointed. Wood cylinder purple or rose-red, shining through the cortex. Stem-cortex mostly composed of four, rarely of three or five, layers of cells. Stem-leaves as in S. cymbifolium. Branch-leaves variously shaped. Chlorophyllose cells in cross-section small, elliptical, contral and completely encloser on both sides by the biplane hyalne cells."

The claim of S. medium to full rank is open to question. Cardot (Bull. Soc. Roy. Bot. de Belgique, xxv. 44 (1886)) says: " Malgré l'importance relative du caractère tiré de la coupe transversale des feuilles raméales, je ne puis voir dans le S. medium un type entièrement indépendant du S. cymbifolium." He arrives at this conclusion from certain specimens from the Vosges, \&c., in which the chlorophyllose cells approach the ventral surface, and the common wall of the contiguous hyaline cells becomes thickened, and accordingly sinks S. medium to a subspecies of S. cymbifolium.
S. medium, on the other hand, approaches S. papiliosum, a tropical form, S. erythrocalyx Hpe. bearing papillæ. Warnstorf, in the Bot. Gazette (1890), p. 252, included this under S. medium on account of the enclosed chlorophyllose cells, S. medium thus consisting of both smooth and papillose forms, while S. papillosum was reduced to a var. of S. cymbifolium. More recently, however (Hedwiyia, 1894, 330), he restores S. papillosum, and promotes S. erythrocalyx to specific rank. Our species thus consists of smooth-celled forms only.

Although unquestionably the three species, S. cymbifolium, S. medium, and S. papillosum, are closely related, I am inclined to think S. medium a good species. It varies considerably in colour
and degree of variegation, and to some extent in the arrangement of the branch-leaves, but preserves in nearly all cases a facies by which it can be readily detected.

The crucial point is of course the position of the chlorophyllose cells, to ascertain which the section should be cut through the middle of the leaf; in many cases, however, careful focussing will reveal the situation of the enclosed cells. In focussing downwards the common wall of adjoining hyaline cells will be noticed before the immersed chlorophyllose cells appear; it is of course necessary to repeat this process upon the other side of the leaf.

So far as my own specimens indicate, the distribution of the species is as follows:-England: Witherslack Moss, Westmoreland (Barıes, 1872) ; Teesdale (Dr. Mason) ; Widdy Bank Fell, Teesdale, Durham.(Horell, 1899) ; Keston, Kent (Horrell, 1899). Scotland: Ben More (Dıxon \& Binstead, 1897); Chapelton Moss, Hamilton (J. Murray, 1899). Ireland: Geashill, King's Co. (H. W. Lett, 1890). Mr. Lett's plant was named "S. papillosum var. confertum." Mr. Dixon's specimen from Ben More is certainly not the type; probably it is the var. virescens W .

Explanation of Plate 405.-Fig. 1. Plant, nat. size (Witherslack Moss). 2. Part of stem, with fascicle. 3. Stem-leaf, $\times 16$. 3a. Ditto, apex, $\times 280$. 3b. Ditto, cells above middle, $\times 280$. 4. Branch-leaf, $\times 16$. 4a. Ditto, cells from middle, $\times 280$. 4b. Ditto, transverse section, $\times 500$.

SOME WELSH HAWKWEEDS.

By Rev. Augustin Ley, M.A.

The following descriptions of Hieracium forms appertain to plants which I have been able to study for some years, and are published on my own sole responsibility. I have personally had no opportunity of submitting either the plants or the descriptions to continental authorities; and, although I have naturally brought them before one or two of the leading students of this genus in England, and have received suggestions of much value from their kind criticism, corrections or alterations, if found necessary, must entail responsibility on no one but the author of this paper.

1. Hieracium murorim L. ex parte, var. lucidulum, nov. var. Very near to H. murorum var. pellucidum Laestad., but differing constantlyः from it in the following particulars:-Stem shorter (about 1 ft.); root-leaves of a fuller, less yellow-green, shining, often purple in exposure, veins less impressed on the upper aud far less prominent on the under surface, shortly elliptic or roundly ovate, often 'deeply cordate and toothed at base, and (except at base) almost entire; spreading horizontally. Heads smaller, on shorter, more spreading peduncles, often forming a somewhat umbellate head; ligules shorter, style darkened. Fresh pappus pure white. Stem with a single leaf, which is ovate-acute, rather long-stalked, often placed low on the stem, or 0 .

Mountain rocks and banks, not in the lowlands; common in South Wales. June.

Localities.-Herefordshire: Red Daren and Olchon Daren, in the Hatterel Hills. Monmouthshire: Daren-r-Esgob, Black Mountain. Breconshire: Common on all the mountain rocks, both on the limestone and sandstone; river-side rocks, Glyn Taf-fechan. Carmarthenshire: Cliffs of Llyn-y-fan-fechan; river-side rocks near Llangadoc. Carnarvonshire: Nant Francon. Westmoreland: Amblesıde, 1870, Rev. E. F. Linton!

Often growing in company with var. pellucidum Laestad., but leeping quite distinct from it m the characters noted above. Cultivated along with it for six or seven years, it has retained its characters perfectly. I have endeavoured to indicate its relation to var. pellucidum Laestad. in the choice of a varietal name.

Sent out by me through the London Bot. Exchange Club in 1896, from Llangadoc, as var. pellucidum Laestad.

Specimens of this plant in Mr. Hanbury's herbarium from several of the above localities have been named var. pellucidum Laestad. by Dr. Elfstrand ; but, after watching the two for a series of years, I feel sure that they are distinct.
2. H. murorum L. ex parte, var. sanguineum, nov. var. Foliage light green, the older root-leaves becoming blood-red underneath. Stem-leaf 0, or reduced to a narrow bract. Root-leaves oval or elliptic or long-elliptic, nearly smooth on both surfaces, the base emarginate with one or two backward teeth (later leaves on vigorous plants sometimes with conspicuous forward teeth), the two sides of the blade often unequal at base, the margins bearing small teeth which are often reduced to points, the tip similar, or shortly achminate in the inner leaves.

Stem 12-15 in., nearly smooth, conspicuously furrowed when dry, branched from above the middle, the main branches straight. Prımary flower short-stalked, soon overtopped by the secondaries with curved pedicels. Peduncle and phyllaries setose, the latter bearing abundant black-based greysh hair and loose tomentum, especially on the conspicuous white margins; tip incurved in bud. Anthode semiglobose on opening. Ligules, at least occasionally, ciliate at tip. Style not quite pure yellow.

Standing well away from the type, and from other common varieties of H. murorum, in the broad, semiglobose anthode, and the very hairy phyllaries; but agreeng with the type in the incurved tips of the phyllaries in bud, and in the curved pedicels.

The smooth, light-green leaves, with the teeth often obsolete, and the acuminate point are conspicuous features. I have never seen a stem-leaf.

Bot. Exch. Club Reports for 1893 (as H. cinerascens Jord.), p. 418, and 1897 (as H. murorum var. caliginosum Dahl.?), p. 555 : where see opinions.

Localities.-Yorkshire: Limestone pavements at Malham Cove, 1888; Smearsett and Moughton Scar, near Settle, 1891; Ingleborough, 1891 ; all F. J. Hanbury! Breconshire: abundant on shaded and exposed limestone rocks at the head of Dyffryn

Crawnon, alt. 1450-1500 ft., 1892 and subsequently; central cliff of the Brecon Beacons, on sandstone.

Under cultivation it has retained its characters unchanged for seven years.
3. H. vagense, sp. nov. H. britannicum F. J. Hanb. var. vagense F. J. Hanb. in Journ. Bot. 1892, 367. As this plant seems acknowledged to be misplaced under H. britannicum (see Bot. Exchange Club Report, 1896, p. 523), it seems better to write a short description, giving it rank as a separate species. Its place in our list appears to be near to H. casium Fr., and perhaps next to H. cambricum F. J. Hanb.

Stem slender, drooping, 1 ft. to 18 in ., light glaucous green, as is also the foliage, with a single leaf or 0 , branching from the middle or at top, with few large heads of flower.

Root-leaves long, narrowly oval or elliptic, narrowed at base into long petiole, ascending, upper surface smooth, under strigose with long stiff white hairs, acuminate, the margins bearing many long acuminate very unequal teeth, which are often continued down the petiole nearly to its base. Stem-leaf similar, or narrower and linear. Mıdrib and main veins of all the leaves pellucid.

Stem with sparse white hairs, tomentose above, branches long, ascending. Peduncles and pedicels bearing setæ which are lightcoloured in the living plant. Phyllaries light green, with many setæ and black-based hairs. Bud ovate then oblong, thick; anthode ovate after flowering. Phyllaries at first loosely incurved, erect in bud, tips nearly naked. Heads of flower larye, handsome, flat on opening, ligules long. Style yellow. Latter half of June.

Very similar in general appearance to H. cambricum F. J. Hanb., but larger in all its parts, more hairy and glandular, less intensely glaucous, and with the leaf-teeth strikingly fringing the petiole.

Growing and increasing by seed readily in garden soil. In cultivation this plant retains all its characteristics, and does not change, except to assume a somewhat larger size, and exaggerate the peculiar toothing of the leaves.

On river-side rocks in the valley of the Wye, between Builth and Three Cocks Junction, chiefly near Errwood, in Breconshire and Radnorshire.

First noticed in 1883: cultivated by me since that date.
4. H. vulgatum Fr. var. mutabile, nov. var. Stem 1-2 ft., erect, with 1-4 leaves (usually 2), bearing long stiff white hair on the lower half, slender setæ and tomentum on the upper, the hair lessening upwards, the setæ and tomentum downwards.

Root-leaves several, spreading horizontally, long-stalked, elliptic, flat, rather obtuse, narrowed into petiole, greyish green on both sides, with very small shallow teeth. Petiole and both sides of leaf strigose, like base of stem, with stiff white hairs. Stem-leaves similar to the root-leaves, but with less hair, more deeply toothed, and less narrowed into petiole; 1-4, or reduced to 1 or 2 small. bracts, the lowest usually placed low on the stem, decreasing in size upwards.

Panicle usually branched, with long ascending branches, the branches 1-3-flowered. Peduncles clothed with sparse white tomentum and black-headed setæ. Phyllaries without microglands, bearing setæ but scarcely tomentum except at base, acute, some of the outer ones loose with ascending points, incurved in bud, with white tips. Buds thick, shortly cylindrical; heads of flower rather small. Style nearly pure yellow.

Best placed as a var. under H. vulgatum Fr., this plant nevertheless presents an extraordinary range of variation, which naturally led me , on first studying the wild piant, to suspect a mixture of several species. Further study led me to attribute all the forms to a single species, a conclusion which cultivation has abundantly confirmed. Very small forms with a single stem-leaf from dry mountain banks have become in ordinary garden soil in two years large branching plants 4 ft . high, bearing five stem-leaves and numerous branches. Other forms, simulating H. murorum L., when similarly treated, quickly become indistinguishable from these: the plant therefore in this respect presenting a marked contrast to most of the forms in this genus. The hair, under cultivation, becomes less, and the toothing of the stem-leaves exaggerated.

In comparison with H. sciaphilum Uechtr., the leafy-stemmed forms of this plant have shorter, more elliptic leaves, those of the root usually arranged in a conspicuous flat rosette, the hair stiffer, the anthode thicker, the hair and floccum of the phyllaries less in quantity, the style nearly pure yellow.

Mountain banks, hedge-banks, railway and colliery débris, \&c., in mountain districts; common, at least in South Wales.

Localities.-Breconshire: Abundant on the upper part of the Towy and its tributaries (first noticed in 1890); hedge-bank, Llanwrtyd; bank near Abergwesyn (passed by Dr. Lindeberg as H. rigidum Hartm. var. latifolium) ; gravel of stream, Cellwen; colliery débris, Ystrad-gynlais. Carmarthenshire: Hedge-banks, Nantymwyn; dry mountain banks on the Upper Towy; hedgebank near Llandebie. Glamorganshire: Bank, Pont-nedd-fechan. Cardiganshire: Mountain banks on the Upper Towy; Cwm Twrch.

Sent to the London Botanical Exchange Club from hedgebanks at Nantymwyn as H. murorum L. ex parte, var. ciliatum (see Report, 1896, p. 523); and from dry mountain banks in the same neighbourhood, without a name (see Report, 1897, p. 556).
5. H. vulgatum Fr. var. amplifolium, nov. var. Tall, stem $2-3 \mathrm{ft} .$, erect, sometimes branched from near base; flowers few, rather large; foliage soft, light green.

Root-leaves long-stalked, large, oblong or oblong-obovate, rounded and very obtuse, with very shallow teeth often reduced to mere points, thin, strigose on both sides, with rather stiff white hairs. Stem-leaves $4-5$, large, the upper gradually more shortly stallied and smaller, hairy beneath, nearly smooth above, with larye tiranyilar teeth, acute.

Stem bearing long white hair and setæ, which are rather numerous under and on the base of the phyllaries. Bud shortly
oval, then oblong; anthode after flowering ovate. Phyllaries with many black and few white hairs, light green with darker centre, floccose at tip. Heads of flower flat on opening; ligules very full yellow; styles slightly darkened.

Near var. glaucovirens Dahl., but differing from it in the tall erect habit, closer heads with shorter peduncles, oblong very obtuse root-leaves, soft light and bright green foliage, and darkened style.

From H.sciaphilum Uechtr. it is distinguished by its obtuse oblong root-leaves, larger and less numerous stem-leaves, which bear larger triangular teeth, and white-haired peduncles, and by the less numerous and less black setæ of peduncles and phyllaries.

Hilly banks, on limestone and sandstone; also on mountain rocks.

Localities.-Herefordshire: Great Doward Hill; bank at Walford ; Red Daren, Hatterel Hills. West Gloucestershire: Symonds Yat. Monmouthshire: Wyndcliff, Mr. W. A. Shoolbred! Breconshire: Bwlch-y-fingel, Black Mountain.

THE ADVANTAGES OF 1737 AS A STARTING-POINT OF BOTANICAL NOMENCLATURE.*

By Dr. Otto Kuntze.

At request of the editor of this journal [Gaertnerisches Zentralblatt], I give the following newly proved list of generic names, that do not need to be changed if the starting-point of $1735 \dagger$ is abandoned. The numbers before the names are the approximate number of species:-

$$
15 \text { Aesculus (Pavia 1735). }
$$

30 Ageratum (Carelia 1736).
45 Ajuga (Bulga 1735).
58 Arctotis (Anemonospermos 1736).
1400 Astragalus (Tragacantha 1735) incl.:
150 Spiesia $=$ Oxytropis according to Briquet and Burnat.
23 Bulbine (Phalangium 1736).
21 Carica (Papaya 1735).
8 Carpesium (Conyzoides 1736).
1 Cassandra (Hydragonum 1736).
132 Clitoria (Ternatea 1735).
3 Coix (Spharium 1735).
1 Convallaria § L. (Majanthemum 1736). [§ is the sign for group (section, subgenus or discretionary genus); § L. 1737 means a group of Linnæus.]

[^0]230 Cordia (Lithocardium 1735).
6 Corrigiola (non 1736).
170 Crepis (Hieraciodes 1736), if separated.
600 Croton (Oxydectes 1735).
1 Cuminum (non 1735).
180 Cynanchum (Vincetoxicum 1736) sensu latiore.
1 Dryas (Dryadaa 1735).
72 Echinops (Spharocephalus 1735).
12 Elatine (Potamopithys 1735).
400 Erica Ludw. 1737 (Ericodes Möhr. 1736).-Erica L. 1737 is partly Calluna Salisb. 1802 = Ericodes Ludw. 1737 (non Moehr.), Z. T. Enica Ludw.-Linnæus' indication "Semina numerosa" is only fit for Erica Ludw., because Ericodes vulgare O.K. (Calluna vulg.) has at most 8 seeds.
34 Erythrina (Corallodendron 1735).
8 Feuilléea (non 1735).
5 Galanthus (Chianthemum 1736).
2 Galeopsis (Ladanum 1735).
180 Geranium § L. 1737; 1753 ex parte max. (Geraniospermum Sieg. $1736=$ Pelargonium! Burm. 1738); eventually incl.
— Gruinalis § L. 1737, Ludw. 1737, Haller 1745 (Geranium Sieg., L'Hér.).-Linnæus distinguished 1737 (in Genera Plant.: 204) under Geranium in an observation: Geranium "Riv.," corolla irregulari. Gruinalis "Riv.," corolla æquali et filamentis vix manifeste coalitis. Haller in Flora Jenensis 1745 had under Gruinalis only species which we call now Geranium. Nearly all species of Pelargonium are already named under Geranium, and Geranium is still a popular name of several nations instead of Pelargonium. But it would not be necessary to name the species under Gruinalis, because both genera are better united again, as all indicated differences are not decisive, varying from species to species.
90 (̛̇omphrena (Xeraa 1735).
30 Helenium (non 1735).
1 Illecebrum (non 1736).
400 Inga § L. 1737 (Feuilléea 1735) sensu latiore.
90 Inula (Helenium 1735).
1 Lagoecia (Cuminium 1735).
100 Lepidium (Nasturtium 1735).
12 Linnaa (Obolaria 1736).
1 Lunularia (Marsilia 1735).
23 Melilotus (Sertula 1735).
4 Melia (Azedarach 1735).
13 Michelia (non 1735).
156 Nepeta (incl. Glechoma 1735).
1 Obolaria (non 1736).
8 Ornithopus (Ornithopodium 1735).
2 Patagonula (Patagonica 1735).
220 Oxalis (Acetosella 1736).
27 Phlox (Armeria 1735).

540 Phyllanthus (Diasperus 1735) sensu latiore.
10 Pistacia (Lentiscus 1735).
110 Psidium (Guajava 1736), if separated.
105 Psoralea (Lotodes 1736).
120 Rhus (Toxicodendron 1735).
15 Sesamum (Volkameria 1735).
54 Sisyrinchium (Bermudiana 1735).
80 Stapelia (Stissera 1735).
115 Thesium (Linosyris 1736).
48 Tropcolum (Trophaum 1735).
75 Trigonella (Telis 1735).
44 Trichosanthes (Anguina 1735).
1 Zea (Thalysia 1735).
6285 species in 58 genera with long-used names remain thus valid. But 329 species in 9 genera, valid from the former starting-point, receive new names; therefore 5956 species in 49 genera are spared, that is, are less to be changed, in their names, if we begin with 1737 instead of 1735. But this is the only profitable deviation from the Paris Code.

Moreover, the starting of 1737 affords the great advantage that Linnæus' Geneıa Plantarum 1737 'contains besides the scientific diagnoses of the genera (which are in 1753 without diagnoses!), also definitions for named subgenera or discretionary genera; by which means an easy separation is possible into later distinguished genera. Linnæus wrote, for instance: "Hyacinthus, genus hocce naturale in plura non naturalia distribuerunt: (a) Hyacinthus quum tubus corollæ sit tubulatus oblongus: (β) Muscai i quum tubus corollæ sit fere globosus." In the same manner is distinguished Convallaria (α) from (β) Polygonatum, (γ) Unifolium. The last is now mostly valid for Majanthemum. In the year 1737 Myagrum § L. : Rapistrum § L.-is clear, although united under Myagrum; in the year 1753, when these sections ($\$=$ subgenera $=$ genera discretionaria) are omitted, we must decide ex parte majore, else the matter loses its clearness and becomes confused. The case is the same in Calendula and § Dimorphotheca, Helianthemum, and Cistus, etc. The following names are thus obtained from the $\S \S$ of 1737 for later renewed genera:-Acacia, Alhagi, Arnica***, Arisarum, Bernhardia, Bulbocodum*, Cakile, Camara, Cannabina*, Capnodes, Capnorchs*, Castanea**, Ceratodes, Cereus**, Colocynthis*, Damasonium, Dimorphotheca, Dracunculus, Echinophora, Elephas, Foniculum**, Helianthemum, Helleborodes*, Hypocystis, Ionthlaspi, Lontana § (= Uftia), Lasianthus***, Leuconymphaa* (= Nymphea auct.recent.;), Nymphaa (=Nuphar!), Liliastrum, Limonium, Majorana, Malvaviscus, Melbomia*, Melilotus,Melocactus, Muscari, Nelumbo, Myagrum, Onobrychis, Opuntia, Paliurus, Polygonatum, Raphanistrum, Rapistrum, Rhagadiolus, Securidaca (Securigera DC.), Statice, Symphoricarpus, Thymbra*, Trịosteospermum, Trollius*, Tulipifera, Unifolium, Zacintha**.-(One * means that Linnæus gave such an * to these names in the index of his Genera Plantarum; ** means that Linnæus had that name in 1735 for a genus ; *** indicates both.)

From these discretionary genera, considered by Linnæus and other authors at one time as genera, at another time as sections, a systematic decision is easy ; only two dubious cases occur: the first rare case is that the same group (a) received two names, such as Sida and Malvinda; then the genus name, which received first a species name, is valid. The other case is that three to four names occur for the same now united group; then the name under which they were first correctly united is to be valid. For instance, Lonicera 1737 consists of four genera, and is thus confused; Haller, after exclusion of the genera not belonging thereto, first united Caprifolium, Periclymenum, Chamecerasus, Xylosteum under Caprifolium. Lobelia Pl. is correctly defined as a \S, and is therefore to be excluded; the rest was named then at first Rapuntium, under which name most of the species are already named in the monograph of Presl. Some genera would have to recerve new names, if their name were not secured from the § of 1737 -e.g. Helianthemum. The name Cactus, after exclusion of the $\S \S$ of 1737 , remains good for the remaining part.

In contrast to these great advantages and savings of the 1737-starting-point, there are--see my Revisio Generum IIIII, chapters 27 and 28-to be changed with the 1753 -starting-point the names of 7100 species and 129 genera, whereof only 29 genera with 152 species are named up to the present time. Furthermore, 46 genera thereof with 3621 species would have still to receive new and unusual names, instead of those introduced from the earlier starting-point. But even with this the number of these changes is not finished, because the starting-point of 1753 for genera has not yet been completely worked out. This 1753 -starting-point is thus not only horribly noxious but also unsciertific, as it misses the genera-diagnoses and nearly all the named genera-sections. Only the 1737-starting-point is practicable, scientific, and economical for genera. Perhaps a general convention may be agreed upon to the effect that the 1737-startingpoint be valid for genera, 1753 for species with future exclusion of all intermediate works-that is, of all publications between Linnæus' Genera Plantarum 1737 and Species Plantarum 1753.
[Dr. Kuntze has shown, as might have been anticipated, that for the starting-point of genera there are great advantages attending the adoption of 1737, the date of Linnæus' first edition of the Genera Plantarum, in preference to the Systema of 1735. The Paris Laws of Botanical Nomenclature (1867), art. 15, would have seemed to sanction the use of the names in the publication of 1735, had not they generally been bare names without descriptions or characters, and therefore barred by art. 46.

Dr. Kuntze's concluding proposal is remarkable and arbitrary, and doubtless to many minds will appear unfair as well as inconsistent with sound principles. It is to the effect that, after taking Linnæus' Genera Plantarum of 1737 for the starting-point of genera and the Species Plantarum of 1753 for that of species, all publications between these dates be in future for ever excluded. It is difficult to see why, if 1737 be made the starting-point, the Corollarium Generum

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

ON SOME SPECIES OF CRACCA.

By James Britten, F.L.S., and Edmund G. Baker, F.L.S.

I. Cracca virginiana L.

An incidental reference to the National Herbarium in connection with the plant known to modern American authors until lately as Tephrosia virginiana Pers., and to the more modern school as Cracca virginiana L., showed that by this name were represented in literature and in herbaria two plants so unlike in appearance and in character that it is at first impossible to imagine that they could have been confused. This, however, is the case, and the explanation is rendered more difficult by the fact that the confusion was caused by Linnæus himself, the founder of the species. The name, however, is, and for a hundred and fifty years has been, misapplied; and this it is our object to show.

The following is the description of Cracca rirginiana as it stands in Sp. Pl. 752 (1753): the citations are numbered for convenience of reference:-
[1] "Cracca (riryiniana) leguminibus retrofalcatis compressis villosis spicatis, calycibus lanatıs, foliolis ovali-oblongis acuminatis. Geln. nov. 1090.
[2] Clitoria foliis pinnatis, caule decumbente. Hort. cliff. 498.* Gron. viry. 83.
[3] Elymus Mich. gen. 210.
[4] Orobus virginianus, foliis fulva lanugine incanis, foliorum nervo in spicam abeunte. Plulk. mant. 142.
[5] Cicer astragalordes virginianus hirsutie pubescens, floribus amplis subrubentibus. Pluk. alm. 103. t. 23.f. 2.
Habitat in Virginia, Canada.
Caulis in loco natali erectus est."
[1] The description with the above synonymy (excluding No. 5) appears in Nov. Plant. Genera, pp. 31, 32, n. 1040 (1751), as the first species in the genus Cracca, though without trivial name. It is reprinted, with the addition of the specific name, in Amœn. Acad. iii. 18, 19 (1756). In both places, as in the above quotation, "Elymus Mitch.* gen. 210" is incorrectly quoted as a synonymapparently through some accidental confusion with Erebinthus Mitch. (on the same page), which, however, is also cited by Linnæus in all three places after the generic name Cracca. The mistake is corrected in Sp. Pl. ed. 2, 1063, where Erebintlucs is correctly cited; there is also in the Banksian herbarium a specimen from Mitchell labelled "Erebinthus Mitchell."
[2] The citation of the descriptive phrase from Hort. Cliff. and Gronovius, standing, as it does, first among the synonyms, is in itself sufficient to determine what plant Linnæus had in mind. In

[^1]Hort. Cliff. there is a very full description drawn up from a plant raised from Virginian seeds, so that the synonym quoted from Burmann, and belonging to an Indian plant, may be neglected. It will be noted that the reference to Hort. Cliff. is followed by an asterisk, which, in the preface to $\mathrm{Sp} . \mathrm{Pl}$. ed. 2 , is thus explained: "Descriptiones * tantum in obscuris adhibere necessum fuit, easque sine ambagibus, ut obtinerem compendium tironibus gratum." This sentence appears indeed in Sp. Pl. ed. 1, but the asterisk is omitted, probably through a blunder of the typographer. The sentence is not easy to understand, but the suggestion offered by Mr. Hiern in a note which we transcribe gives the meaning of the $*$, and is confirmed by further examination of the references in Sp. Pl. to which it is attached. Mr. Hiern writes:-"I have examined the text of Galega spp. nn. 3-8, pp. 1062, 1063 in ed. ii, corresponding to Cracca spp., p. 752 in ed. i, and it appears to me that the $*$ following the references there signifies that useful descriptions are to be found in the works thus referred to. The * follows the reference to Hort. Cliff. and four out of the five references to Fl. Zeyl.; and in each of these places useful descriptions occur, whereas in the fifth reference to Fl. Zeyl. a shorter and less satisfactory description is given; there is not a * to the six references to Amœn. Acad. 3, where the descriptions are useless; there is a * following the reference under Galega cinerea L. Sp. Pl. ed. 2, p. 1062, to Amœn. Acad. 5, where the description is useful."
[3] Mitchell's plant has already been dealt with under [1].
[4] We cannot speak positively about this plant, for the determination of which no material appears to exist; so far as the description goes, there is no reason why it should not represent the species intended in the preceding references. Even if, however, we regard this as doubtful, the descriptions and type specimens of the three preceding plants leave no doubt as to their identity with the Cracca virginaana of Sp. Pl. 752.
[5] The plant figured by Plukenet in his Almagestum, the types of which are preserved in his herbarium (Herb. Sloane xciii. f. 100, cii, 166), was accepted by Solander as Galega virginiana Linnæusa name substituted in Sp. Pl. ed. 2, 1062, for the Cracca virginiana of ed. 1, and has been regarded as such by all American authors down to the most recent monographers, but is an entirely different species. The identification of this plant with the true C. virginiana is no doubt due to the general acceptance of Plukenet's figure, which is comparatively easy of access, as the Linnean type; and the specimen in the Linnean herbarium, written up in his own hand, undoubtedly represents the same species. This specimen he received from Kalm, and on its authority it would seem that the locality "Canada" and the note "caulis in loco natali erectus est" were added in Sp. Pl. to the original account in Nova Genera; the inclusion of these details explains the introduction of the reference to Plukenet's Almagestum, which represents the same plant, and from which all the subsequent confusion has arisen. It is im. portant to note that Gronovius rightly distinguished the two

Plukenet plants, as is shown by his descriptions and specimens, and by the labels attached to the latter. De Candolle, too (Prodr. ii. 250), under Tephrosia vurginiana Pers., cites " Galeya virginiana Linn. Spec. 1062, non hort. Cliff.," showing that the discrepancy between the two descriptions had not escaped him. Solander also observed the difference between the plants, and the following note in his MSS. shows that he was misled by the Plukenet figure: having cited the specimens in the Sloane Herbarium from Maryland (Jezreel Jones, Vernon, and Krieg) and Carolina (Catesby), he writes: "Secundum differentiam specificam legumina esset retrofalcata, sed in speciminibus e Carolına missis legumina fuere recta compressa. An distincta planta? sed assimilatur figure Plukenetianæ."

It will, we think, be apparent from what has been said that the foundation of Cracca virgimuana L . is the description published (without trivial name) in Nov. Gen. Pl. (1751), and repeated (with trivial) in Amœn. Acad. in 1756; the synonymy here cited includes the plants of Hort. Cliff., Gronovius, and Mitchell, of each of which, as has been said, the types exist. These types and descriptions refer, not to the plant now universally known as C'ıaca (or Tephosia) vinginiana, but to C'racca spicata O. K. (T. spicatu Torr. \& Gray)-a name which must give place to C. rirginiana.

The history of the plant will be best shown by the following synonymy, in which references are given to the principal works in which the true Cracca virgniana of Linnæus has been entered under various names. From this it will be seen that the right use of ıirginıana ceased with Willdenow in 1800, since which time Galega spicata of Walter, under varıous synonyms, has been accepted as the type of the plant; it was transferred to Tephrosia by Torrey and Gray, and subsequently to Cracca by Dr. Kuntze, who has been followed in this by later American authors. The plant is so distinct from the false rirginiana that the synonymy adduced is not open to doubt; we follow Miss Vail and others in placing here the obscure T. hispida DC. Dr. Robinson's adoption of the name T. villosa Pers. for the plant seems to require a special note.

In this adoptiou Dr. Robınson has been singularly unfortunate. He says (Bot. Gaz. 1899, 199, footnote):-"The name T. villosa is first employed by Persoon in his Synopsis (1807), and is there used exclusively for the American plant. . . . The usage of DeCandolle and many more recent European writers, by which the name T. villosa is applied to an East Indian and Afrıcan species, to which Persoon's description had no reference whatever, is clearly an unwarrautable transposition. It is true that there was an earlier Galeya villosi than that of Michaux, but this should not invalidate Tephrosia rillosa Pers., which is clearly applied to the American plant, and is antedated by no homonym. The plant of the Old World, although possessing an earlier specitic name, was not brought under Tephrosia until later, and, it is believed, should in that genus receive another specific designation."

Dr. Robinson's remarks are based on his very natural assump-
tion that Persoon had only one Tephrosia villosa. As a matter of fact, he has two-nos. 17 and 23-on the same page; the former based on Galega villosa of Michaux, the latter on (\cdot. villusa Linn. It is fortunate that those American botanists who regard the earlier precedence of a name on the page of a book as a claim to priority are in this case prevented from restoring T. villosa, no. 17, by their rule as to the adoption of the earliest specific designation. T. villosa Pers. will therefore remain attached to the Old World plant.

Cracca virginiana L.

Orobus virginianus, etc., Pluk. Mant. 142 (1700) ; Ray Hist. iii. 450 (1704).

Clitoria foliis pinnatis, etc., Linn. Hort. Cliff. 498 (1737) et in herb. Cliffort.!; Gronov. Fl. Virg. 83 (1743) et herb.! (Clayton, no. 102).
Erebinthus Mitch. in Act. Nat. Cur. viii. App. 210 (1748) et in herb. Banks!
Cracca leguminibus retrofalcatis, etc., Linn. Nov. Pl. Gen. pp. 31, 32, no. 1090 (1751), Sp. Pl. n. 1, cum synon.; Gronov. Fl. Virgin. ed. 2, 111 (1762), cum syn.
Cracca virgmiana L. Sp. Pl. 752 (1753), cum synon. (excl. syn. Cicer astragaloides, etc.; Pluk. Alın. 103) ; Amœn. Acad. iii. 18, 19 (1756), cum synonymis.
Galega viryinuna L. Sp. P1. ed. 2, 1062 (1763) (excl. syn. Pluk. Alm.); Willd. Sp. Pl. iii. 1244 (1800) (excl. syn. Pluk. Alm.).
Galega spicata Walt. Fl. Carol. 188 (1788) et herb.!
Galega villosa Michx. Fl. Bor. Amer. ii. 67 (1803).
Tephrosia villosa Pers. Syn. ii. 329, no. 17, non no. 23, (1807); Robinson in Bot. Gaz. 1899, p. 199.
Tephrosia paucıfolıa Nutt. Gen. ii. 119 (1818) et herb.! (pauciflora); Elhott Bot. S. Carol. ii. 246 (1824); DC. Prodr. i. 252 (1825).
T'ephrosia hispida DC. Prodr. ii. 250 (1825).
Galega paucifulia Nutt. ex M. A. Curtis in Bost. Journ. Nat. Hist. i. 122 (1837).*

Tephrosia spicata T'orr. \& Gray, Fl. N. Amer. i. 296 (1838) ; Chap. man, Fl. S. United States, 95 (1860); S. Wats. Bibl. Index, 260 (1878).
Tephrosta mollissima Bert. Bot. Misc. ix. 10, t. 3, fig. 2 (1851).
Cracca spicata O. Kuntze, Rev. Gen. i. 175 (1891); Vail in Bull. Torr. Bot. Club, 1895, 30; Britton \& Brown, Ill. Fl. N. Amer. ii. 293 (1897), cum ic.

II. Cracca holosericea.

The identity of Cracca virginiana L . having been established, it becomes a question what the plant so designated in recent American books is to be called. The only name we can find for this, so completely has its identity been lost sight of, is Tephlrosic holosericea Nuttall, which was proposed by him as a species in 1834, and was

[^2]subsequently reduced by Torrey and Gray to a variety of the plant they called T. virginiana. Nuttall's specimens in the National Herbarium show no characters which separate the plant from the false virginiana, of which Nuttall himself at first considered it a variety; and no one now regards it as specifically distinct. Nuttall says of it:-"Nearly related to T. virginica, but with leaflets more numerous and approximating, and with the whole plant sericeous, scarcely excepting the upper surfaces of the leaves." Our series of specimens shows almost every intermediate in clothing between this and the var. glabra of Torrey and Gray, and we propose to adopt Nuttall's name for the species; those who consider the more common and less silky form worthy of varietal distinction will doubtless find for it a suitable name.

The synonymy of the plant is as follows :-

Cracca holosericea.

Cicer Astragaloides (fortè) Virginianum, hirsutè pubescens, floribus amplis, subrubentibus, Phytogr. Tab. 23, fig. 2. Pluk. Almagest. p. 103 (1696) et in Herb. Sloane, xciii. 100! cii. 166 ! Raii Hist. iii. 451 (1704).
Vicia folis pinnatis abruptis Gronov. Fl. Virgin. 83 (1743), ed. 2, 106 (1762) et herb.! (Clayton, no. 38) cum syn.
Cracca virginiana L. Sp. Pl. 752 (1753) quoad syn. Pluk. Almag. (supra citat.) et in Herb.! ; O. Kuntze, Rev. Gen. i. 173 (1891) ; MacMill. Metasperm. 328 (1892); Vail in Bull. Torr. Bot. Club, 1895, 27 ; Britton \& Brown, Ill. Fl. N. Amer. ii. 292 (cum ic.) (1897) ; et auct. Amer.
Galega viryiniana L. Sp. Pl. ed. 2, 1062 (1763) (quoad syn. Pluk. Alm.) ; Mill. Gard. Dict. ed. viii. no. 4, excl. syn. (1768) ; Hill, Veg. Syst. xxi. p. 55, t. lv. fig. 1 (mala) (1772); Walt. Fl. Carol. 187 (1788) ; Michx. Fl. Amer. ii. 67 (1803); Soland. MSS. in Herbb. Sloane \& Banks !.
Teplurosia virginiana Pers. Syn. ii. 329 (1807) ; Pursh, Fl. Amer. Sept. ii. 489 (1814); Nutt. Gen. N. Amer. Pl. ii. 119 (1818); Elliott, Bot. S. Carol. ii. 245 (1824) ; DC. Prodr. ii. 250 (1825); Torr. \& Gray, Fl. N. Amer. ii. 295 (1838) ; Chapm. Fl. S. United States, 94 (1860) ; S. Wats. Bibl. Index, 260 (1878) ; Robinson in Bot. Gaz. xviii. 196 (1899).

T'ephrosia virginica Bigel. Fl. Boston. (sphalm.) ed. 2, 278 (1824). Tephrosia holosericea Nutt. in Journ. Acad. Philad. vii. 105 (1834).
Tephrosia virginirna r holosericea Torr. \& Gray, Fl. N. Amer. ii. 296 (1838) ; Wats. Bibl. Index, 260 (1878); Robinson in Bot. Gaz. xviii. 196 (1899).
Cracca virginiana holosericea Vail in Bull. Torr. Club, 1895, 27 ; Britton \& Brown, Ill. Fl. N. Amer. ii. 293 (1897).

III. Cracca Seemanni sp. n.

There remains for consideration a plant collected by Seemann in Mexico (Sierra Madre, no. 2191), which is cited as T. virginiana (= Cracca holosericea) by Mr. Hemsley (Bot. Biol. Centr.-Amer. i. 258), and was noted by Bentham on the sheet in the National

Herbarium as "T. virginiana Pers. var." The specimens both at the British Museum and Kew stand out from C. holosericea by habit and by the thicker leaflets, which are glabrous and shining above and silky and very white beneath; the racemes bear fewer and somewhat smaller flowers. It is no doubt closely allied to C. holosericea, but, although with some hesitation, we propose it as a species, of which the following is a diagnosis :-

Cracca Seemanni, sp. n. Species certe C. holosericea valde affinis; differt imprimis foliolis crassioribus subtus albo-sericeis, racemis paucifloris et floribus paulo minoribus.

Suffruticosa, caulis patentim tomentoso-villosus $\pm 3 \mathrm{dm}$. longus, stipulis lanceolatis acuminatis, petiolis communibus brevibus, foliolis 11-19 coriaceis oblongis vel ovato-oblongis mucronatis superne glabris subtus albo-sericeis $0.8-1.5 \mathrm{~cm}$. longis, $\pm 0.5 \mathrm{~cm}$. latis costa media in pagina superiore impressa in pagina inferiore prominente; racemis terminalibus paucifloris et floribus interdum axillaribus, pedicellis gracilibus patentim villosis florentibus $1 \mathrm{~cm} .-1 \cdot 3 \mathrm{~cm}$. longis ; calycis tubo villoso laciniis angusti-lanceolatis acuminatis; alis carinæ paulo brevioribus, carina obtusa glabra $\pm 1 \mathrm{~cm}$. longa; leguminibus immaturis albo-sericeis. "Flores purpurei," (Seemann).

Hab. Mexico, Seemann, Sierra Madre, no. 2191.

IV. Benthamantha Alefeld.

This name was substituted by Alefeld in Bonplandia $(1862,264)$ for Cracca Benth., the name Cracca having already been employed generically for a section of Vicia. Dr. Kuntze, having unfortunately overlooked this, proposed (Rev. Gen. i. 164) a new name-Britton-amra-for Cracca Benth., but later (l.c. iii. 53)* recognized the claims of Benthamàntha.

While working at Cracca (Tephrosia Pers.) we had occasion to refer to Cracca Benth., and it seems worth while to bring together the plants which have been referred to it and will have to be placed under Benthamantha. The employment of the name Cracca for three distinct groups of plants has already led to confusion, \dagger and, until botanists have agreed either to maintain Cracca or Tephrosia Pers. or to retain the latter name, further difficulties will inevitably arise. Dr. Millspaugh, for example (Contrib. Fl. Yucatan, i. 22), places under Cracca C. cinerea and C. caribaa-plants representing two genera; in Contrib. ii. 299 he describes a new species, C. Greenmanii, which apparently belongs to Benthamantha, but again places next to it C. cinerea (Tephrosia cinerea Pers.); in Contrib.

[^3]\dagger e.g. in Index Kewensis, Galega ochroleuca Jacq. is identified with Vicia ochroleuca L.

Journal of Botany.—Vol. 38. [Jan. 1900.]
iii. 366 he adds Cracca bicolor Boiss. (which is apparently a Benthamantha), and associates it with C. Greenmanii and what he now calls "Cracca villosa cinerea L. (Kuntze)." * Dr. Millspaugh points out (l.c. 345) that the set of Schott's plants which he cites is numbered differently from that at the British Museum and at Kew; it may therefore be that no. 537 in his collection is as he states (l.c. 366) C. cinerea, although our specimens under that number, collected at the same place and on the same day, belong to B. mollis Alef. or a closely allied form. These, like Schott's no. 865 (from Yucatan), are labelled " Tephrosia spicata Torr. \& Gray"; the two seem identical, and his 163 (from Merida) is also a Benthamantha; the two last numbers are not cited by Dr. Millspaugh. \dagger

Whether the plants here enumerated can be retained as distinct species is open to doubt, as various puzzling intermediate forms exist between them. Dr. Kuntze (Rev. Gen. i. 164, 165) points out the inconstancy of certain characters relied on by previous authors to separate the species, and reduces all the plants which had up to that time been described under Cracca Benth. to varieties of C. caribea.

In the National Herbarium there is a specimen from Jacquin of his Galega caribaa. The leaflets are small, 19-21 in number, oblong or lanceolate-oblong and aristate-mucronate, sericeousvillose, and not, as Jacquin states in his description, glabrous. The plant is figured and descrıbed in Jacquin's Select. Stirp. Amer. p. 212, t. 125 (1763), and there is a coloured representation of the same figure in the rare Select. Stirp. Amer. Pict. p. 100, t. 193 (circa 1780), of which an excellent copy is in the Department of Botany. Other early material of this species shows that the leaflets vary considerably both in size and number.

This variability may be shown by giving the measurements in four specimens which seem certainly referable to this species, although the one from Martinique (Hahn, no. 241) was distributed as Tephrosia cinerea. The leaflets in Jacquin's specimen are only $5-6 \mathrm{~mm}$. long ; in Hahn's plant they are $1-1 \cdot 2 \mathrm{~cm}$. ; in West India specimens from De Ponthieu they are $1 \cdot 2-1.5 \mathrm{~cm}$.; while in plants from St. Lucia they reach 2.5 cm . The pubescence likewise varies from sericeous-villose in the smaller leaflets to strigose-pubescent in the larger. We have not found any plants of B. caribaa with entirely glabrous leaves. The apparently good character derived from the shape of the sepals is also apt in this genus to be somewhat deceptive ; for instance, the sepals of B. ochroleuca as figured by Jacquin are shorter than they are in the specimens cited by Bentham as representing this species. For the purposes of this enumeration, however, we retain the species as published.

[^4]
THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

MOSSES OF FALMOUTH AND THE NEIGHBOURHOOD.

By the Rev. W. H. Painter.

The Mosses recorded below were gathered by me when staying at Falmouth between February and the middle of May, 1898, to which I have added a few which Mr. G. H. Fox, of Falmouth, has furnished me with from the neighbourhood of Penzance. Against these last-mentioned Mosses I have placed " F ," as well as against the habitats with which he has supplied me, whilst my own gatherings are distinguished thus (!).

I am greatly indebted to Messrs. Benson and Hamilton, of Shrewsbury, and to Mr. E. C. Horrell and Mr. H. N. Dixon for examining and naming the Mosses submitted to them, especially to the first-named botanist.

The nomenclature and sequence adopted is that of Dixon and Jameson's Student's Handbook of British Mosses.

Sphagnumn cymbifolium Ehrh. Budock Rocks !-S. subsecundum Nees var. contortum Schp. Budock Rocks! Porthgwarra, near Penzance, F.-S. acutifolium Ehrh. Penjerrick!

Catharinea undulata W. \& M. Common.
Polytrichum aloides Hedw. Pennance Point; Pendennis Point! $-P$. juniperinum Willd. Pennance Point; Budock Rocks. $-P$. formosum Hedw. Sunny Corner, Truro; Budock Rocks!

Pleuridium subulatum Bab. Trefusis and Pennance Points; Glendurgan!

Ceratodon purpureus Brid. Very common.
Dicranella heteromalla Schp. Common.-D.varia Schp. Sandy Cove, Falmouth.

Campylopus fragilis B. \& S. Pennance Point!
Dicranum scoparium Hedw. Penjerrick; Glendurgan; Budock Rocks!

Fissidens viridulus Wall. Near Falmouth ! - F. bryoides Hedw. Sunny Corner, Truro; Trefusis fields; Budock; Swanpool!-F. taxifolius Hedw. Near Falmouth ; Sunny Corner, Truro!

Grimmia apocarpa Hedw. Budock Rocks !-G. maritima Turn. Trefusis Point, where it had been previously gathered; Pennance and Pendennis Points! - G. pulvinata Sm. Budock Rocks, and Sunny Corner, Truro!

Rhacomitrium fasciculare Brid. and R. heterostichum Brid. Budock Rocks!

Ptychomitrium polyphyllum Fürnr. Falmouth and Budock Rocks! St. Kevern Churchyard, F.

Hedwigia ciliata Ehrh. Budock Rocks!
Pottia Heimii Fürnr. Pendennis Point! - P. truncata Lindb. Pennance and Pendennis Points; Budock! - P. minutula Fürnr. Pendennis Point!, where it had been previously found by Mr. Tellam, of Bodmin.

Tortula aloides De Not. Near Swanpool, Falmouth, in small quantity! - T. cuneifolia Dicks. Sunny Corner, Truro!, where it
had been previously found by Mr. Tellam. - T. muralis Hedw. Common.

Barbula rubella Mitt. In small quantity near Swanpool, Falmouth! - B. tophacea Mitt. Pendennis and Pennance Points; Sandy Cove, Falmouth ! - B. fallax Hedw. Pendennis Point !B. convoluta Hedw. Sunny Corner, Truro, and Pennance Point!B. unguiculata Hedw. Common.

Weissia microstoma C. M. Trefusis Point; Budock! - W. viridula Hedw. Common!

Trichostomum mutabile Bruch. var. littorale Dixon. Sunny Corner, Truro! "A large form," H. N. Dixon. - T. flavo-virens Bruch. In fruit, Sandy Cove, Falmouth! Passed by H. N. Dixon. This is the first record of the fruit of this moss having been found in this country. Maenporth and Pennance Point!-T. nitidum Schp. Rocks, Falmouth and Maenporth!

Ulota crispa Brid. Glendurgan, F.-U. phyllantha Brid. Pennance Point! Swanpool, near Falmouth, F.

Orthotrichum diaphanum Schrad. Trees, Pennance; walls, Falmouth!

Physcomitrium pyriforme Brid. Swanpool! St. Kevern Churchyard, F.

Funaria ericetorum Dixon. Pennance Point! Porthgwarra, near Penzance, F. - F. hygrometrica Sibth. Falmouth and Sunny Corner, Truro!

Bartramia pomiformis Hedw. Sunny Corner, Truro!
Webera nutans Hedw. Budock!
Bryum alpinum Huds. Budock Rocks! - B. atropurpureum W. \& M. Pennance Point!-B. caspiticium L. Budock; Penjerrick! - B. capillare L. Budock Rocks and Pennance Point!B. inclinatum Sw. Pennance Point !-B. argenteum L. Falmouth!

Mnium undulatum L. Budock! - M. hornum L. Common!M. punctatum L. Glendurgan and Budock!

Neckera complanata Hübn. Budock!
Pterygoplyllum lucens Brid. Glendurgan, where it was pointed out to me by Mr. Fox; Trefusis Wood, and near Marlborough Cottage, Falmouth!

Porotrichum alopecurum Mitt. Budock Rocks and Helford! Penjerrick, F.

Thuidium tamariscinum B. \& S. Pennance Point! Trefusis fields, \&c.; Glendurgan (pits), F.

Pleuropus sericeus Dixon. Trefusis Woods and Sunny Corner, Truro!

Brachythecium rutabulum B. \& S. Maenporth; Budock Rocks, and near Falmouth ! - B. velutinum B. \& S. Pennance Point!B. populeum B. \& S. Near Falmouth ! - B. purum Dixon. Maen. porth; Glendurgan; Budock Rocks ; Falmouth Cemetery!

Eurhynchium piliferum B. \& S. Glendurgan!-E. pralongum B. \& S. Common !-E. Swartzii Hobk. Penjerrick !-E. tenellum Milde. Near Falmouth ! - E. myosuroides Schp. Trefusis Wood; Budock Rocks; and Glendurgan!-E. striatum B. \& S. Maenporth; Glendurgan; Penjerrick; Pennance; and Helford!-E.
rusciforme Milde. Penjerrick and Helford! Porthonstock Wood, St. Keverne, F.-E. confertum Milde. Common!

Plagiothecium Borrerianum Spr. Budock Rocks ! - P. denticulatum B. \& S. Helston and Falmouth!-P. sylvaticum B. \& S. Glendurgan!

Amblystegium serpens B. \& S. Common.
Hypnum cupressiforme L. Budock Rocks; Glendurgan; Truro ; Falmouth! approaching var. resupinatum Sehp. Bull's Avenue, Falmouth; Budock! - Var. ericetorum B. \& S. Budock Rocks, in small quantity ! - H. cordifolium Hedw. Swanpool Marsh!-H. cuspidatum L. Trefusis Woods! Gillingvase Marsh, near Falmouth, F.-H. Schreberi Willd. Falmouth!

Hylocomium splendens B. \& S. Falmouth !-H. squarrosum B. \& S. Pennance Point and Glendurgan 1-H. triquetrum B. \& S. Budock Rocks, and Pennance Point, and Glendurgan !

REPORT OF DEPARTMENT OF BOTANY, BRITISH MUSEUM, 1898.
By George Murray, F.R.S.
The additions to the collections by presentation have consisted of :—Types of 3 species of Asarum, by W. W. Ashe; 180 Malayan Plants, by H. N. Ridley; 20 Australian Plants, by Miss Jessie Hussey; 301 Plants from Novaya Zemlya and Waigatz, by Col. H. W. Feilden; 28 Plants from Machakos, by Dr. S. L. Hinde; 70 Plants from Tibet, by A. H. Savage Landor; 21 Orchids from Messrs. Veitch; 92 Siamese Plants, by S. S. Flower ; 591 Rhodesian Plants, by Dr. R. F. Rand; 524 Flowering Plants and 35 Cryptogams, by J. F. Duthie; 627 Cape Plants, by Capt. Wolley Dod; 346 Plants and 14 Fruits from Christmas Island, by Sir John Murray; 192 West African Plants, by J. W. H. Migeod; 169 Flowering Plants from Asia Minor, by Capt. F. R. Maunsell ; 88 European Flowering Plants, by Mrs. E. G. Clink; 4 Orchids, by Messrs. Sander \& Co.; 4 Orchids, by Sir Trevor Lawrence; a collection of Phyto-plankton from the Atlantic, by Captain C. S. Tindall; 44 Marine Algæ from Mauritius, by J. Cosmo Melvill; 2 Marine Algæ from Grand Canary, by Miss Anna Vickers; 176 Cryptogams from North-West India, by J. F. Duthie; 52 Cryptogams from New Zealand, by D. Thomson; 52 Ferns from Jamaica, by William Fawcett; 3 Slides of Rhodesian Diatoms, by T. Comber; 32 Slides of American Diatoms, by B. W. Thomas; 2 collections of Phyto-plankton from the Indian Ocean, by Capt. Cowie; 578 Cryptogams, by Mrs. K. M. Lyell; 88 specimens and 28 slides of Mycetozoa, by Arthur Lister ; a collection of Phytoplankton from the Indian Ocean and China Sea, by Capt. Leigh; 2 Californian Hepatics, by Marshall A. Howe.

The following additions have been made by presentation to the British Herbarium :-14 specimens British aliens, by S. T. Dunn; 4 Phanerogams, by W. Whitwell; 346 Phanerogams and 2 Characeæ, by Rev. E. S. Marshall; 65 Rubi, by Rev. W. Moyle Rogers; 96
specimens, by W. A. Shoolbred; 23 Characeæ, by Rev. G. R. Bullock-Webster; 61 Mosses, by H. N. Dixon.

The following additions have been made by exchange of du-plicates:-73 Cape Plants from Professor McOwan; 824 Indian Plants from the Calcutta. Botanic Gardens; 146 North American Phanerogams collected by J. R. Vasey; and 37 specimens (mostly Malvaceæ) from J. N. Rose.

The following specimens have been acquired by purchase:Four hundred Phanerogams from Canaries, by Rev. R. P. Murray ; 1524 Phanerogams from South Africa, by Dr. F. Wilms; 1120 Phanerogams from South Africa, by R. Schlechter; 108 Phanerogams from New Guinea, from Dr. Garcke; 1519 Phanerogams and 141 Cryptogams from Utah, by Marcus Jones; 100 Phanerogams from South California, by S. B. Parish; '150 Mexican Plants, by C. G. Pringle; 95 Phanerogams from Natal, by J. M. Wood; 314 Phanerogams and 48 Cryptogams from Cameroons, by Zenker; 680 Mexican Plants, by Ed. Palmer ; 203 Phanerogams from Florida, by G. M. Collins; 117 Phanerogams from Costa Rica, by H. Pittier; 970 Chinese Plants, by Rev. Father Hugh; 494 North African Plants, by Dr. L. Murbeck ; 400 Italian Fungi, by Saccardo; 51 Mosses and 58 Lichens from North America, by Small; 100 South European Mosses, by Fleischer and Warnstorf; 150 North American Algæ, by Collins, Holden, and Setchell; 81 Mosses of Tahiti, by Bescherelle; 20 European Algæ, by De Toni; 250 Fungi, by Sydow; 113 East Indian Hepatics, by Schiffner; 303 Cryptogams from Labrador and Newfoundland, by Waghorne; 141 North American Cryptogams, by Jones; 34 Algæ from Florida, by Curtiss; 76 Vascular Cryptogams from South Africa, by Wilms; 10 Mexican Fungi, by Pringle; 90 North American Fungi, by Seymour and Earle; 100 North American Fungi, by Ellis and Everhart; 40 North American Lichens, by Cummings, Williams, and Seymour ; 100 North American Algæ, by Tilden; 100 Bohemian Mosses, by Bauer; 100 Saxon Fungi, by Krieger; 12 sheets of water-colour drawings of Fungi, by W. G. Smith; set of tracings of Mocino and Sesse's drawings of Mexican Plants; and 84 microscopic preparations, by Deby.

SHORT NOTES.

Ranunculus Baudotir Godr. - In May, 1896, I noticed in the lake in Wimbledon Park, where Ranunculus peltatus Schrank is exceedingly plentiful, a few plants of an aquatic Ranunculus which appeared to be of a different species. Upon examination I came to the conclusion that they belonged to R. Baudotii Godr., and since that date Messrs. H. \& J. Groves, who have seen fresh specimens of the plant, have expressed the same opinion. R. Buudotii has not hitherto, I believe, been recorded for Surrey, but specimens from Plumstead Marshes, not far from the county boundary, are in the herbarium of the British Museum. It is possible that the plant, which usually grows near the sea, may have been recently intro-
duced at Wimbledon ; but as one or two other maritime speciese. g. Rumex limosus Thuill. and Scirpus maritimus L.-still occur in the vicinity, I think it more probable that R. Baudotii may be a survival from the days when the tidal influence of the Thames extended much farther than at present along the valley of the Wandle.-H. W. Pugsley.

Suffole Aliens.-The following plants were collected last year near Lowestoft and Oulton Broad-in the former locality by Mr. W. A. Dutt, in the latter by myself. The localities are indicated by initials:-Sisymbrium pannonicum Jacq. (O.B.), Conringia orientalis Dum. (O. B.), Lepidium Draba L. (0.B.), L. perfoliatum L. (O. B.), Iberis umbellata L. (O. B.), Saponaria Vaccaria L. (L. \& O.B.), Geranium phaum L. (L.), G. striatum L. (L.), Trigonella carulea Ser. (O.B.), Coronilla scorpioides Koch (L.), Trifolium resupinatum L. (0. B.), Vicia varia Host (O. B.). Bupleurum rotundifolium L. (L. \& 0. B.), Carum Carvi L. (0.B.), Coriandrum sativum L. (L. \& O. B.), Caucalis latifolia L. (O.B.), C. daucoides L. (O.B.), Asperula arvensis L. (L. \& O.B.), Erigeron canadense L. (L. \& O. B.), Anthemis tinctoria L. (L. \& O. B.), Cnicus setosus Bess. (0. B.), Mariana lactea Hill (L. \& O. B.), Anagallis carulea L. (O.B.), Asperugo procumbens L. (L. \& O.B.), Marrubium Alysson L. (O.B.), Plantago arenaria W. \& K. (O. B.), P. Lagopus L. (O. B.), Phalaris paradoxa L. (L. \& O. B.), Lolium italicum Braun (L.), Lagurus ovatus L. (O. B.).F. Baker.

Note on Alisma. - In this Journal for 1893, p. 48, the Rev. E. S. Marshall recorded a variety of this species-"v. zosterifolium Fr." ; and mentions, among some references that I had given him, " var. sparganifolium Fr. Mant. iii. p. 183" (1842). So far as the quotation goes, this is correct, as Fries there puts the plant under ranunculoides, and refers to Bot. Notiser, 1840 [p. 35]; but in his Sum?n. Veg. Scand. p. 65 (1846), Fries placed it under natans, of which it is a variety. Marsson, Fl. Neu-Vorpommern, pp. 446-7 (1869), gets over the difficulty by putting the plant under both species, but under natans gives no reference. In the twelfth edition of Hartmann's Skand. Fl. p. 39 (1889), it is reduced to a form"f. zosterifolia." Prahl (Krit. Fl. Schlesur.-Holst. 204 (1890)) and Aschers. \& Graebner (Fl. Nordost. Flachlandes, p. 67 (1898)) both give sparganifolium under natans. The plant should stand as :-

Alisma natans L. var. sparganifolium Fr. (Mant. iii. p. 183, 1842; Summ. Veg. Scand. p. 65, 1846). Echinodorus natans Engler, var. sparganifolius Aschers. Fl. Brandenb. i. 652 (1864).

In the Flora of Perthshire I do not find any reference to a variety of A. Plantago which Dr. Buchanan White sent me. It is doubtless as he has labelled it, "var. graminifolium Wahlenb." Fl. Suec. i. p. 228 (1824). His note on it is: " This I suppose $=\gamma$ graminifolium Wahlenb., but perhaps that is only an extreme state of β lanceolatum With., which, however, I have not seen. It grew in several feet of water, and no flowers were seen. I have not seen it elsewhere." The locality was "Kings Myre, Perth, 19.8.1885."Arthur Bennett.

NOTICE OF BOOK.

Nova Synopsis Ruborum Germania et Virginia. Pars I. [Monographical contributions to the knowledge of the genus Rubus, especially of the Brambles of Germany and Virginia. By Ernst H. L. Krause, M.D. First Part. Quarto ; pp. 105, tabb. 12. Saarlouis, 1899; published by the Author. Price 13.60 marks.]

The Editor has asked me to say something about this wellprinted book, as our doyen, Rev. W. Moyle Rogers, is unfortunately debarred from doing so through not understanding German. He would have brought to the task an accurate knowledge, wide as well as deep, which I do not possess; having, however, in recent years sampled the principal bramble-forms of various districts, sometimes in company with specialists, I am fairly well acquainted with the best-marked and most widely distributed among them, and may hope to have formed tolerably sound and reasonable opinions about the value which can be placed, broadly speaking, on our alleged species. The prolific Rubus-flora of an outlying and detached group like the British Isles affords exceptionally good material for testing the work of continental (especially western) authors: visits from Focke, Areschoug, and Gelert have helped considerably towards this comparison, but a long period of study will be needed before it can approach completeness. Unfortunately, Dr. Krause, although he has visited Great Britain, does not appear to have collected here; and his remark (p. 16): "I was unable to identify the Rubus-forms observed in England and Scotland with those of N. Germany" leads one to suppose that his researches were not very thorough.

The title of the work at once betrays a defective sense of proportion: it is not easy to see why one of the United States should be thus tacked on to Germany, nor could a single visit to Virginia qualify the author for attempting a monograph of its brambles. A sentence from the prospectus illustrates his mental attitude:"The species adduced are of equal value with one another, and also of equal value with the universally acknowledged Central European species of Salix." This assertion is incapable of proof; a glance at his "Synopsis specierum" shows its absurdity, to say nothing about the test of experience. So far as Britain is concerned, no genus approaches Rubus in complexity of forms, excepting Hieracium; Carex or Salix may perhaps come third, but at a great distance.

Dr. Krause was formerly a disciple of Dr. Focke, whose Synopsis Ruborum Germanice served (naturally, indeed inevitably) as his textbook. At one time he went beyond the older student in subdivision, e.g. in dealing with the section Suberecti; but his views have since completely changed, and his present position is summed up as follows (p.14): "Focke assumed, as the cause of the polymorphism of the brambles, that very numerous hybrids had developed from a few species. This hybrid-development he for the most part
assigned to an earlier geological period, and supposed that the original parents might have died out or changed. The essential difference of my conception from that of my teacher lies in my tracing the polymorphism of the brambles to the crossing of species still living and still distinguishable." Both theories rest mainly upon the presence of defective pollen-grains in a great majority of the brambles tested by Dr. Focke: a phenomenon which does not seem to have been verified hitherto by British microscopists, and which, if found to hold good, is a primá facie presumption in favour of some hybrid origin, remote or recent. Of the two, Dr. Focke's appears to me to be by far the more probable, though I greatly doubt whether it can account for all the numerous existing British forms which are more or less constant. That brambles do in many cases interbreed is now indisputable; but the evident offspring of two markedly different parents is, as a rule, nearly or quite sterile. It has indeed been asserted that, when they spread by rooting at the tips, sterility tends to disappear; but real evidence does not seem to be forthcoming for this conclusion, much less for the assumption of Dr. Krause that the progeny of three, or even four, true species is frequently as fertile as any of the ancestors. He says (p. 6): "In my experience, hybrids predominate in all collections"; but is this capable of anything like proof?

The brief introduction is followed by an interesting essay on "the notion of a species." As regards evolution, there is (p. 8) this sensible remark: "We need only bear in mind that the species defined by us exists but for a time, not for ever. In spite of this ideal temporary limitation, the species are, for us, practically without exception, permanent; for, as a rule, the alteration of species in the vegetable kingdom progresses no faster than in the animal kingdom, including mankind. We are acquainted with a number of forms in both organic kingdoms which have not altered during several thousand years." The following definition is suggested as sufficient for ordinary purposes: "A species is the sum-total of all the individuals of a genus which can be properly included under one common name, and distinguished by it from other equivalent groups of individuals in the same genus." "Forms and individuals which exist outside species-limits" receive from the author the name of " out-species" (Aussenarten). I do not quite understand what is meant by this-probably, suspected hybrids.

Dr. Krause's chapter on nomenclature is most curious. After saying (p .11) that " all scientific nomenclature misses its object unless the greatest possible permanence is striven for," and that "the much-lauded principle of priority has caused the greater muddle the more strictly it has been followed," he declares that he has, like Ascherson, abandoned the custom of appending the describer's name to species. What a delightful prospect lies before us, if this example is generally followed in Germany or elsewhere, the present work well illustrates; in a good many cases one can only conjecture what plant Dr. Krause intends by the particular name used. "Subspecies stand between variety and species, as a semicolon between comma and full stop." This is a good working

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Sixteen pages are devoted to the alleged hybrids between Rubus idaus and the European blackberries, and thirty-seven to the bramble forms of Alsace. This, with an explanation of the plates, brings Part I. to a conclusion. Regarded as a whole, I do not consider it a trustworthy contribution to science, though its preparation has evidently cost the author much labour, and he has displayed considerable ingenuity.

Edward S. Marshall.

ARTICLES IN JOURNALS.*

Annais of Botany (Dec.). - R. A. Harper, 'Cell-division in sporangia and asci' (3 pl .). - W. C. Worsdell, 'Vascular system of female 'flowers' of Conifere' ($\mathbf{1} \mathrm{pl}$.$) .-H. M. Ward, 'Symbiosis.'$ -Id., 'Culture of Algæ' (1 pl.). - F. Darwin, 'Geotropism and localization of the Sensitive Region ' (1 pl.). - Id., 'The Botanical Work of Charles Darwin' (portr.). - H. Wager, 'Sexuality of Fungi.'

Bot. Centralblatt (Nos. 48-52). - B. Leisering, 'Ueber die Entwickelungsgeschichte des interxylären Leptoms bei den Dicotyledonen' (concl.). - A. Nabokich, 'Ueber die Functionen der Luftwurzeln' (1 pl.). - (No. 48). L. Marchlenski, 'Zur Chemie des Chlorophylls.' - (Nos. 49, 50). 'Weitere Beobachtungen iuber die Biologie von Helleborus fretidus.' - (No. 51). C. Wehmer, Aspergillus varians, sp. n. - J. Thomann, 'Ueber die Bedeutung des Atropin in Daturia-Samen.'

Bot. Gazette ("October"' issued 21 Nov.). - F. L. Stevens, ' Compound oosphere of Albugo Bliti.' - C. M. Derrick, 'Development of holdfasts of Floridec' (3 pl.). - W. Miller, 'Nomenclature of cultivated plants.' - B. O. Longyear, ' New Michigan Fungi.'(30 Nov.) J. F. Clark,' Toxic effects of deleterious agents on germination and development of certain filamentous fungi.'- K. M. Wiegand, 'Development of microsporangiam in Convallaria and Potamogeton' (3 pl.).-A. B. Townsend, 'Hermaphrodite gametophore in Preissia.'

Bot. Notiser (häft 6: 15 Dec.). - R. E. Fries, 'Polysaccum crassipes.'-N. Svedelius, 'Enalgologisk undersökning från svenska knoten af Ostersjön.' - N. Bryhn, Philonotis anceps, Brachythecium gelıdum, spp.nn. - J. Holmboe, 'En fjeldform af Capsella Bursa-pastoris.'-O. Nordstedt, 'Quelques mots sur Stapfia Chodat.'

Bot. Zeitung (16 Dec.).-H. Solms-Laubach, ' Ueber das genus Plenromeia' (1 pl.).

Bull. de l'Herb. Boissier (30 Nov.). - H. de Boissieu, 'Les Crucifères du Japon.' - O. \& B. Fedtschenko, 'Matériaux pour la flore de la Crimée' (cont.). - H. Christ, 'Filices Faurieanæ.'-

[^5]B. A. Fedtschenko, ' Novitiæ Floræ Turkestanicæ.' - R. Chodat, 'Pleurococcus \& Pseudo-pleurococcus.' - A. Chabert, 'Souvenirs d'antan' (cont.). - H. Schinz \& H. Junod, 'Zur Kenntniss der Pflanzenmelt der Delagoa-Bay.'

Bull. Soc. Bot. Francè (xlvi, 4-5 : Nov.). - G. V. Aznavour, 'Flore des environs de Constantinople.' - -. Hue, ' William Nylander' (1822-99: portr.). - J. Comère, 'Conjuguées des environs de Toulouse' (1 pl.). - E. G. Camus, 'Fleurs anomales dans le genre Salix.' - G. Rouy, 'Sur un Hieraciothecia Gallica et Hispanica.' - —. Finet \& A. Franchet, ' Plantes du Fokien.'

Bull. Torrey Bot. Club (15 Nov.). - F. E. Lloyd, Lycopodiun Chamacyparissus \& L. complanatum (1 pl.). - G. V. Nash, 'The dichotomous Panicums; some new species.' - P. A. Rydberg, 'Delphinium carolinianum and related species.' - A. A. Heller, ' Plants from Western North America.' - B. D. Halsted, Erysiphopsis, gen. nov.

Gardeners' Chronicle (25 Nov.).-M. Foster, Iris sofarana, sp. n. (fig. 125).-(9 Dec.). C. T. Druery, 'Evolution of fern fronds.'

Journal de Botanique ("Sept.": received 14 Dec.).-A. Franchet, 'Plantarum Sinensium ecloge tertia' (Conifera: concl.).-P. van Tieghem, 'Sur les Canellacées.' - L. Mangin, 'La membrane des Mucorinées' (cont.: 1 pl.). - E. G. Camus, 'Plantes hybrides spontanées de la flore européenne ' (cont.).

Malpighia (xiii, fasc. 4: received 16 Dec.). - L. Nicotra, 'Inquirendæ nella Flora di Sardegna.' - M. Pitzorno, 'Di alcuni antichi professori di botanica dell' Ateneo Sassarese.'-0. Mattirolo, ' Sulla Mannite contenuta nelle Tuberacee.' - G. Cecconi, 'Galle di Valloınbrosa.' - F. Cavara, 'Di una nuova Laboulbeniacea' (Rickia, gen. nov.: 1 pl.). - L. Montemartini, 'Pistillodia dell' antera in Gentiana campestris.'

Oesterr. Bot. Zeitschrift (Dec.).-R. v. Wettstein, ‘ Die weibliche Bliite von Ginkgo' (1 pl.). - K. Fritsch, 'Zur Systematik der Gattung Sorbus' (concl.). - A. Waisbecker, 'Zur Kenntniss der Gattung Odontites.'

Rhodora (Dec.).-H. Webster, Lepiotes rhacodes (1 pl.). - M. L. Fernald, 'Ranunculus acris var. Steveni in New England.'

BOOK-NOTES, NEWS, \&c.

At the meeting of the Linnean Society on Nov. 16th, Mr. W. C. Worsdell read a paper on "The Comparative Anatomy of certain Species of Encephalartos." The chief features of the anatomy were shown to be the presence of several vascular cylinders in the stem, a character found also in Cycas and Macrozamia; and the medullary system of vascular bundles, forming, as in Macrozamia Fraseri Miq., a complex network, intimately united with a corresponding network
of mucilage-canals. The system of mucilage-canals in the pith is continuous with that of the cortex, but the medullary bundles form an independent primary system. The mucilage-canal system is probably of use as a storehouse of moisture during the dry season, when the roots and foliage die away. A younger seedling plant of E. horridus Lehm. exhibited in the hypocotyledonary region, the transitional region between stem and root, at one point a curious large cauline, and partially concentric strand, and several smaller strands or bundles lying farther out in the cortex. These, according to the author, represented the rudiments of the outer vascular cylinders. The character of these strands and the region in which they occur (which is that where the first-formed tissues are located, and where, therefore, ancestral characters would be sure to preponderate) tend to show that the collaterally constructed vascular cylinders were originally derived from vascular cylinders possessing a concentric type of structure such as is met with in the stems of such fossil plants as the Medullosea. In the opinion of the author the ancestry of modern Cycads must be looked for in that fossil group.

We are glad to note that the Enumeration of Chinese Plants, which has been suspended for five years and a half, has been resumed in the Linnean Society's Journal (Dec. 1). The present instalment contains the Urticea by Mr.C. H. Wright, the Juylandacea and Quercinece by Mr. S. A. Skan, the remainder of the Cupuliferie and the Salicacea by Mr. I. H. Burkill. Now that Mr. Hemsley has enlisted other contributors, we would suggest that, for convenience of citation, the name of the author should be placed at the head of each page, as is done in the African floras issued from Kew. As the work now stands, it is not easy to tell who has elaborated the Artocarpea, although from internal evidence we believe Mr. Hemsley is responsible for them. We trust that the completion of this important work will proceed without further hindrance.

We are glad to learn that our contributor Mr. James Saunders, of Luton, has been elected an Associate of the Linnean Society.

The contrast between the colouring of the plates in the earlier and the later volumes of the Botanical Magazine, like that between those of the first and third editions of English Botany, has long been a standing reflection upon the inferiority of modern methods; but we doubt whether this has ever been more strikingly exemplified than in the December issue of the former work, in which the colour in the flowers of Kleinia Grantii (t. 7691) is applied with a carelessness which should not be allowed to pass unnoticed.

The mysterious modes of publication which characterize the Kew Bulletin still continue. In October we had "Appendix I. 1900," dated for that year on wrapper and front page: now we receive "Appendix II. 1899," dated November and issued in December, and containing a list of "New Garden Plants of the Year 1898"! It is not easy to conceive what useful purpose can
be served by the publication of so belated a list. No author's name appears, so that it is impossible to know who is responsible for such original information as the list contains: e.g. that Geonoma Pynae, tiana (which, by the way, is incorrectly cited, as in the original description there is a "?" after the generic name) is "an Iguanura, probably I. diffisa"; or that Correvonia is Brassocattleya. This anonymous and irresponsible method of publication must lead to serious confusion in the future, and demands a protest.

The Fifteenth dnnual Report of the Watson Botanical Exchange Club (1898-99) contains many records of casuals and notes on anonymous Rubi: the latter can only interest those who have the specimens referred to. Some of the other notes seem superfluous -e.g. that on Lilium Martagon-" surely not considered a native here" etc. Messrs. Salmon point out that Bıomus maximus Desv. $=B$. ıigidus Koch (non Roth): "the name B. rigidus for this plant in Lond. Cat. ed. 9 is thus apparently an error." Mr. Dunn notes on a specimen of Oxalis corniculata from Sark, "Presumably from a garden : wild in Asia and America, but introduced in Europe." We are inclined to think the latter statement too absolute (and does it not occur in Africa?) ; while as to the former, Babington in 1839 recorded the plant from Jersey and Guernsey without any mark of introduction. "As it is not mentioned by the older British botanists, it is probably of comparatively recent appearance here even as a garden plant." This seems a non sequitur; moreover, it was cultivated by the younger Tradescant in 1656 (see Ait. Hort. Kew. ii. 115). There may be something to be said for its nativity in the West of England, where it has at any rate been naturalized for more than a century: Berkenhout (Synopsis, ii. 141) records it in 1795 from several places near Exeter, and Richard Weston (who died in 1806) sent specimens to Banks from " Dawlish Brooks, on a short sheepbite washed annually by a torrent from Haldon." Smith had it from Devonshire from four other collectors (see Eng. Bot. t. 1726).

Mr. E. D. Marquand sends us his paper on "Additional Guernsey Fungi," reprinted from the Transactions of the Guernsey Society of Natural Science for 1898.

The following, from the Academy, seems worthy of preservation -" One of the most amusing misconceptions which we remember occurred in a recent Daily Chronicle, the whole mistake turning upon the two meanings of the word plant. This is the Chronicle's paragraph: 'The Pope takes great interest in an electric plant, to which he has given the name of "Officina Electrica Vaticana Alessandro Volta," in honour of Volta. A few days ago his Holiness made a special inspection of these plants, and the employees of the Vatican gardens were presented to him by the chief.' A comic draughtsman should certainly commemorate the scene. The picture might hang at Kew." A similar confusion lately induced a student to visit the National Herbarium
and inquire for "the sulphuric acid plant." He had been told that he would find this at South Kensington, and inferred that it would be in the Department of Botany, whereas the object of his search may be seen in the Science Collection of the Victoria and Albert Museum.

At the meeting of the Linnean Society on Dec. 7th, Dr. Otto Stapf exhibited specimens of Malayan and African species of Kıckxia Blume, to show the differences which exist between the two forms. These differences were noticeable in the shape and size of the corolla, the insertion and general relation of the stamens to the tube of the corolla, the placentation, the structure of the fruit, and the general habit of the plants. As the name Kickxia would have to be retained for the Malayan species, he proposed the name Funtumia for the African species, from "funtum," a vernacular name for F. elastica. He further pointed out, by means of flowering and fruiting specimens of F. africana Stapf (Kickxia africana Benth.), and of F. elastica (Kickxia elastica Preuss), that the latter, and not the former (as was originally assumed), was the source of the so-called Lagos rubber, thus confirming the conclusion to which Dr. Preuss had come with regard to the origin of this rubber. Whether the name Kickxia (which should be spelt Kixic) can be retained, is doubtful: see Journ. Bot. 1899, p. 487.

Thomas Bruges Flower \quad F.R.C.S., who died at Bath on Oct. 7th, in his eighty-third year, had for at least sixty years been interested in British botany, as in 1839 (in which year he became a Fellow of the Linnean Society) he published a paper on Swansea plants in the Magazine of Natural History (iii. 561). In 1841, at which time he was living in London, he'published in the Phytologist (i. 68) a list of Bristol plants, and he contributed several notes to the old series of that periodical. In 1845 he contributed a list of plants to J. C. Robertson's Environs of Reading (see Flora of Berkshure, p. clxix). In 1846 he botanized in Kent, and embodied the results of his researches in a Flora Thanetensis, published in 1847 at Ramsgate, where he then resided. In 1848, while at Seend, in Wiltshire, where he practised as a surgeon, he announced his intention of preparing a Flora of that county, for which he sent lists to H. C. Watson; this was published in the Wiltshire Archaoloyical Maguzine during the years 1857-1874. This mode of issue by small instalments in the journal of a local society is not favourable to publicity; apart from this, the Flora can hardly take rank as of the first importance, and it is practically superseded by Mr. Preston's Flowering Plants of Wiltshire, published as a volume by the same society in 1888. Mr. Flower's name has been chiefly known to the more recent generations of botanists in connection with Draba aizoides, which he collected and distributed for many years from its well-known locality, Pennard Castle, near Swansea. Various short notes from his pen, showing general rather than critical knowledge, will be found in several volumes of this Journal, the most interesting, perhaps, being that on the island of Steep Holmes (Journ. Bot. 1888, 26).

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

long, membranous, sharply acuminate, with a prominent green nerve on either side of the green keel; the upper half of the keel furnished with a scarious wing, of which the margin is dentate or erose towards the top. Fertile glume $\frac{1}{8} \mathrm{in}$. in length, laterally compressed so that the margins meet and completely enfold the palea, pale green, glabrous on the keel and on a small swollen portion at the base of either side, the rest covered with appressed silky hairs; at its base, opposite its margins, is a narrow acute hairy rudimentary glume, one-fourth as long as the fertile glume; the corresponding barren glume at the base of the keel of the fertile glume is reduced to a microscopic scale. Palea like the fertile glume, but much smaller, ciliate on the keel, but otherwise glabrous. Fruit compressed acuminate.

In the Plate-1, Spikelet; 2, rudımentary glume; 3, fertile glume-are magnified four times.

Distribution, according to Nyman.-Lusit.; Hisp.; Gall. occ. mer.; Ligur.; Ital. med. mer. ins.; Croat.; Dalm.; Attica; Algeria; Eubœa; Corinth; Cyclad.; Creta; Thrac. or. Richter (Planta Europace, 1890) only gives "Regio mediterranea," which is certainly insufficient.
P. minor is distinguished from P. canariensis by the narrower shorter leaves, more cylindric panicle, and smaller spikelets; by the wing of the keel of the outer glumes, which, though very variable in the same panicle, is scarcely ever entire, and does not extend more than half-way down the keel ; and by the presence of only one rudimentary glume, much smaller proportionately than those of P. canariensis.

In Grenier \& Godron's Flore de France (iii. 438, 439 (1855-56)) it is stated that the stems of P. minor are "longuement nus au sommet," while those of P. canariensis are "brièvement nus au sommet." I find that this character is quite unreliable, varying greatly in both species.

Mr. E. D. Marquand, who is working at a Flora of Guernsey and the smaller islands, first called my attention to P. minor in Alderney last July, thinking that it was only a casual. It was growing in good quantity in a small sandy cultivated field; he has found it in other similar localities in the same island. I searched for it in Guernsey, and found it in several places; in good quantity in sandy cultivated fields by the sea, and twice sparingly on the sandy shore.

The plant is not uncommon on the west coast of France. Lloyd (Flore de l'Ouest de France, 393 (1886)) records it as occurring in cultivated fields, and especially gardens, in all the maritime departments from Vendée to Ille-et-Vilaine, where it grows near St. Malo and St. Briac, amongst other places. Corbière (Flore de Normandie, 626 (1894)) states that he has found it himself in sandy fields on the coast near Barfleur and Cherbourg, and accepts it as a native, though it is very rare so far north. Grenier \& Godron give a long list of localities, including Barfleur, with no question as to its being native. Being a native of both sides of the bay in which the islands are situated, it might naturally be
expected to occur there also. That it has been overlooked through its likeness to P. canariensis is certain, for it is incredible that a casual should appear in the same year for the first time in considerable quantity in many parts of two islands which are as far apart from one another as Dover is from Calais.

Babington recorded P. canariensis as "naturalized in several places in Guernsey." In a list of the Flora of Guernsey, published by Mr. Marquand in 1891, it is stated that P. canariensis "appears native in sandy places" on the north-west coast. Mr. Marquand now believes that this was P. minor. I have often seen P. candriensis in gardens in Guernsey, but all the specimens from sandy ground by the coast which I examined last summer were P. minor.

In Townsend's Flora of Hants, p. 402, Mr. Marquand recorded P. canariensis as growing "in the sand at Mudeford, well established." In a letter to me he says that it was "growing abundantly, quite away from any habitations, and having every appearance of being wild," and suggests that this might be P. minor. It would be an interesting point for some Hampshire botanist to clear up next summer.

Milum scabrum Merlet de la Boulaye, Herbor. Maine et Loire, 220 (1809).
Syn. M. confertum Mill. Gard. Dict. (1768), non L.
M. confertum Guss. Fl. Sic. Syn. i. 131 (1842).
M. effusum β, Kunth, Enum. Plant. i. 66 (1833).
M. vernale Dub. et al. (non Bieb.), teste Nyman.

Annual. Root fibrous. Stems erect or ascending, 1⿳亠1 $2 \mathbf{1}-4$ in. high. Leaves flat, short, uppermost not one-fourth as long as its sheath. Sheaths strongly striate, somewhat inflated. Ligule long, acute. Panicle about 1 in . long, erect, contracted; branches short, 2 -nate, unequal, capillary, flexuous. Spikelets ovoid, 1 line long. Two outer glumes equal, convex, obscurely 3 -nerved, green or purplish, with narrow scarious border. Fertile glume smaller, pale green. smooth, shining; its margins enfolding the similar palea. Stem, sheaths, rachis, panicle-branches, and outer glumes all slightly scabrid.

In the Plate-1, Spikelet; 2, fertile glume; 3, palea-are magnified eight times

Distribution, according to Nyman.-Batav.; Belg. (sec. Parl.); Gall. occ. mer.; Cors.; Sicil.; Ital. med. mer.; Cretæ et Cephal. mont. ex Heldr. Richter gives "Eur. med. et mer.," which is again insufficient.

It seems impossible to distinguish M. scabrum specifically from M. vernale Bieb., which only differs in its larger size and diffuse panicle. It is said also to be less scabrous, but M. scabrum varies greatly in this character. Both plants grow in Italy, and Parlatore considers M. scabrum to be merely a variety of M. vernale. Richter gives it as M. vernale b. scabrum. Kunth classed it as a variety of the perennial M. effusum, but appears to be alone in this view. M. vernale, like M. scabrum, is an annual, and intermediate forms
can be seen in the British Museum Herbarium which it is difficult to assign with certainty to either.

I found this plant growing sparingly on the southern cliffs of Guernsey, near Petit Bot, on April 17th, 1899. These cliffs are about 300 ft . in height, the precipitous face varying from 100 to 150 ft .; the remainder consists of a steep slope, overgrown in many parts with gorse, heather, and bracken, and everywhere covered with vegetation, except where the granite projects in boulders. M. scabrum grows on the lower part of this green slope, well away from any houses or cultivated land; in no part of the island is one less likely to meet with an alien or casual.

Merlet's original specimens came from Thouars, in the department of Deux-Sèvres, where the plant still grows. Lloyd (Flore de l'Ouest de France, 402 (1886)) states that it is found in sandy places and sandy thickets in that department, and also in Gironde, Charente-Inférieure, and Vendée, but it is a rare plant. North of Vendée it only reappears on the coast of the Netherlands, certainly in South Holland, possibly in Belgium also. Oudemans (Flora van Nederland, iii. 475 (1874)) records it for the neighbourhood of Katwijk, the dunes near Overveen, and also near Wassenaar and Scheveningen, in Nordwijk. These localities are given in all the Dutch Floras, and there are specimens from Scheveningen in the British Museum. Van Hall (Spec. Bot. 32 (1821), and F'lora Belgii Septentrionalis i. 55 (1825)) records it, but gives no localities for Belgium. Dumortier (Observations sur les Graminées de la Flore Belgique (1823)) says, "Plantam hanc rarissimam mecum communicaverunt amiciss. van Rees et van Hall," but gives no localities. Parlatore (Flora Italica, i. 155 (1848)) says, "E stata trovata in Belgio, in Francia," \&c. Nyman gives Belgium only on Parlatore's authority, and the modern Belgian Floras omitit. Husnot (Graminées de France, Belgique, Lles Britanniques, Suisse, 1897) remarks that it is "indiqué en Belgique par Parlatore; il est très douteux que cette espèce y ait été réellement trouvée."

The most noteworthy points about M. scabrum in North-west Europe are, that it does not occur between Vendée and the Netherlands, that it grows on sand, and that it is generally much taller than the Guernsey plant (Culmi pedales-Dumort.: culmo vix pedali -v. Hall: spithamæum-Reichb.: chaume de 2-3 dec.-Lloyd). There are other plants which do not come further up the French coast than Finistère, and yet are found in Guernsey-e.g. Ornithopus ebracteatus (also in Alderney and Scilly Islands), Ophioglossum lusitanicum, and Isoetes Hystrix. The reappearance of M. scabrum in the Netherlands shows that there is no inherent improbability of its being native in Guernsey. Several plants which usually grow on sand are found on the Guernsey cliffs-e.g. Romulea Columne and Juncus capitatus, both of which grow near M. scabrum. Many of the cliff plants are much dwarfed, and I am told by a resident in Rome that M. scabrum grows there on walls, and is no larger than my Guernsey. specimens.

I can see no reason to doubt that these two grasses are native
in the Channel Islands, and should therefore be included in the British Flora with Cynosurus echinatus, Lagurus ovatus, and Bromus maximus. Their discovery only serves to emphasize a fact which hardly needed emphasizing-viz. that the Channel Islands are, geologically and botanically, a part of France, and not of Britain.

TAXODIUM AND GLYPTOSTROBUS.

By Maxwell T. Masters, M.D., F.R.S.

There are two Coniferous plants, one a species generally so considered, from China, and the other a variety of a North American species, not infrequently confused with the Chinese plant. The variety is referred by some to one species, by others to another. The species also is included in one genus by some botanists, and is placed in another genus by others, so that, if we look to books only, as some of us are obliged to do, we find a terribly entangled series of statements, a confused nomenclature, and a long list of synonyms.

Those who are fortunate enough to have access to actual specimens can disentangle the confusion, and, if pressed for space and time, can, whilst setting forth the truth as they see it, afford to leave on one side the tangled maze of synonymy, if not wholly, at least to a considerable extent.

The two plants I refer to are the "Chinese Water Pine," the Glyptostrobus heterophyllus of Endlicher, Synops. 70 (1847) (disregarding the synonyms); and a variety of the Swamp Cypress or deciduous Cypress of Florida, Taxodium distichum Rich. There are in cultivation forms of the latter which are hardy enough to withstand our climate, but it is doubtful whether the Chinese plant can exist without adequate shelter. It seems probable that it might survive in mild winters, but that it would be destroyed in more severe ones. At Kew it is in cultivation in the Winter Garden.

Now, as to the two genera. Brongniart, in Ann. Sc. Nat. 1 Ser. xxx. p. 181 (1833), included the Cupressus sinensis of the Paris Garden under Taxodium. Endlicher (l.c. p. 69) proposed Glyptostrobus as a genus distinct from Taxodium, and gave under this name a good description of the Chinese genus, but the synonyms given refer to plants of other genera and other localities Speaking of the cone-scales and seeds of the Chinese tree, the Vienna botanist says, "squamis e basi cuneata in discum perpendicularem ovalem incrassatis," whereas he describes Taxodium (p. 67) as having "squamis excentrice peltatis squamarum stipite e basi tenuissima sursum incrassato dilatato, disco convexo; centro umbonato, margine superiore leviter toroso, longitudinaliter sulcato."

The seeds of Glyptostrobus he thus describes:-"Semina sub quavis squama 2 , ejusdem foveolis immersa, erecta, ovata, compressa; integumentum membranaceum, marginibus anguste alatum,
basi in alam oblongam concolorem squamæ ungui adpressam et cum semine solutam productum."

Until young cones can be examined, and the fact ascertained with certainty, it would seem that it would be more correct to say that the seeds are pendulous, and not erect; but, in any case, the difference is great between the description of the seeds of Glyptostrobus and those of Taxodium, which latter runs: "Semina sub quavis squama geminea (sic), oblique erecta, basi attenuata squamarum stipiti inserta, integumento lignoso, irregulariter triedro, angulis acutis."

Parlatore, in DC. Prod. xvi². p. 438 (1868), following Endlicher, recognizes the two genera, as Carrière and Gordon had done before, and Karl Koch after him. Bentham, however, in Gen. Plant. iii. 429 (1880), combined Glyptostrobus with Taxodium, mixing up the characters of the two. Eichler (in Engler and Pranti, Die Naturl. Pflanzenfam. ir. i. p. 91 (1889)) kept the two genera separate. Beissner (Handbuch der Nadelholzluunde, p. 134 (1891)), combines Glyptostrobus with Taxodium, and refers Endlicher's G. heterophyllus to the Taxodium heterophyllum of Brongniart. Sargent (Silva of N. America, x. p. 152 (1896)) refers the plant usually cultivated as Glyptostrobus pendulus to Taxodium distichum var. imbricarium. Of this acerose form he gives the following synonymy :-

Iaxodium distichum var. imbricarium.

Cupressus disticha β imbricaria Nuttall, Gen. ii. 224 (1818).
Taxodiuin microphyllum Brongniart (1833), Endlicher (1847).
Taxodium ascendens Brongniart (1833).
Taxodium distichum sinense pendulum Loudon, Arboretum, iv. 2482 (1838).

Taxodium sinense r pendulum Forbes, Pinetum Woburnense, 180 (1839).

Schubertia disticha β \& γ, Spach, Hist. Veg. xi. 349, 350 (1842).
Glyptostrobus pendulus Endlicher, Synops. 71 (1847) ; Lindley \& Gordon, Journ. Hort. Soc. Lond. v. 208; Knight, Synops. 21 ; Carrière, Traité Conif. 152 ; Hook. in Bot. Mag. t. 5603 ; Hoopes, Evergreens, 369, f. 59, 60.
Taxodium sinense Gordon, Pinetum, 309 (1858).
Taxorlium distichum pendulum Carrière, l.c. ed. 2, 182 (1867); Veitch, Manual, 215; Beissner, Handbuch, 152; Hansen in Journ. R. Hort. Soc. xiv. 304.
Thus, according to Sargent, the tree met with in English gardens under the name Glyptostrobus pendulus is no Glyptostrobus, but a Taxodium, and a variety of T. distichum, and in this opinion I concur.

It may be added that Taxodium distichum was first described by Parkinson in 1640 from a plant cultivated in England, where it had been introduced by John Tradescant under the name of Cupressus americana; see Parkinson, Theatr. 1477, fig.; Catesby, Nat. Hist. Carol. i. 11.

Sargent also cites the following synonymy, some of it of doubtful application :-

Cupressus virginiana, foliis Acacia deciduis Hermann, Cat. Hort. Lugd. Bat. 207 ; J. Commelin, Hort. Amst. i. 113, t. 59 ; Boerhaave, Ind. Alt. Hort. Lugd. Bat. ii. 181.
Cupressus virginiana foliis Acaciæ cornigeræ paribus et deciduis, Plukenet, Phyt. 85, f. 6 ; Alm. Bot. 125.
Cupressus virginiana, foliis Abietis mollibus atque deciduis, Breyn, Prod. Sec. 40 [39]; ed. 2, 59.
Cupressus foliis distiche patentibus, Linn. Hort. Cliffort. 449 ; Clayton, Flor. Virgin. 119 ; Royen, Flor. Leyden. Prod. 88.
Cupressus americana foliis deciduis, Romans, Nat. Hist. Florida, 25.
The early history of the Chinese plant is somewhat involved, but it is certain that the plant spoken of by Plukenet (Amaltheum, p. 125) as "Juniperi folia Arbuscula Cheusanensis Conifera, foliis variis Cupressi squammosis, et Juniperinis" is Juniperus chinensis of Linnæus, as is shown by Plukenet's specimen in Herb. Sloane xciii. f. 214.

Endlicher includes two species in his genus Glyptostrobus, G. heterophyllus and G. pendulus, the latter with slender pendulous branchlets and leaves only half as large as those of G. heterophyllus, acuminate and approximate. Endlicher says G. pendulus is a native of China, but he gives no definite locality in support of his assertion, and the probability appears to be that the plant known as G. pendulus in gardens is, as before said, a variety of Taxodium distichum. Plukenet's plant, with most of the synonymy given under G. heterophyllus, must be excluded from Endlicher's description.

In herbaria where complete specimens of the Chinese (Glyptostrobus) and of the Florida plant (Taxodium) occur there is not the slightest difficulty in distinguishing the two genera. It is a different matter in the case of the living plants, because they have not, as a rule, reached the fruiting condition, whilst they have perhaps attained to that perplexing stage of variability in which the leaves alter in disposition, size, and form, and in which the direction of the branches (habit) varies greatly from that supposed to be typical. In reference to this subject it is desirable to quote what Sargent says as to the variety.

Alluding first to the species, Sargent (p. 152) says of T'awodium distichum: "The deciduous lateral branchlets are three or four inches in length, and spread at right angles to the branch; or in the form with acicular leaves they are pendulous or erect, and often six or seven inches long. The leaves on the distichously spreading branchlets are linear-lanceolate, apiculate, from one-half to three-quarters of an inch in length, about one-twelfth of an inch in width, and light bright yellow-green on both surfaces or silvery white below; and on the form with pendulous or erect branchlets they are compressed, long-pointed, keeled and stomatiferous below, concave above, more or less spreading at the free apex, and about half an inch in length; in the autumn the branchlets with their leaves turn dull orange-brown before falling."

Sargent adds in a footnote the following remarks:-" No one unfamiliar with the fact that branches of the two forms occasionally
appear on the same individual would imagine that the Cypress-like trees with erect or pendulous thread-like branchlets and closely appressed acerose leaves belong to the same species as those with spreading distichous branchlets and flat leaves. The acerose form has long been an inhabitant of the gardens of the eastern United States and Europe, and is generally cultivated as Glyptostrobus pendulus and believed to be a native of China."

It is worth recording that the two genera Glyptostrobus and Taxodium are well represented in a fossil condition. Renault (Cours de Botanique Fossile (1885), p. 119) cites two species from the miocene deposits of Switzerland, Bohemia, Greece, and Greenland, and from Sioux City, United States. Of Taxodium five species are also recorded in similar miocene deposits. The characteristic marks of distinction between the two genera are observable in the fossil species.

It would seem, then, that the two genera Glyptostrobus and Taxodium are amply distinct. The chief distinction of Glyptostrobus lies in the elongated cone-scale, which is not peltate; the bract is inseparable from the seed-scale at the base, but rather above the middle it becomes free and recurved, leaving bare the $5-7$-lobed summit of the seed-scale. On the inner side of the seedscale are two pockets or depressions in which lie the seeds. These are smooth, oblong or obovate, often with a short spur or funicle at the base and with a narrow wing on the side, prolonged beneath into a flat lancet-shaped wing. The seeds are described as erect, but they seem more likely to be pendulous. The point cannot be conclusively settled till material, especially cones in their early condition, is more abundant.

The cone-scales of Taxodium, as already stated, are peltate, and the erect seeds are irregularly three-sided, and scarcely, if at all, winged.

ADDITIONS TO THE FLORA OF WEST LANCASHIRE.

By J. A. Wheldon and Albert Wilson.

The following list contains a selection from a gradually accumulated and extensive series of notes on the West Lancashire Flora. It is intended to bring together numerous scattered records from various publications, and from our own note-books and herbaria, of species not mentioned for this area in Topographical Botany or in the Reports of the Botanical Record Club. No attempt is made to indicate the distribution of the species, that being one of the functions of a county flora rather than of such a catalogue as this: hence it must not be inferred that the localities given are the only ones in which we have observed the plants named. So far as we can at present ascertain, nearly all are new county records, therefore we have not called attention to this fact in individual cases by the usual sign. It is quite possible that some of the species may have been recorded previously through publications with which we

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
\dagger Cochlearia danica L. St. Annes and Blackpool, Wh. - *C. armoracia L. Garden escape, Stonyhurst, F. S.!
\dagger Sisymbrium Sophia L. Near Lytham, 1897, Wh.
\dagger Brassica monensis Huds. Between Lytham and St. Annes, 1896. Wh.

Diplotaxis muralis var. Babingtonii Syme. St. Annes, 1899, Wh.
*Hesperis matronalis L. Banks of the Hodder below Whitewell, and in the bed of the river also, July, 1899, Wh.
*Lunaria rediviva DC. Sands of Morecambe Bay, J. Britten in Naturalist, 1864, p. 203.

Coronopus Ruellii All. Near Garstang and Blackpool, Wi.
*Lepidium sativum L. Morecambe, July, 1899, Wh.
\dagger Cakile maritima Scop. Pilling and Knott End, \&c., Wi.
\dagger Heliunthemum Chamacistus Mill. Limestone rocks, Kellet, Warton and Silverdale district, abundant, Wi.

Viola ericetorum Schrad. Lytham, 1896, Wh.
Polygala oxyptera Reichb. Sandhills west of Lytham, 1895, Rev. E. S'. Marshall.
*Saponaria officinalis L. Banks of Lune, Ribble, and elsewhere, Wi. \& Wh.

Silene Cucubalus var. puberula Wierzb. Ribble bank below Troughs, F.S.

Lychnis Githago Scop. Greenfield, F.S. Cornfield near St. Annes, 1896, Wh.

Cerastium semidecandrum L. Between Lytham and St. Annes, May, 1899, Wh.

Arenaria serpylifulia var. leptoclados (Guss.). Bare, July, 1899, Wh.-Var. Lloydii (Jord.). Bare, July, 1899, Wh.

Spergula arvensis L. var. sativa Boenn. Near Freckleton, 1899, Wh.

Buda marina Dum. var. neglecta (Kindb.). Salt marshes, Pilling, 1895, Wi. - B. media Dum. With the last, Wi.

Hypericum elorles L. Formerly on Ribbleton Moor, now extinct, Mr. Wm. Dobson in Rambles by the Ribble, 1877. Succeeding records in Mr. Dobson's name are from the same source. Ribbleton Moor was drained about forty years ago, and is now built over; but Mr. Wilson, of Garstang (father of one of the authors) remembers gathering Gentiana Pneumonanthe there.
\dagger Malva rotundifolia L. Between Blackpool and Marton, 1895, Wi.
Tilia cordata Mill. Rocky wood on limestone near Warton, 1888, Wi.
*Linum usitatissimum L. Leagram, 1867, F.S.
*Geranium phaum L. Near Higher Bridge, Shire Lane, and Longridge, F.S. Roadside near Barrow, Leck district, Miss Maudsley.-G. purpureum Forster. North of Bare, F. A.L. With some expression of doubt.

Genista anglica L. Formerly on Ribbleton Moor, now extinct, Wm. Dobson.
*Medicago denticulata Willd. Seminary gardens, Stonyhurst, 1886-7, F.S.
*Trifolium hybridum L. Field near Hacking Boat, 1887, F.S. Preston Docks, 1899, Wh.

Lotus corniculatus L. var. crassifolius Pers. Bare, 1899, F.A.I. And in other localities on the coast.

Hippocrepis comosa L. Limestone rocks, Warton Crag and Over Kellet, 1899. Wi.

Vicia angustifolia L. Near Pilling, 1894, Wi.-V. lathyroides L. Lytham and St. Annes, May, 1899, Wh.

Prunus fruticans Weihe. Near canal south of Hest Bank, F'. A. L.

Spiraa Ulmaria L. var. denudata Boenn. Canal bank north of Bare, F. A. L.
[Rubus suberectus And. Sale Wheel, F. S.] - R. incurvatus Bab. Near Inskip, 1895, Rev. E. S. Marshall. "Not what I consider the typical form, but that which prevails in Derbyshire, Salop, and Lancashire, hardly differing from the type, except in its laxer panicle, crowded strongly falcate prickles, and somewhat thinner and less lobate leaves-characters suggesting a divergence from type towards R. Colemanni," Rev.W. M. Rogers in lit. 1899. R. Radula. Near Bare, F.A.L.-R. casius var. aquaticus. Sandhills near Lytham, 1896, Wh. - R. casius $\times 1$ decus. Hurst Green, near a garden, with both parents, 1899, Wh.

Further notes on the Rubi of the vice-county will be found in Journ. Bot. March, 1896, p. 136 (Rev. E. S. Marshall), and October, 1898, p. 401 (J. A. Wheldon).
\dagger Geum rivale L. Wennington and Hodder Valley. - Gr.intermedium Ehrh. Seminary Wood, Stonyhurst, F. S.! Near Kirkby Lonsdale Station, Mr. L. Petty.

Potentilla procumbens Sibth. Quarry Road, Kemple End, F.S.
[P. fruticosa L. "Sparingly on limestone rocks 100 yds. due E. of Nether Kellet Church, 8 miles beyond Lancaster," Thos. Williams, Science Gossip, Jan. 1870, p. 19. The locality is an unlikely one, and we have searched it for this plant with a negative result.]
*Rosa pomifera Herm. Chaigley, F.S.
Pyrus malus.L. var. acerba DC. Hindburn, \&c.
Cratagus oxyacantloides Thuill. Near Leck, Mr. L. Petty in "Plants of Leck and Neighbourhood" (Vaturalist, March, 1893). Other records in Mr. Petty's name are from the same source.
*Saxifraga umbrosa L. Plentiful and apparently thoroughly naturalized by a waterfall in Hindburn, 21 Oct. 1899.-S'. granulata L. Dean Brook and Sale Wheel, F. S.
\dagger Chrysosplenium alternifolium L. "Pot-holes" of Leck Fell and Easegill, Wi.

Ribes alpinum L. Near Chipping and Hurst Green, F.S.*R. niyrum L. Ribbleton Moor, Wm. Dobson. Brock Bottom, Wi. -*R. rubrum L. By the side of Leck Beck, \&c., Mr. L. Petty.

Sedum Telephium L. var. Fabaria H. C. Wats. Limestone Rocks near Silverdale, Wi.-*S. album L. Chaigley and Chipping, F. S. Walls about Leck, Mr. L. Petty.
*Sempervivun tectorum L. Roof of outhouse at Collin Holme, Mr. L. Petty,
\dagger Hippuris vulgaris L. Near Bare, F.A. L. River Keer, Stodday, \&c., Wi.
\dagger Peplis Portula L. Formerly on Ribbleton Moor, Wm. Dobson.
Epilobium angustifolium L. Leck Fell, Chipping, Roeburndale, \&c., Wi.

Apium inundatum Reichb. fil. Formerly on Ribbleton Moor, Wm. Dobson. Marsh between Yealand Storrs and Borwick, 1888, Wi.

Anthriscus vulgaris Bernh. Knott End, 1894, Wi.
*Peucedanum Ostruthium Koch. Roadside near old barn, Oakenclough, 1888, Mr. Sydney Wilson.

Galium sylvestre Poll. Limestone rocks, Warton Crag, July, 1892, Wi.-G. uliginosum L. Swamp near Borwick, 1887, Wi.

Solidago Virgaurea var. cambrica (Huds.). On Yoredale grit rocks, Upper Easegill, Aug. 1899, Wi.

Filago germanica L. Leagram, F.S.! Bare, F.A.L.
\dagger Erigeron acre L. Pilling, Cockerham, St. Annes, \&c.
\dagger Bidens tripartita L. Shard Bridge and Garstang, 1895, Wi.
*Chrysanthemum Parthenium Pers. Ballast between Morecambe and Snatchems, 1899, Wh.

Matricaria inodora L. var. salina Bab. Near Bare, 1899, F.A.L. Bolton-le-Sands, 1893, Wi. Fleetwood, 1896, Wh.
*Petasites fragrans Presl. Near Yealand, Wh.
*Senecio saracenicus L. Ribble banks near Hacking Boat, 1863, F.S. Reported also from other Ribble bank localities in Rambles by the Ribble.

Carduus heterophyluus Willd. Higher Bridge Island, 1886. Not found since, F.S. Banks of the Roeburndale River about Salter, 1887, Wi.

Picris echioides L. Clay banks by the sea between Naze Point and Lytham, 1888, Wi.

Serratula tinctoria L. Gatebarrow Wood, Silverdale, 1899, Wi.
Hieracium murorum L. Ease Gill, \&c., Wi. - H. duriceps F. J. H. var. cravoniense F. J. H. Ease Gill, Leck, 1888, and banks of Lune, Halton, 1896, Wi. - H. vulgatum Fr. Leagram, \&c., F.S.! Longridge, 1891, E.F. Linton! - Var. ravusculum Dahlst. Sandhills near St. Annes, very local, 1895, E. S. Marshall. -H. diaphanuin Fr. Longridge, E. F. Linton in Bot. Exch. Club Rep. 1892, p. 396. - H. sciaphilum Uechtritz. Lower Bleasdale, Garstang, Wi. - H. rigidum var. tridentatum (Fr.). Upper Ease Gill, Leck, 1899, Wi.-H. boreale Fr. Leck, Mr. L. Petty. Preston Wives, Longridge, Leck, \&c. Common.

Leontodon hirtus L. Garstang, and elsewhere, 1887, Wi.
Taraxacum officinale Web. var. erythrospermum (Andrz.). Lytham and St. Annes, 1898, Wh. Warton Crag, 1899, Wi. - Var. lavigatum DC. Roadside near Lytham, 1898, Wh. - Var. palustre (DC.). Ease Gill, 1899. - Var. corniculatum DC. On limestone rocks near Ease Gill Kirk. This is similar to specimens so named by the Rev. W. R. Linton from Derbyshire.

Tragopogon pratensis var. minus (Mill.). Stonyhurst Churchyard, F. S. Bare, F. A. L.
*Campanula rapunculoides L. Roadside near Pilling, 1895, Wi.

Primula vulgaris \times veris. \quad Near Riddings Farm, F.S.!

* Vinca minor L. Near Hurst Greè Church, F.S.

Gentiana baltica Murb. Between St. Annes and Lytham, E.S. Marshall in Bot. Exch. Club Report, 1895, p. 490 !
*Polemoniuin caruleum L. Stonyhurst, Sale Wheel, \&c., F. S.
Symphytum officinale L. Gas Wood, Stonyhurst, F.S. Near Wennington, 1899, Wi.

Myosotis repens G. Don. Fairsnape Clough, Bleasdale, 1899, Wi.
*Verbascum Blattaria L. Three plants in a poultry-run near Bare, F. A. L.

Scrophularia umbrosa Dum. Knowle Green, 1899, Wh. Queried for "near Preston" in Topographical Botany.

Veronica polita Fr. Garden weed, Stonyhurst, F.S. Garstang, \&c., 1894, Wi.

Euphrasia nemorosa H. Mart. Lytham, Wh. - E. curta Fries. Near Preesall, and Stalmine Moss, Wh.

Pedicularis palustris L. Bleasdale, Hindburn, \&c., 1899, Wi. On Leck Fell, Mr. L. Petty.

Lathraa Squamaria L. Saddle Hill and Beezley Wheel, F.S.
Pinguicula vulgaris L. Leagram, F.S. Longridge Fell, Ease Gill, Bleasdale, \&c.
*Mentha viridis L. Lune banks, Halton, Wi.-M. sativa L. var. rivalis. Near Hest Bank, F.A.L. Hodder Valley, Catterall, and Garstang. - M. rubra Sm. Higher Bridge Island, F. S. Seen on Yorkshire side of the river, lower down, so probably correct, Wh.
tCalamintha Clinopodiun Spenn. Saddle Hill and Beesley Wheel, F.S. Bare, F. A.L. Stodday, Wennington, Halton, \&c.

Stachys arvensis L. Silverdale, Middleton, and Nether Kellet, 1888, Wi.

* Lamium maculatum L. North bank of Ribble near Ribchester, W. Dobson.-L. Galeobdolon Crantz. Sale Wheel, F.S.

Plantago Coronopus var. ceratophyllum Rapin. Blackpool, 1896, Wh.

Littorella juncea Berg. Canal near Garstang, July, 1891, Wi. Scleranthus annuus L. Near Garstang, 1888, Wi.
Chenopodium album L. var. incanum Moq. Preesall, 1899, Wh. —Var. viride Syme. Preston Docks, 1899, Wh. - *C. opulifolium Schrad. Near Preston, 1897-8, Wh.-*C. urbicum L. Near Morecambe and Preesall, 1899, Wi. - *C. rubrum L. Preston Docks, 1899, Wh.

Atriplex Babingtonii Woods. Morecambe, July, 1899, Wh.*A. Smithii Syme. Lancaster, Wh. - A. deltoidea var. prostrata Bab. Heysham, and Wyre Estuary, 1899, Wh.

Polygonum aviculare var. littorale (Link). Morecambe, 1899, Wh. —Var. vulgatum Syme. Canal towing-path, Lancaster, 1899, Wi.

Rumex donesticus Hartm. Crowshaw Reservoir, F. S. - R. crispus \times obtusifolius. Near Knowle Green, 1899, Wh.
*Euphorbia cyparissias L. Grassy field between Lytham Vicarage and the sea, May, 1897, J. C. Melvill.
\dagger^{*} Ulmus surculosa Stokes, var. suberosa Ehrh. Near Garstang, Wi.
Urtica dioica L. var. angustifolia Blytt. Knowle Green, 1899, Wh.

Betula verrucosa Ehrh. Middlebarrow Wood, Aug. 1899, Wi. Quercus Robur L. var. sessilifor a (Salisb.). Near Wray, Oct. 1899.
Salix aurita L. Bleasdale, near Garstang, 1888, Wi.-S. caprea L. Hedges near Leck, Mr. L. Petty. Near Garstang, 1888, Wi.S. phylicifulia L. Jumbles and Higher Bridge Island, F. S.S. nigricans Sm. Rocks at the head of Bolton Roughs, F. S.S. Smithiana Willd. Crowshaw Reservoir, Thornley, \&c., F. S. Side of Leck Beck, Mr. L. Petty.

Populus nigra L. Bank of Leck Beck, planted ?, Mr. L. Petty.
Ceratophyllum demersum L. In the Hodder at Seed Holme Nook, 1887, F. S.
*Elodea canadensis Michx. Near Hest Bank, 1899, F. A. L., and elsewhere.

Neottia Nidus-avis Rich. Bolton Roughs, F.S.
Epipactis atrorubens Schultz. Warton Crag and Gatebarrow Wood, 1892, Wi.

Allium vineale L. Near Lancaster, 1896, Wi.
Gagea fascicularis Salisb. Ree Deep, 1886, F. S.
Juncus compressus Jacq. Longridge Fell, above Chadswell, F. S. - J. diffusus Hoppe. Near Hudd Lee Farm, F.S. Marshy pasture near Hest Bank, F. A. L. - J. obtusifolius Ehrh. Bare, F. A. L.

Potamogeton natans L. Garstang, Wi., and elsewhere. Common.
Ruppia rostellata Koch. Ditches near Bolton-le-Sands, 1893, Wi. Freckleton Marsh, 1899, Wh.

Zannichellia palustris L. Canal, Lancaster and Carnforth, 1894, Wi.

Scirpus pauciflorus Lightf. Salt-marsh near Bolton-le-Sands, 1892, Wi. - S. fluitans L. Ditches near Morecambe, 1899, Wh.S. lacustris L. Near Bare, F. A. L., and elsewhere. - S. Tabernamontani Gmel. Abundant near Bolton-le-Sands, \&c., 1893, Wi.S. rufus Schrad. Salt-marsh at Bolton-le-Sands, 1892, Wi.

Kynchospora alba Vahl. Cockerham Moss, 1877, and again in 1887, Wi. Now probably extinct, as also Drosera anglica Huds. and Carex limosa L., which grew with it ; the moss is now being rapidly cut up and made away with by a "Moss-litter" company.

Carex dioica L. Littledale Fell, Udale, 1899. - C. acuta L. Sowerby Marshes, near Garstang, 1891, Wi.-C. digitata L. Wood on limestone near Silverdale, 1888, Wi.-C. lavigata Sm. Swampy wood by the Calder, near Garstang, 1888, Wi. - C. binervis Sm. Kemple End, F.S.! Near Bay Horse and Garstang, Wi. C. fulva Good. Fairsnape Fell, 1891, Bleasdale and Roeburndale, Wi.-C. Cderi Ehrh. (fide Kukenthal). St. Annes, 1897, Wh.
*Phalaris canariensis L. Ballast near Morecambe, 1899, Wh.
Catabrosa aquatica Beauv. Near Borwick, 1888, and Garstang, Wi.

Melica nutans L. Rough limestone ground in a wood, Silverdale, 1888, Wi.

Poa compressa L. Wall near Preston Wives, Longridge, 1899, Wh.
Festuca uniglumis Soland. St. Annes, 1897, Wh. - F. sylvatica Vill. On limestone, Ease Gill, near Leck, 1888, Wi.-F. elatior L.

Melling, Borwick, and Ease Gill, 1888, Wi. - F. pratensis Huds. Near Cowkins, Lower Hindburn, 1887, Wi.

Agropyron caninum Beauv. Side of Leck Beck, Mr. L. Petty. Between Wray and Lower Salter, 1887, Wi. - A. pungens Roem. \& Schult. var. littorale Reichb. Bare, F. A. L. Fleetwood, Glasson, Preesall, \&c.
*Hordeum murinum L. Preston Docks, 1899, Wh.-H. maritimum Huds. Near Lytham, 1883, Wi.
\dagger Hymenophyllum unilaterale Bory. Windy Clough, Clougha Scarr, 1881, Geo. Stabler.
\dagger Asplenium marinum L. On the coast of the North district, 1884, and since, Wi. We deem it prudent to withhold exact locality. Cystopteris fragilis Bernh. var. dentata Hook. Leagram, F. S.
\dagger Polystichum lobatum Presl. Hodder Banks, F.S.!, and else-where.-P. angulare Presl. Buck Banks, Leagram, F.S.
\dagger Phegopteris Dryonteris Fée. Dean Brook, \&c., F. S. Hindburn, Wi.
\dagger Botrychium Lunaria Sw. Garstang, Wi.
Equisetum hyemale L. Bank of Lune, near Halton, 1899, Wi.E.variegatum var. arenarium Newm. St. Annes and South Shore.

A PLEA FOR MY 1737 PROPOSAL.

By Dr. Оtтo Kuntze.
In the last number of this Journal its Editor opposed to my new proposal that the 1737 -starting-point be valid for genera, 1753 for species, with future exclusion of all intermediate works, as being arbitrary and directed against Linnæus' Corollarium 1737, Genera Plantarum of 1742, and his Systema of 1740 and 1748. But that is a mistake.

I agree with the Editor that it would be an unfair proposal to exclude these works of Linnæus; but that objection does not touch me at all, for I thoroughly worked up the nomenclature of these works, so that there will be found scarcely a further case out of these works for changing a name. This objection aims to those who begin with 1753 and neglect thereby all these works of Linnæus. By my proposal to exclude further intermediate works between 1737 and 1753 I only intended to make a concession to the numerous botanists who like to exclude the works of Rumphius, of Burmann (1737, 1738) and other contemporaneous authors of 1737-1753, who had other principles than Linnæus. Even the many Genera dubia of Linnæus in his Hortus Cliffortianus, page 438-439, under "Oidea," and in his Flora Zeylanica, p. 188-240, under " Obscuræ," "Barbaræ," and "Dubiæ," as far as they are not yet clear and accepted, were wished by most authors to be excluded.

What numerous botanists wish to do, and even the Editor of this Journal does (he does more by excluding all works before 1753), cannot appear unfair or inconsistent with sound principles.

By my proposal are excluded only the doubtful cases of nomenclature; such it will avoid future changements in nomenclature and produce more stability.

It is inconsistent to begin, as the Editor proposes, only with Linnæus' Species Plantarum 1753 and to use notwithstanding also Linuæus' Genera Plantarum of 1752, which is moreover an illicit reprint by Ch. K. Strumpf-Halle.

In the Editor's defence of his 1753 -starting-point against my ciphers proving statistically the horrible noxiousness of the 1753 proposal I cannot find any substantial fact, I find therein only not proved probality and suppositions. But words alone cannot reject my statistical proves. I beg for careful scrutiny and do not fear it.

It is true that numerous specific names of my Revisio Generum have not received general use in England; but that is no argument against my new proposal concerning only genera. It is not my fault that English botanists maintain a private rule as to speciesnames, if a species is transferred to another genus or if the genusname is to be changed. In the contrary I had to follow the strict priority of the international Code of 1867. This isolation of English against international laws is neither scientific nor conductive to uniformity in botanical nomenclature. English should rather do their best in the year 1900, as there will be no other opportunity for long times, to reinstitute intermittent and real international Congresses for settling different questions and such producing international harmony and understanding in botany.

That can be done now at the botanical Congress at Paris $1-10$ th October 1900. As I proposed in the addition to article 70 of the Codex emendatus (see Rev. Gen. IIIII. p. 166 and its motivation p. 197-198 of the introduction) the votes of such members of a Congress who belong to the inviting people, should be reduced to oue-third, otherwise the Congress can never become really international. By the lack of such a practice the international Congresses were tried to be abused and lost their attraction. The members of the inviting people are always in stupendous majority at such Congresses and can easily outvote the invited foreigners. I am sure that insane practice could be removed and a better one instituted for the next century, if only the managers of the Paris scientific Congresses would be animated to settle the matter in the sequent manner and obliging thereby future Congresses in this practice, viz.:-In scientific Congresses the members of the inviting people give honorary places of the ifirst rows and two-thirds majority to the invited foreign members.

Such it could easily be seen, if the majority of a votation is doubtful and such the Congresses would become really international and also more visited by foreigners. The new institution of intermittent botanical Congresses, perhaps every three years, with the obligation that each Congress has to choose the next one with its preparing directors-a practice neglected by the Madison Congress -could then be settled on such an arranged Congress at Paris next October.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

It may be well to add that we are not prepared to devote unlimited space to the discussion of details connected with the nomenclature question, for which reason we refrain from comment upon certain other portions of Dr. Kuntze's communication, although we do not accept his inferences.-Ed. Journ. Bot.]

IMPATIENS ROYLEI IN ENGLAND.

By James Britten, F.L.S.

In the Botanical Magazine for April last (t. 7647) Sir Joseph Hooker figures and describes, under the name Impatiens Roylei var. pallidiflora, a form of a plant which has long been familiar as selfsown in London gardens, where it is known as "Tree Balsam." One species of the genus (I.biflora) is already completely naturalized in this country, and another (I. parvifora) is fully established in certain localities; and as it seems likely that to these, which are already in our books, and have come to us respectively from North America and Russia, a third introduction-this time from the Himalayas-may have to be added, it may be worth while to transcribe Sir Joseph's note upon the plant which he figures. He writes:-
" The plant here figured appeared for the first time in the shrubberies of my garden near Sunningdale three or four years ago, and rapidly increased, so as to become a weed, until 1898, when the long-continued drought decimated the plants, and prevented the seeding of the few that were spared. How or whence it was introduced I cannot form an idea. I have never raised an Indian Balsam in my garden, nor had I at that time received the seeds of any, and it is not in the Kew collection, or in that of other botanical gardens to which I have directed inquiries. On the other hand, I have seen it in several cottage gardens, one at Marlow being the nearest to my place (about fifteen miles in a straight line). Also I saw it growing in profusion in a cottage garden near Mr. Mitford's residence, Batsford Park, Worcestershire, but not a specimen of it was to be found in that gentleman's fine garden, or in his magnificent miscellaneous collection of hardy trees, shrubs, and herbaceous plants, where I. Roylei abounds in a naturalized state. In stature, foliage, inflorescence, flowers and fruit, my plant altogether agrees with one which I found in the upper valleys of the Sikkim Himalaya, and of which I made a coloured drawing on the spot, differing only in having subulate stipuliform glands, whereas in the Sikkim plant these are flat or pulvinate."

The following notices show that the plant has been noticed in England for nearly half a century. In the Phytologist, i. 166, n. s. (1855) Mr. Irvine says: "We have been informed that a Balsam twice as tall as the Impatiens fulva, with a stem as thick as a common broom-handle, grows on the Colne between Harefield and Denham. We had our information from the keeper of Old Park Woods,

Harefield "; and later (vi. 544, 1863) writes that Impatiens glanduligera " manifests some inclination to be one of our spontaneous productions at probably no very distant period," adding that he expects the plant of the Colne to be this species. It is no doubt the same plant to which Mr. Grindon (Manchester Flora, 99 (1859)) refers to as "Impatiens coccinea"-which he describes as "a tall and weedy plant, with flowers of a dull red colour, rapidly disseminating itself, growing, like its congeners, whenever a seed is dropped." Mr. Grindon wrote to me in 1864 :-
"I have seen it within the last four or five years in various parts of England; and on enquiry who sowed it, or where it came from, no one knew. Many town gardens in Maṇchester and the neighbourhood contain it; not sown, the people tell me. I have seen it under the same circumstances at the sea-side places on the coast of Lancashire, especially at Lytham, and also not far from the famous old habitat of the American Enothera biennis. No one would grow the plant for its beauty, for it is a cumbersome and weedy thing at the best" (see Naturalist, ii. 49 (1865)).

I do not find that the plant is recorded in recent British floras, except in that of Berkshire, where Mr. Druce (p. 123) gives three localities for it. Nor is it found in such continental floras as I have consulted, save in Garcke's Illustrirte Flora ron Deutschland, p. 122 (1895), where it is entered as "verwildert hin und wieder." Mr. S. T. Dunn, who has paid attention to introduced plants, tells me that in a lane near Chilworth, Surrey, this Balsam seemed to have established itself and to spread freely; and that Mr. Burkill has seen it at Scarborough under somewhat similar conditions.

I have not had an opportunity of comparing living specimens, but, so far as the figures enable one to judge, Sir Joseph Hooker's var. pallidiflora is found equally with the type of I. Roylei in London gardens: the species varies greatly in size, and in the colour and to some extent in the shape of the flowers.

SHORT NOTES.

Hants and Dorset Euphrasie.-While botanizing in the New Forest last summer, I came across an interesting eyebright which was growing in a damp grassy situation near Holmsley Station. Mr. Townsend has seen specimens, and considers it to be a form of E. Rostkoviana. I know of no definite record of this for v.-c. 11; although in the monograph (Journ. Bot. 1897, it is noted from Kingsclere, North Hants (1853), the recorder is not cited. On June 6th I found an abundant growth of E. brevipila on the cliffs between Swanage and Studland, Dorset; apparently not previously noted for this county. In company with Revs. E. F. Linton and E. S. Marshall, I had previously gathered it near Corfe Castle. Two or three other forms were obtained, but were too young for satisfactory determination.-A. B. Jackson.

Warwickshire Mosses.-During a six months' residence in Warwickshire, two years ago, I paid some attention to the county bryology. The following localities for the mosses given are additional to those in Mr. Bagnall's Flora, and also to the supplement published in the Midland Natur.alist, 1892-3. I have to thank my friends Messrs. J. E. Bagnall and H. N. Dixon for much kind help in determining doubtful material:-Dicranella varia Sehp. Canalbank, Shrewley Tunnel.-Dicranum Bonjeani var. rugifolium Bosw. Bog in Sutton Park. This appears to be nothing more than a form of the type with leaves somewhat contorted or crisped, and a good deal more strongly undulated than usual. It has more than once been gathered for D. undulatum Ehrh. (see Journ. Bot. 1874, 175). -Dicranoweisia cirrata Ldb. Old Mlverton churchyard-wall.Barbula cylindrica Schp. Canal-bridge, Radford Semele (barren). -B. vinealis Brid. Stone copıng, New River walk, Leamington (barren).-B. revoluta Brid. Sparingly at base of tree-trunk near Radford Semele. - B. tophacea Mitt. A few barren plants found among tufts of Bryunn caspiticium near Rugby; pointed out to me by Mr. Dixon. - Zygodon viridissimus R. Br. Tree-trunk, Radford Road. - Bryum inclinatum Bland. Abundant on wooden piles in canal near Warwick Workhouse; Sutton Park. - B. murale Wils. Bridge near Hatton. - Mnium hornum L. Abundant in the shady parts of Warwick Castle grounds.-Thuidium tamariscinum B. \& S. Yarningale Common (barren). - Camptothecium lutescens B. \& S. Bank near Rugby. - Brachytheciun glareosum B. \& S. Grassy bank near Rugby. - Eurhynchium striatum B. \& S. Very fine but barren specimens in a wood at Stoneleigh. - E. murale Milde. Sparingly near the main drive, Warwick Castle grounds. - Plagiothecium sylvaticum B. \& S. Hedgebank near Leamington. Amblysteyuum filicinum De Not. Very fine and typical in a ditch at Harbury.-Hypnum stellatum var. protensuin B. \& S. Grassy bank near Rugby. - H. cuspildatum L. Curious submerged form in pool near Yarningale. - Hylocomium splendens B. \& S. Railway bank, Harbury.-A. B. Jackson.

Note on Hibiscus clypeatus L.-H. clypeatus was first described binominally in the Systema Natura, ed. 10, p. 1149 (1759), where it is based on Plumier's Icones, 160, f. 2, which leaves no doubt as to the identity of the plant. H. tomentosus Miller appears in the eighth edition of the (iardeners Dictionary (1768), and is founded on a Sloanean plant: " Malva arborea, folio oblongo, acuminato, veluto, dentato, leviter sinuato, flore ex rubro flavescente" Sloane, Cat. p. 95 (1696); Nat. Hist. Jamaica, i. 216, t. 135, fig. 1 (1707). We have Sloane's specimens (Herb. Sloane, iv. f. 44) and also specimens sent to Miller from Jamaica by Houstoun in 1730. Lunan (Hort. Jamaicensis, p. 469 (1814)) describes the plant, and states, "It grows but rarely in the island of Jamaica, in coppices near the coast. Its common name is Congo mahoe, the negroes affirming that it came originally from Africa." Sloane (l.c. $)$ states, "It grew on the Red Hills over against Mr. Batchelor's House very plentifully." There can be little doubt that it is identical with H. clypeatus, with which it had already been placed
(in the National Herbarium) by Mr. J. J. Bennett. H. tomentosus is omitted by Macfadyen from his Flora of Jamaica, and by Grisebach from the Flora of the British West Indies. H. tomentosus Stahl (Estudios para la Flora de Puerto-Rico, p. 92 (1884)), although agreeing in some points, can hardly be Miller's plant, to which it is doubtfully referred in the Index Kewensis, as it is described as belonging to the section Furcaria.* H. clypeatus L. occurs in Porto Rico, as it was. recently gathered there by P. Sintenis, No. 3700. H. Berlandierianus Moricand does not appear to me to differ from H. clypeatus. The three plants are retained as distinct in the Index Kewensis.-E. G. Baker.

Cracca virginiana (pp. 11-16).-Dr. Robinson kindly points out to us that our conclusions as to this name are invalidated by our having overlooked the practice, in which we fully concur, that, in cases where two plants have been confused under one name, the first author who segregates them has a right to choose which portion of the aggregate should retain the original designation. In the present instance, although, as we have stated, the first four of the five synonyms cited by Linnæus for his Cracca virginiana belong to the plant now known as Tephrosia (or Cracca) spicata, it is the fifth Linnean synonym that is cited by Persoon, who established T. virginianu as the type of Linnæus's Cracca virginiana. Moreover, Walter, who was the first to separate the two plants, clearly indicates by the character on which he bases his GI.? spicata that he accepted as the type of Linnæus's virginiana the plant commonly so regarded. We regret that by our inadvertence we have added an unnecessary synonym to a plant already overladen with these appendages, although we venture to think the information supplied as to the history of the two plants in question is not without interest. The substitution respectively of "Cracca spicata O. Kuntze" and "Cracca virginiana L." for the headings "Cracca virginiana L." and "Cracca holosericea" on pp. 15, 16, will leave the synonymy accurate.-James Britten; E. G. Baker.

NOTICES OF BOOKS.

Observations on the Colors of Flowers. By E. Williams Hervey. New Bedford: Anthony \& Sons. 1899. Pp. 105.
Mr. Hervey, rejecting previous theories of flower-colouration, has produced, as the result of his observations, one of his own, which is certainly not deficient in boldness and originality. The hues found in various blossoms are, he tells us, the result of chemical action blending the simple tints originally put by Nature on her palette. Insects have been main agents in working out this

[^6]result, not, as others have taught, indirectly, by helping those flowers which suit their taste, but directly, developing colours latent in the blood of the plant by stimulating or tickling the surface which they touch on their visits, "same as a little friction or a pinch will bring the blood to the cheek and cause a rosy tint" (p. 58). This idea is worked out in detail in a number of particular instances, and is thus summarised by its author (p. 74): "Figuratively speaking, the special markings on the petals of flowers are the footprints of the bees and butterflies. When they follow the same route for nectar, they leave a trail; when the butterflies walk around the stamens of a pink, they leave the impression of their tiny feet in the shape of a circle; when a bee rubs his back against the petals of a poppy, he makes a similar-shaped [black] spot on each; and when with his tongue he laps the nectar on the petals of the tulip-tree, he paints a golden band; when he falls to the bottom of the cup-shaped tulip, he in his scrambling describes a dise of blue or yellow." It will thus be seen that explanations can be found for everything at a moment's notice, with a facility which even theorists do not usually enjoy.

Mr. Hervey also repudiates very strongly the notion, proclaimed as fundamental by Sir John Lubbock, Mr. Grant Allen, and others, that there is any sequence or order of merit amongst colours, or that insects prefer one to another; "they all seek honey wherever it can be obtained, colour or no colour" (p. 78). Moreover, he declares, not only that " honey-guides do not always guide" (p. 59), but that in the case of the poppy the "black honey-guides are of no value as real guides [especially, it should be added, as poppies contain no honey] ; they serve to decorate the petals, and that is all; and this is all that half of the spots or guides are good for!" (p. 67). Again, we learn that some insects, of weaker intelligence, alighting on the wrong part of Tropcolum blossoms, are debarred by " a sort of cheval-de-frise" from getting at the honey, but, nevertheless, repeat the blunder so habitually as to "stimulate just the same," and leave a monument of their folly in the shape of spots of colour.

It is obvious that on such a theory we should not speak of honey-guides at all, but rather of the tracks of creatures who knew how to reach the honey without them. But how does Mr. Hervey square this account of the matter with some of his own examples? He tells us, for instance, that the white snowflake (Leucojum) has green-coloured honey-guides, and also that, undoubtedly, green was the original colour of the whole blossom (p. 60) ; therefore it would seem that the new colour has been developed only where the insects did not stimulate. Still more to the purpose would it be to enquire how an insect, with six sprawling legs and feet, could walk along a streak as fine as a thread; or why he should always try to walk along these particular streaks, which offer no possible advantage. Why, again, were their limbs never so delicate, should bees ailways tread so persistently on the same spots as to develop the freckles of the foxglove? Again, what manner of insect evolutions can have painted the fritillary?
J. G.

The North American Slime Moulds. By Thomas H. Macbride. New York: The Macmillan Co. 1899. 8vo, pp. xvii, 231 ; tab. xviii.
The Mycetozoa, and some. Questions which they suggest. By the Rt. Hon. Sir Edward Fry and Agnes Fry. London: Knowledge Office. 1899. 8vo, pp. viii, 82 ; 22 figs. Price 1 s .
Ir is quite easy to understand the popularity of the Mycetozoa. Since De Bary's revelation of their life-history, no biologist has been able to keep them for long out of his thoughts. Nothing could well have been more tantalizing than that Rostafinski should thereupon have proceeded to bury his magnificent monograph in the Polish language. Dr. M. C. Cooke, it is true, translated it so far as it concerned then known British species. In spite of the work of Mr. Massee and others, we had nothing satisfactory during many years, until Mr. Arthur Lister's Monograph, of which it is unnecessary here to say anything beyond the well-known fact that it cleared up a not very creditable mess, and obtained a practically universal vote of thanks for a long, toilsome, and splendidly lucid contribution to systematic natural history. The stimulus of this Monograph and of the author's Guide to the British species (both published by the Trustees of the British Museum) can be best indicated by the phenomenal sale of both books, though neither were cast in popular form. I am well aware that in these pages it is rank heresy to say so, but among students of the lower cryptogamous groups that escaped Linnæus and other early fathers we have had re-incarnations of Linnæus many times. The names of Agardh and Fries, for example, illustrate my meaning, and though in the interest of universal order and method we must think of them (as of Rostafinski in the present case) as they took themselves, basing their work on Linnæus and the Linnæan method, the reflection yet explains the temptation to go quite wrong in matters of nomenclature which has at all times beset cryptogamists. We had arrived then at a period when the work of Lister had set in order those things which were painfully confused and obscure in a group where confusion and obscurity appeared to be its natural lot.

Prof. Macbride, who has long been one of the hardest workers at the Mycetozoa, set himself to get the North American forms into order, including among them what most botanists prefer to call Central American forms-everything northwards from Panama. His book testifies on every page to his industry in gathering up the material, to his admirable power of writing good descriptions, and in many minor ways to his fitness for undertaking this task. In the presence of these excellent qualifications and performances it does go against the grain to find fault. It sometimes seems that the author has a positive itch to do things contrary to rule and common sense. Take the title-page. Why call them "Slime Moulds," especially as the author takes some trouble (which is surely now quite unnecessary) to point out how little they have in common with the Fungi? I prefer Sir Edward Fry's "Myxies," which is at least non-committal, or, better still, "Creepies," which
may, or may not, have been published, but has certainly come into use as a handy vernacular name. But this is a small matter. The principal fault of the book is undoubtedly the non-acceptance of the De Candollean laws, the adherence more or less to the present zoological method, and the resulting confusion after all such troubles bad been laid, as one hoped for ever, by Mr. Lister's monograph. One is tempted to take some of these instances and make example of them, but this would end in reviewing nomenclature questions, as has been done so efficiently and so frequently in these pages, and in parting from the main business of reviewing this book. Enough has been said to show that the author, so far from being thankful for the great reform of the Lister Monograph, has deliberately taken a backward step in a very important point. One is also constantly irritated by seeing personal specific names, which are exceptionally numerous in the Mycetozoa, printed with small initials, as "sauteri," "trevelyani," etc., in the fashion of zoologists. Apart from matters of nomenclature, a fault of the book appears to me to be a rather liberal notion of specific rank-again, I should say-a backward step, but here I feel I am on dangerous ground. These things are subjective. A few strange errors occur, notably the author's unaccountable belief that the capillitium is formed after the spores. There is so much that is good, worthy to live, and utterly honest in this book that criticism, such as this, becomes particularly painful.

It is many years since I have met with any natural history reading so fruitful and so good as the small book of Sir Edward and Miss Agnes Fry. They have studied their "Myxies" as they have plainly studied many other groups of organisms. They have set an aim before them to give a good readable account of the group, not only in plain words, but with commonly intelligible verbal illustrations; and they have succeeded in producing an almost perfect example of what such a book should be. They lay the realm of Nature freely under contribution for good analogies and homologies. I confess it is not so much their treatment of the Mycetozoa as the "Questions which they suggest" which interest me. Let even the most litigious among us reflect soberly on the mess we should, and do, make in intrepreting the laws of human enactment; and let us further reflect that one of the authors of this book is justly renowned among even the most historical expounders of these laws; let us struggle to grasp at the mental condition of Sir Edward Fry turning from a lifelong study of these laws to a study of biological phenomena and natural laws. No man living, or that ever lived, expressed more clearly than Mr. Huxley the definition of such laws. I cherish the recollection of expounding this definition at second hand during a casual, midnight meeting of two fishing-boats on the broad bosom of Loch Gorl, to a notorıous "free-thinker," as he called himself, who thought the laws of Nature were of a compulsory character. He was quite clear, of course, from his own experiences, that laws of human enactment had no compulsory force; that they did not make you pay your taxes, but only told you what happened to you when you failed to do so. But he appeared to be inaccessible to the idea that laws of

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

On New Zealand Hepatica. By Dr. S. Berggren. Part I. Sweden, Lund: E. Malmström. 1898. 4to, pp. 48, with 32 figures in the text.
The Hepatica and Anthocerotes of Califormia. By Marshall Avery Howe. (Memoirs of the Torrey Botanical Club. Vol. VII.) New York, 1899. Pp. 208; plates 88-122. Price 3 dollars.
The long-continued output of novelties in the rich Hepatic Flora of New Zealand remains unbroken. Since the monograph of the group in Hooker's Handboole of the New Zealand Flora in 1864 many new species have been added by Stephani, Mitten, Colenso, and others. But their descriptions, scattered as they are for the most part through European periodicals, are difficult of access to the native botanists, who are hence placed at a disadvantage in their study of the group. These students are likely to derive much assistance, however, from Dr. S. Berggren's On New Zealand Hepatica, the first part of which treats of fourteen genera, comprising thirty-four species, of which seventeen are new. Five of these genera are of the interesting but difficult type which matures the capsule in a subterranean pouch (marsupium); and associated with these is Marsupellopsis, which for the first time attains generic rank. The illustrations are a valuable feature; for discrimination of the Hepatics depends so much upon the subtle curvature and elaborate outline of the leaves, that even a simple line-drawing is more readily understood than a wealth of letterpress garnished with adjectives, however picturesque and well-chosen they may be. The author describes his own collections made twenty-five years ago in the North and South Islands, and gives full and critical notes in good English. On pp. 39-41 he adds some interesting remarks on methods of dispersal of Cryptogams in the southern regions of the globe.

In the United States the home-study of the native cryptogamic flora has for years been developing, and the publication of several critical monographs on moss-genera shows how popular a subject of investigation the Mosses have become. That a due amount of attention is accorded to the Hepatics also we have ample evidence in Mr. M. A. Howe's Hepatica and Anthocerotes of California. This work is well calculated to stimulate further active research, not only in the States, but also in California itself; for the author in his interesting introduction points out that the region with which he deals presents a striking diversity of climatic conditions, and that the great range of the Sierra Nevada is still almost a terra incognita, so far as its bryology is concerned. And he anticipates that the present total of eighty-six species may be nearly doubled. The eastern and northern States, with an area five times as large but proportionally less productive, have a record of one hundred and fifty species. Three pages of distribution-tables are provided, and afford a good idea of the peculiarity of the Californian Hepatic-flora. Inter alia we learn that, while only thirty-seven of the species occur in the eastern and northern States, as many as forty-six are found
in Europe. Indeed, the affinity of the Californian with the Mediterranean region is quite remarkable, and suggests to Mr. Howe the possibility of some land-connection in prehistoric times. Such species as the recently discovered Geothallus tuberosus and Anthoceros phymatodes-morphological novelties-are notable for their tubers, which enable them to maintain existence during long periods of drought. The Anthocerotes are, for good and sufficient reasons, based upon morphological researches of Prof. D. H. Campbell and others, raised to the rank of a class co-ordinate with the rest of the Hepatics.

Mr. Howe's descriptions and notes are fully and carefully drawn; and his system of keys to the genera and species cannot fail to enhance the utility and popularity of his work by eliminating at the outset a defect which so often impairs the value of ordinary handbooks. Pursuing a policy of thoroughness, Mr. Howe gives us an index and fifteen pages of bibliography. The thirty-five excellent plates supply delineations of species which have never, or only imperfectly, been figured hitherto. Four new species, two of which are Riccia, and two new varieties are described.
A. G.

Graminées. Descriptions,ifigures et usages des Graminées spontanées et cultivées de France, Belyique, Iles Britanniques, Suisse. Par T. Husnot. Folio, pp. viii, 92 ; tt. 33. T. Husnot, Cahan, par Athis. 1896-1899. Price 25 francs.
W_{E} have received the fourth and last part of M. Husnot's 'Grasses.' As the title-page bears merely an inclusive date, and as there is nowhere any more satisfactory statement of the period of appearance of the individual parts than the addition of a pencil figure to the " 189 " on each, it may be well to give the dates at which they were received by the Department of Botany. They are as follow:-

Part 1. Pp. 1-24; tt. 1-8. Oct. 31, 1896.
Part 2. Pp. 25-48; tt. 9-17. June 23, 1897.
Part 3. Pp. 49-72; tt. 18-24. Dec. 3, 1898.
Part 4. Pp. i-viii (including title-page), 73-92; tt. 25-33. Nov. 27, 1899.

The book as a whole is of a very awkward shape both for use and storing. The working botanist naturally turns to the plates; for in the grasses plates are more than ever useful-in fact, are a necessity in the determination of species. And here he will be disappointed. Some are better than others; those in the last part, for instance, are an improvement on those in the third; but, as a whole, they are poor and inadequate for the purpose. For instance, Digitaria sanguinalis on plate iv. is hardly recognizable, and the common Cynodon Dactylon close by is almost as bad. We fully sympathize with the author, who is also draughtsman and lithographer, in his inability to find in Caen a good printer for his lithographs. "The English," M. Husnot states, "publish almost always coloured plates, because the whole world is included in their clientele. In France, where only true naturalists buy, less costly black plates are preferable." M. Husnot also draws a pathetic
contrast between the wide circulation of special scientific publications in this country and the restriction merely to those who actually need them in his own. We trust that he will not be embarrassed by a too restricted sale in the present instance, but we do not feel justified in warmly recommending his book to British botanists.

> A. B. R.

Caroli Linnei. Hortus Uplandicus, med inledning och förlklaringar. Inbjudningsskrift till afhörande af den offentliga föreläsning med hvilken professoren i anatomi medicine doktorn Joman August Harald Hammar tillträder sitt embete af Th. M. Fries, Kongl. Universitets i Upsala n. v. rektor. [Upsala, 1899.] \&vo, pp. 38, xlviii. v. [with a facsimile of the titlepage, and plan of the Upsala garden].
Professor Fries is continuing his contributions to our knowledge of the early life and work of the elder Linnæus; eight contributions have already appeared, and this may be taken as virtually the ninth. This particular MS. of the Hortus Uplandicus has not been printed before, and it is interesting to compare it with the other versions, five of which are enumerated thus :-
No. 1, without date, but probably written in the early summer of 1730 ; this is in the library of the Linnean Society of London. No. 2, with a Swedısh dedication, dated 29 July, 1730, to O. Rudbeck the younger ; it is now at Leufsta.
No. 3, the same date as No. 2, but with a Latin dedication to Rudbeck. This copy was sent by Linnæus to Professor J. J. Lange, in Halle, to endeavour to get it printed and published in Germany, evidently without success; at the end of last century it was in the possession of Schreber, Linnæus's pupil, at Erlangen: it was then lost sight of, and finally was discovered in the State library at Munich; in 1887 it was lent to the University of Upsala, where it was transcribed, and verified as being in the handwriting of Linnæus.
No. 4, dated 13 May, 1731, Old Style, Linnæus's birthday; now in possession of Pastor Johanson.
No. 5, title changed to Adonis Uplandicus, 13 May, 1731, Old Style; now at Leufsta.
With the exception of the third, all these MSS. were printed in Ährling's posthumous Carl von Linné's Ungdomsskrifter, Series i. 1888. This omission is supplied here, with a reduction of the early Linnean names of plants to those of the present time.

The volume contains garden plants, as well as native, and Professor Fries comments on certain points of interest, which show the trend of Linnæus's ideas as his sexual system took shape. A consideration of the then condition of the Upsala garden is next introduced, and its history under the Rudbecks, down to 1787, when Gustavus III. made a grant of it to the University.

The last section of five pages is devoted to the official announcement of Dr. Hammar's installation as professor.
B. Daydon Jaceson.

ARTICLES IN JOURNALS.*

Annuario del R. Ist. Bot. di Roma (ix. fasc. 1 : received 22 Jan.). - B. Longo, 'Sulle Calycanthaceæ ' ($2 \mathrm{pl}$. .). - Id., 'Contribuzione alla cromatolisi (picnosi) nei nuclei vegetali' (1 pl.).-G. Lopriore, ' Amarantaceæ in Somalia lectæ.' - N. Terracciano, 'Addenda ad Synopsidem plantam vascularium Montis Pollini.'

Bot. Centralblatt (Nos. 1-4). - R. Feitel, 'Zur vergleichenden Anatomie der Laubblätter bei den Campanulaceen der Capflora.'(No. 1: 20 Dec.). W. Táliew, 'Zum Bestäubungs mechanismus von Borrayo officinalis und einigen anderen Borragineen.' - K. W. von Dalla Torre \& L. v. Sarnthein, ' Die Verbreitung der Angelica verticllaıis.' - (Nos. 2, 3: $4 \& 10$ Jan.). A. P. Popovici, ' Der Einfluss der Vegetationsbedingungen auf die Länge der wachsenden Zone.'-(No. 3). M. Tswett, ' Das Chloroglobin.'

Bot. Gazette ("December, 1899": issued 10 Jan. 1900).A. Nelson, ' Rocky Mountain Chrysothamıi.' - J. F. Clark, ' Toxic effect of deleterious agents on certain filamentous fungi ' (concl.).C. D. Beadle, 'Studies in Cratagus.' - H. H. Hume, ' Puccinia teleutospores.' - P. A. Rydberg, 'Prunus insititia.' - G. G. Hedgcock \& A. A. Hunter, 'Notes on Thorea' (1 pl.). - C. W. Hyams, Lilium Masseyi, sp.n.

Bull. de l'Herb. Boissier (30 Dec.: received 22 Jan.). - A. Chabert, 'Souvenirs d'Antan.'-J. Bornmüller, ' Crocus Hermoneus.' - F. Stephani, 'Species Hepaticarum.' - E. de Wildeman, Theobroma Kalagua, sp.n. (1 pl.).-J. Briquet, Agrostis rubra \& Calamagrostis tenella.

Bull. Torrey Bot. Club (22 Dec.). - E. P. Bicknell, 'Studies in Sisyrinchium' (cont.).-J. L. Clark, Volutella mellea, sp. n.-A. A. Heller, 'Plants from Western N. America.'-D. Griffiths, Anthurus borealis. - F. S. Earle, ' Fungi from S. America.' - J. B. Clifford, 'The Mycorhiza of Tipularia unifolia' (1 pl.).

Erythea (30 Nov. : received 3 Jan.).-J. M. Greenman, ‘Northwestern Plants.'- M. L. Fernald, ' New Western Plants.' - W. L. Jepson, 'Teratology of Scrophularia californica' (1 pl.). - Id., ‘ Early Scientific Expeditıons to California.'-C. V. Piper, Parnassia cir rata, sp. n.

Gardeners' Chronicle (13 Jan.). - 'Solanum Worsleyi' (? sp. n. : fig. 5).

Journal de Botanique (" Octobre," received 23 Dec.; and "Novembre," received 8 Jan.). - A de Coincy, 'Plantes nouvelles de la Flore d'Espagne' (concl.). - L. Mangin, 'La membrane des Mucorinées' ($\mathbf{1}$ pl.: concl.). - E. Camus, 'Plantes hybrides spontanées de la flore européenne' (cont.). - ("Octobre"). P. van Tieghem, 'Sur les Fouquiériacées.' - ("Novembre"). Id., 'Sur les Parnassiacées.' - E. Roze, 'Supplément à la Florule française de Charles de l'Escluse.'

[^7]Malpighia (xiii, fasc. 5, 6: received 20 Jan.).—A. Fiori, ‘ Nuovo microtomo a mano con morsetta tubulare.' - A. Vaccari, 'Secondo supplemento alla flora dell' Arcipelago di Maddalena.'-E. Paratori, 'Richerche istologiche sui tubercoli radicali delle Leguminose' (1 pl.). - Id., 'L'ipotesi del Duval-Jouve sulla disposizione delle lamine fogliari di alcune Graminacee' (1 pl.$)$.

Oesterr. Bot. Zeitschuift (Jan.). - A. Jenčič, 'Untersuchungen des Pollens hybrider Pflanzen.' - O. Richter, 'Ein neues Macerationsmittel für Pflanzengewebe.' - J. Podpĕra, Fissidens Velnovskyi, sp. n. (1 pl.).-J. K. Urumoff, ' Zur Flora von Bulgarien ' (cont.).

Rhodora (Jan.).-H. von Schrenk, Arceuthobium pusillum (3 pl.). -F. S. Collins, 'Notes on Algæ.' - M. L. Fernald, ' Northeastern species of Scirpus.'

> BOOK-NOTES, NEWS, de.

Sir James Paget, who died in London on the 30th of last December, claims a place among the records of British botanists. Born at Great Yarmouth in January, 1814, he contributed the botanical portion to a joint publication by his brother and himself, entitled Sketches of the Natural History of Yarmouth, which was published in 1834. The list of plants, which includes the cryptogams (fungi excepted), occupies forty-four pages, exactly half of the book, and is evidently very carefully done. His distinguished career as a surgeon diverted his investigations into other channels, but he always retained his interest in botany, and is mentioned by Mr. Watson in Topoyıaphical Botany as having contributed information by correspondence for Norfolk and Suffolk; he was for many years a frequent attendant at the meetings of the Linnean Society, of which body he became a Fellow in 1872. He is commemorated by Ferdinand von Mueller in the Rutaceous genus Pagetia.

Another even more distinguished man who demands mention in these pages, and of whom we hope to say more in our next issue, is Jorn Ruskin, who died at Brantwood, Coniston, on Jan. 20.

Charles Grant Blairfindie Allen, who died at Hindhead on the 25 th of October last, at the age of fifty-one, was an interesting writer, whose efforts of imagination were by no means restricted to the novels and stories with which his name is associated. It may be said of him, though by no means in the conventional acceptation of the phrase, that he "looked through Nature up to Nature's God," and that he treated both with a freedom which failed to commend itself to accurate or reverent minds. An estimate of the scientific value of his botanical work will be found in the notice of his Colours of Flowers (Journ. Bot. 1883, 59) and Flowers and their Pedigrees (Journ. Bot. 1884, 185); his methods are further examined in the notice of his biography of Charles Darwin (Journ. Bot. 1885, 377), and formed the subject of a pamphlet by the Rev. John Gerard called Mr. Grant Allen's Botanical Fables. With his friend

Mr. Clodd, from whom we may expect a sympathetic biography, Mr. Grant Allen has been regarded by many as treating what is called Darwinism in a manner suited to the popular intelligence; but it may be doubted whether Darwin would have accepted either their matter or their methods as an adequate presentment of his theories. According to Erythea, however, "capable judges agree that" Mr. Allen "has done more than any other contemporary Englishman to popularize in a most lucid manner the work of Huxley and of Darwin": this seems to us rather hard on the writers in question.

Sir Rawson William Rawson, who died at South Kensington on the 20th of last November, was born in London on Sept. 8, 1812. His life was spent in the Colonial Service, in which he held positions of distinction in Mauritius, at the Cape, and in the Bahamas, ending his official career as Governor of the Windward Islands, from which he retired in 1875, when he received the title of K.C.M.G. Throughout his life he had been interested in ferns; an early evidence of this will be found in the Phytologist for 1852 (iv. 696), where three Cheshire ferns are recorded by him. He collected in the various countries in which he was stationed, and in 1858, in conjunction with Dr. Pappe, published at Cape Town a Synopsis Filicum Africa Australis. In this several new species are described, many of which were subsequently reduced by Buchanan (Ferns of Natal, 1875), who had access to Mr. Rawson's specimens. Besides those of his own gathering, Sir Rawson's herbarium contained a large number of specimens from various collectors; unfortunately, the collection had suffered much damage before it was acquired by the British Museum, but it contains specimens of interest in connection with species published by him.

Ar the meeting of the Linnean Society on Jan. 18th, Mr. George Massee read a paper on the origin of the Basidiomycetes. He remarked that Juel, a Danish mycologist, had recently demonstrated that Stilbum vulgare, hitherto regarded as a typical Hyphomycete, is a true Protobasidiomycete. Following up this hint, the majority of the species of Stillum, some of which are the known conidial phase of species of Spharostilbe, and others existing without any known higher form, were examined, with the result that the conidial condition of Spharostilbe micıospora and S. gracilipes proved to be identical in structure with Stilbum vulgare, in other words, true Protobasidiomycetes. This discovery reveals the fact that the conidial condition of an ascigerous fungus may be a true Protobasidiomycete. Similar discoveries had been made with forms of Tubercularia and Isaria known to be the conidial stages of ascigerous fungi.

The London Quarterly Review for October last contained an interesting article on "The Primrose and Darwinism" by a writer who styles himself "A Field Naturalist, M.A. Camb." The conclusion arrived at, after a careful survey of the literature of the subject, is "that the primrose gives strong confirmatory evidence to Axell's view, that under natural and equal conditions self-
fertilization of flowers is both the legitimate fertilization and the most productive."

We gladly extend to the following announcement such publicity as our pages afford:-"Wanted are dried plants of culture of every species, varieties too, of all zones and countries (for the present 3 by 3 specimens). Excellent preparation and good getting up are condition. As specimen will be considered a stiff sheet of paper (about 60 centimeter high), which is wholly laid over with the concerning plant. Anything formed roots etc. and ripe fruits are to be delivered espeially in plenty. The ticket of every sheet must show the used remarks. Moreover notes over cultivation, original habitat, use, commercial value, extent of production etc. are desired in German or English or French. Tropical plants of use out of European gardens shall be admitted, on the other hand ornamentae plants are exepted. European specimens will be paid with 2 pence and a half at least, others with 3 pence and a half. Choosing of a equivalent according to the catalogue of the ,,Tauschvermittlung für Herbarpflanzen'، is willingly consented. Notifications asked for next time. Paul F. F. Schulz, Berlin Virchow Strasse 9."

At the meeting of the Linnean Society on Dec. 21st, Dr. Braithwaite exhıbited specimens of Hypuzm Hochstetteri Schimp., collected by him on the Isle of Barra, Outer Hebrides, the only known locality for the plant in Europe.

We note with regret that the Bulletin de l'Herbier. Boissier terminates its existence with the December number. Its place will be taken by Mémnires de l'Herbier Boissier, to be published "à époques indéterminées, en fascicules de prix variable." The first number, dated Jan. 15, contains a continuation of Prof. Schinz's 'Die Pflanzenwelt Deutsch-Siudwest-Afrikas,' hitherto issued in connection with the Bulletin.

Dr. B. L. Robinson has been appointed first incumbent of the newly endowed Asa Gray Professorship of Systematic Botany at Harvard University.

Mr. J. B. Carruthers has been appointed Mycologist to the Government of Ceylon, and Assistant-Director of the Botanical Gardens at Peradenya.

Another fascicle of Mr. Fryer's valuable monograph of British Potamogetons has appeared. Mr. Morgan's plates are, as usual, excellent, and the publisher continues to make them inconvenient for reference by placing his own name where common sense and custom would lead us to look for that of the plant figured. The iacoue" of several "parts" in one wrapper, which is only dated by the year, must in the future lead to inconvenience.

The impetus lately given to the study of Mosses in this country does not seem to extend to France. We note that half the first number of the Revue Bryologique for the present year is occupied by a paper entitled "Compe de feuilles des Glumacées," which is likely to be overlooked by agrostologists, seeing that it appears in a journal "c consacré à l'étude des Mousses et des Hépatiques."

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Weat, Newm
Potamogeton rutilus, Wlfg.

POTAMOGETON RUTILUS Wolfg. IN BRITAIN.

By Arthur Bennett, F.L.S.

(Plate 407.)
I am indebted to Mr. C. E. Salmon, of Reigate, for the sight of the first British specimen that I can certainly refer to Wolfgang's species. The specimens (mixed with P. pectinatus L. on one sheet) are part of a collection presented to the Holmesdale Natural History Club by Dr. J. A. Power many years ago, and were detected in going over these plants to confirm the names. I advised that the plant should be left, and that search should be made for it. Mr. Salmon communicated with Mr. J. E. Bagnall, as he was more or less in the neighbourhood of both localities named on the sheet of specimens, which are, "Coventry Canal, Atherstone"; "Marl Pits, Fradley, Staffordshire." Mr. Bagnall wrote: "I am sorry to have to say that I find no trace of P. rutilus at either the Atherstone Canal or any of the marl-pits near Fradley. Atherstone Canal is now very bare of interesting aquatics; even those which in former days were abundant, such as P. zosterifolius, are quite absent now, the canal being apparently cleared recently. There are many marlpits at and near Fradley, some of them still continuing to be more or less filled with water, the pits nearest to Fradley being mostly ckoked with Anachuris. Some of the outlying pits which I visited are either ordinary duck-ponds, and quite bare of vegetable life, or else so dried up as to be mere swamps. One I visited, which has evidently not only been of large size (about fifteen yards square, and very deep), but was formerly well filled with aquatic growth, has now only an undergrowth of Carex puniculata and a large overgrowth of sallows and willows. It is so long since [Joseph] Power lived in the neighbourhood of Fradley, that the physical characters of the country around are completely changed. He must have visited this district when he lived at Polesworth in the beginning of the present century, and, being a well-known man in the district, would have access to places that would not be so accessible to one like myself; although I have visited all the marl-pits I find marked on the sixinch Ordnance map, there may have been in his day some that are now filled up."

It may be that the dry season of last summer has dried up the pools near Fradley where the P. rutilus grew. Mr. Bagnall has promised to make another search this year.

The following is a translation of the original description of P. rutiulu in Roem. \& Schultes, Syst. Veg. Mant. iii. p. 362 :"Stem compressed, reddish, lower portion more or less branched, upper quite simple, slender; leaves all submerged, sessile, alternate, narrow-linear, flat, gradually narrowing to a mucro, spreading, 3 -nerved, ruddy, obscurely biglandular ; peduncles elongated; spikes 6-7-flowered, reddish; flowers alternately opposite in pairs; anthers apiculate. Wolfg. MS. n. 28. Besser in litt."

Journal of Botany.-Vol. 38. [Maroh, 1900.]

The writers add:-" In our specimens, gathered by the author himself, and kindly communicated by Besser, the stems are rather compressed, flaccid, and very slender; the leaves erectopatent, $1 \frac{1}{2} \mathrm{in}$. long, equalling or exceeding the internodes, as thick as the stem, very narrow, acute, obscurely 3 -nerved; the stipules entire, lanceolate, acute, scarious, half as long as the leaves or less, broader towards the apex, opposite under the peduncles. Peduncles somewhat thickened, longer than the leaves, terminal 1-11 in. long. Spikes very short, 3 lines long, few-flowered. Fruit wanting. In lakes and pools about Wilna. Wolfg."

I may remark on this, that, as contrasted with pusillus, the stipules are very much longer, the leaves are more acute, and with the aspect of acutifolius on a small scale ; and with a peculiar habit that is not found in pusillus, difficult to describe, but best expressed by the term "hard," though this is somewhat lost (in drying?) in most specimens of P. caspitosus Nolte ; it is well shown in specimens in the British Museum Herbarium given by Nolte to Prof. Tuckerman. In no specimens gathered by Wolfgang that I have seen is any.fruit to be found; but it is present on Nolte's specimens, and is well figured in Reichenbach's Icones. My specimens from Nolte are only in flower; in one from A. Braun the fruit is about twothirds ripe ; in specimens from Dr. Nordstedt (Ostrogothia, Sweden) the fruit is well developed and ripe. It differs from pusillus in being longer, narrower, the beak is more bent over, and, as shown by Reichenbach, there is a slight (sometimes greater) indentation on the upper margin, and the fruit is smoother and browner than that of pusillus.

The following represents the history of the species :-
Potamogeton rutilus Wolfgang! in Roemer \& Schultes, Syst. Veg. Mant. iii. 362 (1827). $\quad P$. pusillus L. var. β ! Cham. \& Schl. in Linnæa, ii. 172 (1827). P. caspitosus Nolte!, ex Reichb. Ic. Fl. Germ. et Helv. vii. p. 15, t. 23 (1845) ; Fries, Summ. Veg. Scand. 215 (1846) ; Sonder, Fl. Hamburg. 102 (1851); Ascherson, Fl. Brandenb. 665 (1864); Marsson, Fl. Neu-Vorpommern, 495 (1869); Lange, Handb. Danske Fl. ed. 4, 199 (1886); Hartman, Handb. Sk. Fl. ed. 12, 54 (1889) ; Prahl, Krit. Fl. Schlesw.-Holst. ii. 209 (1890) ; Macoun, Cat. Canadian Pl. pt. 4, 88 (1888); pt. 5, 371 (1890) ; Morong, N. Amer. Naiad. 42 (1893); Magnin, in Bull. Bot. Soc. France, xliii. 446 (1896); Ascherson \& Graebner, Syn. Fl. Mitteleurop. 346 (1897).

Exsicc.-Fries, Herb. Norm. xv. No. 74, 1853-7.
Figures.-Reichenbach, Icones Fl. Germ. vol. vii. t. 23 ; Flora Danica, t. 2889 ; Morong, N. Amer. Naiad. t. 50.

Distribution.-Sweden (in Ostrogotha!, Upland!, Bornholm !), Denmark!, Finland !, Russia, Poland, Baltic Provinces, Onegaland, Olenetz, Lithuania!; Schleswig-Holstein!, Holland (Nyman), Prussia!, Austria (Nyman), Hungary!, Switzerland ?, Mecklenburg (Asch. \& Graeb.). Canada: Anticosti!, James Bay!, Nipigon River !. United States: New York!, Michigan!, Minnesota (Morong).

I agree with M. Magnin in referring P. caspitosus Humnicki (Cat. Pl. de Luxeuil, 60 (1876)) and P. reptans Humnicki (l.c. 61) to P. pusillus L., and not to P. rutilus Wolfgang. These are the authority on which P. rutilus has been reported as a French species.

In Dr. Lees's Flora of West Yorlishire, p. 418, a plant is reported as growing in "clear clay-bottomed ponds at Dringhouses," which Dr. Lees names P. pusillus L. var. rutilus Wolfg.; I have not seen any specimens, but, in the case of a critical species for which forms of pusillus are constantly being reported by good botanists on the continent, it seems to require confirmation. In the Berne Herbarium, as I have already noted in this Journal for 1895, p. 24, there is a sheet of specimens labelled " P. pusillus. Ely, Cambs. 25 July, 1825, Henslow"; part are true pusillus, and part rutilus, but they are not mixed, so perhaps a label has been lost.

There are differences in habit between rutilus of Wolfgang and caspitosus of Nolte, but not enough, in my opinion, to constitute a variety. Nolte's plant has much the habit of some forms of P. Friesii Rupr., while Wolfgang's resembles narrow-leaved forms of P. acutifolius Link; but in an original Lithuanian specimen from Wolfgang there is a tendency towards the habit of Nolte's plant. The way in which the specimens are dried makes some difference; the beautiful specimens I possess from Dr. Nordstedt are models of what dried aquatics should be. Richter (Pl. Europ. p. 15, 1890) most unaccountably places P. compressus Sm. (Eng. Bot. t. 418;, P. Friesii Rupr., and P. (Ederi Meyer, under rutilus. Of the last I have not seen an actual specimen named by Meyer, but German botanists agree in placing it under P. pusillus var. major Fries; and rutilus bears no likeness to good specimens of the plants of Ruprecht and Smith.

After writing the above, on going through all the doubtful specimens I possess of the genus, I found two sheets, received from Mr. Griffith; of Bangor, collected in Anglesea in 1892; these must be referred to P. rutulus. Mr. Griffith writes: "I have little doubt the specimens were gathered in Lake Coron, in Anglesea, and I shall hope next summer to gather the plants again."

Early in 1899 Mr . Hilton sent me a specimen of this, collected from a ditch near Rye, Sussex, in July, 1898. It was without fruit; but Mr. Salmon brought me a specimen of the same plant with good fruit, and the suspicion it might be P. rutilus was at once confirmed. This is the loose cæspitose form of the plant that is contained in the British Museum Herbarium from Nolte's collection, and of which I possess a specimen from Nolte sent me by the late Herr von Uechtritz, of Breslau. I have from Orkney other specimens that may be rutilus, but are insufficient for determination.

Explanation of Plate 407.-A. P. rutilus Wolfg., nat. size, drawn from the specimen in the Holmesdale Natural History Club Herbarium. B. Apex of leaf, enlarged. C. Portion of stem showing stipule, nat. size.

NEW MALAYAN PLANTS.

By H. N. Ridley, M.A., F.L.S.

Among the more interesting discoveries made recently in the Malay Peninsula, the following are the most noteworthy novelties. Perhaps the most striking is the addition of the genus Tupistra to the flora of the Malay region; the group of Liliacea to which it belongs-viz. the Aspidistrea-is characteristic rather of the Himalayan and Chinese regions, and hitherto has not been recorded south of Tenasserim.

Didymocarpus cyaneus, sp. n. Acaulis, foliis pluribus ovatis crenatis pubescentibus, petiolis semiteretibus crassis, $4-5$ pollices longis, 3 pollices latis. Scapi plures 2 -flori erecti, 3 pollices longi. Bracteæ lanceolatæ angustæ. Flores magni speciosi, pedicellis pollicaribus. Calyx 5 -fida, laciniis angustis linearibus, $\frac{1}{2}$ pollicis longis, ad basin liberis. Corollæ tubus curvus superne dilatatus, lobis rotundatis latis, labio inferiore quam superius majore. Flos $1 \frac{1}{2}$ pollicis longus, $\frac{1}{2}$ pollicis latus atro-cæruleus, fauce pallidiore. Stamina 2 , filamentis in medio dilatatis albis, antheris parvis oblongis flavis. Stylus longus, stigmate apice canaliculato. Capsula teres subulata longe rostrata pubescens.

Siamese territory at Kasum. Collected by Mr. C. Curtis.
The number of Didymocarpi in the Siamese-Malayan region seems endless, every district supplying one or more new kinds; but few have been met with here more beautiful than this charming little plant. Its deep blue flowers are produced in abundance almost all the year round, and it is one of the easiest to cultivate; so that it ought to be a popular plant of cultivation. Its affinity is with D. lacunosa Hook. fil.

Didymocarpus corchorifolia Wall. The genus Didymocarmus, as defined in Clarke's Monograph (De Candolle, Mon. Phan. v.) and the Flora of British India, iv. 345, comprises a most heterogeneous collection of plants, which it would probably be more satisfactory to sort into several distinct genera; but to do this suitably it will be necessary to wait till the species are more thoroughly known. Among the most distinct, however, is the remarkable D. corchorifolia Wall., which is classed by Mr. Clarke in the section Didymanthus, but of which he says: "Habitu proprio cum characteribus sectionis male congruens, nulli specie forsan arcte affinis" (l.c. p. 85). Now the section Didymanthus includes such very diverse plants as the tall-stemmed branching D. cordata Wall. with short-tubed flowers, and the almost stemless D. longipes Clarke, with long tubular flowers. D. corchorifolia Wall. has somewhat the habit of D. cordata, but, when full grown, forms a woody shrub, much branched, and from four to six feet tall, with axillary panicles bearing numerous flowers with cup-shaped bracts at the bases of the peduncles and pedicels. Its most peculiar point, however, which has been quite overlooked in all published descriptions, is that the corolla is shaped exactly like that of an Antirrhinum, the upper lips being appressed to the lower with the lobes turned
upwards, while the broader lower lip has the lobes turned down. I know no other instance in the whole order of this form of corolla. In all other species the corolla, though usually irregular, has a longer or shorter tube, with the lobes erect or reflexed, but the mouth of the tube is circular and open. The cup-shaped bracts are also peculiar, but somewhat similar ones occur in D. citrina Ridl. Finally, when one compares its stout shrubby habit. with that of such a plant as the stemless soft D. incana or the herbaceous creeping D. reptans, one cannot avoid thinking that the genus as at present arranged is rather too comprehensive.

The flowers of D. corchorifolia are white, usually apple-green in the throat, and sometimes tinted or stained with dull purple. It grows on banks or rocks on Penang Hill; on the hill Bujong Malacca; in Perak; and along the Pahang track from Selangor, at an altitude of about 2000 ft .

Enhydrias, gen. nov. Hydrocharidearum.
Herba submersa ramosa caulibus gracilibus. Folia alterna angusta linearia acuminata minute dentata. Flores solitarii axillares bisexuales, basibus in vagina longa tubulosa inclusis. Calycis tuba longa gracilis, lobi lanceolati acuti virides. Petala 3 linearia multilongiora anguste linearia obtusa alba. Stamina 3, in fauce tubi adnata brevia, antheris linearibus terminalibus. Styli 3 quam stamina breviores cylindrici. Capsula angusta cylindrica in vagina inclusa, ovula plura anatropa. Semina fusiformia papillosa.
E. angustipetala, sp. unica. Herba 6 ad 24 pollices longa. Folia linearia acuminata, $1 \frac{1}{2}$ pollicis longa, $\frac{1}{16}$ pollicis lata, alterna, internodiis $\frac{1}{8}-\frac{1}{4}$ pollicis longis, olivacea vel rufescentia uninervia. Flores sessiles. Spathæ pollicem longæ complanatæ, apicibus bifidis. Perianthii tubus supra spatha, $1 \frac{1}{2}$ pollicis longus, gracilis virescenti albus. Calycis lobi lanceolati, $\frac{1}{8}$ pollicis longi, virides. Corollæ lobi angusti lineares pustulati albi ultra $\frac{1}{4}$ pollicis longi. Stamina gracillima parva. Capsula pollicem longa, semina circiter 14 fusiformia, olivacea, pustulis in seriebus tribus longitudinalibus.

Common in fresh water, ponds and ditches. Singapore, everywhere; Malacca, at Merliman; Perak, Dindings; Pahang, near Pekan.

This plant might almost be described as a Lagarosiphon with the flowers of a Blyxa. It forms thick masses in ponds and ditches, and is quite a pest in the garden lakes, growing with great rapidity. The whole plant is submerged, except the upper part of the perianthtube. The leaves are narrow, much like those of Lagarosiphon Roxburyhii Benth., green or dull red, alternate and about a quarter of an inch aparit, except near the flowers, where they are often crowded together. The flowers are unisexual, solitary in the axils of the leaves, with a long slender pinkish-white tube and narrow white petals, beautifully pustulated and shining under a lens. The flowers are apparently self-fertilized, as I have always found the anthers dehisced, and the stigmas covered with pollen in the bud. The seeds are shortly fusiform, with three longitudinal rows of processes. The plant flowers all the year round, and the ponds are often dotted all over with its small white flowers.

It is curious that so common a plant should have been long overlooked ; but it is probable that herbarium specimens, if collected, may have been mistaken for Lagarosiphon Roxburghii, as these aquatic plants are rather troublesome to preserve well in this country.

Dendrobium Foxii, sp.n. Epiphytica, caulibus gracilibus tripedalibus rubris; folia tenuia lanceolata acuminata atroviridia nitentia, 4 pollices longa, pollicem lata. Flores in caulibus defoliatis, 7-10 in racemo, majusculis, pedicellis gracilibus pollicaribus pallide roseis. Sepala ovata acuta pallide roseo-alba, $\frac{5}{8}$ pollicis longa, $\frac{1}{4}$ pollicis lata, lateralia quam superius obtusiora curva. Mentum pollicare curvum, a basi cylindrico dilatatum apice acuminato curvo roseo. Petala oblongo-obovata rotundata marginibus fimbriatis quam sepala majora ferme $\frac{3}{4}$ pollicis longa, alba. Labellum basi angusto lineari, lamina abrupte dilatata pandurata biloba, lobis rotundatis fimbriatis album. Columna crassa lata, brachiis brevibus obtusis crassis aurantiacis.

Perak. Thaiping Hills, at about 4000 ft . elevation (W. Fox).
This pretty orchid belongs to the section Pedilonum, and is allied to D. hymenanthum Hook. fil.; but the flowers are rather larger; the lip has a broad blade, suddenly dilated, then pinched in and dilated again, and bilobed at the apex; the large and stout spur is curved and dilated towards its end, terminating in a distinct short point. It is very floriferous, and perhaps as showy as any of the section.

Cirrhopetalum maximum, sp.n. Rhizoma longum repens, pseudobulbis remotis anguste oblongis planis, 5 pollices longis, viridibus. Folium lanceolatum coriaceum atroviride, 12 pollices longum, 4 pollices latum. Scapus 12 pollices longus, erectus. Flores in verticillo terminali 7. Bracteæ pollicem longæ, lanceolatæ acuminatæ rubescentes. Pedicelli crassi æquilongi, ovarium canaliculatum. Sepala lanceolata caudata, 5 pollices longa, pallide viridia, venis obscurioribus caudis purpureis, omnia æqualia et libera. Petala 2 pollices longa, angusta caudata. Labellum linguiforme carnosum magnum apice acuto lacteo medio violaceo. Columna crassa lata oblonga, brachiis 2 erectis brevibus, 2 crassis latis porrectis violaceis. Anthera rotundata flava. Stigma profundum margine lobato. Rostellum rotundatum. Capsula oblonga.

Perak. On the hill Bujong Malacca, 1 to 2000 ft . altitude, creeping on rocks and trees.

This is truly a marvellous plant, and somewhat difficult to classify, as it might really be classed either with Cirrhopetalum or with the Bulbophyllums of the Sarcochilus section. The flowers are arranged in a whorl more than a foot in diameter, each one being with its pedicel more than 6 in . long. The long-tailed sepals are pale green, with darker veins, and long purple points; the lip and column cream-colour, with mauve markings. Though not brilliantly coloured, it is one of the most striking species of the genus from its great size and peculiar form. It is abundant on rocks and trees on the hill known as Bujong Malacca, a locality which has produced a number of other remarkable and beautiful plants.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
trilobum, lobis lateralibus elevatis ovatis flavescentibus purpureo punctatis, lobo medio flavo, maculis duabus roseis ad basin, carina elevata oblonga in epichilio. Columna tenuis lata pallide viridis. Anthera parva, pollinia ovoidea, disco scutiformi magno tenui emarginato. Rostellum parvum rotundatum. Stelidia longa tenuia incurva.

Perak, near Ipoh; Pahang, Tahan Valley.
The Bromheadias vary more in form of the vegetative organs than in their flowers, the general design of which and even the colouring is similar all through the genus, and certainly no one would take this odd rush-like plant for one of the genus without seeing the flowers. The stiff narrow leaves, and stems, and tuft of little spikes with distichous bracts from which are produced flowers at long intervals of time, are quite peculiar in the genus. The flowers resemble in form those of other Bromheadias, but are very much smaller than in most species, pale whitish yellow, more or less tinted with pink. They only last a few hours.

Saccolabium undulatum, sp. n. Epiphyta, caulibus 6-pollicaribus complanatis viridibus. Folia lorata margine undulato, apice inæqualiter bilobo, flaccida obscure viridia, 5 pollices longa, $\frac{3}{4}$ pollicis lata. Racemi graciles penduli, 4 pollices longi, floribus copiosis minimis. Bracteæ minutæ ovatæ acuminatæ dimidio pedicelli cum ovario æquales. Sepala oblonga ovata flavescentia, fasciis duabus rubris $\frac{1}{16}$ pollicis longis. Petala linearia lorata ingustiora obtusa flava cum maculis 4 rubris. Labellum lobis lateralibus vix distinctis, medio brevi angusto cornuto decurvo, calcare pedicello rquali obtuso in medio dilatato, callis nullis, flavum, maculis rubris duabus in fauce calcaris. Columna brevis crassa cum basi roseo. Anthera calvariiformis elevata. Pollinia 2, subylobosa, translucentia; pedicello superne dilatato triangulari, basi angusto lineari, disco oblongo, Capsula oblonga pyriformis.

Perak. Telok Pinang, near Ipoh, on trees, Oct. 1898.
A small and rather insignificant plant, with flat undulate leaves all twisted into one plane, dull green, with hanging racemes of very small yellow and red flowers. It belongs to the section Micrantlice.

Sarcanthus rostellatus, sp. n. Caules ad 6 pollices longi, $\frac{3}{16}$ pollicis lati, foliss flaccidis loratis apicibus bilobis, lobis rotundatis, 7 pollices longis, $\frac{3}{\frac{3}{3}}$ pollicis latis. Panicula 6 -pollicaris, pauci-ramosa, pedunculo viridi purpureo-maculato. Flores circiter 20, pedicellis $\frac{1}{4}$ pollicis longis. Bracteæ minimæ ovatæ pedicellis appressæ. Sepala oblongo-ovata obtusa, lateralia majora atrorubentia, linea mediana et apice viridi. Petala linearia. Labellum album, lobis lateralibus, brevibus obtusis porrectis, lobis medio reniformi-hastato carina mediana elevata, calcare curvo cornuto obtuso, $\frac{1}{8}$ pollicis longo, carina superna in calcare longo pubescenti, inferiore longo et pubescenti approximato. Columna brevis et crassa rufa, apice virescente. Stelidia brevia erecta rosea. Anthera pileata flava. Pollinia parva oblongo flava, canaliculata, disco superne lato, inferne angustato, apice bilobo, lobis latis divaricatis. Rostellum elongatum longe bifidum, lobis truncatis oblongis. Stigma profundum.

Perak, at Tambun, near Ipoh, flowering in April.
This species is chiefly remarkable for the shape of the disc of the pollen-masses, which resembles in form the merrythought of a fowl, having two long curved processes at the extremity. The rostellum is also remarkably long and deeply bifid, the processes being unusually large. The keels in the entrance of the spur are very long and hairy, and nearly meet so as to divide the spur almost in two.

Sarcochilus biserratus, sp. n. Epiphytica, caulibus pluribus congestis, 3-4 pollices longis. Folia anguste lineari-lanceolata, acuta carnosa, 4 pollices longa, $\frac{1}{4}$ pollicis lata. Racemi copiosi, complanati, 6 pollices longi vel ultra, $\frac{1}{8}$ pollicis lata. Flores distichi e foveis exorti, bracteis parvis ovatis, pedicellis cum ovariis virescentialbis, $\frac{1}{4}$ pollicis longis. Sepalum posticum lanceolatum acutum ad basin angustatum, lateralia obliqua, $\frac{1}{4}$ pollicis longa. Petala sepalis similia angustiora omnia flavescentia. Labellum cum pede longo gracili, lobis lateralibus linearibus acutis excurvis, lobo medio minimo. Calcare longo conico cornuto horizontali, $\frac{1}{4}$ pollicis longo, omnino album ore calcaris violaceo. Columna alba brevis, anthera ovata rostrata, flava.

Perak, near Ipoh.
A small-flowered plant with tufted stems forming a compact mass and numerous flattened green rachises, excavate along each edge and bearing numerous small sweet-scented flowers, produced singly on the inflorescences and short-lived, the sepals and petals pale yellowish white, the lip pure white, except for a violet edge to the mouth of the spur.

Tupistra grandis, sp.n. Herba habitu Susi anthelmintici, caule brevi erecto radicibus aeriis brevibus albis extrusis. Folia lanceolata acuminata erecta atro-viridia, 24 pollices longa, 6 pollices lata. Spica erecta valida pedalis, rachide crasso carnoso, floribus 50 vel pluribus sessilibus, pollicem longus et $\frac{3}{4}$ pollicis latis, alabastris tetraquetris oblongis truncatis ferme atris. Bracter ovate purpureæ minimæ. Perianthium campanulatum, purpurascens pollicem longum apicibus sepalorum et petalarum recurvis atropurpureis ovatis. Antheræ 6 in fauce tubo sessiles alba oblonga. Stylus crassus alba, perianthiio superans, stigma maximum rotundatum medio depresso album. Ovarium trilocularis, ovula in loculo utroque 2.

Perak, in dense forest on the hill Bujong Malacca.
This plant is a most interesting one, not only on account of its locality, being the most southern species of the group of Aspidistrea, but also on account of its being probably the finest species of its genus. Its general appearance is that of Susum anthelminticum Bl., a common plant in the peninsula, for which indeed I mistook it till I found a flowering specimen close to the camping ground. The flower-spike is rather shorter than the leaves, erect and fleshy, with numerous flowers opening two or three at a time. They have the appearance of nearly black basins with recurved edges, from the centre of which arise small white fungi, on stout stalks (the pistils). The buds and tips of the petals and sepals are deep purple,
almost black, and the contrast with the ivory-white pistil is most striking.

The group Aspidistrea includes the genera Aspidistra, Gonioscypha, Roldea, and Tupistra, all natives of the Himalayas, Burma, China, and Japan, one species of Tupistra being found as far south as Moulmein-viz. T. Stoliczkana Kurz, which appears from the short description in the Flora of British India (vi. 325) to be the most nearly allied species. A plant described by Mr. Baker in Journ. Limn. Soc. xiv. 581, as Tupistra singapurana, collected in Singapore by Wallich (no. 5195), is a fruiting specimen of Neuviedia Curtisii Rolfe. Live plants of T. grandis are in cultivation in the Botanic Gardens, Singapore, where one has already flowered; and one was also sent to Kew Gardens.

Andropogon hirtiflorus Kunth. Sandy seashores near Changi and Galang, Singapore; also Blakangheati Island.

Polytrias premorsa Hack. Turf in Botanic Gardens, Changi, and other open spots in Singapore; Malacca, near the town.

These two grasses are not recorded for the peninsula in the Flora of British Indin, and the latter appears only to have been collected in Java hitherto.

NOTES ADDITIONAL TO THE 'FLORA OF CHESHIRE.'

By Spencer Moore, F.L.S.

The following notes, relating to Cheshire records, were found by Lady Leighton among Lord de Tabley's papers, but too late for incorporation in the Flora of Cheshive:-

Cochlearria officinalis L. and C. anylica L. "C. officinalis. Cultivated, June, 1822. Root from Hale Marsh, near Warrington, 1821. The globose veinless capsule and the cochleariform leaves would induce me to keep this distinct from C. anglica. Riverside below Warrington, Aug. 1824. C. anglica is more common about Warrington than C. officinalis." W. Wilson (with specimens) in Herb. Kew.

Rubus humifusus Weihe. In the British Herbarium of the Linnean Society are specimens (from the herbarium of BellSalter) of the Beeston Castle Rubus labelled: "ex Herb. Borrer. Rubus Koehleri (var.): R. apiculatus W. \& N. Beeston Castle, 18.7.1844." These bear Babington's MS. name, under date 1860, R. Koehleri γ pallidus. They are the same as the Kew specimens which Professor Babington has there called R. humifusus, but which Mr. Baker referred to R. pallidus without the least hesitation.

Rosa canina L. var. decipiens Dumort. Mr. Wilson's Cheshire specimens in Herb. Borrer are from Over, gathered in 1830.

Asarum europaum L. "In the wood near Rev. Stolterfoth's, Rainow, Cheshire." Memorandum of J. D. Siddal, of Chester, in whose possession I saw a specimen of the plant in July, 1875. F. M. Webl.

Malaxis palulosa Sm. "Sink Moss, Cheshire, Aug. 1826." W. Wilson in Hooker's Journal of Botany, i. 306. Specimens were collected in the same place by Mr. Borrer in 1837, probably under the direction of Mr. Wilson. I do not know where Sink Moss is.

Festuca pratensis Huds. var. loliacea. "Some years ago I visited a meadow on the banks of the Weaver above Northwich, where Festuca pratensis and F. loliacea were growing together in profusion." W. Wilson in Phytologist, ii. 446.

Cladium Mariscus Br. "Lake near Rosthern Mere, Cheshire, Mr. Campbell." Deakin, Florigraphia Britannica, i. 32 (1857). This is an earlier record by three years that in Wood's Flora Mancuniensis. Very likely Mr. Wilson had given specimens to the Edinburgh Botanical Society, some of which were distributed by Mr. Campbell, and I believe that it was Rostherne that was the locality meant by Mr. Wilson in his communication of Cladium as a Cheshire plant to Smith (vide English Flora) and Hooker (vide British Flora).

The following Cheshire specimens are in the British Herbarium of the Linnean Society :-

Lepidium Draba L. Chester, 1847. Miss Potts.
Diplotaxis tenuifolia DC. On Chester walls, May 25th, 1828. Herb. N. Winch.

Sedum reflexum L. Sandy hedge-banks between Knutsford and Monksheath. H. C. Watson in Herb. N. Winch.

Saxifraya Hirculus L. Knutsford Moor. Mr. Holland, Herb. N. Winch.

Bupleurum tenuissimum L. Near Chester. Miss Potts.
Charophyllum Anthr iscus Lam. Chester walls, May 25th, 1828. N. Winch.

Jıncus niyritellus D. Don. New Brighton, Sept. 18th, 1837. C. C. Babington.

Lycopodium inundatum L. Sale's Moor, near Manchester. Mr. E. Robson, Herb. N. Winch.

Cheshire Carices in Herb. Boott at Kew :-
Carex paniculata L. Mr. Wilson, 1836.
C. axillaris Good. Mr. Wilson, 1836.
C. elongata L. Dr. Hooker, 1834. No doubt derived from Mr. Wilson.
C. stricta Good. Mr. Wilson, 1841.

Cheshire specimens in Herb. Borrer at Kew :-
Epipactis palustris Cr. Knutsford Moor, 1837.
Calamagrostis stricta Nutt. Oakmere, Sept. 1846.
Carex filiformis L. Oakmere, 1846. G. E. Smith.
Mr. Borror probably went to the meeting of the British Association at Liverpool in 1837. He was with Mr. Wilson during his visit to the county. He went, during this trip, to Chester, New Brighton, Knutsford, and Beeston.

The following records will be found in Phytolonist iv. 696 (1852) : -

Nephrodium spinulosum Desv. Whitchurch. - N. Thelypteris Desv. Quirsley Mere, near Whitchurch and Wybunbury Moss.Osmundu regalis L. Whitchurch neighbourhood. R. W. Rawson is the authority for all three.

I take the present opportunity of adding the notes which follow:-

Saxifraga Hirculus L. Probably the earliest reference to this as a Cheshire plant is to be found in the Correspondence of Dr. Pichardson, p. 167. Here, in a postscript to a letter from Dr. Sherard, under date March 28th, 1721, we read: "I had a letter lately from Dr. Fowlkes. He says Saxifraga angustifolia f. luteis punctatis, Breyn. Cent. was found near Knutsbridge Mills in Cheshire." Mr. Britten showed me Richardson's specimen in Herb. Sloane (cxlvi, fol. 9), as also another gathered in the succeeding year (ccxiii, fol. 1). - Acorus C'alamus L. Dr. Richardson's specimen from Holford (vide Fl. of Cheshire, p. 280) is also in Herb. Sloane (cxlvi, fol. 9).

I must express my regret for allowing to let pass the statement on p. lxxxi of the Flora that "no satisfactory account of Gerard's life has yet been compiled." This was done in forgetfulness of Mr. B. D. Jackson's interesting biographical sketch prefixed to his reproduction of Gerard's Catalu!fue (London, 1876). The sentence quoted above was of course penned by Mr. Warren before Mr. Jackson's work appeared.

NOTE ON COSMIIA.

By James Britten, F.L.S.

In the course of naming the Banksian engravings of Australian plants shortly to be published by the Trustees of the British Museum, it became necessary to look up the history of the genus Calandrinia, one species of which-C' quadrivalvis F. Muell.-is among the plants represented.

It requires little research to discover that Calandrinia (H. B. K. Nov. Gen. vi. 78 (1823)) is antedated by Baitaria (Ruiz \& Pav. Prodr. 63, t. 36 (1794)), of which Bentham \& Hooker say (Gen. Pl. i. 158), "a Calandrinia haud diversa videtur." All possibility of doubt as to the identity of the two is removed by the inspection of Ruiz and Pavon's specimens, two sheets of which, from Pavon's herbarium, are in the National Herbarium. The same specific name was adopted for the plant under both genera, although the identity of Baitaria with Calandrinia does not seem to have occurred to the founders of the latter genus.

There is, however, a still earlier name to be considered. In establishing the genus Calandrinia, the authors (Nov. Gen. vi. 77
(1823)) quote as a synonym "Cosmia Domb. Juss." The reference is to Juss. Gen. 312 (1789), where, at the end of the description of "Talinum Adans.," is the sentence: "An congener Cosmia Domb. Peruv. distincta caule herbaceo, floribus solitariis axillaribus 5 andris, habitu Samoli?" Although no full description of Dombey's genus appears to have been published, there seems to be no doubt as to its identity with Calandinina; Sprengel (Syst. ii. 453 (1825)), who, by the way, cites Calandrinia as of Kunth only, follows H.B. K. in quoting Cosmia (caulescens) as a synonym of Calandrinia caulescens, and De Candolle cites MS. names of two other species referred to Cosmia by Dombey in his herbarium, but placed in the Prodromus (iii. 359 (1828)) under Calandrinia. Even supposing the citation from Jussieu were not accepted as sufficient definition of the genus, the name would be at least of equal date with Calandrinia, under which, as already mentioned, it is quoted as a synonym by the founders of the genus.

Dr. Kuntze follows Ferdinand von Mueller in placing both Talinum and Calandrinia (to which he adds Baitaria-or, as he prefers to spell it, Baitara) under Claytonia, but Dr. Pax (Engler \& Prantl, Pflanzenfam. iii. 16, 55) keeps them distinct, as do other authors.

The nomenclature of the plants already placed under Cosmia is as follows:-

Cosmia caulescens Domb. ex Spreng. Syst. ii. 453 (1825), et in Herb. Mus. Brit. !, where there is a specimen from Dombey's herbarium, with a transcription by L'Héritier of Dombey's MS. description.
C'alandrinia caulescens H. B. K. Nov. Gen. vi. 78, t. 526 (1823). Cosmia montana Domb. ex DC. Prodr. ii. 359 (1828).
C'luytonic caulescens O. Kuntze, Rev. Gen. i. 57 (1891).
Cosmia prostrata Domb. ex DC. Prodr. iii. 359 (1828).
Baituria acaulis Ruiz \& Pav. Syst. Veg. 111 (1798); Fl. Per. Ic. t. 403a (1802) ; et in Herb. Mus. Brit. !

C'alandrinia acaulis H. B. K. Nov. Gen. vi. 78 (1823) ; DC. I. c. Claytonia acaulis O. Kuntze, Rev. Gen. i. 57 (1891).
Those who insist on the retention of the oldest specific name will call the plant Cusmia acaulis.

I do not propose to follow the practice of some botanists in publishing names for the other species of Calandrinia under the genus to which they will have to be transferred, as I consider such practice unscientific and likely needlessly to increase synonymy; but it will be convenient for purposes of citation to name here the Australian plant which led to this inquiry. This is-

Cosmia quadrivalvis.

Calandrinia quadrivalvis F. Muell. Fragm. i. 76 (1859).
Claytonia quadrivalvis F. Muell. Census Austral.'Pl. 27 (1882).

DENBIGHSHIRE MOSSES.

By Eleonora Armitage.

In June, 1898, I spent three or four days collecting mosses in a hilly district of Denbighshire (v.-c. 50), about seven miles west of Uswestry. The geological formation there is Lower Silurian, consisting of slate rocks and soft black shales (Llandeilo). The elevation of the district above sea-level is as follows :-TYdraw Valley, 831 ft. ; hill above Tydraw, 1467 ft.; hill above Rhiwlas, 1490 ft.; Gyrn Moelfre, 1715 ft .

I collected fifty species and varieties, thirty-one of which are given here, nineteen being omitted as they have already been recorded for Denbighshire in the list published by Mr. H. N. Dixon in this Journal for 1898, p. 186. The Rev. C. H. Binstead and Mr. E. C. Horrell have kindly helped me in determining the species.

I have now received a valuable additional list for Denbighshire from Professor Barker, who has courteously placed it at my disposal. I have therefore incorporated it here. Professor Barker's collection was made during the last week of August and the first week of September, 1899, in two parts of the county-viz. the neighbourhood of Capel Garmon, and around Colwyn Bay, including Bryn Euryn, a limestone hill of the Orme's Head group.

Professor Barker's list contains one hundred and seventy-seven species and varieties; of these, forty-seven have been recorded in Mr. Dixon's list and my own, the remaining one hundred and six are new. Some of the doubtful specimens were referred to Mr. Dixon. Mosses collected both by Professor Barker and myself are distinguished by the initials (T. B., E. A.) following the name; those collected only by myself are marked ($E . A$.); the rest, by Professor Barker, are unmarked. With the sixty-four mosses of Mr. Dixon's list, the total for Denbighshire now includes two hundred and one species and varieties.

Sphagnum papillosum Ldb. - β confertum Lindb.-S. syuariosum Pers. E. A. - S. acutifoliumn a arctum Braithw. - S. intermedium Hoffm. T. B., E. A.

Andreaa Rothii δ falcata Lindb.
Tet, aphis pellucida Hedw.
Catharinea undulata W. \& M. T. B., E. A.
Polytrichum aloides Hedw. T. B., E. A.- P. urniyerum L.P. juniperum Willd. T. B., E. A.-P. strictum Banks.

Pleuridium axillare Lindb.
Ditrichum flexicaule Hampe.
Ceratodon purpureus Brid. T. B., E. A.
Cynodontium Bruntoni B. \& S.
Dichodontium flavescens Lindb.
Dicranella heteromalla Schimp. T.B., E. A.-D. varia Schimp.
D. Schreberi Schimp.-D. squarrosa Schimp. E. A.

Cainpylopus atrovirens De Not.
Dicranum scoparium Hedw. T. B., E. A.- $\begin{gathered}\text { orthophyllum Brid. }\end{gathered}$ - δ spadiceum Boul. E. A.-D. majus Turn.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Hypnum polygamum Schimp.-H. stellatum β protensum B. \& S. -H. chrysophyllum Brid.-H. fluitans L. E. A.-H. examnulatum Gümb.-H. cupressiforme L. T. B., E. A.- β resupinatum Schimp. - $\boldsymbol{\gamma}$ filiforme Brid. - n tectorum Brid. - H. Patientic Lindb. - H. molluscum Hedw.-H. stramineum Dicks.-H. cuspidatum L. T. B., E. A.- β pungens Schimp.-H. Schreberi Willd. T. B., E. A.

Hylocomium squarrosum B. \& S. T. B., E. A.-H. triquetrum B. \& S. T. B., E. A.

Note.-It is interesting to record here, what has not been previously published, that Professor Barker first discovered Gilimmia arenaria Hampe as a British plant near Dolgelly, Merionethshire, in August, 1898; while this year he has added a second station for it near Capel Garmon, Denbighshire.

"JUNCUS TENAX."

By A. B. Rendle, D.Sc., F.L.S.

Mr. Britten having drawn my attention to a certain confusion of species under the name Juncus tenax Soland., we went into the matter with some care, and with the aid of the literature, including the invaluable manuscripts of Banks and Solander, arrived at conelusions which may be worth recording.

1. Juncus tenax Sol.-In the Appendix to Forster's Florulle Insularum Australium Prodromus (1786) under "Plantæ Obscure" we find " 514 . Juncus tenaxi S. Nova Zeelandia." The S. signifies Solander, as is shown by a footnote explanatory of the heading, which reads, "Hoc titulo colliguntur plantæ in Australiæ insulis a nobis quidem lectæ, sed vel imperfecte, vel omnino, deficientibus floribus et fructificationibus, non descriptr. Nomina nonnullis deinde adjecta juxta sententiam b. Solandri qui easdem olim descripserat." This note evidently refers to the Solander manuscript -that is, to the descriptions by Banks and Solander of the plants collected by them on Cook's earlier voyage; and the " J. tenax S." means that Solander referred Forster's plant to the species previously collected and thus designated by themselves.

The identity of this New Zealand plant has hitherto been doubtful. E. H. F. Meyer, in his Synopsis Juncorum (p. 59) (1822), puts it among the species dubiæ. Wikstrom, in K. Vetensk. Acad. Handl. 1823, 275, cites it as synonymous with J. glaucus Ehrh., "sec. assertionem Cel:mi Dryander olim in litteris ad Dom. Montin." Schultes also (System. Veget. vii. 182 [1829]) inserts it, with a query, under J. glaucus, on the same authority, and Allan Cunningham (in Hook. Comp. Bot. Mag. ii. 374 [1837]) says, "What Juncus tenax Sol. MSS. (enumerated by Forster in his Prodr. n. 514, without a description) may be, of which specimens were collected in New Zealand, in the first voyage of Capt. Cook, appears doubtful. Schultes observes," \&c.

Fortunately the possession of the manuscript and specimens of Banks and Solander enables us to settle the matter. Banks and Solander collected in New Zealand two plants which they considered as varieties of one species, naming them respectively J. tenax a major and J. tenax β minor. J. tenax a major was collected near Totaranui. It is J. pallidus R. Br. Prodr. 258. Hooker in Fl. Nov. Zel. pt. i. 263 makes it a synonym of J. vaginatus R. Br. which, however, Buchenau regards as "an abnormal form of J. pallidus R. Br." (Engl. Jahrb. xii. 238).

Juncus tenax var. β minor Banks et Sol. was collected near Tolaga, Opuragi. It is J. pauciforus R. Br. Prodr. 259, and also the " Juncus effisus L." of Hooker's Flor. Nov. Zel. l.c.

The citation in the Flora Nova-Zelandia reads " J. tenax β minor Banks et Sol. MSS. et Ic.," and there is the same reference to a figure under var. major. This must be a slip, as there is no figure of either plant, nor do the authors refer to one in their manuscript.

Specimens of Forster's Juncus tenax exist both at the British Museum (in Herb. Banks) and Kew. They are referable to J. australis Hook. f. (Fl. Tasm. 66), as pointed out by Buchenau (l.c. 240). Buchenau is in doubt as to whether the forms with flowers crowded in small groups form a distinct species (J. australis), or belong partly to J. efficsus, partly to J. pauciflorus, "observations in the field can only decide." They approach very near the J. vaginatus R . Br. with which I am inclined to include them. Forster's specimen in Herb. Banks was subsequently named J. glaucus by Dryander, a fact which accounts for the abovementioned statement on Wikstrom's authority.
2. Juncus tenax Banks \& Sol. in Russell, Nat. Hist. Aleppo (ed. 2), ii. 251 (1794).

In the second edition of Alexander Russell's Natural History of Aleppo, l.c., we find among the plants a new species, "Juncus tenax; culmo nudo stricto striato, panicula laterali rara, squamis radicalibus nitidis."

This second edition, "revised, enlarged and illustrated with notes," we owe to his brother Patrick Ruissell, who in his preface and notes gives the full story of the plants. "The catalogue of plants," he says, p. viii, "will be found to have undergone material alteration, and to be much improved. But it is my duty to acknowledge that this is to be ascribed to the friendly assistance of Sir Joseph Banks (and the late Dr. Solander), who, with their usual readiness to countenance every attempt tending to the advancement of natural history, bestowed many hours on the examination of a large collection of specimens from Syria; and, after correcting numberless errors in the former arrangement, composed the classical catalogue now substituted for the old one." On page 238 he states that "to the original specimens belonging to my brother were joined a considerable collection of my own, which I brought from Syria." Mr. Britten points out that the abovementioned association of Banks with Solander in the actual workingout of the specimens is quite in a line with other evidence which goes to prove that "Banks \& Sol.," and not merely "Sol.," must be cited as authority for these and other species.

It is of interest to note that in the Solander manuscripts, where the diagnosis is exactly as printed in Russell's work, Dryander subsequently erased the specific name tenax, substituting that of glaucus. Kunth, Enum. iii. 599 (1841), cites it as "species dubiæ affinitatis." Buchenau, l.c., p. 243, makes it a synonym of J. glaucus Ehrh,, and adds a note (nota 4, p. 246): "from the locality and description J. tenax can only refer to our J. glaucus." An examination of the plant, which we have at the Museum from Patrick Russell, shows it to be a form of Juncus acutus L., with laxly effuse panicle and small roundly obovate fruit (2.5 mm . long), perhaps referable to var. Tommasinii Buch. l.c. 250 .
3. Juncus tenax Poir. Encycl. Méth. Suppl. iii. 156 (1813). "Jonc des jardiniers."

Buchenau, in his Krit. Verz. Junc. 45 (1880), says probably J. glaucus Ehrh., but in his monograph (in Engl. Jahrb. xii. [1890]) makes no reference to it. That it is J. glaucus seems evident from Poiret's description and notes, and his citation of Juncus acutus vulga is Moris. Hist. 3, §8, tab. 10, fig. 13. This is the Juncus acutus, vulgaris Parkinson, the Hard Rush of Ray's Histoıia, which specimens in Sloane's Herbarium show to be Juncus glaucus.
4. Juncus tenax Brown in Leop. v. Buch, Physic. Beschreib. Canar. Ins. 191 (1825), nomen.

A sheet in the Banks Herbarium bears plants collected in Madeira both by Banks and Solander and by Masson, and is inscribed in Solander's hand Juncus tenax, the tenax being subsequently erased and glaucus written beneath by Dryander. They are obviously J. glaucus Sibth. The sheet also bears specimens collected near London, and a manuscript note of Dryander, " tenax MSS." in our copy of Smith's English Botany, p. 665, also associates tenax with J. ylaucus. Buchenau, who cites the species merely as a nomen nudum, " J. tenax Buch," suggests (Krit. Verz. 45) that it may be J. canariensis Willd., i. e. J. efficsus var. canariensis Buch.

In brief, then, the species stand thus:-

1. J. tenax Sol. in Forst. Prodr. $90(1786)=$ J. australis Hook. f. Fl. Tasm. 66 (1860), which is probably a synonym of J.vaginatus R. Br. Prodr. 258 (1810) ($=$ J. pallidus R. Br. l.c. fide Buchenau).
J. tenax a major Banks \& Sol. ex Hook. f. Fl. Nov. Zel. i. 263 (1853) $=J$. pallidus R. Br. Prodr. 258 (1810).
J. tenax a minor Banks \& Sol. ex Hook. f. l.c. = J. pauciflorus R. Br. Prodr. 259 (1810).
2. J. tenax Banks \& Sol. in Russell's Nat. Hist. Aleppo, ed. 2, ii. $251(1794)=J$. acutus L. var. Tommasinii Buchen. in Engl. Jahrb. xii. 250 (1890).
3. J. tenax Poir. Encycl. Méth. Suppl. iii. 156 (1813) = J. glaucus Sibth. Fl. Oxon. 113 (1794).
4. J. tenax Brown ex Buch, Physic. Beschreib. Canar. Ins. 191 $(1825)=J$. glaucus Sibth. l.c.

MYCETOZOA OF THE SOUTH MIDLANDS.

By James Saunders, A.L.S.

The lists appended to the present communication are supplementary to the one which appeared in this Journal in January, 1893 (pp. 10-13), and are indices of observations made during the ensuing seven years; the plants have been observed by Mr. C. Crouch, of Cainhoe, Beds, my son Edgar, and myself. In addition we have had the advantage of three or four visits to this district of Mr. A. Lister and Miss G. Lister, the latter of whom, while in our company, discovered Diachaa subsessilia at Flitwick, Beds, a first record for Europe.

The area embraced by these investigations may be roughly described as being within a ten mile radius of Luton. The extremes are Flitwick, Beds, to the northward; Wheathampstead, Herts, southward; Ivinghoe, Bucks, to the west; and Hitchin, Herts, to the east. In the area mentioned upwards of 90 species are recorded, and when it is mentioned that in Mr. Lister's monograph only about 110 species are enumerated as British, it will be readily conceded either that this district is peculiarly rich in these organisms, or that it has been well worked. Mr. Lister has also recorded 70 species for the Epping Forest district, and 80 for the neighbourhood of Lyme Regis.

Until the spring of 1897 it was customary to confine our researches to rotten wood and heaps of dead leaves; our happiest hunting grounds were woods and coppices, to which it was not always easy to gain access. In April of that year a casual investigation of a straw-heap that had lain undisturbed from the previous autuinn yielded an abundance of au unusual form, and since that period such situations have been carefully examined, with most gratifying results. These straw-heaps possess the advantage of enabling one to search in full daylight, which is so different from the obscurity of woodland, and they also are usually in such situations that one has no difficulty in respect to trespassing.

Up to the present they have yielded the following noteworthy species and varieties:-

Physarum straminipes Lister (see Journ. Bot. 1898, 163, t. 386, fig. 3).
P. didermoides Rost.
P. didermoides var. lividum Lister (l. c. 161, t. 386, fig. 1).
P. vernum Somm. First British record.

Badhamia ovispora Racib. First British record.
Didymium Trochus Lister (l.c. 164, t. 386, fig. 1).
Fuligo ellipsospora Lister. Sept. 1899. First record for Europe.
All of the foregoing, except Physarum vernum Somm., have up to the present been found only in such situations. It should, however, be stated that the term "straw-heaps" includes the haulms not only of cereals, but also of peas, beans, and the other crops which form the staple of English agriculture.

With regard to Didymium Trochus, it is noteworthy that it has been found in increasing numbers each season since its original discovery in April, 1897. It was at first regarded as an abnormal form of Didymium difforme Duby. Further observations, however, showed that it was really different from this species, both to the naked eye and also beneath the microscope. Upon mature consideration it seems safe to assume that this species existed previously to 1897 in just such situations as those in which it is now seen, but, as these habitats had not been carefully searched, it had been overlooked. The plant is very retiring in its habit. Of the many thousands of sporangia which have come under my notice, none have been seen on the surface of the straw-heaps. When forming their sporangia they always do so at or below the line of saturation, and usually where the decaying material is matted together. This may be from two or three to six or eight inches below the surface, and their tawny hue is often of nearly the same shade as the decaying material in which they lie. When searching for them, it is found to be an advantage to lift up a thick layer of material, turn it upside down, when the sporangia, if present, rapidly dry, and thus become fairly conspicuous. They are, however, very disappointing when attempting to collect them, as their attachment to the straw is very slight, and numbers of them fall off in transit. In this respect they are widely different from those of D. difforme, with which D. Trochus is often associated.

So general is the habit with D. Trochus of fruiting below the surface, where they are out of the reach of currents of air, that the question naturally arises as to how the spores are distributed. This appears to be accomplished chiefly by artificial means, such as ploughing, or removing the material for covering root-crops, or for other agricultural purposes. The plasmodium of this species is "butter-yellow," and was first observed by Mr. C. Crouch at Kitchen End, Beds; it has since been seen at Stopsley Common, in the same county.

Badhamia ovispora Racib. is another interesting denizen of straw-heaps, and has been observed in various places extending from Nether Crawley, two miles east of Luton, to Barton, Beds, five miles northward; and in Bucks, nine miles west of Luton, on Wards Coombe Farm. In all cases it was found to have formed the sporangia at or above the line of saturation. Other species with a similar habit are Physarum compressum, P. straminipes, P. Crateriachea, Craterium pedunculatum, C. leucocephalum, C. mutabile, Chondrioderma spumarioides, C. Michelii, Perichana variabilis.

Of species that are usually found at or near the surface of straw-heaps may be enumerated Physarum calidris, P. didermoides, P. didermoides var. lividum, P. vernum, Fuligo septica, F. ellipsospora, Didymium nigripes, Spumaria alba.

With reference to the habitats of the whole of the Mycetozoa that have come under our observation in this district, fifty-five per cent. have been found on wood only; seven per cent. on leaves; six per cent. on straw; seven per cent. on all three materials; and
ten per cent. on both leaves and straw. Apparently all the members of the following genera are limited to wood:-Stemonitis, Brefeldia, Enerthenema, Lindbladia, Dictydium, Licea, Tubulina, Dictydiathalium, Enteridium, Reticularia, Hemitrichia, Prototrichia, Lycogala, and also most of the Trichias and Arcyrias.

The most prolific station for the Mycetozoa is a small coppice, some six or seven acres in extent, situated in the parish of Flitwick. It is practically a marshy alder swamp, some portions of which are always saturated with moisture, other parts being a tangle of briars, creepers, and ferns, under the moist shade of which "Myxies." luxuriate, especially in the early autumn. Altogether some sixty species have been collected within its area:

Among the more noteworthy species mentioned in the following lists may be specified Lycogala flavo-fuscum Rost. and Physarum didermoides Rost., found by Mr. C. Crouch ; Cribraria violacea Rex, a first record for Europe, since observed at Lyme Regis; and Trichia Botrytis Pers. var. munda, a new variety.

The additional county records to those already published are marked with an asterisk; the others are new localities for the less common species. The arrangement and nomenclature followed is that of the monograph by Mr. Lister, to whom I express my grateful acknowledgments for his help in naming the specimens.
*Ceratomyra mucida Schroeter. Luton Hoo, Flitwick, Beds. Badhamia nitens Berk. Ridgmount, Beds, C. C. - *B. macrocarpa. Flitwick, Beds, C. C. - *B. ovispora Racib. Barton, Stopsley Common, Nether Crawley, Beds.

Physarum compressum Alb. \& Schw. Flitwick, Beds.-*P. straminipes List. Chaul End, Nether Crawley, Maiden Common, Beds. —*P. didermoides Rost. Mead Hook, C. C., Nether Crawley, Beds. —*Var. lividum List. Chaul End, Nether Crawley, Stopsley Common, Beds.—*P. cinereum Pers. Flitwick, Stopsley Common, Beds. -*P. vernum Somm. Kitchen End, C.C., Bedford, Warden Hills, Beds. — $* P$. diderma Rost. Flitwick, Beds. — $* P$. contextum Pers. Flitwick, Beds.-*P. conglomeratum Rost. Flitwick, Beds.
*Fuligo ellipsospora List. Stopsley Common, Beds, Sept. 1899.
*Crateriuin mutabile Fr. Flitwick, Chaul End, Beds.
*Chondrioderima spumarioides Rost. Ridgmount, Miss E. Crouch, Flitwick, Beds; Caddington, Herts.-C. testaceum Rost. Flitwick, Beds. Some seasons occurring in profusion. - *C. Michelii Rost. Silsoe, C. C., Flitwick, Beds; Kenesbourne Green, Herts. - * C. reticulatum Rost. Flitwick, Beds. - *C. niveum Rost. Flitwick, Beds.
*Diachaa elegans Fries. Flitwick, Beds. - *D. subsessilis Pèck. Flitwick, Beds, Miss G. Lister. (Found since at Holt, Norfolk.)
*Didymium Trochus List. Kitchen End, C.C., Chaul End, Stopsley Common, Beds. - *D. Serpula Fr. Flitwick, Beds, C. C. — *D. Clavus Rost. Flitwick, Beds, C. C. - *D. nigripes Fr. Bricket Wood, Herts. - *Var. xanthopus. Flitwick, Stopsley Common, Beds.

* Spumaria alba DC. Flitwick, Chalton, Beds; Welwyn, Herts.
*Comatricha laxa Rost. Flitwick, Beds. - *C. Persomnii Rost. Flitwick, Beds; Ashridge, Herts. - *C. rubens List. Flitwick, Chaul End, Beds.
*Lamproderma violaceum Kost. Luton Hoo, Beds, on decayed poplar.
* Brefeldia maxima Rost. Sewell, Luton Hoo, Beds.
*Dictydium cernuum Schrad. Redbourn, Herts.
*Licea flexuosa Pers. Russox Farm, Flitwick, Beds, C. C.
*Tubulina fragiformis Pers. Luton Hoo, Beds; Oughton Head, Herts.
*Dictydiathalium plumberm Rost. Kitchen End, Beds, C.C.
* Enteridium olivaceum Ehrenb. Caddington, Herts.
*'Trichia Botrytis Pers. var. munda List. Pepperstock, Herts.*T. contorta Rost. var. inconspicua. Ashridge, Herts.
* Perichana depressa Libert. Upbury, C.C., Streatley, Beds; Birchin Grove Wood, Herts.-*P. populina Fr. Luton Hoo, C. C., East Hyde, Beds.-*P. variabilis Rost. Leagrave, Chiltern Green, Maiden Common, Beds.
*Margarita metallica List. Ridgmount, Beds, Miss E. Crouch.
* Lycogala flavo-fuscum Rost. Kitchen End, Beds, C. C.

SHORT VOTES.

Pyrola minor L. in Westmoreland. - In Mr. J. G. Baker's Flora of the Lake District (1885) no locality is given for the above plant in Westmoreland. In Watson's Top. Bot. ed. 2 (1883) it is, however, to be found for this county, with " Ottley hb." against the record; and Mr. Britten informs me that the full note in Watson's MS. runs-"Above the Waterfall, Ambleside (Mr. Just.). Otley Herb." Considering that much confusion has long existed amongst this and allied species, and records for minnr, media, and rotundifolia need examining, it was doubtless upon this ground that P. minor was excluded for Westmoreland from Mr. Baker's F'lora. It may therefore be interesting to mention that, in going through some specimens lately given me by Mr. A. J. Crosfield, I came across a sheet of undoubted P. minor with the Westmoreland locality of "Stock Gill Force, Ambleside," collected by Miss Wright, of Keswick, in 1843. Although I am told that records by Miss Wright and her father-a guide in the Lake Districtmust be taken with extreme caution, I see no reason why this particular station should be ignored, especially as it tallies so well with the locality described by Watson.-C. E. Salmon.

West Lancashire Additions (p. 40).-The interesting paper on more recent additions to v.-c. 60 by Messrs. J. A. Wheldon and Albert Wilson recalls to my mind two mistaken records which had slipped from my memory. A search for H. diaphanum Fr . at Longridge, to which species a specimen in my herbarium had been assigned, showed that H. vulgatum Fr. covered the railway banks in

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
non Arn. (1836), is not available; being a Ceylon plant, the new name I. taprobanica is proposed for it.-W. P. Hiern.

I noted this apparently wild at Madresfield, Oct. 12th, 1899, when the Worcestershire Naturalists' Club and Malvern Naturalists' Field Club held a joint meeting at Dripshill Wood. It grew by the side of a brook, and seemed well established there. The plant has glandular petioles, so is, I suppose, the var. macrochila.-Carleton Rea.

Juncus alpinus Vill. in Cumberland? -Looking up some Norfolk references lately, I came across the following note by Mr. H. D. Geldart, of Norwich (Trans. Norf. \& Norw. Naturalists' Soc. vol. iv. p. 513, 1888). Speaking of the occurrence of Juncus nigritellus Auct. Angl. (non Don) at Wells, Norfolk, he observes:-"Of J. nigritellus D. Don, there are three good specimens in the Salmon Herbarium in the Norfolk and Norwich Museum, collected by Gr. Chambers at End Side Tarn, West Cumberland. Two of them might have been used as the models for part of Don's own plate in the E. B. S. No. 2643 ; and the third would have been named Juncus alpinus Vill. without much hesitation, had it been found on the continent instead of in England. As these three specimens were no doubt gathered at the same time and place, we have here a confirmation of the opinion which has been expressed by Mr. Beeby, that Don's plant is a variety of J. alpinus; and this opinion recalls that expressed by La Harpe long ago, and alluded to by D. Don in his article in E. B. S., that it is a variety of J. ustulatus Hoppe. However this question may be ultimately settled, I think that both the habit of growth and the shape of the capsules is too different in the plants from Wells and from East Side Tarn to regard them both as the same variety of any one species." It would seem well worth while for botanists going to the Lakes this year to search around this tarn, as I know of no record south of Perth.-Arthur Bennett.

Hieracium sciaphilum Uechtritz in Worcestershire.-I gathered plants of this species in a railway cutting near Upton-on-Severn on July 1st, 1897 ; and in Long Coppice, Leigh, on August 1st, 1898. It has not, I believe, hitherto been recorded for this county. I am sorry to have to cancel the record of H. rigidum for Worcestershire, which I made in this Journal for 1897, p. 313. The plant proved to be a rigid form of H. sciaphilum.-Richard F. Towndrow.

Rosa Melvini.-I am able to record this very distinct rose from a new station about $1 \frac{1}{2}$ miles distant from its old habitat at Madresfield, where, I regret to say, it is dying. I met with it on July 12th, 1899, in a hedge at Leigh Sinton. There is an excellent description of the plant in the Supplement to English Botany, 3rd ed., pp. 162-3; but I cannot think it is rightly placed under R. sempervirens. Though much smaller in all its parts, it reminds me most of R. arvensis var. bibracteata (Bast.). Possibly it may be a cross between that vigorous plant and one of the small solitary-fruited varieties of the same species. I believe it to be sterıle.-Richard F. Towndrow.

SOME ALGOLOGICAL LITERATURE OF 1899.

In Flora (Band 86, Heft 1, Jan. 28, 1899) is published the final contribution, "Ueber die Sexualität der Ectocarpeen," von Friedrich Oltmanns, to the discussion which took place in the same journal in 1897 between Prof. Oltmanns and M. Berthold, concerning copulation of swarm-spores in Ectocarpus siliculosus. M. Sauvageau also took part in this discussion, publishing a paper on the subject (Mém. de la Soc. Sci. Nat. Cherbourg, T. 30), in which he entirely sides with M. Berthold in accepting the occurrence of copulation in this species. Prof. Oltmanns had suspected that both these observers had been deceived by a spurious coalescence of swarm-spores with a species of Flagellata, which he had himself witnessed; while all his efforts to produce true copulation had failed. In the present paper Prof. Oltmanns withdraws entirely from his sceptical position, and declares that M. Berthold's results were perfectly right. He describes his own investigations in the spring of 1898 in Naples, and confirms M. Berthold's original observations in every particular. As a result of this confirmation, the author proceeds to deduce certain general views on the reproductive organs of Ectocarpus. In E. siliculosus there occur uni- and plurilocular sporangia, but the plurilocular are subdivided into gametangia and neutral sporangia, giving therefore no less than four different kinds of sporangia for this one species. This is not an isolated case, however, for F. Padince has been shown by M. Sauvageau ("Sur la sexualité des Phéosporées," Journ. de Botanique, 1896-7) to possess the same variety of reproductive organs, and he has described male and female sporangia for other species of Ectocarpus and for Myionena. Prof. Oltmanns speculates on the origin of these various forms of sporangia, and suggests that the ancestral Ectocarpacea produced swarm-spores in plurilocular sporangia, which either copulated or germinated directly. In the course of development these "half-gametes" became differentiated, on the one hand, into swarm-spores, to which copulation was a necessity for further development; on the other, into "neutral" swarm-spores, which were incapable of copulation. This theory would explain the intermediate forms of swarmspores seen by Prof. Oltmanns and M. Berthold in E. siliculosus. In E. siliculosus the difference between male and female spores is just recognizable, but it is strongly marked in E. secundus, E^{\prime}. Lebelii, and E. Padina. Hence the asexual swarm-spores are also sharply differentiated in this group, and from this fact Prof. Oltmanns infers that the asexual swarm-spores of Phaosporea are phylogenetically quite distinct from the zoospores of the unilocular sporangia. A further mode of reproduction in Ectocarpacea is the formation of aplanospores, which points to a connecting link with Tilopteridea.

Prof. Oltmanns closes his interesting paper with a list of the forms of reproduction that might exist theoretically in one and the same species of E'ctocarpus or Tilopteris. These are-
I. Unilocular sporangia, which form
a. Normal zoospores.
b. Aplanospores.
c. Monospores (Alkinetes) (?).
II. Plurilocular sporangia, which form
a. Gametæ.
α. Normal male and female.
β. Parthenogenetic.
r. Aplanospores (?).
b. Neutral swarm-spores.
a. Normal.
β. Aplanospores.
Truly a formidable list for one filamentous alga! As the author says, the forms of reproduction adopted by each species in real life depend on its inherited peculiarities, and still more on outside influences. Meantime it is of interest to have a summing-up of all possibilities even in our present state of fragmentary knowledge on the subject: it forms at least a framework into which fresh facts can be weaved, though the framework itself should at times have to undergo slight alteration.

The Journal de Botanique for April contains a paper by M. Sauvageau-"Les Acinetospora et la sexualité des Tilopteridacées" -which forms his second communication on this subject. It embodies the results of his investigation of Acinetospora pusillus Born., and the germination of zoospores from both uni- and plurilocular sporangia is described and figured. Besides these forms of reproduction, there is a third, which has been described as occurring in Tilopteridacee and in Heterospora Vidovichii-monosporangia. These bodies are minutely described by M. Sauvageau, who figures plants bearing monosporangia, as well as various stages of the germinating monospore. He proves conclusively that these bodies are true propagula or organs of vegetative reproduction, by their structure, their behaviour, and the variety of their size. On germination they either divide transversely or remain undivided. A creeping filament, which adheres to the substratum, is first sent out, followed, in the opposite direction, by a free filament with trichothallic growth. After a fortnight these plants produce pseudosporangia, borne on either kind of filament, while in the meantime the zone of trichothallic growth in the non-adherent shoots has disappeared, and all growth in the plant is limited to the creeping filaments or to the throwing out of fresh shoots. The pseudosporangia germinate in their turn, and form plantlets. M. Sauvageau alludes once more to propagation by cuttings among Pheosporea, and states that in this respect Acinetospora shows great facility, especially when the cutting is taken from a plant bearing pseudosporangia.

The author goes on to show that, from the similarity of their reproductive organs, Heterospora Viduvichii Kuck. must be placed in the same genus as A. pusillus, and, as Acinetospora is the older name, it must take precedence of Heterospora. He then suggests

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

to M. Sauvageau, the only localities where all three plants are known to be co-existent. A new species of Aglaozonia-A. melanoidea-is described, and the author is of opinion that this is undoubtedly the sporophyte of Cutleria adspersa, instead of A. chilosa, as has been supposed. The two generations A. melanoidea and C. adspersa are found side by side in the same depth of water at Guéthary and at Tangier, while A. chilosa does not occur in either locality. "If A. chilosa were the sporophyte of C. adspersa, it must be admitted that at Guéthary and at Morocco A. melanoidea is reproduced solely by zoospores, C. adspersa solely by oospheres, either parthenogenetic or fertilized. Since the two plants live together at Guéthary, it seems more logical to admit their mutual dependence." Granted that this is the case, the author acknowledges that the same diffculty arises for the Naples plants, where C. adspersa and A. chulosa occur ; but they do not grow near each other, and it is reasonable to suppose that A. melanoidea has been overlooked at Naples, as was at first the case at Guéthary. There remains therefore one sporophytic form for which no oophyte has yet been found-viz. A. chilosa -and M. Sauvageau suggests that it may belong to either C. compressa or C. pacifica; always supposing that it is not a variety of A. parvula, nor a form in the life-cycle of Zanardinia.

The third chapter deals with "The germinations which grow in nature on Cutleria adspersa at Guéthary." M. Sauvageau recognizes three forms of germination of the oophytic generation, which he denominates as "forme Falkenberg," "forme Thuret," and "forme Church," after the authors who first described them. In "forme Falkenberg" the germinating spore produces a small upright column of cells ("colonnette"), which bears one or more exogenous hairs, and adheres to the substratum by means of rhizoids. This is the Keimfuss of Prof. Falkenberg, but M. Sauvageau prefers the name "colonnette," to avoid confusion between this upright portion and the Aylaozonia thallus, which shortly develops at its base. The basal cells of the "colonnette" enlarge and proceed to divide, till they form a prostrate thallus, with patches of endogenous hairs on the upper side, and rhizoids below. The column is for a time persistent, but is liable to be broken off through its delicacy. M. Sauvageau believes that these "formes Falkenberg" are the result of parthenogenetic germination of the oosphere of Cutleria adspersa, and are the origin of Aglaozonia melanoidea, since the germination of the unfertilized oosphere of C. adspersa in a culture produces the same result. "Forme Thuret" is as common in nature at Guéthary as "forme Falkenberg." The germinating cell produces a simple filament, fixed to its substratum by one or more rhizoids. The lower cells of the plantlet are termed by the author the "zone thallogène," above which is the meristematic zone. This produces cells which enlarge the thallus below, and replace those which are broken off above. From the thallogenous zone a branch is soon given off showing the same meristematic growth, and shoots up alongside the original filament. As one branch after another is formed, the walls of each thicken, probably become adhesive, and at last unite to form "the
support of the thallus of Cutleria adspersa." Gradually the plantlet assumes a funnel-shape, and the cells become differentiated into a peripheral layer and an internal zone. At a later stage this infundibuliform thallus becomes torn open, while from its base and from the support rhizoids are given off, which give additional support to the plantlet. "A young C. adspersa is therefore composed of-(1) a support at first entirely pseudo-parenchymatous, which differentiates later a superficial layer of small cells by peripheral divisions transversely and longitudinally; (2) a thallus, at first funnel-shaped, later opened out, which is the true thallus of Cutleria." Whether or not this growth is the result of fertilization in the oosphere of C. adspersa is doubtful, but M. Sauvageau is of opinion that both the "forme Falkenberg" and the "forme Thuret" are the result of parthenogenesis. The "forme Church" is regarded by the author as abnormal, though instructive; it consists, as may be remembered, of the column, bearing the Aglaozonia plant at its foot, and the Cutleria above.

Chapter IV. describes the "Cultures of Cutleria adspersa." In M. Sauvageau's own experiments he has never seen the process of fertilization, though he has watched the moving oospheres for hours at a time; but the Falkenberg-plants which resulted from his germinated oospheres were precisely similar to those produced by the fertilized oospheres of M. de Janczewski. It is interesting to see that the colourless hairs of the Pheophycea play a prominent part in these young plantlets. The author never succeeded in producing either a "forme Thuret" or a "forme Church," but, since he succeeded in germinating an oosphere parthenogenetically, he confirms Mr. Church in disproving the statement of MM. Falkenberg and Janczewski that germination is confined to fertilized oospheres. He concludes this chapter by maintaining "that the oospheres of Cutleria, fertilized or parthenogenetic, like the zoospores of Aglaozonia, produce on germination either the 'forme Thuret' or the 'forme Falkenberg,' according as they are acted upon in one sense or another by conditions which for the rest we are unable to define." He suggests that a study of the nuclei in the oospheres of Zanardinia and Cutleria and of the zoospores of Zanardinia and Aylaozonia might help to throw light on the situation.
"The epiphytic plantlets of Cutleria multifida" is the subject of Chapter V., wherein the author compares the "forme Falkenberg" of this plant with that of C. adspersa.

The final Chapter, VI., contains a "Résumé and conclusions," full of interest and suggestion. M. Sauvageau regards the "colonnette," which plays the intermediate part between the germination of the oosphere and the production of the Aglaozonia plant, as a growth of the greatest phylogenetic importance. Its physiological rôle is insignificant from its diminutive size, but morphologically, as necessary to the origin of Aglaozonia, its importance is considerable. "It is a pro-embryo, but an atavic pro-embryo. The determination of its true nature would be of as great weight for the determination of the affinities of Cutleriacea as the knowledge of the origin of the thallus and the structure of their reproductive organs.

A Cutleria is not a synthesis of two, but of three genera-Cutleria proper, Aglaozonia, and the 'colonnette' of a genus unknown." M. Sauvageau compares this "colonnette" with other genera of Phaosporea, and considers that it most nearly approaches Myriotrichia and Litosiphon. Finally, he gives a table of affinities of the different parts of a Cutleria, ranging from Ectocarpus to Laminaria, which opens up wide fields for speculation.

The second part of the "Beiträge z. Kenntniss der Meeresalgen," by Dr. Kuckuck, published in Wissenschuftliche Meeresuntersuchungen, vol. iii., has been published separately by the "Biologische Anstalt auf Helgoland." It contains Nos. 5 to 9 inclusive, and is, like the first part issued in 1897, sumptuously illustrated. In No. 5, which is entitled "Ein neuer Asperococcus mit beiderlei Sporangien," Dr. Kuckuck describes and figures in various stages a small species of Asperococcus found in the Adriatic, which he calls A. scaber. Unlike the other known species of this genus, this plant arises from a horizontal basal disc, which adheres by means of rhizoids to the substratum. Its height is about $3-4 \mathrm{~mm}$., and it is solid throughout. Both kinds of sporangia arise as outgrowths from the cortical cells, intermingled with hairs and, in the case of the unilocular sporangia, with paraphyses (called here "stacheln"). The hairs are figured sometimes with, sometimes without, the basal sheath, which has been described for this and a few other genera by M. Sauvageau. Presumably, however, this sheath is always present round the hairs of A. scaber. The strong resemblance between the figures of this plant in its young stages and those of the "colonnette" of Cutleria figured by M. Sauvageau in the paper described above is very striking. The slender upright column with the characteristic hair at the apex, the absence of branching, the basal dise with its rhizoids-all these recall irresistibly the mysterious unknown genus which connects Cutleria and Ayluozonia. Although the figures of the older plants bearing the sori dispel this resemblance, one cannot but remember that M. Sauvageau compares his "colonnette" with a young Asperococcus (l.c. p. 358); pointing out that the latter bears endogenous hairs and becomes fistulous as the plant increases in age, while the "colonnette" is solid and bears exogenous hairs. It is interesting to see that A. scaber is also solid, and its hairs are not endogenous. Dr. Kuckuck figures an interesting example of A. scaber bearing hairs and plurilocular sporangia, the latter growing either directly from the basal disc, or borne on short filaments arising from the disc. These plants were produced under culture, and may therefore be abnormalities; but the author promises to deal with this occurrence in a later paper.

In Abhandlung 6, "Die Gattung Myriotrichia," the six recognized species of this genus are dealt with in detail, and beautifully figured. Under M. repens, the remarkable likeness is pointed out which exists between this plant and Streblonema spharicum, not in any way as implying a specific unity, but as a curious coincidence. A full diagnosis is given of this species and M. Protasperococcus Berth., as well as for the genus itself. M. Protasperococcus has till

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Pacific, growing on Postelsia palmaformis, but bearing only plurilocular sporangia.
"Notes on two Lithothamnia from Funafuti," by Dr. M. Foslie (Kgl. Norske Videnskab. Selskabs Skrifter, 1899, No. 2), is a short paper, the forerunner of a fuller account of calcareous algæ from the scene of the coral-reef boring. One of these two corallines is a var. funafutiensis of Lithothamnion Philippii Fosl., and the other is the Goniolithon oncodes Fosi., already recorded from New Guinea. Mr. Isaac Holden publishes in Rhodora for November "Two new species of Marine Algæ from Bridgeport, Conn." They are Hydrocoleum majus and Stictyosiphon subsimplex, distributed in Phycotheca Boreali-Americana as No. 602 and 630 respectively. Both are figured.

A " Note sur quelques Algues rapportées par le yacht Chazalie," by Madame Weber van Bosse (Journal de Botanique, No. 5, Mai, 1899), records Acetabulaıia Peniculus Solms from Bahia Honda, Chulmasia antillina Solms from Martinique, and describes a new species of Codium-C. Chalazei, from Branco, near Cape de Verde.

The veteran phycologist Prof. J. G. Agardh has brought out a Continuatio V. to his Analecta Algologica, containing many new genera and species, mainly from Australian and American shores. He gives a systematic disposition of Gigartina, which contains sixty-nine species, including several new ones. Sarcomenia is also treated at some length, and two new species-S. opposita and S. secundata-are described, both from Australia. The section of most interest, however, is that relating to the transference of the monotypic genus Bracebridgea from Siphonea to a position between Wrangelia and Spyridia on the one hand, and Furcellaria and Spongiocarpia on the other. The presence of calcium carbonate in the obovate terminations to the cortical filaments and the absence of any form of fructification had misled the author in his earlier examination of the plant, but, although no fruit has yet been found, it has been possible on the grounds of vegetative characters to determine approximately the position of Bracebridyea among the Floridec. Prof. Agardh describes a new genus of Fucacea, which he calls Scanophora, placing it near Cystoseira. The single species, S. australis, was sent from South Australia by Miss Hussey, and is regarded by Prof. Agardh as a simple form of the type of Cystoseira.

In a paper "On Notheia anomala," by E. S. Barton (Journ. Linn. Soc. xxxiv. No. 239, Nov.), the author describes the mode of growth of this parasitic alga from the penetration of the germinating filament into the host-plant through its various stages to maturity. The antheridia of Notheia are here described for the first time, though they had evidently been recognized previously by Mr. R. M. Laing, of Christ Church, New Zealand. In a private letter, subsequent to the publication of this paper, Mr. Laing sends to the author a memorandum of a note made, among others on Notheia, some years ago: "Scraped some brown mucilaginous material from the tip of the stem of Notheia: it contained oospheres and antherozoids of the ordinary fucaceous type." The origin of the branches
from the initial cell of the cryptostoma has been previously described, but is here refigured from new preparations. So far as is known at present, this is the only case of such a growth from the initial cell, though a study of the initial cells of cryptostomata in other orders than Fucacea might lead to interesting results. This cell in all known cases is arrested in its growth in an early stage of the development of the plant; it is therefore essentially one which belongs to the young plant, and should serve as a guide in pointing to any change of cell-structure which might occur during the lifehistory of the alga. In the case of Soranthera ulvoidea (Journ. Linn. Soc. Bot. vol. xxxiii. p. 479 et seg.) cryptostomata are described as occurring in a plant which shows different forms of peripheral cells in the early and late stages of its life-history. The initial cell of the cryptostoma, starting as it does in the very young plant, retains permanently the character of the loose-celled tissues of the young plant. May this not be an explanation of the peculiar initial cell described and figured for Splachnidium rugosum in Murray's Phycoloyical Memoirs, pt.i. p. 1 et seq.? Here the initial cell of the cryptostoma, which subsequently becomes a conceptacle bearing sporangia, is connected with the internal cells of the plant by a long filament, arising directly from one of the thick central filaments. In the mature conceptacles here figured this appendage to the initial cell has a somewhat peculiar effect; but, judging from the analogy of Soranthera and other algæ, it might lead one to suppose that this cell is merely the relic of the early peripheral structure of Splachnidium, and that in the youngest stages of this plant all the periphery was composed of cells connected in this manner, more or less closely, with the internal filamentous cells. In Soranthera ulvoidea the closely connected cells of the epidermal layer were a later formation in the life-history of the alga, and it is easy to suppose that the same thing may occur in Splachnidium. However, nothing but an examination of the youngest plants of this alga can solve the mystery of this initial cell, or explain the so-called "apical" cell, which exactly resembles it.

In a paper by Mr. Ernest Küster, "Ueber Vernarbungs- und Prolificationserscheinungen bei Meeresalgen" (Flora, Band 86, heft ii. H, Mai 20, 1899), the author deals with his subject under four headings :-1. Scar-membranes. 2. Scar-tissue. 3. Prolification. 4. Vegetative reproduction. In the first division he speaks of the effect of an injury on Codium and Anadyomene, the former plant being apparently without the power of forming any membrane over the injured place, while in Anadyomene the wall of the long cylindrical cells is not only closed together by a new membrane within twenty-four hours, but that cell retains also the power of growth. Herr Küster carefully remarks he does not find this power of fresh growth in every instance where an injury has been closed by a new membrane; he would only imply that at least in some cases this does occur.

The second part describes the tissue formed by the plant round an injured part of the thallus, as is often seen in members of

Journal of Botany.-Vol. 38. [Maroh, 1900.]

Fucacec; such injury being presumably the result of attack by fishes, etc. As distinct from such causes, however, is the galltissue found on many algæ surrounding colonies of bacteria or forming a nest for small parasitic animals. Dr. Küster does not seem conversant with the literature on this subject, small though it is, for he alludes to the paper by Prof. Schmitz as being the one exhaustive work on gall-formation in algæ. Work has, however, been done by Magnus on malformation caused by Chytridiacea in Ceramium, and the Vaucheria galls have been described by Vaucher (Conferves d'eau douce, t. iii. 1803) and Balbiani (Ann. Sci. Nat. Zool. ser. 6, t. vii. 1878). The galls on Ascophyllum nodosum caused by Tylenchus fucicola, a nematode worm, are fairly common, and are described in Murray's Phycological Memoirs, pt. i. p. 21, 1892, while the copepoda galls on Rhodymenia palmata were described and figured in this Journal for March, 1891. The subject of gallformation among algæ would well repay further study both to the botanist and the zoologist.

The third division of Dr. Küster's paper treats of the proiiferous outgrowths so frequently found in some algæ. He negatives the statement of Kützing that in some cases these outgrowths take place from the base of cryptostomata; indeed the only case of any such growth is in Notheia anomala and in that alga the shoot from the base of the cryptostoma is not the result of any injury, but is the natural mode of branching. A list is given of algæ bearing abnormal proliferous outgrowths; it is also noted that this growth takes place, as a rule, from the midrib, and by no means necessarily in absolute proximity to the injured place, the prolification being sometimes as much as several millimetres distant. The author suggests dividing into two groups those algæ which show proliferous outgrowths: one containing those which produce prolifications while still uninjured, the other containing those in which such growth is the result of accident or injury. But for the serious consideration of such grouping, as tending to show any true relationship, much proof would have to be brought together. The object of this formation of new thallus is presumably the replacement of assimilatory tissue, and the author suggests, as a continuance of this line of investigation, that note should be made as to which algæ are most attacked by animals, and what, if any, are their modes of self-preservation. It would be interesting to see how far injury and proliferous growth are interdependent.

The last division deals with the vegetative reproduction of algæ, notably that of Padina pavoria, which the author describes from his own experiments. As the result of an injury, the under side of the thallus of this alga became clothed with a "velvety covering" of young individual plants, the young stages of which are here figured. Dr. Küster closes his paper with the remark that vegetative reproduction as the result of serious injury is probably far more common than has been supposed, and refers to the work done in this direction on Haplospora globosa and Phaospora tortilis.

Ethel S. Barton.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

not so in C. anisopterum, which generally has three or four wings, and the diagnostic character of the genus has had to be modified to admit of this.

The authors divide Combretum into numerous groups, depending largely on whether the flowers are tetramerous or pentamerous, and on the shape of the upper portion of the receptacle and the character of the disc. Thus, for instance, in the first section, Hypocrateropsis, we have tetramerous flowers, the upper portion of the receptacle patelliform, and a generally distinctly 4 -lobed disc, while in the section Cacoucia, previously mentioned, the flowers are showy and pentamerous, the upper portion of the receptacle is hollow and campanulate, the disc cupuliform. Between these extremes almost every modification in the shape of the receptacle seems to occur.

The authors have been fortunate in the mass of material which they have been able to examine for the purposes of this monograph. Not only are there large collections in Berlin, but they have had the loan of specimens from Zurich, Hamburg, Coimbra, Brussels and Rome. Notwithstanding this, there are still certain portions of Africa from which the monographers have seen hardly any material-e.y. from Rhodesia, a region which the collections of Dr. Rand in the National Herbarium show to be rich in Combretaceæ.

As will always be the case in a work of this magnitude, there are numerous points of detail which suggest remark. In the National Herbarium the types of Don's African plants are preserved; these, like the types of several of Welwitsch's Angolan species, have not been seen by the authors. Some revision seems necessary in the case of certain of the latter-e.g., the authors unite under C. paniculatum Vent. var. virgatum Engler and Diels, C. virgatum Welw. and C. virgultosum Welw. The diagnostic character is " frutex; foliis adultis manifeste tomentellis; ramulis floriferis e ramis virgatis ortis valde abbreviatis" ; but C. virgatum bears its flowers in dense short axillary branches, and has leaves which are velvety tomentose below, while in C. virgultosum the lateral branches of the inflorescence are often $10-12 \mathrm{~cm}$. long, and the leaves of the flowering branches are almost glabrous. There are some omissions: we cannot find Combretum (Poivraa) mweroense (Baker in Kew Bulietin, 1895, p. 290), and several other species. The excellent plates are of great service, and we trust the remaining portions of the order will meet with a similarly liberal treatment.
E. G. B.

Orchidacearuim Genera et Species. Exposuit Fritz Kraenzlin. Vol. i., Fasc. 9-12. 8vo, pp. 513-768. Berlin: Mayer \& Müller. 1893-1900.
Fascicles 9-12 of Dr. Kraenzlin's work on Orchids comprise the end of Tribe II. Habenariea, the whole of Tribe III. Gymnadeniea, and a large portion of Tribe IV. Satyriea, of the monandrous Orchidea. With slight modifications the Gymnadeniea appear as
delimited by Pfitzer in the Pfanzenfamilien (ii. Abt. 6, 91); Dr. Kraenzlin, however, prefers to include also the genera Brachycorythis Lindl. and Schizochilus Sond., making the latter a section of Gymnadenia. Neolindleya is a new genus, founded on the northeast Asiatic Platanthera decipiens Lindl., but distinguished by the complete absence of the stalked gland-dises and its stigma characters. We note also that Holothrix bears a wider significance than has recently been assigned to it by several workers on the Order. Pfitzer, for instance, considered as distinct both Scopularia Lindl. and Dercemera Rchb. f.-or, as he erroneously spelt it, Dercemeria. In this Journal for 1895 (p.277), in conjunction with Mr. Schlechter, we extended the latter genus, thinking it would be useful to include several species which differ strikingly in habit from the other species of Holothrix, as well as in characters of the column and stigma. Mr. Rolfe, in the Flora of Tropical Africa (vii. 195, 1898), took a similar view. Like Pfitzer, we all fell into the error of writing Dercemeria. Dr. Kraenzlin cannot accept our views on the limits of the genera, and includes Dercemera in Holothrix, pointing out at the same time the misspelling. Unfortunately he makes a second error in so doing, and starts a genus Deromeria, and on the same page another, De Ramera. The former is no doubt a slip, but for the latter there seems no justification. On p. 575 it is stated that Reichenbach wrote De Remera, but the spelling in the original description is Dercemera, which form Dr. Kraenzlin also uses. We have, however, previously mentioned the recurrence of errors and inconsistencies in citation and reference which should have been avoided in an important work of the kind.

In our notice of previous fascicles we gave the date of their arrival at the Department of Botany. It is of course recognized that this is not beyond criticism, but such a date is at any rate less vague than that given on the fascicle. We venture to hope that, when the volume is complete, a list will be given of the actual date of publication in Berlin of each part-as is done, for instance, by the Linnean Society in connection with its Journal and Transactions.
A. B. R.

ARTICLES IN JOURNALS.*

Bot. Centralblatt (No. 5: 24 Jan.).-R. Feitel, 'Zur Vergleich. enden Anatomie der Laubblätter bei den Campanulaceen der Capflora' (concl.). - S. Korshinsky \& N. Monteverde, 'Bestäubungsversuche an Buchweisen.'-(No. 6: 1 Feb.). K. Muller, 'Bryolo. gische \& hepaticologische Fragmente.' - (Nos. 6 \& 7). E. H. L. Krause, 'Floristiche Notizen.' - (No. 7: 7 Feb.). E. Lemmer. mann, 'Spirodiscus Eichwald oder Ophiocytium Naegeli?' - (No. 8 :

[^8]14 Feb.). M. Rassmann, 'Eine bisher nicht beobachtete Missbildung bei Stachys Germanica.' - K. Müller, 'Zusammenstellung der Lebermoose aus dem Reichslande Elsass-Lothringen.'

Bot. Gazette (31 Jan.). - J. B. Pollock, 'Mechanism of root curvature.'-W. G. Farlow, ' Botanical Bibliography.'

Bot. Notiser (häft 1: 15 Feb.). - 0. Borge, 'Schwedisches Süsswasser-plankton.' - T. Vestergren, 'Verzeichnis nebst Diagnosen und Bemerkungen zu meinem Exsiccatenwerke 'Micromycetes rariores selecti.',

Bot. Zeitung (1 Feb.).-F. G. Kohl, 'Die paratonischen Wachsthumsverkrümmungen der Gelenkpflanzen' (2 pl .).

Bull. Soc. Bot. France (xlvi. 6-7 : Feb.).—J. Drake del Castillo, 'Les Vernonia de Madagascar.'-C. A. Picquenard, 'Dispersion des lichens bretons.' - M. Gandoger, 'Plantes nouvelles pour les Iles Açores.'-A. Battandier, ' Paronyques Algériennes.'-Id., 'Plantes de la Flore Atlantique.' - J. Briquet, 'Buplèvres de l'herbier de Linné.'-J. Foucaud, ' Trisetum Burnoufii.'-L. Lutz, 'Sur l'ovaire du Cytinus.'-A. Franchet, 'Les Swertia et Gentianées de la Chine.' - -. Godefrin, 'Double coloration par le violet neutre.' - E. A. Finet, ' Une fleur monstrueuse de Calanthe veratifolia.'

Bull. Torrey Bot. Club (24 Jan.). - C. C. Curtis, 'Turgidity in Mycelia.' - C. H. Peck, 'New Fungi.' - H. N. Rusby, 'South American Plants.'-A. Nelson, 'New Plants from Wyoming.'

Gardeners' Chronicle (3 Feb.). - W. Roberts, 'The London Botanic Garden.'-(17 Feb.). G. Massee, 'A Conifer Disease.'

Journal de Botanique (Jan.: received 17 Feb.). - P. Van Tieghem, 'Sur les Stachyuracées et les Kœberliniacées.' - E. G. Camus, 'Plantes hybrides spontanées de la flore européenne.'

Mémoires de l'Herb. Boissier (No. 2: 18 Jan.). - T. Herzog, ' Einige biologische Notizen aus Graubünden und Wallis.'-(No. 3 : 31 Jan.). E. de Wildeman, Micromyces Mesocarpi, sp.n.-(No. 4 : 31 Jan.). H. \& P. Sydow, ' Fungi aliquot novi a F. Stuckert in Argentina lecti.' - (No. 5: 31 Jan.). E. A. Wainio, 'Reactiones lichenum a• J. Müllero descriptorum.' - (No. 6: 20 Feb .). K. Müller, 'Revision der Hepaticæ in Mougeot-, Nestler-, und Schimper Stirpes kryptogamæ.'

Oesterr. Bot. Zeitschrift (Feb.).-J. M. Polak, ‘ Untersuchungen über die Staminodien der Scrophulariaceen' (2 pl.). - A. Jenčič, 'Untersuchungen des Pollens hybrider Pflanzen.' - B. Fleischer, ' Zwei neue Compositen-Bastarde.' - J. B. Scholz, 'Studien über Chenopodium opulifolium.'-J. Murr, ' Zur Kenntniss der Hieracien von Kärnten und Steiermark.'

Rhodora (Feb.). - E. Brainerd, ' Blackberries of New England.' -R. G. Leavitt, 'Relation of plants to atmospheric moisture.' M. L. Fernald, 'Artemisia Stelleriana in New England.'

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
author has provisionally stated that the cases of wilting on the three plants mentioned above are due to variations of the same species of Neocosmospora. He failed, however, to inoculate from one plant to the other; soil in which Melon wilted very quickly proved harmless to Cotton and Cow-pea. The same results have frequently been obtained in the case of Uredinec; forms that are morphologically similar, yet prove to be distinct biological species. Mr. Smith is to be congratulated on the successful results of his long and careful experiments.-A. L. S.

The first part has just appeared of what seems to be an excellent Conspectus Flore Graca by Dr. E. v. Halácsy. We hope to say more of it later.

The New York Garden, in addition to its other publications, has begun to issue a Journal, under the editorship of Dr. D. T. Macdougal, which is to contain "notes, news, and non-technical articles of general interest." We note, by the way, that the Kew Bulletin continues to present an example of "arrested development": no number has appeared since that for "September and October, 1899."

The recent part (dated Dec. 29, 1899) of Minnesota Botanical Studies is mainly devoted to Mr. Bruce Fink's investigations into the lichenology of Minnesota. Mr. E. M. Freeman writes on Chlorochytrium and Mr. F. K. Butters on Rhodymenia, each paper being illustrated; and Mr. K. C. Davis gives a systematic conspectus of the native and garden Aquilegias and Aconitums of North America.

We regret to record the death of M. Adrien Franchet, who has for twenty years been attached to the Paris Muséum d'Histoire Naturelle, and whose name for more than that period has been intimately associated with Chinese botany. He was successful in interesting the French missionaries in China in botanical work, and worked out many of their important collections, which included a very large proportion of novelties. Before taking up Chinese plants, M. Franchet's name was familiar to botanists as the author, in conjunction with M. Savatier, of the useful Enumeratio Plantarum Japonicarum.

Messrs. Backhouse, of York, issue a quarto list of "Botanical Material" specially selected and prepared for use in botanical laboratories, etc. It is very comprehensive and should be useful, although the very large number of misprints (which the fairly long list of "errata" by no means exhausts) does not prepossess one in its favour. The terms on which specimens are supplied are appended; these suggest that if botanical lectures should become common a new and remunerative branch of industry might be opened up-"Narcissus flowers, fresh, 1s. 6d. to 3s. dozen" must leave an ample margin of profit; and Lamium Galeobdolon or purpureum, "inflorescence from 1s. doz." would well repay the collector. There is a useful index.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

The seeds are equally characteristic; thus:-
Seeds polished N. flexilis.
Seeds rough.
Testa irregularly pitted N. marina.
Testa regularly pitted.
Pits much broader than long N. minor.
Pits fairly isodiametrical or slightly longer than broad
N. graminea.

Appended is a brief systematic account of our British species, ancient and modern.

Subgenus I. Eunajas.-Diœcious. Plants of a sturdier habit than in Caulinia, with a greater tissue-differentiation of stem and leaf. Leaf-teeth large, back of leaf and internodes spiny. Male flower enclosed in a spathe, anther quadrilocular. Female flower naked, generally with three styles. Testa of more than three hardened cell-layers.

1. N. marina L. Sp. Pl. 1015 (1753) ; Arthur Bennett in Journ. Bot. 1883, 353, t. 241 ; Reid, Origin of British Flora, 159 (1899) ; Rendle in Trans. Linn. Soc. ser. 2, v. 389, t. 39, figs. 1-30 (1899).
N. major Allioni, Fl. Pedem. ii. 221 (1785).

Englund.-Hickling and Martham Broads, Norfolk. Mr. Reid has found fruits in deposits at the following localities:-Barry Docks, Glamorgan (neolithic) ; Hitchin, Herts. (interglacial) ; Beeston, Norfolk, and Pakefield and Corton, Suffolk (preglacial).

The species is widely distributed, being represented by forms or varieties in all the great botanical regions except Tropical and South Africa. The species itself finds its chief development in temperate Europe and Asia, and seems rare elsewhere. It is highly variable, especially in the size of the fruit, in the length and breadth and more or less spiny character of the leaves and internodes. Pesides thirteen varieties, three well-marked forms of the species proper can be distinguished. Our specimens, both recent and fossil, seem to belong to one common European form, characterized by sparsely spine-armed internodes, leaves 7-10 lines long, rarely reaching 1 in., with marginal teeth not exceeding the leaf-width in length, and ellipsoidal or ovoid-ellipsoidal fruit $2-2 \frac{1}{2}$ lines long by generally a little over 1 line in diameter.

I have seen specimens from France, Germany, Hungary, Italy, Switzerland; and seeds figured by Gunnar Andersson from neolithic deposits in South Sweden and Gothland may belong. It also occurs in India, China, Australia, North America (New York), and Jamaica. Its present more restricted area in Britain is probably due to disappearance of suitable localities.

Subgenus II. Caulinia.-Monœcious. Plants generally more delicate, with a less tissue-differentiation than in Eunajas; leaves, except at the midrib, only two cell-layers thick; internodes unarmed; leaf-margin variously toothed, no dorsal spines.

Section 1. Americana.-Only the male flowers enclosed in a spathe. Leaf-sheaths sloping. Species 8, all except N. fexilis confined to America.
2. N. flexilis Rostl. \& Schm. Fl. Sedin. 382 (1824); Phytol. iii. 1088 (1850); A. Braun in Journ. Bot. 1864, 276 ; Sadler, ib. 1875, 297; Morong in Mem. Torr. Bot. Club, iii. pt. 2, 59, t. 66 (1893) ; Britton \& Brown, Ill. Fl. North. U.S.i. 81, fig. 180 (1896); Campbell, A Morphological Study of Najas and Zannichellia, 1897; Rendle, l.c. 403, t. 40, figs. 92-98.

Scotland.-Loch Clunie, Perth.
Ireland.-Connemara; Killarney.
Occurs also in North Germany, Upland, and Finland ; and was apparently more prevalent formerly in North-west Europe than at the present day, as it is recorded from recent beds in South-west Norway and Sweden, as well as in East Finland, Hanover, and Holstein. A small-fruited variety (var. microcarpa Nilss.) occurs in Lake Ringsjön, South Sweden. The species is generally distributed in Canada and the Northern United States. It is readily distinguished by the minute marginal leaf-teeth, sloping sheath, and polished seed.

Section 2. Euvaginata.-Only the male flowers enclosed in a spathe. Sheaths truncate or more or less auricled. Species 16, chiefly tropical Old World.
3. N. minor Allioni, Fl. Pedem. ii. 221 (1785) ; A. Br. in Journ. Bot. 1864, 277 ; Nees, Gen. Pl. Fl. Germ. iii. t. 44, figs. 22-24; Peterm. Deutsch. Fl. 539, t. 83, fig. 658; Schkuhr, Bot. Handb. iii. 252, t. 296 ; Reid, Origin of British Flora, 160 ; Rendle, l.c. 410, t. 41, figs. 105-115. (Pl. 408, figs. 1-9.)

Small much-branched plants from a few inches to about a foot in length. Habit varying according to the length of the internodes. The small plants have a densely leaved bushy habit, with a rounded outline from the regular apparently dichotomous branching. A laxer habit results from elongation of the lower internodes, and the bushy growth is confined to the ends of the longer shoots.

Leaves stiff, succulent, linear-tapering, falcately recurved from the broad truncately rounded sheath; the margin bears a few (6-10) spreading teeth with a broad base ending in an upcurved yellowbrown spine-cell. Sheaths with a few, generally $5-7$, rather prominent teeth on each shoulder; intravaginal scales linear-subulate, $\frac{3}{8}$ to nearly $\frac{1}{2}$ line long. Blade generally from about $\frac{1}{2}$ to $\frac{3}{4} \mathrm{in}$. in length by $\frac{1}{4}$ line or less in width, excluding the teeth, the length of which varies from about one-third the leaf-width in the lower part of the blade to three-fourths the leaf-width in the upper.

Male flowers about $\frac{3}{4}$ line long before elongation of the stalk; spathe ellipsoidal, with a short neck bearing a few spines round the mouth; perianth closely investing the almost sessile anther, above which it terminates in a pair of thick closed lips. Anther ellipsoidal, unilocular, pollen-grains rounded or subelliptical. Before dehiscence the stalk elongates and pushes the flower through the neck of the spathe, which splits lengthwise; the lips of the perianth then separate, allowing the pollen from the burst anther to escape; length of dehiscing flower 1 line.

Fenale flower about $1 \frac{1}{4}$ line long, of which the sessile ovary occupies about one-third; style long, tapering upwards, and ending in two unequal stigmas.

Fruit obliquely linear-oblong, narrowing at the tip ; 1-1 $\frac{1}{2}$ lines long, about $\frac{1}{4}$ line in diameter; pericarp thin, closely enveloping the seed. Seed hard, brown, marked with 12-18 longitudinal rows of ladder-like pits; raphe conspicuous in the lower half of the seed, causing a slight asymmetry.

The species is readily distinguished from all others by the transversely elongated markings on the testa, which are more than twice as broad as long.

The internal structure of the stem (cf. fig. 5) closely resembles that of N. graminea, aiready figured by Mr. Bailey in this Journal (1884,308, t. 42). The epidermis consists of cells which scarcely differ from those of the underlying thin-walled cortex. About half the width of the cortex consists of large intercellular spaces bounded by bands of parenchyma one cell thick, and separated from the epidermis by generally two layers of similar cells, and on the inside by one to two layers from the stele, a central axis of much smaller cells surrounding a median air-space. The central space probably represents the position of woody tissue which has never developed. Professor Campbell has shown that in N. flexilis, which has a similar stem-structure, the axis in the very young stem is occupied by narrow elongated tracheides, which, however, soon perish as the stem lengthens, leaving the air-space characteristic of the adult stem. The three to four layers of narrow irregularly shaped thin-walled cells surrounding the space show no traces of differentiation.

The stem-structure is typical of the subgenus Caulinia, and affords a well-marked contrast with that of N. marina, where the epidermis is a layer well differentiated from the cortex, and the latter a much more substantial structure, of which the intercellular spaces occupy a much smaller proportion. Nor does it seem possible in N. minor to make out an endodermal structure in the cells of the layer surrounding the stele, as can be done in N. marina.

Similarly the leaf is a simpler structure than in N. marina, consisting of two layers of cells separated by a large intercellular space on each side the midrib at which an additional layer surrounds a narrow small-celled axis.

England.-Seeds found in pleistocene beds at West Wittering, Sussex (Reid); and Cromer forest-bed (preglacial) at Pakefield, Suffolk (Reid).

Generally distributed over the southern half of the continent of Europe from France to South Russia, and in Asia from Asia Minor to further India; I have also seen a fragment from Manchuria.

The preglacial deposit at Pakefield in which N. minor is associated with N. marina yielded about fifty species of flowering plants (Reid, l.c. 85), all of which, except the South European Trapa natans, are members of our present day flora. In the pleistocene deposit N. minor and graminea occur together. Mr. Reid gives a list of ninety-four species, all of which, except the two of Najas, are still found in Britain; but he also found "several well-marked forms, which do not belong to any living British plants, but cannot yet be identified." "The plant-bed contains remains of

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

THE EUROPEAN SPHAGNACE \mathbb{E}

(after $W_{\text {arnstore). }}$

By E. Charles Horrell, F.L.S.

The system of Sphagnology which has resulted from the researches of Dr. Warnstorf for more than thirty years seems to be but little known in this country, and it is with the object of placing before British bryologists what is perhaps the most natural classification of bog-mosses that has yet appeared that the present paper is written. This system is now generally adopted by continental and American bryologists, and differs widely from that in use in this country, as may be seen from the fact that Warnstorf recognizes forty-two European species in his most recent publication, that of which a translation is given below, as compared to the twelve species with three subspecies in Dixon \& Jameson's Handbook of British Mosses (1896). The following list comprises most of the publications of Warnstorf and those other students to whose labours the present state of knowledge of the European members of the genus is due, commencing at 1880 with the publication of Dr. Braithwaite's splendid monograph.
1880. R. Braithwaite. The Sphagnaceæ or Peat-mosses of Europe and North America.
1881. C. Warnstorf. Die europäischen Torfmoose. Eine Kritik und Beschreibung derselben. A French translation of this work appeared in the Revue de Botanique, t. vi. 1887-88, by Letacq.
1881-1882. G. Limpricht. Zur Systematik der Torfmoose (Bot. Centralbl. 1881 and 1882).
1882. S. O. Lindberg. Europas och Nord Amerikas Hvitmossor (Sphagna).
K. Schliephacke. Die Torfmoose der Thüringischen Flora (Irmischia ii. 1882).
C. Warnstorf. Die Torfmoose in Königlichen botanischen Museum zu Berlin (Bot. Centralbl. 1882, pp. 96 et seqq.).
C. Warnstorf. Neue deutsche Sphagnumformen (Flora, 1882, p. 205).
C. Warnstorf. Einige neue Sphagnumformen (Flora, 1882, p. 464).
C. Warnstorf. Die Sphagnumformen der Umgegend von Bassum in Hannover (Flora, 1882, No. 35).
1883. C. Warnstorf. Die Torfmoose des v. Flotow'chen Herbarium im Königl. bot. Museum in Berlin (Flora, 1883, p. 371).
,, C. Jensen. Varietates novæ Sphagnorum (Pflanzenkatalog der bot. Ges. zu Kopenhagen).
1884. C. Warnstorf. Neue europäische Sphagnumformen (Hedwigia, 1884, Nos. 7 \& 8).
C. Warnstorf. Sphagnologische Rückblicke (Flora, 1884, pp. 469 et seqq.).
1884. J. Cardot. Notes Sphagnologiques. Descriptions de quelques variétés nouvelles (Revue Bryol. 1884, No. 4).
1885-86. G. Limpricht. Die Laubmoose (in Rabenhorst's Krypto-gamen-Flora von Deutschland etc., Livr. 2 \& 3).
1886. J. Cardot. Les Sphaignes d'Europe. Revision critique des espèces et étude de leurs variations (Bull. de la Soc. royale de Bot. de Belg. t. xxv. 1re partie).
C. Warnstorf. Zwei Artentypen der Sphagna aus der Acuti-folium-gruppe (Hedwigia, 1886, p. 221).
1887. E. Russow. Ueber den gegenwärtigen Stand seiner seit dem Frühling 1886 wieder aufgenommenen Studien an den einheimischen Torfmoosen (Sitzungsb. d. Dorpater Naturf.Ges. 1887, p. 305).
,, E. Russow. Zur Anatomie resp. physiologischen \& vergleichenden Anatomie der Torfmoose (Schriften herausgegeben von d. Naturf.-Ges. d. Univ. Dorpat iii.).
,, J. Cardot. Revision des Sphaignes de l'Amérique du nord (Bull. de la Soc. royale de Bot. de Belg. t. xxvi. 1re partie).
1888. C. Warnstorf. Die Acutifolium-gruppe der europäischen Torfmoose (Abhandl. d. Bot. Ver. d. Prov. Brandenburg, xxx. p. 79).
C. Warnstorf. Revision der Sphagna in der Bryotheca Europæa von Rabenhorst und in einigen allteren Sammlungen (Hedwigia, 1888, p. 266).
", J. Röll. "Artentypen" und "Formenreihen" bei den Torfmoosen (Bot. Centralbl. 1888, Nos. 23-26).
E. Russow. Ueber den Begriff "Art" bei den Torfmoosen (Sitzungsb. d. Dorpater Naturf.-Ges. 1888, p. 413). This article has been translated into French by Gravet in the Revue Bryol. 1891, No. 5 ("Sur l'idée d'espèce dans les Sphaignes").
1889. C. Warnstorf. Sphagnum crassicladum Warnst. Ein neues Torfmoos für Europa aus der Subsecundumgruppe (Bot. Centralbl. 1889, xl. p. 165).
,, E. Russow. Sphagnologische Studien (Sitzungsb. der Dorpater Naturf.-Ges. 1889, p. 94).
1890. C. Warnstorf. Sphagnum degenerans var. immersum. Ein neues europäisches Torfmoos (Bot. Centralbl. 1890, p. 102).
C. Warnstorf. Die Cuspidatumgruppe der europäischen Sphagna (Abhandl. d. Bot. Ver. d. Prov. Brandenburg, xxxii. p. 173).
C. Warnstorf. Contributions to the Knowledge of the North American Sphagna (Bot. Gazette, xv. p. 127).
C. Jensen. De danske Sphagnum-Arten (Bot. Forenings Festskrift. 1890).
1890-91. C. Warnstorf. Beiträge zur Kenntniss exotischer Sphagna (Hedwigia, 1890, Nos. $4 \& 5$; 1891, Nos. $1 \& 3$).
1891. Venturi. Les Sphaignes européennes d'après Warnstorf et Russow (Revue Bryol. 1891, Nos. 2, 4, 5, \& 6). This is a French translation of the above article in the Botanical Gazette (1890).
1892. C. Warnstorf. Einige neue exotische Sphagna (Hedwigia 1892, No. 4).
1893. C. Warnstorf. Beiträge zur Kenntniss exotischer Sphagna (Hedwigia, 1893, No. 1).
C. Warnstorf. Characteristik und Uebersicht der europäischen Torfmoose nach dem heutigen Standpunkte der Sphagnologie (1893) (Schrift. d. naturw. Vereins d. Harzes in Wernigerode, viii. 1893).
1894. E. Russow. Zur Kenntniss der Subsecundum- und Cymbi-folium-gruppe europäischer Torfmoose (Archiv für die Naturk. Liv.- Est.- und Kurlands. Zweite Serie, Bd. x. Lfg. 4, pp. 361-527).
C. Warnstorf. Characteristik und Uebersicht der nord-, mittel-, und sudamerikanischen Torfmoose nach dem heutigen Standpunkte der Sphagnologie (1893) (Hedwigia, 1894, p. 307).
1896. C. Warnstorf. Die Moos-vegetation der Tucheler Heide, mit besonderer Berïcksichtigung der Moose (Schriften d. Naturf. Ges. in Danzig. N. F., Bd. ix. heft 2, 1896).
1897. J. Cardot- Répertoire Sphagnologique (Bull. de la Soc. d'Histoire Naturelle d'Autun, x.).
1898. C. Warnstorf. Beiträge exotischer und europäischer Torfmoose (Bot. Centralbl. lxxvi. p. 385 \& 417).
1899. C. Warnstorf. Neue Beiträge zur Kryptogamenflora der Mark Brandenburg (Verhandl. d. Bot. Vereins d. Provinz Brandenburg, xli.).

Very numerous varieties and forms have also been published in the two Sphagnum Exsiccata issued by Warnstorf. The first of these, under the title of "Sphagnotheca Europæa," contained two hundred numbers, and was issued in four fascicles of fifty; and the second, "Sammlungen Europäischen Torfmoose," containing four hundred numbers, was issued in four series in the years 1888, 1890, 1892, and 1894 respectively.

The main difference between Warnstorf's system and that in general use in this country is due to the great importance ascribed in the former (1) to the position and form of the chlorophyllose cells as seen in transections of the branch leaves:; and (2) to the form and distribution of the pores on the walls of the hyaline cells of the branch leaves and, to a less extent, of the stem leaves. To make out the former point, it is absolutely necessary to make transverse sections of the leaves. To do this it has been suggested that the branches should be embedded in a thick gum solution, which is then allowed to dry; the sections are then cut with a razor, and on being placed in water the gum dissolves, and the sections can be examined. This, however, is a somewhat lengthy process, and perfectly thin sections can be prepared with very little trouble by placing several branches together between the two split halves of a piece of elder-pith, and then cutting across the whole. Care must be taken to select only the spreading branches, and the most highly developed leaves from the middle and lower portion_of

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

attempted to give descriptions of the innumerable varieties which in the past have been named. Without the examination of original specimens this would in the case of most species be worse than useless, as it is not possible from the descriptions of the varieties to tell to which of the segregates many belong.

With the description of each species I have endeavoured to give the synonymy only so far as this is necessary to bring into line the names in Dixon's Handboot and Braithwaite's Monograph with those here used. A full synonymy will be found in Cardot's Répertoire Sphagnologique (1897). With the intention of removing the confusion that has arisen from the description of the numerous analogous varieties of different species under different names, Russow has suggested that the same terms should be used in each species for the corresponding forms, and that names of Greek derivation should be employed. The chief of these are-orthocladum instead of strictum, when the branches are erect; anocladum when the branches curve outwards; catocladum instead of deflexum; dusycladum for compactum; eurycladum instead of laxum; mastigocladum for flagellatum, brachycladum, macrocludum, microcladum (branches of medium length); homalocladum (with straight branches); drepanocladum (with sickle-shaped branches); leptocladum (with thin branches); pachycladum (with thick branches), \&c., and various combinations of these terms. For the sake of brevity these terms will be employed in the following descriptions of species.

Clavis to the European Species of Sphagnum (after Warnstore (1899)).

1. Cortical cells of stem and branches without spiral fibrils; br. l. always truncate and toothed at the apex .
2. Cortical cells of stem and branches with spiral fibrils; br.l. at the apex cucullate, not truncate and toothed, but with narrow hyaline border
3. Chlor. cells of br. l. in section triangular to trapezoid, inserted between the hyaline cells on the inner surface of the leaf, and free either only on the inner or on both surfaces; hyaline cells more strongly convex on the outer surface; not papillose.
4. Chlor. cells of br. l. in section triangular to trapezoid, inserted between the hyaline cells on the outer surface of the leaf, and free either only on the outer or on both surfaces; hyaline cells more strongly convex on the inner surface; inner wall of the hyaline cells where they are united to the chlor. cells with or without papillæ .
5. Chlor. cells of br. l. in section elliptical, barrel-shaped to rectangular, median or in S. compactum nearer the outer surface; either enclosed by the hyaline cells on both surfaces or free on both; inner wall of the hyaline cells where they are united to the chlor. cells generally without, more rarely with, papillæ
§ 1. Sphagna acutifolia Schimp. Spp. 1-11.
6. Most of the superficial cortical cells of the stem with a single large non-bordered pore; inner surface of the entire upper half of the br. l. with large round pores which are sometimes opposite the pores on the outer surface; st. l. usually without fibrils
7. Superficial cortical cells of the stem rarely with scattered pores; inner surface of the br. l., especially near the lateral margins in the middle and lower parts of the leaf, with large round non-bordered pores; st. l. with or without fibrils
8. St. l. more or less widened towards the summit, spatulate ; on the wide rounded apex and for some distance down the lateral margins, fimbriate by reabsorption of the cellwalls. Wood-cylinder of stem and branches never red.

> i. S. fimbiaatum Wils.
4. St. l. not widened above, lingulate, fimbriate only, with very few exceptions, on the wide. rounded apex; membrane of the hyaline cells in the upper part of the leaves always reabsorbed. Wood-cylinder of stem and branches never red. ii. S. Girgensohnii Russ.
4. St. l. lingulate, only in the middle of the wide rounded apex slightly fimbriate; walls of the hyaline cells in upper part of the leaves never re-absorbed; frequently without fibrils, but often fibrillose in upper part of the leaf. Wood-cylinder of stem and branches frequently ($\begin{gathered}\text { b branches always) red. }\end{gathered}$

> iii. S. Russowii Warnst.
5. St. l. more or less lingulate, without fibrils (in S. rubellum usually fibrillose in upper half). Margin of br. l. not dentate
5. St. l. from a wider base more or less narrowed above, hence triangular to triangular-lingulate, with or without fibrils. Margin of br. l. not dentate
5. St. l. from a narrower base widened upward to the middle and thence produced to a broadly truncate, toothed apex; border narrow and of equal width from apex to base; with or without fibrils. Br. l. with the upper margins minutely dentate. Wood-cylinder always pale or yellowish. Tufts usually pale- or greyish-green . . . xi. S. molle Sulliv.
6. Br. l. when dry (especially in the capitulum) curved, erectopatent, those of the basal half of the spreading branches, on the outer surface towards the apex with very small, round, strongly-ringed pores; st. l. always non-fibrillose. Wood-cylinder of the stem never brown. Tufts green, reddish to dark purple iv. S. Warnstorfii Russ.
6. Br.l. of the spreading branches usually when dry (especially in the upper branches) more or less secund and with a broad rounded-truncate, almost cucullate apex; on the outer surface in the apical part with large semi-elliptical,
weakly-ringed pores; st. l. not rarely with fibrils in the upper part. Wood-cylinder of the stem never brown. Tufts green, yellowish, rose-red, but never brown.
v. S. rubellum Wils.
6. Br. l. of the spreading branches when dry imbricate and with rounded-truncate apex; on the outer surface in the apical part with small strongly-ringed pores; st. l. almost always non-fibrillose. Wood-cylinder of stem always redbrown. Tufts usually a characteristic uniform brown, more rarely in the upper part pale brown or green.
vi. S. fuscum Klinggr.
7. Br. l. when dry entirely without lustre, usually closely imbricate; st. l. usually with numerous fibrils, more rarely non-fibrillose; superficial layer of stem cortex usually without pores ; wood-cylinder generally red
7. Br. l. when dry with a distinct metallic lustre, imbricate or curved erecto-patent to squarrose; st. l. with or without fibrils; superficial layer of stem cortex with or without pores; wood-cylinder of stem greenish, yellowish or red to dark purple
8. St. l. in the completely developed plant with a short truncate and toothed only slightly elongated apex, with a narrower or wider margin, which is always widened below. vii. S. acutifolium Russ. \& Warnst.
8. St. l. large, generally with undulate margins, prolonged above into a somewhat long, truncate and toothed apex with incurved margins, as in S. subnitens. Border to near the leaf-base narrow and then suddenly distinctly widened; hyaline cells generally with numerous fibrils as far as the leaf-base. (Plants more robust than the strongest forms of S. acutifolium.) viii. S. tenerum Warnst.
9. Br. l. when dry (especially in the capitulum) almost always distinctly in five rows and curved erecto-patent, as in S. Warnstorfii; st. l. from a broad base distinctly iso-sceles-triangular, with or without fibrils; cortical cells of stem with scattered pores ; wood-cylinder not red, but green or yellowish ix. S. quinquefarium Warnst.
9. Br. l. when dry imbricate, rarely erecto-patent to squarrose; st. l. large, with undulate margin and elongated broadly truncate apex, usually non-fibrillose, rarely with fibrils; hyaline cells several times divided by cross walls; woodcylinder usually dark purple . x. S. subnitens Russ. \& Warnst.
10. Stem cortex from the usually reddish or red wood-cylinder always clearly differentiated, with its cell-walls not or but little thickened. St. l. large, lingulate, fimbriate on the broad rounded apex, with narrow border reaching to the base and remaining of equal width throughout; membrane of the hyaline cells in the upper part reabsorbed on both sides of the leaf and non-fibrillose; br. l. usually with the

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
pores on the outer surface of br. 1. very small, and almost exclusively in the upper angles of the cells; on the inner surface wanting, or in the angles of the cells of the apical half of the leaf only, rarely almost to the leafbase; chlor. cells in section rectangular-trapezoid, free on both surfaces; stem cortex generally clearly differentiated from the wood-cylinder . xvi. S. cuspidatum Russ. \& Warnst.
14. St. l. large, triangular-lingulate, towards the apex usually with fibrils; border of br. l. up to six cells wide; pores on the outer surface of br. l. very numerous; in the apical half of the leaf, in a single row in the centre of the cellwall, and here at times becoming converted into large membrane-gaps; in the lower part of the leaf generally in two rows near the commissures, either with a weak ring or non-bordered, but with a sharp contour, $6-7 \mu$ in diameter; chlor. cells and stem cortex as in S.cuspidatum, which it approaches most nearly in habit.
xvii. S. Dusenii Russ. \& Warnst.
14. St. l. large, triangular-lingulate, towards the apex usually with rudimentary, or in part completely developed, fibrils; border of br. l. narrow, 3-4 cells wide; pores on the outer surface of br.l. very numerous, small, generally in two rows near the commissures or in the middle of the cellwall; towards the leaf-apex strongly ringed and resembling strings of pearls, at times interrupted by pseudo-pores; chlor. cells in section triangular, on the leaf inner surface completely enclosed by the hyaline cells which are united together for some distance; stem cortex not clearly differentiated from the yellowish wood-cylinder, and thus apparently absent xviii. S. amnulatum Lindb. fil.
14. St. l. rather large, triangular-lingulate; always without fibrils; on the outer surface of the br. l. with extremely small, about 2μ in diameter, ill-defined pores which only become visible by intense staining of the cell-wall. These pores are sometimes found only in the basal part of the leaf, and especially towards the margins, sometimes (but rarely) they are in two rows on the cell-walls throughout the entire outer surface; on the inner surface of the br. l. pores are usually entirely absent; very rarely both leafsurfaces are almost without any pores. Chlor. cells in section as in S. annulatum . . . xix. S. obtusum Warnst.
14. St. l. almost always small, equilateral-triangular to short-isosceles-triangular or triangular-lingulate to oval, acuminate or with obtuse apex, mostly without fibrils; border of br. 1. 2-4 cells wide; pores on the outer surface of br. l. in the middle and basal part of the leaf, large, and situated in the upper angles of the cells near the margins of the leaf; or there are here several pores on the surface of each cell. The pores on the outer surface in the upper angles of the cells are generally placed immediately over
corresponding pores on the inner surface; pores on the outer surface towards the apex sometimes very small and ringed, arranged in short, often interrupted rows on the commissures; pores on the inner surface generally very numerous, in nearly'every cell-angle over the wide leafsurface; chlor. cells in section triangular and completely enclosed on the inner surface; stem cortex usually not clearly differentiated from the wood-cylinder, and hence apparently absent . . xx. S. recurvum Russ. \& Warnst. § iv. Sphagna polyclada Russ. Sp. 22.
15. Branches $7-13$ in a fascicle; chlor. cells median, in the upper half of the leaf, in section elliptical and enclosed by the hyaline cells on both sides, in the basal part of the leaf barrel-shaped to rectangular and free on both surfaces; inner wall of the hyaline cells, where united to the chlor. cells, with minute papillæ; wood-cylinder dark blood-red, st. l. small, triangular-lingulate, without fibrils. xxii. S. Wulfianum Girgens.
§ v. Sphagna rigida Schimp. Sp. 23.
15. Branches $3-4$ in a fascicle; chlor. cellsin section not median, but nearer the outer surface, elliptical and enclosed on both surfaces by the hyaline cells which are united together for some distance; inner wall of hyaline cells (in European species) always without papillæ; wood-cylinder dark brown; st. l. small, triangular-lingulate, without fibrils.
xxiii. S. compactum DC.
§ vI. Sphagna truncata Warnst. Sp. 24.
15. Branches 3-5 in a fascicle ; chlor. cells in section median, barrel-shaped to almost rectangular, and on both sides of the leaf with their strongly thickened outer walls free; inner wall of the hyaline cells always without papillæ; wood-cylinder pale or yellowish; st. l. large, lingulate, fimbriate on the broad truncate apex, border much wider below, usually without fibrils, in form and structure much like those of S. Girgensohnii; br. l. at the apex broadly truncate and toothed . . . xxiv. S. Angstroemii Hartm.
15. Branches generally $3-5$ in a fascicle, rarely single or wanting; chlor. cells in section median, barrel-shaped or rectangular to quadrate, free on both surfaces of the leaf; inner wall of hyaline cells always without papillæ; st. l. either triangular-lingulate and with the border but little wider below or of median size to very large, lingulate and with a narrow border of equal width throughout; at the apex generally truncate and toothed, rarely somewhat fimbriate, generally in very varying degree fibrillose, more rarely quite without fibrils; at times the st. l. and br. l. similar in form and cell-structure; br. l. often secund
§ viI. Sphagna subsecunda Schimp. Spp. 25-35.
16. Branches of the completely developed plant $3-5$ in a fascicle;
br. l. always with pores 17
16. Branches single or wanting; br. and st. leaves entirely without pores xxxv. S. Pylaiei Brid.
17. Stem cortex always two or more layered 18
17. Stem cortex always one-layered, rarely on one side of the circumference two-layered
18. St. l. small, triangular-lingulate, only fibrillose near the apex of the leaf; br. l. small to medium size, lanceolate, with narrow truncate elongated apex, secund, when dry with a slight lustre ; habit of S. subsecundum.
xxv. S. contortum Limpr. (=S. laricinum Spruce).
18. St. l. large, lingulate, generally with numerous fibrils to the base; br. l. large, roundish-ovate, with broad truncate, not elongated, small-toothed apex, not secund but loosely imbricate xxvi. S. platyphyllum Warnst.
19. Br.l. on the outer surface with numerous pores, which are almost always in rows on the commissures like strings of pearls, on the inner surface almost without pores or with very few20
19. Br. l. with numerous pores on both sides, which are either on the outer side in rows and on the inner side in almost every cell-angle, or are in rows on both sides21
19. Br.l. on the inner side with numerous pores which are often arranged in rows, on the outer side almost with pseudopores only, which are mixed with scattered small true pores.22
19. Br. l. on both sides with very few pores or almost entirely without; in the latter case with the hyaline cells more or less replaced by chlorophyllose cells of similar form ; st.l. large, lingulate, usually fibrillose to the base, and with few pores as in the br. i. . . . xxxiv. S. obesum Warnst
20. St. l. very small, less than 1 mm . long, triangular-lingulate, almost always nou-fibrillose, rarely with rudimentary fibrils towards the apex; hyaline cells undivided, on the inner surface in the upper third of the leaf with somewhat large non-ringed or weally ringed pores, on the outer surface with single or numerous smaller ringed pores in the cell-angles
xxvii. S. subsecundum Limpr.
20. St. l. larger, 1 mm . or more long, lingulate, always with fibrils in the upper half, rarely fibrillose lower; hyaline cells generally divided, on the inner surface with numerous round, weakly or strongly ringed pores or also towards the base non-ringed pores, on the outer surface with few or more numerous ringed pores in the cell-angles. Plant somewhat more robust than S. subsecundum.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

23. Chlor. cells of br. l. in section elliptic, median, and on both sides completely enclosed by the slightly convex hyaline cells, which are united together for some distance; on the inner wall of the hyaline cells where they are united to the chlor. cells, almost always smooth, only in the rarest cases with extremely minute papillæ; stem cortex with few fibrils xlii. S. medium Limpr.
24. Chlor. cells of the middle part of the br. l. in section wide equilateral-triangular, on the outer surface completely enclosed by the strongly convex hyaline cells, or broad trapezoid and free on both surfaces; on the inner wall of the hyaline cells where they are united to the chlor. cells, without papillæ but on both sides of the chlor. cells with so-called comb-fibrils, which are rarely absent; transverse walls of the cortical cells of the branches level, not bent downward. St. l. generally non-fibrillose. xxxvi. S. imbricatum Russ.
24. Chlor. cells broadly isosceles-trapezoid with the longer parallel side on the inner surface; hyaline cells always non-papillose ; st. l. almost always fibrillose 25
24. Chlor. cells narrowly isosceles-triangular to narrow-trapezoid or almost spindle-shaped, with the wall usually of equal thickness all round, rarely somewhat thickened on the inner surface of the leaf; on the outer surface enclosed by the strongly convex hyaline cells or free as on the inner surface; hyaline cells always non-papillose; stem cortex as also generally the st. l. with numerous fibrils.

> xxxix. S. cymbifolium Limpr.
25. Chlor. cells up to 15μ wide; hyaline cells owing to the great broadening of the chlor. cells remarkably narrow ; cells of stem cortex non-fibrillose, or only here and there with delicate indications of fibres; st. l. sometimes non-fibrillose, sometimes with numerous fibrils. Plant completely submerged and in habit showing little resemblance to a cymbifolium-form.
xxxvii. S. degenerans, Warnst.
25. Chlor. cells up to 12μ wide; rarely broadly isoscelestriangular (usually trapezoid); hyaline cells much wider than in S. degeneraus; cells of stem cortex with numerous fibrils; st. l. fibrillose almost to the base. Plant not submerged and in habit resembling a S.cymbifolum with more squarrose leaves . . . xxxviii. S turfaceum Warnst.
26. Chlor. cells extremely narrow ; hyaline cells non-papillose; st. l. usually without, rarely with fibrils, and their hyaline cells not septate xl. S. centrale Jensen.
26. Chlor. cells wider; hyaline cells on the inner wall where they are united to the chlor. cells always more or less papillose; st. l. with or without fibrils and their hyaline cells generally septate xli. S. papillosum Lindb.

THE NOMENCLATURE OF PLATYCERIUM.

By W. Carruthers, F.R.S.

My recent examination of the nomenclature of this genus makes it clear that some changes must be made in the received names of the species. The genus first appeared in literature in the writings of Plukenet. In his Mantissa, p. 82 (1700), he describes a plant from Johanna Island as "Filix sive Hemionitis multifida platyceros, s. segmentis coriaceis, cornu cervinum referentibus, aversa parte canescentibus." The specimen described is preserved among Plukenet's plants in Herb. Sloan. vol. xcii. fol. 70, and is a good specimen of Platycerium alcicorne Desv. In his Amaltheum he describes a smaller specimen of the same species, also from Johanna Island. Both these plants were most probably collected by Patrick Adair, M.D., to whom Plukenet was indebted for many South African plants. This he described under the name of "Neuroplatyceros Æthiopicus, nervosis foliis, cornu cervinum referentibus," l.c. p. 151 (1705), and figured in his Phytographia, t. 429, f. 2. The specimen is in Herb. Sloan. vol. 102, fol. 194. In 1794 Willemet published his Herbarium Mauritianum (Usteri Annal. Bot. xviii. 61), and he there describes this species under the name Acrostichum alcicorne. The material on which it was founded was given him by Stadtmann, who collected it in Madagascar. Swartz, in his Genera et Species Filicum (Schrader, Journ. Bot. vol. ii. for 1800), independently, as it appears, employed the same name for Plukenet's plant, having no more information than what he gleaned from Plukenet's figure and description. Cavanilles, in Anal. Hist. Nut. Madrid, 1799, p. 105, described under the name of Acrostichum bifurcatum a plant from Port Jackson, New South Wales, which Robert Brown afterwards, in his Prod.Fl. Nov. Holl. (1810), p. 145, referred to A. alcicorne Sw. When Desvaux, in his "Prodrome des Fougères," published in the Ann. Soc. Linn. Paris, 1827, p. 213, established the genus Platycerium, he considered the Australian plant to be specifically different from A. alcicorne, and called it P. angustatum Desv. In this opinion he has not been followed by later systematists-Hooker, Fée, Baker, \&c.-so that Desvaux's name must be placed as a synonym of P. alcicorne. In 1844-5 Fée, in his Hist. Acrost. (p. 102), introduced the first word of Plukenet's descriptive name as if it had been meant by its author to be of generic value, and relegated Platycerium Desv. as a synonym. This obviously cannot be adopted. Fée, further mislead by the general designation " Æthiopicus," referred Plukenet's plant to a species found in Western Tropical Africa, which had already been described and figured by PalisotBeauvois in 1804. Fée gives a very good figure, l.c. tab. 64, of this plant, and he says Plukenet's figure is " mala," as it undoubtedly is for the species to which he refers it. Hooker, in his Garden Ferns, tab. 9 (1862), and Sp. Fil. v. p. 283, follows Fée in regard to the species, but calls it Platycerium Ethiopicum Hook., characterizing Plukenet's figure as a " young and very imperfect fertile frond."

T e next species of the genus to be published was one found in 1778 or 1779 by J. G. König in Siam. He sent a parcel of plants to O. F. Müller in 1783, and among them this Platycerium, which he named Osmunda coronaıia. Müller printed, in the Halle Naturforscher, St. 21, p. 107 (1785), the name and description of the plant from König's manuscript, and gave a singularly good figure of the plant (tab. 13). A careful description of the species is to be found on p. 298, vol. ii. of König's manuscripts, preserved in the Botanical Department, British Museum. Swartz placed the species in Acrostichum, and called it A. biforme Sw. (Schrader, Journ. Bot. 1880, ii. (1801)), his only materials being the description and figure in the Naturforscher. Desvaux included it among the species of his genus Platycerium as P. coronaria Desv., giving A. biforme Sw. as a synonym. When Blume published his description and figure in his Flora Java (1828), (Filices, p. 44, t. 18), he named it Platycerium biforme Bl ., and under this name it generally occurs in systematic books. Wallich distributed specimens (No. 20 in his List) from Singapore with the name "Acrostichum fuciforme Wall. Herb. 1823."

A third species was added to the genus in the plant described by Palisot-Beauvois in the Flore d'Uware, p. 2 (1806), and figured tab. 2. He applied to it the name Acrosticum stemaria, given by Commerson to a plant in Herb. Juss. from Madagascar, which was no doubt P.alcicome Desv. Palisot-Beauvois quotes Plukenet's descriptive name, and refers to his figure, and points out the close resemblance between Plukenet's plant and his own, and thinks it may be an allied species, but it might be the same. Desvaux, when he separated the genus in his Prodrome, l.c. p. 213, included this plant as P. stemmaria Desv. Fee, in his revision of the Acrostichea, believing Plukenet's plant to be the same as Palisot-Beauvois', set aside Desvaux's generic name, and adopted " Neurop/atyceros Pluk.," and called this species N. 在thiopicus Pluk., employing the first two words of Plukenet's descriptive name as if they were in conformity with the binomial nomenclature introduced by Linnæus many years thereafter. Hooker, following Fée, placed it in Platycerium as P. 在thiopicum, quoting as a synonym "Neuroplatyceros Ethiopicus Pluk."

Welwitsch found a new species of this genus in Angola, which he communicated to Baker, who referred it to P. stemmaria Pal.Beauv., though he published Welwitsch's name P. angolense, with a description sufficient to enable one to identify it, in Synopsis Filicum, p. 425 (1868). In 1870 Schweinfurth found the same species in his expedition to Niam-Niam, and in the following year published a description and figure of it in Bot. Zeit. xxix. 361, under the name P. Elephantotis Schweinf. Baker, in his New Ferns (1892), considers Schweinfurth's plant to be identical with Welwitsch's, but places it under P. athiopicum Hook., that is, P. stemmaria Desv., from which it is certainly different. The other species of Platycerium have happily as yet no synonyms.

The synonymy of these species will consequently be as follows :-

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
very interesting North American species, P. Robbinsii Oakes, and I described the plant as such in Bull. Herb. Boissier, 1896, p. 257. The authors say: "Specimina Maackiana floribus fructisque carent. Habitus omnino P. obtusifolii, foliis autem sub lente tenuiter arguta serrulata."

There is in the Kew Herbarium a specimen named " P. crispus γ servulatus Schrad. Yokohama, Japan, 1862, ex Science Coll. Imp. Univ."

Though differing considerably in habit from the usual form of P. Robbinsii, I could see no good characters by which it could be separated as a species. P. Robbinsii very rarely fruits; for years a single fruiting specimen, gathered in Oregon by Hall, was the only example known, but it has since been gathered in Jamaica Pond, Massachusetts (Hill); Chiesgo Lakes, Minnesota; Goose Lake, Michigan (Hill); and in the Somas river at Alberni, in Vancouver's Island (Macoun).

In Japan we have a remarkable commingling of species of Potamogeton. Of endemic species there are P. oxyphyllus Miq., P. Miduhikimo Makino, and P. nipponicus Makino; the material for this last is scanty, and it is perhaps a form of some other species. The other species are P. cristatus Reg. \& Maack, known only from Manchuria, China proper, and Ussuria; P. Tepperi Ar. Benn., China, India, Siberia, and Australasia; P. Gaudichaudii Cham., Ladrone Isles, China, Spice Archipelago, and Borneo; P. javanicus Hassk., India, China, Africa, Australia; P. indicus Roxb., from Tibet to Ceylon and the Andaman Isles; P. gracilis Wolfg., Siberia and North Europe: while of European species P. pralongus Wulf., P. natans L., P. polygonifulius Pourr., P. fluitans Roth, P. alpinus Balb., P. heterophyllus Schreb., P. nitens Weber, P. perfoliatus L., P. crispus L., P. zostelifolius Schum., P. pusillus L., P. pectinatus L., and P. flabellutus Bab. There is also at least one new species not yet described, which seems to connect P. Oxyphyllus with P. zosterifolius (acutifolius section). Father Faurie's No. 1058 in the Paris Herbarium may also be a new species, allied to P. trichoides, or it may be immature P. Mudulukimo, but the material is insufficient for description. Nowhere else in the world can such an assemblage of species be found.

It may be of interest to American botanists to know that P. Robbinsii was first collected by Nuttall at Cambridge, Mass., and was indicated by him as a new species; specimens from him are in the British Museum and Kerv herbaria, and also in De Candolle's herbarium, where it is stated to have been collected in 1825.
P. nitens Weber, Suppl. Fl. Holsat. p. 5 (1787).*

Some time before his death, my friend Dr. Morong wrote me concerning some specimens of Potamngeton from Wenham Lake, U.S.A. Some of these specimens he had sent to Dr. Tiselius,

[^9]of Stockholm, and he informed me that Dr. Tiselius referred the specimens to P. nitens Weber. Some of the specimens seemed to me to indicate an affinity with P. undulatus Fryer (non Wulfg.), but Mr. Fryer on seeing them noted on the sheet, "too many veins for undulatus."

Among a large series of North American specimens of the genus sent me by Dr. Morong were other and more developed specimens; these appear to me to confirm Dr. Tiselius's opinion. One of the specimens is so like some of Nolte's that I believe, were the labels changed, no one would discover the difference. I say of "Nolte," because I believe with Mr. Fryer the original plant Weber had in view was more like Mr. Fryer's f. involuta.* I have a specimen, kindly sent from the Kiel Herbarium, of the plant to which Weber refers-i.e. one named as a var. of lucens by Ehrhart, and referred by him to his nitens. Mr. Fryer sent me a drawing of a cultivated plant of nitens in Nov. 1892, which in the upper leaves is quite like Ehrhart's plant, and much resembles the floating leaves of P.lonchites (small form), and especially of P. Claytonii. I have come to the conclusion that we must quote Weber for nitens; Dr. Tiselius cites Nolte as the authority, and we have many specimens named by him ; but the idea that Weber's plant might have been polygonifolius I think cannot be upheld. It is said that Weber's description is not accurate in every detail, but what old descriptions are? We must always remember what scanty material the earlier botanists often had to deal with. Moreover, P. polygonifolius is not recorded from North America, a very doubtful plant from Newfoundland excepted. P. lonchites in some conditions is very similar to some states of P. Claytonii, so much so, that I have specimens crossnamed by American collectors. And Nolte himself (Nov. Fl. Holsat. p. 18), under P. heterophyllus Schreb., says, "Affinis est hæc species P. nitenti Weberi." Weber's herbarium seems to have been in the possession of a chemist at Neustadt, but I have been unable to trace it further. Prahl (Krit. Fl. Schlesw.-Holst. p. 207) gives under nitens "Nortorf in Gräben (Weber 1780)"; this is in Schlesvig. In this Journal for 1865, p. 259, Prof. Babington considers the P. lanceolatus of Reichenbach's Icones as "almost certainly a state of P. nitens." Reichenbach himself refers it to P. Zizii var. elongatus; there is in the De Candollean herbarium a specimen of nitens named " P. lanceolatus Sm. β latifolium Besser in herb.": I can find no other reference to connect the two. If P. nitens Weber were abandoned, the name to be adopted would be P. curvifolius Hartmann, Skand. Fl. ed. 1, p. 78, 1820 : this is six years before Nolte's, which was published in 1826.
P. Curtissir Morong in Bull. Torr. Bot. Club, xiii. 145 (1886); and N. Amer. Naiad. (Mem. Torr. Bot. Club, iii. part 2, p. 36, t. 43 (1893)).

This rare species is known by very few specimens; no fruit has yet been seen, and its habitat (Florida) is remote and rarely visited. Dr. Morong makes no comment on its affinities. In his clavis he
places it between I^{\prime}. confervoides Reich. and P. crispus L., probably more for convenience than as suggesting any particular systematic inference. I told Dr. Morong that in habit it reminded me of the growth of P. trichoides, but he did not agree. The peduncles are certainly very short for that species, but the same peculiar curl of the leaves is seen in both, and is not the result of drying. The stems in the specimens I possess afford no character in section, but they are so desiccated that nothing I have used will act on them ; and the structure of the leaves affords no certain test. The plant must be left doubtful until better and more abundant material is forthcoming.
P. lateralis Morong in Bot. Gaz.v. 51 (1880) ; N. Am. Naiad. t. 52 , p. 44.

The only species I know that can be compared with this is P. Miduhikimo Makino, Ill. Fl. Japan, v. 1, No. 9, p. 2, t. 54, 1891, especially the separate piece in the lower left-hand corner, though I have some suspicion that this may have been drawn from a piece of P.javanicus Hassk.; the two are often mixed together in gatherings, and are not easy to separate unless in fruit. These two and P. cristatus Reg. \& Maack, along with specimens from Japan named "P. hybridus Michx.," have been much mixed together and crossnamed. P. hybridus is not known from Japan. I should not be surprised to see the combination of paucifforus Pursh \times hybridus Michx., suggested for lateralis, or, to follow Dr. Morong's nomenclature, foliosus Rafn \times diversifolius Rafn.
P. mysticus Morong, Bot. Gaz. v. 50, 1880; and N. Am. Naiad. t. 41, p. 34.

This is another North American plant that will perhaps prove to be of hybrid origin. It much resembles (especially the flowering shoots) small nitens or perfoliatus: but this must be studied on the spot. "Mystic Pond, Medford, Mass.," is " the sheet of water in which the early American investigators of this genus found so many of their plants."-Morong, l.c. Specimens of the plant are in the British Museum and Kew herbaria.
P. stenostachys Schum. in Fl. Brasil. iii. 687, t. 119, fig. 1 (1894).

Dr. Schumann kindly sent me a specimen of this for inspection. It seems to me most to resemble a large polygonifolius. I have seen in that species the development of the stipules almost as great as in stenostachys; but at present the material is too scanty for any positive conclusion.
P. scleropus Schumann in Fl. Brasil. iii. 688, t. 120, fig. 2, 1894.*

By the kindness of Herr Baagoe, of Nævsted, Denmark, I possess a specimen of Dr. Schumann's plant. In the Flora Brasiliensis nothing is said as to its affinities. Broadly, it is the South American representative of the North American P. Claytonii Tuck. (P. epidydrum Rafin.), and is probably the nearest to that species

[^10]
THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

"priority of place" claim; neither of which principles has as yet received universal recognition. With regard to the latter, " P. spatheformis Tuckerman in herb." immediately follows "Var.? spathulceformis in Gray's Manual." (l.c.) and Tuckerman's name will, I imagine, be adopted by those who do not accept what is called the "Rochester Code." It seems probable that he wrote "spathulæformis," as "spathæformis" would have no appropriate significance.

It is remarkable that neither the "Check-list" nor the Illustruted Flora cites the synonym P. varians Morong, published by Mr. Fryer and figured in this Journal for 1889 (pp. 33-36, t. 287) ; and even more remarkable that Dr. Morong, publishing in 1893, should make no reference to Mr. Fryer's published figure and description, although his observations and specimens are referred to, and the fruit in Dr. Morong's plate is figured from British specimens. The synonymy of the plant is as follows:-
P. spathefformis Tuckerman ex Robbins in A. Gray, Man. Bot. N.U.S. ed. 5, p. 487 (1878).
P. gramineus L. var.? spathulaformis Robbins, l.c.
P. varians Morong ex Fryer in Journ. Bot. 1889, p. 33, t. 287.
P. spathulaformis Morong in Mem. Torr. Bot. Club, ini. pt.2, 26 (1893).
Perhaps, however, as has been suggested above, it should be quoted as
P. spathuleformis Tuckerman (sphalm. spathaformis), \&c.-

Ed. Journ. Bot.]

ARTEMISIA STELLERIANA IN NEW ENGLAND.

[The following paper by Mr. M. J. Fernald of the Gray Herbarium, published in the February number of Phodora (pp. $38-40$), forms a useful pendant to that by Mr. N. Colgan printed in this Journal for 1894, pp. 104-6, and is therefore here reprinted in the belief that it will be of interest to our readers. It may be noted that in the Cybele Hibernica (ed. 2, p. 495) the plant is noted by Mr. Colgan as "spreading on the North Bull in 1898."-Ed. Journ. Bot.]

One of the most conspicuous plants of sand-dunes and the drier portions of many sea-beaches of New England is Artemisia Stelleriana, a species first described from Kamtschatka. Yet, abundant as is the plant about many of our long-visited resorts-Mt. Desert, Old Orchard, Nahant, Nantasket, Truro, Martha's Vineyard, Narraganset Pier, Newport, and New London, as well as Long Reach and Sandy Hook-it was apparently unrecorded in our botanical literature until within the last quarter-century. Probably the first station noted in eastern America was at Nahant, Massachusetts, in 1877. A specimen collected there, or on the adjacent Lynn Beach, by Dr. W. G. Farlow, in 1879, is labelled ' growing wild in large tufts," and of this station Mr. John Robinson wrote in 1880,
"evidently increasing quite rapidly." A specimen collected by Miss G. H. Learned at New London, Connecticut, in 1892, is marked "well established." These notes of Dr. Farlow, Mr. Robinson, and Miss Learned, then, as well as Dr. Britton’s records of the plant in his New Jersey catalogue, indicate their belief that the plant is introduced.

On the other hand, there is a rather general idea that the plant is indigenous on our coast. In the Synoptical Flora and in the last edition of Gray's Manual this is suggested, though with some doubt; in various local floras the plant is treated in the same non-committal way; and in the Illustrated Flora, though its introduction into eastern America may be inferred, wo definite statement to that effect is made, as is done in case of A. Absinthium, A. Abrotanum, A. annua, etc. Thus, as treated in standard works, the exact status of the species in our flora is not clearly defined.

It is a significant fact that this very conspicuous plant was not seen upon the New England coast until 1877, and that from that date until the present time it has appeared in ever-increasing abundance at points long known and visited by botanists. Furthermore, in 1876, the plant was discovered in dry sand on the coast of Skåne, the southernmost province of Sweden, "the most thoroughly examined province of Sweden from the botanist's point of view"; in 1891 it was found on the sandy coast at North Bull, County Dublin, Ireland; in 1892, on the coast of Zealand, Denmark; and in 1895 on the sands between Penzance and Marazion, in Cornwall.

In the Journal of Botany for 1894, and previously in a Swedish journal, Butaniska Notiscr, Professor Areschoug discussed* at length the occurrence of this Kamtschatkan plant in Europe and America, favouring the view that it has long been a member of our flora, until recently overlooked because of its habitat-barren sands which are rarely visited. He further argued that the plant must have spread laterally from northern Asia to Europe and America immediately after the Glacial Period, before the return northward of the flora which now characterizes so much of Europe and America, and that although not yet known to us it will be found in many sandy river-valleys of North America.

Replying to Professor Areschoug's most interesting and ingenious argument, Mr. Nathaniel Colgan showed \dagger very conclusively that the extensive colony of the plant found by him in County Dublin had originated from waste fragments thrown upon the sand from a neighbouring nursery. The simple explanation given by Mr. Colgan of the origin of the colony in Ireland is essentially applicable to our American stations. If this very conspicuous plant were indigenous upon Old Orchard, Nahant, Martha's Vineyard, and other sandy shores, it is singular that no one observed it before 1877. Mr. Walter Deane informs me that in his youth he was familiar with Old Orchard Beach, and that at that time this Artemisia was not

[^11]seen ; in Tracey's list (1858) of the plants of Lynn it is not mentioned; nor does the late Dr. Morong note it in his paper* upon the flora of Martha's Vineyard. However, in the seventies A. Stelleriana was popular in America, as well as in Europe, as a bedding plant. For a few years it was used very extensively for its mass of grey foliage, and to day, in many old-fashioned gardens in Maine, it is still a favourite under the name "Dusty Miller." Professor Areschoug argued that because the plant rarely spreads from gardens to the neighbouring districts, and because it abounds on sand-dunes and beaches remote from gardens, it cannot have escaped from cultivation to its present coastal stations. It cannot be stated with assurance that the plant has reached the New England sea beaches directly from neighbouring gardens; but a statement made by a nurseryman, attempting to account for the colony in County Dublin, and quoted by Mr. Colgan in his article above cited, may as well apply to our own as to the Irish station: "It is a plant of the freest possible growth. Any bit of the top or rootstock swept out with refuse would be sure to grow. Tops have often been used for mixing with cut-flowers, and may have assisted in the make-up of breast-bouquets, which, worn by some visitor to the North Bull, may have been thrown away as withered, and have got covered with sand." In view, then, of the very striking habit of the plant, its sudden appearance on sea-beaches and sanddunes, especially in the neighbourhood of summer resorts, soon after its popularity as a bedding plant, there seems no doubt that Artemisia Stelleriana was originally introduced along our coast, and that we have no reason longer to regard it as a species native to New England.

ALCHEMILLA VULGARIS IN IRELAND.

By Edward F. Linton, M.A.

In a paper on "Alchemilla vulgaris and its segregates" in this Journal (1895, p. 110), the Irish distribution of the group was left alone, since the few notes I had been able to collect together could give no fair idea of it. During the last three years Mr. R. Ll. Praeger has sent me a large number of A. vulyaris (aggregate) specimens to criticize or name from many parts of Ireland; and, though his contribution of records now far outnumbers those I have otherwise gathered together, he has kindly permitted me to incorporate his observations in my notes; where not otherwise indicated, the localities quoted are from Mr. Praeger. I have also to thank Mr. S. A. Stewart for a few specimens, indicated by S. A.S.

In the following statement the counties and vice-counties are numbered in accordance with the scheme set forth by Mr. Praeger in his paper on the "Botanical Subdivision of Ireland" (Journ. Bot. 1896, 57).

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
an unusually broad nerve. - C. atrovirens De Not. - C. brevipilus B. \& S. - Leucobryum glaucum Brid. - Grimmia pulvinata Sm. G. trichophylla Grev.-G. subsquarrosa Wils. A barren plant which I take to be this species, but differing somewhat in habit and with the hair-point unusually long.-Rhacomitrium heterostichum Brid.R. lanuginosum Brid. - R. canescens Brid. - Glyphomitrium Daviesii Brid.-Hedwigia ciliata Ehrh.-Pottia recta Mitt.-P. crinita Wils. -Tortula subulata Hedw. - Barbula tophacea Mitt. - Weisia microstoma C. M.—Trichostomum mutabile Br., c. fr.-Var. littorale Dixon. With an intermediate form, - T. flavo-virens Br. - Zygodon viridissimus R. Br. - Funaria ericetorum Dixon. - F. Templetoni Sm. Aulacomnium palustre Schwgr. - Webera annotina Schwgr. A remarkable form or variety with very short and small capsules, turbinate and wide-mouthed when mature and empty, resembling those of W. gracilis, but with the leaves and habit of W. annotina. —Bryım pendulum Schp.-B. intermedium Brid.-B. alpinum Huds. -Eurhynchium myosuroides Sehp. - E. pumilum Schp. - Plagiothecium Borrerianum Spr.-Hypızun chi ysophyllum Brid.-H. Wilsoni Schp. Not the typical plant. Habit somewhat of H. lycopodioides, but nerve too wide and strong. Auricles very indistinct, almost obsolete.-H. revolvens Sm.-H. commutatum Hedw.-H. molluscum Hedw. - H. cupressiforme var. ericetorum B. \& S. - Var. elatum Schp. - H. giganteum Schp. - Hylocomium splendens B. \& S. H. triquetrum B. \& S.-H. N. Dixon.

Ulota phyllantha var. stricta, mihi.-On looking through a large collection of mosses made in various parts of the British Isles by Dr. P. B. Mason, of Burton-on-Trent, in the course of several years, I came upon a specimen of a species of Ulota, which I could not refer to any described form. Under the microscope the leaves show a complete agreement with the non-gemmiferous leaves of the U. phyllantha Brid., though, being scarcely crisped, they have a very different appearance when dry, and they are, moreover, entirely destitute of the characteristic gemmæ. I have submitted specimens to Mr. H. N. Dixon and to Mr. J. E. Bagnall, neither of whom were acquainted with the form, and the latter has suggested that I should publish it as a variety, under the name of var. stricta.

Ulota phyllantha Brid. var. stricta, n. var.-Stems elongate, rather more branched than in the type; leaves straight, erect, scarcely altered in direction and only slightly crisped when dry, with the nerve ceasing below the apex, without gemmæ.

Habitat. Rocks by the sea, on the Island of Stroma, in the Pentland Frith (Dr. P. B. Mason).-W. E. Nicholson.

Basidiomycetes new to Britain. - The following species are represented by drawings or dried examples, or both, in the British Museum Collection:-Stereum conchatum Fr.; Namatelia rubiformis Fr.; Lycoperdon hiemale Bull.; L. furfuraceum Schæff.; Hymenogaster lycoperdineus Vitt.-W. G. Smith.

Ranunculus intermedius, Knaf.-It has been pointed out to us by more than one foreign botanist that Ranunculus intermedius Knaf is a form of R. peltatus, and not the plant of the South and West of

England formerly referred to R. tripartitus and to which the name of intermedius has usually been applied by British botanists. This view is held by Herr Freyn, who has given particular attention to the question. Upon referring to Knaf's original description of R. intermedius in F'ora, 1846, p. 289 (from Bohemia), we find that he says of the carpels "subhispidis." This character alone would seem to be almost sufficient to decide that it was not intended to refer to our plant. Knaf describes his plant as intermediate between R. hederaceus and R. aquatilis, distinguishing it from the latter by the leaves being all similar (i.e. none capillary), the stem rooting, and the time of flowering a month earlier; but he adds that it is perhaps only a variety of R. aquatilis with the leaves "conformibus." The distribution of our species (setting aside Knaf's Bohemian plant) is distinctly Western European, and the allied species R. tripartitus and R. ololeucos do not extend much farther eastward, so that it seems very improbable that it would occur in Bohemia. We are indebted to Herr Freyn for suggesting the identity of the Britısh plant with Batrachium lutarium, Revel, which was described and figured in Act. Soc. Linn. Bord. 1834 (p. 413, pl. 4). Through the kindness of Mr. Charles Bailey we have had an opportunity of comparing our plant with specimens of B. lutarium from the original locality (La Teste, Gironde), and we feel satisfied that they are the same. Revel's species was, as far as we have ascertained, first placed in Ranunculus by Mons. Georges Bouvet, and M. Bouvet has kindly given us the reference to the original publication of the name in Bull. Soc. d'Etudes scient. d'Angers for 1873 (1874), p. 96. Our conclusion, therefore, is that the British plant should stand as R. lutarius, Bouvet; and of the two forms figured by Clavaud in Flor. de la Gironde (1882) it appears to correspond most nearly to the var. intermedius (p. 16, fig. 3), which has the lobes of the leaves more obtuse than in his var. genuinus.-H. \& J. Groves.

Misuse of the Index Kewensis. - In the last volume of the Transactions of the New Zealand Institute, xxxi. 1898 (1899), from pages 404 to 415 there are five citations of Gaya Lyallii as of Hook. f. \& Jacks. in various forms. This is a mistake, due to a misreading of the text of the Index, ii. 530, coupled with the unauthorized statement of the Clarendon Press on the back of each volume and part. The true citation is-Gaya Lyallii E. G. Baker in Journ. Bot. xxx. (1892), 137; syn. Plagianthus Lyallii Hook. f. ex Benth. in Journ. Linn. Soc. vi. (1862), 103; Hoheria Lyallii Hook. f. Fl. N. Z. i. 31, t. 11. When the genus Plagianthus came to be revised for press, Mr. E. G. Baker had reduced the species mentioned to Gaya, but at a date too late to be included in the Index Kewensis; all that could be done was to indicate its present position by appending "(Gayæ sp.)," which has been misinterpreted as shown above.-B. Daydon Jackson.

Drift Seeds.-There is an early notice of drift seeds in Pena \& Lobel's Adversaria (1570), p. 395, where probably Lobel himself says: "Permultas accepimus à naucleris fabas Phasiolósve ex Americæ nono orbe sed alias perquàm raras habemus nos,
munere lectissimæ, literata virtute \& familia in Anglia illustri, Heroinæ Catherinæ Killigrææ quas ferunt repertas magna copia ad Cornubiæ littora, \& quod non parum mirum, eo loco nullam meminit vllus nanem illisam, nullúmve naufragium factum : \& tamen quotannis nouæ inueniuntur, partim fluitantes \& partim effodiuntur immersæ sabulis littoreis, quasi, vt putant Cornubiensis maris Anglici accolæ, secundis Austris, aut Zephyris è nouo mundo appulsæ fuerint." Lady Catherine Killegrew was the fourth daughter of Sir Anthony Coke, of Arwenack, Cornwall, and the first wife of Sir Henry Killegrew; she is described as being proficient in Hebrew, Greek, and Latin. The earliest account of drift seeds in the botanic portion of the Voyage of the 'Challenger' is that of Sloane, 1696, and the next in Amoenitates Academica, vii. 477, resp. Tonning, the thesis being dated 1765. Mr. Hemsley, to whom I have shown the above-cited passage, is of opinion that it constitutes the earliest record of such occurrences. - B. Daydon Jackson.

SOME ALGOLOGICAL LITERATURE OF 1899.

(Concluded from p. 98.)
The Bulletin of the Torrey Botanical C/ub publishes some "Observations on Vereocystis," by Prof. Conway MacMillan. He describes the various parts of the plant from the young stages up to maturity, and compares some of his results with those of Profs. Wille and F. W. Oliver. He agrees with Prof. Oliver in regarding the trumpet-shaped hyphæ and the sieve-tubes as "separate structural elements not to be confused on account of their similar perforated end-plates." He notes that in young material the sievetubes are abundant, while in other plants they disappear, and the hyphæ abound. The author has seen no branching of the sievetubes as described by Prof. Oliver for Nereocystis, though this occurs in the trumpet-shaped hyphæ. Cryptostomata are found only on the young plant, where they are present on both stipe and lamina. They "appear as short irregular furrows, from the surface of which tufts of two- or three-celled hairs are produced." Each furrow lies over a mucilage canal, and on parts of the plant where no mucilage canal exists there is no furrow. Prof. MacMillan suggests that the mucilage canals are closed-in furrows, and that the socalled cryptostomata are but stages in this development. There appears, however, to be a strong resemblance between the description of these furrows and those of Postelsia and Macrocystis, described in Murray's Phyc. Men. pt.iii. p. 84,1895. Here the furrows are lined with sporangia and paraphyses, which do not grow on the ridges; thus obtaining almost as much shelter as if they were inside a conceptacle. It is not stated if in these plants there is a connection between the furrows and the mucilage canals.

Minnesota Botanical Studies, ser. 2, pt. iii. (Dec.), contains two papers on algæ-"Observations on Chlurochytrium," by E. M.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

from this knot of cells grows down by this ostiole into the host plant, where it branches; some filaments shooting upwards towards the cortex, while others remain in the host and continue to force their way between the cells. Though the filaments do not actually enter the host-cells, they become in some way connected with them, since they extract the starch contained in the medulla of Phyllophora, and derive from it their chief nourishment. Those filaments which shoot up through the host-cortex to form the nemathecium pass quite easily through the outer layer of the host, though the germinating filament is unable to do so, and is forced to enter by means of the antheridial ostiole. Dr. Darbishire says that the exit of the parasitic filament seems to affect the surrounding tissue, giving an appearance of corrosion.

Since the tetraspores ripen in December and January, and are discharged soon after, the pertinent question is asked, what becomes of these spores till the time comes for fresh attacks on the host plant in the following autumn? The author suggests that this is an asexual form, which gives rise to a sexual plant on another host, and that the germinating spore of Actinococcus, as we know it, may be the carpospore. This sounds a more probable suggestion than that of Prof. Reinke here given, that Actinococcus is the asexual generation of Phyllophora Brodiai, growing parasitically on it. Dr. Darbishire has succeeded in germinating the tetraspores of Actinococcus, but, though the cells lived for two years, no light appears to have been thrown on the points at issue. The author is about to examine other species of this genus, and his results are promised later. The paper ends with a diagnosis of the genus Actinococcus and the species A. subcutaneus ($=A$. roseus Kütz.).
"Notes on Thorea," by G. C. Hedgcock and A. A. Hunter, in Botanical Gazette (Dec.), p. 425, records the occurrence of Thorea ramosissima Bory in Nebraska. It had been previously found in Illinois, Florida, and Texas, so this new record is not surprising. The authors describe their plant, and figure a section with hairs and fruit. The branching appears to be more sparing, the colour is olive-brown rather than purple, and the hairs show points of difference from other records; but in the main the Nebraska plants agree with the published descriptions of the species.

The Bulletin of the Torrey Botanical Club (Jan.) gives short notes on "Four Siphoneous Algæ of the Pacıfic Coast," by Prof. De Alton Saunders. Codium mucronatum var. calhfornicum J. Ag. is compared with Codium tomentosum Stackh., and the peripheral filaments of each species are figured side by side. Prof. Saunders evidently does not believe in the presence of a mucronate tip in some of the cells of C. tomentosum, although it has been asserted that the two forms of cell grow on the same plant. There are, however, differences in the length and general form of the peripheral cells in these two species, and the question as to the specific value of the mucronate point should be easily decided. Codium adharens Ag. is recorded from Monterey. Valonia ovalis Ag.-or, as it should be called, Halicystis ovalis Schmitz-is here recorded for the first
time from the Pacific. In giving the distribution of this alga Prof. Saunders omits Scotland, where it was found in 1892 by Prof. Schmitz and Mr. George Murray, but possibly he regards the "North Atlantic" as including the Kyles of Bute! Mr. Murray sets forth Prof. Schmitz's views on the systematic position of Halicystis in a paper in Phyc. Mem. pt. ii. p. 47, 1893, where the minute structure of this genus is compared with that of Valonia. Prof. Schmitz goes so far as to separate Halicystis from the Siphonocladacea and place it in Siphonea on the grounds of vegetative characters; and it may safely be surmised that the finding of the reproductive organs of Halicystis will only confirm Prof. Schmitz's view. Derbesia vaucheriaformis J. Ag. has been found at Point Lobos. ten miles south of Monterey Bay; and, except that the Pacific plant is smaller, it agrees in all respects with the Atlantic plant of Prof. Farlow (Mar. Alg. New Engl. p. 60).

> "Cladophora-Studien," by Dr. F. Brand, in Bot. Centraiblatt, Bd. lxxix. no. 5 et seq. 1899, embodies the result of the author's work during several years on this much-entangled genus. Dr. Brand begins by pointing out the hopeless confusion which has arisen in the identification of species, owing to the contradictory diagnoses given by various authors. Reference to herbarium specimens is equally misleading, and types are far to seek. A paper such as this by Dr. Brand is a boon to systematic workers, if only by indicating stable points of comparison between subgenera and species. For the preparation of a type for examination he recommends the Lagerheim method as described in Hedwigia, 1888, p. 58. As a rule, however, unless haste be required, he prefers to lay the Cladophora for twenty-four hours or more in distilled water, with a few drops of dilute acetic acid. For staining purposes acetic methylgreen is said to be the best reagent, as working specially well on Cludophoracea. Dr. Brand divides his paper under the following headings:-"Physiological and biological conditions"; "Formation of the Cladopora thallus and the law of evection"; "Attachment, and formation of zoospores"; "Inner structure"; "Various accidental peculiarities"; "Points of diagnostic importance"; "Systematic views." Then follows a "Synopsis of the South Bavarian species of Cladophora," in which each species is described in its various states at different times of year. The description of these various conditions of one species under different specific names has led to much confusion, and it is only by such careful study as Dr. Brand has given to the subject that these errors can be rectified. It has been a difficult task to decide which points of difference are sufficiently stable to form a sound basis for specific distinction; but Dr. Brand has done this, and gives as such: "the general habit of the plant, as regards its growth in the form of a loose network, a closely packed layer, a tuft or in a ball; its maximum growth; but, above all, the presence or absence of a basal attachment or apical rhizoids; the variety of branching with special regard to the time of evection; the relative preponderance of apical or intercalary growth ; the maximum thickness of the main stem and the minimum thickness of the branches, leaving isolated exceptions out of
consideration; the characteristic form of the vegetative cells; the conditions of reproduction and propagation ; the presence or absence of zoospore formation or of stolons; the form of the resting-cells and of the sporangia." These points do not all show the same degree of stability, but can be regarded as possessing more or less worth as diagnostic characteristics. Relative length of the cells is denounced as quite worthless in this respect, and much of the present confusion in the genus arises from its use by the older writers. The creation of a new term "evection" is to be regretted, and indeed it seems to be almost unnecessary. It is intended to describe the manner in which the side branches issue from the upper part of the cell in the main stem and the consequent alteration in the angle of that cell wall. The author regards the varieties of evection in Cladophora as of importance from a systematic point of view. The result of this study of the genus from a broad standpoint is of such assistance towards understanding the few species which inhabit South Bavaria, that it is to be hoped the author will enlarge his borders and monograph at least the European species; if not the entire genus. Such is the confusion, however, reigning in Cladophora that an extra lease of life might be necessary for the task.
"Ueber Caulerpa: Ein Beitrag zur Biologie der Meeres-Organismen," by Prof. Reinke (Wissensch. Meeresuntersuch. Kommission Kiel neue Folge, Bd. 5, Heft 1, 25 Nov. 1899), is a somewhat speculative but interesting treatise from the biological point of view. In the introduction the author discusses the views of previous writers, and regrets that among the collectors and students of this genus so little attention has been paid to the mode of life and general conditions of the separate species. Even the depths to which they may grow have not been determined, with the exception of C. plolifera, and much has yet to be done in this line of investigation.

Prof. Reinke divides his paper into four sections. 1. A comparative review of the species of Caulerpa. 2. The question of the grouping of the species. 3. The morphological structure of Caulerpa. 4. Factors governing the external form.

In the first section, descriptions are given of thirty-seven of the fifty existing species, accompanied by new and excellent drawings, both natural size and magnified. In the main the same lines are followed as those laid down by Prof. Agardh and Madame Weber van Bosse, whose admirable monograph, published in 1898, forms the groundwork of all systematic study of this genus. The second section, which deals with the grouping of the various species, is full of interest. The author starts with the premise that Caulerpa and other allied genera possess a common ancestor which first gave rise to such forms as Caulerpa fastigiata, Bryopsis duplex, and Derbesia. As he justly observes, such a premise can neither be proved nor refuted, and is at least useful as forming a starting point for the division of the genus into natural groups. For a phylogenetic study of plants or animals three sources of information have to be taken into account-namely, palæontology, geographical distribution, and comparative morphology. In the case of Caulerpa,

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
devoted the last years of his life, and which was to include, in a handy form, the results of his many years' investigations into New Zealand botany, in addition to the researches of previous workers. Since the publication of Sir Joseph Hooker's excellent Handbook in 1864, our knowledge of the New Zealand Flora has been greatly extended: the genus Ranunculus, for example, which was then represented by 20 species, now numbers 38 indigenous and 5 naturalized species; Celmisia, which is practically endemic, has extended its numbers from 24 to 39 , Cuprosoma from 24 to 40 , and so in proportion. It was therefore in every way desirable that the history of New Zealand plants should be brought up to date, and Mr. Kirk was manifestly the man to undertake the task.

Unfortunately, however, Mr. Kirk's death not only prevented the completion of his work, but deprived us of the introductory matter on distribution, history, and the like, with which he had intended to preface the volume. We learn from the oddly worded and anonymous "introductory notice" prefixed to the present instalment that "the Government have in view the necessity for making arrangements for the completion of the work"; but this does not encourage us to hope for a very speedy conclusion. Unless such conclusion is promptly taken in hand, it will be relatively as disproportionate to the earlier part of the book as the later volumes of our African Floras prepared at Kew are to the earlier ones published a quarter of a century or so before.

The introduction acknowledges the help afforded by the Trustees of the British Museum, who sent for the purposes of this Flora complete sets of the plants collected by Banks and Solander (with a transcript of Solander's MS. Flore Nove Zelandia, which is not mentioned), and allowed a set of impressions to be taken from the copper plates prepared for Banks. These will be reproduced in a separate volume, which, however, will not interfere with the complete series of the Banksian plates which the Trustees will shortly begin to publish. It is matter for regret that Mr. Kirk has quoted throughout the MS. names employed in the Flora, thus adding to synonymy a number of entirely useless names of which future monographers will have to take note. It need hardly be said that in the official publication of the Banksian plates every care will be taken to avoid putting into circulation such unnecessary synonymy. It may however be remarked that a larger number of such names is already in print than might be assumed from the Index Kewensis, in which no note is taken of those published in Gaertner's De Fructibus. It is even less easy to understand why Mr. Kirk cited certain MS. names of his own as synonyms: we can only suppose that specimens have been distributed under these names which have since been identified with known species, and that they are printed here for the convenience of those who may possess such distributed examples. In any case, however, the printing of MS. names as synonyms is much to be deprecated.

A noteworthy feature in the book is the large proportion of naturalized species. In Hypericum, for example, in addition to the native H. gramineim and H.japonicum, H. humifusum, H. perforatum,
and H. Androsamum are entered as naturalized in many localities; 13 species of Trifolium, 5 spècies of Malva, and 6 of Vicia, all introductions, represent these genera; in Crucifera there are 14 introduced as against 7 native genera, which include 30 introduced as against 22 native species. A considerable number of novelties are described -among them a genus, Huttonella, separated from Carmichaelia on account of its indehiscent pods, and including four species formerly placed in the last-named genus.

The book is well and carefully printed. Here and there-e.g. under Brachycome lineata (p. 259)-are indications that the editor, who is nowhere named, is not fully competent for his task, but on the whole he has done his work well, and has given an extremely full and useful index, which, however, is marred by the fact that the italics which indicate synonyms are confined to the names of species, generic synonyms being printed in ordinary type. The most serious omission is that of any indication, either on cover or title-page, that the work is incomplete: this defect is seriously misleading, and ought at once to be remedied in the interests of the public, who will hardly expect that a work claiming to be a "Flora of New Zealand" includes only the Polypetalæ and part of the Monopetalæ. Nor is there any date on the title-page; the preface is dated 10th April, 1899, but the book was not received in London until the beginning of October.

What Kirk did for New Zealand, Mr. F. M. Bailey is doing for Queensland, and a comparison of this first instalment of what is certain to be a useful work with the Flora Australiensis shows that our knowledge of Queensland botany during the last thirty years has extended almost as rapidly as that of New Zealand. Thus, for example, the genus Nymphca, represented in Bentham's work by one species, here numbers five. About one of them, N. Brownii, here first described, we shall have something to say at a later date; another, N. fava, originally introduced from Florida, has become completely naturalized in one locality. Naturalized plants, however, are by no means conspicuously in evidence, and in this the Queensland Flora contrasts strikingly with that previously noticed.

Mr. Barley has, no doubt wisely from the point of view of convenience, followed Bentham in arrangement and nomenclature, and, perhaps with less reason, has reproduced in full the descriptions from the Flora, " with any needful further descriptive notes which may have come to our knowledge since." Bentham of course worked entirely from herbarium specimens, and we think it would have been well if Mr. Bailey had availed himself of his opportunities to write descriptions from living plants. He has added useful information as to the economic properties of the trees, and the native names, which do not appear to be numerous. By the way, some of Mr. Bailey's own names are open to criticism on the ground of construction-"Asterolasia Wuombye (found at Woombye)" for example, and "Melicope chvoreechillum (native name of Mount Bartle Frere)." The excellent index deserves a word of commendation ; the plates are useful, but their execution leaves something to be desired.

A few instances of oversight occur: thus Bentham is followed in his records of Triumfetta procumbens, and Mr. Hemsley's paper in this Journal for 1890, in which he took Solander's hitherto unpublished name (T. subpalmata) for the more frequent Queensland plant and established it as a species, is not referred to. For the most part, however, such omissions as we have noticed are due to the incompleteness of Bentham's investigation of the National Herbarium when he was engaged on the Flora Australiensis; e.g.

Polygala stenoclada var. stenosepala and Cosmia (Calandrinia) quadrivalvis, both of which were collected by Banks and Solander at Endeavour's River, are not recorded in Mr. Bailey's Flora. In the same way and for the same reason, a good many plants found by Banks are not mentioned as having been collected by him. It is interesting to note that certain of the discoveries of these early investigators, such as Hibbertia Banksii and Polygala rhinanthoides, are not recorded from any other collectors. In very numerous instances, too, Bentham attributes to Brown plants which were only collected by Banks and Solander, and in this Mr. Bailey, as was indeed inevitable under the circumstances, followed him : this is the case with Boronia alulata and Eriostemon Banksii.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

name Spencerites. The sporangia of the cones included in Lepidostrobus are attached to the upper surface of the pedicel of the bract, whereas in the cone he describes they are free from the pedicel, and attached by a narrow base to the upper surface of the lamina.

The remaining memoir is devoted to the minute structure of the stem, leaf-bases, and roots of a singular fossil from the Lower Coal Measures of Stalybridge, Lancashire, belonging to the genus Medullosa, to which Dr. Scott gives the name of M. anglıca. The specimens described are beautifully preserved, and are expounded by the author in full and careful detail, which add considerably to the knowledge of the genus. No fruit has yet been detected that can be referred to any of the stems included in Medullosa. The vegetative structures, so far as known, present characters which seem to indicate affinities with Ferns and Cycads, and for them, and some other very different fossils, Potonié suggested the name Cycadofilices. They are set forth as representing a stage in the evolution of Cycads and Ferns. Is it not a new notion to find combined in a generalised ancestor the structures which are specialised in two later and very distinct groups? It is difficult to conceive a parent for the benefit of its progeny breaking up its body into its constituent parts, so that the "Cycado" elements should belong to one group of offspring exclusively, and the "filices" elements should be handed over to another group. This is not the way that the genetic history of plants has hitherto been supposed to have proceeded.

Note.

Mr. Williams Hervey, whose Observations on the Colors of Flowers was reviewed on pp. 53, 54, writes to complain that we have altogether misunderstood him, and represented him as maintaining the exact opposite of his actual doctrine by crediting him with the theory that the stimulation of insects produces new colours on a blossom, whereas he holds and teaches that it causes the original colour to survive, while the hue of unstimulated portions of the flower is changed by "Nature"; and, in proof that this is so, he cites various passages from the treatise in question.

So far as we may have misrepresented him, we willingly express our regret; but, as another journal-the Gardeners' Chroniclemisconstrued his meaning in much the same fashion as ourselves, we cannot but think that the author failed to set forth his theses with perfect perspicuity.

Moreover, looking at his book afresh in the light of his recent explanations-although we undoubtedly find various instances cited in which he claims that bees have perpetuated the original colour in certain parts, whilst "Nature" transformed it elsewhere-we find some to which it is hard to suppose that such an account of the matter is intended to apply; while certainly the style of language employed may not unnaturally lead even a careful reader to gather that something more than mere conservation of colour is ascribed to insect agency. Thus we are told (p. 74)-(the italics are ours)"Figuratively speaking, the special markings on the petals of flowers
are the footprints of the bees and butterflies. When they follow the same route for nectar, they leave a trail; where the butterflies walk around the stamens of a pink they leave the impression of their tiny feet in the shape of a circle; when a bee rubs his back against the petals of a poppy he makes a similar shaped spot on each; and when with his tongue he laps the nectar of the tulip tree, he paints a golden band; when he falls to the bottom of the cup-shaped tulip, he in his scrambling describes a disc of blue or yellow."

It is still more confusing to find [p.68] that in the Kaiser Crown tulip, while the insects have produced a golden circle inside, "Nature" was laying on the same colour without, but vertically instead of horizontally, and that in the tulip-tree itself the gold was a "new" colour.

All this', however, is of comparatively minor significance. We ventured to intimate our total disbelief in Mr. Hervey's explanation of the production of colour whether by perpetuation or alteration-asking how it came about that all bees and butterflies should have trodden so precisely on the same spots as to have left footprints or tracks, when there was no special advantage to be gained by so doing; and indeed how an insect with six sprawling feet could possibly walk along a line as fine as a hair, as, according to this theory, he must constantly have done.
J. G.

ARTICLES IN JOURNALS.*

Bot. Centralblatt (Nos. 9-12).-K. Müller, 'Zusammenstellung der Lebermoose aus dem Reichslande Elsass-Lothringen.'-(No.10). O. Kuntze, 'Spirodiscus, Ophiothrix, Ophiocytium: ein Nomenclatur-Beitrag.'-(No. 11). S. Rostowzew, ' Ein Laboratoriumstisch für das Mikroskopiren.'

Bot. Gazette (20 Feb.). - B. M. Duggar, 'Development of the pollen grain in Symplocarpus fotidus and Peltandra undulata, (2 plates).-W. D. Merrell, 'Life history of Silphium' (8 plates).E. J. Hill, 'Cerastium arvense var. oblongifolium.' - A. Nelson, Viola erectifolia, sp. n.

Bot. Magazine (Tokio: 20 Jan., received 20 March).-J. Matsumura, Owataria (n. gen., Guttiferæ). - K. Okamura, 'Microcladia \& Carpoblepharis' (1 plate). - T. Makino, 'Plantæ Japonenses' (Arundinaria quadrangularis) (cont.).

Bot. Zeitung (16 March).-F. Kuhla, 'Die Plasmaverbindungen bei Viscum album, mit Berücksichtigung des Siebröhrensystemes von Cucurbita Pepo' (1 pl.).

Bull. Torrey Bot. Club (17 Feb.).-J. B. Ellis \& B. M. Everhardt, 'New Fungi' (Echinodontium, gen. nov. (Hydnacece)). - T. Holm, Plants of Baffin's Land.-H.H. Rushy, S. American Plants (cont.).

[^12]- W. J. Beal, 'Monstrosities in Eragrostis \& Setaria.' - T. D. A. Cockerell, 'South Western Plants.'
- Gardeners' Chronicle (10 March). - Zygopetalum Ballii, sp.n. (fig. 47).

Jıurnal de Bıtanique (Feb. : received 14 March).-E. G. Camus, 'Plantes hybrides spontanées de la flore européenne' (cont.).P. Van Tieghem, 'Bixacées, Cochlospermacées, et Sphérosépalacées.'

Mémoires de l'Herb. Boissier (No. 7: 20 Feb.).-L. Chevallier, ' Notes sur la Flore du Sahara.' - (No. 8: 28 Feb.). A. Chabert, 'Les Rhinanthus des Alpes Maritimes.' - (No. 9: 2 March). E. Rosenstock, 'Aspidium libanoticum, sp. n.'

Nuovo Giorn. Bot. Ital. (Jan. : received 10 March).-J. Baldrati, 'Appunti di Cecidiologia' (6 plates). - L. Paolucci \& F. Cardinali, ' Secondo contributo alla Flora Marchigiana.'

Oesterr. Bot. Zeitschrift (March).—S. Provazek, 'Synedra hyalina, eine apochlorische Bacillarie.' - W. Figdor, ' Zur Anatomie des Stammes der Dammarpflanze.' - C. Rechinger, 'Ueber Lamium Orvala und L. Wettsteinii.'-A. Jenčič, 'Untersuchungen des Pollens hybrider Pflanzen' (concl.). - J. M. Polak, 'Untersuchungen über die Staminodien der Scrophulariaceen' (cont.). - J. Bornmüller, Sideritis curvidens Stapf.—J. B. Scholz, 'Studien über Chenopodium opulifolium' (cont.).

BOOK-NOTES, VEWS, \&c.

Prof. Contay Macmillan has published a handsome and interesting volume on Mimnesota Plant Life (Pioneer Press, St. Paul, Minnesota) which forms the third of the "Botanical Series" of the "Report of the Survey." The author has aimed at being at once popular and scientific, and although such a combination is proverbially difficult of attainment, he may be said to have succeeded. The attractiveness of the volume is largely due to the admirable illustrations, which, to the number of nearly two hundred and fifty, are scattered through the text. Many of these, from photographs, are of extreme beauty, and represent certain aspects of vegetation with an accuracy and suggestiveness which could be obtained by no other method; they almost reconcile us to the heavy shiny paper which is presumably necessary for their satisfactory reproduction. In this return to the life-history of plants we welcome a reaction from the domination of the "pot and pan" school, which at one time threatened to usurp the whole range of botanical literature; it is now coming to be understood that some knowledge of a plant as a whole is not necessarily incompatible with an intimate acquaintance with the minute structure of some fragment of its entity. It remains to be said that Prof. Macmillan has prodaced a book which may be read with pleasure and profit by the reader of ordinary intelligence; and to suggest that, in spite of the extensive literature connected with British botany, there is yet room for a volume which should do for these islands what is here done for Minnesota.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
of botanical illustration. He contended that photography was the only means by which the lines and masses of our flowering plantsas truly characteristic as the less subtle characters by means of which botanists group and arrange plants into orders, genera, and species-could be readily reproduced. He explained the various technical processes and apparatus necessary for successful plant photography, and alluded to the difficulties inseparable from the photography of plants in their natural habitats, \&c. His remarks were illustrated by means of lantern-slides.

At the meeting of the Linnean Society on March 1st, Mr. C. B. Clarke read a paper on "Botanic Nomenclature." He showed that the new rule adopted at Berlin-not to disturb names that had fifty years' use on the ground of priority alone-resulted in a practical uniformity with the system of naming adopted by Mr. Bentham and Sir J. D. Hooker. The Old World, he said, had thus reached a fair general agreement in nomenclature. The American botanists follow a new system which aims at finality on a so-called "nonshifting basis" in which the genus or species, as the case may be, is established on a type-specimen. Mr. Clarke's paper was devoted mainly to showing by selected instances that this system did not ensure finality: that the errors in determining what should be ranked as the type are enough to discredit the system; and the author commented on the disputed question whether a plant should be given the oldest specific name bestowed upon it, or the oldest specific name it bears in the genus in which it is now placed.

Most of the points raised in Mr. Clarke's paper have been dealt with from time to time in this Journal, and it is therefore hardly necessary to discuss them. It has been shown more than once, and indeed is generally recognized, that Bentham and Hooker had no fixed "system" of nomenclature, beyond a general notion of "convenience." It is news to us that the regarding as types of a genus the specimens on which it was based is a recent American invention. That in certain cases-e.g. the Linnean herbarium-the specimens do not correspond with the descriptions is well known, and receives exceptional treatment. But if the specimens which the author of a genus had before him when he established it are not to be regarded as types of that genus, it is difficult to see-and Mr. Clarke does not tell us-what is to take their place. To take one example: the diagnoses published by Robert Brown, admirable as they are, and amply sufficient when written, are often very brief, and do not suffice for differentiation from the very numerous species discovered since his time; it is only by consulting the ample series of specimens preserved in his herbarium (now in the national collection) that "finality on a non-shifting basis" can be attained.

The death is recorded at an advanced age of Dr. Adolfo Ernst, for many years Director of the National Museum at Carácas, Venezuela. He contributed several papers to the earlier volumes of this Journal and to other botanical and natural history periodicals.

The Gardeners' Chronicle prints an account of a lecture recently delivered by Professor Johnson before the Royal Dublin Society which seems sufficiently remarkable to dese rve reproduction. The subject was " Some Aspects of Modern Botany." "He pointed out that scientific botany was from several standpoints its least scientific aspect, and the classification of the British school of botanists was less scientific than their co-workers the Germans. From the point of view of the field botanist it was also dissimilar in which they found themselves. There is some hope that order may finally be expected owing to the labours of the editors of the Index Kewensis, \&c. The subject of vegetable physiology was spoken to at length, and the early labours of R. Brown enumerated. Brown was one of those who helped to lay in Great Britain the foundation of modern vegetable physiology, and his labours in systematic botany were by no means meagre. In speaking of Tobacco culture, the Professor said that heavy nitrogenous manuring injured the flavour of Tobacco."

Mr. R. Lloyd Praeger hopes to publish, early in 1901, a work in which he proposes to show the distribution of flowering plants in Ireland in the forty divisions (counties or portions of counties) into which he divided the country in a paper published in 1896 in this Journal. The work is now sufficiently far advanced to show the deficiencies in each of the county lists. A number of common plants still remain unrecorded from all but a few counties, and plants of frequent occurrence are still wanted from almost every county. He will be grateful for any help towards the completion of the county lists, either with unpublished notes of plants observed in any part of Ireland, or by searching in any county for plants still unrecorded therefrom ; and will furnısh lists of such plants for any county. Information should be addressed to him at the National Library of Ireland, Dublin.

Dr. Gy de Istavanffi, Professor of Botany in the Royal University of Hungary, is publishing, under the title "Fungorum in Pannonium observatum Brevis Historia a Carolo Clusio Abrebate conscripta," a reissue of the water-colour drawings of fungi which were painted for Clusius, and printed by him with the text in 1601. The original plates are eighty-seven in number, and are now in the library of the State University of Leyden. The work is to be issued in ten parts, three of which have appeared ; it is of great historical interest, and is beautifully executed. The fungi are divided into two series, of esculent and non-esculent genera; the local names, with details of size, colour, \&c., are given, and should be of great aid in determining his species; but it is to be hoped that Professor Istavanffi will add a good index with the modern names.

Mr. W. A. Clarke has in the press a revised edition of his " First Records of British Flowering Plants."

The number just to hand of the Anales del Instituto Médico Nacional of Mexico (vol. iv. no. 7, dated July, 1899) contains an interesting article on "El Herbario de Berlandier," with an account of his travels, by Dr. G. V. Alcocer, the keeper of the herbarium of the Institute.

The Rev. E. F. Linton has now completed the manuscript of a Flora of Bournemouth, which he hopes to issue before the summer. Taking the same radius, of twelve miles, which the late Mr. T. R. A. Briggs adopted for his admirable Flora of Plymouth, Mr. Linton has divided the district so formed into five divisions, arranged as far as may be according to the watersheds. In order to fall in with the numbering of the Flora of Hampshire, parts of the first three districts of which lie within the twelve-mile radius, the Stour watershed is taken to form Div. 1, with a Dorset and a Hants subdivision; then Div. 2 is the south portion of the Avon watershed; and Div. 3 corresponds with a small part of Distr. III. of Fl. Hants. The remainder of the Bournemouth district, which lies in Dorset, embraces the whole of Poole Harbour and the best part of the Isle of Purbeck, and is separated into Div. 4 and Div. 5 by the line of the main street (running east and west) of Wareham, a clear and scientific boundary. The usual topics are discussed in introductory papers, and the Hloras of the two counties concerned are compared.

Edward Joseph Lowe, who was born at Highfield House, Nottinghamshire, on Nov. 11, 1825, died at Shirenewton Hall, near Chepstow, on the 10th of last month. He was interested in numerous branches of science, more especially in astronomy and botany, and was a Fellow of many scientific societies, including the Royal Society, to which he was elected in 1867, and the Linnean, which he joined in 1857. His principal work among plants was in the direction of hybridization, in which his experiments began in 1842. They were made on various groups of flowering plantsfuchsias, pansies, cactuses, and other popular florists' flowers; but the most important were those connected with the occurrence of hybridization among ferns-a discovery which, when described by Lowe at the meeting of the British Association in 1867, was generally discredited. He embodied the results of his numerous experiments in his book entitled Fern Growing, published in 1895, the frontispiece to which is an admirable portrait of the author. His collection of ferns was unique in the number and variety of the forms which it contained. Among Lowe's other publications may be mentioned Ferns, British and Exotic, a work in eight volumes (1855-60, reissued in 1872), in which his object was "to describe as faithfully as he was able the ferns cultivated in the gardens, greenhouses, and stoves of Great Britain," leaving the "deep study of the subject" to Hooker and Moore; New and Rave Ferns, "an addenda (sic) to the eight volumes," appeared in 1862. Two volumes on Our Native Ferns, noteworthy for the number of forms figured, appeared in 1867 ; and a Natural History of British Grasses in 1858.

The first part has been issued of Genera Siphonogamarum ad Systema Englerianum conscripta, by Drs. C. G. de Dalla Torre and H. Harms: we hope to notice it later.

Correction.-On p. 78 of our last issue, line 22 from top, the words "twenty-four in " should be inserted before "my own."

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
interioribus oblongis 0.5 cm . long. lamina deltoideo-rotundata varie incisa vel lacerata onustis, corollæ in toto vix 1.0 cm . long. extus papilloso-puberulæ lohis 0.3 cm . long. lineari-oblongis apice extus echinulatis, achæniis pallide brunneis, 0.2 cm . long., 0.14 cm . lat., pappi setis $0 \cdot 2-0 \cdot 25 \mathrm{~cm}$. long., albis.

Hab. Somaliland, Upper Sheik, 1897; Mrs. Lort Phillips (Herb. Mus. Brit.).

The affinity of the genus here proposed is undoubtedly with Bothriocline, which, with similar achenes, has yet a different inflorescence, involucre, and pappus. As regards its involucre, Stephanolepis shows an approach towards Centratherum, but in achene and pappus the two are quite different. The position proposed for Stephanolepis is next to Bothriocline.

The pappus is so extremely caducous as to render the exact numbering of the setæ a matter of great difficulty.

Vernonia (§ Lepidella) Phillipsiæ, sp. nov. Suffructicosa, ramosa, foliis parvis obovatis vel obovato-oblongis obtusis vel acutis integris vel utrinque semel dentato-lobulatis fere omnino glabris, capitulis submediocribus longipedunculatis campanulatis 10 -flosculosis apicem versus sparsis, involucri circa 6 -serialis phyllis extimis minimis ovato-lanceolatis una cum intermediis ovatis erecto-patentibus intimis ovato-oblongis intermedia bene excedentibus omnibus spinuloso-acuminatis (intimis potius mucronatis) et sursum purpureis et puberulis, achæniis hispidulis obscure 10 -costatis, pappi straminei squamis lanceolatis abbreviatis setis scabriusculis.

Hab. Somaliland, Wagga Mountains, and above The Upper Sheik, 1897 ; Mrs. Loıt Phillips (Herb. Mus. Brit.).

Folia circa 0.8 cm . long. et 0.4 cm . lat. (summa vero minora), coriaceo-membranacea, margine saltem in sicco revoluta, creberrime nigro-glandulosa. Capitula 1.0 cm . long., 0.8 cm . lat. Pedunculi $2 \cdot 0-3.5 \mathrm{~cm}$. long. Involucri phylla extima circa 0.2 cm . long.; intermedia circa 0.4 cm . et intima 0.6 cm . long. Flosculi 0.8 cm . long. Achænia 0.3 cm . long. Pappi squamæ 0.06 cm . long.; setæ achæniis duplo longiores.

This is very distinct from any species hitherto described. The small often lobulate leaves, the sparse heads on long peduncles, and the very short outer involucral scales are among its distinctive features.

Vernonia (§ Cyanopis) Taylorii, sp. nov. Fruticosa, sparsim ramosa, ramulis subteretibus minute pubescentibus, foliis brevipetiolatis oblongo-obovatis acutis crenato-dentatis basi cuneatis vel subpanduratis vel biauriculatis supra scabriusculis subtus albide vel subfulvide tomentellis, capitulis parvis circa 8 -flosculosis in paniculis terminalibus sat densis minute pubescentibus folia subæquantibus digestis, involucri anguste campanulati circa 6 -serialis phyllis (intimis lanceolatis elongatis exemptis) ovato-oblongis obtuse acutis laxe adpressis membranaceis ananeoso-ciliolatis, achæniis subturbinatis 4 -costatis puberulis, pappi fulvidi setis exterioribus paucis interioribus scabridis.

Hab. Rabai Hills, Mombasa, 1885; Rev. W. E. Taylor (Herb. Mus. Brit.).

Folia modice $4 \cdot 0-6 \cdot 0 \mathrm{~cm}$ long., et 2.5 cm . lat., minora vero exstant nequaquam ultra 2.0 cm . long., microscopice glandulosa, membranacea; petioli circa 0.3 cm . long., pubescentes. Paniculi $4.0-5.0 \mathrm{~cm}$. diam. Capitula 0.8 cm . long., 0.35 cm . lat. Involucri 0.45 cm . long. phylla extima 0.13 cm . long.; intermedia 0.25 cm . et intima 0.35 cm . long., phylla omnia aliquantulo carinata. Flosculi 0.7 cm . long. Achænia $0 \cdot 2-0.25 \mathrm{~cm}$. long. Pappi setæ interiores 0.6 cm . long.

The crenate-dentate leaves and close panicles of small heads, together with the tawny pappus, are the chief characteristics of this species.

Vernonia (§ Cyanopis) Bellinghamii, sp. nov. Fruticosa ramulis sat validis adpresse et subfulvide tomentellis maturitate glabris necnon eximie lenticelliferis, foliis breviter petiolatis ellipticis obtusis vel obtusissimis supra fere glabris et arcte reticulatovenosis subtus tomentosis, paniculis abbreviatis sc. foliis brevioribus dense subumbellatis, capitulis anguste cylindricis 4 -flosculosis, involucri circa 6 -serialis phyllis ovatis obtusis vel obtuse acutis arcte applicatis subscariosis araneoso-ciliolatis, achæniis glabris 3 -costatis, pappi straminei setis exterioribus paucis interioribus scabridis.

Hab. Lukoma, Lake Nyassa, 1887; Wm. Bellingham (Herb. Mus. Brit.): Nyassaland, 1891; Buchanan (No. 1136 in Herbb. Mus. Brit. \& Kew.-no. 1124 in Herb. Kew.) : Portuguese East Africa; Rev. Archdeacon Johnson (No. 48 in Herb. Kew.).

Folia usque 7.0 cm . long. (modice vero $4 \cdot 0-5.0 \mathrm{~cm}$. long., et exstant multo minora) et $2.5-3.5 \mathrm{~cm}$. lat., basi parum obliqua, margine minutissime serrulata vel integerrima, supra in sicco viridescentia. Paniculi $2 \cdot 0-2.5 \mathrm{~cm}$. diam. Capitula 1.2 cm . long. Involucri 0.8 cm . long. vix 0.3 cm . lat. phylla extima 0.15 cm ., intermedia 0.3 cm ., intima 0.6 cm . long. Flosculi 0.6 cm . long. Achænia turbinata, 0.25 cm . long., sursum 0.1 cm . lat.

Easily recognized by reason of the elliptical leaves tomentose below and the subumbellate masses of narrowly cylindrical 4 -flowered capitula.

Vernonia (§ Cyanopis) meiocalyx, sp. nov. Fruticosa, caule gracili tereti minute tomentello, foliis amplis ovato-cordatis acuminatis margine acute dentatis denticulatisve basi in petiolum satis longum subito decurrentibus supra fere glabris subtus pubescentibus tenuiter membranaceis, capitulis parvis dense paniculatis circa 10 flosculosis, involucri abbreviati 4 -serialis phyllis exterioribus linearilanceolatis interioribus ovato-lanceolatis omnibus breviter acuminatis dorso carinulatis margine araneoso-ciliolatis, achæniis cylindricis 6 -costatis costis pubescentibus.

Hab. British East Africa, Cantalla and Hadda, also Elámo (4500 ft.$), 1898$; Lord Delamere (Herb. Mus. Brit.).

Caulis 0.2 cm . diam., ætate haud calvescens. Folia matura $10 \cdot 0-12.0 \mathrm{~cm}$. long., $5 \cdot 0-8 \cdot 0 \mathrm{~cm}$ lat.; petioli $1 \cdot 5-2.0 \mathrm{~cm}$. long., minute tomentelli. Paniculi $5 \cdot 0-6.0 \mathrm{~cm}$. diam. Involucri 0.3 cm . long. phylla viridescenti-subscariosa, exteriora 0.17 cm . long., intima 0.3 cm . long. et 0.1 cm . lat. Corolla 0.7 cm . long. Achænia
0.15 cm . long., 0.06 cm . lat. Pappi setæ exteriores paucæ, interiores 0.4 cm . long., scabriusculæ, purpureæ vel albescentes.

In external appearance this is very like V. brachycalyx 0 . Hoffm., which, besides being a member of \S Lepidella, has different leaves, somewhat larger heads, with broader involucral scales, and longer, turbinate, few-ribbed, nearly glabrous achenes. Dr. Hoffmann refers to his V. brachycalyx Hildebrandt's No. 2466, a plant with its outer pappus of setæ not of scales, and therefore not referable to § Lepidella. This is exceedingly near V.meiocalyx, but its leaves are much smaller and differently shaped, the involucral scales are somewhat broader, and the turbinate achenes are more like those of V. brachycalyx. I propose to distinguish this as V. Hoffimanniana.

Pteronia decumbens Banks MSS., sp. nov. Suffruticosa?, abundanter ramosa, glutinosa, foliis oppositis rigidis lineari-subulatis obtusis erecto-patentibus basi vaginautibus, capitulis terminalibus subsessilibus solitariis ternisve anguste cylindricis 4 flosculosis, involucri phyllis circa 7 -seriatis extimis abbreviatis una cum intermediis ovatis interioribus oblongis intimis vero linearilanceolatis omnibus obtusis arcte adpressis firmis nequaquam scariosis, achæniis dense villosis.

Hab. Cape Colony; Francis Masson (Herb. Mus. Brit.): Touw River Railway Station, 1885, at 2500 ft . of elevation; Bolus (Herb. Kew.).

Folia 0.7 cm . long. (summa vero breviora), basi vaginante 0.15 cm . sursum $0 \cdot 1 \mathrm{~cm}$. lat., facie superiori plana vel leviter concava inferiori rotunda, obscure striata. Capitula 1.0 cm . long., 0.35 cm . lat. Involucri phylla extima 0.3 cm . long., 0.2 cm . lat.; intermedia circa 0.6 cm . et intima 0.9 cm . long., omnia araneoso-ciliolata et in longitudinem (saltem siccitate) pluristriata. Achænia turbinata, 0.2 cm . long. Pappi setæ vix usque 0.6 cm . long., basi ipsa concretæ.

Nearest P. fasciculata Linn. fil., but with many peculiar features, such as the much shorter and narrower leaves, the smaller narrower not-fascicled heads, the smaller obtuse involucral scales, \&c.

Gnaphalium rosulatum, sp. nov. Caule erecto simplici humili vel elongato albide lanato, foliss radicalibus sessilibus arcte rosulatis late lineari-spathulatis obtusis supra glabrıs viridibusque subtus arcte albo-lanatis caulinis his similibus nisi linearibus, capitulorum cymis terminalibus subsphæroideis, capitulis oblongis obtusis lanatis vix 30 -flosculosis flosculis 5 bisexualibus, involucri phyllis lanceolatis interioribus lamina acuta alba coronatis, achæniis compressis.

Hab. Sierra Nevada, Santa Marta, New Grenada; F. A. A. Simons, 1880 (Herb. Mus. Brit.).

Exempll. majorum caulis usque ad 17.0 cm ., minorum nonnumquam ad 1.5 cm . miniatus. Folia radıcalia $1 \cdot 5-2.0 \mathrm{~cm}$. long., $0 \cdot 3-$ 0.5 cm . lat. Cymæ 1.5 cm . diam. Capitula 0.6 cm . long., 0.25 cm . lat. Involucri phylla interiora 0.4 cm . long. Flosculi vix 0.3 cm . long. Achænia 0.1 cm . long., glabra; pappi setæ breviter barbellatæ, 0.3 cm . long.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

pinnatifid-lobulate leaves, long one-headed peduncles, large heads, and the acuminate corolla-lobes of the disc-florets are the chief characters by which this plant can be recognized.

Grantia flabellata, sp. nov. Caule abbreviato crassiusculo superne sparsim ramoso oligocephalo, foliis inferioribus subrosulatim congestis longe flabellato-cuneatis apice 7-dentatis laxe araneoso-lanatis superioribus late oblanceolatis apice 3-4-dentatis albide pilosis, pedunculis crassis folia paullo excedentibus vel subæquantibus, capitulis radiatis, involucri phyllis exterioribus foliis subsimilibus late lanceolatis obtusis viridibus capitula paullo excedentibus interioribus lanceolatis acuminatis disco subæquilongis sub lente minute ciliolatis ceterum glabris, ligulis discum paullo excedentibus, achæniis basi et apice hirtulis, pappi interioris setis 10 achæniis 4 -plo longioribus.

Hab. Oman, Arabia, 1898; Lieut.-Col. A.S. G. Jayakar (Herb. Mus. Brit.).

Tota planta circa 5 cm . alt. Folia inferiora 2.0 cm . long., basi 0.2 cm . sub apice usque 1.2 cm . lat., egregie nervosa; superiora modice circa 3.0 cm . long., summa vero breviora. Pedunculi $2 \cdot 0-$ 3.5 cm . long. Capitula 2.5 cm . diam. Involucri phylla exteriora 1.3 cm . et interiora 1.0 cm . long., hæc sursum decoloria. Achænia 0.2 cm . long., pappo 0.8 cm . long. coronata.

Nearest to G. arachnoidea Boiss., from which it can be easily distinguished by reason of its lowly habit, its broadly flabellate several-toothed lower leaves, its differently shaped upper leaves, its broader and shorter outer and microscopically ciliate instead of densely woolly inner involucral leaves, and its pappus with ten (not five) interior setæ.

Phæocephalus

Compositarum e tribu Anthemidearum genus novum (tab. 409).
Capitula homogama, discoidea, pauci(4-8)-flosculosa, flosculis omnibus bisexualibus, 1-2 fertilibus reliquis sterilibus. Involucrum anguste cylindricum, phyllis 5 , uniseriatis, arcte contiguis, inter se liberis, concavis, inappendiculatis, dorso dense fulvidovillosis, cartilagineis. Receptaculum parvum, planum, nudum. Corollæ actinomorphæ tubulosæ limbus 5 -lobus. Antheræ basi obtusæ, integræ, apice lamina lanceolata anetæ. Styli rami applanati, apice truncati et penicillati. Achænia 3-4-gono-cylindrica, utrinque angustata, in longitudinem striata. Pappus brevis, uniseriatus, e paleis paucis laceratis cupulam mentientibus compositus. -Fruticulus sparsim ramosus. Rami dense foliati. Folia alterna, integra vel trifida, rigidula. Capitula parva, 2 -bracteolata, in glomerulam globosam terminalem dense aggregata. Achænia glabra.

Phæocephalus gnidioides, sp. unica. Ramis rigidis dense fulvido-villosis demum glabris, foliis sessilibus lineari-oblanceolatis mucronatis villosis mox supra fere glabris subtus araneosis minute glandulosis $0 \cdot 7-1 \cdot 2 \mathrm{~cm}$. long. et $0 \cdot 2-0 \cdot 3 \mathrm{~cm}$. lat. obscure uninerviis, glomerulis 2.5 cm . diam., capitulis in toto paullo ultra 1.0 cm . long., bracteohs linearibus villosulis circa 0.6 cm . long.,
involucri phyllis lineari-oblongis obtusis intus politis 0.8 cm . long., corollæ verisimiliter albæ 0.6 cm . long. tubo sursum amplificato puberulo, filamentis sursum dilatatis, achæniis 0.4 cm . long. pallide fulvidis, pappo 0.1 cm . long.

Hab. Cape Colony ; Niven (Herb. Mus. Brit.).
This is a very remarkable plant, and looks at first sight so little like a Composite that even a botanist might be excused for referring it elsewhere pending dissection. The most singular point about it is the uniseriate involucre: in some other respects it reminds one of Inuloideous genera such as Metalasia and Disparago, but the tailless anthers forbid its reference to the Inuloidec. In this latter character, as also in the nature of the style-arms, it is a typical Anthemidea, and this affinity is further shown by the leaves, which are exactly like those of many species of Athanasia, in the neighbourhood of which genus I venture to suggest that it should be placed.

Dr. Rand’s Rhodesian Composite.

The collections made in Rhodesia in 1897 and 1898 by Dr. R. F. Rand, F.L.S., and presented to the British Museum, contain the following Composita :-

Vernonia fastigiata O. \& H. Buluwayo, early June and May. Nos. 277 \& 352
V. gerberaformis O. \& H. Salisbury, Sept. No. 626.
V. glabra Vatke. Buluwayo, May. No. 353.
V. glabra Vatke, var. Salisbury, Sept. No. 622.
V. humilis C. H. Wright. Salisbury, late Dec. and May. Nos. 153 \& 492.
V. Kraussii Sch. Bip. Buluwayo, Dec.; Salisbury, May. Nos. $150 \& 624$.
V. Melleri O. \& H. Salisbury, Aug. No. 494.
V. Poskeana Vatke \& Hildebr. var. chlorolepis Steetz. Buluwayo, May. No. 344.
V. Randii S. Moore. Salisbury, July. No. 495.
V. Tenoreana O. \& H. Salisbury, July. No. 497.

Detris fascicularis (Felicia fascicularis DC.). Buluwayo, May. No. 347.
D. simulans (Aster simulans Harv.). Salisbury, Aug. No. 491.
D. tenella (Felicia tenella Nees). Buluwayo, early Jan. No. 135.

Nidorella resedifolia DC. Buluwayo, Dec. No. 137.
Erigeron canadense L. Salisbury, Aug. No. 481.
Conyza variegata Sch. Bip. Buluwayo, May. No. 357.
Psiadia arabica Jaub. \& Spach. Buluwayo, Jan. No. 138.
Laggera purpurascens Sch. Bip. Salisbury, July and Aug. Nos. 480 \& 500.

Blumea gariepina DC. Buluwayo, Dec. No. 278.
Epaltes gariepina Steetz. Buluwayo, May. No. 354.
Spharanthus peduncularis DC. Buluwayo, May. No. 355.
Gnaphalium luteo-album L. Buluwayo and Salisbury, Dec. Nos. $136 \& 151$,

Helichrysum caspititium Sond. Buluwayo, early Jan. No. 100.
H. declinatum Less. Salisbury, late Dec.; Buluwayo, May. Nos. 152 \& 351.
H. Kraussii Sch. Bip. Salisbury, July. No. 531.
H. leptolepis DC. Buluwayo, May. No. 348.
H. setosum Harv. Salisbury, July. No. 499.

Athrixia elata Sond. Valley of Mazoe River, Salisbury district, Sept. No. 484.

Pulicaria capensis DC. Buluwayo, May. No. 356.
Geigeria protensa Harv. var. pubigera S. Moore. Buluwayo, Dec. No. 104.
G. pubescens S. Moore. Buluwayo, May. No. 345.
G. Randii S. Moore. Buluwayo, May. No. 346.

Wedelia diversipapposa S. Moore. Buluwayo, Jan. No. 111.
Bidens pilosa L. Buluwayo, May. No. 340.
Chrysanthellum procumbens Pers. Buluwayo, early Jan. No. 148.
Artemisia afra Jacq. Salisbury, July. No. 486.
Gynura cernua Benth. Salisbury, Aug. No. 493.
Senecio lasiorhizus DC. Buluwayo, Dec. No. 139.
S. lasiorhizus DC., var. Salisbury, Sept. No. 628.
S. latifolius DC. Bulumayo, Dec. No. 140.
S. Randii S. Moore. Salisbury, Sept. No. 625.

Euryops Osteospermum S. Moore. Salisbury, July. No. 498.
E. Ostcospermuin S. Moore, var. parvifolia. Salisbury, late Dec. No. 109.

Othonna ambifaria S. Moore. Near Shashi River, Jan. No. 110.
Osteospermum herbaceum L. fil. Salisbury, Aug. No. 489.
O. moniliferum L., var. Salisbury, Aug. No. 487.
O. muricatum E. Mey. Salisbury, Aug. No. 389.

Tripteris amplexicaulis Less. Salisbury, Sept. No. 485.
Haplocarpha scaposa Harv. Buluwayo, Dec. No. 99.
Gazania Krebsiana Less. var. hispidula Harv. Salisbury, July.
No. 490.
Crocodilodes Zeyheri (Berkheya Zeyheri O. \& H.). Buluwayo, early Jan. No. 113.

Berkheyopsis integrifolia Volkens. Buluwayo, Dec. No. 133.
Centaurea rhizocephala O. \& H., var. Salisbury, Aug. No. 482.
Dicoma anomala Sond. Buluwayo, June. No. 486.
Gerbera abyssinica Sch. Bip. Salisbury, Sept. No. 623.
G. piloselloides Cass. Salisbury, Dec. No. 112.

Lactuca capensis Thunb. Buluwayo, May; Salisbury, July. Nos. 349 \& 488.

Sonchus Elliotianus Hiern. Salisbury, Sept. No. 483.
S. macer S. Moore. Salisbury, Sept. No. 627.
(To be continued.)

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
border much widened below, and formed of very narrow cells with pitted walls; auricles very small.

Fascicles according to the habitat, sometimes distant, sometimes close together, each of $3-4$ branches, of which the two stronger are spreading, the others pressed against the stem; spreading branches usually thin, long, pointed and arcuate, more rarely shorter and anocladous or orthocladous.

Branch-leaves imbricate or with recurved to squarrose apices; ovate-lanceolate, nariowly bordered, with margin incurved above; apex rounded-truncate and toothed, longitudinally plicate in the middle above the base. Hyaline cells with remarkably distant fibrillar rings on the inner surface in the upper half of the leaf; especially near the lateral margins with numerous large unringed pores, which are usually placed between the fibrils; on the outer surface with more numerous pores, which become gradually larger from the apex to the base of the leaf; the uppermost strongly ringed, the middle ones with weaker border, and the lowermost nonringed and in the middle of the cell-wall, while the others are semi-elliptical and placed on the commissures; the inner and outer pores at times cover one other, so that in the upper half of the leaf, especially near the margins, complete perforation of the cell ensues; cell-membranes with numerous plica. Pore-formation in the leaves of the pendulous branches similar, but on the outer side near the apex also with large cavities. Retort-cells of the branch-cortex without recurved neck, with a large opening at the apex, and frequently also with a small pore in the lower part.

Chloroplyllose cells in section isosceles-trapezoid, inserted between the hyaline cells on the inner surface, and free on both surfaces; hyaline cells more strongly convex on the outer surface.

Monoicous; male branches in the antheridium-bearing part clavate, at first yellowish, later light brown, never red; perigonial bracts ovate, suddenly produced above into a short truncate and toothed apex; pore-formation as in the other branch-leaves, in the middle part above the base almost always non-fibrillose and non-porose. Perichætial bracts large, lingulate-spatulate, composed in the lower part of elongated rectangular pitted chlorophyllose cells only, in the upper part with both kinds of cells; hyaline cells at the apex at times large, rhomboid, several times septate and with reabsorbed membrane, and hence the apex itself is often fimbriate; usually, however, the apical part of the leaf is cucullate, and is then composed of small somewhat remarkable green cells only; always nonfibrillose and non-porose ; margin very wide; auricles small; capsule large, urceolate when empty, pseudopodium up to 4 cm . long. Spores yellow-brown, smooth, $25-30 \mu$ in diameter.

Hab. Shady swamps in forests, swampy margins of lakes, alderswamps, clay-pits, \&c., in the plains and lowland regions; much less common in mountainous regions.
S. fimbriatum is a comparatively but little variable species, and Warnstorf at present recognizes three main varieties, viz.:-
(1) Var. robustum Braithw. in Sphagn. Brit. Exsicc. No. 44 (1877). (Syn. S. squarrosum var. laxum Braithw. in The Sphagnacea,

61, 1880.) Plants very robust, resembling in habit a robust S. Girgensohnii. Tufts pale and lax. Stem-leaves very large, otherwise normal. Pores in the stem-cortex very strongly developed. Fascicles, according to the wetter or drier habitat, more widely separated, or nearer together; the spreading branches even immediately below the capitulum very long (to 3 cm .) and recurved ; cortical cells of branches with scattered pores; branch-leaves very large, imbricate or with the apex more or less squarrose. Of this variety the var. flagellaceum Schlieph. (in Irmischia, 1882) (syn. var. flagelliforme Warnst. in Flora, 1882, 208) is a very lax long-branched and pale form. This form I have found near Harlech, Merionethshire.
(2) Var. tenue Grav. apud Warnst. in Bot. Gaz. 1890, 128. Tufts usually lax, green or whitish green; plants graceful and slender, with long and slender spreading branches. Of this variety the var. squarrosulum H. Müll. in Westph. Laubm. No. 241, is a shorter form with squarrose leaves; the var. submersum Roell in Flora, 1886, 135, is a submerged or floating form (Islay, Scotland, Gilmour, 1898); the var. compactum Warnst. in Die Europäische Torfm. 115 (1881) is a densely tufted form ; and the var. strictum Grav. is a form with upright spreading branches.
(3) Var. arcticum Jens. Tufts firm, compact, whitish. Stem with short closely arranged generally erect and stouter branches. Leaves shorter and closely imbricate.
2. S. Girgensounir Russ. Beitr. 46 (1865).

Syn. S. acutifolium var. tenue Bryol. Germ. i. 22 (1823). S. fimbriatum var. majus A. Braun in Herb.; var. strictum Lindb. Torfm. Byggn. 138 (1862). S. strictum Lindb. in Act. Soc. Sc. Fenn. x. 263 (1872).

Exsicc. Braithw. Sphagn. Brit. Exs. No. $42 a$ a
Delicate forms resembling S. fimbriatum, the more robust ones resembling the green or pale forms of S. Russowii. Tufts looser or denser, higher or lower, greyish-green, bluish-green, yellow-green, straw-coloured, brown or pale throughout. Plants never red, when dry usually somewhat rigid.

Wood-cylinder always yellowish or pale, never red.
Stem-cortex of 3-4, rarely 2-3 layers; superficial cells with 1, rarely with 2-3 generally ringed pores each; cross-walls of the inner cells likewise porose.

Stem-leaves generally of medium size, rarely small or large, with slightly undulate margins, above not or very rarely slightly widened, hence lingulate to lingulate-spatulate, generally fimbriate on the whole broadly-rounded apex; border broad, becoming wider near the base and formed of very narrow pitted cells, frequently pale brown, never reddish; the upper hyaline cells almost quadrate or broadly rhomboid, very seldom divided, with reabsorbed membrane; fibrils and scattered pores very rare in the middle of the leaf, less rare near the lateral margins, and here also at times with pseudofibrils; usually, however, without any fibrils.

Branches 3-5 in a fascicle, the 2-3 stronger, spreading, usually elongated and drepanocladous, or shorter and but little bent outwards, anocladous or orthocladous. Retort-cells of the branch-
cortex with not or only slightly recurved neck, at the apex with a single large opening, and frequently also with an unringed pore in the middle. Branch-leaves in form and cell-structure similar to S. fimbriatum, lanceolate, toothed at the rounded-truncate apex, margin incurved above, narrowly bordered, in the middle of the leaf above the base with a longitudinal fold, hyaline cells with membrane-folds and distant fibrillar rings. Pore-formation of the leaves of the corresponding branches as in S. fimbriatum.

Chlorophyllose cells in section shortly isosceles-trapezoid, inserted between the hyaline cells on the leaf inner surface, and free on both surfaces; hyaline cells more convex on the outer surface of the leaf.

Dioicous; male brauches thickened in the antheridium-bearing part, light brown, never red. Perigonial bracts somewhat broader and shorter than the leaves of the sterile branches, above produced into a short toothed apex having the margin inrolled, in the lower part non-fibrillose and non-porose. Upper (inner) perichætial bracts large, broadly oval, produced into a narrowed broadly truncate and slightly emarginate apex, border wide; the bracts in the lower part formed only of long rectangular chlorophyllose cells, in the middle and upper parts with both kinds of cells, and at the apex itself again of usually small vermicular chlorophyllose cells only; always without fibrils or pores. Auricles very small. Capsule large, on a longer or shorter pseudopodium. Spores yellow-brown, smooth. 30-33 μ. Fruit very rare.

Hab. Damp marshy fir-woods; rare in the plains, but one of the commonest species in mountainous and alpine regions.

Distrib. Scandinavia, Finland, Scotland, England, Germany, Belgium, Asia, North America.
S. Girgensohnii is most closely related to S. Russowii; but Russow, after having examined at least one thousand specimens of the former and five hundred of the latter, states that in no case was there any difficulty in determining to which species any specimen should be referred, and was convinced that they constitute two good species. The chief distinguishing characters are-(1) the colour; (2) the number, and (3) the size of the pores on the stem-cortex; (4) the fibrils and the plicæ in the hyaline cells of the stem-leaves; and (5) the division of the hyaline cells.

About thirty varieties of S. Girgensohnii have been described, of which the following are the most important:-
(1) Var. corypheum Russ. in Warnstorf, Europ. Torfm. ser. i. no. 26 (1888). Plants $15-50 \mathrm{~cm}$. high, generally vivid green, light or dark, in the lower part frequently dirty rust-colour to almost black. Capitulum generally beautifully stellate, more or less compact, either umbrella-like or flat. Branches of the capitulum generally thickened at the end, frequently much so, more or less obtuse. Generally meso-, rarely macro- or brachy-, homalo-, drepano-, or cato-cladous, never ortho- or ano-cladous, frequently eurycladous. In loose deep tufts in very damp or generally quite wet situations in pine or mixed forests. Stem-leaves of medium size, generally brachyphyllous, as broad or broader than long, rarely a little longer to $1 \frac{1}{2}$ times as long as wide; generally from the broad

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

macro-cladous, generally drepanocladous, sometimes homalo- and cato-cladous or eury- and dasy-cladous; in somewhat extended tufts in low-lying damp grassy places in alder and birch swamps. Stem-leaves of medium size to small, not rarely with pseudo-fibrils; hemi-isophyllous forms not rare.
(9) Var. squarrosulum Russ. in Archiv. Naturk. Dorpat. Biol. vii. 1870, 130. Plants very small; branch-leaves recurved at apex; branches shorter, only slightly curved.
(10) Var. stachyodes Russ. in Warnstorf, Europ. Torfm. ser. i. no. 50 (1888). Stem-leaves of middle size to large, frequently twice as long as wide. The whole plant spike-like, of the same width from the base to the apex. Capitulum not broader than the rest of the plant, comal branches generally very regularly radiating; generally only green or yellow-green at the top, below yellowish or whitish; brachy- to meso-, more rarely macro-cladous; homalo-, drepano-, ano-, and ortho-cladous, often delicate and dasycladous. Small to very robust, forming cushion-like masses in swamps and grassy places in woods.
(11) Var. xerophilum Russ. in Archiv Naturk. Liv- Est- \& Kurl. x. 4, p. 503 (1894). Stem-leaves small to medium size, lingulate-rectangular, very broadly truncate, at times wider at the fimbriate apex than at the base. Capitulum not marked, generally dasycladous; greyish or yellowish green, generally yellow to brown. In relatively dry places, and most of the alpine forms of the species belong here. Sometimes compact and homalo-, ano-, or orthocladous; sometimes delicate, soft, and leptocladous; sometimes robust, rigid, and pachycladous.
3. S. Russowir Warnst. in Hedwigia, 1886, 225.

Syn. S. acutifolium var. robustum Russ. Beitr. 39 (1865). S. robustum. Roell in System. der Torfm. in Flora, 1886 (extens.).

Exsicc. Braithw. Sphagn. Brit. Exs. $42 b$, pl. ${ }^{2}$.
Habit and colour very varied. Plants generally stately and robust, resembling in size and appearance S. Girgensohnii. Tufts looser and deeper or denser and shorter, pale yellowish-green, green, brownish-yellow, violet-, rose-, or purple-red.

Wood-cylinder usually red, more rarely pale.
Stem-cortex irregularly $2-3$ - or 3-4-layered; superficial cells with irregularly scattered small or large non-bordered pores; inner cortical cells with numerous small pores.

Stem-leaves generally large or very large, rarely of medium size or small, wide-lingulate, with somewhat undulate lateral margins, only in the middle of the broad rounded apex toothed or somewhat fimbriate; leaf-border much widened below, the hyaline cells in the upper part of the leaf large, broadly rhomboid, usually non-septate, but with delicate membrane-folds, all the hyaline cells with mem-brane-thinnings, which rarely pass over into actual pores near the margin, towards the apex; generally without fibrils and pores, rarely fibrose below the apex.

Fascicles with 4-5 branches, distant or closely approached; 2-3 stronger branches spreading, recurved and homalocladous, or
anocladous, sometimes longer, sometimes shorter, the pendent branches very long and closely adpressed to the stem. Retortcells of the cortex with the neck but little recurved, and having always a large pore at the apex, and frequently also another in the middle.

Brauch-leaves closely or loosely imbricate, usually with the apex somewhat recurved, more rarely almost squarrose, very rarely almost secund, lanceolate, narrowly bordered, margin incurved above; toothed on the straight- or round-truncate apex; with 2-3 plicæ above the base; the hyaline cells with membrane-folds; pore-formation on both surfaces of the leaf as in S. fimbriatum.

Chlorophyllose cells in section isosceles-triangular to isoscelestrapezoid, inserted between the hyaline cells on the inner surface of the leaf, and here free; the chlorophyllose cells are either enclosed by the hyaline cells on the outer surface or free. On the inner surface the hyaline cells are slightly convex, much more so on the outer surface of the leaf.

Dioicous, rarely monoicous; male branches in the antheridiumbearing part clavate, always violet- or purple-red; bracts in form, cell-structure, and pore-formation similar to the leaves on the sterile branches, usually fibrillose to the base, more rarely some cells above the base without fibrils. Perichætial bracts as in S. Girgensohnii, at times red. Spores $21-33 \mu$ in diameter, smooth, yellow. Fruit rare.

Hab. S. Russowii inhabits similar localities to S. Girgensohnii, and the two not infrequently occur in an intimate mixture.

Distrib. Europe, most commonly in the northern regions; up to 6600 ft . in the Carinthian Alps; Asia; North America.

The varieties, of which the following are the most important, are in the first place based upon the colour of the tufts :-
(1) Var. virescens Russ. in Zur Kenntniss, in Arch. Naturk. Liv- Est--und Kurland, Bd. x. Lief. 4, p. 505 (syn. var. Girgensolnioides Russ. apud Warnstorf in Bot. Gaz. xv. 132. Entirely green or with but a slight tinge of red.
(2) Var. favescens Russ. Zur Kenntniss, l.c. Yellow forms with a slight admixture of green or red.
(3) Var. purpuiascens Russ. l.c. More or less purple forms.
(4) Var. thodochroum Russ. l.c. Forms having a mixture of yellow or yellow-green with light delicate brick-red or almost rosered. This red is generally especially distinct in the lower part of the plant, and is quite distinct from the bluish-red of the male branches.
(5) Var. pacilum Russ. l.c. Forms of a dull violet-red colour.
(To be continued.)

THE GENUS MATHIOLA IN BRITAIN.

By James Britten, F.L.S.

In the Botanical Magazine for March (t. 7703) Mr. Hemsley writes: "Both [Mathiola] incana and M. sinuata are now found growing wild in Britain; the former on cliffs in the Isle of Wight, and the latter on the coasts of Devon, Cornwall, and Wales; but neither is regarded as indigenous or aboriginal." It would be interesting to ascertain the views of British botanists as to this summary exclusion of two plants from our Flora; the following notes on their occurrence may help them to form a conclusion.

With regard to M. sinuata, its nativity is now for the first time, so far as I can ascertain, called in question. Watson never doubted it, and its record extends back for nearly three hundred years. Johnson (1633) sets aside the English localities which Gerard records for this and other plants described in the same chapter in these words: "I have not hard [sic] of any of these wilde on our coasts but onely the second [i. e. M. sinuata], which it may bee grows in these places here set downe; for it was gathered by Mr. George Bowles upon the Rocks of Aberdovye in Merionethshire " (Ger. emac. 461). Samuel Brewer in his diary, under date Aug. 28, 1727, writes: "In our way to Abermeney near the shore, and also at some distance further into the sands, I found great plenty of Leucojum marinum majus, Syn. 291; but all in the circumference of about $\frac{1}{4}$ of a mile, and but one plant of them in flower and that with good seed." Ray, in 1686, writes: "Invenimus in litore arenoso insulæ Angleseiæ in Anglia è regione Caernarvan oppidi in Wallia, atque etiam in extrema parte Cornubiæ, et alibi in litoribus arenosis" (Hist. Plant. i. 780) : the Carnarvon locality he describes in Cat. Plant. Angl. 192 (1670) as "at Aberdaren in Carnarvanshire." In the herbarium of Adam Buddle (d. 1715) there is a specimen "from Mr. Stephens out of Cornwall." In 1773 Banks collected it in Flintshire at " Breton Ferry, on a little sandy bay through which the road passes at low water half a mile to the westward" (Herb. Mus. Brit.). M. sinuata, indeed, seems to have been a characteristic plant of the Welsh coast, for, besides the localities already mentioned, we have specimens from Barmouth (Merioneth), Swansea (Glamorgan), Tenby (Pembroke), and Traeth Mawr (Hugh Davies), a bay at the mouth of the Madoc, on the border of Carnarvon and Merioneth.

It is clear, however, that the plant has long been dying out, and it would be worth while to ascertain whether it is still to be found. Dillwyn (Flora of Swansea, 35 (1848)) says: "In 1802, was plentiful on the sandhills between Swansea and the Mumbles, but has now become rare: it grows also sparingly on the sea-side between the Eastern Pier and Crumlyn Burrows." A note by the Rev. D. Broughton in Phytol. iv. 880 (1853) states that at Barmouth, where it was "formerly abundant," he "could only find three weak plants, not in flower." Mr. Griffith, in his Flora of

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

NEW CAPE PLANTS.

By Major A. H. Wolley-Dod, R.A.

Oxalis versicolor L. var. latifolia, var. n. Leaves much broader than in the type. Peduncles densely glandular, often axillary. Black River, by Camp Ground, No. 70 of my collections. Except for the crimson edge to the corolla-lobes, the variety has little look of the type, and the axillary inflorescence might lead one to suppose it to be a distinct species; but this character occurs not infrequently in other allied species, notably in O. falcata Sond., in which it is described as terminal. Forms of the above-described variety are not infrequent in young pine-plantations about Claremont.
O. denticulata, sp. n. Stemless. Corm very small, about 3 l. by $1 \frac{1}{2}$ l., with thin soft scales. Leaflets rounded, emarginate, pale green both sides, glabrous, or rigidly ciliate, the ciliæ often on broad apiculate denticulations, translucent dots very obscure. Scape longer than the leaves, bibracteated near the top. Sepals acute, 3 l. to 4 l. long. Corolla 12 l. to 16 l., with a funnel-shaped golden yellow tube, and a white, rarely deep rose limb.

Flats between Rondebosch and Claremont, No. 1265 (white), 1298 (deep rose).

A frequent plant, always growing in damp places, and in dense masses. It has been most unaccountably confused with O. purpurea Thunb., from which it is abundantly distinct. That species is readily distinguished by its deep green leaves, purplish beneath, generally pubescent, and densely woolly-edged, conspicuously dotted. Bract or peduncle usually only one, very minute, often absent. Corolla-tube quite cylindrical, dull reddish yellow. O. denticulata is really much nearer O. convexula Jacq., but the latter has glaucous, hollow dotted leaves, never denticulate nor ciliate; its sepals and corm are also different.

Mesembryanthemum calcaratum, sp. n. Stem suberect, with many ascending branches from the base. Leaves terete, subulate, 2 l. to 4 l. long, with a straight very acute point, faintly dotted, produced into a short straight spur below the attachment. Flowers solitary, numerous. Peduncles ancipitous, $\frac{1}{2}$ to 1 in . long. Calyx segment reflexed in flower, erect in fruit, tube abruptly contracted below limb. Petals erect, about 2 l. long, bright rose. Styles slender, erect, about 1 l. long, nearly equalling the stamens.

About Claremont and Kenilworth Flats, Nos. 2857, 2860.
A locally frequent plant, at first sight very like M. filicaule Haw., but quite distinct in habit, and in its aperond leaves, which appear to be unique in the genus. I think it best placed in the section Adunca, though the leaves are not hooked, neither do they ever seem to be in M. filicaule.

Romulea papyracea, sp.n. Corm about $\frac{1}{2} \mathrm{in}$. in diameter, with very thick papyraceous tunics. Basal leaves about three, glabrous, 4-6 in. long, recurved and adpressed to the ground, soft, with a very broad striate central and two prominent lateral ribs. Peduncles very short, branched low down into two to four short
glabrous pedicels. Corolla very pale magenta-pink, darker externally. Spathes both wholly herbaceous, very strongly ribbed and keeled, the outer as long as the flowers, with a remarkably attenuate point, the inner about half as long. Styles shorter than the anthers, which are about twice as long as the filaments.

In the plantation on the Lower Plateau, Table Mt., 2300 ft ., No. 3075.

A very strongly marked species which approaches no other that I know, or can find in herbaria.

Geissorhiza pubescens, sp. n. Corm 2-3 l. in diameter, with shining brown hard concave tunics. Stem subglabrous. Leaves about $1 \frac{1}{2}$ l. broad, densely pubescent. Perianth-tube shorter than the spathe, limb blue, with narrow acuminate segments. Spathes brown and scarious in the upper two thirds.

West slopes of Lion's Head and Signal Hill, Nos. 1246 and 1602.
A locally plentiful plant, much resembling G. secunda Ker, but with totally different corm-tunics, subglabrous scape, pubescent leaves, and smaller pale blue flowers. The whole plant is usually smaller than (\boldsymbol{f}. secunda.

Aristea pauciflora, sp.n. Densely cæspitose. Leaves 6-12 in. long, rigid, very acute. Stem 9-12 in. high, strong ancipitous above, with sheathing leaves. Raceme of $3-5$ clusters each of $1-2$ sessile flowers. Bracts $\frac{3}{4}-1$ in., lanceolate-acuminate, often curved. on back. Inner spathe whitish or pale brown, not lacerate. Perianth-limb $\frac{1}{3}-\frac{1}{2} \mathrm{in}$. Capsule $\frac{1}{2} \mathrm{in}$., on pedicels $\frac{1}{4}-\frac{1}{3} \mathrm{in}$. long.

Orange Kloof, No. 3507. Near summit of Table Mt., No. 2157.
Very near A. Zeyheri Baker, of which I have only seen a single specimen, but the spathes are not lacerated, and bracts are longer in A. paucifora. It is also near A. racemosa Baker, but that species has stalked flower-clusters.

THE SPECIES AND HYBRIDS OF MENTHA.

By M. Ernest Malinvaud.*

On entering upon the systematic study of the French forms of the genus Mentha, it is easy to differentiate five principal groups, those we have previously called "cardinal species." \dagger These are Mentha sylvestris, M. viridis, M. rotundifolia, M. aquatica, and M. arvensis of the Linnean nomenclature. \ddagger

[^13]If, however, encouraged by the success of this primary distinction, one would proceed to the distribution of the subordinate forms so far as to define clearly the limits of the respective cardinal species, it is not long before one is met by an unexpected obstacle. The lamentation of Linnæus over a similar critical genus-"Species Rosarum difficillime limitibus circumscribuntur et forte naturâ vix eos posuit '"-would here be equally applicable.

For instance, there are found side by side with typical specimens of Mentha aquatica and M. arvensls ambiguous and varying forms, in which are combined the distinguishing characteristics of these two species. They are linked each to each by a continuous chain of intermediate individuals, among which one vainly seeks to determine where the first species ends and the next begins. It seems to be a case in which one might adopt the formula of Kunth, who held that the forms of plants connect like the parts of a ribbon; "cut it where you will," he says, "there are species." Certainly nothing can be more false, generally speaking, but the expression is suggestive, and gives a good idea of the difficulty to be solved. Deductive botanists like Bentham, in DeCandolle's Prodromus, cutting the ribbon pretty nearly in the middle, have united either to 11. arvensis or to M. aquatica the portions nearest to each; while the partisans of the opposing method, moulding the nebulous material presented to their subtle creations according to their own analytical principles, have drawn from, without exhausting it, a varied assortment of supposed species which even their creators do not always recognize apart from the specimens that served for the original illustration.*

Two reasonable solutions only fit this problem, and it is on account of the persistent effort made to find a third that the work of nature in the genus Mentha has remained a sealed letter up to the present time. Should one see in Mentha aquatica and M. arvensis extreme variations of a single species, or hybrid products of the intermediate forms that connect them? Later on we shall point out a third hypothesis, which according to our opinion is a dangerous sophism. Of the two given above, the improbability of the first ought to lead us to verify the exactness of the second, by extending our researches through the French forms of the genus Mentha properly so called. \dagger This laborious inquiry, too often hindered or interrupted, has been carried on for twenty years. Desiring, however, to complete it in several details before describing its phases and results, we shall confine ourselves here to pointing out some of the most striking facts that have been actually obtained.

Although our observations have been frequently directed towards the Mints of other countries, yet, as we have not in

* Malinvaud, Trois Genres Critiques, 1890.

\dagger Relatively and parallel to Eumentha, Mentha Requienii, Pulegium, and cervina constitute each a subgenus or distinct genus.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

special importance, because they stand in opposition to the generally received opinion as to the accidental and often unstable existence of hybrid productions. The Mints answering to the formulas rotundifolia-sylvestris and aquatica-arvensis behave to all appearance like true species, to the extent of having deluded, and kept in delusion, the vast majority of foristes with regard to them. They seem to justify Kunth's ribbon allegory, but this comparison has its foundation only on a superficial examination of facts. In either case, one can always (first freeing oneself from all party spirit) accurately verify the double origin of intermediate forms, and the two specific unities, freed from the confusion that surrounds their outline, appears perfectly clear.

The preservation of hybrids is favoured, in the Mints, by the mechanism of a powerful vegetative system which, by the help of layers and suckers, assures an almost indefinite propagation of the plant without the aid of the sexual organs, which, especially in the males, are more often than not imperfectly developed. The vegetation of individual hybrids, usually more vigorous than that of the parents, extends in certain cases as far as actually supplanting them, and may became predominant, if not even exclusive, in the locality where they originated.

In conformity with a conclusion already formulated, the interest of these new data is increased by the belief that analogous processes of investigation, when their utility is once better understood, will be applied with success to other critical genuses-Rubus, Rosa, Hieracium, \&c. It is only then that the examination of questions apparently insolvable, which these names will recall to the botanist, can be resumed upon a new basis, and that at last the vicious circle of fruitless discussions, within which the old methods confined them, will be broken. The most recent labours of learned monographersfor instance, those of M. Crépin on Rosa, and of M. Boulay on Rubus-tend more and more to strengthen this hypothesis.

There remains a word to say on a theory to which we alluded above. It substitutes for the facts of hybridization that we have established, imaginary phenomena of evolution. The intermediate forms connecting two species, in place of being hybrids, would correspond to phases of the incubation of new species in process of formation, springing of the old, but receding gradually by successive differentiations, whose last term, after the extinction of the middle stages, would end by realizing a definite type. This application in miniature of the Darwinian theory amounts in reality to an avowal of inadequacy. The results of our personal researches, strengthened by proofs, have already condemned it.

AMBLYSTEGIUM COMPACTUM IN BRITAIN.

By H. N. Dixon, M.A., F.L.S.

Brachythecium densum Jur. is a little-known continental moss, and a glance at the synonymy given by Limpricht (Laubmoose, iii. p. 136) will, I think, justify the statement that it has been at least equally little understood. Gathered by Arnold in Franconia, Bavaria, and South Tyrol, in 1864, and described by Milde in the same year under the name of Amblystegium densum, it has already run through pretty nearly the whole gamut of the Hypnaceous genera or subgenera. I hope to show in this article that the synonymy is not yet exhausted, and that the plant must be referred to A. compactum (C. M.) Aust., a well-known North American species, hitherto only once recorded on this side of the Atlantic. Before giving the grounds on which this assertion is made, however, I may describe the discovery of the plant in Great Britain. It is a curious coincidence that B. densum, previously unknown in Britain, should have been collected in four separate localities during 1899, within a month, each gathering being made entirely independently, and, indeed, without any expectation at the time of gathering that the plant was of special interest.

In the early part of July I was visiting the north of Sutherland, and stayed for two or three days at Durness, attracted in part by the fine scenery of Cape Wrath, and in part by the striking feature of an outcrop of limestone on the coast, one of the results of "which is the very remarkable subterranean watercourse known as the Smoo Cave. Taking advantage of the occasion (rare for the past summer) of a wet day to explore the cavern, I found little of botanical interest within the cave itself but a small quantity of var. depauperatum of A. serpens, and some quantity of a somewhat similar but more densely growing moss which I took to be probably another form of the same species, presenting, however, some slight and hardly definable differences; this was gathered and put away, nor was it further examined until late in the following month.

From Durness I proceeded to Inchnadamph, where I was to meet Messrs. W. E. Nicholson and E. S. Salmon; on the following day, while awaiting their arrival, I explored a short distance up Glen Dubh, where the R. Traligill for the space of half a mile or so plays hide and seek with the upper air in a way familiar to those who know the carboniferous limestone of the Craven district of Yorkshire and similar formations. In a series of cavities in the limestone, at a spot where the stream finally emerges, I gathered, in company with a fine growth of the rare and very beautiful Weisia calcarea C.M., a small quantity of what I took to be probably A. Sprucei. This too was put away for examination at home.

Early in August, immediately upon my return south, I spent a week or so in Derbyshire. While walking through Dovedale I gathered a small quantity of what seemed to be a small Amblystegium, which I brought home, without giving any further thought
to it at the time. It was with some surprise that when I came to go through my Scotch gatherings, and later on my Derbyshire ones, I found that these three plants were identical, and, moreover, did not seem to agree with anything I knew. The very fact, however, of the triple occurrence seemed to preclude the probability of the plant being anything out of the common, and I could only suppose it to be some form of a common moss whose identity had eluded me on account of its unusual habit. I sent a specimen to Prof. Barker, thinking that he might have observed it in his study of the Derbyshire mosses, which, however, was not the case. He pointed out, however, the resemblance to the description of B. densum Juratz. in Limpricht's Laubmoose, and on comparison I felt convinced of the correctness of the suggestion. Subsequently Dr. Braithwaite, with his wonted generosity, sent me specimens of the continental plant, including a fragment of the original plant gathered by Arnold in Franconia, and the identity of our moss with this was at once established.

In looking through our Inchnadamph collections some months later, Mr. Nicholson detected it from still another locality-among A. Sprucei gathered in shady limestone caves in Allt-nan-Uaml, on the side of Breabag. And, if the truth must be told, on reference to my own specimens from that locality, I found that the bulk of what I had put away as A. Sprucei was in reality the rare moss under notice!

It will be observed that there is a close, indeed an almost exact similarity in the character of all the four stations described; in each case the moss was growing in a shady cave or recess in limestone rock, precisely the habitat in which B. densum is found on the Continent as described by Limpricht:-'Kalkmoos! Auf dem Boden und an den Wänden der Kalkhöhlen;'' thus agreeing very closely in this respect with A. Sprucei, which, however, is not confined to such localities.

I now proceed to establish the identity of our European moss, Brachythecium or Amblystegium densum, with the North American A. compactum. The latter plant, it may be remembered, has been recorded from Auvergne by Frère Héribaud (v. Rev. Bryol. 1896, p. 112, and Muscinées d'Auvergne, 1899). During the past autumn I received from M. Lachenaud, of Limoges, a specimen of this moss, gathered by Frère Héribaud in Auvergne, in August, 1895. An examination of this specimen at once convinced me that it was really identical with B. densum, with which indeed it agreed in every respect. The habitat, too-"sur les parois d'une grotte" - and the substratum, a calcareous tufa, exactly fitted in with B. densum, while the North American A. compactum is usually found on decayed trunks and the foot of trees by water. Having occasion to write to Dr. Cardot about this time, I asked him if he would kindly examine any specimens he might have of the Auvergne plant, and see whether, in his opinion, it was not actually referable to B. densum. Dr. Cardot replied that, upon examination, he quite agreed with me in that opinion, but that after comparison with several North American specimens of A. compactum he could not

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

I find the central strand quite unrepresented by any special cells, and only defined, or apparently defined, by the cells of the ground tissue narrowed and converging to a point in the centre of the stem. This would seem to agree precisely with the meaning intended to be conveyed by the somewhat ambiguous term "obsolete," as applied to B. densum.

As regards the cortical cells, the term "thin-walled" is obviously a comparative one. No doubt there is no tissue in the stems of A. compactum which in the absolute thickness of the cellwalls would compare with the ordinarily so-called "thick-walled" cells of more robust and more highly developed mosses. But in the specimen of A. compactum just referred to, as well as in others which I have examined, the walls of the cortical cells are very decidedly thickened in comparison with those of the ground tissue; Limpricht's description of the stem-section of B. densum agrees in fact precisely with what one here finds. In short, when stems of similar dimensions are chosen, I can detect absolutely no difference between the sections of the American plant and the European B. densum. It may be remarked that the American plant varies somewhat in point of robustness, and as far as I am aware the European plants so far known all belong to the smaller forms, which, taken in conjunction with the above facts, fully, I think, explains the apparent discrepancy.
2. The curious " brood-filaments" which appear on the back of the leaves of B. densum, and are rightly given by Limpricht an important place in the diagnosis of the species, are not mentioned in any description of A. compactum so far as I am aware. They are, however, present, not only in the Auvergne plant, but in every specimen of the American A. compactum that I have examined, including the type specimen in Hooker's Herbarium. I look upon this character as a most important argument in favour of the identity of the two plants.
3. Inforescence. This undoubtedly presents the most serious difficulty in the case. I believe, however, it is sufficiently accounted for by the following considerations. None of the descriptions of A. compactum to which I have had access give any account of the male flowers, or, indeed, make mention of them, beyond the simple statement that the species is autoicous; and in so small a species it may be taken for granted that the male flowers are small and inconspicuous, even when present. Now Kindberg, in his description of A. dissitifolium (which is without any doubt only a form of A. compactum), writes, " probably dioicous; only male flowers found." In view of this paucity of description of the male flowers in A. compactum, and of the fact that the species of Amblystegium are so generally autoicous, one may be pardoned for suggesting that the existence of the male flowers has probably been usually taken for granted, and that dioicous forms, such as that described by Kindberg, need not necessarily be infrequent.

The European plants, too, as has been already mentioned, represent a small and very frequently a markedly undeveloped form, and it is not unreasonable to suppose that this may, to a certain extent,
account for a failure of development in respect of the reproductive organs. In support of this a statement of Berggren's may be cited (Musci et Hepatica Spetsbergenses, p. 35) as to the autoicous Oncophorus virens Brid. He states that the fruit of that moss is only sparingly produced, while the flowers are frequent; and that when these are poorly developed the male flowers are wantiny.

A strong confirmation of the slight value to be attached to the character of the inflorescence, in the present case, is found in the fact that Wilson, in one of his sets of Drummond's Musci Amer., has made the following manuscript note: " 188, Dr. M. Am. Hypnum compactum Br. \& Sch. operc. conical-acuminate, almost rostellate ; dioic." It is clear, I think, that these divergent views as to the inflorescence of the American plant by such high authorities fully justify the supposition that the plant is at times dioicous, or else (though $\cdot \mathrm{I}$ think this is less probable) that the disposition of the inflorescence is sometimes so difficult to detect that the European plant may have been described as dioicous in error, the male flowers having been overlooked.
4. Perichatial bracts. I have examined a perichætium of the type specimen in Herb. Hook., belonging to a well-developed though immature fruit, and though without dissection, which appeared undesirable, I could not determine the exact length of the nerve, I was able to prove without any doubt that in two of the inner and larger bracts it does not reach above two-thirds, and in one at least of them not above half the length of the bract. Whether or not, therefore, in general, the nerve, as stated by Cheney, is " percurrent or excurrent," this cannot be held a constant specific character, since it is wanting in the type specimen.
5. Habitat. This would not of course be held in itself to form a conclusive character, but it seemed of some importance in view of the fact that all the known European stations (I believe) are on limestone rock or tufa, while the description of the habitat of the American plant as arboreal is usually unqualified. However, Macoun (Cat. Canad. Pl. vi. 221) gives under A. compactum various localities, including such stations as "on the ground in moist places," " on rocks" (two localities), " on the tufa mounds at Banff, Rocky Mts." A. dissitifolium Kindb. is described from two localities, in each case " on flat limestone rocks which receive the dripping of water." And A. subcompactum is recorded from "bases of trees, Clinton, and wet rocks near the whirlpool, Niagara Falls." Thus the apparent difference in habitat is quite cleared away.

I may add that an examination of A. dissitifolium Kindb., and A. subcompactum C. M. \& Kindb., the former a specimen from Owen Sound, ex herb. Kindberg, the latter a specimen from Montana, also authenticated by Kindberg himself, has convinced me that Cheney, Cardot, and others, are incontestably correct in referring both plants to A. compactum. The differences at best are slight and elusive, and some of the characters as given in the description are by no means borne out by the specimens. A. subcompactum, which is described as having thicker stems, and longer and larger
leaves than A. compactum, is by no means so robust as some of the forms of the latter species, very little indeed, if at all larger than the type. "The asymmetric capsule, curved in the younger state, at least doubly greater," is the only other character given. Now, in one of the specimens of No. 188 Drumm. Musc. Amer. in the Kew Herbarium (H. serpens var. compactum) the young immature capsules are similarly curved and asymmetric, and the ripe capsules are every whit as large as, indeed slightly larger than, in Kindberg's specimen!

In habit A. compactum closely resembles the more slender forms of A. serpens, or even of A. Sprucei, and there is no doubt that it has been passed over, on more than one occasion, for one or other of these plants. The resemblance to A. Sprucei is accentuated by the fact that the two mosses grow in exactly similar habitats, and have been found more than once growing in company. It is quite possible that a careful search of herbarium specimens of A. Sprucei may reveal the presence of the species under notice, which will be distinguished by the larger leaves, not at all appressed to the stem, divergent and usually somewhat homomallous when dry. But, although it has given rise to so much confusion, and although in the field A. compactum, at least in the barren state, is with difficulty separated from some of the smaller species of Amblystegium, \&c., yet under the microscope it is readily recognizable by certain salient characters which may be briefly noted. The well-developed nerve, broad in proportion to the size of the leaf, and percurrent, or at least running well up into the slender acumen; the sharply denticulate margin, especially towards base; and the constant presence, in greater or less quantities, of jointed rhizoids or protonemal threads arising from the nerve of many at least of the leaves, are the most marked of these characters in the barren state. The nerve, in particular, at once separates it from A. serpens and all the species of that genus with which it is likely to be confounded; while the sharply toothed leaf-margin as readily distinguishes it from Eurhynchium tenellum. It is a much smaller plant than A. varium Lindb., and the areolation is entirely different.

The " brood-filaments" usually consist of very slender branched rhizoidal jointed threads, hyaline and chlorophyllose, or brownish, smooth or rarely punctulate; occasionally they are much stouter, and are then usually straight and unbranched. The whole plant, moreover, and especially the leaves, are remarkably fragile; and according to Limpricht the leaf-point itself occasionally becomes elongated into a filiform articulate thread.

Cheney describes and figures the outer cell-wall of the marginal cells at mid-leaf as markedly wider than the internal cell-walls; I have, not, however, been able to verify this character on the type specimen, or on others of the North American plants which I have examined.

The nerve has a curious tendency to disappear or become indistinct about the middle of the leaf, becoming stronger again in the acumen. Although wide and somewhat thick, it is not as a rule very clearly defined, and it varies considerably in width and

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

A. dissitifolium Kindb. in Macoun \& Kindb. l. c. p. 220 (1892).
A. subcompactum C. M. \& Kindb. in Macoun \& Kindb. l. c. p. 221 (1892).

In thin, dull green patches, pale and yellowish within, usually dense, but at times more straggling, with the habit of A. serpens or A. Sprucei. Plants very fragile. Stems slender, sometimes filiform and stoluniform, slightly radiculose, creeping, irregularly branched. Stem tissue loose, central strand small or wanting, cortical cells smaller, in 1-2 layers, with thicker walls, yellowish. Leaves somewhat spreading, usually secund and pointing upwards on the branches, narrowly decurrent; stem-leaves ovate-lanceolate, gradually tapering to a variable, but usually rather wide point, $0.72-1 \mathrm{~mm}$. in length, more or less sharply denticulate throughout, especially towards base. Nerve broad but not well defined, reaching high into the acumen or percurrent, at times becoming indistinct in mid-leaf and reappearing above; frequently with jointediflaments or rhizoids from the back. Branch-leaves narrower, often very small. Cells linearrhomboid, thin-walled, chlorophyllous, $4 \cdot 5-8 \mu$ in width, and 5-9 times as long (shorter in the smaller leaves), towards base shorter, at angles shortly rectangular to quadrate, not distinctly enlarged, nor forming auricles. Autoicous and ? dioicous. Seta short. Capsule small, nearly symmetric, erect or slightly inclined, with a distinct neck. Lid conical, apiculate.

Distr.-North America: Canada, U. States. Europe: Sweden, Central Europe, Spain, Central France. Great Britain: Smoo Cave, Durness, Sutherland, July 12th, 1899 (H. N. Dixon); Glen Dubh, Inchnadamph (H. N. Dixon); Allt-nan-Uamh, Inchnadampl (Vicholson, Salmon \& Dixon)-all in v.-c. 108; Dove Dale, Derbyshire, v.-c. 57 (H. N. Dixon).

Note.-As slightly strengthening the argument as to the inflorescence, it may be added that Sullivant (Icones, p. 201) in describing H. compactum merely says, "Flores ex cl. Müller monoici."

MERIONETHSHIRE LICHENS.

By William Henry Wilkinson.

In the following list, the towns named include the districts around, within walking distance.

Lichina confinis Ag. On slate-rock, shore, Aberdovey.
Collemá furvum Ach. On stone wall, Aberdovey.-C. faccidum Ach. On trees, Aberdovey.

Calicium hyperellum Ach. On trees, Aberdovey, Corwen.
Spharophoron coralloides Pers. On rocks, Aberdovey, Dolgelly,
Baomyces rufus DC. On ground, Corwen.
Cladonia cervicornis Schær. On rock, Aberdovey, Blaenaú Festiniog.-C. pyxidata Fr. Aberdovey, Bala, Beddgelert, Cader Idris, Corwen, Dolgelly.-C. gracilis Hoffm. Dolgelly.-Var. chor-
dalis Leighton. Corwen.-C. furcata Hoffm. Corwen.-C. digitata var. macilenta Leighton. Blaenau Festiniog, Cader Idris, Dolgelly. C. deformis Hoffm. Dolgelly.

Cladina rangiferina Nyl. Aberdovey, Corwen, Dolgelly.
Stereocaulon paschale Fr. In fruit, slate-rock, Blaenau Festiniog. —S. denudatum Floerke. In fruit, Dolgelly, Minffordd Junction.

Usnea barbata Fr. Beddgelert, Dolgelly. - Var. hirta Fr. Dolgelly.-Var. ceratina Schær. In fruit, Barmouth.

Evernia prunastri Ach. Corwen, Dolgelly.
Ramalina calicaris Fr. On trees, Aberdovey.-R. farinacea Ach. On trees, Aberdovey, Corwen.-R. fraxinea var. ampliata Ach. On trees, Corwen.-R. fastigata Ach. On trees, Aberdovey, Corwen.R. cuspidata Nyl. Rocks, Aberdovey.-Var. crassa Del. Rocks, Aber-dovey.-R. scopulorum var. subfarinacea Nyl. Rocks, Aberdovey.

Cetraria aculeata Fr. Aberdovey.-Var. muricata Ach. Rocks, Blaenau Festiniog.

Platysma commixtum Nyl. Rocks, Aberdovey.-P.glaucum Nyl. Barmouth.

Peltigera canina Hoffm. On turf, Aberdovey, Barmouth, Corwen, Dolgelly.-Var. crispa Whlnb. Bala.-P. rufescens Hoffm. Aberdovey, Bala, Corwen, Dolgelly.-f. pretextata Floerke. Bala.P. malacea Fr. Barmouth. - E^{\prime}. spuria Leight. Aberdovey.- P. polydactyla Hoffm. Aberdovey, Barmouth, Corwen.-P. horizontalis Hoffm. Aberdovey.-P. scutata Leight. Bala.

Stictina limbata Nyl. Trees, Barmouth.-S. fuliginosa Nyl. Barmouth, Dolgelly.

Parmelia caperata Ach. Aberdovey, Beddgelert, Dolgelly. - P. olivacea Ach. Corwen, Dolgelly.-Var. exasperata Leight. In fruit, Aberdovey.-P. stygia Ach. In fruit on rock, Aberdovey. P. physodes Ach. Aberdovey, Dolgelly.-P. perlata Ach. Aberdovey, Dolgelly.- P. tiliacea Ach. Dolgelly. P. fuliginosa var. olivacea Leight. Aberdovey, Corwen.-P. conspersa Ach. Aberdovey.Var. isidiata Leight. Blaenau Festiniog.-P. sinuosa Ach. Aberdovey. - P. saxatilis Ach. Aberdovey, Barmouth, Beddgelert, Corwen, Cader Id̈ris, Dolgelly.-Var. sulcata Nyl. Aberdovey.Var. omphalodes Fr. Aberdovey, Cader Idris.-Var. furfuracea Schaer. In fruit, Aberdovey, Corwen.

Physcia parietina De Not. Aberdovey, Bala, Corwen.-P. pulverulenta Nyl. In fruit, Aberdovey, Bala, Corwen.-Var. pityrea Nyl. Bala.-Var. venusta Nyl. Aberdovey.-P. subdetersa Nyl. In fruit, Bala.-P. stellaris Nyl. Aberdovey, Corwen.-Var. leptalea Nyl. Aberdovey, Corwen.-P. stellaris var. casia Leight. Corwen. -Var. tenella Nyl. Aberdovey.-P. aquila Nyl. Aberdovey.

Umbilicaria cylindrica Dub. Arran Mowddwy.
Squamaria saxicola Nyl. Aberdovey.
Placodiun murorum Nyl. Corwen.-P. citrinum Nyl. Aberdovey, Bala.

Lecanora squamulosa Hook. Rock, Aberdovey. - L. sarcopis Leight. Rails, Corwen.-L. atra Ach. Rocks, Aberdovey, Corwen. -L. subfusca Ach. Dolgelly.-Var. allophana Ach. Trees, Corwen. —Var. argentata Ach. Trees, Corwen.-Var. itumescens (Rebent.)

Trees, Corwen.-Var. atrynea Ach. Trees, Aberḋovey, Corwen.L. parella var. pallescens (L.). Trees, Corwen ; rocks, Bala.L. ferruginea var. saxicola Leight. Rocks, Aberdovey.—Var. festiva Leight. Rocks, Aberdovey.-L. cerina Ach. Trees, Corwen.-L. ventosa var. lepadolemma Ach. Cader Idris.

Pertusaria communis DC. Trees, Aberdovey, Corwen, Dolgelly. -P. leioplaca Schaer. Trees, Corwen.

Lecidea endomelana Leight. Rocks, Blaenau Festiniog. - L. flexuosa Nyl. Trees, Corwen.-L. parasena Ach. Trees, Corwen. L. rivulosa Ach. Rocks, Blaenau Festiniog.-L. fusco-atra Ach. Slate-rocks, Blaenau Festiniog. - L. contigua Fr. Rocks, Cader Idris.-Var. limitata (Leight.). Rocks, Cader Idris.-Var. umbonata (Leight.). Rocks, Barmouth.-L. subumbonata Nyl. Rocks, Aberdovey.-L. disciformis Fr. Corwen, Dolgelly.-L. atro-badia Nyl. Rock, Aberdovey.-L. myriocarpa var. chloropolia (Fr.). Aberdovey. - L. citıinella Ach. Bala.-L. geographica Fr. Rocks, Aberdovey, Blaenau Festiniog, Corwen.-Var. contigua Schaer. Barmouth, Cader Idris.

Opegrapha atra Pers. Trees, Corwen.-O. Tunneri Leight. Trees, Bala.

Arthonia astroidea Leight. Trees, Corwen.
Graphis inusta var. divaricata Leight. Dolgelly.
Verrucaria gemmata Ach. Trees, Corwen.-V. punctiformis Ach. Trees, Aberdovey.-V. nitida Ach. Trees, Aberdovey, Barmouth.

PLANTS OBSERVED IN WEST MAYO, JUNE, 1899.

By Rev. E. S. Marshall, M.A., F.L.S.

The excellent Railway Hotel at Mallaranny served as my head-quarters, expeditions being made by rail to the other places mentioned. I devoted the first part of a ten days' stay to lowland work, as the heat was great, and I was not in good walking condition; then the weather unfortunately broke, and a contemplated exploration of the mountain-range south of Nephin Beg had to be abandoned. Although the flora of the district is not very rich, I am sure that a more extended search would add considerably to the number of species observed (approximately, four hundred and forty). Mr. R. Lloyd Praeger kindly drew for me a sketch map, showing the geology-quartzite and mica-schist, old red sandstone, carboniferous sandstone, and carboniferous limestone; this was of great value as a guide. The bramble-gatherings were determined by Rev. W. Moyle Rogers; those apparently new to the vice-county are starred.

Ranunculus Drouetii Godr. Castlebar, and near Mallaranny.R. sceleratus L. Salt-marsh near Newport. - R. scoticus mihi. Abundant on the south side of Sraheens Lough, Achill Island; here Eriocaulon replaces the Subularia of its original Scotch station. First certain Irish record. After much consideration, I believe that

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Pimpinella major Huds. Castlebar. I did not observe P. Saxifraga, nor yet Anthriscus sylvestris.

Enanthe Phelland,ium Lam. Castlebar. Abundant thence eastwards as far as Balla (East Mayo).

Scabiosa arvensis L. Castlebar, on limestone.
Matricaria Chamomilla L. Roadsides and waste ground at Westport, Newport, and Mallaranny ; Artemisia vulgaris L. also occurs at these places.

Carlina vulgaris L. On limestone about Castlebar.
[Carduus pycnocephalus L. Three plants on the railway ballast east of Mallaranny.]

Crepis paludosa Moench. Marshy pastures; Castlebar, Westport, and Mallaranny.

Taraxacum palustre DC. var. udım (Jord.). Mallaranny.
Tragopogon pratense L. Castlebar and Westport; the type.
Lobelia Dortmanna L. Frequent in the lakes westwards from Newport.

Schollera Oxycoccus Roth. Boggy ground, Murrevagh Lough, near Mallaranny.

Erica mediterranea L. extends eastwards nearly to Newport, but apparently avoids the limestone; the fruit is ripe at this season.

Centunculus minimus L. Roadside about two miles west of Mallaranny.

Erythraa Centaurium Pers. var. capitata Koch. Dry cliffs, Mallaranny; I suspect that this is the "E. latifolia" of Irish authors.
[Linai ia Cymbalaria Miller. Old walls, Castlebar.]
Scrophularia aquatica L. Near Newport ; the var. cinerea Dum., which I believe to be the usual Irish form.

Veronica agrestis L. Mallaranny.-V. Anagallis-aquatica L.var. anagalliformis Boreau. Castlebar, Newport, and near Mallaranny; type not seen.

Euplrasia brevipila Burnat \& Gremli. Common; Westport, Newport, Mallaranny, Achill Island, Castlebar. - E. curta Fr. Plentiful on heaths near Mallaranny and Newport. Not previously recorded from Ireland, so far as I am aware; but it will surely prove to be frequent, and has probably been often confounded with E. gracilis Fr.

Melampyrum pratense L. var. hians Druce. Wet sphagnous heaths below Sraheens Lough (Achill Island), near Castlebar, and at Murrevagh Lough, near Mallaranny; flowers deep golden (or orange) yellow.

Utricularia intermedia Hayne. Mallaranny.
Lamium intermedium Fr. Oat-fields, Mallaranny. I did not notice L. purpureum anywhere.

Plantago Coronopus L. var. pygmaa Lange. Dry coast west of Mallaranny. A remarkably luxuriant form or variety ($10 \frac{1}{2} \mathrm{in}$. high, by actual measurement, in my herbarium specimen) occurs in a saltmarsh near Newport; it is very hairy, suberect, the leaves pinnatifid. with narrow rachis and segments; inflorescence $1 \frac{1}{2}-2 \mathrm{in}$. long.

Atriplex patula L. Achill Island, Mallaranny, Newport. No Chenopodia were seen.

Betula pubescens Ehrh. Mallaranny.
Salix aurita L.; S. cinerea L. Both frequent; but I failed to see S. Caprea L., and it seems to be quite a rarity in the extreme west.-S. herbacea L. was seen at 1000 ft ., or less.

Juniperus nana Willd. Locally abundant west of Mallaranny; descending to near sea-level.

Listera cordata R. Br. Very plentiful on the hills near Mallaranny, at 1000-1200 ft.

Epipactis palustris Crantz. South-west end of Castlebar Lake, sparingly.

Orchis incarnata L. Abundant throughout the district in suitable situations, and very variable in habit. - O. Traunsteineri Sauter. A curious Orchis was found (unfortunately, only a single specimen) growing with O. incarnata and O. maculata; it was evidently distinct from both, and not a hybrid. Height 15 in. ; leaves 4, pale green, erectpatent, unspotted, linear-oblong, broadest ($\frac{1}{2}-\frac{1}{3}$ in.) at the base, gradually and evenly tapering to the flat acuminate tip; the lowest and third $4 \frac{1}{2}$ in. long, the second 5 in. Flowers rose-coloured; spur of corolla cylindric (not conical, as in incarnata); wings about four times as long as broad, patent, spotted; lip large, spotted, distinctly broader than long, its central lobe small, triangular, deflexed. The whole habit of the plant is very like fig. $20 b$ in M. Schultze's Orchidaceen Deutschlands, \&c., of O. Traunsteineri from Jena, which differs considerably in its inflorescence from the original form (fig. 20) of Kitzbühel and Zell-am-See: I do not think that this Mallaranny plant can properly be referred either to incarnata or latifolia; further search in West Ireland should show whether it is or is not constant and well-distributed. - O. latifolia L. var. brevifolia Reichb. fil. Heathy swamp, Murrevagh Lough, Mallaranny; identical with Mr. Nicholson's Waterford specimens (named by the younger Reichenbach) in Herb. Brit. Mus., and with my own from two stations on the coast near Wexford. It is small and few-flowered, with blossoms of a dull purplish red, and leaves faintly ring-spotted.

Ophrys apifera Huds. Scarce on limestone near Castlebar.
: Juncus obtusifolius Ehrh. Swamp above Burrishoole Bridge, Furnace Lough, near Newport.

Sparganium simplex L . and S. minimum Fr. West of Castlebar.
Lemna trisulca L. Slow stream running into Castlebar Lake (south-east end).

Potamogeton polygonifolius Pourr. var. pseudo-fluitans Syme. Furnace Lough, near Newport, in 3-4 ft. of water. - P^{\prime}. alpinus Balb. Slow stream running into Castlebar Lake; Rossow River, between Westport and Newport; ditch draining into Derryloughan Lake, near Newport. - P. angustifolius Presl. Stream below the station, Westport.

Ruppia rostellata Koch. Newport.
Eleocharis uniglumis Reichb. Salt-marsh near Newport.

Scirpus cernuus Vahl, var. pygmeus (Kunth). Swamp, Murrevagh Lough, Mallaranny; and near Furnace Lough, Newport.

Rynchospora fusca R. \& S. Plentiful on peat-bogs west of Castlebar.

Carex teretiuscula Good. Murrevagh Lough, Mallaranny; and in three distinct localities near Castlebar.-C. limosa L. Bog below Sraheens Lough, Achill Island; in two stations near Mallaranny, and in two near Castlebar. - C. lavigata Sm. Near Burrishoole Bridge, Newport, - C. binervis Sm. Very luxuriant (in some cases over 4 ft . high) by Lough Pollagowly, near Newport.-C. distans L. Abundant below Burrishoole Bridge, Newport. It was an odd experience to gather these three closely allied species and C. Hornschuchiana in one short walk. A hybrid between the last-named and O. Ederi var. edocarpa And. (flava, var. minor Towns.) occurs at Castlebar and near Newport. - C. flava L. var. elatior Schlecht. (C. lepidocarpa Tausch). Frequent about Castlebar; Murrevagh Lough, Mallaranny. This is apparently much scarcer in Ireland than the plant which used to be misnamed 'lepidocarpa' (var. minor Towns.). - C. Ederi Retz. Mallaranny, Newport, and Castlebar. - Vars. elatior And. and cyperoides Marsson both occur by Soileen Lough, close to Castlebar railway-station.

Phleum arenarium L. Sandhills, Mallaranny, with Festuca rottbolloides Kunth.

Agrostis vulgaris With. var. pumila (L.). Stony moorland roadsides near Mallaranny and Newport.

Catabrosa aquatica Beauv. Mallaranny; scarce.
Glyceria plicata Fr. Newport.
Festuca pratensis Huds. and F. arundinacea Schreb. Near Newport ; Bromus commutatus Schrad. was also noticed on the railwaybanks.

Cystopteris fragilis Bernh. Rocks near Lough Ard, Mallaranny.
Lastrea amula Brackenbridge. Abundant about Achill Sound and Mallaranny.

Isoetes lacustris L. and I. echinospora Dur. Growing together at the north-west end of Lough Pollagowly, near Newport, almost at sea-level. A few specimens looked intermediate; it is quite likely that they may hybridize, but the date (June 28th) was too early for macrospores to be properly developed.

C'hara fragilis Desv. Newport; Castlebar. - C. aspera Willd. Castlebar Lake; Soileen Lake.-C. polyacantha Braun. Abundant in a pool close to Castlebar Lake, on the south side.-C. vulgaris L . Murrevagh Lough, Mallaranny.-C. hispida L. Soileen Lake.

Nitella translucens Agardh. Near Newport; fruiting freely.N. opaca Agardh. Newport and Castlebar.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

SHORT NOTES.

Dorset Euphrasias. - On July 11th, 1898, I gathered a Euphrasia on the coast below Pennsylvania Castle, Portland Isle, which exactly matches my Bigbury (South Devon) specimens of E. occidentalis Wettst., determined by Prof. von Wettstein himself. On the grassy table-land near the quarries there abounds a form of E. borealis Towns., agreeing well with the description of var. pubescens Towns. in Wettstein's Monograph. On June 1st, 1899, in the company of Rev. E. F. Linton and Mr. A. B. Jackson, I found a dwarf state of E.curta Fr. on the downs between Corfe Castle and Swanage. These appear to be additions to the county list.-Edward S. Marshall.

A doubtful Kentish Record.-When the third edition of Ray's Synopsis was searched for Kentish records, the following was noted at page 346 :—"*§ Alsinastrum Gratiolæfolio Inst. R. herb. 244, \& Alsinastrum Gallii folio Ibid. Found by Mr. J. Sherard on boggy Ground, on the Common just by the Road from Eltham to Chiselhurst. De flore nondum satis constat." These names of Tournefort refer to Elatine Alsinastrum L., and this statement by Dillenius was held to vouch for the occurrence of this plant in Kent. In 1824, Sir James Edward Smith, in his English Flora, ii. 243-4, in his comments on his Elatine ti ipetala, a synonym of E. hexandra DC., says: ". . . E. Alsinastrum; a plant long believed, on the authority of Dillenius, to be a native of England; for who would have supposed so great a botanist could have confounded it with Centunculus minimus, as is proved by his herbarium at Oxford!" The matter came up again when Mr. F. J. Hanbury and the Rev. E. S. Marshall came to print the Flora of Kent; on reviewing the evidence, they came to the conclusion that Dillenius had blundered, and that the plant was never gathered in Kent. Thereupon I wrote to Mr. G. C. Druce, and begged him to refer to the Dillenian herbarium and so to settle the dispute. He was kind enough to do so, and in his letter stated: ". . . there is no specimen in the Dillenian herbarium to represent the plant mentioned by you, and referred to on page 346 of the third edition of the Synopsis. In the Sherardian herbarium, however, there is a specimen of Centunculus labelled by Dillenius, - Centunculus, Cat. Giss. p. 161, \& App. Tab. 5. Syn. iii. post Expl. ? H. Abb. Alsine palustris minima flosculis albis, fructu Coriandri exigıo, Mentz. Pag. icon. Anagallis spuria sive minima arvensis tetrapetaloides, Rupp. Flor. Jeu. forte Alsine montana minima Acini effigie rotundifolia, Pluk. Alm. p. 20, Ray Syn, iii. p. 350, n. 6, prope Chiselhurst.' This is probably the origin of Sir James Smith's reference." We must remember that the genus Centunculus was established by Dillenius himself in 1717; the following year he mentioned the plant in his Catalogus plantarum circa Gissam sponte nascentium, and in the Appendix to that work in 1719 he gave a long description of the plant, and figured the flower in detail. It must therefore be admitted that he knew the plant in its normal condition, s.o that, when it was first recognized by him in Kent, he placed it
on record on the last page of the introduction to the third edition of the Synopsis, the body of the work having been already printed off. Unluckily, he added a possible synonym to his ticket of the plant in Sherard's collection, which probably misled Smith; for the Alsine montana minima, etc.:, of Plukenet turns out to be Arenaria trinervia L. on the authority of a specimen labelled by Plukenet himself in Herb. Sloane, vol. xci. fol. 17, now in the British Museum (Natural History). I fear the actual plant must remain doubtful, especially as he added "De flore nondum satis constat," which seems to point to its immaturity; it was probably too young for accurate determination. In any case it is not safe to base the occurrence of Elatine Alsinastrum or E. hexandra on this unsatisfactory record.-B. Daydon Jackson.

NOTICES OF BOOKS.

Some Books on Grasses.

Handbook of the Flora of Ceylon. By Henry Trimen, continued by Sir J. D. Hooker. Part V. Eriocaulonea-Graminea. With two Maps and Indexes. 8vo, pp. 477. London: Dulau. 1900.
Natal Plants. Vol. II. Part 1. Grasses. By J. Medley Wood. 4to. Plates 101-125, with descriptions. Durban: Robinson. 1899.

Synopsis der Mittelenropäischen Flora. Von Paul Ascherson u. Paul Graebner. Bd. ii. Lief. 8 und 9. 8vo, pp. 145-304. Leipzig: Engelmann. Dec. 30, 1899. Price 4 Marks.

We are glad to record the appearance of the fifth and last volume of Trimen's Handbook of the Flora of Ceylon. - It includes the three orders of Monocotyledons, Eriocaulonea, Cyperacea, and Graminea, and is almost entirely the work of Sir Joseph Hooker. As Sir Joseph states, Dr. Trimen's MSS. included a list of genera and species to the end of Cyperacea only, and for the large important and difficult order Graminea he left no material whatever. But Sir Joseph, having just worked through the mass of material on which his account in the Flora of British India is based, was peculiarly fitted to elaborate the order for Ceylon. The one additional advantage conceivable would be the co-operation of Dr. Trimen in supplying those notes on habitat, colour, and seasons of flowering, which can only be made by an observer in the field.

In the order Cyperacea we note a departure from the arrangement adopted by Mr. Clarke in the Indian Flora, where the Cyperus of Linnæus and authors is broken up into the four genera Juncellus, Pycreus, Cyperus, and Mariscus. In the Ceylon Flora, presumably following Trimen's arrangement, the first three are merged in Cyperus, while Mariscus is retained. A sketch is, however, given of the genera according to Mr. Clarke's method.

In the Grasses the order of the Indian Flora is followed, save in points where later researches threw a more certain light. We
notice that Sir Joseph prefers to keep the much disputed Panicum sanguinale L: in the genus Paspalum, following Lamarck, and his own opinion as expressed in the Indian Flora.

There is a fair sprinkling of endemic species of grasses, the proportion in several well-worked genera being very remarkable. Thus, of eight species of Arundinella found in the island, threeA. laxiflora Hook. f., A. blephariphylla Trim. MS., and A. Thuaitesii Hook. f.-are endemic. Arundinella is a very critical genus, and it is very difficult to delimit its species. Sir Joseph remarks that A. brasiliensis Raddi, which in the Flora of British India (vii. 73) was assigned to Ceylon, has not yet been found in the island, some specimens of A. laxiflora having been taken for it. He regards A. brasiliensis as identical with A. nepalensis Trin., and the species, therefore, as common to both Old and New Worlds. From an examination of Raddi's specimen at the British Museum, we are inclined to think that the Asiatic specimens are not conspecific with the South American, the spikes of which have a different look and conspicuously smaller spikelets. Dimeria is another genus remarkable for its peculiar development in the island. Of the seven species found, four are endemic, and a fifth is represented by two endemic varieties. Garnotia is a still more striking instance, six out of seven species being found only in Ceylon. To one, G. tectorum Hook. f., Sir Joseph appends the query, "Also in China?" We can find no evidence of this distribution ; the Berghausia mutica Munro (in Proc. Amer. Acad. iv. 362), cited as a synonym, was founded on a grass collected in Hongkong by Wright, which we consider to be only a muticous variety of the Southern Chinese G. patula Munro.

There are four useful Appendices. The first includes a key to the orders, genera, and aberrant species, and the diagnostic characters of the orders in the sequence adopted by Dr. Trimen. The second is an account of the Forests and Waste Lands of Ceylon, by Mr. A. F. Brown, Conservator of Forests, while the third deals with the rainfall, and is by Mr. F. Lewis, of the Forest Department. Each of these is accompanied by a map. Mr. Boulger supplies the fourth-an interesting and concise History of Ceylon Botany, arranged, in bibliographical form, under the names of those to whom we owe its elaboration, beginning with Paul Hermann and ending with Dr. Trimen, of whom, as the writer remarks, the present work is his best memorial in the history of botany in Ceylon.

The new fascicle of Natal Plants comprises five-and-twenty plates and descriptions of as many native grasses of the tribe Andropogonea. We envy a man who can collect grasses and have them figured on quarto plates printed on nice paper, and we also expect much from him. But we do not think Mr. Wood rises to the occasion. The value of the plates is discounted by their faint impression in a greenish ink, and they are not always good representations of the species. The first, the common and wide-spread Imperata arundinacea, gives the idea in its inflorescence rather of a bristly Setaria than of the beautiful silky-haired plant which it professes to show. Occasionally the name on the plate does not

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
same endeavour to improve the position of botany as a means to education. "It is the purpose of the present work," Professor Coulter tells us, "to contribute another suggestion as to the method of teaching botany in secondary schools." The course consists of two parts, each representing work for half a year. The first part is presented in the book now before us, which " is dominated by Ecology, and also contains certain fundamentals of Physiology that are naturally suggested." The second book will be dominated by Morphology, but plant-structure, function, and classification will be developed together, in an attempt to face the evolution of the plant kingdom. In Professor Coulter's opinion, ecology should precede morphology, though such an order brings to the study of the former no knowledge of plant-structures and plant-groups. This disadvantage is, he thinks, outweighed by certain advantages, namely, the attainment of a proper conception of the place of plants in nature, a view which he considers of the most permanent value to those who can give but half a year to botany ; and, secondly, the fact that the work suggested demands little or no use of the compound microscope, an instrument ill adapted to first contacts with nature. However, it will be quite open to the teacher to reverse the order when he is possessed of both books. Again, the book is intended to supplement three "far more important factors," teacher, laboratory, and field-work. It seeks to do this (1) by means of the text; (2) by means of the illustrations, which must be studied as carefully as the text.

Whatever may be its place in a school curriculum, we have in this very neat and nicely produced little book an excellent introduction to the study of the life-relations of plants, or ecology, as it is called. It does for the beginner what Schimper's recent PflanzenGeographie does for the advanced student of botany. When the author insists on a careful study of the illustrations, it must be with a touch of pride. Our American cousins beat us hollow in the matter of illustrations, but in this respect Professor Coulter's surpasses any book of its kind that we remember to have se n . The figures are remarkable for their beauty even more than for their abundance, which is saying much, as there is one to almost every page of text. Some we already know. Many have been borrowed, with due acknowledgment, from Kerner's Pflanzenleben; others from Gray; while some landscapes are taken from Schimper's recent work. But many of the best are quite new, as, for instance, a beautiful series illustrating different tree habits, on pp. 65-71, and many also in the chapter on foliage leaves (chap. iii.). In fact, so numerous and excellent are the plates in the earlier chapters that the text seems almost unnecessary. The style of the subjectmatter is clear, terse, and logical. The conditions and meaning of respiration could hardly be more briefly and concisely described than on p . 34, or the function of stomata than in the paragraph a few pages later.

In the earlier chapters the life-relations of what we may term the natural divisions of a plant are successively considered, namely, those of foliage, flowers, shoots, roots, and reproductive organs. In
this arrangement the flower is considered as one kind of shoot. A special chapter is devoted to flowers and insects. Next comes a review of the individual plant in all of its relations, followed by a short account of the factors in the struggle for existence. There is also a sketch of the physiology of nutrition. The remaining five chapters deal with plant-societies, determined chiefly by the waterfactor, under the titles Hydrophyte, Xerophyte, Mesophyte, and Halophyte societies. The professional botanist may perhaps complain of a certain want of continuity, but he cannot fail to admire the able manner in which Professor Coulter has put before us, in so small a compass, what he is pleased to term the preliminary guesses at the meaning of the inchoate facts of ecology.

Flowers of the Field. By the late Rev. C. A. Johns, B.A., F.L.S. Twenty-ninth Edition. Entirely rewritten and revised by G. S. Boulger, F.L.S., F.G.S. London : S.P.C.K. " 1899 " [1900.] 8vo, cloth, pp. lii, 926. Price 7s. 6d.
$\mathrm{M}_{\text {any-t }}$ the present writer among the number-owe their first introduction to the systematic arrangement of our British plants to this work, which, after a popularity of nearly half a centuryit was first published in 1853 -now claims the support of the present generation of younger botanists in a new and complete form. Those who used the old book will remember the irritating manner in which it not only stopped short at the Naiadacea, but avoided all critical difficulties by the process of exclusion. Perhaps this was not altogether to be regretted, as the neophyte was thus driven to the more strictly scientific manuals. But as a bridge between these and more general and popular works, Mr. Johns's volume performed a useful function, and it will do this more effectually in its new form.

Mr. Boulger has included short descriptions of every species known to inhabit Britain, wisely avoiding such groups as the Brambles, Roses, and Hawkweeds, which remain in almost primitive simplicity. His nomenclature is for the most part "up to date "-or at least up to the date at which his book went to pressas to which feature opinions will no doubt differ. Considerations of space no doubt caused the entire omission of synonymy, but we think it should have been possible to add at any rate the more usual names of the genera, if only in the index: the tyro who is accustomed to hear of Luzula, Capsella, Calystegia, and the like, will be somewhat puzzled when he is unable to find them anywhere in the book. The omission of authorities for the names gives them a somewhat unscientific appearance. We may remark in passing that the book will have to be consulted by nomenclaturists, as it is possible that certain names-Juncoides erectum, for example-are here published for the first time: it is therefore important to remember that, though dated 1899, it did not appear until 1900.

Among the improvements introduced are the inclusion of all references in one index, and the reduction of the space formerly
wasted on the Linnean classification to four pages. The work has throughout been very carefully done, so far as Mr. Boulger's share in it is concerned; if the publishers had performed their part as well, they would have strong claims to the gratitude of beginners in British botany. That they have not done so is literally manifest at a glance, for it is impossible to open at any page of the book without seeing that " the resources of civilization," so far as typography is concerned, are practically non-existent for the S.P.C.K. They seem to know of only one fount of type, in the capitals of which are printed, with dull uniformity, page-headings, names of classes, orders, genera. "Black type" might never have been invented, and the reader is thus deprived of convenience arising from its judicious employment. The want of clearness is further emphasized by the fact that the name of each genus, instead of standing in a line by itself, in accordance with general practice, merely begins a line of text; and the useful practice of placing it at the head of each page has not been followed.

The mode in which the book is described is also perplexing, not to say misleading. On the cover it is lettered: "by Rev. C. A. Johns. New and Revised Edition "; but the title-page informs us it is "entirely rewritten and revised by Mr. Boulger." This being so, one wonders why Mr. Johns's name appears as the author, and why Mr. Boulger's is omitted from the cover. The Society's list mentions that "the natural order of classification has been adopted" -a statement which has naturally led the casual reviewer to mention this as a new feature of the work, whereas it has never been arranged otherwise. Considering that the book is in its 29th edition, and must therefore have already brought to the S.P.C.K. very considerable profit, it is to be regretted that they have come perilously near spoiling the ship-or is it sheep?-for a ha'porth of tar. Yet only such false economy can explain the retention of a considerable number of worn and otherwise unsatisfactory figures and the insertion of others-e. g. of the Cyperacea-which are a discredit and a disfigurement to the book. That in spite of these drawbacks it is a useful addition to British botanical literature is entirely due to Mr. Boulger.

La Nature Tropicale. Par J. Costantin. 8vo, pp. 315. With 166 figures in the text. Paris: Baillière. 1899. Price 6 francs.
This volume is Number XCIII. of the Bibliotheque Scientifique Internationale, published under the direction of M. Em. Alglave, a series comparable to our International Scientific Series. It gives a readable account of some of the conditions of plant-life prevailing in the tropics, and more especially those of the tropical forest. The illustrations are neither so numerous nor so well-produced as in similar introductions to ecology recently published in America, and they are mostly borrowed. Still they answer the purpose of helping out the text.
M. Costantin divides his subject-matter into headings, each of which comprises several chapters. Under "Préliminaires" he

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

as if specific. It would also, we think, be convenient if both genera and species were arranged in alphabetical sequence under orders and genera respectively-a change which could be adopted in subsequent volumes without interference with the plan of the book.

There is of course an abundance of interesting and suggestive matter both for philologists and folk-lorists. The former will find conclusive evidence that the popular attribution of " mignonette" to a French origin is not tenable, although it is favoured by Dr. Prior; none of the French names of Reseda odorata bear out the suggestion. Colmeiro gives the name " miñoneta" as Spanish, but, so far as popular nomenclature goes, it seems to be most widely spread in Italy, where the various forms " mignonetto," "mignonet," "miglionet," "mionetta," "mionet," and others, are cited for the plant.

A certain number of the names are of course mere bookcreations, such as some of those cited from Nemmich as "English"; but M. Rolland has wisely refrained from citing the spurious titles which still figure as "English names" in too many of our floras, though we are not sure that he has been equally selective with regard to other nationalities. In any case, however, he is giving us a valuable and important book, which we trust he may live to carry to a conclusion.
J. B.

BOOK-NOTES, NEWS, \&c.

Ar the meeting of the Linnean Society on March 15 th, Mr. I. H. Burkill gave an abstract of a Report on the Botanical Results of an Expedition to Mt. Roraima, British Guiana, undertaken in 1898 by Messrs. F. V. McConnell and J. J. Quelch. The same travellers had made a previous journey of shorter duration to Roraina in 1894, a narrative of which had appeared in Timehri. The plants obtained in these two journeys have been for the most part worked out at Kew , and include a number of new species. In a somewhat elementary address, Mr. Burkill pointed out that acknowledged authorities on plant-geography had considered it probable that the vegetation of the summit of Mt. Roraima when better known would compare well with that on the Paramos of Venezuela; but this was not the case. The characteristics of the treeless Paramos were absent from Roraima; and Bonnetia Roraima -the commonest of species on the summit-attained, where sheltered, a height of 40 ft . Lower than the Paramos on the slopes of the Andes was the Befaria zone, and to this the upper flora of the mountain was to be ascribed; the rest of the vegetation being of a Brazilian type. Many of the plants collected were of anatomical interest; the huge mucilage-cells of the leaf of Bonnetia Roraime and the quaint pitchers of some of the Utricularia were especially noteworthy. The complex chain of mountains to which Roraima belongs includes other peaks of similar height, such as

Duida over the Upper Orinoco; but in this direction the chain terminates with the low-lying forests of the Casiquiare, which has barred immigration from the higher Andes. The additions to botanical knowledge now made may be said to emphasize the remarkable similarity which had been found to exist in the floras of Roraima and the Kaieteur Savannah.

The success which attended Miss Jekyll's Garden and Woodland, which we noticed last year, has induced her to publish a companion volume; Home and Garden (Longmans, 12s.). 'Ihis, contrary to what is often the case with sequels, is as interesting as its predecessora fact due to the gift which Miss Jekyll possesses in no ordinary degree of making the reader's interests identical with those of the author ; she takes us into her confidence about the building of her house and the making of her garden, and we find ourselves sharing her anxieties and enthusiasms and agreeing-rarely disagreeingwith her tastes and prejudices. The flower-lover has not such exclusive possession of this book as he had of its predecessor, and if the chapter on "The Home Pussies" were not so delightfully written and (as is the rest of the book) so charmingly illustrated, it might be thought a little out of place; but the delight of Miss Jekyll's style would make us willing, and even thankful, to accept her account of anything she chose to write about.

So much has been published about the late Jonn Ruskin, and his connection with Botany was so slight, that it seems hardly necessary to refer to him at length in these pages. One work of his-Proserpina : Studies of Wayside Flowers-may, however, perhaps claim mention, especially as it contained suggestions for a new system of nomenclature, which was noticed in this Journal for 1880 (p. 280), and several new names-happily, not entitled to adoption-which may some day find their way into a synonymic list. In the very first chapter the author, led hopelessly astray by the popular name of Tillundsia usnevides, arrives at the conclusion that " the pineapple is really a moss; only it is a moss that flowers but 'imperfectly'"! Kuskin undoubtedly did much to stimulate a love for plants, and at one time entertained the notion of publishing a work which should contan accurate drawings of every British species-this, he maintaıned, had never been done. He mentioned this to us on one of two visits which he paid to the Department of Botany-the first to see Bauer's drawings of Australian plants, which he commended on account of the amount of labour and pains which they manifested; the second, to see again the very beautiful drawings which Jacquin sent to Dryander, which had been shown him on the former occasion, and which elicited his unqualified admiration.

The Trustees of the British Museum have published in a handsome volume (price £1) A Monograph of C'hristmas Island (Indian Ocean), the outcome of a visit of ten months by Mr. C. W. Andrews in 1897-8. The botanical portion has been undertaken by Mr. E. G. Baker (Polypetalæ and Gamopetalæ), Dr. Rendle
(Apetalæ and Monocotyledons), Mr. Gepp (Ferns and Mosses), and Mr. Blackman (Lichens and Fungi). The following new species are described:-Pittosporum nativitatis, Acronychia Andrewsi, Colubrina pedunculata, Sıprosma nativitatis, all of E. G. Baker; Peperomia Rossi, Cryptocarya nativitatis, Laportea Murrayana, Panicum Andrewsi, all of Rendle; and Geaster Andrewsi Blackman: plates are given of the Pittosporum and Panicum. We observe that the new commemorative names have been compelled to conform to the zoological practice and are spelt with a small initial. The tabular "list of species" (pp. 313-317), showing distribution in accordance with the districts recognized by zoologists, would have benefited by revision by one of the botanists named, both as to spelling of names and details of distribution.

The Daily Mail has long been pre-eminent in the domain of popular science, and we have more than once extracted for the delectation of our readers information which, although not true, was certainly new. The following article, headed "Long Life in Seeds," appeared in the issue for March 31st, and marks the highest flight of imagination yet attained in the direction of science. Considering the enormous circulation of the Mail among the less educated classes, it is to be regretted that it should disseminate rubbish of this kind :-
"An extraordinary fact, which is calculated to cause a stir in botanical circles, has been observed by Colonel Thompson during the past two years, and is now made public for the first time. A little plant called Pilea microphylla has constantly come up in the pots in which jadoo fibre has been used, and as this plant is a native of the West Indies and tropical America, it is clear that it comes from the moss, which is obtained solely from Yorkshire, and which is used in the preparation of jadoo, though in this climate the pilea cannot grow in the open air. The surmise of the colonel is that the seed was deposited in the moss countless ages ago when a tropical climate prevailed here, similar to what it was in the Mid-Eocene period, when the Celtis or nettle tree, the bread fruits, and the giant cacti flourished in Britain. If his conjecture is correct, we have some extraordinary testimony in favour of the great vitality of seeds, far surpassing anything that has been advanced in this connection before, including that furnished by the sprouting of the ' mummy wheat.' The Pilea genus is a most extensive one, and is well known to be broadly scattered over and confined to the tropics. It is a curious coincidence that the temperature at the period referred to, when the fan palms flourished to perfection and tropical forests at Bournemouth overlooked a lagoon, has been put at 70 deg. by eminent geologists; and it is at this same temperature that the pilea seeds were observed to have been awakened from their long sleep. Its appearance unexpectedly in the Yorkshire moss when potted and placed in the hot-house is certainly most interesting, and the subject is sure to be debated by scientists during the next few months."

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
harum $0 \cdot 13 \mathrm{~cm}$. long. Capsula vix 1.0 cm . long., 0.15 cm . lat. Semina $0 \cdot 1 \mathrm{~cm}$. long., dilute punicea.

To be compared with H. senegalensis T. And., a West African plant with which it has much superficial resemblance. The flowers are, however, different in the two cases, those of H. rhodesiana having a considerably longer tube and limb. Moreover, the unequally lobed calyx, emphatically didynamous stamens, and 8 -seeded capsule are divergent points worthy of mention.

Ruellia patula Jacq. Buluwayo, early Jan. Nos. 177, 178.
Dyschoriste Fischeri Lindau. Buluwayo, Dec., early Jan. and May. Nos. 181, 182, 383.

Strobilanthopsis

Acanthacearum e tribu Ruelliearum genus novum (tab. 410A).
Calyx 5 -partitus, segmentis linearibus, æqualibus vel leviter inæqualibus. Corollæ æstivatione contortæ tubus deorsum angustus, sursum eximie amplificatus et venoso-palatiferus; limbus obscure bilabiatus, labii inferioris lobo mediano lateralibus paullo majore. Stamina 4, didynama, juxta medium tubum affixa, vix exserta; filamenta per paria lateralia in membranam decurrentem coalita; antheræ omnes inter se æquales, oblongæ, dorsifixæ, 2-loculares, loculis æqualibus, paralielis, basi mucronatis. Pollinis grana ellipsoidea, costis longitudinalibus circa 8 induta (Rippenpollen); pore 3, costales. Discus undulatus. Stylus inclusus, apice subulatus, lobo postico dentiformi. Ovula quove in loculo 2, quorum unum nonnunquam subobsoles. Capsula ovoidea-oblonga, basi angustata, aliquantulo compressa, 2 -sperma, rarissime 1 -sperma.Suffrutex erectus crebro tenuiterque ramosus, glandulosus. Folia parva, membranacea, integerrima. Flores majusculi, ad apicem ramulorum brevium solitarii vel pauci.
S. hircina, sp. unica. Ramis ramulisque pubescentibus deinde glabris, foliis spathulatis vel lineari-spathulatis obtusis crebro glanduloso-ciliatis nec ultra 1.0 cm . long. (plerisque vero brevioribus) $0 \cdot 2-0.25 \mathrm{~cm}$. lat., calycis lobis obtusis dense glandulosopubescentibus $1 \cdot 2-1 \cdot 4 \mathrm{~cm}$. long. $0 \cdot 1$ - vix 0.2 cm . lat., corolla glabra in toto vix 3.0 cm . long., tubo dimidio inferiore 0.2 cm . dimidio superiore 0.8 cm . diam., limbo vix 2.0 cm . diam. hujus lobis obovatis emarginatis $0.7-0.8 \mathrm{~cm}$. long., antheris obtusis 0.3 cm . long., ovario 0.35 cm . long., stylo vix 1.8 cm . long. puberulo, stigmatis lobo antico $0 \cdot 1 \mathrm{~cm}$. long., capsula glabra, $1 \cdot 2-1 \cdot 5 \mathrm{~cm}$. long., seminibus sordide albidis 0.2 cm . lat.

Hab. Fort Gibbs, Rhodesia; Sept. 1898. No. 640.
After spending much time over this plant, I find myself compelled, although unwillingly, to propose a new genus for its reception. In many details of floral structure it is a Dyschoriste; but its calyx and capsule are plainly those of such Eu-Ruelliaceous genera as Mellera and Mimulopsis. There seems justification, therefore, for regarding the new genus as a link between the tribes Eu-Ruelliea and Strobilanthece as understood by Mr. C. B. Clarke. The Afican plant referred by the late Mr. Bentham to Strobilanthes
has now, together with some others since discovered, found a restingplace elsewhere: all these differ from the plant here described in having echinate pollen. The ribbed ellipsoidal pollen of S. hircina is a point in which it agrees with Strobilanthes; but, irrespective of the geographical difficulty, neither the method of insertion of the stamens nor the mucronate anthers are characters of that genus. Moreover, the absolute equality in size of all the anthers and the absence of a staminode, although not definite points as against Strobilanthes, suggest that the real affinity of Strobilanthopsis lies elsewhere. The position I venture to propose for it is next to Dyschoriste.

The reduced number of seeds as compared with ovules is rather curious. Some cells examined by me had a couple of ovules to all appearance fully developed: in other cases I found the lower ovule more or less rudimentary. No capsule that I examined had more than two seeds; and one, at least, had but a single seed.

Dr. Rand notes of this: "The plant has a rank disagreeable odour."

Blepharis Bainesii S. Moore. Buluwayo. May. No. 381.
B. diversispina Clarke. Near Shashi River, early Jan.; Buluwayo, May. Nos. 116, 380.

Crabbea cirsioides Nees. Buluwayo, May. No. 428.
Barleria (§ Prionitis) Randii, sp. n. Planta glabrata foliis ellipticis breviter spinoso-acuminatis basi in petiolum brevem cuneatim angustatis margine hyalinis membranaceo-coriaceis utrinque eminenter nervosis, foliis floralibus reliquis similibus nisi latioribus et paullo brevioribus, spinis interpetiolaribus foliis multo brevioribus rigidis complanatis, bracteis spinis subsimilibus, inflorescentia abbreviata pauciflora, sepalo postico oblongo-ovato spinoso-acuminato, sepalis anticis conjunctis postico subsimilibus nisi latioribus, corolla lutea bilabiata lobo antico oblongo quam lobi 4 postici multo breviore, staminum filamentis puberulis, capsula?

Hab. Buluwayo ; Dec. 1897. No. 115.
Caulis quadrangularis, 0.25 cm . diam. Foliorum lamina $3 \cdot 0_{-}$ 4.0 cm . long., $1 \cdot 5-2.5 \mathrm{~cm}$. lat., in sicco lutescenti-viridis. Spinæ interpetiolares circa 1.0 cm . long., patentes, Sepalum posticum 0.9 cm . long., deorsum 0.35 cm . lat., obscure venosum, una cum sepalis anticis 0.4 cm . lat. margine breviter hyalinum; sepala lateralia reliquis similia nisi minora. Corollæ in toto vix 4.0 cm . long. tubum verum 1.5 cm . long., 0.25 cm . lat., deorsum usque ad 0.45 cm . dilatatum ; limbi lobus anticus emarginatus, 1.2 cm . long. et 0.6 cm . lat.; lobi antici obovato-oblongi, integri, 1.5 cm . long. Staminodiorum antheræ reniformes, $0 \cdot 1 \mathrm{~cm}$. long., harum filamenta pubescentia. Ovarium oblongo-ovoideum, 0.3 cm . long. Stylus 2.7 cm . long. Ovulum secundum subobsoles.

A striking novelty quite unlike any species hitherto described.
Barleria Mackenii Hook. f. Buluwayo, Dec. No. 117.
Monechma bracteatum Hochst. No. 374 (not localized).
Justicia Betonica L. Buluwayo, May. No. 375.
J. fluva Vahl. Buluwayo, Dec. No. 101.

Justicia (§ Rostellularia) elegantula, sp.n. Caule humili (e rhizomate incrassato oriundo?) laxe et albide araneoso mox piloso, foliis caulinis parvis lineari-oblanceolatis obtusis presertim margine araneoso-pilosis membranaceis in sicco viridibus, spicis plurifloris basi interruptis, foliis floralibus reliquis similibus bracteas subulatas multo excedentibus, calycis segmentis anguste linearibus acuminatis corollæ tubum subæquantibus, corollæ extus pubescentis tubo a basi gradatim ampliato, limbi labio postico breviter 2-lobo, palato maxime eminente, ovario 4 -ovulato.

Hab. Salisbury ; Sept. 1898. No. 508.
Plantula tantum 6.0 cm . alt., foliis paucis minimis radicalibus deltoideo-rotundatis obtusissimis carnosulis $0 \cdot 2-0 \cdot 3 \mathrm{~cm}$. long. et lat. (an propagulis?) instructa. Folia caulina circa 0.7 cm . long., raro 1.0 cm . attingentia. Folia floralia $0.8-1 \cdot 0 \mathrm{~cm}$. long., sursum $0.15-$ 0.25 cm . lat. Bracteæ circa 0.2 cm . long., ciliatæ. Calycis segmenta 0.8 cm . long., crebro piloso-ciliata. Corolla 1.2 cm . long., læte purpurea; tubus sub limbo vix 0.4 cm . diam. ; limbi labium posticum oblongum, labio antico paullo brevius; labii antici 0.8 cm . long. labi ovati, intermedius lateralibus paullo major, lobi omnes margine crenulati. Antheræ 0.25 cm . long. Ovarium ovoideo-oblongum, 0.15 cm . long., glabrum ; stylus glaber, 0.8 cm . long. Capsula -.

This plant should be inserted in the genus somewhere near J. Kirkiuna T. And., from which, however, it differs in many respects-e.g. in its lowly habit, narrow calyx-lobes, \&c., and the remarisable radical leaves. The specimens of this are three, and they bear the appearance of having been torn off a stout rootstock. This surmise is strengthened by the fact of another of Dr. Rand's specimens, which I consider a variety of J. elegantıla, having such a rootstock.

Var. elatior. Planta robustior, usque ad 14.0 cm , alt., pilosopuberula nec araneosa; folia quam ea typi paullo majora; spicæ elongate. Folia radicalia desunt.

Hab. Salisbury ; Sept. 1898. No. 642.
Var. repens. A plant gathered by Dr. Rand at Buluwayo in Dec. 1897 (No. 179) should also be referred here. The specimen shows the remains of a stoutish rootstock, the stem is repent and pubescent, and the leaves, up to 1 cm . long by 0.8 cm . broad, are more numerous, and, being mixed up with the short cymes, give the plant much the look of a member of §Calophanoides. There are no radical leaves.
J. protracta T. And. var. Salisbury, Sept. No. 509.
J. (§ Ansellia) exigua, sp.n. Caule tenui repente puberulo, foliis parvis ovatis vel ovato-oblongis obtusis vel obtusissimis in petiolum brevem desinentibus membranaceis mox glabris, spicis plurifloris folia excedentibus, foliis floralibus minimis subulatis, calycis segmentis lineari-lanceolatis corollæ tubo æquilongis, corolla miniata sc. vix 0.4 cm . long., disco parum conspicuo, ovulis quove in loculo 2.

Hab. Buluwayo; May, 1898. No. 389.
Folia $0.6-1.5 \mathrm{~cm}$. long., 0.5 cm . lat., margine obscure undulata; petioli teneri, 0.2 cm . long. Spicæ modicæ 2.0 cm . long., tenues.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

subtus conspicue nervosa. Ramulorum floriferorum fasciculi inferiores circa 3.0 cm . long., vix totidem lat., fasciculi caulini circa $2 \cdot 5 \mathrm{~cm}$. long. et lat. Folia floralia $1 \cdot 5-2 \cdot 5 \mathrm{~cm}$. long. et $0 \cdot 3-0 \cdot 4 \mathrm{~cm}$. lat., rigida, subtus eminenter 1 -nervosa, utrinque transversim nervosa. Bractea vix $0 \cdot 1 \mathrm{~cm}$. long. Calycis lobi (lobis lateralibus exemptis) oblongi, anteriores 1.5 cm . long. posteriorem paullo superantes; lobi laterales lineari-lanceolati, fere 1.5 cm . long. Corolla in toto 1.5 cm . long.; tubus vix 0.6 cm . long., limbus sursum 0.7 cm . lat., hujus lobi ovati, obtusissimi, 0.3 cm . long. Antheræ 0.35 cm . long. Capsula ellipsoidea, vix 1.0 cm . long. Semina 0.6 cm . long. et 0.5 cm . lat.

The affinity of this seems to be with B. Bainesii S . Moore, but the different habit, broader leaves never spiny at the margin, differently shaped espinose floral leaves and bracts, \&c., of the latter, make it easy to distinguish the two.

Barleria (§ Acanthoidea) Delamerei, sp. nov. Suffrutex caule pubescente hispidulo mox glabro, foliis parvis ovatis spinu-loso-mucronatis basi cuneatis pubescentibus, racemis abbreviatis unilateralibus $1-3$-floris, spinis interpetiolaribus binis sparsim ramosis foliis æquilongis vel iis longioribus plus minus complanatis pubescentibus, bracteis spinis interpetiolaribus similibus, sepalis majoribus oblongis valide spinoso-lobatis lateralia lanceolata longe excedentibus, floribus cæruleis, corollæ tubo sursum gradatim amplificato calycem fere duplo excedente limbo æqualiter 5 -fido, ovulis perfectis quove in loculo 2.

Hab. British East Africa, near Lake Marsabit, 1898; Lord Delamere (Herb. Mus. Brit.).

Folia $0.7-1.3 \mathrm{~cm}$. long., $0 \cdot 4-0.5 \mathrm{~cm}$. lat. Spinæ interpetiolares modica circa 1.0 cm . long. Racemi $2.0-2.5 \mathrm{~cm}$. long. Sepalum posticum 2.0 cm . long., valide spinoso-acuminatum, hujus lamina sola 0.4 cm . lat. et spinæ ejusdem longitudinis; sepala antica $1 \cdot 2 \mathrm{~cm}$. long., horum lamina lat. et spinæ long. 0.3 cm ., omnia eminenter nervosa; sepala lateralia 0.8 cm . long., ciliolata. Corolla 3.5 cm . long.; tubus basi 0.4 cm . medio 0.3 cm . sub limbo 0.7 cm . lat., puberulus. Stamina breviter exserta. Antheræ 0.2 cm . long. Staminodia duo vix 0.4 cm . long., tertium ad merum rudimentum lineari-subulatum 0.15 cm . long. reductum. Discus lobulatus. Ovarium ovoideum, glabrum, 0.3 cm . long. Stylus vix 3.0 cm . long., pilosulus. Capsula -.

A very distinct species, perhaps nearest B. spinulosa Klotzsch, but with too many characteristic features to render comparison necessary. But for its flowers, this might be taken for a Blepharis.

Leucas (§ Hemistoma) Mackinderi, sp. n. Erecta, ramosa, crebro foliosa, caule valido hirsuto, foliis ovatis vel ovato-oblongis obtusis grosse crenatis vel crenato-serratis deorsum in petiolum villosulum desinentibus hirsuto-pubescentibus juvenilibus subtus albo-tomentosis, verticillastris subdistantibus multiforis, bracteis externis lineari-lanceolatis internis anguste linearibus calycem subæquantibus hirsutis, calycis extus pubescentis ore obliquo dentibus 8 abbreviatis late deltoideis mucronatis, corollæ majusculæ tubo
glabro labio inferiore extus pribescente galea brunneo-villosa neenon margine longiuscule albo-ciliata.

Hab. Mount Kenia, 1899 ; H. J. Mackinder (Herb. Mus. Brit.).
Caulis vix 0.5 cm , diam., deinde pubescens. Foliorum lamina $4 \cdot 0-7 \cdot 0 \mathrm{~cm}$. long. (rarissime $10 \cdot 0 \mathrm{~cm}$. attingens), $2 \cdot 0-4 \cdot 0 \mathrm{~cm}$. lat., membranacea; petioli nunc usque 0.5 cm . abbreviati, nunc alati et usque $1 \cdot 0-3.0 \mathrm{~cm}$. prolongati. Verticillastri 2.5 cm . diam. Bracteæ externæ 1.3 cm . long., internæ 1.0 cm ., illæ vix 0.2 cm . lat. Flores galea exempta albi. Calycis tubus vix 1.0 cm . long., deorsum usque 0.15 cm . angustatus, sursum 0.5 cm . lat.; hujus labium inferius 3 -dentatum 0.6 cm . lat.; labium superius 5 -dentatum et 0.5 cm . lat. Corollæ tubus 1.0 cm . long., 0.3 cm . diam., intus piloso-annulatus. Galea tubo æquilonga, emarginata. Labii inferioris lobus intermedius bifidus, 0.65 cm . lat. ; lobi laterales ovati, obtusi, 0.3 cm . lat.

The affinity of this fine species seems to be with L. Holstii Gürke. The lanceolate outer bracts, the 8 -toothed calyx, and certain other points of difference in floral structure should be noted.

Explanation of Plates 409 \& 410 A.

(The drawings of the plants are natural size; of the figures more or less magnified, unless stated otherwise.)
Plate 409.-A. Stephanolepis centauroides. Fig. 1. An inner involucral scale. 2. A young floret showing the caducous pappus. 3. Mature floret. 4. Section of same, showing andreecium and style-arms. 5. A stamen. 6. Ripe achene in side view and from above. 7. A hair of the pappus. B. Pheocephalus gnidioides. 8. A capitulum showing the densely hairy involucre and the bracteoles. 9. A floret. 10. Two of the anthers. 11. Style-arms. 12. Ripe achene. 13. A scale of the pappus.

Plate 410.-A. Strobilanthopsis hircina. Fig. 1. Corolla opened, showing andreecium. 2. An anther. 3. A pollen-grain. 4. Ovary, \&c. 5. Ovary opened. 6. Ripe capsule (nat. size). 7. Capsule opened, showing the seeds.

DROSERA BANKSII Br.

By James Britten, F.L.S.

(Plate 410 B.)
Among the plates of Australian plants prepared at the cost of Sir Joseph Banks, now in course of publication by the Trustees of the British Museum, are some which were not engraved. These will not, save in a few exceptional cases, be included in the Museum publication, which is confined to prints from the existing copper plates. Some of them are, however, of considerable interest; and the accompanying figure of Drosera Banksii is one of these.

So far as I am aware, this plant is still only known to science from the specimens collected at Endeavour's River by Banks: no other reference is given for it in the last edition of Mueller's Census, and no figure has hitherto been published. A brief diagnosis by Brown is given in DC. Prodr. i, 319, and the
plant had previously received a manuscript name from Solander but neither Brown's nor Solander's description is to be found in their respective manuscripts. Planchon (in Ann. Sci. Nat. 3rd Series, ix. 291) gives a full description, drawn up from the Banksian specimens, but did not consult the figure, as he says "flores mihi ignoti." On the back of his original sketch taken during the voyage, Sydney Parkinson has noted: "The petala white, anthera yellow, the leaves orange red, cilia yellow green, stalk and calyx tinged with red, the old capsules dark red purple." The drawing based on the original sketch, from which the figure now published is taken, is by James Miller.

NORFOLK NOTES.

By E. F. Linton, M.A.

The following list contains a selection from the notes made during a few years' residence in the county of Norfolk of the less common phanerogams and ferns. My observations were all subsequent to 1880 ; there are perhaps no plants in the list new for the county, any such discoveries having been published when fresh in the Transactions of the Norfolk and Norwich Natural History Society.

The Norwich Museum has in its possession an interesting herbarium collected by the late John Drew Salmon, 1835-37, chiefly from the neighbourhood of Thetford. I am not aware of any publication of its contents, and have inserted notes of infrequent plants from this source, which are duly acknowledged by the abbreviation, $h b$. Salmon.

The majority of the stations in the list are in Norfolk East (27). Those in West Norfolk are preceded by the comital number (28).

Norfolk is a county in which there is a tendency for the same territorial name to crop up two or three times over : there are two Roydons, two Ellinghams, a Caster and a Caistor, two Newtons, four Beestons, five Thorpes. I have referred in this paper to Roydon by Diss, Ellingham by Bungay, Caister by Yarmouth, and Thorpe St. Andrew, near Norwich-not to the other places of these ambiguous names. Newton (near Swaftham) is sufficiently distinct from Newton St. Faith's, on the Norwich and Cromer road; and Beeston St. Andrew, frequently mentioned, is a small unchurched parish three miles north-east of Norwich, not to be confused with Beeston by Cromer.

Thalictrum minus L. 28. Kilverstone Lane, near Thetford (1836), hb. Salmon.
T. flavum L. Roydon, near Diss. 28. Thetford (1835), hb. Salmon.

Ranunculus circinatus Sibth. Whittingham; Ranworth Broad Hoveton; Ellingham. 28. Larlingford.
R. fluitans Lam. 28. Plentiful in the Little Ouse, near Brandon.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Lepidium ruderale L. 28. South Lynn (1844), hb. Salmon.
L. campestre R. Br. Cromer ; Crostwick, bank by the Rectory (where L. hirtum Sm. is reported by the Rev. K. Trimmer, which I did not see), and neighbouring field ; Sprowston. 28. East Harling. L. Smithii occurred near North Walsham (1886), and at Witton (1888), both places given in Fl. Norfolk.
L. Draba L. Weybourne to Cley, Rev. W. W. Mason.

Thlaspi arvense L. Sprowston. 28. Thetford to Croxton (1836), hb. Salnon.

Teesdalia nudicaulis R. Br. Mousehold Heath, 1886. 28. Thetford to Rushford.

Peseda lutea L. Frequent. Ellingham; Attlebridge; Wymondham; Cawston; Worstead; Mundesley; Cromer; Cley. 28. Beetley to Gressenhall ; Castleacre.
R. Luteola L. Cawston; Sprowston; Cley. 28. Thetford (1835), labelled R. lutea, hb. Salmon. Swaffham.

Helianthemum Chamacistus Mill. Drymere Pit, near Swaffham. Apparently very scarce.

Diola silvestris Reich. Gawdy Hall Wood, Harleston.
V. ericetorum Schrader. Sprowston; plentiful on the North Dene, Yarmouth ; but I never saw anything like V. lactea Sm. there (see Journ. Bot. Dec. 1881).
V. tricolor L. Sprowston. 28. Thetford, hb. Salmon. "Common" in Trimmer's Fl. Norf. must have included V. arvensis Murr., which does not occur in that work, but has been noticed by me at Sprowston; Cawston; Ellingham; Vymondham. 28. Beetley; Larlingford; Swaffham; and is probably generally distributed. V. tricolor, on the other hand, is scarce, if not rare.

Polygala serpyllacea Weihe. Newton St. Faith's; Cawston. It is not unlikely that some of Mr. Trimmer's localities are for this form.

Frankenia laris L. "Yarmouth, Norfolk, Rev. G. R. Leathes," hb. Salmon. 28. Wells, 1884, \&c.

Dianthus deltoides L. 28. Heath near Euston Bridge, Thetford, Norfolk, 1837, hb. Salmon.

Saponaria officinalis L. Hedgebank, Rackheath.
Silene anglica L. Cawston; Sprowston. 28. Swaffham.
S. noctiflora L. Newton St. Faith's, 1887; Sprowston, 1883 ; Alderford; Wymondham. 28. Scarning; Larling.

Lychnis Githago Scop. 28. Thetford, 1835, hb. Salmon. East Harling.

Cerastium semidecandrum L. Salhouse; Cromer.
C. arvense L. South Dene, Yarmouth; Cromer. 28. About Thetford; Holkham to Wells.

Stellaria aquatica Scop. Flordon. 28. Larlingford.
S. media Cyr. var. Boraana (Jord.). Wells to Holkham.
S. palustris Retz. Ranworth Broad. 28. Thetford, hb. Salmon. Larlingford; North Elmham.
S. uliginosa Murr. Beeston St. Andrew. 28. Larlingford.

Arenaria tenuifolia L. 28. Shadwell (near Thetford), hb. Salmon. Thetford ; Castleacre Priory ruins. - Var. hybrida (Vill.). Just
south-east of Thetford, and on Croxton Heath, 1886; East Harling to Knettishall.
A. serpyllifolia L. var. leptociados (Guss.). Ellingham; Wymondham; Sprowston. 28. Thetford; East Harling.

Sagina ciliata Fr. Swafield, 1886. 28. Croxton Heath; Roudham.
S. nodosa Fenzl. Alderford Common; South Repps Common. 28. Narford, near the Church; Swaffham.

Spergula arvensis L. Geldeston; Mousehold Heath. 28. Swaffham.

Spergularia marina Dum. Cley.
S. media Dum. Cley, 1887. 28. Wells, 1885.

Hypericum hircinum L. 28. Abundant in part of Holkham Park; introduced as cover for pheasants.
H. elodes L. Back of Grange House, Thorpe (by Norwich) ; Newton St. Faith's.

Tilia cordata Mill. Sprowston, opposite the entrance to the Hall; a fine old tree of some eight stems, four of which were blown down in a storm about 1885 ; Bradfield.

Geranium striatum L. Bradfield.
G. pyrenaicum L. 28. East Dereham.
G. pusillum L. Ellingham; Sprowston; Cromer. 28. Beetley; Swaffham; Lexham.
G. rotundifolium L. In plenty by the roadside north of Thetford Station.
G. columbinum L. Blickling. 28. Narborough to Narford.
G. lucidum L. Thorpe by Norwich; Knapton. 28. Thetford, 1837, hb. Salmon.

Euonymus europeus L. Arminghall Wood; Hellesdon; Sprowston; Geldeston; Wymondham. 28. Gressenhall to East Dereham; Southacre.

Rhamnus catharticus L. Hoveton Broad. 28. Thetford, 1835, lib. Salmon. Newton; Larlingford; Swaff ham.
R. Frangula L. Hoveton Broad.

Genista anglica L. Newton St. Faith's; Cawston Heath.
Ulex Gallii Planch. Abundant on Mousehold Heath and at Newton St. Faith's; Cawston; Ormesby. 28. North Elmham; Beetley.
U. nanus Forster. Apparently this, on part of Cawston Heath.

Ononis repens L. Ormesby; Mundesley to Paston. 28. Thet. ford, hb. Salmon. Swaffham.
O. spinosa L. Attlebridge, near the Station (with some doubt; no specimens preserved). 28. Downham, 1837, hb. Salmon. East Harling to Knettishall.

Medicago sativa L. Sprowston.
M. falcata L. Norwich to Sprowston. 28. Thetford, 1836, hb. Salmon. Swaffham.
M. minima Desr. 28. Sandy pasture half-way between Thetford and Rushford.

Melilotus officinalis Lam. Sprowston.

Trifoliuin arvense L. Ellingham; Attlebridge; Trimingham. 28. Roudham ; Lexham.
T. striatum L. Mousehold Heath; Yarmouth; Paston.
T. scabrum L. Yarmouth. 28. East Harling to Knettishall; Thetford.
T. fragiferuin L. 28. Wells.
T. fliforme L. Sprowston; North Dene, Yarmouth; South Repps Common; Antingham.

Anthyllis Vulneraria L. Cromer. 28. Thetford !, 1835, hb. Salmon.

Lotus corniculatus L. var. villosus Ser. 28. South-east of Thetford.
Ornithopus perpusillus L. 28. Thetford, 1835, hb. Salmon. Roudham; Lexham.

Onobrychis viciafolia Scop. 28. Thetford, hb. Salmon.
Vicia hirsuta Gray. Abundant on banks about Sprowston Lodge; North Walsham. 28. Swaffham.
V. gemella Crantz. Mundesley.
V. lathyroides L. 28. Thetford Abbey Heath, hb. Salmon. Thetford to Rushford ; Croxton Heath.

Lathyrus palustris L. Frequent at Hoveton, and Ranworth ("Ranaugh" in Withering's Arranyement is the older and more correct name, agreeing with the local pronunciation). 28. "Against Euston Bridge, near Thetford, Norfolk, 1836," hb. Salmon.

Pıunus Avium L. Arminghall.
P. Cerasus L. 28. Larlingford.
P. Padus L. In a roadside plantation, Drayton.

Spiraa Filipendula L. 28. Garboldisham to East Harling; Swaffham.

Rubus Idaus L. Though stated by Rev. K. Trimmer to be " not frequent," it would be more correct to describe the distribution as "frequent," dropping the negative. Mousehold Heath; Sprowston; Ormesby ; Cawston. 28. Thetford, hb. Salmon. Beetley; Swaffham.
[Note.-In the fruticose section of this genus the nomenclature has itself altered considerably since most of these observations were made, and some of the plants here mentioned have been recorded elsewhere previously under another name. This list may therefore be taken to supersede any former publications of mine. The Rev. W. M. Rogers has given me much help in this genus.]
R. plicatus W. \& N. Beeston St. Andrew; Sprowston. 28. Beetley towards Gressenhall, by the side of a lane.
R. Rogersii L. Roadside, in fair quantity near Westwick Woods, North Walsham.
R. affinis W. \& N. Mousehould Heath and by the road leading thence to Salhouse; Ormesby, near the locality for Carex trinervis, very fine.
[R. carpinifolius W. \& N., though recorded by Rev. K. Trimmer, I never saw in Norfolk, and suspect his plant was R. carpinifolius Blox., a usual mistake in his day.]
R. incurvatus Bab. From two spots, about half a mile apart, Sprowston Common and Boar Lane; named for me by Prof.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

R. rosaceus (sp. collect.) var. hystrix W. \& N. Westwick, towards North Walsham.
R. Koehleri (sp. collect.) var. cognatus (N. E. Br.). Church Wood, Sprowston.
R. hirtus W. \& K. var. rotundifolius Bab. In fair quantity in a copse just across the road from the north border of Mousehold Heath.
R. tereticaulis P. J. Muell. Luxuriant and abundant in Church Copse, Sprowston; less so on the northern border of Mousehold Heath ; the two stations about two miles apart.
R. dumetorum W. \& N. Beeston St. Andrew Park and Sprowston Common (var. tuberculatus Bab.) ; Mousehold Heath (var. fasciculatus P. J. Muell. fide Prof. Babington). Probably commoner than these notes imply.
R. corylifolius Sm . Frequent; usually a sublustris form in Norfolk East. Thorpe; Sprowston; Ellingham; Ormesby; Cawston. 28. North Elmham; Beetley; Larling.-Var. cyclophyllus Lindeb. Loddon to Buckenham and to Reedham; Harleston.
R. casius L. Ellingham; copse, Sprowston (var. tenuis BellSalter, fide Prof. Babington). 28. Gressenhall; East Harling; Larlingford (var. intermedius Bab., confirmed by the Professor).

Geum rivale L. 28. Thetford, 1835, hb. Salmon.
Potentilla argentea L. Ellingham; Sprowston; Swafield; Mundesley to Paston. 28. Thetford, 1835, hb. Salmon. Gressenhall to Beetley.
P. palustris Scop. Ranworth; Barton Broad. 28. Lexham.

Alchemilla vulgaris L. The only Norfolk specimen I remember to have seen came from Hardingham, 1834, hb. J. A. Power, communicated by Mr. E. S. Salmon ; it proved on examination to be the segregate or subspecies A. alpestris Schmidt.

Poterium Sanguisorba L. 28. Swaffham.
P. officinale Hook. fil. 28. Wretton.

Rosa tomentosa Sm. Ellingham; Beeston St. Andrew; Flordon; Bradfield. 28. Swaffham.-Var. scabriuscula (Sm.). Rackheath; Ellingham.
R. rubiginosa L. Sprowston. 28. Beetley; Newton. - Var. comosa Rip. Road from Mousehold to Salhouse; Loddon; Kirby Cane. 28. Swaffham.
R. micrantha Sm. Rackheath; Sprowston; Frettenham; Loddon.
R. obtusifolia Desv. Horsford; Sprowston. 28. Larlingford; Swaff ham. - Var. fiondosa Baker. Flordon; Loddon; Hellesdon to Earlham; Salhouse Road, near Mousehold Heath; Haynford; Alderford; Bradfield; Frettenham. - Var. tomentella (Leman). Wymondham; Stubb's Green, Loddon; Flordon; Frettenham. 28. Common about Scarning ; Beetley.
R. canina L. var. lutetiana (Leman). Frequent, e.g. Sprowston; Thorpe; Ormesby; Flordon; Ellingham. 28. East Harling; Beetley; North Elmham ; Swaffham; Castleacre.-Var. surculosa (Woods). Loddon; Frettenham.—Var. spharica (Gren.). Cawston; Ellingham to Geldeston. 28. North Elmham ; Beetley to Gressenhall; Castleacre. - Var. senticosa (Ach.). Near Stubb's Green, Loddon.- Var. dumalis (Bechst.). Loddon; Haynford; Fretten-
ham. 28. Larling; Beetley to Gressenhall; Swaffham; Newton. -Var. verticillacantha (Mérat). Beeston St. Andrew; Sprowston; Frettenham. 28. Lexham Heath. - Var. Blondcpana (Rip.). Sprowston; Beeston St. Andrew. - Var. urbica (Leman). Old Catton; Thorpe; Loddon; Postwick; Haynford ; Flordon; Ellingham, \&c. 28. Denver, 1837, hb. Salnon. Scarning; Beetley: Larling. - Var. dumetorum (Thuill.). Rackheath; Trunch. 28. Castleacre. - Var. arvatica Baker. Crostwick; Sprowston, a form with sepals more or less ascending; Flordon; Wymondham. 28. Beetley to Gressenhall; Castleacre; Swaffham.-Var. Borreri (Woods). Near Sprowston Church; Ormesby.
R. coriifolia Fries. Hedge in the School Lane, Sprowston, and also by a copse about a mile to the east.
R. arvensis L. Loddon; Haynford to Spixworth. 28. Newton; Swaffham.

Pyrus communis L. Hedges, Sprowston towards Thorpe; reported to have been grafted by a gardener. 28. Snare Hill, near Thetford, 1836, hb. Salmon.
P. Malus L. var. acerba DC. Flordon. 28. Roudham; Thetford to Rushford ; Lexham. - Var. mitis Wallr. Knapton; Postwick; Sprowston. 28. Thetford to Rushford; Swaffham.
('Io be continued.)

THE EUROPEAN SPHAGNACE \notin

(after. Warnstorf)
By E. Charles Horrell, F.L.S.
(Continued from p. 167.)
4. S. Warnstorfil Russ. in Sitzungsb. der Dorpater Naturf.-Ges. 1887, 315.

Syn. S. acutifolium var. gracile Russ. Beitr. 1865, 44.
Tufts generally loose, in wider spread or smaller patches; uniformly light or dark green, yellowish-white, reddish, violet to dark purple-red, or frequently variegated with a mixture of green and red or of yellowish-white and red. Plants generally delicate and slender, rigid and erect, rarely flaccid; varying much in habit; generally brachy-, eury-, or homalocladous, more rarely anocladous, never orthocladous, not rarely dasy-, drepano-, or katocladous, rarely squarrose. Stems upright, thin, $3-15 \mathrm{~cm}$. in length.

Wood-cylinder strongly developed, formed of strongly thickened cells, generally reddish or violet to dark red, more rarely colourless or greenish.

Stem-cortex in 2-4 very rarely 5 layers, the inner cells relatively with very thick strongly pitted walls; the outer cells without or very rarely with a few scattered pores.

Stem-leaves small to medium size, $\cdot 4$ to $\cdot 5 \mathrm{~mm}$. long, generally lingulate, from the base very gradually narrowed, then somewhat
suddenly narrowed to the rounded or toothed apex; border narrow and much widened below as in S. acutifolium. Hyaline cells in the upper half of the leaf, rhomboid to elongate-rhomboid, generally septate, sometimes into 3-4 daughter-cells; non-fibrillose or not rarely with a few very delicate fibrils, in the first case with longitudinal plicæ.

Fascicles composed of 3-5 branches, 2-3 of which are spreading. Branch-leaves of the basal half of the spreading branches ovate, and, owing to the inrolling of the margins, produced into a subulate, $3-5$-toothed, truncate apex ; the leaves are frequently very regularly arranged in five rows, at times are somewhat secund, and always have the apices spreading; the leaves of the pendent branches, as well as those of the apical half of the spreading branches, are narrow-ovate to lanceolate; at the base of the pendent branches they are broad-ovate. Hyaline cells of leaves from the basal half of the spreading branches have on the outer surface numerous pores; these are in the lower half of the leaf large, oval, and few in number; in the subulate upper half they are remarkably small, almost circular and very numerous, and are surrounded by a relatively broad, strongly thickened ring. In the leaves of the apical half of the spreading branches, and in all the leaves of the pendent branches, the pores decrease gradually in size from the base to the apex; the small pores at the apex being, however, much larger than the remarkably small ones in the first described leaves. Pores on the inner surface of all the leaves more numerous in the basal part and near the lateral margins, large, generally non-ringed, and frequently corresponding in position with the pores on the outer surface, so that complete perforation of the leaf results.

Chlorophyllose cells in section trapezoid, more rarely triangular, and inserted between the hyaline cells on the inner surface of the leaf. Hyaline cells more strongly convex on the outer surface of the leaf.

Dioicous; male branches clavate towards the apex, the apex itself being elongate-subulate, light to dark red. Perigonial bracts ovate, broader and shorter than the leaves of the sterile branches; hyaline cells in the basal half non-fibrillose and without pores, only rarely with scattered, very delicate rudimentary fibrils; in the upper half with very small narrowly ringed pores. Female flowers unknown.

Leaves of the fruiting branches large, ovate-lanceolate, in the basal half composed of chlorophyllose cells only, in the upper half of both kinds of cells, of which the hyaline are always non-fibrillose, and generally 1-3 times septate. Capsule relatively large, dark red-brown; spores dark yellow, finely papillose. Fruit very rare.

This small, delicate, and very pretty Sphagnum is easily distinguished from its nearest ally, S. rubellum (1) by the remarkably minute strongly ringed pores on the outer surface of the apical half of the leaves of the spreading branches; these pores are smaller than those of any other European species, and are especially conspicuous owing to their being suddenly and not gradually replaced

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
which is frequently torn, toothed, or weakly fimbriate; the broad border is much widened below; lateral margins slightly undulate; hyaline cells with or without fibrils in the upper half of the leaf, 2-4 (rarely to 6) times septate by oblique cross-walls, and with delicate longitudinal plicæ.

Stem-cortex in 3-4 layers, formed of medium-sized, thin-walled cells, of which the outer walls are not porose.

Fascicles distant or closer together, of 3-4 branches, of which the two stronger are sometimes longer, sometimes shorter. The direction of the branches with regard to the stem various. Retortcells of the branch-cortex with distinctly recurved neck, having a pore at the apex. Branch-leaves loosely or closely imbricate, frequently secund, ovate to ovate-lanceolate, small; toothed on the broad rounded apex, margin inrolled above; border consisting of $2-3$ rows of narrow cells; the leaf has a longitudinal fold in the middle above the base, and the membranes of the hyaline cells have numerous plicæ. Inner surface with numerous smaller pores in the upper half, especially in the upper and lower cell angles, and larger ones in the wider part of the leaf, and especially near the margins; the entire outer surface with pores, which at the apex are strongly ringed, and but little smaller than those in the middle of the leaf ; at the base the pores are very larye, non-ringed, placed singly in the middle of the cell-wall between the fibrils; near the margins the pores on the upper and lower surfaces frequently exactly cover one another, so that complete perforation of the leaf results.

Chlorophyllose cells in section as in S'. fuscum.
Dioicous, rarely monoicous; male branches in the antheridiumbearing part always purple- or violet-red; perigonial bracts ovate, produced above into a smaller, rounded, slightly toothed, cucullate apex; in the lower part without fibrils and pores. Perichætial bracts large, ovate, suddenly produced above into a narrow truncate involute apex; in the lower part consisting of either chlorophyllose cells only, or, with the exception of the apex, with both kinds of cells throughout the leaf; hyaline cells several times divided by oblique or longitudinal or transverse walls; without fibrils or pores; at the apex itself composed only of short, narrow, thick-walled, and pitted chlorophyllose cells. Leaf-border wide. Spores ochre, large. Fruit very rare.

Hab. S. rubellum, like S. fuscum, with which it frequently grows intermixed in the same tuft, is a true moorland plant.

Distrib. Common throughout Europe and North America. Brookwood, Surrey (Sherrin) ; Burnham Common, Bucks (Sherrin); Wybunbury Bog, Cheshire (Wilson); Tremethick Moor, Penzance, Cornwall (Curnow) ; Fowlshaw Moss, Westmoreland (Stabler); Leckby Carr, Yorkshire (Ingham) ; Holt, East Norfolk (Burrell) ; Widdy Bank Fell, Teesdale, Durham (Horrell); Whixall Moss, Shropshire (Ley) ; Keston Common, Kent (Horrell) ; Tilgate Forest, Sussex (Horrell); Islay (Gilmour); Cennant Llenyrch, Merioneth (D. A. Jones).

The numerous varieties are based upon the colour of the tufts.

Var. favum C. Jens. apud Warnst. in Bot. Ver. der Prov. Brandenburg, xxx. p. 106 (sub S. tenello). Plants yellow throughout.

Penzance, Cornwall (Ley); Borth bog, Cardigan (Ley) ; Maentwrog, Merioneth (Horrell).

Var. pallescens Warnst. in Bot. Gaz. xv. p. 137 (sub S. tenello). Plants whitish, or pale yellowish green above, in the middle sometimes pale brownish or very faint red ; male branches a dull violet. Widdy Bank Fell, Teesdale, Durham (Horrell).
Var. pallido-gl.aucescens Warnst. in Schrift. der Naturf. Ges. in Danzig N. F. Bda. ix. Heft 2, 1896, p. 154 (sub S. tenello). Capitulum pale yellowish to whitish, sometimes pale green; bleached below.

Var. purpurascens Warnst. in Samml. Europ. Torfm. No. 64 (sub S. tenello). Colour for the most part a dirty purple-red.

Var. rubrum Grav. apud Warnst. l.c. No. 62 (sub S. tenello). Colour a mixture of dark purple-violet and green in the upper part; pale or dirty red below.

Newby Bridge, North Lancashire (Paul).
Var. versicolor Russ. apud Warnst. in Schrift. der Naturf. Ges. in Danzig N. F. Bd. ix. Heft. 2, 1896, p. 154 (sub S. tenello). Tufts a dirty pale red colour, with some yellow intermixed.

Ulpha Moss, Westmoreland (West); Brookwood, Surrey (Sherrin); Islay (Gilmour) ; Widdy Bank Fell, Teesdale, Durham (Horrell).

Var. violaceurn Warnst. in Bot. Ver. der Prov. Brandenburg, xxx. p: 106 (sub S. tenello). Colour violet throughout.

Var. viride Warnst. l.c. (sub S. tenello). Tufts greyish or vivid green throughout, with scarcely any admixture of red; male branches violet-red.

Burnham Common, Bucks (Sherrin).

6. S. fuscum Klinggr. in Beschr. d. i. Preussen gef. Art. u. Varr. d. Gatt. Sphagnum (Schrift. d. phys.-ök. Ges. i. Könnigsb. 1872, 4).

Syn. S. acutifolium var. fuscum Schimp. Entw.-gesch. d. Torfm. 1858, 57.

Exsicc. Braithw. Sphagn. Brit. Exs. No. 39.
Tufts denser or looser, widely extended or more frequently cushion-like. Colour usually a characteristic grey-green intermixed with brown or reddish-brown, more rarely whitish or green. Stems according to the habitat, taller or shorter, usually thin and delicate, as in S. rubellum and S. Warnstorfi.

Wood-cylinder always red-brown, with strongly thickened central cells.

Stem-cortex irregularly 3-4-, rarely 5 -layered, formed of mediumsized, thin-walled cells; superficial cells without pores; inner cells with small pores.

Stem-leaves usually small, lingulate, the rounded apex frequently suddenly contracted into a small cucullate point, which is usually somewhat fimbriate; the broad border greatly widened below. Hyaline cells almost always without fibrils and pores, very rarely with rudimentary fibrils below the apex, 2-4 times septate by oblique cross-walls, and with delicate longitudinal plicæ in the cell-membrane; basal cells swollen and enlarged.

Fascicles of 3-4 branches, of which the stronger ones are sometimes long and very thin at the extremity, sometimes shorter and more shortly acuminate. Branches distant or closer together; sometimes very densely arranged; either drepanocladous, anocladous, or orthocladous. Branch-leaves small, when dry almost without metallic lustre, closely or loosely imbricate, from an ovate base produced into a comparatively short, rounded-truncate, toothed apex; margin at apex inrolled; border of 3-4 rows of narrow cells; the leaf has a longitudinal fold in the middle above the base. Hyaline cells on the inner surface of the leaf in the upper part with numerous usually non-ringed pores; these are chiefly in the upper and lower cell-angles; near the margins of the leaf, and immediately above the base, the pores are in the middle of the cell-walls, between the fibrils; on the outer surface with numerous pores on all parts of the leaf; these are small and strongly ringed at the apex, becoming gradually larger and less strongly ringed towards the base, where they are very large, non-ringed, and situated in the middle of the cell-wall between the fibrils, the upper pores being on the commissures. In the neighbourhood of the leaf-margins the outer and inner pores frequently exactly cover one another, so that complete perforation of the leaf ensues.

Chlorophyllose cells in section triangular to isosceles-trapezoid, inserted between the hyaline cells on the inner surface, and here always free; on the outer surface sometimes enclosed, sometimes free; hyaline cells more strongly convex on the outer surface.

Dioicous; male branches quite similar to the sterile ones, in the antheridium-bearing part little or not at all thickened, here always yellow-brown, later becoming elongated at the apex; perigonal bracts very small, from the lower sterile leaves of the male branch clearly distinguishable, broadly oval, toothed on the rounded apex; pore-formation as in the other branch-leaves; in the lower half or two-thirds without fibrils and pores, more rarely without fibrils and pores on the whole surface.

Fruiting branches generally short; perichætial bracts large, ovate, with broad border ; in the lower part with elongated rectangular pitted chlorophyllose cells; above with both kinds of cells, of which the hyaline ones are 1-4 times septate by oblique cross-walls; in the apex itself with narrow short chlorophyllose cells; spores golden-yellow, papillose or almost smooth, 25-30 μ in diameter.

Hab. S. fuscum is a true moorland plant, where it may usually be easily recognized by the dense and tall tufts with the very characteristic colouring. The only known Sphagna having a similar reddish-brown colour are S. imbricatum var. fuscum Warnst. and S. subnitens var. flavicomans Card. In the rare cases where S. fussum is greenish in colour, it can easily be mistaken for S. rubellum or S. Warnstorfi, but from each of these it may be known by the wood-cylinder, which is always reddish-brown.

Distrib. Common throughout Europe and North America. Witherslack Moss, Westmoreland (Barnes); Widdy Bank Fell, Teesdale, Durham (Horrell); Jura (Ewing).

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

basal part numerous near the commissures, large, round, and weakly ringed or non-bordered. Pores on the outer surface of the leaf large and very numerous along the commissures. They become gradually larger and less strongly bordered from the apex downwards; the pores near the base and near the lateral margins are almost or quite without border, and are situated in the middle of the cell-wall between the fibrils.

Chlorophyllose cells in section triangular to trapezoid; inserted between the only slightly convex hyaline cells on the inner surface of the leaf and here always free; on the outer surface either enclosed or partly free.

Monoicous, more rarely dioicous; male branches in the an-theridium-bearing part clavate and red, later with the apex elongated and thin; bracts wider and shorter than the leaves of the sterile branches, generally suddenly produced into a short, truncate and toothed apex, in the lower half either entirely without fibrils and pores or with delicate rudimentary fibrils. Leaves of the fruiting branches large, ovate, usually composed in the lower part of elongated rectangular and pitted chlorophyllose cells only; at and above the middle of the leaf, of both kinds of cells; and at the truncate apex generally formed only of very short, narrowly rhomboid chlorophyllose cells; hyalne cells generally several times divided, but almost always without fibrils and pores; border wide; spores yellow, papillose, $25-30 \mu$ in diameter. Fruit common.

Hab. The commonest and most widely distributed of all the European Sphagna, being found both in the lowlands, on moors, and in high mountain regions. In Britain it would, however, appear to be less common than some other species of the Acutifolia section-e.g. S. subnitens and S. rubellum.
S. acutifolium is distinguished from its allies by (1) the form of the stem-leaves; (2) the absence of pores in the superficial layer of the stem-cortex, which are frequently present in S. subnitens, and always present in S. quinquefarium and S. Pussowii; (3) by the branch-leaves when dry being always without metallic lustre, and almost always closely imbricate, never secund, squarrose or distinctly 5 -ranked.

The very numerous varieties depend upon the colour of the tufts, and the forms upon the greater or less degree of robustness of the plants, and the length and direction of the branches.

Distrib. Europe, Asia, Africa, North and South America.
Var. chlorinum Warnst. in Europ. Torfm. No. 75, 1888. Plants yellowish or pale greenish above, the capitulum rarely more or less reddish.

Var. Alavescens Warnst. in Bot. Ver. der Prov. Brandenburg, xxx. 1888, 114. Plants yellowish throughout.

Var. favo-glaucescens Warnst. in Schrift. der Naturf. Ges. in Danzig, N. F'. Bd.ix. Ht. 2, 1897, 153. Plants having the capitulum yellow or at times grey-green, paler below.

Var. flavo-rubellum Warnst. in Bot. Gaz. xv. 1890, 193. Plants faint reddish mixed with pale yellow.

Var. fusco-glaurescens Warnst. in Schrift. der Naturf. Ges. in Danzig, N. F. Bd.ix. Ht. 2, 1897, 154. Plants having the capitulum brownish, bleached below.

Var. fusco-virescens Warnst. in Europ. Torfm. 1881, 49. Dark green above, grey-brownish below.

Var. griseum Warnst. in Bot. Ver. der Prov. Brandenburg, xxx. 1888, 114. Plants greyish-green throughout.

Var. obscurum Warnst. l.c. Plants of an indefinite dull colour.
Var. pallescens Warnst. l.c. The entire plant whitish, or in the capitulum slightly tinged with pale greenish, reddish or yellowish ; dark green entirely absent.

Jura (Ewing); Montgomery (Ley); Burnham Common, Bucks (Sherrin).

Var. pallido-glaucescens Warnst. in Schrift. der Naturf. Ges. in Danzig, N.F. Bd.ix. Ht. 2, 1897, 154. Plants having the capitulum whitish throughout, bleached below.

Var. purpurascens Warnst. in Hedwigia, 1888, 274. Plants in the upper part, and especially in the capitulum, of a beautiful rose to purple-red colour ; paler below, but without admixture of green.

Var. roseum Warnst. in Bot. Ver. der Prov. Brand. xli. 1899, 37. Plants having the capitulum rose-red ; paler red below.

Widdy Bank Fell, Teesdale, Durham (Horrell).
Var. rubrun Warnst. in Bot. Ver. der Prov. Brandenburg, xxx. 1888, 114. Plants red throughout.

Var. versicolor Warnst. in Bot. Ver. der Prov. Brandenburg, xxx. 114. Plants of various shades of green and red mingled together; generally more or less red in the capitulum, green below.

Widdy Bank Fell, Teesdale, Durham (Horrell); Tilgate Forest, Sussex (Horrell) ; Islay (Ley).

Var. viride Warnst. in Bot. Ver. der Prov. Brandenburg, xxx. 114 (syn. var. virescens Warnst. Europ. Torfm. No. 73). Plants above light or dark green or greyish-green, generally bleached below.

Brookwood, Surrey (Sherrin) ; Keston Common, Kent (Horrell); Tilgate Forest, Sussex (Horrell); Cennant Llenyrch, Merioneth (D. A. Jones); Maentwrog, Merioneth (Horrell); Islay (Ley).
8. S. tenerum Warnst. Beitr. zur Kenntn. Exot. Sph. in Hedwigia, 1890, 194.

Syn. S. acutifolium var. tenerum Aust. in herb.
More robust than the most robust forms of S. acutifolium.
Stem-cortex of 2-3 layers; cells thin-walled and wide, at times the outer wall porose, the inner walls with small pores.

Wood-cylinder pale vinous-red.
Stem-leaves large, isosceles-triangular ; margin generally undulate and inrolled above; produced into a rather long truncate and toothed apex; border narrow almost to the base and then suddenly distinctly widened. Hyaline cells generally divided by oblique crosswalls; fibrils numerous to the base; on the inner surface with large round pores, on the outer with semi-elliptical pores in rows on the commissures.

Fascicles generally with four branches; all the branches long and comparatively thick, the pendent branches being but little
weaker than the spreading ones. Branch-leaves rather large, ovatelanceolate, regularly imbricate, apex truncate and toothed with the margin inrolled; when dry almost without metallic lustre. Hyaline cells on the inner surface towards the lateral margins of the leaf with large round pores; near the apex with small pores in the upper and lower cell-angles; pores on the outer surface, semielliptical in rows at the commissures.

Chlorophyllose cells in section isosceles-triangular, inserted between the but little convex hyaline cells on the inner surface of the leaf and here free; on the outer surface generally completely enclosed by the much swollen hyaline cells.

Distrib. France; North America.
(To be continued.)

BIBLIOGRAPHICAL NOTES.

XXIII.—An Overlooked Paper by Rafinesque.

[So much interest attaches to the work of this eccentric but capable botanist that it seems worth while to rescue from obscurity the only paper which he contributed to an English periodical-a paper which appears to have been entirely overlooked. It is not included in Dr. R. E. Call's bibliography printed in his Life and Writings of Rafinesque (1895), and does not appear in the Royal Society's Catalogue of Scientific Papers, the periodical in question not being included among those catalogued in that work. The nineteen volumes of Loudon's Gardener's Magazine (1826-1843) merit more attention than they have received from botanists. They contain much information connected with biography and bibliography, notes bearing upon British botany, and occasionally papers, such as the one here reproduced, of general interest. Rafinesque's contribution appeared in vol. viii. pp. 245-8 (1832).

Another publication imperfectly recorded by Dr. Call may as well be mentioned here. In the bibliography the Herbarium Rafinesquianum, issued as "extra of No. 6" of the Atlantic Journal, is stated to number forty-eight pages, in two parts, and to have been published in 1833. The copies in the Museum and Kew libraries have a third part, which seems to have been issued in two divisions-the first including pp. 49-64, the second pp. 65-80. I am not sure whether the reference to "my supplemental Flora of North America, 1830-35" justifies the conclusion that this third part was issued after the latter date, as the Flora in question does not seem to have been published, and this was therefore merely a supposititious date; but, so far as I can judge from a casual inspection, the part contains many names which are not taken up in the Index Kewensis nor by American authors. In the last number of the Atlantic Journal (" winter of $1833^{\prime \prime}$) Rafinesque mentions this Supplemental (or, as he there calls it, "additional") Flora of North America at the end of a "Chronological Index" of his "principal botanical works," but he

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
"Mr. Loudon's history of plants is excellent: I have found in it many novelties and valuable matter. If he had known my Medical Flora of the United States, where 600 genera are mentioned, and even their economical properties indicated, he could have added some other peculiarities.

Without further preamble, I enter upon the course of my remarks:-

1. The good genus Centranthus of Necker and Decandolle is called Fedia; and the Fedia is called Valerimella. Is it oversight or whim?
2. Tritonia of Ker is inadmissible: there are two genera of that name already; this is the third. I have called it Belendenia.
3. Oıyzopsis Mx. is erroneous: Dilepyrun Raf., 1808. The same with Airopsis, Arundinaıia, Portulacaria, Erucaria, Testudinaria, Cucurbitaria, \&c.: all these are inadmissible. AIundinaria is Miegia of Persoon.
4. Imperata: the etymon is stated to be unknown. The genus was dedicated by Cyrillo to Imperati, an Italian botanist.
5. Cissus quinquefolia and Ampelopsis quinquefolia, mentioned twice under these two names: and it is neither, but my Quinaria. See my Monograph on Vines, and my Medical Flora, vol.ii. p.120-180.
6. Nicotiana. Etymon of Tobacco: it is the name of pipe in Hayti language; and not from Tobago nor Tobasco. See Anglina, 1525; and my Medical Flora, 1830.
7. Inomcea Quamoclit. False etymon given. Quamoclit is the Mexican name; it grows from Florida to Mexico.
8. Gymmima. "Vaccine ichor," for " milk or vaccine liquor."
9. Betu, a substitute for coffee. Sugar ought to be said instead.
10. Rhus aromaticum I called Turpinia; but I changed it to Lobadium, on finding another genus Turpinia. I did not know it was called Schmaltzia (after me or my mother's name) by Desvaux. It is also Myrica trifoliata of Linnæus.
11. Narcissus, "from narke." Ovid and all other authors derive Narcissus from the name of a man.
12. Drosera filiformis Raf., 1808. Pursh, in 1814, stole this plant from me.
13. Smilacina. Bad name. It forms my genera Clintonia and Styrandra. The Dracena borealis of Aiton is the type of my beautiful genus Clintonia (dedicated to Governor Clinton, philosopher, naturalist, and statesman), with bilocular berries. I have found six species of it : those cultivated in England are C. multiflora and nutans.
14. Polyyonatum, same as Polygonum. My Sigillaria or Axillaria.
15. Virgilia lutea, so called from the yellow wood. You say it has yellow flowers. Michaux's figure has white flowers; and so had the species I saw in bloom. Is a yellow-flowered species cultivated in England? The Virgilias of North America and Mexico form my new genus Cladrastis; very different from the Virgiliæ of Africa.
16. Why is Cydonia adopted, while Sorbus and Malus are united to Pyrus ; nay, also, Aronia united, far more removed?
17. Spiraa corymbosa of Loddiges is mine; published by me in 1814. See Précis des Découvertes, No. 115.
18. Actea racemosa and Cimicifuga serpentaria, twice mentioned in two places. It is my new genus Botrophis, 1828; Macrotys, 1808.
19. Esimina, stated to have no meaning. Wrong: name of Indians of Louisiana.
20. Dionca, Jeffersonia, Pcdophyllum, \&c., stated to be genera with solitary species. Wrong: I have seen and described three species of each, Dionaa corymbosa, sessilifora, and uniflora; Jeffersonia Bartoni, odorata and lobata; Podophyllum peltatum, montanum and callicarpum. See Medical Flora, \&c.
21. Erucaria, same as Eruca. It is my Pachila.
22. Adlumia. A false etymon given. It was dedicated by me to Adlum, an American cultivator and writer on vines, a friend of horticulture and botany; yet living, and making good American wine.
23. Camellia, Camelina, and Camelus among quadrupeds; three genera of the same name, nearly. I have called the tea shrub Theaphylla (meaning divine leaf) : a good name, whether a peculiar genus, or Camellia to be united to it.
24. Lupinaster. Horrible name! Lupinus and Aster. My Dactiphyllum, 1817.
25. Hypericum virginicum, with "yellow flowers." Wrong: always purplish. It is my Triadenum purpurascens, 1808; different from Elodea.
26. Marshallia. Marshall was an American botanist, not an Englishman.
27. Cacalia. All the American species of this genus are different from the African ones; they form my genus Mesadenia; five florets round a central gland: but Cacalia suaveolens and reniformis constitute another genus, Synosma Raf.
28. Rudbeckia purpurea. The description and figure different. The fact is, ten species are blended under that name, and form a peculiar genus, which I call Helicroa; others call it R"finesquia. [Moench has denominated this genus Echinacea, from the hedgehoglike appearance of the paleæ; but whether his genus be earlier or later than those cited by Professor Rafinesque, I must leave to others to determine.-J. D.]
29. Eria. Bad name: root of Erianthus, and ten other genera. Would not Erioxantha, meaning yellow wool, be better?
30. Microstylis Pursh, 1815. I called it Achroantlus, 1808. The Liparis of Lindley is my Anistylis, 1825.
31. Aristolochic. This genus is a large tribe of plants: I have established in it the genera or subgenera Glossula, Pistolochia, Endodeca, Siphidia or Niphus, Einomeia, Dictyanthes (A. labiosa), and others. Three or four species are blended under A. serpentaria. Your description and figure are two different plants. The figure has large broad cordate leaves; and very different from our common kind, with oblong leaves. See my Medical, Floria.
32. Buxus. We import boxwood into, and do not export it from, America. You mean Armenia, in Asia: misprinted America.
33. Maclura Nuital, 1818. My Toxylon (bow-wood), 1817: a previous and better name. We have two other genera of Maclura in zoology and mineralogy. The fruit is not esculent. Kunth and

Torrey have committed the absurdity to deem this tree the Morus tinctoria, which has oblong edible fruits, Ayac, in Louisiana.
34. Cocos. Etymon wrong: comes from Coco, palm trees, in the Haytian language. Introduced by Columbus in 1494: see Acosta. Having restored the Haytian language, by collecting 300 words from early travellers, for my History of American Nutions, I have found many etymons; I shall mention a few:Yam, from Niames; Potatoes, Batatas; Manioc, Juco; Mangrove, Mangle ; Ceiba or Cotton tree, Cerba; Guava, Guayava; Pimento, Pimento; Guiacum, Guayac; Mancenilla, Manzinila; Cassava, Cazabi; Mahogany, Mahy, Cacao, Copal, Mani; and many more.
35. Two genera, Bellis L. and Belis Salisbury. This last my Jacularia.
36. Abies and Larix. Why Salisbury quoted instead of Tournefort, 1700 ; or Adanson, 1750 ; or Jussieu, 1789 ?
37. Gymnocladus. Our [Kentucky] coffee tree, 80 ft . high in the west, quite straight; seeds used for coffee. This fine tree called a tree, a shrub, and a vine at once.
38. Juniperus virginiana. The figure has large round berries; ours has small ovoid warty berries. The figure of J. bermudiana more like ours.
39. Veratrum viryinicum is Melantlium virginicum, by description and figure.
40. The asters of North America are a chaos as yet. We have 100 species: you have increased the confusion. Your Erigeron carolinianum is certainly an Aster by figure, with few rays. A. Tradescanti is different from ours. Aster aryophyllus, three rays in description; five rays in figure. I have prepared a work on this genus for Decandolle, divided into many subgenera by simple or double rays, entire or toothed, seeds smooth or villose, \&c. [Mr. D. Don has already grouped Aster argophyllus and the closely related species into a genus named Haxtonia.-J. D.]
41. Solidago. The species of North America are in the same confusion as those of Aster. The figures of your S'. bicolor, odora, mexicana, flexicaulis, do not correspond with the description nor with our species. S. flexicaulis is our S. latifolia. I am preparing also a work on this genus, by seeds smooth or hairy, rays few or many, \&c.
42. Negundium americanum Decandolle is my Negundium (1808) fraxineum. We have a second species in the west.
43. Nyssa. All called shrubs: they are all trees with us.
44. Cucurbitaria, name too like Cucurbita. It is my Phialospora.
45. My genus Phorima, 1814, for Boletus, with irregular cells, omitted; and many other genera of my pamphlet, 1814. [Frécis des Découvertes Somiologiques, \&c.]
46. Piper. "None out of tropics." Wrong: a species, P. leptostachyım, found in Florida, lat. 28 ${ }^{\circ}$, by Mr. Ware ; described by Nuttall.
47. I have discovered and described thirty-four species of Trillium (see my Medical Flora); also
48. 30 species and 100 varieties of native North American

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

known to me for Britain, may I ask any botanist who can reach that part of Cumberland to collect specimens and cuttings? Mr. Baker reports there were few other trees along the road. - E.F. Linton.

Mathiola sinuata (p.168).-This plant still flourishes at Santon, on the North Devon coast. Last year at least fifty plants flowered on the cliffs there and on the sandhills in the neighbourhood. Polwhele, in his History of Devonshive, 1797, mentions this habitat: " on the rocks adjoining Braunton burrows." It is difficult to conceive that the plant in this neighbourhood is not indigenous. When Polwhele wrote, there was no house within a mile of the place, which is bounded by the sea, moorland, and the three miles of overblown sand known as Braunton Burrows. It is possible that the plants on the sandhills may be extirpated by collectors and trippers, but those on the cliffs are happily inaccessible. - Tномаs Wainwhight.

Xyris Jupicai Mich.-In my notes on Xyris (Journ. Bot. 1899, 499) I included X. Jupicai Mich. Fl. Bor. Am. i. 23 (1803) as a doubtful synonym of X. flexuosa Muhl. ($=X$. torta Smith). Different authors had taken different views as to the plant inadequately described by Michaux, and no one seemed to have examined the type. Michaux's herbarium forms one of the numerous special collections in the French National Herbarium at the Jardin des Plantes, which I have recently visited. Examination shows at once that X. Jupicai has nothing to do with X. torta Sm., that is, with the plant generally known as X. flexuosa Muhl. The latter has a shortly ciliate unwinged keel on the lateral sepals, while X. Jupicai Mich. has a somewhat erose wing on the upper part of the lieel of the sepals, which are shorter than the bracts, and have no apical tuft; it is, in fact, the plant generally known as X. carolniana Walt., a species widely spread through the Eastern United States. Michaux gives its distribution on the sheet as "a Maryland ad Floridam." Walter's name dates from 1788 (Fl. Carol. 69). The type of X. brevifolia Michx. corresponds exactly with the plant generally so named, and characterized by narrow leaves and small light brown roundish heads.-A. B. Rendee.

NOTICES OF BOOKS.

The Butanists of Philadelphia and their Work. By John W. Harshberger, Ph.D. 8vo, cloth, pp. iv-457. Philadelphia. 1899.
Anyone who has been engaged in similar work will understand that, as the preface tells us, "this book is the outcome of much correspondence and research." It is a handsome volume, embellished by forty-eight illustrations, most of them portraits, and well printed. It is a valuable contribution to the history of botany in America, and the future compiler of the much-needed "Biographical Index of American Botanists" will find it invaluable, so far as Philadelphia is concerned.

Among the earlier men whose biographies are here given are many whose names are intimately associated with the history of botany in England. John Bartram, Humphrey Marshall, James Logan, and, in more recent times, Thomas Nuttall and Frederick Pursh, are names at least as well known in England as in America by contemporary correspondence and collections. This side of their history might, we think, have been more fully recognized; but it may be that this is intentional, as Prof. Harshberger limits himself for the most part to that part of their botanical career which is connected with Philadelphia.

Prof. Harshberger modestly declines to claim completeness for his book, but his belief that "the omissions are few" is, we think, amply justified. The very interesting paper by Mr. F. V. Coville on "The Botanical Explorations of Thomas Nuttall in California" (Proc. Biol. Soc. Washington, xiii. 109-121) was not published in time for reference; it, however, supplements in many particulars our previous knowledge of this able if eccentric botanist, especially by copious extracts from so well-known a book as R. H. Dana's T'wo Years before the Mast. Nuttall was the only passenger on the trading vessel 'Alert,' of Boston, Mass., in 1836, when Dana was a common sailor.

We do not find any mention of Patrick Kerr Rogers, who published at Philadelphia, in 1802, his "inaugural experimental inquiry for the degree of Doctor of Medicine" entitled "An Investigation of the Properties of the Liriodendron Tulipifera, or Poplar-Tree," on the title-page of which he describes himself as "formerly of Ireland, now of Philadelphia." This was dedicated to Benjamin Smith Barton, who, of course, duly figures in Dr. Harshberger's volume, and to George Rogers, M.D., of Newtonstewart, Ireland, a relative of the author. Rogers's name is not included in the Biographical Index of British Botanists; perhaps Dr. Harshberger may be able to find out more about him. The account of Ratinesque is mainly taken, as is natural, from Dr. R. E. Call's monograph of his life and writings, published in 1895; it may interest American botanists to know that a paper by the eccentric naturalist, which has been hitherto overlooked, will shortly be reprinted in this Journal.

There are a good many typographical errors in the book, and these sometimes come rather thickly-as in p. 249, where we read of "Dr. Broomfield, Dr. Thomas Belsatter [Bell Salter], and Professor C. C. Babbington." "Dr. Broomfield" is of course Dr. W. A. Bromfield, whose name appears on p. 164 as " W. J. (?) Bromfield." Other slips occur, though rarely; e.g. Pursh (whose name was originally Pursch) was born not at Tobolsk, but at Grossenhain, in Saxony.

At times, a cross-reference would have been useful ; e.g. the passage relating to Nuttall on p. 112 should have been referred to in his biography (pp. 151-159).

The volume includes biographies of living Philadelphian botanists, the author among them. Viewed from a literary or general standpoint, the work would certainly gain by compression. The
details given are sometimes very trivial, and can hardly be even of local interest. Thus of one botanist we are told: "she was blessed with an excellent mother, under whose pious and devoted care her early education was received until she was twelve years old"; while of another we learn that he "suffered a fracture of the hip, July, 1898, and it was thought that he had almost recovered from the effects of the injury, as he was able to be wheeled out in a chair on fine days, but on Friday evening he sank into unconsciousness, from which he never rallied."

We have referred to the need of a biographical index of American botanists, and we cannot conclude this notice of an important contribution to such an undertaking without urging its importance upon those who are in a position to accomplish it. We venture to suggest that some of the energy displayed in formulating new "laws" for nomenclature, and inventing fresh combinations, might be more profitably expended in the compilation of some account of the bygone workers in the field, on whose researches the history of American botany is largely based. Daily experience convinces us of the importance of such a work, and we are certain that there are many American botanists who are capable of carrying it into execution. The biographical notes in Prof. Sargent's Silva of North America are models of brevity and completeness, and furnish an example and a foundation for what is required.
J. B.

Dammarks blaagrönne Alger (Cyanophycea Danica). Af Johs. Schmidt. I. Hormogoneæ. Copenhagen: Hagerup. 1899.

In the introduction to this first part of an important work the author details the collections to which he has had access in the course of his work, among which are the herbaria of Lyngbye, arranged by MM. Flahault and Gomont, and that of Hofman Bang. The geographical boundaries are also here defined.

The first part of the paper deals with the whole group of Cyanophycea under the headings of-A. Anatomy (cell-structure, trichomata, sheaths, and branching); B. Development and reproduction; C. Biological remarks (habitat and mode of life); D. Methods of examination of the blue-green algæ; followed by a bibliography.

It has always been a more or less disputed point whether or no the Cyanophycea can be said to possess chromatophores; and Messrs. Bornet \& Flahault, in their "Revision des Nostocacées hétérocystées," throw grave doubt on the statements of those authors who describe these bodies in members of this group. Dr. Schmidt, however, boldly speaks of the chromatophores, but acknowledges that they are very different from those of other algæ, and quotes Dr. Fischer's paper "Untersuchungen über den Bau der Cyanophyceen und Bakterien" in support of his view. Dr. Schmidt says that in order to see these chromatophores it is often necessary to use reagents, though it is sometimes possible to observe their structure in the ordinary living cell. He adds that "they are on a lower standpoint of differentiation from those of other algæ," and in the

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Conspectus Flora Graca auctore E. de Halácsy. Vol. i. fasc. i. 8vo, pp. 224 [Ranunculacea-Alsinacea.] Lipsiæ: Engelmann. 1900.
We have here a welcome and much-needed addition to our European Floras. As the publisher points out on the cover, it is nearly a hundred years since the publication of Sibthorp \& Smith's Prodromus Flora Grace, and although the region is included in Boissier's Flora Orientalis, there was ample room for a book specially devoted to Greek plants. The present work, among its other good points, promises speedy completion; it is to appear in from eight to ten fascicles, and will be finished in five or six years, and, as the manuscript is already almost entirely completed, we may hope that the promise will be duly carried out. The introductory matter will be published with the concluding part; the present instalment begins at once with Ranunculacea.

Generic characters are not given, but those of sections are supplied, with in most cases a short diagnosis of each species, giving the salient points of its differentiation. A very ample bibliography of each plant is given, and the geographical distribution is also fully set forth. Large genera are provided with a carefully drawn up and not too brief clavis, so that the volume is in every respect thoroughly workable. It is excellently printed, the types being well chosen-a matter of detail which affects the usefulness of a book far more than is sometimes supposed. We would suggest the desirability, in future parts, of adding to the heading of each page the name of the genus to which it is devoted, in the manner which has now become fairly general in floras, greatly to the advantage of the worker.

In the absence of explanation it is not quite clear what principle the author adopts as to nomenclature; we note that he retains Nymphaa and Nuphar in the sense in which they were generally understood until C'astalia was revived for the former, and that the watercress appears as " Nasturtium fontanum Lam. Dict. ii. 185 (Cardamine)." Lamarck's name was taken up by Ascherson (Fl. Brandenb. i. 32) in 1864, whose name should be attached to it as authority; Lamarck's specific name, which should be cited from Fl. de France, ii. 499 (1778), would we imagine be ignored at Berlin under the " fifty years' limit" rule which now prevails there. Occasionally we find a citation which strikes us as hardly accurate -e.g. "R. Br. Hort. Kew. iv." or even "R. Br. Kew. iv."; the reference being of course to Aiton's Hortus Kewensis. But as a whole the Flora impresses us as very carefully done, and we hope the publisher's promise as to its rapid progression may be fulfilled.
J. B.

Humboldt Centenar-Schrift—Wissenschaftliche Beiträge zum Gedächtniss der hundertjährigen Wiederkehr des Antritts von Alexander von Humboldt's Reise nach Amerika. 8vo, pp. 54, 247, 32, with 2 facsimiles and 2 plates. Berlin: Kühl, 1899. Price 15 Marks.
This elegant publication, commemorating the hundreth anniversary of Humboldt's departure for America, is issued under the auspices of the Berlin "Gesellschaft für Erdkunde." It comprises three distinct and separately paged contributions.

The first, by Eduard Lentz, gives some account of the circumstances which led to the expedition, and the difficulties attending its arrangement. It is based on letters, hitherto unpublished, written by the explorer to his patron and friend, Baron de Forell. A number of the letters are published in full, and there is also a brief autobiography, which takes us up to the time just preceding his great expedition. Facsimile reproductions are given of the autobiography, and also of Humboldt's letter of application for a passport.

The greater portion of the book is occupied by a valuable review, by Prof. Engler, of the development of plant-geography in the last hundred years, "Die Entwickelung der Pflanzengeographie in den letzen hundert Jahren und weitere Aufgaben derselben." Among the earlier workers Robert Brown's name finds honourable mention, but no reference is made to the travels of Banks and Solander, which added not a little to our knowledge of the worldflora.

The bulk of Prof. Engler's communication consists of a résumé of the most important "floristic literature," in which are contained statements relating to plant-geographical regions and formations. It occupies pp. 28-159, and, while scarcely an exhaustive bibliography, yet gives a good idea of the work done, stating also the authors' names, and in many cases the titles of the book or paper in which the work was published. The arrangement is under generally recognized plant-geographical areas and sub-areas, while names of countries and provinces are given in the margin. This is followed by a section entitled "Die physiologische Pflanzengeographie," the modern Ecology, which, having less tradition, occupies fewer pages. A third section, "Die entwickelungsgeschichtliche Pflanzengeographie" (pp. 195-237), reviews the palæo-botanical and phylogenetic phases. There is also an index of the authors mentioned.

The third paper is by Wilhelm Meinardus, and entitled "Die Entwickelung der Karten der Jahres-Isothermen von Alexander von Humboldt bis auf Heinrich Wilhelm Dove." It fills thirty-two pages, and is accompanied by charts which show at a glance the nature of the development. Humboldt recognized the broad principles; later work has consisted in elaborating the details, more especially in the equatorial zone.
A. B. R.

Key to Tribes and Genera of Melanospermea and Floridea. By Richard A. Bastow. (Reprinted from Journal and Proceedings of Royal Society of N. S. Wales, vols. xxxii. \& xxxiii. (1898-9).)
An illustrated key to any group of plants is as difficult to form as it is easy to criticize when formed, and the keys to Melanospermea and Floridec by Mr. Bastow are no exception. Keys in the usual sense these are not, however, being rather a summing-up of the main points of orders and genera, represented in the seas surrounding Australia and the adjacent islands.

The first, which deals with Melanospermea, is founded, as the author explains in a short introduction, on the works of Harvey, Agardh, and Kützing. The unfinished "Nereis" has caused a careful and of course fruitless search through the libraries of three colonies for the continuation of a work which only reached one volume It seems a pity that such a careful worker as Mr. Bastow should have to waste his time hunting for a book which does not exist, while he is obliged to omit from his key all the information contained in papers and books which presumably are not accessible to students in Australia. Had the author been in touch with any European botanical centre, he would have been able to bring his work up to date, instead of leaving it some twenty odd years behind the times. Since Harvey's day, changes, founded on more minute investigation, have arisen in the classification of brown algæ, and the Floridece have undergone entire rearrangement by Prof. Schmitz on a wholly different basis from the old lines. All this should have been taken into account in these keys.

As regards Melanospermect, it may be mentioned that Mr. Bastow retains Splachnidium in Fucacea, while Chroospora should be in Encceliacece instead of being included in Sporochnoidea. Dictyotacece contains a motley collection from other ordersAsperococcus, Hydroclathrus, Stilophora, and Cutleria. Adenocystis finds itself in Chordariec instead of with its relations in Laminariacea, and Desmotrichum is in Ectocarpacea. Such genera as Pachydictyon and Dilophus, which are mainly Australian, find no place at all here, possibly being included under Dictyota.

The object of these keys was mainly to help the beginner in naming algæ, and no doubt they will be useful in this respect, as the figures, though not well executed, are drawn from good sourees; but this only makes one regret the more that such trouble should have been expended to comparatively little purpose. Should Mr. Bastow contemplate the issue of another edition of these keys, we are sure that he would have no difficulty in obtaining help from those who have access to more complete libraries than our colonies can at present boast.
E. S. B.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

l'huile.'-J. Foucaud, 'Additions à la flore de Corse.'-A. Daguillon, ' Un fruit anormal de Pyrus Malus.'-P. Fliche, Pyrus cordata Desv. M. Gandoger, ' Notes sur la flore Espagnole.'

Bull. Torrey Bot. Club (24 March).-A. W. Evans, ' New Genus of Hepaticæ from Hawaiian Islands' (Acromastigum: 1 pl.). E. L. Morris, 'Revision of Plantayo patagonica.' - F. S. Earle, 'Florida Fungi.' - H. H. Rusby, 'South American Plants.'(21 April). F. E. Lloyd \& L. M. Underwood, 'Lycopodiums of N. America' (3 pl.). - P. A. Rydberg, 'Rocky Mountain Flora.'Id., 'Prunus insititia.' - F. G. Smith, 'Peculiar case of contact irritability.' - W. R. Maxon, Asplenium cespertinum, sp.n.-S.C. Stuntz, ' N. American species of Eleutera (Neckera).'

Gardeners' Chronicle (21 April). - Polypodium Harrisii Jenm., sp.n.

Journal de Botanique ("Mars.").-P. v. Tieghem, Aristolochia. - N. Patouillard \& P. Hariot, Lentinus Erringtonii. - A. Chabert, Euphorbia Durandoi \& E. lugubris.-R. Chodat \& C. Bernard, 'Sur le sac embryonnaire de l'Helosis guyanensis' (2 pl.). - R. Maire, ' Evolution nucléaire chez les Entophyllum' (1 pl.).

Malpighia (xiii. fasc. 7-9 : received 11 May). - O. Mattirolo, ' Bibliografia botanica italiana.' - A. Villani, 'Sull' affinità e discendenza delle Crocifere' (1 pl.$)$. - Id., 'Tubercoli radicali delle Leguminose' (1 pl.).-R. Pirolta \& E. Chiorenda, 'Illustrazione di alcuni Erbarii antichi Romani’ (5 pl.). - T. Ferraris, 'Dı un nuovo Ifomicete parassita delle Arance' (Oidium Citri aurantii: 1 pl.).

Mémoires de l'Herl. Boissier (No. 10: 30 March). - H. Schinz, ' Zur Kenntnis der Afrikanischen Flora.' - (No. 11: 30 April). F. Stephani, 'Species Hepaticarum.' - (No. 12: 30 April). F. Meister, 'Zur Kenntnis der europäischen Arten von Utricularia' (3 pl .).

Oesterr. Bot. Zeitschrift (April \& May). - F. Vierhapper, Armica Doronicum Jacq. (1 pl.). - J. M. Polák, 'Die Staminodien der Scrophulariaceen.' - L. \& K. Linsbauer, ' Teratologische Befunde an Lonicera tatarica' (1 pl.). - (April). J. Rick, Sclerotinia Bresadola, sp.n. - K. Rechinger, Lamium Orvala \& L. Wettsteinii.J. B. Scholz, 'Studier über Chenopodium opulifolium' (concl.).(May). B. Horák, 'Zur Flora Montenegrós.' - R. v. Wettstein, ' Die nordamerikanischen Arten der Gentiana § Endotricha' (1 pl.).

BOOK-NOTES, NEWS, dc.

At the meeting of the Linnean Society on April 19th, Messrs. W. B. Hemsley and H. H. W. Pearson read a paper "On some Collections of High-level Plants from Tibet and the Andes." Mr. Hemsley gave a brief history of the botanical exploration of Tibet, followed by an account of the unpublished collections presented to Kew by Captain Wellby and Lieutenant Malcolm, by Captain Deasy and Mr. Arnold Pike, and by Dr. Sven Hedin.

These collections were all made at great altitudes in Central and Northern Tibet; few of them below $15,000 \mathrm{ft}$., and some of them at $19,000 \mathrm{ft}$. and upwards. The highest point at which flowering plants had been found was $19,200 \mathrm{ft}$. above the level of the sea. The plants recorded by Deasy and Pike at altitudes of $19,000 \mathrm{ft}$. and upwards are:-Corydalis Hendersoni, Alenaria Stracheyi, Saxifraga parva, Sedum Stracheyi, Saussurea bracteata, Gentiana tenella, G. aquatica, an unnamed species of Astragalus, and an unnamed species of Oxytropis. These are the greatest altitudes on record for flowering plants. Deep-rooting perennial herbs having a rosette of leaves close to the ground, with the flowers closely nestled in the centre, are characteristic of these altitudes. The predominating natural orders are:-Composita, Leguminosa, Cruciferce, Rannnculacea, and Graminea. The Composita largely predominate, and the genus Saussurea is represented by numerous species. Specimens of about a dozen species were shown to illustrate the great diversity exhibited by this genus in foliage and inflorescence. Liliacece and the allied orders were very sparingly represented. Two or three species of Allium occur; one of them, A. Semenovii, in great abundance up to $17,000 \mathrm{ft}$. None of the collections contained any species of orchid.

Mr. Pearson's remarks on the Andine Flora had special reference to Sir Martin Conway's small collection brought from Illimani, in the Bolivian Andes, in 1898. Out of forty-six species of flowering plants obtained by Sir Martin Conway, seven are from $18,000 \mathrm{ft}$. or above it, two being as high as $18,700 \mathrm{ft}$. These, the highest Andine plants on record, are Malvastrum flabellatum Wedd. and Deyeuxia glacialis Wedd. Thirty-nine species in this collection were found above $14,000 \mathrm{ft}$. ; these belong to thirty-four genera and twenty-one natural orders; fifteen (i.e. about three-eighths of the collection) are Composita. Of the thirty-four genera, one only-Blumenbachia -is endemic to South America. The species, with one exception, are contined to the Andes, eight or nine of them not being found outside Bolivia. - In the collection made by Mr. Fitzgerald's expedition in the Aconcagua valleys between 8000 and 14,000 ft., ten genera (i.e. one-quarter of the whole) are endemic in South America. The contrast between this and the small endemic element in the Conway collection from above $14,000 \mathrm{ft}$. gives additional support to the generalization that the flora of high levels is more cosmopolitan than that of low levels.

The Report of the Botanical Exchange Club for 1898 by Mr. James Groves has just been published. It contains a number of interesting notes upon critical forms, some of which we hope to extract later for the benefit of our readers. It would, we think, be helpful if some indication were given of the place where copies could be obtained; at present the only address is that of the printers.

The recently issued "Rules for compiling the Catalogues in the Department of Printed Books in the British Museum" contain much that is useful and suggestive to librarians and bibliographers, and are serviceable as a guide to the principles on which the entries in the Museum Catalogue are drawn up. Those who affirm that
language was given us to conceal our thoughts will find in these Rules ground for extending their conclusions, and will assume that the aim of a cataloguer is to make books undiscoverable. The Rules may be all that is admirable and ingenious, but they result in such approved entries as the following, which we take from a single page of examples:
"History. A History of Painting from Fra Angelico to Velasquez. Boor. A first Book on Algebra.
Аrt. Le livre intitulé l'art de bien mourir.'’
It would be difficult to conceal more effectively the works placed under these three headings.

The eleventh Annual Report of the Missouri Botanic Garden contains papers on the diseases of 'T'axodium distichum (' peckiness') and Libocedrus decurrens ('pm-rot') by Hermann von Schrenk; on Agaves flowering in Washington, by J. N. Rose; and revisions of the American species of Euphorbia § Tithymalus by J. B. S. Norton, and of the species of Lophotocarpus, by J. G. Smith. It is unnecessary to say that the volume is admirably printed and lavishly illustrated.

Mr. G. C. Druce announces in the 'Pharmaceutical Jourpal' that he has in preparation/An Edological Flora of the British Isles,' in which he hopes to show "more particulars as to the exact place of growth, altitude and distribution, than is given in the usual text-books." Such a work, if carefully done, will be both useful and interesting; pu't we trust Mr. Druce will observe due economy in supplying inffrmation as to the "exact place of growth" of our rarer species.

The first part, containing 101 plates with descriptions, of the " Illustrations of the Botany of Captain Cook's Voyage Round the World in H.M.S. 'Endeavour' in 1768-71' has just been issued by the Trustees of the British Museum. The descriptions are printed verbatim from the manuscripts of Banks and Solander. Mr. Britten has carefully compared the plates and descriptions with the original drawings and the specimens in the Banksian Herbarium, and has added such information as these supply. He has also added determinations, in accordance with the nomenclature at present adopted. HKe hope to notice the work at greater length in an early issue.

A new part of the Flora Capensis, completing vol. vii., has just been published. It concludes the Graminea, and is entirely the work of Dr. Stapf.

The Daily Chronicle, although it does not reach the level of the Daıly Mail as an instructor in natural history, does its best. Here is a piece of information from its issue of April 24th:"While it seems to be beyond question that the cultivated rose is a comparatively recent importation into this country, it is equally certain that the delicate pink and white roses of our hedgerows, with their fragile petals and lovely bloom, are, if not indigenous to the soil, at least as old as the association of the name of St. George with England."

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

NOTES ON ERYNGIUM.

By James Britten, F.L.S., and E. G. Baker, F.L.S. (Plate 411.)

The following notes are the result of an examination of some of the species of Eryngium in the National Herbarium.

I. North American Species.

Eryngium aquaticum L. Sp. Pl. 232 (1753). This name is assigned by Britton and Brown (Ill. Fl. N. Amer. ii. 522) to the plant for which S. Watson (Index, p. 422) and other authors have adopted the name yuccifolium of Michaux (usually spelt yuccafolium). It is similarly applied by Delaroche (Eryngium, p. 57), but that author quotes the second, not the first edition of the Species Plantarum, and the views of Linnæus, as is well known, had materially altered between the dates of publication of the two editions. A careful investigation of the synonymy and of the Linnean types has convinced us that the aquaticum of ed. i. is not the yuccifolium of Michaux.

The description of the plant in Sp. Pl. ed. i. stands as fol-lows:-
"aquaticum. 2. Eryngium foliis gladiatis serrato-spinosis: floralibus indivisis.
Eryngium foliis gladiatis utrinque laxe serratis: summis tantum dentatis subulatis. Gron. virg. 146.
β. Eryngium lacustre virginianum, floribus ex albido cæruleis, caule \& foliis ranunculi flammei minoris. Pluk. alm. 137. [Phyt. 396, fig. 3.]
Habitat in Virginia. 4."
In the Linnean Herbarium this name is represented by two sheets pinned together : the first having written on it "aquaticum" and the second the figure " 2 ," both in Linnæus's hand. The second bears in Gronovius's hand the number " 500 " followed by the phrase from Plukenet which Linnæus quotes for his variety β : to this Linnæus has added a note all of which we are not able to read, but which seems to show that he thought the specimen different from the plant figured by Plukenet. Each of these specimens represents the plant now known as E. virginianum Lam.; the Gronovian specımen is doubtless that referred to in Hort. Cliff. 88 (n.5) as " nobiscum a D. D. Gronovio communicata."

Excluding for the present the variety β, it seems clear that the Gronovian plant was the only material consulted by Linnæus in establushing his aquaticum. The only synonym he cites is that of Gronovius (Fl. Virg. p. 146), where "Eryngium aquaticum Horibus albis Clayt. n. 500 " is quoted by Gronovius as a synonym-the Journal of Botany.-Vol. 38. [July, 1900.]
number 500 being that of Clayton's plant in the Linnean and National herbaria-and it is from this that Linnæus derived the name aquaticum.

It may be urged with some show of reason that Linnæus's descriptive phrase "foliis gladiatis serrato-spinosis: floralibus indivisis" may be taken as referring to yuccifolium. But it must be remembered that he was contrasting aquaticum with fatidum (which immediately precedes it and which is characterized as having "floralibus multifidis") ; while as to the former, if it be urged that the leaves of virginianum are not what we should now call "gladiatis," they are at least as much so as those of fotidum to which he applies the same term; and it may be noted that Gronovius has "gladiolatis," not "gladiatis" as cited by Linnæus.

In making his variety β, Linnæus again follows Gronovius, who says (l.c.): "Hujus varietas est Eryngium lacustre Virginianum floribus ex albido cæruleis, caule \& foliis Ranunculi flammei minoris D. Banister. Plukn. Alm. p. 136 [137], cui folia sunt lanceolatolinearia utrinque subulata, sessilia, floresque pedunculati." A reference to Plukenet's specimens in Herb. Sloane (xcii. f. 62 and xciv. f. 188) shows conclusively that his plant was E. viryinianum, one of them being the slender few-headed specimen on which his figure is based. This plant of Plukenet Lamarck cites as synonymous with his virginianum.

From what has been said it seems clear that the whole of the material present to Linnæus when he drew up the description of aquaticum for his first edition belongs to the plant now generally known as virginianum, which latter must be reduced to a synonym of the Linnean species.

In the second edition of the Species Plantarum, Linnæus corrected the synonymy given for fotidum in ed. i.* by removing from that species "E. americanum, yuccæ folio, spinas ad oras mollinsculis. Pluk. alm. 13 [137] t. 175, f. 4, Raj. suppl. 239. Moris. hist. 3. p. 167 " and "E. foliis gladiatis utrinque laxe serratis: denticulis subulatis. Hort. Cliff. 88. Roy. lugdb. 529." These-which are

[^14]
THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

(1860) with regard to this plant is corrected by S. Watson in his Index, and the conclusions of the latter are accepted by Chapman in his latest (third) edition (1897). Chapman's mistake seems to have originated with Rugel's plants, collected in 1843 and distributed by Shuttleworth. In this set, No. 278 bears on its printed ticket the name E. Baldwini, but the numerous specimens so labelled in the National Herbarium all belong to E. prostratum Nutt. The true Baldwini appears in Rugel's collection-Nos. 279, 280, 281-under the name E. filiforme Shuttl., which Asa Gray (Pl. Wright. p. 78) rightly reduced to Baldwini. Shuttleworth's 279 is an extremely slender form with filiform leaves. For the sake of comparison we have figured specimens of E. prostratum Nutt. and E. filiforme Shuttl. from the types in the National Herbarium. We have given figures of the involucral bracts, bractlets, and heads, showing the distinctive characters of the two species.
E. integrifolium Walt. Fl. Carol. 112 (1788). Messrs. Coulter \& Rose (Rer. N. Amer. Umbell. p. 102) say that it "seems impossible to determine" this plant. The specimen in Walter's Herbarium, however, although but fragmentary, is clearly identical with E. vi, gatum Lam. as was indeed correctly indicated by Sprengel (Syst. i. 870) in 1825. Walter's name must therefore be substituted for Lamarck's, over which it has a priority of seven or eight years. Under this head may be mentioned a name frequently quoted in books as "E. americamum Walter." As Messrs. Coulter \& Rose point out, there is no such plant:-" that name was first used by Sprengel in Roem. \& Schultes Syst. [vi. 337], and referred by him to Walter, but he copied [abridged] the description of Walter's E. integrifolium." An earlier citation of the name will be found in Michaux, Fl. Bor. Amer. i. 163 (1803), where it is doubtfully referred to his E. ovalifolium ($=E$. virgatum Lam.). The plant is generally referred with doubt to E. prostratum Nutt., as in Britton \& Brown's Illustrated Flora, and in the Index Kewensis, where E. amer icarum is erroneously cited as "Walt. Fl. Carol. 102." Specimens distributed under the name americanum by Elihu Hall (no. 242) $=$ E. prostratum.
E. petiolatum Hook. Fl. Bor. Amer. i. p. 259 (1833). Douglas's specimens, five in number, from "overflowed plains of the Multnomah, 1825," are in the National Herbarium, and are of especial importance, as Hooker (Fl. Bor. Amer. i. 259) says of the plant:"Of this I possess but one, and that an imperfect specimen." The petioles are long and nodosely articulate ($6-8 \mathrm{in}$. long in the lower leaves); the involucral bracts are subulate, ciliate, spinose, rigid, and spinous tipped; the bractlets are longer than the globose head. Asa Gray (Proc. Am. Acad. viii. 385 (1872)) makes a variety, juncifolium, on a plant gathered in Oregon by Elihu Hall, no. 200. We have compared the two, and cannot separate Hall's plant from Douglas's type. Messrs. Coulter and Rose (in Revis. Umbell. 48) quote Hall's plant as E. articulatum Hook. Lond. Journ. Bot. vi. 232, 1847. The accompanying figures (Plate 411, A, B), taken in
each case from types, show that E. articulatum and E. petiolatum are abundantly distinct, the bracts and bractlets giving the heads a very different appearance. Since our plate was prepared, Messrs. Coulter and Rose have kindly sent us their specimens for comparison, with descriptions of the two species prepared for their forthcoming "Second Revision of North American Umbelliferæ." We are interested to find that specimens of E. articulatum lately received by them from the locality where Geyer collected the plant on which Hooker's original description was based, have led them to the conclusion at which we had arrived. These authors now regard E. Harknessii Curran as synonymous with E. petiolatum. We do not know what their E. petiolatum (Revis. Umbell. 97) may be, but it can hardly be either E. petiolatum Hook. or E. articulatum. In view of the confusion that has arisen between the two species, the following synonymy may be found useful :-
E. petiolatum Hook. Fl. Bor. Amer. i. 259 (1833); Torr. \& Gray, Fl. N. Amer. i. 604 (1840) ; Torr. Bot. Wilkes, 315 (1873), excl. syn.; Brewer \& Watson, Bot. Calif. i. 255 (1876), excl. syn.
E. petiolatum var. juncifolium A. Gray in Proc. Amer. Acad. viii. 385 (1872); S. Watson, Index, 421, excl. syn.
E. articulatum Coulter \& Rose, Revis. N. Amer. Umbellif. 98 (1888); Howell, Fl. N. W. Amer. i. 263 (1898) ; non Hook.
E. articulatum Hook. Lond. Journ. Bot. vi. 232 (1847).
E. petiolatum Torr. Bot. Wilkes, 315 (1873), quoad syn.; Brewer \& Watson, Bot. Calif. i. 255 (1876), quoad syn.
E. petiolatum var. juncifolium S. Wats. Index, 421, quoad syn.
E. Harknessii Curran in Bull. Calif. Acad. iii. 153 (1885).

II. Other Species.

E. nasturtiffolium Juss. ex Delaroche, Eryngium, p. 46, t. 17. This is founded upon Houstoun's "Eryngium americanum supinum nasturtiifolium," of which we have a poor specimen collected by him at Vera Cruz in 1731, and an excellent pencil drawing, also by Houstoun. It is not mentioned as a Vera Cruz plant by Mr. Hemsley in Bot. Biol. Centr.-Amer.
E. orientale Mill. Dict. ed. viii. no.6, queried as =amethystinum in Index Rewensis, is rightly so referred. This is the "E. Orientale foliis trifidis" of Tournefort (Cor. 23), which Delaroche places among his "species minus notæ aut dubiæ," with the note:"Folium vidi in herbario Vaillantii hoc nomine insignitum, et Eryngio amethystino ut mihi videtur pertinens." There is in the Banksian Herbarium a sheet from Gronovius's Herbarium, sent him by Vaillant, and written up "Oriens. Tournefort," with the Tournefortian name, on which Dryander has annotated :-" Delaroche has it among dubiæ, p. 66, n. 8. He had only seen a leaf in Vaillant's herb. which he took to be amethystinum. I believe he is right. I rather believe that this specimen is from the Duch gardens, as it is not said to be from Vaillant, and there is in the

Herb. a magnificent specimen from Miller's herbarium, which Houstoun had brought either from Holland or Paris, it having a ticket in Houstoun's handwriting."
E. pallescens Mill. Dict. ed. viii. no. 5 (" pallescente," but corrected to pallescens on last page of book). In the Index Kewensis this plant is identified with E. amethystinum, herein following, but with less caution, the lead of Steudel, who enters it as "E. amethystinum var.?" and does not place it in italics. In DC. Prodr. iv. 97, it occupies the first place among the "species non satis notæ." It is, however, correctly cited in Aiton's Hortus Kewensis (ii. 327) as a synonym of E. Bouryati Gouan, and it is strange that this identification should have been overlooked by all subsequent writers. It was probably due to Solander, who similarly identifies Miller's specimens in the Banksian Herbarium. These examples, as in other cases of plants from Miller's herbarium, do not bear his name, being labelled simply "Hort." (in some cases "Herb."); but the connection is made evident by the fact that, when Miller's herbarium was acquired by Banks in 1774, Solander ticked off the species received in Banks's copy of the eighth edition of the Gardeners Dictionary, and at the same time wrote up the specimens; both description and plant are thus indicated by Solander. Moreover, we have two sheets of the same plant from Chelsea Gardens, sent to the Royal Society in accordance with the Charter in 1738 and 1750 respectively; one of these bears the Tournefortian synonym. It is interesting to note that Miller was precise as to its distinctness from E. amethystinum, of which, he says, it had been "supposed by many to be only a variety"; "I have propagated it by seeds more than thirty years without finding the least alteration, so that I make no doubt of its being a distinct species." It may perhaps be worth noting that, according to contemporary testimony, Linnæus confused this plant with his E. alpinum. Gouan, when establishing E. Bourgati (Illustr. Bot. p. 7, 1773), says: "Communicavi olim cum Linnæo, qui ad alpinum in litteris revocavit'; and Solander, in his MS. notes on alpinum, says: "Descriptio foliorum in Lim. Mantissa, p. 349, certe ex Eryngio Bourgati desumata; ambæ species ab auctoribus alpina vocantur." Willdenow (Sp. Pl. i. p. 1360 (1797)) cites E. alpinum L. Mant. under E. Bourgati; and the Index Kewensis, following Stendel and De Candolle, places here E. alpinum Lapeyr. (Hist. Abr. Pl. Pyren. p. 137 (1813)). The synonymy of the plant is therefore:-

Eryngium pallescens Mill. Dict. ed. viii. no. 5 (1768) (pallescente). E. alpinum L. Mant. 349 (1771), non Sp. Pl.
E. Bourgati Gouan, Illustr. p. 7, t. iii. (1773).

Description of Plate. - A. Eryngium petiolatum Hook. B. Flowering head of E. articulatum Hook. C. E. prostratum Nutt. D. E. filiforme Shuttl. 1. Involucral bract, 2. bractlet, 3. flower (all magnified).

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Lavatera arborea L.* Rocky cliffs, Newquay; abundant at one spot. Probably, but not certainly native.

Radiola linoides Roth.* Llanbadarn-Trefeglwys.
Vicia sepium L.* Not uncommon about Aberayron; it has now been recorded for every British vice-county.-Prunus insititia Huds. Abundant in hedges; Aberayron, Aberarth, Llanerch-Aeron, \&c.P. Cerasus L. was also noticed occasionally, but only as an obvious introduction.

Rubus suberectus G. Anders. Monachty Dingle, near Aberayron, sparingly; the only one of the §Suberecti seen by me.-R. cariensis Rip. \& Gener.* Lower part of the Afon Drowy valley, near Newquay; hedge between Aberayron and Llanerch-Aeron.-R. Lindleianus Lees. Near Aberayron; apparently rare. - R. erythrinus Genev.* Between Aberayron and Newquay. - R. Bakeri F. A. Lees.* A variant form of this was gathered at Bethania and near Cross Inn. - R. nemoralis P. J. Muell. var. Silurum A. Ley.* Plentiful about Bethania and Pennant; also at Llanrhystydprobably common throughout the district.-R. pulcherrimus Neum.* Bethania (abundant); Aberayron; near Newquay. $-R$. dumnoniensis Bab.* Between Aberayron and Newquay; plentiful at Bethania. $-R$. Selmeri Lindeh. In several places between Newquay and Aberayron. - R. silcaticus Wh. \& N.* A very handsome bramble, with the leaves much cut and the stems curiously spotted with red, which occurred in two stations near Llanerch-Aeron, is referred by Mr. Rogers to a laciniate-leaved form of this species. A very different-looking plant, from a lane near Monachty, "recalls both R. silvaticus and R. chrysoxylon, without exactly agreeing with either"; another, from the same lane, "in some respects recalls R. hesperius, and in others R.danicus; but it seems distinct from both." - R. Sprengelii Weihe.* Between Llanina and Llanarth; only seen in small quantity at one spot. - R. pyramidalis Kalt.* In two localities near Newquay; also ('forma eglandulosa') at Llanerch-Aeron.-R. leucostachys Schleich. Common. A beautiful form or variety, in some respects recalling R. lasioclados, grows at Llanarth and in the lower Afon Drowy valley. - P. lasioclados Focke, var. anyustifolius Rogers.* Remarkably common and characteristic about Newquay and Aberayron; when in flower, its bright rose-coloured petals contrast admirably with the whitefelted under side of the leaves. - R. mucronatus Blox. Lane going down to the sea, about three miles from Aberayron, towards Newquay. - R. hystrix Wh. \& N.* Monachty Dingle and Hengeraint Woods, near Aberayron. - R. dasyphyllus Rogers (‘R. pallidus' Bab., non Wh. \& N.). Monachty Dingle. Llan-erch-Aeron, and Afon Drowy valley. - R. hostilis Muell. \& Wirtg.* Roadside near Monachty; Mr. Rogers says that he can see no difference between this and the Kentish plant. R. viridis Kalt.* A very beautiful form of this is locally abundant near the head of Monachty Dingle; R. serpens Weihe* (new for Wales) occurs not far off.-R. dumetirim Wh. \& N. Aberayron; uncommon in the neighbourhood, I believe. - R. corylifolius Sm.
was seen occasionally, but never quite typical; R. casius appears to be absent.

Potentilla procumbens \times silvestris.* Roadside near Bethania, with the parents.

Agrimonia odorata Miller.* Llanerch-Aeron; A. Eupatoria is very common.

Rosa tomentosa L.*; R. micrantha Sm. Between Aberayron and Newquay; both seem to be quite scarce.

Sedum Telephium L. var. Fabaria H. C. Wats.* Rocky cliffs, Newquay ; rocky banks of the Afon Drowy stream, near its mouth.

Callitriche hamulata Kuetz.* Streamlet between Llanina and Llanarth.

Epilobium angustifolium L.* Monachty Dingle. - E. obscurum Schreb.* Frequent.

Smyrnium Olusatrum L. Coast, Newquay ; probably introduced, as also may be Fceniculum vulgare Miller.*

Carum verticillatum Koch. Damp ground between Aberayron and Llanerch-Aeron; very local.

Anthriscus sylvestris Hoffm.*; Charophyllum temulum L.* Frequent.

Crithmum maritimum L. Cliffs at Newquay, and about half-way between that place and Aberayron; very scarce.

Valerianella dentata Poll. Near Pennant; only one plant seen.
Dipsacus sylvestris Huds.* Near Llanerch-Aeron.
Inula Helerium L. By a streamlet near Henfynyo Church; close to a farmhouse, and doubtless a relic of ancient cultivation. The abundance of Pulicaria dysenterica L. along this coast is very striking.

Bidens tripartita L. Ditch-side, Llanerch-Aeron.
Anthemis nobilis L.* In the above-mentioned locality for Carum verticillatum.

Matıicaria inodora L. var. salina Bab. Plentiful and well-marked on the cliffs.
[Tanacetum vulgare L. Only in roadside hedges and waste ground near cottages.]

Petasites officinalis Moench.* Llanrhystyd.
Carduus crispus L. Very scarce, on the outskirts of Aberayron; perhaps introduced.

Serratula tinctoria L. In several places between Aberayron and Lampeter; but not plentiful.

Hieracium vulgatum Fr. var. amplifolium A. Ley? Shaded roadside banks near Llanerch-Aeron; agrees well with the description in Journ. Bot. 1900, pp. 6-7. - H. boreale Fr. var. Hervieri ArvetTouvet. Sandstone cliffs, Newquay, in small quantity; Mr. Linton considers it to be correctly named. I did not see this species anywhere else. - H. umbellatum L. var. coronopifolium (Bernh.).* Sparingly between Aberarth and Pennant. A well-marked variety, which is either curtum Linton or monticola (Jordan), grows pretty freely by the Afon Drowy stream, near its plunge into the sea.

Sonchus arvensis L. var. glabrescens Hall. Hedge between Aber-
ayron and Henfynyw ; the name is by no means descriptive of this perfectly smooth plant.

Schollera Oxycoccus Roth. Bogs east of Cross Inn, and close to Llyn Fanod; I was informed that the Cranberry is common on these upland heaths.

Lysimachia vulgaris L.* Llanerch-Aeron; rare in the district. L. nemorum L. is common in damp woods.

Centunculus munimus L. Llanbadarn-Trefeglwys, with Radiola.
Erythraa Centaırium Pers. var. capitata Koch. Very fine on the coast half-way from Newquay to Aberayron.

Myosotis caspitosa F. Schultz.* Bethania, \&c. - M. repens G. Don occurs near Llyn Fanod.

Linaıia Elatina Miller. Near Llanerch-Aeron.
Veronica montana L.* Hengeraint Woods. - V. scutellata L.* Shore of Llyn Fanod.

Euphrasia Rostkoviana Hayne.* In several places between Aberarth and Pennant. - E. occidentalis Wettst.* Heaths about Aberarth, Pennant, and Cross Inn. I referred it doubtfully to E. brevipila, when fresh; but the habit is different, and the clothing of the leaves is much more densely hispid. Determined by Prof. Wettstein; but a very different-looking plant from my Cornish and Dorset specimens. I had thought it to be E.campestris Jord., after comparison with the figures and description in Wettst. Mon. - E. curta Fr. var. glabrescens Wettst.* Common. Coast near Newquay; Llanerch-Aeron; abundant and rather polymorphic on the heaths about Aberarth, Pennant, and Cross Inn. I had referred one gathering to E. nemorosa, which it approaches very closely, and another to E. borealis; but Prof. Wettstein names them all as above. The heath-land plants were mostly quite characteristic.

Bartsia Odontites Huds. Not uncommon : always, I think, the B. verna of Reichenbach.

Orobanche major L. Between Llanina and Llanarth, on Ulex europaus.

Mentha rotundifolia L.* Coast below Henfynyw, where a streamlet descends to the sea.-M. gentilis L.* A form or variety, with the leaves somewhat hairy on both sides, grows in several spots by the river-side between Aberayron and Llanerch-Aeron, looking as much like a true native as does M. alvensis, with which it is associated. Mr. Bennett writes:-"Very near M. resinosa Opiz in Naturalientausch, 10, p. 196. No. 104 (1825), ex Déséglise in Mentha Opiziana (1881). M. gentalis M. Tausch, M. rubra C. Hemming (teste l.c.). The only seeming real difference is that your specimens are hairy on the upper surface of the leaves. ' Differt a M. gentili L. foliis supra glabris et utrinque pilis subhirsutis,' Opiz, l.c. Of course simply a variety of gentilis L., if that." - M. arvensis \times hirsuta. Roadside between Pennant and Cross Inn. Mr. Linton would refer it to M. sativa var. paludosa.

Galeopsis versicolor Curt. Rather common in fields at Bethania. Littorella juncea Berg. Llyn Fanod.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

THE EUROPEAN SPHAGNACE \mathbb{E}

(after Warnstorf)
By E. Charles Horrell, F.L.S.
(Continued from p. 224.)
9. S. quinquefarium Warnst. Hedwigia, 1885, pp. 222 et seqq.

Syn. S. acutifolium var. quinquefarium Braithw. The Sphagnacea (1880).

Plants slender and delicate as S. Warnstorfi, or strong and robust as S. Russowii, in looser or denser, taller or shorter tufts; pale, grey- to grass-green, or in the upper part a beautiful rose- or violet-red.

Wood-cylinder pale or straw-yellow, never red ; cells nodulose.
Stem-cortex in 3-4 layers, cells of median width and thin-walled. Outer wall of the superficial layer with very scattered membranethinnings, which frequently also, however, become converted into non-bordered pores; inner cells non-porose. Stem-leaves from a broader base deltoid, not lingulate, apex often suddenly contracted, truncate and toothed, and with inrolled margin; border much widened below, formed of very narrow, greenish, nodulose cells. Hyaline cells in the whole middle part of the leaf wide, in the npper part almost rhombic, in the lower part rhomboid, generally one to several times divided by oblique cross-walls, and with plicæ on the walls; more frequently without than with fibrils and pores in the upper part of the leaf; auricles small.

Fascicles generally with five branches, of which the three stronger are spreading in very various directions; these are sometimes long, becoming very thin towards the apex, sometimes shorter and more shortly acuminate; 5 -angled through the 5 -rowed arrangement of the leaves; retort-cells of the cortex with but little recurved neck, which has a single large pore at the apex. Branch-leaves closely or loosely imbricate, never secund, small, ovate-lanceolate, inrolled at the generally rounded-truncate and toothed apex; border of $2-3$ rows of narrower cells. Pores on the inner surface of the leaf very small, scattered, bordered, and chiefly in the upper and lower cell-angles; pores in the broader part of the leaf and near the margins as far as the base, large and generally non-bordered. On the outer surface from the apex to the base with numerous pores along the commissures; the pores towards the apex are strongly ringed, much larger than in S. Warnstorfi, and not circular, but semicircular, and gradually become larger towards the base of the leaf; near the lateral margins the pores on the two surfaces are to some extent immediately opposite each other, producing complete perforation of the leaf. Leaves in the middle above the base with a longitudinal fold; hyaline cells with plicæ on their surfaces.

Chlorophyllose cells in section triangular to trapezoid, inserted between the hyaline cells on the inner surface of the leaf, and here always free; on the outer surface either enclosed by the more
strongly convex hyaline cells or free; lumen large, triangular, wall equally thickened all round.

Generally monoicous, more rarely dioicous; male branches short, in the antheridium-bearing part clavate and always red or violet, later becoming elongate and thinner at the apex; perigonial bracts similar in outline and cell-structure to the other branchleaves, but non-fibrillose and non-porose in the lower half. Perichætial bracts large, ovate, produced above into a longer or shorter apex with inrolled margin; border wide; in the lower half composed of long, rectangular, nodulose chlorophyllose cells only, in the upper half of both kinds of cells; hyaline cells rhombic to rhomboid, once or several times divided. Fruit very rare; spores yellow, quite smooth, $21-25 \mu$ in diameter.

Hab: Most frequent in mountainous regions, rare in the lowlands.

Distrib. Common in Northern and Western Europe and North America.

Of S. quinquefarium Warnstorf remarks that the longer it is studied, the more does one become convinced that it constitutes a distinct species in the Acutifolium group, being distinguished from it nearest ally, S. acutifolium, by as many and as distinct characters as are any other two species of the section. The wood-cylinder of the stem is either whitish, greenish, or straw-coloured, and never red, only in the rarest cases can a faint tinge of red be seen. The superficial cortical layer of the stem has either large scattered membrane-thinnings or pores; these are sometimes, however, so few in number and so scattered as to be only made out with difficulty and after staining, but are never altogether absent. The stem-leaves resemble those of S. acutifolium most nearly, forming an isosceles triangle, with truncate and toothed apex, with inrolled margin, and with the border widened below; the hyaline cells are not once divided, as is generally the case in S. acutifolium, but are in most cases several times septate, and are more frequently without than with fibrils and pores in the upper part. The stem-leaves are relatively broader and shorter than in S. acutifolium. On the inner surface of the branch-leaves in the apical part there are only small strongly-ringed pores, especially in the upper and lower cell-angles, as in S. subnitens; on the outer surface the pores are generally arranged along the commissures, and become gradually larger from the apex to the base, whilst the ring surrounding them becomes gradually less marked. The branch-leaves, when dry, have almost always a slight metallic lustre, and are either imbricate or erectopatent; in the latter case closely resembling forms of S. Warnstorfii, which is, however, readily distinguished by the very small, round, strongly-ringed pores on the outer surface in the upper half of the branch-leaves, and by the lingulate stem-leaves. The distinctly five-rowed arrangement of the leaves, however, generally clearly distinguishes this species, even under the lens, without having recourse to the microscope.

The varieties are based upon the colour, and the forms upon the direction of the branches.
(1) Var. fusco-flavum Warnst. in Europ. Torfm. series ii. No. 161 (1890). Colour a mixture of brown and yellow, without any admixture of green.

Cwm Bychan, Merioneth (Ley).
(2) Var. pallescens Warnst. l.c. series i. No. 69 (1888). (Syn. var. pallens Warnst. in Hedwigia, 1884, sub S. acutifolio.) Tufts either whitish throughout or pale greenish, with at times in the upper part a yellowish or reddish tinge.

Widdy Bank Fell, Teesdale, Durham (Horrell.) ; Wastdale Scale, Cumberland (Ley); Llanthony Valley, Brecon (Ley); Maentwrog, Merioneth (Horrell).
(3) Var. pallido-viride Warnst. l.c. ser. iii. No. 386 (1892). Tufts greyish-green or pale green; in part whitish.

Ebfleet, Surrey (Horrell).
(4) Var. roseum. Warnst. in Bot. Ver. der Prov. Brandenb. xxx. 1888, 112. Tufts in the upper part, and especially in the capitulum, lighter or darker red or violet-red; the remainder greenish or whitish.
(5) Var. ${ }^{\text {virescens }}$ Warnst. in Europ. Torfm. ser. i. No. 68 (1888). (Syn. var. viride Warnst. in Bot. Ver. der Prov. Brandenb. xxx. 1888, 112.) Plants green or greyish-green in the upper part, with scarcely any trace of red; generally whitish below.

Widdy Bank Fell, Teesdale, Durham (Horvell); Cwm Rhaidr Valley, Cardigan (Ley); Tyn-y-Groes, Dolgelly, Merioneth (Parsous).
10. S. subnitens Russ. \& Warnst.

Syn. S. acutifolium var. plumısum, Milde; var. luridum. Hüben.?; var. late-virens Braithw.; var. flavicomans Card.

Exsicc. Braithwaite, Sphagn. Exs. Brit. Nos. 31, 32, 33, 38, 40, 41.

One of the most robust species in the Acutifolium group.
Plants when dry very soft and with a more or less distinct metallic lustre. Colour very various; grey- or grass-green, pale yellowish green, yellow-brown, violet- to purple-red, not rarely indefinite dirty green and violet.

Wood-cylinder greenish, whitish, or violet- to dark purple-red.
Stem-cortex in 3-4 layers, on one side of the stem generally much more highly developed, and formed of very wide cells; all the cells thin-walled; the superficial cells rarely with pores here and there, inner cells always with small pores.

Stem-leaves large, elongated, isosceles-triangular, from a wide base often suddenly produced above into a longer or shorter, broadly truncate, toothed apex with the margin inrolled; in the middle of the leaf frequently having the margin undulate; border broad, much widened below, and formed of very narrow pitted cells. Hyaline cells in the middle of the leaf above the base wide and large; above rather shorter, rhomboid; near the lateral margins narrower; generally non-fibrillose and without pores, rarely with rudimentary fibrils and pores in the upper part of the leaf; all the hyaline cells 2-6 times septate, and with delicate plicæ on their walls; the apex itself at times formed of small vermicular chlorophyllose cells only.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Hab. S. subnitens is very widely distributed, and is found both in the mountains, on moors, and on the plains. It prefers bogs and very wet and shady places.

Distrib. Common throughout almost the whole of Europe; North America; Asia; Africa.

It would appear to be much the commonest member of the Acutifolium group in Britain.

The numerous varieties are based upon the colour of the tufts, and the forms upon the length and direction of the spreading branches and the greater or less robustness of the plants.
(1) Var. carneum Russ. apud Warnstorf, Europ. Torfm. ser. iii. No. 245 (1892). Tufts of a pale flesh-colour throughout.
(2) Var. flavescens Warnst. Tufts generally yellowish or yellowish-brown, with more or less admixture of green.

Penzance, Cornwall (Ley); St. Mary's, Scilly (Ley); Whixall Moss, Salop (Ley) ; Ennerdale Lake, Cumberland (Ley).
(3) Var. flavicomans Card. in Rev. bryol. 1884, 55 (sub S. acutifolio). Plants very robust, in loose or dense rather deep tufts, yellowish-brown, resembling S. fuscum in colour. Wood-cylinder blood-red; superficial cortical cells with single pores; stem-leaves non-fibrillose, or with fibrils in the upper part only. Branch-leaves large, longish-ovate, apex broadly truncate and dentate, shining when dry.
(4) Var. faro-rubellum Warnst. in litt. Colour a mixture of rose-red and yellowish, sometimes the red predominating, sometimes the yellow.

Lyndhurst, New Forest, Hants (Ley) ; Trelleck Bog, Monmouth (Ley); Dungeon Ghyll, Westmoreland (Paul); Rhos Goch, Radnor (Ley); Borth Bog, Cardigan (Ley).
(5) Var. griseum Warnst. in Bot. Ver. der Prov. Brandenb. xxx. 1888, 118. Tufts of a uniform greyish-green throughout.

Roseberry Topping, N.E. Yorkshire (Horrell.).
(6) Var. obscurim Warnst. in Bot. Gaz. xv. 1890, 196. Plants very robust, in tall loose tufts. Colour above a mixture of greyishgreen and pale dirty brown; below brownish. General colour a dusky indefinite brownish.green.
(7) Var, pallescens Warnst. in Europ. Torfm. ser. ii. No. 165 (1890). (Syn. var. pallens Warnst.) Colour pale green above, whitish below.

Gallow's Hill, Cromarty (Ogilvie-Grant).
(8) Var. purpurascens Schlieph. apud Warnst. in Bot. Ver. der Prov. Brandenb. xxx. 1888, 118. Colour purplish throughout.

Nant Pedor, Carmarthenshire (Ley); Cwm Idwal, Carnarvonshire (Horrell).
(9) Var. versicolor Warnst. l.c. Colour a mixture of red and green, sometimes the one predominating, sometimes the other.

Widdy Bank Fell, Teesdale, Durham (Horrell); Goathland, N.E. Yorkshire (Horrell).
(10) Var. violascens Warnst. in litt. Colour a lighter or darker violet, sometimes uniform throughout, sometimes only violet in the upper part, and grey or green below.

Budleigh Salterton, Devon (Ley); Trelleck Bog, Monmouth (Ley) ; Holt, E. Norfolk (Burrell) ; Nant Pedor, Carmarthenshire (Ley); Islay (('ilmour).
(11) Var. virescens Warnst. in litt. (Syn. var. viride Warnst. ?) Plant pale or grass-green throughout, or in the upper part only, and whitish below ; with no admixture of red.

Pirbright Common, Surrey (Sherrin).
11. S. molle Sulliv. Musc. Allegh. p. 50, No. 205 (1846).

Syn. S. Mülleri Schimp. Entw. Gesch. d. Torfm. p. 73 (1858).
Exsicc. Braithwaite, Sphagn. Exsicc. Brit. No. 21 (exlc. spec. infer. ad sinistr.) et No. 21c.

In dense and short or looser and taller tufts. Plants in the upper part generally pale- or greyish-green, more rarely tinged with pale-violet. Resembling in habit in most cases small forms of S. subnitens.

Wood-cylinder always yellowish or whitish.
Stem-cortex irregularly 2-4-layered ; cells of medium width, thinwalled; the outer walls non-porose, inner walls with scattered pits and small pores.

Stem-leaves from a narrower base, distinctly widened to the middle, and then narrowed to a short, widely truncate and coarsely toothed apex; margins of the leaf with narrow border, which is not-or, especially in non-fibrillose leaves, but little-widened below. Hyaline cells once or several times divided by oblique cross-walls, and on the same stem either quite without fibrils and pores, or in the upper half of the leaf or even lower with fibrils and pores; pores on the inner surface of the leaf in the apical part remarkably large, round or roundish-elliptical, generally as wide as the cell, and situated between the fibrils ; on the outer surface like those on the branch-leaves.

Auricles large, fibrose and porose.
Fascicles generally near together, more rarely distant, with 3-4 branches; the one or two stronger spreading branches are variously directed, and are very thin at the apex; leaves loosely arranged or almost squarrose. Branch-leaves rather large, resembling the stemleaves, ovate-lanceolate, not bordered or with a narrow border of 1-2 cells. In the lower half of the leaf, on the outermost marginal cells, in most cases, with membrane-gaps; and in the upper half with distant, small, prominent teeth, as in S. cymbifolium. Margin widely inrolled and coarsely toothed on the broadly rounded or truncate apex. Hyaline cells wide, elongate-rhomboid, with numerous spiral fibrils; on the inner surface in the upper part of the leaf frequently with small pores in the upper and lower cellangles only; more rarely here with scattered large pores in the lateral angles of the cells also, or in the middle of the cell-wall, but in greater number near the lateral margins of the leaf; on the outer surface in the upper and middle part of the leaf with very small, rather strongly ringed pores on the commissures; these become gradually larger and semicircular towards the base; certain of the pores in the cells immediately above the leaf-base are circular
and very large, and are situated in the upper cell-angles or in the middle of the wall.

Chlorophyllose cells in section isosceles-triangular to paralleltrapezoid, inserted between the hyaline cells on the inner surface of the leaf, and here always free; on the outer surface enclosed by the more strongly convex hyaline cells, or, especially towards the leaf apex, free on both sides. The marginal cells in a section through the basal half of the leaf frequently have half-moon-shaped cavities on the edge, showing that the cell-membrane has been in part re-absorbed.

Monoicous; male branches not differing from the others; when young shortly-ovate, later elongated, always pale-violet ; perigonial bracts similar to the leaves of the sterile branches. Fruiting branches frequently much elongated; their leaves large, ovate, produced into a longer or shorter, broadly-truncate, irregularly and coarsely toothed apex with inrolled margin; border either narrow throughout or wider at the base and towards the apex (of 5-8 rows of cells) ; in the lower half of the leaf composed only of elongated, rectangular, or rhomboid pitted chlorophyllose cell: ; above of both kinds of cells; in the apex itself generally with only shorter, narrower curious green cells. Hyaline cells slightly sigmoid, and usually non-fibrillose and non-porose, more rarely with rudimentary fibrils above. Auricles large, several times divided, with pores and generally also with fibrils. Spores yellow-brown, smooth, 31-35 μ in diameter. Fruiting very frequently.

Hab. On moors, \&c., generally in company with S. riyidum and S. molluscum.

Distrib. Germany, Scandinavia, Denmark, Holland, Belgium, France, North America, South America.
S. molle varies but little, the main varieties depending upon the nature of the habitat.
(1) Var. pulchellum Warnst. in Flora, 1884, 603. Tufts tall, ($10-15 \mathrm{~cm}$. high) and loose, branches distant; growing in wet localities.
(2) Var. squarrosulum Grav. apud Warnst. l.c. Leaves more or less squarrose.
(3) Var. tenerum Braithw. The Sphagn. 1880, 55. Tufts short ($2-4 \mathrm{~cm}$. high) and compact, branches closely arranged; growing in dry habitats.

Dalfroo Bog, Kincardine (Sim).

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Dichodontium pellucidum Schimp. Burnhope Burn, Cauldron Snout, forma.-Var. fagimontanum Schimp. Burnhope Burn.V. compactum Schimp. Burnhope Burn.-D. flavescens Lindb. Ireshope Burn.

Dicranella heteromalla Schimp. High Force, Widdy Bank, Burnhope Burn.-Var. sericea Schimp., c.fr. Foot of Widdy Bank, confirmed by Dr. Braithwaite and Mr. Dixon.-D. secunda Lindb. Falcon Clints.-D. varia Schimp. Widdy Bank, Langdon Beck, Wearhead ; widely distributed.-Var. tenella Schimp. Wearhead; possibly this var. according to Braithwaite and Dixon.D. squarrosa Schimp. Falcon Clints, Wearhead, Burnhope Burn.

Blindia acuta B. \& S. Falcon Clints.--Var. trichodes Braithw. In leaf form; Cauldron Snout.

Campylopus fexuosus Brid. Burnhope Seat. Cauldron Snout (dwarf form), Widdy Bank (a very large form).-C. atrovirens De Not. Widdy Bank.

Dicranum Bonjeani De Not. Burnhope Burn, Widdy Bank, c.fr., Wearhead; very widely distributed.--D. scoparium Hedw. Langdon Beck, Falcon Clints.

Fissidens viridulus Wahlenb. Ireshope Burn.--F. osmundoides Hedw. Burnhope Burn.-F. adiantoides Hedw. Widdy Bank, c.fr., Burnhope Burn, Ireshope Burn (large growth).

Grimmia apocarpa Hedw. Widdy Bank, Langdon Beck, Ireshope Burn, Wearhead.--Var. graclis W. \& M. Widdy Bank, High Force.--G. funalis Schimp. Widdy Bank, Cauldron Snout. --G. torquata Hornsch. Falcon Clints.

Rhacomitrium aciculare Brid. Langdon Beck, Burnhope Burn, Cauldron Snout.-Var. denticulata B. \& S. Cauldron Snout; a pale green form.--R. protensum Widdy Bank. $-R$. heterostichum Brid. Widdy Bank, High Force.--P. Lanuginosum Brid, Burnhope Burn. - R. canescens Brid. Widdy Bank, Wearhead, Langdon Beck. Var. ericoides B. \& S. Langdon Beck.

Tortula subulata Hedw. Burnhope, Ireshope, Cowshill, High Force, Langdon Beck; very abundant and widely distributed.-T. ruralis Ehrh. High Force, Cowshill.

Barbula rubella Mitt. Langdon Beck, Ireshope.-Var. dentata Braithw. Ireshope Clints.-Var. ruberrima Braithw. Cauldron Snout, Widdy Bank. -- B. fallax Hedw. High Force. - Var. brecifolia Schultz. Langdon Beck.-B. recurvifolia Schimp. Wearhead, Langdon Beck. - B. spadicea Mill. Langdon Beck, Ireshope Burn.-B. rigidula Mill. Widdy Bank, Ireshope Burn, Wearhead, Langdon Beck, Burnhope.-B. cylindrica Schimp. Langdon Beck, Burnhope Burn.-B. recoluta Brid. Cauldron Snout; in abundant fruit; Burnhope Burn.-B. convoluta Hedw. High Force.

IVeisia vuridula Hedw. Wearhead.-W. crispata C. M. Kilhope Burn.-W. rupestris C. M. High Force, Langdon Beck, Falcon Clints, Wearhead, Ireshope Burn; a widely distributed moss.-Var. intermedıa Jack. A remarkable and pretty form; Ireshope Clints.-Var. stelligera. In abundant fruit; Falcon Clints.-Var. compıctum Schimp. High Force.—Var. rigidum Schimp. High Force.-Var. affinis Ingham. A new and good var. accordıng to Dr. Braithwaite, Mr. Dixon,
and Mr. Bagnall. It has the areolation of W.rupestris, but the habit, pale colour, and systylious lid of $W_{\text {. curvirostris. The capsule is }}$ leptodermous, and without the long subulate oblique beak of W. curvirostris. Found on Falcon Clints, July 26th, 1898. B. curvirostris C. M. Widdy Bank, Falcon Clints.-Var. commutata Dixon. Widdy Bank.-W. vertucillata Brid. Ireshope Burn.

Trichostomum tenuirostre Lindb. Cauldron Snout.-T. tortuosum Dixon. Widdy Bank, Langdon Beck, Ireshope Burn, Burnhope Burn; very widely distributed.-Var. fragilifolum Dixon. Burnhope Burn.

Encalgpta ciliata Hoffm. Ireshope Clints.
Zygodon Mougeotii B. \& S. Falcon Clints, High Force.
Ulota Bruchii Hornsch. High Force.-U. crispa var. intermedia Dixon. Cowshill.

Orthotrichum affine Schrad. Cowshill, Langdon Beck, High Force.-O. Lyellii H. \& T. High Force, Cowshill (very abundant gemmæ on leaves).-O. cupulatuin Hoffm. Langdon Beck, High Force, Cowshill.-Var. nudum Braithw. Langdon Beck.-O. anomalum var. saxatile Milde. Cowshill, High Force.-O. stramineum Hornsch. High Force.-O. pulchellum Sm. High Force.

Splachnuin spharicum L., f. Widdy Bank, Wearhead.
Funaria hygrometrica Sibth. Widdy Bank. - F. ericetorum Dixon. Cauldron Snout.

Amblyodon dealbatus P. B. Widdy Bank.
Meesia trichoides Spruce. Widdy Bank.
Aulacomnium palustre Schwaegr. Widdy Bank.
Catascopium nigritum Brid. Widdy Bank.
Bartramia (Ederi Sw. Ireshope Clints.-B. ithyphylla Brid. Cauldron Snout, Cowshill.-B. pomiformis Hedw. Widdy Bank, Ireshope Clints.

Philonotis fontana Brid. Burnhope Burn, Cowshill (in abundant fruit), Ireshope Burn.-P. calcarea Schimp. Widdy Bank, Burnhope Burn (a yellow form).—P. adpressa Ferg. c.fr. Burnhope Burn.

Breutelia arcuata Schimp. Falcon Clints.
Webera cruda Schwaegr. Ireshope Clints, Cowshill.-W. albicans Schimp. Falcon Clints (a very large form), Ireshope Burn (a very delicate, almost filiform form).

Plagiobryum Zierii Lindb. Ireshope Clints, Falcon Clints, High Force.

Bryum filiforme Dicks. Falcon Clints.-B. inclinatum Bland. Widdy Bank, High Force.-B. pendulum Schimp. High Force.--Var. compactum Schimp. Widdy Bank; so named by Dr. Braith-waite.-B. intermedium Brid. Widdy Bank, Kilhope Burn:-B. bimum Schreb. Wearhead.-B. pseudo-triquetrum Schwaegr. Widdy Bank, Wearhead; abundant and freely fruiting.-B. pallens Sw. Widdy Bank, Wearhead; very abundant, and copiously fruiting in Weardale.-B. pallescens Schleich. Wearhead.-B. caspiticium L. Cowshill; " approaching the var. imbiicatum B. \& S., at least" (H. N. Dixon).-B. capillare L. Ireshope Burn, Langdon Beck, High Force. Burnhope Burn ; very common.-Near var. Ferchelii
B. \& S. Cowshill.-B. alpinum Huds. Cauldron Snout.-B. mildeanum Jur. Falcon Clints.

Mnium affine Bland. Ireshope Burn.-Var. elatum B. \& S. Widdy Bank, Burnhope Burn.-M. cuspidatum Hedw. Burnhope Burn.-M. rostratum Schrad. Ireshope Burn, c.fr., Kilhope Burn. —M. serratum Schrad. High Force, Ireshope Burn.-M. punctıtum
L. Ireshope Burn, Cauldron Snout, Widdy Bank.

Cinclidium stygium Sw. Widdy Bank.
Fontinalis antipyretica L. Widdy Bank.
Veckera complanata Hüb. Langdon Beck.
Antitruchia curtipendula Brid. High Force, Cowshill.
Anomodon viticulosus H. \& T. Langdon Beck.
Heterocladium heteropterum B. \& S. High Force, Falcon Clints. Thuidium tamariscinum B. \& S. Widdy Bank.
Cylindrothecium concinnum Schimp. Falcon Clints. Burnhope Road.

Orthothecium intricatum B. \& S. Falcon Clints, Ireshope Burn and Clints.

Isothecium myurum Brid. High Force, c.fr., Langdon Beck, c.fr., Cowshill.

Camptothecium lutescens B. \& S. High Force.
Brachythecium rutabulum B. \& S. Cowshill.-B. vivulare B. \& S. High Force, Ireshope Burn.-Var. latifolium Husn. Burnhope Burn.-B. velutinum B. \& S. Cowshill, Langdon Beck.-B. populeum B. \& S. Langdon Beck, Cowshill.-B. plumosum B. \& S. High Force, Widdy Bank.-B. caspitosum Dixon. High Force.

Hyocomium flagellare B. \& S. Falcon Clints, Cauldron Snout.
Eurhynchium piliferum B. \& S. High Force. - E. pralongum B. \& S. Burnhope Burn, Ireshope Burn.-E. Swartzii Hobk. Ireshope Clints. - E. pumilum Schimp. Ireshope Clints.-E.myosuroides Schimp. Falcon Clints, Ireshope Clints, Langdon Beck.E. striatum B. \& S. High Force.-E. ruscifoıme Milde. Burnhope Burn.-Var. atlanticum Brid. Under waterfall, Cowshill.

Plagiothecium pulchellum B. \& S. Ireshope Clints.-P. denticulatum B. \& S. Cowshill, Langdon Beck, Ireshope Clints, High Force; widely distributed.-P. undulatum B. \& S. Top of Burnhope Seat; a remarkable form with imbricated leaves; Langdon Beck.

Amblystegium Juratzkae Schimp. Cowshill. - A. filicunum De Not. Sedling Burn, c.fr., Burnhope Burn, c.fr., Cowshill, High Force, Langdon Beck, Widdy Bank; abundant in both Teesdale and Weardale.-Var. elatum Schimp. Sedling Burn; verified by Dr. Braithwaite.-Var. gracilescens Schimp. Ireshope Burn.

Hypnum riparium L. Burnhope Burn.-H. stellatum Schreb. Widdy Bank.-Var. protensum B. \& S. Cowshill.-H. chrysophyllum. Brid. Widdy Bank-Var. erectum Bagn. Ireshope Burn. -H. lycopodioides Schwaegr. Widdy Bank.-H. fuitans var falcatum Schimp. In abundant fruit on the top of Burnhope Seat.Var. submersum Schimp. In pool by Ireshope Burn.-H. exannulatum Gümb. On the Weardale side of hill overlooking Langdon Beck.-Var. purpurascens Schimp. On the Langdon Beck side of the same hill.-H. uncinatum Hedw. Burnhope Burn, Ireshope

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
D. anglica Huds. Roydon. near Diss.

Hippuris vulgaris L. Trowse; Ranworth Broad; Ormesby. 23. Abundant in a large pool, Narford.

Myriophyllum verticillatum L. 28. Hilgay, hb. Salmon. Lar= lingford.

Callitriche hamulata Kuetz. Ellingham; Hoveton; Ranworth. C. obtusangula Le Gall. Yarmouth.

Peplis Portula L. Thorpe; Ormesby; Cley. 28. North Elmham.

Lythrum Salicaria L. Ellingham. 28. Thetford, 1836, hb. Salmon.

Epilobiuin roseum Schreb. 28. By a streamlet running from East Dereham into the stream from Scarning.
E. palustre L. Ellingham. 28. Thetford, hb. Salmon. East Dereham.

Enothera odorata Jacq. Common in a sandy cemetery just north of Yarmouth.

Circea lutetiana L. Beeston St. Andrew.
Hydrocotyle vulgaris L. Ranworth; Alderford Common. 28. Gressenhall; Lexham.

Eryngium maritimum L. Caister to Ormesby. 28. Holkham.
Sanicula europea L. Salhouse; Knapton; Cawston to Aylsham.
Conium maculatum L. Geldeston; Reedham; Knapton; Cley. 28. Swaffham.

Smyrnium Olusatrum L. Postwick (? 1835, hb. Salmon; note not quite clear). South Heigham; Hemsby; Ormesby; Barton Turf; Cley.

Bupleurum tenuissimum L. Near Yarmouth, G.R.L. in hb. Salmon. 28. South Lynn, B. D. Wardale in hb. Salmon. East of Wells.

Apium graveolens L. 28. Downham Market, hb. Salmon. Wells.
A. inundatum Reich. fil. Sprowston; Alderford Common.

Cicuta virosa L. Ormesby; Ranworth ; Barton Broad.
Carum segetum Benth. \& Hook. til. Cley. 28. East of Wells.
Sison Amomum L. Kirby Cane. 28. Yaxham.
Sium latifolium L. Ranworth; Ormesby. 28. Thetford, 1837, hb. Salmon.
S. erectum Huds. Ellingham; Flordon; Ormesby; Ranworth. 28. Thetford, 1835, hb. Salmon. Beetley; Newton.

Pimpinella Saxifraga L. Well distributed.-Var. dissecta With. Frettenham. 28. North Elmham; East Harling.

Scandix Pecten-Veneris L. Knapton; Paston. 28. Thetford, 1836, hb. Salmon. Garboldisham; Scarning; Swaffham.

Antluriscus vulgaris Bernh. Locally abundant, as in Sprowston ; North Walsham. 28. Thetford, hb. Salmon (labelled Torilis Anthriscus). Beetley to Gressenhall.

Foniculum vulgare Mill. Cley.
Enanthe fluviatilis Coleman. Trowse, in the river.
Silaus flavescens Bernh. Cley. 28. Gressenhall; by the railway, in plenty, Scarning.

Peucedanum palustre Moench. Hoveton Broad.

Caucalis arvensis Huds. Mundesley. 28. Thetford !, hb. Salmon. Swaffham; Castleacre.

Cornus sanguinea L. Flordon; Earlham; Wymondham. 28. Newton; Swaffham; Castleacre.

Adoxa Moschatellina L. South Lopham, 1836, hb. Salmon.
Galium erectum Huds. North-west side of Thorpe.
G. Mollugo L. Flordon; Ellingham; Wymondham. 28. Castleacre.
G. uliginosum L. Gressenhall.

Asperula cynanchica L. 28. Thetford, 1837, hb. Salmon. East Harling.

Valerianella dentata Poll. Field just south of Rackheath Park.
Dipsacus sylvestris L. 28. Larlingford.
Scabiosa Columbaria L. Heigham. 28. Scarning; Swaffham; Southacre.

Solidago Virgaurea L. Strangely infrequent; only seen by me at Gressenhall.

Filago apiculata G. E. Sm. Ellingham to Geldeston, scarce, in company with F. germanica L.
F. spathulata Presl. Hellesdon; Wroxham. 28. Beetley.
F. minima L. Mousehold Heath; Cawston; Geldeston. 28. Thetford, hb. Salnon. East Harling to Knettishall.

Ginaphaliuin luteo-album L. 28. "Field at Larlingford, ex herb. Rev. G. R. Leathes," in hb. Sulmon. Sandy waste near Wells, 1883-86; it was gathered again in 1899.
G. sylvaticum L. Cawston.

Bidens cernua L. var. radiata Sond. Postwick, 1884.
B. trupartita L. Kirby Cane.

Chrysanthemum segetun L. Sprowston; Wymondham.
Matricaria Chanomilla L. 28. Swaffham.
Artemisia Absinthium L. Yarmouth towards Caister. 28. Thetford towards Euston, 1835, hb. Sulmon.
A. maritima L. var. galica (Willd.). East of Wells.

Petasites officinalis Moench. Thorpe.
Senecio vulgaris L., rayed form. Yarmouth.
S. squalidus L. Wall of the churchyard, Yarmouth.
S. erucifolius L. Tivetshall; Crostwick; North Walsham; Knapton. 28. Scarning, frequent.

Carlina vulgaris L. Newton St. Faith's ; Cawston. 28. Thetford, $l l$. Salmon. Gressenhall.

Arctium majus Bernh. Sprowston.
Carduus pycnocephalus L. Cromer.
C. nutans L. Ellingham ; Hellesdon. 28. Thetford, $h l$. Salmon. North Elmham; Swaffham; Lexham.
C. crispus L. Wymondham; Morton Warren.
C. eriophorus Roth. 28. I believe I saw root-leaves of this on Lexham Heath.
C. acaulis Willd. Between Thorpe and Rackheath Park; Alderford Common. 28. Thetford, hb. Salmon. Swaffham.

Onopordon Acanthium L. Sprowston. 28. Larling.
Mariana lactea Hill. Cliff, Cromer.

Centaurea Cyanus L. Sprowston. 28. Thetford, hb. Salmon.
C. Calcitrapa L. Downham, 1837, hb. Salmon.
C. solstitialis L. 28. Croxton Road, Thetford, 1836, hb. Salmon.

Cichorium Intybus L. Sprowston; Geldeston. 28. Larlingford.
Picris hieracioides L. Roadside, Drayton; very local in the county.
P. echinuides L. Very local. 28. Hilgay, hb. Salmon.

Crepis taraxacifolia Thuill. Railway bank, Acle; Sprowston.
C. biernis L. Thorpe, towards the north-east corner of Mousehold.

Hieracium sciaphilum Uechtr. Knapton; Swafield to Paston. No H. vulgatum Fr. was observed by me.
H. boreale Fr. Newton St. Faith's, 1887; by the Quakers' burying-ground, North Walsham; Sprowston.
H. umbellatum L. Heath, Newton St. Faith's, and towards Horsford; Caister to Ormesby, on the cliff. 28. Wimbotsham, 1838, hb. Salmon.

Hypocharis glabra L. 28. Croxton Heath; Thetford to Rushford.

Lactuca virosa L. Cromer; Sprowston. 28. Castleacre.
Tragopogon pratense L. var. grandiflorum. Norwich cemetery, perhaps introduced with grass seed.

Jasione montana L. Caister. Swafield to Knapton.
Campanula glomerata L. 28. Stoke Ferry, 1835, hb. Salmon.
C. Truchelium. L. 28. "Damnable Lane," Stoke Ferry, 1836, hb. Salmon.
C. Papunculus L. On old Buckenham Castle, ex herb. G. R. Leathes, hb. Salmon.

Specularia hybrida A. DC. 28. Thetford, 1835, hb. Salmon.
Hypopitys Monotropa Crantz. Very fine and in plenty, Westwick Woods. 28. Horton Spinney, Thetford, 1835, hb. Salmon.

Statice Linonium L. 28. Hunstanton.
S. auriculafolia Vahl. 28. Holkham (as well as Wells).
S. reticulata L. Cley, 1809, hb. Salnon.

Hottonia palustris L. Ellingham.
Lysmachia vulguris L. Filby; Ranworth. 28. By the river, Thetford, 1835, hb. Salmon.
L. Nummularia L. Ellingham. 28. Thetford, 1835, hb. Salmon. L. nemorum L. Arminghall ; Swafield to Knapton.

Anagallis tenella L. Geldeston. 28. Thetford, 1835, hb. Salmon.
Centunculus minimus L. Sprowston Common; Cawston (towards Aylsham).

Samolus Valerandi L. Horsford; Ormesby. 28. Breckles Fen and Stanford Warren, 1836, hb. Sulmon.

Ligustrum vulyare L. Beeston St. Andrew; Swafield. 28. Beetley; Larling; Swaffham; Lexham.

Vinca major L. Arminghall; Bacton. 28. Croxton, claypit, hb. Salmon.

Erythraa Centaurium Pers. Cawston; Blickling; South Repps Common. 28. Kilverstone Lane, Thetford, hl. Salmon. Scarning; Holkham.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Orobanche major L. Geldeston, 1889.
O. minor Sm. Sprowston. 28. Methwold, 1836, hb. Salmon. Thetford.

Utricularia rulgaris L. Ellingham. 28. Thetford, 1835, hb. Salmon.
U. minor L. 28. Near Thetford, 1836, hb. Salmon.

Pinyuicula vulguris L. 28. Stanford Warren, hb. Salnon.
Verbena officinalis L. Flordon; Vymondham; Attlebridge; Cawston. 28. Beetley to Gressenhall; Scarning.

Mentha alopecuroides Hull. Outcast, on a roadside bank, Sprowston; Kirby Cane. 28. Larlingford, corner of a field in plenty, perhaps introduced from marshes near.
M. longifolia Huds. South Repps Common.
M. sativa L. Cawston; Sprowston; Bradfield.

Lycopus europcus L. Flordon; Sprowston; Ranworth. 28. Thetford, hb. Salmon. Larlingford ; Newton.

Thymus Serpyllum Fr. Sprowston.
T. Chamadrys Fr. Sprowston; Thorpe.

Calamintha Clinopodium Spenn. Flordon; Ellingham; Attlebridge. 28. Thetford to Shadwell, $h b$. Salmon. Swaffham.
C. arvensis Lam. Salhouse; Attlebridge; Cawston. 28. Narford; Swaffham; East Harling to Knettishall.
C. officinalis Moench. Elhngham; Horsford ; Cawston; Cley.

Nepeta Cataria L. Hellesdon, abundant. 28. Kilverstone Lane, Thetford, hb. Salmon. Larlingford.

Scutellaria gulericulata L. Flordon; Ellingham; Ranworth; Hoveton.

Marrubiuin vulgare L. 28. Thetford to Rushford.
Stachys arvensis L. Newton St. Faith's ; Tivetshall.
Galeopsis angustifolia Ehrh. Loddon.
G. versicolor Curt. 28. Near West Dereham, hb. Salmon.

Lamium amplexicaule L. Sprowston; Cromer.
L. hybridum Vill. Attlebridge; Cawston; Aylsham; Mundesley to Paston. 28. Scarning; North Elmham; Larlingford; Swaffham; Newton.

Teucrium Scordium L. 28. "Abundant by the side of Welney Delph, R. D. Salmon," hb. Salmon.

Plantago media L. 28. Swaffham; Larling.
F. Coronopus L. 28. Roudham; Lexham.

Chenopodium polyspermum L. Redenhall.
C. Vulvaria L. 28. Lynn Regis, 1837, hb. Sulmon.
C. ficifolium Sm . Ormesby.
C. rubrum L. 28. Wells to Holkham, in plenty, 1884.
C. Bonus-Henricus L. Geldeston; Attlebridge ; Newton St. Faith's; Blickling; Bacton. 28. Larlingford; Thetford.

Atriplex littoralis L. Cley.
A. angustifolia Sm. Wymondham. 21. Beetley ; Swaffham.
A. hastata L. Ellingham. 28. Vells.

Polygonum aviculare L.-Var. vulyatuin Syme. Ellingham.Var. arenastrum (Bor.). Ellingham ; Hellesden.-Var. rurivagum (Jord.). Wymondham.
P. Raii Bab. North Dene, Yarmouth.
P. minus Huds. Filby, ex herb. Rev. G. R. Leathes, $h b$. Salmon.
Newton St. Faith's, with Mentha Puleefium L.
P. mite Schrank. Newton St. Faith's ; Kirby Cane. 28. North Elmham, towards Beetley ; Scarning.
P. lapathifolium L. Geldeston; Sprowston; Newton St. Faith's.
P. amphilium L. Ellingham; Cantley; Barton Broad; North Walsham ; Swafield (var. terrestre). 28. North Elmham ; Larlingford ; Newton.

Fumex maritimus L. 28. Roudham Mere, and neighbouring pool, abundant; an interesting inland locality.
R. pulcher L. Flordon; Newton St. Faith's. 28. Beetley ; Gressenhall to East Dereham ; Narford.
R. Hydrolapathum Huds. Ranworth; Barton Broad. 28. Beetley Common; Larlingford; Newton.

Hippophae rhamnoides L. Cliffs, Ormesby to Hemsby, abundant in places.

Viscum albuin L. 28. On apple, Shipdham, 1837, hb. Salinon.
Mecurialis annua L. Thorpe Hamlet.
Parietarıa officinalis L. Newton St. Faith's; Barton Turf; Cley. 28. Thetford; Castleacre.

Myrica Gale L. Hoveton; Ranworth.
Carpinus Betulus L. Large tree, Beeston St. Andrew; Loddon; Wymondham. 28. Roudham; Swaffham; Lexham.

Quercus Robur L. Var. sessiliflora (Salisb.). Sprowston; apparently very rare.

Salix triandra L. Ellingham; Flordon; Thorpe; by the Dolphin Ferry, Norwich ; Aylsham. Subsp. Hoffimanniana (Sm.) 28. By the Harling Road Station.
S. unduluta Ehrh. Riverside, Thorpe.
S. fragilis L. Flordon; Sprowston; Geldeston; Ranworth \&c.; usually the form bitannica. 28. Beetley.
S. alba L. Flordon; Ellınghaın; Buckenham; Haddiscoe; east of North Walsham. 28. Beetley Common; Thetford ; Newton; Castleacre.

S'. purpurea L. Alderford. 28. Thetford.
S. viminalis L. Wymondham.
S. Smithiana aggreg. By the Dolphin Ferry, Norwich; Wroxham. 28. Larling.
S. Caprea L. Beeston St. Andrew ; Sprowston; Cawston.
S. aurita L. Newton St. Faith's.

Populus canescens Sm. Hellesdon; Sprowston. 28. Swaffham.
P. tremula L. Thorpe; Sprowston (both var. glabra Syme).
P. nigra L. Heıgham. 28. Beetley; Swaftham.

Ceratophyllum demersun L. Ranworth Broad.
Hydrochuris Morsus.rance L. Ellıngham; Ranworth and Barton Broads. 28. Thetford, 1835, hb. Sulinon.

Stratiotes aloides L. Barton Broad. 28. Thetford, hb. Salmon. Spiranthes autumnalis L. Sprowston; Bradfield.
Epipactis palustıis Crantz. Ranworth; South Repps Common.
28. Stanford Warren, hb. Salmon. Between sandhills, Wells to Holkham.

Orchis pyramidalis L. 28. Narford to Narborough.
O. latifolia L. Ranworth. 28. Thetford, hb. Salmon.
O. incarnata L. Roydon. - Var. angustifolia (Bab.). Hoveton Broad.

Ophrys apifera Huds. Sprowston; Ormesby.
Habenaria conopsea Benth. South Repps Common. 28. Stanford Warren, hb. Salmon.

Tamus communis L. Paston; Swafield to Knapton.
Allium vineale L. Hedgebanks, Sprowston, usually in the form bulbiferum Syme. Remarkably rare in the county.

Juncus Gerardi Loisel. Cley. 28. Wells. Mr. Trimmer does not distinguish this from J. compressus Jacq. ; some of his localities for the latter should no doubt be releyated to the former.
J. diffusus Hoppe. Beeston St. Andrew; Bradfield. 28. East Dereham.
J. maitimus L. 28. Wells to Holkham, in some abundance.
J. acutus L. 28. Wells, "ex herb. G. R. L. comm. D. Turner Esq.," hb. Salnon.
J. supinus Moench. Copse near Sprowston Grange; Yarmouth; Alderford Common. 28. Wells; Newton. Not frequent, but scarcely "rare" (Trimmer).
J. obtusiflorus Ehrh. The Rev. K. Trimmer again says "rare"; rather it is local. Geldeston; Flordon; Harleston; Beeston St. Andrew; Ormesby; Ranworth; Hoveton; Cawston; South Repps Common; Bradfield.
J. lamprocarpus Ehrh. Flordon ; Ellingham ; Horsford ; Alderford.
J. coutiflorus Ehrh. Flordon; Wymondham; Beeston St. Andrew; Cawston. 28. North Elmham; Newton.

Typha latifolia L. Geldeston; Rackheath; Ranworth; Hoveton; Barton Broad. 28. Near Thetford, hb. Salmon.
T. anyustifolia L. Hoveton; Wroxham. 28. Near Thetford, hb. Salmon

Sparganium ramosum Huds. Ellingham; Yarmouth; Ranworth. 28. Thetford, 1836, hb. Salmon. Beetley Common.
S. neglectum Beeby. Only seen at Flordon, a station on previous record.
S. simplex Huds. Ellingham; Hellesdon; Yarmouth. 28. Near Thetford, 1836, hb. Salmon.
S. natans L. 28. Wretton Fen, Stoke Ferry, hb. Salmon; I have no note to show segregate.

Acorus Calamus L. Reedham, ex herb. G. R. Leathes, $h b$. Salmon. In the river flowing into Barton Broad.

Lemna trisulca L. Ellingham; Sprowston; Flordon; Ranworth; Barton.
L. gibba L. Abundant in a ditch just north of Yarmouth.
L. polyrrhiza L. Ranworth.

Alisma ranunculoides L. Flordon; Alderford; on the Thorpe side of Sprowston Grange; South Repps Common.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
C. ovalis Good. Roydon by Diss. 28. Larlingford.
C. Hudsonii Ar. Benn. Near Acle Bridge; Ranworth; Barton Turf; Antingham. 28. Larlingford; Thetford.
C. acuta L. Ranworth.
C. binervis Sm. Gunton and Holt, hb. Salmon. Sprowston; Ormesby.
C. distuns L. Abundant between Wells and Holkham.
C. extensa Good. Plentiful near Wells towards Holkham.
C. flava L. (aggr.). Hoveton; South Repps Common. - Var. Ederi Retz. Potter Heigham, F. T'. Richards. Roydon by Diss; near Sprowston Grange. - Var. cyperoides Marsson. Alderford Common.
C. filiformis L. Acle; Ranworth; Hoveton.
C. hirta L. Roydon by Diss; Wymondham; Sprowston; Trimingham; North Walsham ; Cromer. 28. Rushford.
C. Psezdo-cyperus L. Flordon; by Filby Broad, in nice quantity.
C. acutiformis Ehrh. Type common. - Var. Kochiana. 28. Both sides of the river near Brandon.
C. rostrata Stokes. Newton St. Faith's, hb. Salmon. Roydon by Diss; Hoveton; Ranworth; Barton Turf; South Repps Common. 28. Brandon.

Panicum glabrum Gaud. (sub nom. Digitaria lumifusa Pers.). Ditchingham, near Bungay, D. Stock, 1850, hb. Salmon.

Spartina stricta Roth. Cley, G. R. Leathes, hb. Salmon.
Alopecurus myosuroides Huds. 28. Larlingford.
A. fulvus Sm. Sprowston. 28. Ringmere, Roudham. In both cases where water had receded in a dry summer.

Milium effusum L. Arminghall Wood. 28. Narford.
Phleum pratense L. var. nodosum (L.). Trimingham; Sprowston. 28. East Harling; Thetford to Rushford ; Swaffham.
P. phalaroides Koel. 28. Gayton, near Lynn, B. D. Wardale, 1844, hb. Salmon. East Harlıng to Knettishall, in small quantity ; Thetford to Rushford, in farr plenty.
P. asenarium L. Cromer. 28. Thetford, 1835, hb. Salmon, and towards Rushford ; East Harling to Knettishall.

Polypoyon monspeliensis Desf. Cley, Rev. G. R. Leathes with D. Turner and Mr. Borrer, 1809, hb. Sulmon. 28. Wells to Holkham, in plenty by a ditch which had been lately cleared out, 1884.

Calamagrostis epigeios Roth. Behind Sprowston Grange, on the borders of Thorpe.
C. lanceolata Roth. Filby Broad; Hoveton.

Aperia Spica-venti Beauv. Sprowston; Beeston St. Andrew; Crostwick; very plentiful, 1885. 28. Kilverstone Lane, Thetford, hb. Salmon.

Deschampsia flexuosa Trin. 28. Roudham; Larlingford; Swaffham.

Holcus mollis L. Geldeston ; Hellesdon; Sprowston; Wymondham; Ormesby, frequent; Blickling; Cromer. 28. North Elmham; Larlingford; Swaffham; Newton.

Trisetum pratense Pers. Ellingham; Witton. 28. Thetford; Swaffham; Newton.

Avena pratensis L. 28. Thetford. - Var. longifolia Parnell. 28. Near Swaffham.

Sieglingia decumbens Bernh. 28. Lexham Heath.
Koeleria cristata Pers. Norwich Cemetery, perhaps introduced with grass-seed. 28. Larling ; East Harling to Knettishall; Thetford to Rushford ; Swaffham.

Molinia varia Schrank. `Newton St. Faith’s; Cawston; Ormesby. 28. North Elmham.

Catabrosa aquatica Beauv. Beeston St. Andrew; Yarmouth.
Poa compressa L. Ellingham.
Glyceria plicata Fr. Kirby Cane.
G. aquatica Sm. Ellingham; Flordon; Thorpe. 28. Thetford, hb. Salmon.
G. maritima M. \& K. Yarmouth.
G. distans Wahl. On the east side of Wells.

Festuca procumbens Kunth. On the South Dene, Yarmouth.
F. rottboellioides Kunth. Cromer; abundant on the cliffs, Mundesley.
F. ambigua Le Gall. 28. Roudham; East Harling to Knettishall; Croxton Heath ; Thetford to Rushford.
F. sciuroides Roth. Thorpe to Sprowston; Paston; Swafield.
F. ovina L. Mousehold Heath. 28. Thetford, hb. Salmon.
F. rubra L. 28. Larlingford; Swaffham. - Var. grandiflora Hackel, named by Dr. Hackel. Caister by Yarmouth.

Bromus ramosus Huds. Geldeston. 28. Swaffham.
[B. tectorum L. In some quantity on waste land that had gone out of cultivation on the Suffolk side of the river near Thetford.]
B. madritensis L. and B. maximus Desf. As casuals in sown grass, Sprowston.
B. racemosus L. and B. commutatus Schrad. Sprowston.
B. mollis L. var. interruptus Hackel. 28. A little north of Thetford Station, 1884.

Agropyron junceum Beauv. Mundesley.
Nardus stricta L. Newton St. Faith's; Sprowston. 28. Thetford, $h b$. Salmon. North Elmham; Roudham; Newton.

Elymus arenarius L. Bacton; Mundesley. 28. Brancaster, Miss Wardell in hb. Salmon.

Lomaria Spicant Desv. Marsham; Sprowston.
Asplenium Adiantum-nigrum L. Cawston; Barton Turf.
A. Ruta-muraria L. Barton Turf Church.

Athyı ium Filix-fommina Roth. Arminghall Wood; Sprowston ; Swafield to Knapton. 28. Downham, hb. Salmon.

Scolopendrium vulgare Symons. Knapton; Paston.
Polystichum angulare Presl. Barton Turf.
Lastrica Thelypteris Presl. Abundant about Ranworth Broad; Barton Broad.
L. Oreopteris Presl. Copse near Sprowston Common, also near Sprowston Grange.

Osmunda regalis L. Sprowston; Barton Turf.
Ophioglossum vulgatum L. Meadows, Earlham Hall; Thorpe, behind Sprowston Grange; Ranworth; Barton Broad.

Journal of Botany.—Vol. 38. [July, 1900.]

Equisetum maximum Lam. Cromer.
E. limosum L. Ellingham; Thorpe; Barton Broad. - Var. fluviatile (L.). Heigham by Norwich ; Bradfield.

Chara fragilis Desv. Roydon by Diss.
C. polyacantha Braun. Roydon by Diss.
C. hispida L. Roydon by Diss; Alderford; Ranworth.
C. vulgaris L. Roydon by Diss; Flördon; Attlebridge.

To the above list may be added Salix acuminata Sm., north side of the river, by the Dolphin Ferry, Norwich; I know of no other locality in the county for this willow.

Two species mentioned above are perhaps unrecorded-Lepidium Draba for v.-c. 27, and Ononis spinosa for 28.

Every effort has been made to avoid repeating recorded stations in this paper; and if any such repetitions occur, it has happened inadvertently, except in rare cases where confirmation seemed desirable.

NEW ORCHIDS FROM COSTA RICA.

By A. B. Rendle, M.A., D. Sc.

I am indebted to M. Barbey for the two species described below. The plants were collected in Costa Rica by Mr. A. Tonduz, and flowered in M. Barbey's collection at Chambésy, where I saw them a few weeks ago.

Pleurothallis Simmleriana, sp. nov. Pusilla foliis anguste lanceolatis, apice minute tridenticulatis; racemo solitario, floribus 5 in apice pedunculi filiformis congestis, bracteis scariosis, ovatis vel rhomboideo-ovatis, cuspidatis, pedicellis valde geniculatis; sepalis ochraceis cum nervis 3 sanguineis striatis, et sanguineopunctulatis, dorsali sublanceolato-oblongo, apice acuto, lateralibus liberis, asymmetricis, oblongo-lanceolatis, ad apicem acutum attenuatis; petalis atro-sanguineis, rhomboideo-spathulatis, apice breviter subacuto; labello ad pedem columnæ articulato, sanguineo, oblongo, 3 -nervato, basi attenuato, sub apice rotundo minute denticulato; columna sanguineo alato, clinandrio dentato, anthera uniloculare, polliniis pyriformibus flavis.

A small plant with leaves 3 cm . long by 5 cm . broad, and scapes 4.5 cm . long bearing 2 scarious tubular sterile bracts with a cuspidate apex, 3.5 mm . long. The flowers open singly, following each other closely at the top of the scape; each springs from the axil of a whitish multinerved bract $3-4 \mathrm{~mm}$. long; flower-stalks strongly kneed, 5 mm . long, ovary 1.6 mm . Sepals with three broad deep crimson veins on a pale dull ochre ground, dotted with crimson between the veins, 7 mm . long by 2 mm . broad, the adjacent margins of the lateral sepals almost straight, their base 1.5 mm ., united with the foot of the column; petals 3 mm . long by a little over 1 mm . broad above the middle; lip 3 mm . long by 1.4 mm . broad ; column 2.5 mm . by .75 mm ., foot 1.5 mm . long.

A distinct species of the Apoda caspitosa section.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

being furnished with them. The involucre forms a complete ring, as in calycina, the cylinder varying in length, but never so long as is frequently seen in the latter. The calyptra is more or less exserted, sometimes only slightly beyond the involucre, but more commonly for some distance, and frequently as much as in epiphylla. It is usually included in calycina.

Pellia epiphylla differs in being paroicous, the antheridia being on the same frond as the female, and it has commonly much broader fronds, which are generally green. The darker coloured narrower forms cannot be distinguished with certainty in the barren state from Neesiana. Besides the difference of the inflorescence, P. epiphylla also differs from the two other species in that its involucre does not form a complete ring, the antical portion being absent; and the mouth of the involucre looks towards the apex of the frond, while in the others it is vertical. The calyptra is always highly exserted. The anterior layer of the capsule wall has much more numerous rings than in Neesiana.

Regarding the vertical distribution of the three species in Britain, P. calycina appears to be confined to the low ground. I have seen epiphylla at 2500 ft . on the west coast of Scotland, and it probably reaches considerably higher. As Neesiana attains a higher altitude and latitude in Norway than epiphylla does, it is to be expected that it should be found on our hills. On looking for it this year up to 2000 ft ., all the plants which I saw in fruit were epiphylla. The latter, however, fruits much more freely than the dioicous species. Specimens of P. Neesiana from Moidart have been confirmed by Mr. Pearson and Herr Kaalaas. Jungermania endiviafolia Dicks. is the same plant as J. calycina Tayl. according to Lindberg; and this being so, Dickson's specific name has priority over Taylor's for our calycina.

SHORT VOTES.

Cerastium apetalum Dumort. - During the springtime of the present year I have been paying special attention, in continuation of observations made several years ago, to the above plant-more generally known among British botanists as Cerastium glomeratum b. apetalum Dumort.-with the result that the opinion then formed of this plant has been confirmed. Observation has shown me that this apetalous form of Cerastium glomeratum is characterized not merely by the absence of petals, but by conditions which are really more physiological than otherwise. The flowers are strictly cleistogamons; the calyx remains closed, and the sepals do not separate until the ovary, developing into the fruit, forces them apart. The petals, generally absent, are in some flowers present in a dwarfed state. The stamens seem to be reduced in number to five or so. The five stigmas are apparently shorter than the stigmas of normal flowers. Each stigma is a rather striking object when examined with the microscope, as it consists of elongated cells which towards the apex of the stigma form erect, spreading, or deflexed finger-like
papillæ. The centre of each stigma is traversed by a fibro-vascular strand with annular vessels. Examination of young flower-buds shows that the fertilization of the flower is effected in this closed condition. Not only can loose mature pollen-grains be seen adhering to stigmas, but it is usually the case that these have developed pollen-tubes. In the instalments which have appeared in this Journal of Mr. F. N. Williams's "Critical Notes on some Species of Cerastium," it is interesting to recall that there are two forms of the genus (both referred to C. glomeratum as varieties) which stand apart from typical C.glomeratum in much the same way as var. apetalum does. These are C. castratum Kittel and C. consanguineum Weddell; the former possessing five fertile stamens only, and the latter with apetalous flowers. It may very well be that these three forms-apetalum, castratum, and consanguineumrepresent a series of physiological states rather than varieties. I find that var. apetalum usually grows with ordinary C. glomeratum, so the cleistogamy is perhaps due to neither the influence of soil nor light.-Charles E. Britton.

Euphorbia Portlandica in Cheshire. - My correspondent of many years, Miss E. Foulkes Jones of Chester, formerly of Llansilin in Denbighshire, last autumn sent me her entire herbarium to examine for Salopian, Denbigh, Montgomery, and other records. In it I found a sheet of Euphorbia Portlandica L. marked "Hoylake, H. Bell, 1869." As this species had not been reported for Cheshire in any Flora of Liverpool, nor observed by me during a visit to Hoylake in 1893, though I saw it abundantly on quite similar ground near Blundellsands in the same month, I made special inquiry (in view of another species admittedly represented by a specimen taken into Mr. Bell's garden, though originally found as an escape) as to whether it might not be ex hort., and only representative of the north of Liverpool locality. Mr. Bell stated that Miss Jones's plant certainly was not from his garden, nor from Blundellsands, and promised to look out for it in the following spring. The question is now set at rest. I have this morning (June 7) received through Miss Jones a number of quite fresh specimens gathered by Mr. Bell on June 4, accompanied by a letter in which that gentleman, who resides at Greenfield, West Kirby, gives their place of growth as " on the banks of the Dee, between Hoylake and West Kirby." The species is not mentioned in Lord de Tabley's Flora of Cheshire. But, curiously, it is named for Cheshire in Top. Bot. ed. ii. on the authority of Lord de Tabley himself-_" J. L. Warren, cat."-William Whitwell.

Mathiola incana in Sussex (p. 169).-Mr. Whitwell directs our attention to a notice of this plant in the Transactions of the Chichester Natural History Society, No. 8, new series (1889), pp. 26-28, quoted by the Rev. F. H. Arnold from a letter by Mr. R. D. Postans, of Eastbourne, written in 1888. Mr. Postans says: "I think that you will be interested to know that a Stock which I cannot distinguish from Mathiola incana grows on the cliffs at Rottingdean, near Brighton, and has been growing there in,
a wild state for more than thirty years. I first saw it five years ago, but I did not then know. how rare and local M. incana is in England. I have again visited the spot for the purpose of more closely inspecting the locality, and trying to ascertain how long the plant has been growing there. I find that the plant is spread over the cliff from top to bottom for a length of about 750 yards. For about 600 yards the cliff is 70 feet high, and for the remaining 150 the height varies from 70 to 20 feet, so that the area over which the plant occurs is between three and four acres in extent. The eastern boundary of the locus is about 300 yards west of Rottingdean town, and the western boundary (almost opposite the end of the road that leads to Ovingdean) is about 750 yards further west. I could not count the plants, but little and great they are certainly in hundreds, and no one, taking all the facts into consideration, could doubt that the plant has been established there for a great many years. Indeed, Col. Stead (the son of the rector of Ovingdean), who has known the spot for forty years, tells me that as far back as he can recollect the plant has grown wild there. How it came there I suppose no one can now say for certain. There is a cottage on the cliff above, the garden of which is separated from the cliff by a grassy road fifteen yards wide, from which the seed may have escaped; but, however that may be, it is certain that for thirty-five years (and I think probably for fifty years) the plant has been established there as a wild plant. It is rather curious, if the plant originated from seed from the garden, that it has spread about 350 yards eastwards and 350 yards westwards, because the prevailing wind at the time when the seed is scattered is westerly."

Impatiens glandulifera Royle (pp. 50, 87).-When I was at Durham, about eight years ago, there was a grove of this close to the Prebend's Bridge, high enough to bury the cows.-C. B. Clarke.
[In the Flore des Pyrénées-Orientales by MM. G. Gautier and Ch. Flahault (1898) this plant is recorded from "Mare a Ria," and a note is appended: "Espèce de l'Himalaya tendant a se naturaliser en France où elle est déjà connue au Mont Saint-Michel ", (p. 474).-Ed. Journ. Вot.]

Vicia lutea L. in Jersey.-I found this plant on May 29th growing in fair profusion on a rocky bank near Mont Orgueil Castle. This is an entirely new addition to our local floraindeed, with one exception, to that of the Channel Islands. Babington (Prim. Floræ Sarnicæ, 1839) mentions it as being found, though very sparingly, near Le Ree Barracks, Guernsey; but neither he nor any later botanists have ever noted it as occurring in Jersej.-Stanley Guiton.

Buxbaumia aphylla L. in Staffordshire. - The occurrences of this moss are so rare and uncertain, that bryologists will be interested to hear that I have recently met with a few plants of it on bare dry soil in the parish of Armitage, on the outskirts of Cannock Chase. This is a new record for Staffordshire. It is to be hoped that in this case the moss may make an exception to what is said to be its rule of not reappearing in the same locality.-H. P. Reader.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
which have been described and printed, though not published, for the forthcoming part of Mr. Hiern's Welwitsch Catalogue. These unnecessary additions to nomenclature might easily have been avoided, if a course had been pursued similar to that which by mutual consideration prevented a like inconvenience in the treatment of the Acanthacea. We are sure that no blame attaches either to Mr. Baker or Mr. Hiern for this want of reciprocity, but the result is none the less inconvenient. Synchronization is often inevitable when botanists at different centres are working independently at the same group of plants-it will not be surprising, for example, if some of the Clerodendrons published by Dr. Gürke in the part of the Bot. Jahrbuch bearing date May 22nd should be identical with, and should therefore anticipate, some of Mr. Baker's species described in this part of the African Flora; but it is obvious that a very little care would suffice to avoid the duplication of names by botanists working in different parts of London.

It is not merely with regard to nomenclature that comparison would have been desirable. In the genus Clerodendron, for example, Mr. Baker has three species-C. hysteranthum, C. megasepalum, and C. orbiculare-founded on three Welwitsch plants. Welwitsch's number for the first is not quoted, but the two numbers cited for C. megasepalum and C. orbiculare manifestly belong to the same species. The type of hysteranthum is not, we are informed, in the Kew Herbarium, nor is there any plant so named by Mr. Baker in the British Museum series of Welwitsch's plants. We have every reason to suppose that the species is based on Welwitsch no. 5688, which number is cited by Mr. Baker as the type of his orbiculare. There can be little if any doubt that the three names represent only one species. A number (5662) quoted under C. volubile quite certainly represents a very distinct plant, which is not, we believe, to be found in the Flora; this and other points would probably have been clearly observed if the British Museum set of Welwitsch's plants had been more thoroughly examined and quoted-in this genus alone Mr. Hiern cites nineteen numbers which are not in Mr. Baker's monograph. The National Herbarium, indeed, has been somewhat insufficiently examined, and the distribution of the species would in some instances-e.g. C. sinuatum, which in the Flora is confined to Upper Guinea, but of which we have specimens collected by Perottet in Senegal-have been extended had the Herbarium been thoroughly investigated. Nor does it appear that the literature of the genus has been exhausted, and it is difficult to account for the omission of certain names cited in the Index Kewensis, except on the supposition-which we believe is supported by facts-that Mr. Baker's MS. was prepared before that useful work of reference was published. Some of the names localized for "Afr. trop." in the Index are Madagascar species-it must always be remembered that the geographical distribution is the weakest point of the work; but it is difficult to account for the omission of C. triflorum Vis.*

[^15]from Nubia (Kotschy), or of any reference to C. Whitfieldii Seem. The latter was published in Bonplandia (x. 250) in 1862, and subsequently described by Oliver as C. cephalanthum-a name which Mr. Baker retains for the variety of C. capitatum to which he refers the plant: the figure of C. capitatum in Bot. Mag. (4355) should have been cited here.

Again, the name C. toxicarium is given in the monograph as if it were published for the first time; reference should have been made to its appearance (without description) in Engler's F'flunzenwelt OstAfrikas, C. 340, where it stands as of "Bak. msc. in sched. coll. Buchanan n. 1075." The reference to "Bak. msc." is to an incomplete and unpublished though printed list of tentative names distributed with one of Buchanan's collections, which is cited elsewhere in this part as "Buchanan, Nyasaland plants, 1891 ;" this has not the remotest claim to rank as a publication.

We note an inconsistency in the priority accorded to certain names. On p. 297, for example, "C'. formicarum Gürke in Engl. Jahrb. xviii. 179 " is rightly given precedence over "C. triplinerve Rolfe in Bolet. Soc. Brot. xi. 87 "; but on p. 321 "Vitex flavescens Rolfe in Bolet. Soc. Brot. xi. 87 " is retained, while "V. Mechowii Gürke in Engl. Jahrb. xviii. 167" is reduced. Prof. Engler's paper was published in December, 1893 ; Mr. Rolfe's did not appear until the following year.

A comparison between the Welwitsch Catalogue and Mr. Baker's work suggests further criticisms, which, however, may well be deferred until Mr. Hiern's enumeration is published. In the interests of systematists we would appeal to the Editor of the African Floras to see that the unfortunate conflict of names which has arisen on this occasion shall be guarded against in future issues.

First Records of British Flowering Plants. Compiled by William A. Clarke, F.L.S. Second edition, revised and corrected. London: West, Newman \& Co. 8vo, cloth, pp. xvi, 194. Price 4s.
This new edition of Mr. Clarke's interesting compilation contains " many desirable corrections," and certain other additions: e.g. "the names used by Ray and other old authors" are given in full. This is perhaps an improvement, but if it is used, as Mr. Clarke suggests, "to test the accuracy of [his] identifications without having to refer to the original sources of the extracts," we think it may be mischievous. The information given in the phrases quoted is seldom sufficient for accurate identification; and conelusions can never safely be based upon second-hand citations, however careful these may be. Another addition is that of "the botanist or old author who first used the name, though perhaps not for the same [generic] plant"; and the English names are given in many cases for the genera and in fewer for the species. We do not know what, or whether any, principle determines the selection of these names-why, for example, Nepeta G̛lechoma has its English equivalent while N. Cataria is without it-but in all matters
relating to nomenclature, Mr. Clarke is frankly anarchist. As regards the Latin names employed, " Sic volo, sic jubeo; stat pro ratione voluntas" is his motto. He follows the London Catalogue except when he prefers the Index Kewensis, and when these authorities are in accord, he does not scruple to reject them both in favour of his personal prejudice; e.g. Rumunculus hirsutus, which, notwithstanding its unromantic sound, must, we think, possess for Mr. Clarke some tender associations, so resolutely does he cling to it. But this aspect of his work was dealt with at length in our notice of his former issue (see Journ. Bot. 1897, 148-150: and there is no need to say more about it.

Of the interest and usefulness of the book as a whole there can be no question. The quotations, so far as we have tested them, are very carefully done, both as to reference and textual accuracy. Misprints are commendably rare-we note one on p. 74, "Gnaphalium Norgevicum," and the arrangement could only be improved upon by the printing in full at the head of each page the name of the genus under consideration, as is done in the best colonial and other floras: this takes no space, and adds greatly to the convenience of using the book. We note one omission-Stachys alpina, which was recorded in this Journal for 1897 (p.380) and figured in June, 1898. No one who is interested in the history of British botany can afford to be without Mr. Clarke's volume.

Flora der Schweiz: zuin Geb,auche auf Exkursionen, in Schulen und beim Selbstunterricht. Bearbeitet von Prof. Dr. Hans Schinz und Dr. Robert Keller. Mit Figuren. Zurich: A. Raustein. 8 vo , cloth, pp. vi, 628. Price 6 marks.
The approach of the holiday season renders it desirable at once to call attention to this extremely useful Flora, which has just made its appearance. Those who find Gremli's admirable Swiss Flora insufficient and who are sufficiently at home with German to master botanical descriptions in that language will welcome the full descriptions given in the present volume; the only drawback to the work is its weight (nearly 2 lbs.), which the pedestrian will find no inconsiderable addition to his impedimenta on a blazing summer day.

Every care seems to have been taken to render the work useful to the German student, for whom of course it is primarily intended. There are keys to the genera and species, as well as a detailed description of each, except in the case of monotypic genera, when the species only is described at length. So far as we can judge of the usefulness of a book of this kind without testing it in the field, it would seem an important addition to the literature of European botany. One or two points strike us as undesirable: e.g. the omission of authorities after the names, although these are supplied in the excellent index; and the manufacture for each species of a German synonym of the kind of which the "English names" in our own book affords abundant illustration. The typography of the book is excellent.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

that he deals with in Composita is Lapsana L.; he explains (p. 44) that Lampsana of Dioscorides is a Crucifer, either Sinapis or Raphanistrum, and contends that therefore it cannot be used for a Composite, especially as Lapsana of Pliny is another Crucifer; on these grounds he rejects the usual name and substitutes Lalda, a local word which is employed by some Etruscans for the common nipplewort, the plant in question, which he accordingly endows with the scientific name of Lalda communis; he refers to Ruellius and Dodoens for further information, and for synonymy quotes Lampsana communis of Linnæus and others, Lapsana communis La Peyr., L. vulgatissima Vaill., L. Dodonai Camer., J. Bauhin, L. sonchifolia Gilib., L. domestica G. Bauhin, etc.; he then states the times of flowering and fruiting, aud the localities where he collected it, together with an account of the kind of places where it occurs, and its principal variations in form, size, and other peculiarities, both in the Pyrenees and elsewhere, and refers to some of its states, such as L. pubescens Hornem. and L. piscidica "Borb." [? Boiss.]; he concludes with an allusion to some enigmatic observations on the plant in Turkey made by Bellon [Belon] in 1588.

There are about two dozen of new generic names invented by the author after a similar fashion, and he adopts a much larger number of genera from ante-Linnean authors, in lieu of names in common use; the trivial names of species are also freely altered. The ample synonymy, printed, however, in very small type, enables the reader to discover the plants intended. A dispassionate and considerate view of the whole of this elaborate work will disclose many good and valuable features, which it would be unfair to deny simply on account of one conspicuous disfigurement.
W. P. H.

Symbola Antillana (Urban). Vol. ii., fascicle 1. Cyperaceæ. By Charles Baron Clarke. 8vo, pp. 8-162. Berlin: Borntraeger. 1900.

We are glad to note the publication of this fascicle. We trust that Mr. Clarke's complete monograph of the Cyperacece will not be much longer delayed; in the meantime it is a great help to the systematist to have good catalogues of the members of the order found in various geographic areas, such as South Africa in the Flora Capensis, East India in the Flora of British India, and the West Indies in the fascicle now before us.

Mr. Clarke enumerates about 250 species, which are contained in twenty-six genera. Here, as elsewhere, he has broken up the unwieldly genus Cyperus, the species being distributed under Pycreus, Juncellus, Cyperus, Mariscus, and Torulinium. The rehabilitation of Torulinium Desv. is an innovation; it includes the wide-spread T. confer tum Ham. (= Cyperus ferax L. C. Rich. and a page and three-quarters of other synonyms) and seven endemic American species, which are distinguished from Mariscus by the separation of the rhachilla of the ripe spikelet into as many one-seeded joints as
there are nuts, a character which some botanists might regard rather as subgeneric than generic in value. We note that Dichromena is still kept distinct from Rynchospora, with the remark "forsan in Rynchospora potins mergendum"; it is difficult to see on what grounds the two can be generically separated.

Apropos of Rynchospora, a point of nomenclature arises: the large number of species described under Rhynchospora, as Willdenow spelt it, are regarded as synonyms, so that, except for a few original names of Vahl, most of the species are cited as of Britton or C. B. Clarke; Rynchospora pseudo-lanata C. B. Clarke is, however, an unnecessary change for R. filiformis Vahl. We note an opportunity for further alterations, which Otto Kuntze has missed; the oldest name for the genus being Triodon L. C. Rich. (= Rynchospora tenerrima C. B. Clarke), there is a chance for some one to run out a hundred or so of new names, himself the authority. An additional advantage is that a later genus of Rubiacece will then be squashed.

Mr. Clarke has kindly drawn our attention to a point of much greater interest, which is strongly marked in Cyperacea-namely, the connection between the North Tropical American and the West African floras. Omitting plants of general distribution, the following well-distinguished species occur both in the West Indies and in West Tropical Africa :-Kyllinga squamulata Vahl, K. Peruviana Lam., Pycreus propinquus Nees, Juncellus alopecuroides C. B. Clarke, Cyperus nudicaulis Poir., C. sphacelatus Rottb., Mariscus umbellatus Vahl, Fimbristylis exilis R. \& S., F. obtusifolia Kunth, Scirpus spadiceus Boeck., Rynchospora cyperoides Britton. Several of these have been discovered, for the first time in the West Indies, by Père Duss in Martinique. It would be interesting to know Mr. Clarke's views as to the solution of this puzzle in geographical distribution. There seems little doubt that the intercourse in connection with slave-traffic is insufficient to account for all the cases, and that the former existence of some other facility for direct communication has to be considered.
A. B. R.

ARTICLES IN JOURNALS.*

But. Centralblatt (No. 22). - A. Hansgirg, 'Zur Phyllobiologie der Ficus, Coffea und Kibara.' - F. W. Neger, ' Weiteres über Phyllactiniu.'-(Nos. 23, 24). T. Bokorny, 'Uber die Proteinstoffe der Samen.'

Bot. Gazette (25 May). - B. M. Davis, 'Fertilization of Albugo candida' (1 pl.). - H. Hasselbring, 'Development of Trichurus spiralis and Stysanus Stemonites' (2 pl.). - R. W. Smith, 'Sporophylls and sporangia of Isoetes' (concl.). - E. B. Copeland, 'Soja

[^16]beans for imbibition experiments'; 'Gas diffusion through the cuticle.'-H. H. Hume, Puccinia Thompsonii, sp.n.-W. W. Rowlee \& S. P. Nichols, 'Taxonomic value of staminate flowers of Oaks.'

Bot. Magazine (Tokio: 20 April). - T. Ito, 'Plantæ Sinenses Yoshianæ.'-K. Miyake, 'Starch of evergreen leaves.'-T. Makino, ' Bambusaceæ Japonicæ' (cont.).

Bot. Zeitung (1 June). - W. Rothert, ‘Die Krystallzellen der Pontederiaceen' (1 pl.).

Bull. But. Soc. Belgique (16 June).-T. Durand \& E. De Wildeman, 'Matériaux pour la Flore du Congo' (Gilletiella, gen. nov. Acanthacearum); Demeusea, gen. nov. Amaryllidacearum).

Bull. Torrey Bot. Club (26 May).-G. N. Best, ' North American Pseudoleskea' (2 pl.). - E. P. Bicknell, 'Sisyrinchiums of British America.' - W. W. Rowlee, 'N. American Willows' (1 pl.).A. Nelson, 'New plants from Wyoming.'-J. K. Small, 'N. American plants.' - F. W. Patterson, 'New Fungi.' - W. A. Riley, ' Plowrightta morbosa spores.' - F. H. Blodgett, ' Darluca upon Carnation rust.'

Mém. de l'Herb. Boissier (No. 13: 10 May).-J. Freyn, ' Bemerkenswerthe Orientalische Pflanzenarten.' - (No. 14: 30 May). A. Franchet, 'Mutisiaceæ Japonicæ' (1 pl.). - (No, 15 : 30 May). E. De Wildeman, 'Quelques Chytridinées nouvelles,'

Nuovo Giorn. Bot. Ital. (April). - F. Cavara, 'Arcangeliella Borziana, nuova Imenogasterea.' - L. Vaccari, 'Flora delle Alpi Graie.' - A. Preda, 'Il monte Cocuzzo e la sua flora vascolare.'A. Trotter, 'Entomocecidi della flora italiana.'

Oesterr. Bot. Zeitschrift (June). - R. v. Wettstein, 'Die nordamerıkanischen Arten de Gentiana § Endotricha' (cont.).-J. Freyn, ' Nachträge zur Flora von Istrien.'-L. \& K. Linsbauer, 'Teratologische Befunde an Lonucera tataı ica' (concl.: 1 pl.).-F. Vierhapper, 'Amica Doronicum Jacq.' (cont.). - B. Horäk, ' Zur Flora Montenegrós ' (concl.).—J. Podpěra, 'Zur Flora von Böhmen.'

BOOK-NOTES, NEWS, \&c.

The rule which forbids the delivery of lectures in Kew Gardens is no doubt salutary, but it would seem to be enforced with unnecessary rigour. We read in the last number of Nature Notes that on May 5, about sixty persons, members of the Selborne and other societies, visited the Gardens, "and the guide, Professor Boulger, endeavoured to give a peripatetic lecture on Adaptation. The Tropical Aroid House was closed, and, after visiting the Succulent House, the party were informed that lecturing of any kind was furbidden in any part of the grounds. After a stroll

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
of the fruits and seeds. The diagnoses of the two genera must therefore be revised, with the result that Pheoneuron and Dicellandra change their character as monotypic genera. The author described two new species of Phaoneuron-P. Schweinfurthii (Schweinfürth, no. 3166), from Monbuttuland, and P. Moloneyi, from Lagos-and reduced Dicellandra liberica Gilg. and D. (?) setosa Hook. f. to Phaoneuron setosum Stapf.

Messrs. T. Ito and J. Matsumura are publishing in the Journal of the Science College at Tōkyō a T'entamen Flore Lutchuensis, which seems very carefully done. It is intended as a preliminary contribution to the flora of the Loochoo Islands, and will undoubtedly furnish a useful basis for further investigations. A new C'amellia (C'. lutchucnsis) and a new Euonymus (E. lutchuensis) are described by Mr. Ito, and some new Leguminosce by Mr. Matsumura. We note a synonym-" Hypericum calycatum Jacq."-which may cause some trouble; it is quoted as "Jacq. ex Dyer in Hook. f. Fl. Brit. Ind. i. 257 [256]." A reference to the Index Kewensis shows that the abbreviation "Jacq." here stands not for Jacquin, as is customary, but for Jacquemont. The synonym is quoted from Jacquemont's herbarium, and ought not to have been published.

An International Botanical Congress will be held in Paris on Oct. 1-10. Programmes and all information may be obtained from the Secretary, M. E. Perrot, 272 Boulevard Raspail, Paris.

Mr. E. D. Marquand sends us an interesting paper on "The Flora of Alderney," reprinted from the Transactions of the Guernsey Society of Natural Science for 1899. He enumerates 414 flowering plants as occurring in the island.

Mr. Frederick H. Blodgett, of the New York Agricultural Station, has recently published in Bulletin No. 175 an account of a Carnation rust, Uromyces caryophylinus, which is very destructive to the plants attacked. He has detected lately a small fungus of the Spharopsidec group-Darluca filum-growing on the Uromyces. The fungus has long been known in Britain as a parasite on rusts, but it has not been proved to be very effective as a disease or check to its fungus host. Mr. Blodgett proposes, however, to induce the growth of Darluca artificially in carnation-houses, and so combat the rust disease. He has no results to record as yet. Two other Bulletins-Nos. 167 and 170—dealing with diseases of fruits caused by insects and fungi, have also been issued. They are the result of much enquiry and study, and give in handy form a popular account of the pests that fruit-growers may have to deal with, and also the remedies that have been found to be of most service in exterminating or keeping them in check.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

the sides at the base of the semicells subparallel and with subtruncate apices, below which the sides are very faintly hollowed.
3. Closterium limneticum Lemmermann in Plöner Forschungsberichten, Teil 7, p. 28, t. ii. f. 39-41. This is merely one of the numerous forms of C. gracile Bréb. The figure given by Brébisson (Mém. Sciences Nat. Cherbourg, iv. 1856, t. ii. f. 45) of this widely distributed species is not good, and that given by Cooke (Brit. Desm. pl. 13, f. 8) is a very poor representation of the species. Yet, any one acquainted with gatherings of Desmids from one of their most prolific habitats-viz. bogs-must also be acquainted with numerous forms of C. gracile.
C. limneticum var. tenue Lemmermann, l.c. t. ii. f. 42-44, is not an uncommon form of C. gracile, especially in the marshy districts of tropical and subtropical countries.
4. Closterium parvulum Näg. var. angustum, var.n. (Fig. 8). Var. minor, cellulis angustioribus. Lat. $7 \cdot 7 \mu$; apic. $94-102 \mu$ inter se distantibus.

Hab. Pilmoor, near Thirsk, N. Yorks.
This variety is smaller and considerably narrower than the typical form.
5. Closterium idiosporum, sp. n. (Figs. 6 and 7). C. parvum, elongatum ; cellulis diametro circiter $20-23$-plo longioribus, distincte sed leviter curvatis, parte mediana cellula cum marginibus subparallelis, gradatim et gradatim attenuatis et leviter curvatioribus apices versus, apicibus angustissimis sed truncatis; membrana cellularum achroa et glabra. Zygospora anguste elliptica, a vertice visa circularis; membrana subcrassa, dense scrobiculata. Long. $221-238 \mu$; lat. $10-10.5 \mu$; lat. apic. 1.7μ; long. zygosp. $57 \cdot 5 \mu$; lat. zygosp. 28.7μ.

Hab. Wicken Fen, Cambridgeshire.
This species is proportionately shorter than C. pronum Bréb., the apices being much less produced and truncate. It is somewhat larger than C. acutum Bréb., and its apices are quite different; moreover, the zygospore is remarkably different from the zygospores of C. acutum, C. cornu, etc.
6. Pleurotenium nodosum (Bail.) Lund. In Plöner Forschungsberichten, Teil 7, t. ii. f. 45, this plant is recorded by Lemmermann as P. nodulosum (Bréb.) De Bary.
7. Euastrum lobulatum Bréb. in Mém. Sciences Nat. Cherbourg, iv. 1856, p. 124, t.i. f. 4. [Syn. E. erosum Lund. var. notabile West in Journ. Roy. Micr. Soc. 1892, p. 723, t. ix. f. 17.]

Distrib. England; Wales; Scotland; Ireland; France.
We have met with this plant so frequently from suitable localities in every part of the British Islands that we began to think it somewhat strange if earlier observers had entirely overlooked it. Latterly, however, we have come to the conclusion that E. lobulatum, described by Brébisson in 1856, is most decidedly the plant we have recorded under the name of E. erosum var. notabile. Brébisson's description and figure are by no means good, but yet the outward form of the
cells, the relative size, and the habit of the plant admit of no other conclusion. We find it frequently in bogs, and the fact that it is invariably associated with Desmids that were perfectly familiar to Brébisson tends to confirm the view that the plant we have had under observation for years as E. erosum var. notabile is precisely the same as the plant described by Brébisson as E. lobulatum.
8. Xanthidium variabile, sp.n. [Syn. X. Smithii Arch. var. variabile Nordst. 1887; in Kongl. Sv. Vet.-Akad. Handl. Bd. 22, no. 8, 1888, p. 44, t. iv. f. $27-29$; West and G. S. West in Journ. Roy. Micr. Soc. 1896, p. 156, t. iv. f. 10 ; G. S. West in Journ. Linn. Soc. Bot. vol. xxvii. 1899, p. 386, t. 8, f. 20-22.]

Distrib. England; Wales; Ireland; British Guiana; New Zealand; Australia.

During the last few years we have obtained this plant from many parts of England, especially from some of the Sphagnumbogs. It often occurs in prodigious numbers, and retains its distinctive characters so constantly that we think it must be regarded as a species quite distinct from X. Smithii Arch. Another point of interest is that we have never yet found X. variabile associated with X. Smithii, although we have had the latter in abundance from several localities in Ireland. X. variabile (as indicated by its first describer) exhibits a considerable amount of variation, but, with its great variability, yet no intermediate forms are met with which in any way tend to connect it with X. Smithii (cfr. G. S. West, l.c. p. 386).
9. Xanthidium tetracentrotum Wolle, 1882 ; Desm. U. S. p. 95 , t. xxii. figs. 8, 9 ; West \& G. S. West, ' N. Amer. Desm.,' Trans. Linn. Soc. Bot. ser. 2, vol. v...p. 253, t. xv. f. 24. [Syn. Arthrodesmus incrassatus Lagerh. in Öfvers. af K. Sv. Vet.-Akad, Förh. 1885, no. 7, p. 242 , t. i. f. 18.]

Var. quadricornutum (Roy \& Biss.) nob. [Syn. X. quadricornutum Roy \& Biss. in Ann. Scot. Nat. Hist. 1893, p. 245 ; 1894, t. iv. f. 5.] The species described by Messrs. Roy and Bissett as X. quadricornutum scarcely differs in any respect from Wolle's X. tetracentrotum, and must therefore be placed merely as a variety of the latter species.
10. Cosmarium cymatopleurum Nordst. var. Archerit (Roy \& Biss.) nob. [Syn. Cosmarium Archerii Roy \& Biss. in Ann. Scot. Nat. Hist. 1893, p. 42, t. i. f. 5.] Long. 91μ; lat. 67μ; lat. isthm. 24μ. (Fig. 5.)

Hab. Penyghent, W. Yorks.
The most remarkable character of this plant is in the drawn-out apices of the semicells, but this feature is insufficient to warrant its separation by Messrs. Roy and Bissett as a distinct species. The specimens observed from West Yorkshire were intermediate between the typical form and the var. Archerii with regard to the produced apices; they were also intermediate in size, thus proving that C. Archerii and C. cymatopleurum are forms of one species.
11. Cosmarium pericymatium Nordst. var. eboracense, var. n. (Fig. 4.) Var. minor; semicellulis cum undulis paucioribus et prominentioribus; membrana punctata. Long. 21μ; lat. 14μ; lat. isthm. 10μ; crass. 12μ.

Hab. Cantley Spout, W. Yorks.
12. Cosmarium subtrinodulum, sp. n. (Fig. 11.) C. submediocre, paullo longius quam latum, profunde constrictum, sinu angusto ad extremo valde ampliato; semicellulæ transverse pyramidooblongæ, angulis inferioribus subrotundatis, angulis superioribus rotundatis, lateribus et angulis superioribus cum nodulis parvis $3-4$, apicibus latis leviter convexis, in centro semicellularum nodulis 3 subtransverse dispositis, circa nodulum unumquernque annulo scrobiculorum parvorum et nonnullis scrobiculis parvis irregulariter dispositis; a vertice visæ ellipticæ, polis undulatis, in medio utrobique subinflatæ et leviter trinodulosæ; membrana crassa. Long. 47.5μ; lat. 39μ; lat. isthm. $11 \cdot 5 \mu$; crass. 27μ.

Hab. Bowness, Westmoreland.
This species approaches nearest to C. trinodulum Nordst. (in Acta Univers. Lund, 1880, vol. xvi. p. 5, t. i. f. 4), but differs in its rounded basal angles, in the disposition of the nodules at the upper part of the margin of the semicells, in the arrangement of the elevations in the centre of the semicells, in the rings of scrobiculations round these nodules, in the inflated vertical view, and the thickened cell-wall.
13. Cosmarium heterochondrum Nordst. (l.c. 1880, p. 5, t. i. f. 3).

Var. mediogemmatum nob. [Syn. C. medioyemmatum West \& G. S. West, ' Welw. Afric. Freshw. Alg.,' Journ. Bot. 1897, p. 118, t. 367, f. 11.] As C. mediogemmatum has such a close affinity with C. heterochondrum, we have come to the conclusion that it had better stand as a variety of that species.
14. Cosmarium trilobulatum Reinsch, forma Schmidle in Engler's Botan. Jahrbüch. Bd. 26, Heft 1, 1898, t. ii. f. 8. This form figured by Schmidle does not belong to C. trilobulatum Reinsch (in Abhandl. Naturhistor. Gesellsch. Nürnberg, Bd. 3, 1866, p. 116, t. ix. f. vi $(1-d)$, but to C. Hammeri Reinsch, being especially near the forms figured by Reinsch, l.c.t. x. f. I h, l.
15. Cosmarium Pogornyanum (Grun.) nob. [Syn. Euastrum Pokornyamum Grun. in Rabenh. Flor. Europ. Alg. iii. 1868, p. 185; E. binale (Turp.) Ehrenb. var. angustatum Wittr. in Bih. till Sv. Vet.-Akad. Handl. 1872, Bd. 1, no. 1, p. 50, t. iv. f. 8; E. polare Nordst. in ufvers. af K. Vet.-Akad. Forh. 1872, no. 6, p. 37, t. vii. f. 24 ; Cosmarium angustatum (Wittr.) Nordst. l. c. 1875, p. 20.]

After a careful study of Cosmarium angustatum, we have concluded that C. Pokornyanum should be its name. It is a plant which has scarcely ever been referred to under the name of E. Pokornyanum, owing most probably to the brevity and meagreness of its original description. On careful consideration, however, we find that Grunow's description agrees in every way with that of C. angustatum (or E. polare).

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
annulo spinarum parvarum ad apicem et in centro annulorum cum spina breve tenue bifurcata instructæ. Diam. zygosp. sine verruc. 30μ, cum verruc. et spin. 49μ. (Fig. 9.)

Hab. Thursley Common, Surrey.
We give a figure of a zygospore of this species obtained from amongst Utricularia minor. It is a very beautiful zygospore, and not unlike that of C. punctulatum Bréb.
18. Cosmarium Logiense Bissett in Journ. Roy. Micr. Soc. 1884, p. 194, t. v. f. 4. Quite recently this species has been recorded by B.orge from Cuba (cfr. Bih. till K. Sv. Vet.-Akad. Handl. 1899, Bd. 24, Afd. iii. no. 12 , p. 19, t. i. f. 21), that author describing and figuring what he considers to be the true plant. We must, however, entirely disagree with him in this, as his West Indian Cosmarium is by no means typical C. Logiense. We have observed this species from many parts of the British Islands, especially from the Lake District, and we find it to agree very well with Messrs. Roy and Bissett's figure in Ann. Scot. Nat. Hist. 1894, t. ii. f. 15. Borge's plant possesses semicells of quite a different form from those of typical C. Logiense: they are much too elliptical, and are without the basal angles always found in specimens of C. Logiense. The granules on his plant are also too few in number.
19. Cosmarium Favum West \& G. S. West in Trans. Linn. Soc. Bot. ser. 2, vol. v. p. 250, t. xv. f. 5, 6. Schmidle has recently placed this species as a variety of C. margaritatum (Lund.) Roy \& Biss. (cfr. Schmidle in Bih. till K. Sv. Vet.-Akad. Handl. Bd. 24, Afd. iii. no. 8, p. 36), but his reasons for this we are at a loss to understand. We have examined large numbers of C. margaritatun from many parts of the world, and, as we pointed out when we described it, C. Favum has not the outward form of that species (cfr. also Roy \& Biss. in Ann. Scot. Nat. Hist. 1894, t. ii. f. 12). Apart from this, the peculiar external sculpture of the cell-wall, which consists of a large number of subhexagonal depressions [hence the name "favum"], at the base of which is a large granule, is sufficient to readily distinguish it from the well-known sculpture of C. margaritatum.
20. Cosmarium subochthodes Schmidle, var. major Schmidle, ' Lappmark ı. Vesterbott. Süssw.-alg.,' Bih. till K. Sv. Vet.-Akad. Handl. Bd. 24, Afd. iii. no. 8, p. 36, t. i. f. 51. We fail to see any difference between this plant and numerous specimens of C. cymatopleurum Nordst. var. tyrolicum Nordst. We have previously shown that what Schmidle described as "C. subochthodes" was partly C. cymatopleurum var. tyrolicum and partly C. Botrytis var. mediolave.
21. Cosmarium delicatissimum Lemmermann, 'Beitr. Kenntn. Planktonalg.,' Botan. Centralbl. Band lxxvi. 1898, p. 4 (sep.). The description of this species is so meagre that it will answer equally well for several well-known species, but at the same time it does not describe any of them. It is imperfect descriptions of this kind that we deplore, as they are of no use to true systematic
botany, but cause endless trouble and synonymy. Had Lemmermann known of the existence of such well-marked species as C. tenue Arch., C. minutissimum Arch., C. pygmaum Arch., and C. pygmaum Arch. var. Schliephackianum (Grun.) West \& G. S. West, he could not have intended his three and a half lines of imperfect description to convey the idea of yet another distinct species of minute Cosmarium.
22. Staurastrum subtrifurcatum Schmidle in Engler's Botan. Jahrbüch. Bd. 26, Heft 1, 1898, p. 56, t. iii. f. 17. This plant described by Schmidle is merely a large form (forma major) of S. subtrifurcatum West \& G. S. West, 'N. Amer. Desm.,' Trans. Linn. Soc. Bot. ser. 2, vol. v. 1896, p. 258, t. xvi. f. 24 . It seems rather strange that Schmidle should have given the same name as we did two years previously to the same plant.
23. Staurastrum Brasiliense Nordst. var. Lundellif West \& G. S. West, l.c. 1896, p. 259. [Syn. S. Brasiliense var. Lundellianum Schmidle in Bih. till K. Sv. Vet.-Akad. Handl. 1898, Bd. 24, Afd. iii. no. 8, p. 58.] We must remind Schmidle that the name "var. Lundellii" was given to S. Brasiliense forma Lundell (in Acta R. Soc. Scient. Upsal. ser. 3, viii. 1871, p. 73, t. iv. f. 39) some two years previous to his name of "var. Lundellianum."

Note.-Xanthidium Stuhlmannii Hieronymus (in Engler, Die Pflanzenwelt Ost-Afrikas und der Nachbargebiete, Theil C, Berlin, 1895 ; Schmidle in Engler's Bot. Jahrbüch. Bd. 26, Heft 1, 1898, t. iii. f. 7) is certainly a form of S. brasiliense.
24. Staurastrum aculeatum (Ehrenb.) Menegh. var. bifidum Schmidle, l.c. p. 55, t. ii. f. 44. This is undoubtedly a form of S. forficulatum Lund., and has nothing whatever to do with S. aculeatum. Cfr. also G. S. West in Journ. Linn. Soc. Bot. vol. xxxiv. p. 394-5.

In the same paper Schmidle records " S. forviculatum Lund. var. longicornis Schmidle" in his text (l.c. p. 55), and "S. longicorne Schmidle" in his description of plates (l.c. p. 70)! Although the plant he thus records is certainly a variety of S. forficulatum, approaching var. enoplon West, yet it does not resemble S. forficulatum nearly so much as his so-called S. aculeatum var. bifidum!
25. Staurastrum cosmospinosum (Börges.) nob. [Syn. S. aculeatum (Ehrenb.) Menegh. subsp. cosmospinosum Börges. in Botanisk Tidsskrift, Bd. 17, Heft 3, Kjöbenhavn, 1889, p. 147, t. vi. f. 8 ; S. rostellum Roy \& Biss. in Ann. Scot. Nat. Hist. 1893, p. 242 ; 1894, t. iii. f. 3.] We have recently obtained this plant from the West of Ireland, and have verified our idea that the plant described by Messrs. Roy and Bissett as S. rostellum is unquestionably identical with Börgesen's S. aculeatum subsp. cosmospinosum. Although Börgesen's name of "cosmospinosum" must take precedence, yet Roy was the more correct in placing it as a species quite apart from S'. aculeatum.

The complete characters of S. aculeatuin will be found discussed in Journ. Linn. Soc. Bot. vol. xxxiv. pp. 393-395.
26. Staurastrum erostellum, sp. n. [Syn. S. rostellum Roy \& Biss. var. erostellum West \& G. S. West, ' F. W. A. of S. of Engl.,' Journ. Roy. Micr. Soc. 1897, p. 493, t. vi. f. 18.] S. minutum, tam longum quam latum, profunde constrictum, sinu valde aperto acutangulo; semicellulæ subobreniformes, apicibus subrectis vel leviter convexis, membrana spinulis brevibus validis in seriebus subconcentricis circa angulos obsessa, spinulis paullo longioribus ad angulos; a vertice visæ triangulares, lateribus leviter concavis, angulis subrotundatis. Long. sine spin. $19 \cdot 5 \mu$; lat. s. spin. $19 \cdot 5 \mu$; lat. isthm. 6.5μ.

Hab. Thursley Common, Surrey.
This plant differs from S. cosmospinosum nob. ($=$ S. rostellum Roy \& Biss.) in the smaller size, in the deeper constriction and different form of the semicells, in the absence of the large spine at the angles of the semicells, and in the triangular vertical view with more rounded angles.

The relative size, number, and arrangement of the smaller spines is the same as in S. cosmospinosum, although in the latter species they do not increase in length towards the angles.
27. Staurastrom Brebissonii Arch. var. ordinatum Schmidle in Bih. till K. Sv. Vet.-Akad. Handl. Bd. 24. Afd. iii. no. 8, 1898, p. 53, t. iii. f. 1. This variety is merely typical S. erasum Bréb. (in Mém. Sciences Nat. Cherbourg, iv. 1856, p. 143, t. i. f. 28).
28. Staurastrum gladiosum Turner, var. delicatulum, var. n. (Fig. 14.) Var. spinis delicatioribus, interdum leviter curvatis, paucioribus inter angulos. Long. sine spin. $37 \cdot 5 \mu$, cum spin. 44μ; lat. sine spin. $38 \cdot 5 \mu$, cum spin. 50μ; lat. isthm. 14μ.

Hab. Malham Tarn, W. Yorks.
The form of the cells and the number and length of the spines are nearer those of S. gladiosum than any other species. The semicells are more depressed than in S. teliferum, and the spines are longer and more delicate.
29. Staurastrum inconspicuum Nordst. var. minor Schmidle in Bih. till K. Sv. Vet.-Akad. Handl. Bd. 24, Afd. iii. no. 8, 1898, p. 56 , t. ii. f. 35. Whatever this variety may be, it is certainly not a form of S. inconspicuum Nordst.
30. Staurastrum Hibernicum West, 'F. W. A. of W. Ireland,' Journ. Linn. Soc. Bot. vol. xxix. 1892, p. 177, t. xxiii. f. 6. As this species has been referred by some authors to S. orbiculare Ralfs, var. extensum Nordst., we give a figure of each for comparison (S. Hibernicum, fig. 20 ; S. orbiculare var. extensum, fig. 19). S. Hibernicum is much larger, with well-marked basal angles and a somewhat flattened apex, and the vertical view possesses much broader angles. The cell-membrane is also delicately punctate, the punctulations being rather far apart [" membrana lævis," West, l.c. p. 177, is erroneous]; that of S. olbiculare var. extensum is perfectly smooth.

Var. Farquharsonit (Roy \& Biss.) nob. [Syn. S. Farquharsonii Roy \& Biss. in Ann. Scot. Nat. Hist. 1893, p. 237; 1894, t. iv. f. 3.]

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

[Syn. S. proboscideum Arch. var. altum Boldt in Öfvers. af K. Vet.Akad. Forr. 1885, no. 2, p. 117, t. vi. f. 34 ; S. altum Schmidle in Bih. till K. Sv. Vet.-Akad. Handl. 1898, Bd. 24, Afd. iii. no. 8, p. 62.]

We have previously shown that S. proboscideum var. altum Boldt must be considered as a variety of S. Sebaldi Reinsch. It is a frequent American variety, and often occurs in large numbers amongst all forms of S. Sebaldi. It only differs from the type in the prominent convex apex, the arrangement of the spines and emarginate verruce being the same.

Palmellacee.

37. Scenedesmus arcuatus Lemmermann in Plöner Forschungsberichten, Teil 7, p. 17, t. i. f. 2-4. This is merely a form (by no means an uncommon one) of S. bijugatus (Turp.) Kütz.
38. Rhaphidium polymorphum Fresen. var. mirabile West \& G. S. West in Journ. Roy. Micr. Soc. 1897, p. 501, t. vii. f. 9-13. In a recent paper by Lemmermann (l.c. p. 29) that author has placed this variety as a distinct species- R. mirabile Lemmermann. In this he is absolutely wrong. When we described the variety, we illustrated very clearly its variability both by the description and the figures. It occurred as solitary cells amongst large numbers of specimens of all forms of R. polymorphum, and all stages were noticed between it and the var. falcatum. [One of these stages we figured: cfr. West \& G. S. West, l.c. f. 12.] Finally, we feel bound to state that there is not the slightest evidence for regarding it otherwise than as a peculiar form of R. polymor phuen.

He also states [Lemmermann, l.c. p. 28, footnote] that "W. et G. S. West haben kürzlich die Vermutung ausgesprochen, dass Cl. pseudospirotænium var. mirabile Lemm. mit Rhaphidium polymorphum var. variabile W. et G. S. West identisch sei." We can only say that we still retain that suspicion, as he bases his difference between Closterium and Rhaphidium mainly on the presence or absence of pyrenoids. He remarks: "Rhaphidium hat dagegen keine Pyrenoide," whereas we frequently find pyrenoids in species of Rhaphidium, and also in the allied genera Scenedesmus and Dactylococcus. Moreover, he includes Closterium subtile Bréb. as a species of Closterium, whereas it has unquestionably been proved to be Phaphidium polymorphum var. aciculare (A. Br.) Rabenh.

Note. - In the same paper, which is entitled 'Das Phytoplankton sächsischer Teiche,' Lemmermann has described a plant which he names Closteriopsis longissima. He places this plant in the Desmidiacea between Closterium and Pleurotanium, but Closteriopsis, whatever it may be, is certainly not a Desmid. Most probably it is a Rhaphidium of the nature of R. longissimum Schröder. \cdot
39. Oocystis Marssonii Lemmermann in Bot. Centralbl. 1898, Bd. 76, p. 151; Plöner Forschungsb. Teil 7, p. 24, t. i. f. 15-19. We fail to see how this species can with any reason be distinguished from Oocystis crassa Wittr. in Wittr. \& Nordst. Alg. Exsicc. 1879.

Description of Plate 412.

$$
\begin{aligned}
\mathrm{a}, \mathrm{a}^{\prime} & =\text { front view (a fronte visa) } \\
\mathrm{b} & =\text { vertical view (a vertice visa). } \\
\mathrm{c} \quad & =\text { side view (a latere visa). }
\end{aligned}
$$

All the figures are magnified 520 diameters.
Fia. 1-2. Penium curtuin Bréb. var. obtusum, var. n. 3. Cosmarium subexcavatum nob. var. ordinatum, var.n. 4. Cosmarium pericymatium Nordst. var. eboracense, var. n. 5. Cosmarium cymatopleurum Nordst. var. Archerii (Roy \& Biss.) nob. 6-7. Closterium idiosporum, sp. n. 8. Closterium parvulum Näg. var. angustum, var. n. 9. Cosmarium subpunctulatum Nordst.; zygospore. 10. Staurastrum Borgeanum Schmidle. 11. Cosmarium subtrinodulum, sp. n. 12. Staurastrum pygmœum Bréb.; zygospore. 13. Staurastrum punctulatum Bréb.; zygospore. 14. Staurastrum gladiosum Turn. var. delicatulum, var. n. 15-18. Staurastrum Arnellii Boldt. 19. Staurastrum orbiculare Ralfs, var. extensum Nordst. 20. Staurastrum Hibernicum West. 21. Staurastrum Hibernicum West, var. Farquharsonii (Roy \& Biss.) nob.

PLANT NOTES FROM SUTHERLAND AND CANTIRE.

By C. E. Salmon.

At the end of July, 1899, I was enabled to spend a few days in Sutherland, botanizing chiefly amongst the hills in the western vice-county near Inchnadamph, a small village in as wild a tract of country as is possible in Great Britain, I believe. A halt for a few hours at Lairg, on the way, gave the opportunity to add one or two plants to the East Sutherland list, but there was no time to do more.

Inchnadamph appears a good centre to work several interestinglooking mountains-Ben More Assynt (3273 ft.), Canisp (2779 ft.), Quinag (2653 ft :), Suilven (2399 ft.), and others. The first has a number of attractive spurs and cliffs that time would not allow. exploring; it was interesting to see Luzula arcuata still plentiful in one compact patch on the way to the summit, where it was recorded many years ago. There is no doubt whatever that the four localities in Watson's New Botanist's Guide (1835) are all one and the same place. Canisp, unfortunately, had to be taken on a very unfavourable day, clouds of mist and rain frequently sweeping over the mountain, and leaving one with views limited to but six or eight feet! On some of the walks round Inchnadamph I had the advantage of the company of H. N. Dixon, W. E. Nicholson, and my brother, who were in vestigating the moss-flora of the district.

From Inchnadamph I journeyed south to Kilmichael of Inverlussa, on the west coast of Cantire, where I had arranged to spend the remainder of my holidays. This proved to be a delightfully situated spot near the head of Loch Sween, with many extremely picturesque and fascinating bays and islets. Here several additions to the county list were discovered: amongst them Cephalanthera ensifolia. I was much interested in this find, as, although unrecorded in botanical works up to the present time, this species was set down as occurring in North Knapdale (Cantire) (by the Rev. D. Maclachlan) in a book I accidentally came across whilst in Cantire,
entitled The Statistical Account of Aryyleshire, by the Ministers of the respective Parishes, dated 1845.

As usual, I am much indebted to Mr. Arthur Bennett for help in many ways, and also to Messrs. F. Townsend, H. \& J. Groves, E. S. Marshall, E. F. Linton, etc., for their kindness in examining many of the specimens. An asterisk denotes a new (as far as I can ascertain) county record.

Sutherland East (107).
*Spergula sativa (Bœnn.). Lairg.
*Galium Witheringii (Sm.). North side of Loch Shin, Lairg.
*Artemisia vulgaris L. South side of Loch Shin, Lairg.

* Lobelia Dortmanna L. Loch Shin, Lairg.
*Euphrasia Scotica Wettst. North side of Loch Shin, Lairg.*E. brevipila Burn. \& Grem. South side of Loch Shin, Lairg. "Some of the specimens approach borealis Towns.," F. Townsend.

Nitella opaca Ag. Loch Shin, Lairg.
Sutherland West (108).
Castalia speciosa Salisb. var. minor DC. East end of Loch Assynt. Draba incana L. Allt-nan-Uamh Valley, south of Inchnadamph.
Viola lutea Huds. f. amœena (Symons). Cliffs immediately overlooking Inchnadamph.

Silene acaulis L. North slopes of Canisp.
Cerastiun arcticum Lange. Canisp, at about 2500 ft ., scarce.
Sagina subulata Presl. Near foot of Coinnemheall.
*Spergula sativa (Bœnn.). Cultivated field, Inchnadamph.
Rubus saxatilis L. Frequent about Inchnadamph.
Alchemilla vulgaris L. var. *alpestris (Schmidt). Inchnadamph.
—Var. *filicaulis (Buser). Ben More Assynt.
Epilobium alsinefolium Vill. By the Traligill Burn above Inchnadamph; Allt-nan-Uamh Valley, south of Inchnadamph. - ${ }^{*} E$. alsinefolium \times obscurum Schreb. ($=$ E. rivalicolum Haussk.). By the Traligill Burn above Inchnadamph. - E. anagallidifolium Lam. Glas Bheinn; north slopes of Canisp.-E. anagallidifolium \times alsinefolium. Glas Bheinn.

Cornus suecica L. Lower slopes of Coinnemheall.
Gnaphalium supinum L. A tall form on Canisp, at about 2300 ft ., which Mr. Bennett reports is between type and var. β fuscum of Syme's E. B.

Saussurea alpina DC. Limestone cliffs south of Inchnadamph; near Loch Maol-a'-Choire; north slopes of Canisp.
*Centaurea Cyanus L. Cultivated field, Inchnadamph.

* Hieracium Marshalli Linton. Limestone cliffs in Allt-nan-Uamh Valley, and limestone rocks near Loch Maol-a'-Choire. "Beyond being rather more glandular in the peduncles (which limestone cliffs might account for), this seems to be very good H. Marshalli mihi; a great extension northwards of its range," E. F. Linton. - H. anglicum Fr. var. longibracteatum F. J. H. Beinn-an-Fhuarain.H. iricum Fr. Near Loch Maol-a'-Choire; Beinn-an-Fhuarain; by

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Poa glauca Sm. Canisp, at $2000 \mathrm{ft} .-* P$. nemoralis L. var. glaucantha Reich. Beinn-an-Fhuarain.

Hymenophyllum unilaterale Bory. Glas Bheinn.
*Isoetes lacustris L. Two lochs on Glas Bheinn.
Chara fragilis Desv. Glas Bheinn ("approaching var. barbata," H. \& J. Groves).-C. fragilis Desv. var. delicatula Braun. East end of Loch Assynt; Loch Maol-a'-Choire, near Inchnadamph. - C. vulgaris L. ("form with only $1-2$ corticate segments," H.\& J. Groves). Stream from Loch Maol-a'-Choire.

Nitella opaca Ag. Loch Maol-a'-Choire.

Cantire (101).

*Thalictrum alpinum L. At about 800 ft . on hills east of Daltot Cottage, Loch Sween, G. C. Adeney.

Polygala serpyllacea Weihe. Kilmichael of Inverlussa.
*Spergula sativa (Bœnn.). Cultivated field south of Kilmichael of Inverlussa.
*Agrimonia odorata Mill. Port Lunna and on Fairy Isles, both on Loch Sween.

Apium grareolens L. Shore at head of Loch Sween.
*Galium boreale L. Between Lochan Laraiche and Loch Clachaig, G. C. Adeney.-*G. erectum Huds. Kilmichael of Inverlussa.
*Valeriana Mikanii Syme (confirmed by W. H. Beeby). Kilmichael of Inverlussa.

Lobelia Dortmanna L. Lochan Taynish.
*Euphrasia curta Fries, var. glabrescens Wettst. Shore of Loch Sween at Kilmichael of Inverlussa.

Lamium intermedium Fries. Cultivated land near Castle Sween.
*Folygonum amphibium L. var. terrestre Leers. Kilmichael of Inverlussa.
*Cephalanthera ensifolia Rich. Near Fairy Isles, Loch Sween, W. E. Vicholson.
*Sparganium affine Schnizl. (confirmed by W. H. Beeby). In a stream and in a loch on hills east of Daltot Cottage, Loch Sween. —*S. minimum Fries (confirmed by W. H. Beeby). Lochan Taynish.

Potamogeton alpinus Balb. Lochnam Ban.
*Ruppia rostellata Koch, var. nana Syme. Creeping in the mud, covered by shallow water, at the head of Loch Sween, abundant. The length of the fruit-stalks varies considerably, from barely the length of the fruit to quite three times as long. These shortstalked forms remind one of R. brachypus Gay, which, however, is a delicate, lax plant, and does not root along in the mud. M. Gay, in Cosson's Notes Critiques, p. 10 (1848), points out that his brachypus has club-shaped filaments, woody and very hard pericarps, and fruit-stalks "scarcely the length of the fruit, not much longer and up to ten times" (distinguishing it from rostellata), and short peduncles which are never spirally coiled (distinguishing it from spiralis). He also asserts that the shape of the fruit in true rostellata varies from ovoid and regular to very oblique and long rostrate ; so no importance can be attached to this character.

Zostera marina L. and var. *angustifolia Fries. Shore of Loch Sween, near Kilmichael of Inverlussa. - *Z. nana Roth. With Ruppia nana at the head of Loch Sween.

Carex paniculata L. Near Fairy Isles, Loch Sween.-C. rostrata Stokes. Lochan Taynish.

THE EUROPEAN SPHAGNACE \mathbb{E}

(after Warnstore)
By E. Charles Horrell, F.L.S.
(Continued from p. 258.)

§ iI. Sphagna squarrosa Schimp.p.p.

A small section containing only two European species. Stemcortex having small pores, the superficial layer on the outer surface with one, more rarely two membrane-thinnings, which are sometimes completely reabsorbed, forming true pores. Branch-leaves generally squarrose; hyaline cells with very large pores and more or less papillose on the inner wall where united to the chlorophyllose cells. Chlorophyllose cells in section triangular to trapezoid, inserted between the hyaline cells on the outer surface of the leaf, and free either on the outer only or on both surfaces. Stem-leaves large, lingulate, rounded and fimbriate above.
12. S. squarrosum Pers. apud Schrad. in Journ. Bot. 1800, 398.

Syn. S. teres var. squarrosum Warnst. in Die Europ. Torfm. 1881, 121.

Exsicc. Braithw. Sphagn. Brit. Exsicc. No. 26 (1877).
Plants very robust, equalling S. cymbifolium in stature. Tufts loose, deep, glaucous-green. Stems $10-20 \mathrm{~cm}$. long, firm and rigid.

Wood-cylinder sometimes greenish, generally reddish or red.
Stem-cortex thin-walled, 2-3-layered, always clearly differentiated from the wood-cylinder. Pores on the inner walls small and few, on the outer surface of the superficial layer with a single membranethinning on each cell, more rarely with a distinct pore. Stem-leaves large, lingulate, fimbriate on the whole of the large rounded apex; cell-membranes in the upper part resorbed on both sides, and nonfibrillose; generally more or less fibrillose and porose near the base; border narrow and of equal width throughout.

Fascicles of 4-5 ramuli, of which 2-3 are spreading, robust, and attenuated at the apex. Branch-leaves generally in the upper half strongly squarrose, more rarely erecto-patent or imbricate; wideovate, concave, narrowly bordered, suddenly narrowed above into a lanceolate apex with inrolled margin; pores very numerous on both surfaces; on the inner surface in the upper two-thirds for the most part in the cell-angles, in the lower part near the lateral margins; on the outer surface in the basal part with very large,
round numerous pores on the commissures, in the upper part with scattered pores in the upper cell-angles, which are more numerous towards the lateral margins.

Chlorophyllose cells in section sometimes triangular and inserted on the outer surface of the leaf, but generally more or less medianly placed and free on both surfaces; in the upper part of the leaf both kinds of cells are of equal height, so that the hyaline cells are biplanar and the chlorophyllose cells have the free outer walls strongly developed; in the lower part the chlorophyllose cells are much smaller, so that the hyaline ones are biconvex.

Monoicous; male branches at first shortly clavate, becoming later uniformly elongated in the whole antheridium-bearing part; yellowish-green; perigonial bracts smaller than the leaves of the sterile branches, curved erecto-patent, non-fibrillose in the middle part of the lower half of the leaf. Perichætial bracts formed of both kinds of cells, in the lower part not rarely fibrillose and with small pores. Capsule frequent long-stalked, in or near the capitulum. Spores yellow, 25μ in diameter.

Hab. Near boggy springs and the sides of moorland streams.
Distrib. Common in Europe and North America; Asia; Africa.
S. squarrosim is distinguished from S'. teres by the greater robustness of all its parts, by the monoicous inflorescence, and by the form of the male branches and their perigonial bracts. The papillæ on the inner walls of the hyaline cells of the branch-leaves are as variable as those in the leaves of S. papillosum, being sometimes distinct and numerous, sometimes faint and almost invisible.
(1) Var. spectabile Russ. apud Warnst. in Bot. Gaz. 1890, 224. Branch-leaves squarrose-spreading throughout.

Near Loch Garve, Ross (Braithwaite).
(2) Var. subsquarrosum Russ. apud Warnst. in Hedwigia, 1888, 274 (syn. var. semisquarrosum Russ. apud Warnst. in Bot. Gaz. xv. 1890, 224). Branch-leaves squarrose-spreading either in the lower part of the stem only, or in the middle part only, or in the upper part only, those of the remaining part of the plant appressed or erecto-patent.

Snowdon, Carnarvon (Ley).
(3) Var. imbricatum Schimp. Syn. Musc. Europ. ed. 2, 1876, 836. All the branch-leaves imbricate or erecto patent, not squarrose.

Aldershot, Hants (Sherrin); Netherton, South Lancashire (IVheldon); Roseberry Topping, North-east Yorkshire (Horrell); Trelleck Bog, Monmouth (Ley).
13. S. teres Angstr. apud Hartm. Skand. Fl. ed. 8, 1861, 417.

Syn. S. squarrosum var. teres Schimp. Entro. Gesch. Torfm. 1858, 64. S. squarrosulum Lesq. apud Mong. Nestl. et Schimp. Stirp. Crypt. vog.-rhen. fasc. xiv. No. 1305 (1854).

Exsicc. Braithw. Sphagn. Brit. Exsicc. Nos. 29, 30, 43, 44 (1877).

Tufts loose and soft, light green, with greater or less admixture of yellow or yellowish-brown; much less robust than S. squarrosum, resembling in size and habit S. Girgensohnii. Stems up to 20 cm . high.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

§ iil. Sphagna cuspidata Schimp.

Leaves of the spreading branches small, of medium size, to very large, ovate, ovate-lanceolate, lanceolate or almost linear; above generally narrowly, more rarely broadly truncate and toothed or sometimes sharply acuminate. Border sometimes broader, sometimes narrower, at times very broad. Margin generally toothed in the upper part, sometimes throughout; either inrolled at the apex only or further down. Leaves when dry not rarely strongly undulate or with weak or more marked metallic lustre. Chlorophyllose cells in section triangular, triangular-oval, trapezoid to rectangular, generally inserted between the hyaline cells on the outer surface and always free here; on the inner surface either completely enclosed by the more convex hyaline cells or free here also, at times median. Hyaline cells fibrillose or not. Pore-formation very various. Cortical cells of the stem generally with thick walls and narrow lumina, very frequently not differentiated from the woodcylinder; non-porose and non-fibrillose. Stem-leaves varying much in form and structure; spatulate, lingulate to triangular-lingulate or triangular to almost lanceolate, with or without pores and fibrils, generally with a wide border, much widened below. Colour of the tufts of various shades of green, yellow, brown, or brown-red, never purple. Generally dioicous.

The Sphagna cuspidata having been reinvestigated by Warnstorf since the publication of the general key in the April number of this Journal, and the number of European species now recognized by him having been increased from eight to sixteen, a new clavis to the section las become necessary. This Dr. Warnstorf has been good enough to send: it is translated below, and should replace that portion of the original clavis which comes under paragraph 12.

§ iII. Sphagna cuspiduta Schimp.

 (Revised clavis after Warnstorf, in litt., May, 1900.)I. Br. l. lanceolate, toothed on the narrowly or broadly truncate apex, rarely on the lateral margins; when dry generally more or less undulate

1. Br. l. small, ovate or longly-ovate, with very short, narrowly truncate and small-toothed apex; never toothed on the narrowly bordered margin, which is inrolled almost to the base, so that the leaf is very concave; when dry never undulate. Plants very delicate and soft

> xxix. S. molluscum Bruch.
2. St. l. widened above, spatulate, and, in consequence of the resorbtion of the cell-membranes in the upper half on both sides of the leaves, fimbriate on the broadly-rounded apex; non-fibrillose xiv. S. Lindbergii Schimp.
2. St. l. triangular-lingulate, in consequence of the resorbtion of the cell-membranes of the wider hyaline cells at the apex only, here fimbriate and deeply two-cleft; nonfibrillose
xv. S. riparium Angstr.
2. St. 1. isosceles- or equilateral-triangular, acute or obtuse
and toothed, on account of the rounded and somewhat fimbriate apex frequently triangular-lingulate, but never deeply cleft; with or without fibrils
3. Chlor. cells of br. l. in sect. everywhere trapezoid or rectangular to almost u, and free on both surfaces of the leaf . . .q adrate.
3. Chlor. cells of br. l. in the basal half of the leaf, equilateralto isosceles-triangular and completely enclosed by the hyaline cells on the inner surface of the leaf
4. Stem-cortex clearly differentiated from the wood-cylinder 5
4. Stem-cortex not clearly differentiated from the wood-cylinder and hence apparently absent. Br. l. bordered with 3-4 rows of cells, margin entire, resembling in form those of S. Tecurvum; on the inner surface either almost entirely without pores or with few to numerous large, nonbordered pores; on the outer surface either only with small pores in the upper cell-angles or besides these in the basal half towards the margins with numerous larger pores. St. l. rather large, isosceles-triangular, toothed on the truncate apex; border not or scarcely widened below; generally fibrillose in the upper half of the leaf xvi. S. fallax Warnst.
5. Br. l. bordered with $4-5$ rows of narrow cells, margin entire, from a broad ovate base gradually narrowed to the broadly truncate and toothed apex, pores absent on both surfaces; branches generally single, frequently much elongated and again branched . xvii. S. monocladum Warnst.
5. Br. l. bordered with 5-6 rows of cells, margin entire, owing to the widely inrolled margin almost tube-like in the upper part of the leaf; on the inner surface in the upper half with smaller or larger non-bordered pores in the cell-angles; on the outer surface with suall pores in the upper cell-angles only. Branches in fascicles
xviii. S. cuspidatum Warnst.
5. Br. l. distinctly dentate on the lateral margins, otherwise like S. cuspidatum xix. S. trinitense C. Müll.
5. Br. l. bordered with 4-6 rows of cells, margin entire, very frequently more or less secund; pores on the inner surface almost absent or very few; on the outer surface, on the contrary, very numerous in the middle of the cell-wall or especially in the lower half of the leaf in two rows near the commissures; towards the apex not rarely with membrane gaps; all the pores are weakly or not bordered, but with distinct contour
xx. S. Dusenii Russ. \& Warnst.
6. Chlor. cells in section generally only about half the height of the hyaline cells, the latter having their walls united together for some distance on the inner surface of the leaf.
6. Chlor. cells of almost the same height as the hyaline cells,
and hence the latter are not united together on the inner surface of the leaf for any appreciable distance
7. Br. l. broadly lanceolate, bordered with 4-5 rows of cells and almost suddenly produced into a short, narrowly truncate and toothed apex, when wet usually distinctly five-rowed; pore formation as in S. recurvum. Stemcortex generally clearly differentiated
xxi. S. pulchrum Warnst.
7. Br. l. very large, broadly lanceolate, tube-like, bordered with 6-8, rarely more, rows of cells; on the inner surface in the upper half with non-bordered pores in the cell-angles; on the outer surface almost exclusively with small pores in the upper cell-angles only. Stem-cortex clearly differentiated xxii. S. Torreyanum Sulliv.
7. Br. l. gradually acuminate, bordered with 3-4 rows of cells, not 5 -ranked ; on the inner surface almost entirely without pores; on the outer surface especially in the basal half of the leaf towards the lateral margins with very small non-bordered pores with ill-defned contours, which in the var. Zickendrathii alone are absent; stem-cortex not clearly differentiated from the wood-cylinder

> xxiii. S. obtusum Warnst.
8. Br. l. on the outer surface with few pores
8. Br. l. on the outer surface with extremely numerous pores (as in S. subsecundum). Pores very small, in the upper half of the leaf strongly bordered (sometimes some of the pores are incompletely ringed) and arranged in rows on the commissures, and in part in the middle of the cell-wall
9. St. l. small equilateral-triangular to triangular-lingulate, almost always non-fibrillose. Br. l. almost always undulate; on the inner surface with rather large, nonbordered pores in the cell-angles; on the outer surface in the upper half of the leaf with small pores in the upper cell-angles only, towards the base near the lateral margins with a single or several larger pores. Border of 3-4 rows of cells; stem-cortex generally not clearly differentiated xxiv. S. recurvum Warnst.
9. St. l. still smaller than in S. vecurvum, equilateral-triangular to triangular-lingulate, generally non-fibrillose. Br. l. generally not at all undulate. Pores on the inner surface as in S. recurvum; on the outer surface in the apical half with small bordered (in part incompletely ringed) pores in the cell-angles or on the commissures, and in the basal half towards the lateral margins with large pores in the cell-angles only. Border and stem-cortex as in S. recurvum. The smallest forms of this species have a great resemblance in habit to S. acutifolium xxv. S. parvifolium Warnst.
9. St. l. small, from a generally narrower base oval or lingulate to triangular-lingulate, generally fibrillose. Br. 1.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
almost entirely absent; on the outer side generally only with very small pores in the upper and lower cell-angles, towards the apex at times with scattered ringed pores in the lateral angles of the cells and in the middle of the leaf towards the lateral margins with a few larger pores, which, in some cases, exactly cover the pores on the inner surface.

Chlorophyllose cells in section triangular-oval, inserted between the hyaline cells on the outer surface of the leaf and here free; on the inner surface completely enclosed by the hyaline cells, which are united together for some distance; hyaline cells almost flat on the outer and strongly convex on the inner surface.

Polyoicous; antherıdia borne on both spreading and pendent branches; male branches in the antheridium-bearing part generally rather darker brown, later becoming elongated at the apex; perigonial bracts differing much from the sterile leaves ; small, ovate, with very short, truncate, finely-toothed, suddenly narrowed apex. Border wide all round; the rhomboid hyaline cells of the apical part here and there septate and with fibrils, but with few pores; in the basal half non-fibrillose. Perichætial bracts very large, plicate, from a narrower base widened above; fimbriate on the broadly truncate apex, as in the stem-leaves; in the basal part composed of chlorophyllose cells only, in the upper part of both kinds of cells and having the walls of the hyaline cells reabsorbed on both sides. Spores 23μ in diameter, papillose.

Hab. Deep mountain bogs in northern and alpine regions.
Distrib. Europe; Lapland, Finland, Scandinavia, Scotland, Shetland, Silesia, Alps of Salzbourg and Styria; numerous localities in North America. Ben Wyvis, Ross-shire (McKinley); Unst Shetland (Sim).
S. Lindbergii is clearly distinguished from the other species of the section by the structure of the stem-leaves, which closely resemble those of S. fimbriatum; the British specimens are much smaller than those from more northern continental localities.

There are three main varieties, based upon the size of the branch-leaves:-
(1) Var. macrophyllum Warnst. in Europ. Torfm. No. 359 (1894), with very long and wide branch-leaves.
(2) Var. mesophyllum Warnst. in l.c., with the branch-leaves of medium size, about 1.5 to 1.6 mm . long and .57 mm . wide.
(3) Var. microphyllum Warnst. in Hedwigia, 1893, 11, with the branch-leaves very small, about 86 mm . long and $\cdot 43 \mathrm{~mm}$. wide. This variety closely resembles in general habit and colour a dense and short-branched form of S. fuscum.
15. S. riparium Angstr. in Öfvers. V. Ak. Handl. 21, 198 (1864).

Syn. S. intermedium var. viparium Lindb.; S. cuspidatum var. speciosum Russ.; S. speciosum Klinggr.; S. spectabile Schimp.

One of the handsomest and most stately species of the genus.
Plants generally very robust, more rarely delicate and weaker, when growing in the shade green throughout, in more exposed habitats pale and often a beautiful yellow in the capitulum.

Wood-cylinder thick, whitish or yellowish.
Stem-cortex absent or in 2-4 layers, which are clearly differentiated from the wood-cylinder, and are formed of more or less thick-walled, non-porose cells.

Stem-leaves large, bent backwards along the stem, triangularlingulate to lingulate, fimbriate and deeply cleft at the rounded apex by reabsorption of the uppermost wide hyaline cells; border broad, much-widened below ; always non-fibrillose.

Fascicles sometimes distant, sometimes closer, of 4-5 branches; spreading branches long to very long, or shorter, either drepano-, homalo-, or ano- to ortho-cladous.

Branch-leaves large, broadly ovate-lanceolate, long and narrowly acuminate; finely toothed at the narrowly truncate apex; margin inrolled only at the apex; border narrow; when dry more or less undulate and with slightly recurved apex; metallic lustre less marked than in S. Lindbergii. Inner surface in the apical half either with large or small non-bordered pores, in part in the cellangles, in part in the middle of the cell-wall; towards the lateral margins, in the middle and the basal part of the leaf with scattered or numerous large membrane-gaps in the upper cell-angles. These are entirely or in part immediately opposite corresponding mem-brane-gaps on the outer surface of the leaf. On the outer surface almost always only with small pores in the upper or upper and lower cell-angles; more rarely also with small pores in rows on the middle of the cell-wall; in this last case the pore structure closely resembles that of S. obtusum. Membrane-gaps in the upper cellangles of the leaves of the pendent branches always numerous, and equal to one-third to one-half the cell-wall in extent; frequently in the whole apical half of the leaf with larger or smaller non•bordered pores, which have often a very indistinct outline.

Chlorophyllose cells in section generally parallel-trapezoid, more rarely triangular, inserted between the hyaline cells on the outer surface of the leaf and here free; on the inner surface generally not enclosed by the hyaline cells; these are almost flat on the outer surface and strongly convex on the inner.

Dioicous; male branches in the antheridium-bearing part pale brownish, later becoming elongated at the apex; perigonial bracts differing considerably from the sterile leaves; from a narrower base widened above and then almost suddenly narrowed into a short apex; border narrow below, much wider above; hyaline cells in the basal part generally quite without fibrils and in the entire leaf, on both surfaces, without pores. Perichætial bracts broadlyoval, for the greater part composed of chlorophyllose cells only; in the upper half with scattered narrow, vermicular, hyaline cells, which are always non-fibrillose and non-porose.

Hab. Most frequent in deep moorland pools, frequently submerged, but sometimes also in drier habitats.

Distrib. Europe; Austria, Germany, Russia, Finland, Lapland, Scandinavia, Denmark, France, Britain (?); Asia; North America.

The very numerous forms of S. riparium are grouped by Russow in Archiv Naturk, Liv. Est. \& Kurl. Ser. ii. Bd. x. Lief. 4, 1894,
in two sections-(1) § platyphylla with short and wide stem-leaves, and (2) § stenophylla with elongated and narrow stem-leaves. The section platyphylla is divided into two sub-sections-(1) sparsifolia with the branch-leaves loosely arranged and undulate, and subsection (2) densifolia with the branch-leaves closely arranged and less undulate.
16. S. fallax Klinggr. in Topogr. Fl. v. Westpreussen, 1880, 128.

Hydrophilous. In green submerged tufts; when dry resembling in habit a rather robust S. recurvum.

Stem-cortex not clearly differentiated from the wood-cylinder, and hence apparently absent.

Stem-leaves rather large, narrowly isosceles-triangular or broadly triangular, and produced above into a more or less suddenly contracted, longer or shorter, narrowly truncate and toothed apex; in this case $\cdot 9-1 \cdot 1 \mathrm{~mm}$. wide at the base, and $1 \cdot 1-1 \cdot 46 \mathrm{~mm}$. long. Border not or scarcely widened below. Hyaline cells narrow and vermicular, somewhat shorter and wider above, rarely septate; generally fibrillose in the upper one-third to one-half; on the inner surface with large round non-bordered pores between the fibrils; on the outer surface, on the contrary, with very small pores in the upper cell-angles only; more rarely non-fibrillose, and then the pores on the inner surface are almost entirely absent.

Fascicles with generally four branches, of which the two stronger are spreading and are long and tapering, the others are pendent. Leaves of both kinds of branches similar in form and pore-formation, but those of the pendent branches smaller. Leaves of the spreading branches when dry rather strongly undulate, those of the branches in the capitulum not rarely almost squarrose, resembling very closely in form those of S. recurrum; broadly lanceolate, $\cdot 7 \mathrm{~mm}$. wide and $1 \cdot 3-1.52 \mathrm{~mm}$. long; margin inrolled towards the narrowly truncate and toothed apex; border 3-5 cells wide and entire. Hyaline cells with numerous fibrils; on the inner surface either almost quite without pores or with few to numerous large non-bordered pores, as in S. recurvum; on the outer surface either with small pores in the upper cell-angles only, as in S. cuspidatum, or besides these in the basal half of the leaf towards the margin with larger pores, which are frequently several together in each cell, as in S. recurvum.

Chlorophyllose cells in section broadly trapezoid, similar to those in S. cuspidutum and free on both surfaces, or some of them triangular and then enclosed on the inner surface by the more convex hyaline cells, as is the usual case with S. recurvim.

Hab. Submerged in swampy pools.
Distrib. Germany; Russia.
S. fallax occupies a somewhat middle position between S. recurvum and S. cuspidatum, but is rather more nearly related to the former. It is distinguished from S. cuspidatum by the absence of stem-cortex, the border of the stem-leaves, and by the form of the branch-leaves; from S. recurvum by the larger stem-leaves which have the border of equal width all round and are fibrillose in the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

toothed at the broadly truncate apex; margin generally widely inrolled, and hence the leaf is more or less tubular. Border 5-6 cells wide, entire; when dry not, weakly, or strongly undulate ; without metallic lustre; never arranged in five. rows; loosely or closely imbricate; frequently secund. Hyaline cells strongly fibrillose, the fibrils projecting considerably into the cell; only in undeveloped water-forms frequently non-fibrillose, and then at times the chlorophyllose cells predominate. Pores on the inner surface in the upper half of the leaf larger or smaller non-bordered, situated in the cell-angles; on the outer surface always with only very small pores in the upper cell-angles.

Chlorophyllose cells in section trapezoid, inserted between the hyaline cells on the outer surface of the leaf, and free on both surfaces; hyaline cells almost flat on the outer surface, more convex on the inner.

Dioicous; male branches in the antheridium-bearing part rustcoloured; perigonial bracts not differing from the sterile leaves. Perichætial bracts very large, broadly ovate, produced above into a truncate and toothed apex; in the lower third generally composed of chlorophyllose cells only, above of both kinds of cells which towards the margin gradually pass over into the wide border; hyaline cells in the apical part generally with fibrils and large pores on the inner surface. Capsule comparatively small.

Hab. Very common, especially in moorland pools.
Distrib. Throughout Europe; Africa; N. America; S. America; Australia.

The following are the main varieties :-
(1) Var. falcatum Russ. Beitr. 1865, 59. Habit varying according to the habitat; when completely submerged or with the capitulum alone above water, elongated and robust; when growing on the borders of moors and swamps, shorter and more delicate; colour various, dark- or grey-green, yellow-green, or brownish. Fascicles distant or closer together, generally with four branches, of which the pendent branches are but little weaker, and spread at an acute angle from the stem; branches falcate; branch-leaves narrowly or broadly lanceolate, toothed on the rather broadly truncate apex; margin widely inrolled; when dry either undulate or almost straight, falcate.

Keston Common, Kent (Horrell); Witherslack Bog, Cheshire (Ley) ; Llwchyr, Carmarthenshire (Ley); Widdy Bank Fell, Teesdale, Durham (Horrell).
(2) Var. submersum Schimp. Hist. Nat. des Sph. 1858, 68. Plants submerged or with the upper part above water; light green, or a dirty dark green, or with the capitulum brownish; delicate and slender or more robust. Fascicles distant. Branches all more or less spreading, the stronger curved downwards or almost upright and rigid; sometimes more, sometimes less tapering at the apex; leaves when dry not at all or only at the base of the branches weakly undulate, generally appressed or upright, not falcate. This variety is intermediate between the var. falcatum and the var. plumosum.

Widdy Bank Fell, Teesdale, Durham (Horrell) ; Foulshaw Moss (Ley); Whixall Moss, Salop (Ley); Trelleck Bog, Monmouth (Ley).
(3) Var. plumosum Nees \& Hornsch. Bryol. Germ. 1823, i. 24. Completely submerged ; colour sometimes lighter, sometimes darker green. Fascicles close or distant, all the branches almost equally spreading from the stem. Branch-leaves very longly subulate, border broad, toothed at the frequently widely-truncate apex; chlorophyllose cells at the apex, and at times also in the remainder of the leaf, predominating, and the hyaline cells then only in part with fibrils; when dry, rigid and erecto-patent, not undulate.

Scotstown Moor, Old Machar, Aberdeen (Sint); Widdy Bank Fell, Teesdale, Durham (Horrell); Trelleck Bog, Monmouth (Ley).
('To be continued.)

NOTES ON RHUS.

By James Britten, F.L.S.

Rhus javanica L. Sp. Pl. 265 (1753). This plant is generally regarded-e.g. by such writers as Engler, Bretschneider, Hemsley, etc.-as identical with that generally known as R. semialata Murr. Linñæus's brief character runs: "Rhus foliis pinnatis ovatis acuminatis serratis, subtus tomentosis. Habitat in Java. Osbeck." The locality is altered to "China" in Sp. Pl. ed. 2, no doubt correctly, as Osbeck (Dagbok Ostind. Resa, p. 232 (1737)) enters in his diary under Sept. 27, 1751, as "Rhus javanica, germine rubro. Chin. Taj-scha." In the Linnean Herbarium R. javanica is represented by two sheets; the first, bearing the name and number (2) in Linnæus's hand, is Brucea sumatrana; the second, not named but similarly numbered, is practically identical with R. Buc/i. Amelam Roxb. (R. Amela D. Don), which is generally considered a form of R. semialata.

In his diary (l.c.) Osbeck has also "Rhus chinensis blommade wid graswarna och tallades af Chineserma Munchi"; this is also identified by Bretschneider with R. semialata. The name was adopted (apparently by coincidence) by Philip Miller (Gard. Dict. ed. viii. no. 7 (1768)), who cites as a synonym "Rhus Sinarum lactescens, costâ foliorum alatâ. Pluk. Am. 183." Plukenet's specimen is in his herbarium (Herb. Sloane xciv. f. 67) and two sheets from Miller's herbarium are in Herb. Banks: all these represent the form of R. semialata having conspicuously winged petioles.

The only author who seems to have been aware that Linnæus had two plants in view is, so far as I know, R. A. Salisbury, who in his Prodromus (p. 171) cites R. javanica L. as a synonym of his Ailanthus gracilis (= Bricea sumatrana). We have a specimen of A. gracilis from Salisbury's garden, 1785, written up: "Rhus javanica of Linné: an vere hujus generis?"

De Candolle (Prodr. ii. 67) takes the Linnean plant (as described) as the type of his variety Osbeckii and bases his var. Roxburyii (sic)
on Roxburgh's R. Bucki-Amelam ; R. chinensis Mill. he retains as a distinct species. Prof. Engler (in DC. Mon. Phan. iv. 380) retains these varieties, and adds a short diagnosis of each-" petiolis inter juga late alatis," for Osbeckii (under which he places R. javanica L.) and "petiolis inter juga angustissime alatis vel exalatis" for Roxburghii, under which he puts R. chinensis Mill. The specimen of Rhus representing javanica in Linn. Herb. has exalate petioles, while in those of Plukenet and Miller the petioles are distinctly (in Miller's very conspicuously) winged, and they are so described in Gard. Dict.

I am inclined to think that the original name of Linnæus should be retained for the species; his diagnosis, though brief, is accurate so far as it goes, and is supported by one of the specimens representing the plant in his herbarium. If, however, on any ground this should be set aside, there is no reason against the adoption of R. chinensis Mill., which considerably antedates R. semialata Murr. The synonymy is :-
R. javanioa L. Sp. Pl. 265 (1753) \& Herb. in part; Osbeck, Ostind. Resa, 232 (1757).
R. chinensis Osbeck, l.c. (nomen).
R. chinensis Mill. Gard. Dict. ed. viii. n. 7 (1768) (chinense).
R. semialata Murr. in Comm. Gotting. vi. 27, t. 3 (1784) et auct. plur.
The date of introduction of the species is given in Hort. Kew. (iii. 490) as 1780 , but Miller grew it at Chelsea before 1768 and there are specimens in Herb. Banks labelled "Hort. Busbridge* e seminibus chinensibus $1761^{\prime \prime}$; in these the wings of the petiole are much reduced. Banks had also a native specimen from "China, Wampo, Mr. Robertson, gathered Novemb. 1772."

The Hongkong plant referred to R. semialata by Hance (Journ. Linn. Soc. xiii. 101) is not that species, and is probably, as Mr. Hemsley (l.c. xxiii. 147) suggests, a variety of R. hypoleuca Champ. Hance's specimen (which Mr. Hemsley does not appear to have seen) is fragmentary, but differs from typical hypoleuca by its serrated leaves.

Rhus incana Mill. Gard. Dict. ed. viii. no. 8 (1768) (incanum). For this Miller cites Pluk. Phyt. tab. 219, fig. 8. Plukenet's specimen is in Herb. Sloane xcvii. fol. 155 and is R. villosa Linn. f. Suppl. 183 (1781). Miller's name, which of course has priority, is not cited by Engler in his Monograph (DC. Mon. Phan. iv. (1883)); but that author (l.c. 428) assigns the same name to a South African species, which I propose to call R. Engleri. The names will stand:
R. incana Mill. Dict. ed. viii. no. 8 (1768).
R. villosa Linn. f. Suppl. 183 (1781).
R. Engleri.
R. incana Engl. in DC. in Mon. Phan. iv. 428 (1883), non Mill.

[^17]
THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
two-thirds of its length by a line of sand-dunes nowhere exceeding ten feet in height or a hundred yards in extension inland, and fixed by a luxuriant growth of Psamma arenaria. The greater part of the bank is quite low, and much of it is submerged at high tide.

On my first careful examination of the Bull in September, 1894, eight large patches of the Artemisia were found, distributed over a length of some six hundred yards, each patch being about a yard in diameter. All of the patches were confined to the dunes on the eastern or seaward side of the bank, none being observed at a distance of more than twenty yards inland from the seaward crest of the dunes, while one grew on the crest itself. In 1896 a perceptible increase of the plant was noticed, and in 1898 a still further increase, accompanied by a movement eastward or seaward, one patch having quite crossed the dunes and reached the beach outside, while another had gained the top of the crest. No further observation was made until June of this year, when the plant was found to have achieved a most remarkable extension of range, as well as increase of mass. Whereas previously the extreme length covered by the widely separated patches from south to north was some 600 yards, the range this year extended for fully a mile. At the same time the number of scattered patches was found to have increased to no less than 140, while in one spot the plant covered, almost continuously, a strip of beach 130 paces long by some three yards broad.

Quite as noticeable as the great increase of the plant was the general north-eastward drift it appeared to have made from the position occupied by the first settlement observed in 1894. The effect of this drift-using that word, of course, in a largely figurative sense-has been to transport the plant (all, save a few small patches) across the dunes to the sea-beach forming the eastern margin of the Bull. Having left behind it the zone of Psamma arenaria, it has invaded that of Triticum junceum, and, firmly establıshed here, threatens soon to dispute with Salsola and with Atriplex Babingtonii and A.farinosa the possession of that final zone of terrestrial vegetation which lies immediately above tide-mark.

This north-eastward drift should, no doubt, be attributed to the influence of the prevailing west and south-west storm-winds. By these winds the brittle stems and shoots of the mature plants are torn off in late autumn and winter and carried eastward or northeastward, to be buried in blown sand and form fresh points of growth and dispersion, while the more effete parent stocks are left behind to perish gradually. It would appear to be thus, rather than by seed-dispersion, that the increase or migration of the plant is effected, as I have so far observed no seedling plants on the sands.

If this hypothesis be well founded, it may be asked, is it not probable that in course of time the whole North Bull settlement of Artemisia Stelleriana will be swept off the sand-bank into Dublin Bay? The fact that the plant in its new position is sheltered by the sand-dunes from the prevalent storm-winds gives us reason to hope that it may retain a permanent hold on the North Bull, and this hope is strengthened by the history of its settiement on the

New England sands given us by Mr. Fernald. Whatever fate the future may have in store for this interesting alien, its present standing on the North Bull fully entitles it to a place in the flora of County Dublin.

SHORT NOTES.

Euphorbia Portlandica in Cheshire. - The locality given on p. 277, although .well known, was omitted by some mistake from the Flora of Liverpool published by the Liverpool Naturalists' Field Club. It was, however, inserted in the Third Appendix (published in 1887), where it stands: "Abundant on the sandhills between West Kirby and Hilbre Point. First record of occurrence in the Cheshire portion of the district."-Robert Brown.

Schenus nigricans in Somerset.-When botanizing, on July 9, in marshy ground near Winscombe with Mr. David Fry, I was fortunate enough to come upon a fair-sized patch of Schoenus nigricans. I did not realize its interest in connection with Somersetshire until Mr. Fry told me it was a rediscovery for the county. The plant was found many years ago between Clevedon and Portishead, but has in recent years been looked for in vain in that, its so far only known, locality in Somersetshire. It grows on a marshy piece of ground very much overgrown by alder bushes, \&c. We searched in vain for other patches of the plant; but, owing to the character of the ground and its wide area, it is very difficult to examine it thoroughly.W. F. Miller.

Plants new to Jersey. - On June 28th I found Capnoides claviculata growing sparingly, though over a fairly large area, on a hill-side near La Crète Point. This is the first record for the Channel Islands. - Orchis pyramidalis L. On July 8th I found on a sandy pasture in St. Ouen's Bay one specimen. A gentleman living close by, to whom I showed it, told me that four or five years ago he had found an Orchis near there which he now recognized as the same plant. This is also now first recorded for the Channel Islands.-Stanley Guiton.

Stratiotes aloides in the Isle of Wight.-During a short stay in the Isle of Wight last June, I paid some attention to the botany of Sandown and neighbourhood. In a pond on the borders of Lake Common, near the waterworks, I came across a luxuriant growth of Stratiotes in flower. The discovery was a great surprise, as I had more than once examined the pond in recent years and found nothing beyond Equisetum, Iris, and other common aquatics. The plant looks wild enough in the Sandown locality, and there is nothing to lead one to suppose that it has been introduced by human agency. There is no trace of it in the ditches adjoining the pond and in the meadow beyond. That the Stratiotes is not altogether a stranger in the island is shown from a note at p. 337 of Mr. Townsend's Flora of Hants, where he states that Stratiotes,

Villarsia, and Hydrocharis were naturalized in the Isle of Wight by Dr. Salter in a small pool at Barretts, about two miles from Ryde, on the Brading road. This locality, which I have not visited, can only be a few miles from Sandown, and it is possible that the appearance of the species at Lake may be accounted for by the fact of its having been introduced in some way from the old locality. This species, being only aboriginally wild in the eastern counties, has of course no claim to be considered indigenous in Wight, but its apparently spontaneous occurrence there seems worthy of record. I should be glad if any Isle of Wight botanist could furnish any information on the point. Near the Red Cliff, Sandown Bay, I found several plants of the beautiful Lathyrus Nissolia, not previously noted for South Wight.-A. Bruoe Jackson.

NOTICES OF BOOKS.

Illustrations of the Botany of Captain Cook's Voyage Round the World in H.M.S. 'Endeavour' in 1768-71. By the Right Hon. Sir Joseph Banks, Bart., K.B., P.R.S., and Dr. Daniel Solander, F.R.S. With Determinations by James Britten, F.L.S., Senior Assistant, Department of Botany, British Museum. Australian Plants. Part I. London: Printed by Order of the Trustees of the British Museum. Sold by Longmans, \&c. Large folio, pp. 31, 101 plates. 25 s .
In these latter days justice is being done to the great naturalists who accompanied Capt. Cook in his first voyage round the world. The Journal of Sir Joseph Banks was four years ago given to the world under the editorial care of Sir Joseph Hooker, and now we have the first instalment of the Botany of the voyage, issued by the Trustees of the British Museum. A hundred and eighteen years have passed since the death of Solander, and eighty years since that of Banks, and only now the materials they left practically ready for the press begin to appear, under the careful and reverent editorship of Mr. Britten.

The first delay in publishing the results of the voyage arose, no doubt, from the occupation of Banks and Solander in preparing to join Cook in his second voyage, which they, however, in the end abandoned. Linnæus was distressed when he heard of their intended connection with this second voyage: "This report," he says, in a letter to Ellis, dated 22 Oct. 1771,* "has affected me so much, as almost entirely to deprive me of sleep. How vain are the hopes of man! Whilst the whole botanical world, like myself, has been looking for the transcendent benefits to our science from the unrivalled exertions of your countrymen, all their matchless and truly astonishing collection, such as has never been seen before nor may ever be seen again, is to be put aside untouched, to be thrust into some corner, to become perhaps the prey of insects and of

[^18]
THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

temptation to him to give Banks and Solander the full credit of their systematic work by publishing the names they had given to the plants. They appear in Solander's manuscripts, which are fully accessible in the Botanical Department of the British Museum, and are written on the sheets of the National Herbarium. But their publication in this volume would have added to an already overburdened synonymy, and they have been wisely withheld. Solander's descriptions, however, are printed. They are exact and elaborate, and maintain Solander's reputation, being also a valuable contribution, even after all these years, to systematic botany. Then follow the localities where the plants 'were found by the explorers, taken from the Herbarium, and, when additional information is given, from the sketches made by Parkinson and others during the voyage.

Mr. Bentham, in his great work on the Flora of Australia, has quoted many of the Banks and Solander plants, but he has omitted many more, and, what is remarkable in one who was so careful, he has credited many of these earlier plants to Robert Brown. Mr. Britten has carefully indicated these omissions and errors in his appended notes, and has thus restored to the first investigators the credit of their discoveries, of which one can acquire no adequate knowledge from the pages of the Australian Flora. Notes of a more critical nature are added by the Editor when occasion requires.

One cannot but regret in turning over the pages that all this valuable information was not in the hands of the scientific world a century ago. It is, however, a happy circumstance that the editorial work is in the hands of Mr. Britten, whose sympathy with and knowledge of the labours of these earlier botanists are both extensive and exact. For financial reasons, the Trustees were unable to accede to my repeated applications for the production of these plates, and I congratulate my successor, Mr. Murray, on having been so fortunate as to secure the publication of this important addition to the works issuing from his Department.

William Carruthers.

Congo Plants.

Plante Thonnerianc Congolenses. Par É. de Wildeman et Th. Durand. Large 8 vo , cloth, pp. xx, 49, tt. 23. Price 8 fr. Bruxelles: Schepens.
Contributions à la Flore du Congo. [Same authors.] Vol. i. fasc. 2. Pp. 48. Bruxelles: Van de Weghe.

The energy displayed by Belgian botanists in working out the botany of the Congo Free State is remarkable, but it may be hinted that their mode of publication is hardly the most convenient that could be adopted. At the present time, contributions to the subject are appearing in no fewer than three serial forms-for besides the 'Contributions' named above, we have the 'Illustrations,' a separate publication, and the 'Matériaux,' proceeding in the Bull. Soc. Royale de Bot. Then in 1896 we had the " première partie" of 'Etudes'
on the flora of the State, by MM. Durand and Schinz; and now we have an independent volume dealing with a special collection. Moreover, the fascicles of the 'Contributions,' although forming part of the same volume, are paged separately; and it would seem that a fifth publication will ultimately be needed, in the shape of a general index to the other four.

Apart from this criticism, we have nothing but praise for the work which is doing so much to enlighten us on the botany of West Africa, and especially for the handsome and singularly cheap volume in which M. Thonner's collections are figured and described. His expedition was made in 1896, in the Bangala district; and although he only collected 104 species, a fourth of these are new to science, while a similar number are new for the Congo region. M. Thonner contributes to the volume an account of his explorations, and the description of the species has been undertaken by MM. de Wildeman and Durand in conjunction with various botanists whose assistance is duly acknowledged. No new genus is described, but the authors call especial attention to the remarkable Euphorbiaceous plant Pycnocoma Thonneri, which has been again collected in the same district by a more recent traveller.

The most remarkable feature about the book is its cheapness. How twenty-three admirably executed plates, mostly of folio size, with accompanying letterpress and a map, and strongly bound in cloth, can be produced for the sum of eight francs, we do not understand. We welcome the contribution as a further and important addition to our knowledge of the African flora.

The new fascicle of the Contributions à la Flore du Congo contains descriptions of many novelties, principally of the genera Rinorea, Cissus, and Urophyllum. We note that it is dated April, but the copy sent to the Museum did not arrive until the beginning of July; while the first fascicle, dated July 1899, did not come to hand until September of that year. At a time when so many are publishing independently descriptions of new African plants, ic is important that the dates given should be those at which the publications actually appear.

Lehrbuch der Pfanzenkrankheiten von Dr. Robert Hartig. 3rd ed. Berlin: Julius Springer. 1900. 8vo, pp. ix, 324 ; tab. i. figs. 280.

In its previous editions this book has been known to all concerned as a most admirable exposition of the diseases of trees. An English edition by Professors Somerville and Marshall Ward was published in 1894, and its usefulness and general trustworthiness became more widely recognized in this country and America. It is one of those books that are not only directly useful in themselves, but are used as mines into which many authors have dug more or less legitimately. I have read not a few "original" treatises which were principally Hartig with a few added facts. One can hardly praise a book more highly than that.

When a book has reached such a standing, it is generally well to let well alone. But we have happily an exception here. Prof. Hartig conceived the fortunate idea of expanding the third edition so as to make it a text-book of plant diseases. The number of illustrations is doubled, and the additions to the text are of course numerous. One cannot help in some cases feeling that some of these additions have been made in a perfunctory way. I find no intrinsic fault, least of all in a German book, with their admirable brevity, especially when accompanied by so many good figures. But in comparison with the original portions the additions are occasionally meagre. For example, a page and a half on the potato disease (Phytophthora infestans) is not much, and there is no figure of this disease of a most valuable crop, while on the next page following is a figure of Cystopus candidus attacking Shepherd's Purse. I do not grumble at the figure of the disease of Shepherd's Pursefar from it: it is good-but text-books of plant diseases addressed to agriculturists, gardeners and foresters, as well as botanists, should recognize the practical side of things, as this book so expressly did in its former editions. My point is therefore that, though expanded, and expanded well, it is not expanded enough. I trust that another ten years will not be required before we have a fourth edition in which expansion will be carried to symmetrical proportions.

It would be ungracious to part from so much that is good, admirable, and useful in a growling spirit. I do not complain so much as I ask for more from the same source. Prof. Hartig is far above criticism as an expounder of plant diseases -but I venture to think he could do better as the writer of a book, if he would give us more, rather than less, out of the stores of his experience.
G. M.

The Physiology of Plauts. ATreatise upon the Metabolism and Sources of Energy in Plants. By Dr. W. Pfeffer. Second edition. Translated and edited by Alfred J. Etart, D.Sc., \&c. Vol. i. Large 8vo, pp. xii, 632 , with 70 figs. in the text. Oxford : Clarendon Press. 1900. Price 28s.
The translation of Pfeffer's Physiology of Plants is a welcome addition to the familiar Clarendon Press series of botanical textbooks, and teachers and students of botany owe a debt of gratitude to Dr. Ewart for his rendering into English of the German original. Two years have elapsed since the publication of the second German edition, but the insertion by the editor of references to more recent literature brings the volume as well up to date as we can expect in a general treatise. The term Physiology is used in its more restricted sense, and the present volume, as explained in the title, covers only a portion of the field, namely, the fundamental principles of metaholism and the sources of energy, or, in simpler language, the building up and breaking down processes associated with nutrition, and the supply of energy. The ways in which this energy is expended, including the most striking presentations of the plant as

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
in the process. The supply of energy is the subject of Chapter IX. (Respiration and Fermentation), while the last chapter, "Translocation," deals with the transference of material in the tissues of the plant.

The illustrations can hardly be described as an important feature of the book; their number is comparatively small. It would be well if original figures could be indicated. Finally, we may call attention to a matter of detail which in no way detracts from the scientific value of the work. It is well to follow generally accepted rules in writing plant names : one of these, which insists on the use of the capital for nominal specific names, is very rarely observed, and we find repeatedly Allium cepa, Vicia faba, Zea mays, and numerous similar cases. Occasionally the capital is used, as Zea Mays on p. 597 and in the index. We do not expect to find faults of this description in high-class and expensive works like the present.
A. B. R.

ARTICLES IN JOURNALS.*

Annals of Botany (June).-D. M. Mottier, ' Nuclear and cell division in Dictyota dichutoma' (1 pl.).-I. Parkin, 'Latex and its functions' (1 pl.).-B. J. P. Barker, Saccharomyces anomalus (1 pl.). —M. Dawson, ' Biology of Poronia punctuta' (2 pl.$)$.-H. Wager, 'Fertilization of Peronospora parasitica' (1 pl .).-W. H. Lang, 'Ovule of Stangerıa paradoxa' (1 pl.).-J. H. Burrage, 'Nuytsia floribunda.'-L. A. Boodle, 'Structure of stem in Lycopodium.'W. C. Worsdell, 'Ovule of Cephalotaxus.'

Bot. Centralblatt (No. 26).-K. Müller, ' Bemerkungen zu einer Monographie der europaischen Scapania-Arten.'-(Nos. 27-29). O. Lövinson, Ueber Keimungs und Wachsthumsversuchte an Erbsen.'

Bot. Gazette (25 May). - B. M. Davis, ' Fertilization of Albugo candida' (1 pl.).-H. Hasselbring, 'Development of Trichurus and Stysanus' (2 pl.).-R. Wilson Smith, 'Sporophylls and sporangia of Isoetes' (concl.), (8 pl. .)-H. H. Hume, 'Puccinia Thompsonii, sp. n.'-W. W. Rowlie \& S. P. Nichols, ' Taxonomic value of staminate flowers of Oaks.'-(30 June). R. E. Smith, 'Botrytis and Sclerotinia' (2 pl.).-A. H. Conrad,.' Life-history of Quercus ' (2 pl.). -E. J. Hill, 'Flora of White Lake region, Michigan' (map).

Bot. Notiser (Häft 3, 26 May). N. H. Nilsson ' Om de subarktiska Poa-arterna vid Lenafloden,-J. P. Gustafsson, 'Två svenska Alopecurus-hybrider.'-E. Nyman, 'Botaniska excursioner frå Java.'

Bull. Bot. Soc. France (xlvii, 4-5 : 28 June).-M. Gandoger,

[^19]'Voyage botanique aux îles Baléares' (concl.).-Ch. Guffroy \& M. Capoduro, ' Notes tératologiques.'-C. A. Picquenard, ' Etymologie du mot Malus.'-E. Drake del Castillo, 'Adrien Franchet' (portr.).

Gardeners' Chronicle (7 July).—G. Massee, Cecospora Bolleana (fig. 2).

Journ. Liinn. Soc. (xxxiv, 20-240: 1 July).-G. Massee, ‘Origin of Basidiomycetes' (2 pl.).-E. S. Salmon, 'Mosses from China and Japan ' (1 pl.).

Malpighia (xiii, fasc. 11, 12 : recd. July 18).—P. A. Saccardo \& G. Bresadola, ' Funghi della Valsesia.'-R. Pirotta \& E. Chiovenda, 'Illustrazione di alcuni Erbarii antichi Romani' (concl.).-0. Penzig, 'Fasciazione singolare osservata nel Cavolfiore' (1 pl.).Id., 'Sul genere Mycosyrinx' (2 pl.).

Mém. de l'Herb. Boissier (No. 16: 25 June).-F. Stephani, 'Species Hepaticarum - (No. 17: 30June). R. Chodat, 'Trois genres nouveaux de Protococcoidées' (Lemntermannia, Catena, Hofmaıia).A. Rodrigue, 'Les feuilles panachées et les feuilles colorées.'

Rhodora (June).-Edwin Faxon (16 Sept. 1823-12 June, 1898: portr.).-R. E. Schrenck ' Rhadinocladia, n. gen.' (Marine Algæ) (1 pl.)—H. Webster, ' Naucoria Christina.'-(June \& July). W. A. Setchell, 'New England Species of Laminaria.' - (July). M. L. Fernald, ' Present influences upon our north-eastern flora.'-R. G. Leavitt, 'Reversions in Berberis and Sagittaria' (1 pl.).

BOOK-NOTES, NEWS, dc.

At the meeting of the Linnean Society on June 21st, Dr. 0. Stapf exhibited fruits of various forms of Trapa from Europe, China, and India, and discussed the differentiation of the genus into species. He was inclined to recognize five species which inhabit fairly well-defined geographical areas; but as the discrimination of these depends chiefly on the armature and sculpture of the mature fruit (the flowers being in some cases unknown, and in others very poorly represented in herbaria), he found it at present impossible to define the species satisfactorily. Unpublished drawings of Indian and Chinese species in the collections at Kew rendered it probable that certain differences in the fruits would be found to be correlated with differences in the structure of the flowers. Mr. Clement Reid exhibited a series of plum-stones recently found in a drain of the Roman baths, and in a rubbishpit, at Silchester. The species identified were Prumus avium, P. domestica, P.insititia, P. spinosa, and P. Lauro-cerasus. Besides these, there was a large variety of Plum, and a very small Sloe, the species of which had not as yet been precisely determined. Dr. A. B. Rendle, referring to his recently published revision of the
genus Najas (Trans. Linn. Soc. 2nd ser. Bot. vol. v. part 12), read a supplementary paper on the same subject, in which he gave additional information gained from a recent examination of specimens in eleven continental herbaria, particularly those at Paris, Geneva, Vienna, and Berlin. Some new forms were-described (notably a new species from Senegal), and some fresh notes were added on the geographical distribution of several imperfectly known species. Since the publication of the paper referred to, the author had had the advantage of examining a number of specimens which had been collected in south-eastern Russia and the Malay Archipelago, and were forwarded from the Museum at St. Petersburg.

The Transactions of the British Mycological Society for 1898-9 (prtce 3s. 6d.; Baylis, Worcester) contains papers on Uredinea and Ustilaginea, by Mr. Charles Plowright ; on Mollisia cinerea, by Mr. Charles Crosland; notes on Fungi new to Britain, by Miss A. L. Smith; and an anonymous account of Lactarius theiogalus Fr., with a coloured plate. The proofs in some places do not seem to have been corrected.

Mr. Spencer George Perceval has lately published in the Ploceedings of the Bristol Vaturalists' Society (vol. ix. part 1) an interesting "Journal of an Excursion to Eastbury and Bristol in May and June, 1767,' by Sir Joseph Banks. The Journal is prefaced by an account of the distressing dispersion of Sir Joseph's correspondence by his great-nephew, Lord Brabourne, who claimed all the Banksian documents in the Botanical Department of the British Museum, carried them off, and had them put up to auction at Sotheby's, where they were divided into 198 lots, and realized but a small sum. Several localities for plants are noted in the Journal-e.g. "I saw through the Windows of my Chaise, Myrica Gale growing in Plenty upon a Bog near the 21 mile Stone on Bagshot heath." Plants collected by Banks on St. Vincent's Rocks are in the National Herbarium. Mr. Perceval contributes some interesting notes to the Journal.

Parts 4 and 5 (May and June) of Icones Selecta Horti Thenensis (Monnom, Brussels) which M. de Wildeman is superintending, are noteworthy for the excellent plates by M. d’Apréval, as well as for the detailed descriptions and copious notes by the editor. No. 4 contains Escallonia viscosa, Meluthria punctata, Corethrogyne flayinifolia, Ardisia humilis, and Buddleí auriculata; no. 5, Acacia obligua, Crassula Schweinfurthii, Olearia erubescens, Cavendishia pubescens, and Ligustrum Massalongianum.

The fourth Appendix to the Kew Bulletin for 1900, containing a "List of Staffs in Botanical Departments at home [excluding the British Museum], and in India and the Colonies," has been published. So far the volume for this year consists entirely of Appendixes, no number of the Bulletin having been issued since that for " September and October," 1899.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

3

5

E.S Salmon del

BRYUM (RHODOBRYUM) FORMOSUM Mitt.

By Ernest S. Salmon, F.L.S.

(Plate 413.)
Dioicum ?, cæspitosum, cæspitibus e melleo vel succineo rufescentibus, caule ad 6 cent. alto e rosula prolificante ad basin folioso, foliis inferioribus minoribus remotioribus subplanis, superioribus majoribus imbricatis haud decurrentibus, apicalibus in rosulam congestis magnis 6 mill. longis $4 \frac{1}{2}$ mill. latis ovato-oblongis apice cymbiformi-concavis siccitate nitentibus, margine (nisi basi infima) haud revoluto, nervo e basi rufa latiore angustato in mucronem recurvatum excurrente, cellulis subhexagonis 95-125 μ longis 20-25 μ latis apicem versus minoribus omnium parietibus valde porosis, cellulis marginalibus circiter sexseriatis augustis incrassatis limbum rufescentem unistratosum efformantibus, foliis perichætialibus exteriorıbus caulinis similibus interioribus angustioribus triangulari-lanceolatis nervo longius excurrente, capsula ex eodem perichætio solitaria vel binata in pedicello longo (circiter 4 mill.) erecto solido rufo-purpureo inferne plus minus flexuoso apice arcuato nutante cylindrica elongata circiter 7 mill. longa $1 \frac{1}{2}-1 \frac{3}{4}$ mill. lata rufo-brunnea in collum sensim attenuata sicca sub ore haud constricta stomatibus superficialibus magnis ad capsulæ basin restrictis, peristomii externi dentibus lanceolato-subulatis, interni membrana lata ad dentium medium exserta processibus in carina lacunosis ciliis (2-3) interpositis, operculo mamillari, annulo lato composito spiraliter revolubili, sporis lævibus $17-20 \mu$ diam.

Patria. India (No. 492 in Herb. Beddome at Kew) ; Nilghiris, Sispara, 7000 ft., Nov. 1883, leg. J. S. Gamble. No. 13312, in Herb. Brotherus.

Species procera et formosa, B. Wiyhtii Mitt. affinis, sed colore, habitu robustiore, caule rosulato nec non folii margine haud revoluto distincta.

A few months ago I noticed among the Indian mosses of Col. R. H. Beddome's herbarium (now at Kew) a fruiting Rhodobryum. As this moss, which was labelled "Bryum formosum no. 492," appeared on examination to be quite distinct in colour, habit, \&c. from all other described species of the genus, I submitted it to Dr. V. F. Brotherus, who has specially studied the bryology of India. Dr. Brotherus kindly replied as follows:-"I have examined the moss you sent me, and beg to inform you that it is, no doubt, quite different from both B. Wightii and B. nilghirense. I have for many years been in possession of the same species from the Nilghiris, and now add a specimen of it." The specimen (barren) referred to is labelled, "Bryum formosum, Nilghiris, Sispara, 7000 ft . Nov. 1883, leg. J. S. Gamble."

Mr. Mitten kindly informs me that " B. formosum" was one of several unpublished manuscript names attached by him to the mosses of Col. Beddome's herbarium.
B. formosum, although showing some affinity with B. Wightii, Journal of Botany.—Vol. 38. [Sept. 1900.]
is very distinct in the amber- or honey-coloured tint of the upper part of the stems, and of the innovations, in the rosulate stems, and in the erect margin of the leaves.

Explanation of Plate 413.

Fig. 1. Bryum (Rhodobryum) fornosum; fertile plant, nat. size. 2. Leaf, from upper part of stem, $\times 12$. 3. Apex of same, $\times 95$. 4. Areolation of leaf at one-third from base, $\times 255$. 5. Ditto, near apex, $\times 255$. 6. Transverse section of nerve, towards base of leaf, $\times 255$. 7. Ditto of margin of leaf, $\times 400$. 8. Capsule, with operculum, $\times 12$. 9. Part of peristome, $\times 68$.

NEW AND RARE MOSSES FROM BEN LAWERS.

By H. N. Drxon, M.A., F.L.S.

Barbula icmadophila Schimp. This species, which I gathered on Ben Lawers in 1893 (the first British record), and again within a few days at Quiraing, Skye, was again found on Ben Lawers by Mr. Jas. Murray in 1899.

Webera cucullata Schimp. Messrs. Nicholson, Salmon and I gathered this species in quantity and fruiting well on the northeast slope immediately below the summit towards L. na Chat, in July, 1899, at above 3500 ft . It occurs on the bare ground in extremely dense, hard tufts, with rigid sterile shoots bearing closely imbricated leaves reflecting a slight lustre or gloss, so as to resemble small forms of W. commutata. In fact, on gathering the same plant (sterile) in 1893, I had referred it doubtfully to that species, and should have allowed it to pass indeed on the present occasion for the same, had not an examination of the fruit by Mr. Nicholson revealed the paroicous inflorescence and other fruiting characters of W. cucullata. That species, it is true, is described as " not glossy," in contradistinction to W. mutans, but unquestioned continental specimens, of Schimper's own gathering, with which our specimens entirely agree, show the same glossiness that we found here ; it is certain that too much reliance may be placed on this character in the genus Webera.

Webfra commutata Schimp. A dioicous species of Webera occurs with some frequency towards the summits of the higher Perthshire hills, on the sandy detritus formed principally from the micaceous schist, having the leaves of the rigid sterile shoots imbricated and often closely appressed when dry, and bearing occasional bulbils in their axils. Capsules are frequently present, and are often produced in some abundance. When ripe they are of a rich purple-brown, with something of the glaucous "bloom" characteristic of W. carnea, obovate-oblong, with distinct and rather long neck.

I have until recently, in common, I believe, with most British bryologists, considered this to belong to W. annotina, and have distributed it, from Ben More, Ben Douran, Craig Chailleach, the Sow

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
as some British students may not have access to the pages of the Revue Bryologique, I translate the remarks in which he sums up some of the characters which separate the new species from some of its nearest allies:-"This plant is distinguished from B. arcticum primarily by the absence of 'cloisons accessoires' ('oblique lines' of Ptychostomum in the Student's Handbook of British Mosses) on the inner layers of the peristome teeth, but this difference is not the only, nor even the most decisive one. We do, indeed, find now and then, in Scandinavia and in the Alps, forms which are evidently closely related to typical B. arcticum, but which have the inner layers of the outer peristome simple and regular (i.e. without 'cloisons accessoires') ; such, in particular, is the plant found in Kongsvold by M. Kindberg, which I have named B. Kindbergii ; another, gathered in the island of Aland by M. Bomansson, is remarkable for the globular sporangium of the capsule, abruptly contracted into a long narrow neck. But in these forms with regular peristome teeth, almost all the other characters remain the same as in the forms with 'cloisons accessoires'; the leaves are as narrowly acuminate and distinctly margined; the nerve longly excurrent; the areolation lax, of hyaline, rather large cells; insomuch that we can hardly consider these as anything but subspecies of B. aicticum. The Bryum from Ben Lawers is at once separated from these subspecies and from the normal varieties of that species: 1st, by the structure of the leaves, the lowest broadly oval or suborbicular, with a nerve ceasing below the apex; the comal leaves themselves much less acuminate, the nerve excurrent only in a short point; the branch leaves muticous, plane at margin and without a border ; 2nd, by the areolation, firm, opaque and close; 3rd, the capsule, regularly oval, brownish in colour like the rest of the plant, gives the plant a special facies which enables it to be at once recognized."

It should be added that Dr. Hagen, who has studied the Brya, and especially the Scandinavian species, very carefully, is of opinion that B. Lawersianum does not belong to the "arcticum" group of species, but to the "pallens" group. He holds it to be nearly allied to B. Lindbergii Kaurin, a plant which I have never seen, and which, as far as I am aware, has only been gathered in one station in the Norwegian Alps, where it was discovered by Kaurin in 1883. Limpricht describes this as one of the species that bridges over the division between Cladodium and Eubryum, a description which certainly appears to apply well to our Ben Lawers plant.

Unfortunately we gathered B. Lawersianum in too small quantities to allow of distribution at present. I hope, however, that at some future opportunity further specimens may be obtained, and in a slightly more mature condition. Mr. Nicholson has, it may be mentioned, placed a specimen in the British Museum Herbarium.

Mnium spinosum Schwgr. In all the references that I have seen to this fine species as a Perthshire plant it is recorded solely from "Ben Lawers"; it may be as well to mention that it occurs also on the adjoining mountain of Craig Chailleach, where I have
gathered it in one or two situations. This may very likely be known to local botanists, but I have not seen it recorded.

Mnium lycopodioides (Hook.) Schwgr. In July, 1893, upon my first visit to Ben Lawers, I gathered a Mnium of the Biserratæ group of something the appearance of M. serratum Schrad., but in rather looser tufts, and with less crowded leaves, which gave it a slightly different habit. Microscopical examination showed the inflorescence to be dioicous, terminal female flowers alone being present; but the cells, instead of being small, as in M. orthorrhynchum, were from 18 to 25μ in diameter (averaging about 20μ), and in form resembling those of M. serratum or M. riparium rather than those of M. orthorrhynchum; I was obliged reluctantly to consider it a form of M. riparium, a species that has been found by Mr. Meldrum in Perthshire, but which, though in its anatomical characters hardly distinguishable from the Ben Lawers plant, is entirely different in its usual habit and texture. Recently, however, doubts again prevailed, and a comparison of specimens and descriptions led me to suspect that it might really be M. lycopodioides Schwgr. I therefore sent it to Philibert, who has made an exhaustive study of this plant and its relationship to the allied species (v. Rev. Bry. 1895, pp. 2, sqq.). His reply was to the effect that it was certainly referable to M. lycopodioides, so far as could be determined without fruit.

The position of M. lycopodioides as a species is contested by some authors; Husnot, for example, describes it as a variety of M. orthorrhynchum. Most writers, however, maintain it as an independent species, though admitting its close affinity to others of the group. The more obvious distinguishing marks may be summed up thus. The stems are taller than in M. serratum and M. orthorrhynchum, with more distant leaves, which are more decurrent and more strongly toothed, often being serrate almost to the base. The cells are larger and the cell cavity less angular than in M. orthorrhynchum, scarcely distinguishable, in fact, from those of M. serratum and M. riparium. The former, however, differs radically in the synoicous inflorescence; M.riparium, while agreeing in the inflorescence and areolation, is very different in habit and of smaller size, the leaves more rounded, scarcely acuminate and less decurrent, less sharply toothed; and Phlibert points out also distinguishing characters of considerable weight in the capsule and peristome.

Myurella julacea var. scabrifolia Lindb. In July, 1899, Mr. H. W. Monington, collecting on Ben Lawers, gathered a Myureila, which, upon examination, appeared to belong to M. Careyana Sull. Subsequently Mr. Nicholson, to whom Mr. Monington mentioned the matter, found among the collections we had made on the Ben two or three days only after Mr. Monington's visit, a few stems of the same plant creeping among other mosses. A fow days earlier in the month Mr. Jas. Murray had collected the same plant, which he sent me labelled "Myurella Careyana, Ben Lawers, 3500 ft ." Thanks, however, to a note by M. Thériot in the Revue Bryologique
for 1898 (p. 26), I recognized that these plants, though in almost every respect identical with M. Careyana, really belonged to M. julacea var. scabrifolia Lindb., which is described as differing from the type in the "leaves apiculate, with longer denticulations at basal margins, scabrous at back with long papillæ." This description will be seen to apply equally well to M. Caveyana, the prominent feature of which species is the strongly spinulose-toothed margin of the leaves; in M. julacea (type) and M. apiculata it is only slightly denticulate. It is indeed practically impossible to perceive any difference between extreme forms of M. julacea var. scabrifolia and M. Careyana except in one important character, viz. the nature and position of the papillæ on the leaf-cells. These in M. julacea are conical projections of the end walls of the cells at the point where two cells meet, such as are very frequent in Bartramiaceæ, not, as usual, arising from the face of the cell. In M. Careyana they are situated centrally or nearly so on the face of the cell. The distinction would seem to be a structural one, not simply a difference in position, and therefore must be allowed some weight.

The central papillæ of M. Careyana are plainly visible by examining the back of the leaf with a fairly high objective; and the differently placed papillæ of M. julacea can also be observed, with a little more difficulty, by careful focussing under a high power. Cutting a transverse section of the leaf is perhaps a more satisfactory, but a more lengthy process.

There appears to be a fairly unbroken chain of forms in the var. scabrifolia, from those nearly approaching the type to such marked forms as that described above, similar in almost every respect to M. Careyana.

It is curious that this variety, not hitherto recorded from Great Britain, should have been gathered on Ben Lawers by three separate collectors independently within a space of less than a fortnight. In each case only a few stems were found interwoven among other mosses.

Pseudoleskea atrovirens B. \& S. and P. patens Limpr. In 1790 Dickson published his Hypnum atrovirens, founded upon a specimen from Scotland. Bruch and Schimper created the genus Pseudoleskea in 1852, to include H. atrovirens Dicks. and H. catenulatum Brid. In 1880 Lindberg described his Leskea patens from Norwegian specimens, afterwards transferring it to the genus Lesquereuxia. Limpricht referred this also to Pseudoleskea.

About a year ago Dr. Best, of Rosemont, New Jersey, who has been engaged in a revision of the North American Leskeaceæ,* sent me specimens of two or three Scotch plants, distributed under the name of H. atrovirens Dicks. by Wilson, Greville, \&c. These clearly belonged to two distinct species, characterized by the form and direction of their leaves, the form of the cells, and the position of

[^20]
THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

SOME MANUSCRIPT NOTES BY PLUKENET.

By G. S. Boulger, F.L.S.

In the notice of Plukenet in Trimen and Dyer's Flora of Middlesex it is stated that copies of both editions of Ray's Catalogus Plantarum Anglia with manuscript notes by him are in the British Museum library. I have not yet traced his copy of the second edition; but there can be no doubt that the volume bearing the press-mark 968 . f. 2 is his copy of the first edition, that of 1670. The manuscript notes contain, as we shall see, strong internal evidence of this; one of them is signed "L. P.," and the volume is stated to be Plukenet's copy in one of Rev. W. W. Newbould's manuscript note-books.

Most of the manuscript notes it contains are merely critical, dealing with matters of pre-Linnean synonymy now of little interest; but some include localities, which, although in most cases since published, make them, perhaps, worth transcribing in the Journal of Botany. I have merely added modern names and the briefest notes. 'I'he order is that of the pages of Ray's Catalogus (ed. i.).
P. 37.-- Auricula leporis minima J. B. The least Hare's ear. "at y ${ }^{e}$ Haven side at Boston Lincolnshire by $\mathrm{S}^{r}(?)$ * Antony Irby's House. in Dolwich Common not far from y^{e} windmil on y^{e} left hand of it a little short of y^{e} Tyle-kill as you goe from y^{e} Town to y^{e} wood y^{t} leads unto y^{e} Wells \dagger plentifully." (Bupleurum tenuissimum L.)
P. 54.-Cardamine impatiens altera hirsutior. "Convulsion wool as they cal it in Devonshire." (Cardamine hirsuta L.) This name, which I should possibly have transcribed "Convulsion weed," is not in Messrs. Britten and Holland's Dictionary of 'lant-Names.
P. 60.-Maiden Pınks. "it groweth plentifully in Surrey neer Croyden." (Dianthus deltoides L.)
P. 79.-Conyza palustris. Marsh Fleabane. "along ye River Bank in y^{e} Town of March in y^{e} Ile of Ely." (Pulicaria dysenterica Gaertn. ?)
P. 94.-Dipsacus minor. Shepherd's Rod. "at Croyden plentifully \& neer my Lord of London's at Fulham." (Dipsacus pilosus L.) This latter locality is recorded by Merrett, Newton, Petiver, and Thomas Martyn (Flora of Middlesex, p. 146).
P. 96.-Ebulus humilis. Dwarf Elder. "Kerton \& Fishtoft (?) in Lincolnshire and in Marshland between Wisbech and Lyn in y ${ }^{e}$ Fields there." (Sambucus Ebulus L.)

[^21]P. 113.-Filix marina Anglica Park. Dwarf Sea Fern. "\& at Weston super mare in Somersetshire L.P." (Asplenium lanceolatum Huds.)
P. 136.-Gnaphalium Anglicum Ger. Great English Cudweed. "in y^{\oplus} wood you goe tharough from Dolwich to y^{y} wells \& in y^{e} edge of Carlton woods by Greenich plentifully." (Gnaphalium sylvaticum L.)
P. 151.-Gramen junceum spicatum seu triglochin. Arrowheaded grass. "beyond Dolwich not far from y ${ }^{e}$ wells in rills of water there. if you go from Dolwich it is on y^{\ominus} right hand of y^{e} Wells in y^{e} watery Bottoms and Plashes there." (Triglochin palustre L.)
P. 152.-Gramen marinum spicatum Clus. Sea spiked grass. "on y ${ }^{e}$ Havens side at Boston." (Triglochin maritimum L. (?))
P. 171.-Horminum sylvestre Lavendulæ flore C. B. Wild Clary. "Inveni ipsemet hoc Greenvici sub muro." (Salvia Verbenaca L.)
P. 203.-"Lysimach. bifolia flore luteo globoso in Yorkshire fast by Cowick y ${ }^{e}$ Ld. Viscount Down's seat found by Mr. Dodsworth." (Lysimachia thyrsiflora L.)
P. 209.-Militaris aizoides Ger. . . . Water Sengreen, or Fresh-water Souldier. "in a River or great draine in the East Fen Lincolnshire \& in a ditch in the way from Lyn to Germans bridge in Marshland." (Stratiotes aloides L.)
P. 210.-Millefolium aquat. pennatum spicatum C. B. "in y" fens of Lincolnsh. neer Boston \& upon Dolwich Common neer Cap. Thompsons house in a watery place there." Myriophylluin spicatum L.)
P. 211.-Millegrana minima Ger. The least Rupture wort, or All-seed. "upon Putney Heath by y^{e} Bowling Green." (Radiola linoides Roth.)
P. 223.-"Enanthe staphylini folio aliquatenus accedens J. B. in a ditch in y^{e} Fens of Lincolnsh. neer Quaplod his oculis vidi, et nostris manibus tractavi." (Enanthe Lachenalii Gmelin.) In the first edition of Ray's Synopsis, pp. 239-242 of the Appendix are occupied by a list entitled "Stirpes \& Observationes à Clariss. Viro D. Leonardo Plukenet M.D. communicatæ," in which (on p. 241) this species is recorded "in parochia Quaplod, Agri Lincolniensis, non procul ab oppido Spalding." It is, no doubt, the village now known as Whaplode.
P. 223.-(Enanthe cicutæ facie Lobelii Park. "juxta Tamesin copiosissime." (Enanthe crocata L.)
P. 228.-Orchis spiralis alba odorata J. B. "By Dolwich Wels on y^{e} left hand as you go from y^{e} Town though . . . sparingly about a flight-gled (?) from y ${ }^{\ominus}$ Wells." (Gyrostachis autumnalis Dum.)
P. 240.-Phyllitis Ger. Harts tongue. "Millions of it about Bristol in y ${ }^{e}$ Lands \& Roads all over." (Scolopendrium vulgave Symons.)
P. 245.-Plantago aquatica minor Park. Dwarf Water Plantain. "in a little bog and y^{\ominus} wood as you go from Dolwich to y^{e} Wells." (Alisma ranuculoides L.)
P. 249.—Abele. "in Surrey." (Populus alba L.)
P. 285.-Sium alterum Olusatri facie Lob. "between Cowley \& Hillingdon." (Cicuta virosa L.)
P. 286.-" Solanum baccis aureis upon a dunghill within a quarter of a mile of Dolwich." (Solamum nigrum var. luteo-virescens (Gmel.) ?.)
P. 292.-"Sphondylium majus aliud laciniatis foliis. upon $\mathrm{y}^{\boldsymbol{\theta}}$ Edge of Hartforsh. beyond Reickmeersworth." (Heracleum Sphondylium var. angustifolium.) In the Appendix to the Synopsis already referred to, this locality appears (p. 241) as "my own farm upon Horn-hill near S. Peters Chalfont." See also Plukenet's will, Journal of Botany, 1882, p. 341.
P. 306.-Trifolium pumilum supinum flosculis longis albis. "This with Trif. subterraneum . . . in Tothil fields Westm." (Trigonella purpurascens Lam. (?) and Trifolum subterraneum L.) As to these determinations, see Flora of Middlesex, pp. 78 and 80, and C. C. Babington in Ray's Correspondence (ed. Lankester), p. 219.
P. 319.-Viscum. "Sheffeldiam adeat." (Viscum album L.)

THE EUROPEAN SPHAGNACE \notin

 (after Warnstorf)By E. Charles Horrell, F.L.S.
(Continued from p. 315.)
19. S. trinitense C. Müll. Syn. I. 102, 1849.

Syn. S. serratum Aust. (1877) ; S. cuspidatum Russ. \& Warnst. var. serratum Lesq. \& James; S. cuspidatum Russ. \& Warnst. var. submersum Schimp., f. servulatum Schlieph.

Warnstorf has recently revived this name, and includes under it all forms of S. cuspidatum having serrulate branch-leaves. It would appear to be as widely distributed and as variable as S. cuspidatum, with which it agrees in general habit, the form of the branch-leaves, the chlorophyllose cells trapezoid in section and free on both surfaces, and the clearly differentiated stem-cortex. The uppermost branch-leaves are frequently markedly serrate, and are sometimes very long, and taper to a long fine subula, resembling that of some of the Harpidia.

Distrib. Europe; N. America. Keston Common, Kent (Cocks), a form resembling S. cuspidatum var. falcatum; Hambleton Hill, Kilburn, N.E. York (Ingham), a large brown form, resembling S. Torreyanum in habit.
20. S. Dusenir Russ. \& Warnst. in Sitzungsber. Dorpater Naturf.-Ges. 1889, 99.

Syn. S. cuspidatum var. majus Russ. Beitr. zur Kenntn. der Torfm. 1865, 58, ex p.; S. cuspidatum var. Dusenii Jens. in litt. 1886 ; S. recurvum var. obtusum Limpr. Laubm. 1886, i. 132, ex p.; S. mendocinum Warnst. in Bot. Ver. der Prov. Branden, 1890, xxxii. 210.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
capitulum slightly brownish. Spreading branches in and below the capitulum elongated, tapering at the apex and sharply recurved; leaves slightly elongated, when dry frequently somewhat recurved.
(3) Var. fallax Warnst. l.c. (sub S. mendocino). Branches of the capitulum more or less sickle-shaped, recurved, and elongated, with the leaves frequently somewhat secund.
(4) Var. majus (Russ.) Warnst. l.c. (sub S. mendocino). Completely submerged, very long (up to 50 cm .), without or with few pendent branches; spreading branches horizontal with, up to 10 mm . long, soft upright leaves; hyaline cells elongated, and frequently with very few pores on the outer surface. The uppermost branch-leaves frequently consist of chlorophyllose cells only in the upper part, as in S. cuspidatum var. plumosum.
(5) Var. mollis Warnst. Europ. Torfm. ser. iv. No. 369, 1894. Tufts when dry very soft, yellowish; branch-leaves closely appressed, with a tendency to being secund, generally only slightly undulate; on the inner surface almost without pores; on the outer with very numerous, generally non-bordered pores.
(6) Var. parvifolium Warnst. in Hedwigia, 1893, 14. Plants delicate, in compact tufts, which are only partly submerged; stemleaves small, about 54 to $\cdot 6 \cdot \mathrm{~mm}$. long, wide at base, triangularlingulate, non-fibrillose or somewhat fibrillose towards the rounded and weakly fimbriate apex; branch-leaves small, about $1 \cdot 14$ to 1.37 mm . wide, generally almost sickle-shaped and secund, border narrow; pores on the outer surface very numerous, towards the apex frequently passing over into large membrane gaps.
21. S. pulchrum Warnst. in Bot. Centralb. Ixxxii. 1900, 42.

Syn. S. laricimum Spr. (Schimper, Un. Ital. in Crypt. Cheshire: Carrington Moss. leg. 1865) ; S. recurvum (P. B.) var. pulchrum Lindb. in Braithw. The Sphagn. 1880, 81.

Exs. Braithw. Sphagn. Brit. Exsicc. No. 48 (1877).
Plants generally very robust, of a beautiful yellow-green, light brown or dirty dark brown.

Cortex of the stout stems 2-4-layered, generally clearly differentiated from the yellowish or pale reddish wood-cylinder; more rarely in most parts of the circumference not clearly differentiated, and so apparently absent.

Stem-leaves small, broadly isosceles- to equilateral-triangular, about 90 mm . wide at the base, and almost or quite as long; generally suddenly produced above into a short apiculus; border broad, very much widened below. Hyaline cells very narrow and tube-like, generally non-fibrillose, rarely with rudiments of fibrils towards the apex; on the inner surface frequently with resorption thinnings.

Fascicles generally consisting of four branches, the two stronger spreading, the others appressed to the stem. Spreading branches thick, either short and but little thinner at the apex, or longer and distinctly acuminate; arranged in very varying directions with regard to the stem; leaves sometimes closely, sometimes loosely arranged. Branch-leaves broadly ovate or lanceolate, and generally almost suddenly produced into a short, narrowly truncate, small-toothed
apex, with incurved margins; when wet distinctly five-rowed, when dry either almost non-undulate or more or less undulate, slightly glossy, and generally having only the extreme apex erecto-patent or recurved. Border of 4-5 rows of cells. Hyaline cells with numerous wide fibrils; on the inner surface of the leaf in the upper half with numerous, somewhat large, non-bordered pores in all the cell-angles; on the outer surface in the upper part with small pores in the upper or lower cell-angles, and also in part in the lateral cell-angles, or frequently even several in short rows on the commissures; in the lower half of the leaves, especially towards the lateral margins, with large pores in the upper cell-angles, or not rarely with several in each cell.

Chlorophyllose cells in section equilateral- to isosceles-triangular, with the base of the triangle on the outer surface of the leaf; the height of the triangle about equal to half the diameter of the hyaline cells; hyaline cells united together for some distance, so that the chlorophyllose cells are completely enclosed on the inner surface.

Hab. In deep bogs, chiefly in the north.
Distrib. England, Sweden, Finland, Germany ; N. America.
Readily distinguished from all other recurrum-forms by the relatively broad, shortly acuminate, five-rowed branch-leaves.

Penzance, Cornwall (Ley); Whixall Moss, Shropshire (Ley); Whitchurch, Shropshire (Boswell); Lythe Moss, Westmoreland (Barnes); Fowlshaw Moss, Westmoreland (Stabler); Broadgate Bog, Staveley, Westmoreland (Stabler) ; Carrington Moss, Cheshire (Hunt) ; Gull Island, Cockerham Moss, Lancashire (Wheldon \& Wilson) ; Wheeldale Moor, Goathland, N.E. Yorkshire (Anderson); Ballygowan, Co. Down, Ireland (Waddell).
22. S. Torreyanum Sulliv. in Mem. Americ. Acad. Arts \& Sc. New Ser. iv. 1849, 175.

Syn. S. cuspidatum Ehrh. var. Torreyanum Braithw. The Sphagn. 1880, 84, et var. niquelonense Ren. \& Card. in Révision des Sphaignes de l'Amériq. du Nord, 1887, 17.

Plauts very stately and robust, the largest form equalling S. riparium and S. squarrosum; generally greenish or dirty brownishgreen, hydrophilous.

Stem-cortex in 2-3 layers, clearly differentiated from the thick wood-cylinder.

Stem-leaves in comparison to the size of the plant rather small, up to 1.14 mm . long, and at the base about 1 mm . wide, isoscelestriangular or triangular-lingulate, acute or with more obtuse, toothed apex; border very wide, much widened below. Hyaline cells in the middle above the base wide, several times septate and at times with rudimentary fibrils; in the other parts of the leaf narrow, tube-like, and either non-fibrillose or with fibrils towards the apex; on the inner surface in the upper half generally with large membrane-gaps.

Fascicles with as a rule four branches, either all of almost equal size and spreading or 1-2 distinctly thinner and appressed to the stem; the stronger branches sometines longer, sometimes shorter and frequently sickle-shaped at the thinner apex.

Branch-leaves very large, the lower ones $2-3 \mathrm{~mm}$., the upper as much as 6 mm . in length and $1-1 \frac{1}{2} \mathrm{~mm}$. wide, broadly-lanceolate and the longer ones almost tubular in the upper part in consequence of the strongly inrolled margins; toothed at the narrowly truncate apex; border of $6-8$ more rarely $10-15$ rows of cells; when dry more or less (especially in the capitulum) undulate, somewhat squarrose-recurved, and in part almost secund and sickle-shaped. Hyaline cells narrow and elongate, with numerous fibrils which project considerably into the lumen of the cell ; on the inner surface in the apical part almost quite without pores or with numerous smaller or larger non-ringed pores in almost every cell-angle; on the outer surface either only with very minute pores in the upper and lower cell-angles, or sometimes also with completely or incompletely bordered pores in the lateral cell-angles.

Dioicous; perigonial bracts much smaller than the other branchleaves, from a narrower base broadly ovate-lanceolate, about 1.14 mm . long and at the base 57 mm . wide; hyaline cells towards the base of the leaf non-fibrillose or incompletely fibrillose. Upper perichætial leaves very large, ovate, concave, in the lower part with chlorophyllose cells only, above with both kinds of cells; hyaline cells very narrow, vermicular, generally non-fibrillose and nonporose, more rarely in the apical half on the outer surface with scattered small pores in the upper cell-angles. Spores pale, about $26-29 \mu$ in diameter.

Chlorophyllose cells in section broadly isosceles-triangular to trapezoid; in the lower half of the leaf completely enclosed on the inner surface by the hyaline cells which are united together for some distance so that the chlorophyllose cells are only about half the height of the hyaline ones, in the upper half trapezoid and free on both surfaces.

Hab. Floating or completely submerged in moorland pools.
Distrib. England; North America. Near Whitchurch, Shropshire (Boswell).
23. S. obtusum Warnst. in Bot. Zeit. 1877, 478, pro parte (Russ. in Sitzungsber. d. Naturforscher-Ges. in Dorpat, 1889).

Syn. S. cuspidatum var. majus Russ. pro parte Beitr. 58, 1865 ; S. intermedium var. riparium pro parte Braithw. The Sphagnaceæ, 80, 1880; S. recurvum var. obtusum pro parte Limpr. Laubm. i. 132, 1886.

In swamps or partly immersed in water. Stem generally very robust and equalling in stature S. riparium; above green, yellowgreen or brownish.

Stem-cortex irregularly 2 -3-layered and generally not clearly differentiated from the thick wood-cylinder; at times apparently absent.

Stem-leaves of medium size to large, triangular-lingulate to lingulate, fimbriate at the rounded apex owing to the reabsorption of the cell-membrane on both sides of the leaf, but never deeply cleft; border much widened below; hyaline cells almost without exception without fibrils.

Fascicles according to the habitat closer together or more dis-

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

tufts in bogs. Fascicles sometimes very closely, sometimes more distantly arranged; spreading branches very thin, short and recurved; leaves closely set, small, when dry almost or quite nonundulate with recurved apex, in part more or less secund.
(4) Var. teres Warnst. l.c. Plants robust, when dry somewhat rigid ; fascicles towards the apex very closely set, forming a dense roundish capitulum; spreading branches long and gradually tapering to a very thin apex; leaves closely arranged all round the branch, with only the apex or the entire upper half erecto-patent to almost squarrose, somewhat undulate.
24. S. recurvum Russ. \& Warnst. Sitzungsber. d. NaturforscherGes. in Dorpat (1889).

Syn. S. intermedium Hoffm. (ex p.) Deutsch. Fl. ii. 22, 1795.
Exsicc. Braithw. Sphagn. Brit. Exsicc. no. 47 (1877).
Inhabiting swamps, rarely completely submerged in water. Plants sometimes robust, sometimes more delicate to very slender ; green, whitish, yellow-green to brownish, rarely the capitulum reddish or dirty-violet.

Wuod-cylinder whitish, greenish, yellowish or reddish.
Stem-cortex generally absent.
Stem-leates generally small, equilateral to shortly isoscelestriangular, acute or obtuse, sometimes almost short-lingulate and then with a few membrane gaps and fibrils at the apex. Border broad and much widened below; hyaline cells in the upper part generally non-fibrillose, more rarely with fibrils and a few pores or membrane-gaps on the inner surface.

Fascicles distant or closer, with 4-5 branches, the two stronger branches spreading, the other weaker ones generally closely appressed to the stem. Leaves of the spreading branches larger or smaller to very small, broadly or narrowly ovate-lanceolate; above produced into a shorter or longer, narrowly truncate toothed apex; margin above inrolled ; border generally narrow $2-4$ (very rarely 5-6) rows of cells wide; when dry almost always undulate; rarely somewhat secund and sickle-shaped ; without metallic lustre. Hyaline cells narrow and long, with numerous fibrils, which project considerably into the cavity of the cell; on the inner side almost always, especially in the apical half of the leaf, with numerous larger or smaller non-bordered pores in the cell-angles; on the outer side in the upper half of the leaf with small pores in the upper cell-angles only; towards the laterd margins on the outer surface the pores are almost always larger and not rarely there are several in the upper part of each cell; here also they frequently exactly cover the pores on the inner surface, so that complete perforation of the leaf ensues. Leaves of the pendent branches much smaller, either agreeing in anatomical structure with the others or well differentiated; in the latter case they have on the outer surface, near the apex or near the lateral margins, large membranegaps in the upper cell-angles, as in S. riparium.

Chloroplyllose cells in section in the basal half of the leaf triangular and completely enclosed on the inner surface by the hyaline cells, which are not united together for any appreciable distance.

Dioicous; male branches in the antheridium-bearing part rustred to dark brown ; perigonial bracts differentiated, broadly-ovate, with shortly produced apex. Perichætial bracts large, broadly-ovate; in the basal half formed of broad, long, rectangular chlorophyllose cells only, in the upper half of both kinds of cells; towards the lateral margin the cells become gradually narrower and form an indefinite broad border ; the apex itself formed of small, thickwalled chlorophyllose cells only; hyaline cells usually without fibrils and pores. Spores sulphur-coloured with membrane folds or rusty-brown without folds, 25μ in diameter.

Hab. Widely distributed in both lowlands and mountainous regions.

Distrib. Throughout Europe; Asia; North and South America; Oceania. Hole Common, near Lyme Regis, Dorset (Miss Lister); Mallowdale Fell, W. Lancashire (Wheldon \& Wilson); Loch Knock, Islay (Gilmour); Cwm Moch, Merioneth (Jones \& Horrell).

Very numerous varieties have been described, of which the following are the most important:-
(1) Var. amblyphyllum Warnst. in Bot. Ver. Prov. Branden. 1890, xxxii. 216. Plants sometimes robust, sometimes delicate, whitish or yellowish, habit varying much according to the habitat. Stem-cortex absent or more or less distinctly differentiated from the green, whitish or yellowish wood-cylinder. Stem-leaves small, triangular-lingulate to lingulate, at the rounded apex with resorption of the cell-membrane on both surfaces and so more or less fimbriate, but not deeply divided; generally non-fibrillose, rarely with fibrils in the apical part. Branch-leaves when dry more or less undulate, longly acuminate, pore formation in the leaves of the two kinds of branches differing little, on the outer surface almost with pores in the upper cell-angles only, the pores towards the lateral margins frequently larger.

A very common form, differing from the var. mucronatum by the rounded and fimbriate apex of the stem-leaves. Robust forms are distinguished from S. obtusum by the pores in the branch-leaves, which in that species are smaller with ill-defined outlines.

Brookwood, Surrey (Shervin); Harrogate, W. Yorkshire (Cocks); Burnham Common, Bucks (Sherrin) ; Artro Valley, Merionethshire (Jones); Worston Moor, N.E. Lancashire (Lewis).
(2) Var. mucronatum Warnst. l.c. p. 217. In size, habit, and colour as variable as the var. amblyphyllum, and only differing from this in the stem-leaves. Stem-leaves generally equilateral- to isosceles-triangular; in the former case acute, and without any resorption of the upper cell-walls, and generally non-fibrillose, more rarely with fibrils in the upper part; in the latter case larger, toothed on the frequently truncate apex, and not rarely having the border less widened below, and the cells fibrillose to below the middle of the leaf. Branch-leaves sometimes strongly, sometimes weakly undulate, very seldom, and especially in submerged forms, quite rigid. Pore-formation as in var. amblyphyllum. Very common.

Brookwood, Surrey (Sherrin); Oakmere, Cheshire (Wilson); Wybunbury Bog, Cheshire (Wilson); Tilgate Forest, Sussex (Horrell);

Journal of Botany.-Vol. 38. [Sept. 1900.]

Widdy Bank Fell, Teesdale, Durham (Horrell) ; Corriesgill's Head, Arran (Ley) ; Islay (Gilmour).
25. S. parvifolium Warnst. in Bot. Centralbl. Ixxxii. 1900, 67.

Syn. S. recurvum var. parvifolium Warnst. in Flora, 1883, 374 ; S. intermedium Lindb. var. angustifulium Jens. ; S. angustifolium subspec. nov. Jensen in De Danske Sphagnum-Arten, 1890, 104.

Plants generally very slender, pale-, greyish-, to yellow-green, rarely (especially in the capitulum) brownish or a beautiful reddish brown.

Stem-cortex generally apparently absent, not or scarcely differentiated from the wood-cylinder.

Stem-leaves very small, $\cdot 5 \mathrm{~mm}$. long, and about the same width at the base, and hence equilateral-triangular or triangular-lingulate, with obtuse somewhat fimbriate apex; border widened below. Hyaline cells non-porose, and generally non-fibrillose, more rarely with fibrils towards the apex.

Branch-leaves small, but little over 1 mm . long and $\cdot 34-\cdot 4 \mathrm{~mm}$. broad, narrowly lanceolate, border narrow, margin inrolled only in the apical part ; when dry generally not at all undulate, but closely imbricate, and with only the extreme apices frequently recurved, more rarely weakly undulate, or especially in the capitulum distinctly undulate. Leaves of the spreading branches on the inner surface with numerous, round, non-ringed pores in the cell-angles from the apex to the base; on the outer surface towards the apex with small strongly ringed or in part incompletely ringed pores in the cell-angles or on the commissures, in the basal half near the lateral margins with large pores in the upper cell-angles. Leaves of the pendent branches on the outer surface in the apical half with small pores in the lateral and lower cell-angles, and with large membrane-gaps in the upper cell-angles which frequently are immediately above the pores on the inner surface, so that complete perforation of the leaf results. Perigonial bracts differentiated, ovate-lanceolate to oblong-lanceolate, from a narrower base widened to the middle, and then produced into a short, truncate, and toothed apex; in the lower half light brown, and here generally non-fibrillose. Always smaller than the other branch-leaves.

Chlorophyllose cells in section triangular, with the base of the triangle free on the outer surface of the leaf; on the inner surface completely enclosed by the more concave hyaline cells, which are, however, not united together for an appreciable distance.

Distrib. Widely distributed in Europe and North America. Holt, E. Norfolk (Burvell); Widdy Bank Fell, Teesdale, Durham (Horrell).
26. S. balticum Russ. in Sitzungsber. der Naturforscher-Ges. in Dorpat (as subspec. of S. recurvum) (1889).

Syn. S. cuspidatum Ehrh. var. mollissimum Russ. Beitr. 1865, 61 ; S. cuspidatum var. brevifolium Lindb. in Braithw. The Sphagn. 1880, 84 ; S. laricinum Angstr. ex p.; S. recurvum (P. B.) var. mollissimum Russ. apud Warnstorf in Verh. des Bot. Ver. der Prov. Brandenb. xxxii. 1890, 221.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Stem-cortex apparently absent, not differentiated from the yellowish wood-cylinder.

Stem-leaves rather large, triangular-lingulate, about 1 mm . long, and about the same width at the base, somewhat fimbriate at the rounded apex through resorption of the upper hyaline cell-walls; border wide, much widened below. Hyaline cells in the lower and middle part of the leaf narrow, wider and shorter above, nonseptate, non-porose on both sides, but in the middle of the upper part of the leaf with rudimentary or in part completely developed fibrils, rarely quite without fibrils.

Fascicles generally with four branches; two stronger, gradually tapering at the apex, and about 15 mm . long, are spreading, the other weaker branches appressed to the stem. Branch-leaves imbricate, never secund, when dry not or weakly undulate, not shining, lanceolate, about 2.15 mm . long and .86 mm . wide, with small teeth on the narrowly truncate apex; border narrow, of 3-4 rows of cells, margin entire, widely inrolled. Hyaline cells with very numerous fibrils, on the inner surface quite without pores, or in certain forms with few very small pores with indistinct contour (as in S. obtusum), and scattered very small strongly ringed pores; on the entire outer surface with extremely numerous small pores, which are generally in two rows on the commissures or in the middle of the cell-wall, towards the apex sometimes strongly bordered and in rows like strings of pearls, the true pores sometimes interrupted by pseudo-pores.

Chlorophyllose cells in section triangular, with the base of the triangle free on the outer surface, on the inner surface completely enclosed by the hyaline cells, which are only united together for a short distance.

Distrib. In company with S'. Jensenii, S. obtusum, S. recurvum var. amblyphyllum, S. platyphyllum, and S. subsecundum in Finland and Russia.
S. annulatum is distinguished from S. Dusenii by the absence of stem-cortex, and by the chlorophyllose cells being completely enclosed on the inner surface of the leaf; and from S. Jensenii by the very few pores on the inner surface of the leaf and the absence of cortical cells.
28. S. Jensenir Lindb. fil. in litt. ad Jensen et apud Soc. pro Fauna et Flora fenn. 7, x. 99.

Syn. S. annulatum Warnst. (non Lindb. fil.), p. p.
Almost always brown. Stem-cortex distinctly differentiated. Branch-leaves never secund. Pores on the outer surface of the branch-leaves very numerous, generally in two rows in the middle of the cell-wall, never passing over into membrane-gaps, smaller than in S. Dusenii, towards the apex with bordered pores on the commissures; on the inner surface with very numerous non-bordered pores, generally not close to the commissures, and usually two between each fibril. Chlorophyllose cells completely enclosed on the inner surface.

Distrib. Norway, Sweden, Finland, Russia.
S. Jensenii is readily distinguished from S. Dusenii by the
numerous pores on the inner surface of the branch-leaves, and by the completely enclosed chlorophyllose cells in the section of a branch-leaf; and from S. annulatum by the distinct stem-cortex, and the numerous pores on the inner surface of the branch-leaf.
29. S. molluscum Bruch in Flora, 1825, 635.

Syn. S. tenellum (Ehrh.) Lindb. in Efvers V.-Ak. Förh. 19, p. 142, No. 13 (1862).

Exsicc. Braithw. Sphagn. Brit. Exsicc. Nos. 11 and 12.
Tufts very soft, sometimes dense, sometimes looser; above grey or a beautiful yellow-green, rarely with the capitulum pale reddish; when growing in water up to 25 cm . long; plants always very delicate.

Stem-cortex of 2-3 layers, formed of narrow or medium-sized thin-walled, non-porose cells.

Wood-cylinder whitish, greenish, or yellowish.
Stem-leaves large, triangular-oval to almost lingulate, generally with the margin inrolled towards the weakly-toothed apex; when dry shining; border rather wide, more or less widened below; hyaline cells generally fibrillose to the middle, rarely lower ; on the inner surface towards the apex with large pores or membrane-gaps in the upper cell-angles, on the outer surface with small pores in the upper and lateral cell-angles, as in the branch-leaves.

Fascicles sometimes distant, sometimes very close together, of 2-4 branches, either 1-2 branches spreading and the others pendent, or all spreading, all relatively short; leaves loosely or closely arranged all round the branch. Retort-cells of branches very large, with recurved neck; pore of the retort-cell colourless, or with a yellowish border. Branch-leaves small, wide-oval or elongate-ovate, the narrowly bordered margin widely inrolled; at the narrowly truncate apex finely toothed; very concave; never distinctly secund, when dry not undulate; the upper hyaline cells widely rhomboid, all with numerous fibrils which project far into the lumen of the cell; pores on the inner surface almost confined to the upper cell-angles, more rarely also in the lower and the lateral angles, large, weakly or not bordered ; in the basal cells with one or more large pores in the upper cell-angles; on the whole outer surface with small pores in almost every cell-angle, which become gradually larger and more weakly ringed towards the base; the pores in the upper cell-angles on the outer surface in the upper part of the leaf exactly cover pores on the inner surface to a greater or less extent. Pores in the leaves of the pendent branches generally in each upper cell-angle on the outer surface, rarely also in the lateral angles.

Chlorophyllose cells in section triangular to trapezoid, inserted between the flat hyaline cells on the outer surface of the leaf, and here free, on the inner surface either completely enclosed by the strongly convex hyaline cells or free here also.

Polyoicous; male branches short and thick, later becoming elongated; of a beautiful yellow or yellow-brown colour ; perigonial bracts resembling the sterile leaves in form and structure. Perichætial bracts large, ovate, concave, fine-toothed on the truncate
apex; the broadly bordered margin inrolled; the upper bracts formed of both kinds of cells; the hyaline cells in the apical part of the leaf rhomboid, all or only some of them with fibrils, and similar pores on both sides to those on the stem-leaves; at times septate here and there; the apex of the lower bracts generally with only thick-walled, narrow, short chlorophyllose cells. Capsule small, when ripe yellowish brown, urn-shaped. Spores sulphurcoloured, smooth, 38μ in diameter.

Hab. Wet places on heaths and moorlands both in the plains and in hilly regions, frequently intermixed with other bog-mosses.

Distrib. Germany, Austria, Holland, Belgium, France, Denmark, Norway, Sweden, Finland, Russia; North America. Brookwood, Surrey (Moninyton \& Horrell) ; Champernhay Marsh, Wooton, W. Dorset (Miss Lister) ; Witherslack Moss, Cheshire (Ley); Penzance, Cornwall (Ley); Keston Common, Kent (Horrell); Widdy Bank Fell, Teesdale, Durham (Horrell); Silchester Common, N. Hants (Wilson); Ulpha Moss, Westmoreland (West); Cennant Llenyrch, Merionethshire (Jones); Nant Pedor, Carmarthenshire (Ley).

This very pretty species varies little, the forms being directly due to the character of the habitat. Of these Warnstorf enumerates the following :-f. immersa, Schimp. Completely submerged and reaching to 25 cm . long, branches distant, grey- or yellow-green, fruit-bearing branches often several centimetres long, and situated far below the capitulum. - f. compacta Warnst. growing in dry places, forms very compact tufts, branches short and closely arranged.-f. gracile Warnst. is a very delicate weak form with small distant branches, growing in damp places.-f. robusta Warnst. is very robust and large. This I have gathered on Roseberry Topping, N.E. Yorkshire.-f, subelecta Grav. is homalo- to ano-cladous. -f. stricta Roll. is anocladous, and f. longifolia Lindb. is a young form with incompletely differentiated branch and stem-leaves.

§ iv. Sphagna polyclada Warnst.

This section contains only the single species S. Wulfianum Girgens., remarkable for the large number of branches (7-13) in each fascicle.
30. S. Wulfianum Girgens. in Archiv für Naturk. Liv. Est. \& Kurlands, ser. 2, Bd. ii. 173, 1860.

Exsicc. Braithw. Sphagn. Brit. Exsicc. No. 46 (1877) (Addend. Exoticum).

Plants robust, with dense, large capitulum, pale green to brown, with a reddish tinge owing to the numerous male branches. Stems rigid and stout, up to 20 cm . high, 2-4 times divided.

Wood-cylinder dark red.
Stem-cortex irregularly $2-3$-layered ; inner cells thick-walled, red ; outer, thin-walled.

Stem-leaves small, triangular-lingulate, with narrow border, widened below; hyaline cells several times septate, above generally with scattered pores.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Leno of the ogralint lath narrov: at ther
 Leaves of the peoleat pores in the epper ad

CManphiglion ath in andite. leaf elliptical, and omploanty $=$ basal part berrol-abupel to nurn Hyaline colls oe the antrent
 chlorophyllose cells weakly mencus

Hab. Wet pleserela
Distria. Bosia, Ralued 5ow
This very fee and herent wr
 numeross brusetion \boldsymbol{x} and form.

The followite rarives have lice alman
(1) Far. pearionoon Den !
 having more namarvar porm
 especially in the eaptaies. with yellowish-green.
(8) Var. rind Wiarmat. $1 . \mathrm{C}$.

fr. Sinceas ac

 broadly traneate and wothod. lowia ylurvia quat wous.

 chlorophyllose cells cither amoch aquaplas. fid hume
 and generally there in rows on the manhatoun reat
surface most numerous near the lath martan cells in section elliptic, generally leaf, more rarely centric, eltt
surfaces of the leaf, or with the on otuter surface. triangular-lingulate; sometimes of ullid large and lingulate to almóst sp hyaline margin, especially ont the apex sometimes fimbriate several (rarely in one) layers, thinthe outer wall frequently with a sit walls with small pores. Plants, slightly glossy; whitish, yellowi the capitulum dirty violet,

This small section, of which only one species inhabits Europe, comprises about fourteen species.
31. S. сомpactum DC. Fl. Franc. ed. 3, ii. 443, 1805.

Syn. S. compactum var. rigidum Bryol. germ. i. 14, 1823 ; S. rigidum Schimp. Entw.-gesch. 1858, 65.

Exsicc. Braithw. Sphagn. Brit. Exsicc. Nos. 23, 24, 25 (1877).

Tufts shorter or deeper, denser or looser, brownish, variegated or bluish-green. Branches closely or distantly arranged, when dry very rigid and fragile.

Wood-cylinder in the middle of the stem always dark brownish black.

Stem-cortex in 2-3 layers of irregular cells, of which the inner have a few scattered minute pores.

Stem-leaves very small, from a wide base shortly triangular, rounded or broadly truncate at the apex, and here generally fimbriate; middle cells wide; border very wide; non-fibrillose and non-porose.

Fascicles generally near together, more rarely distant, of 3-4 shorter or longer branches, of which 1-2 are spreading. Leaves generally distinctly quinquefarious, rarely somewhat imbricate, generally erecto-patent or squarrose, large, broadly-ovate to oblong, very concare, with the margin inrolled to the base, broadlytruncate, and with 5-6 teeth at the apex; border very narrow. Pores on the outer surface large and round, numerous along the commissures; on the inner surface chiefly in the cell-angles.

Chlorophyllose cells in section not median, nearer the outer surface, elliptical and enclosed on both surfaces by the hyaline cells, which are united together for some distance; non-papillose.

Monoicous; male branches generally pendent, not differing in form from the sterile branches; when ripe almost golden-yellow. Perichætial bracts very large, ovate-lanceolate, longly acuminate at the apex and somewhat secund; cells near the apex very long, the others resembling the cells of the branch-leaves; border almost absent. Spores yellow-brown, $32-35 \mu$ in diameter.

Hab. Heaths and moorlands, pine-woods, and wet mountain slopes.

Distrib. Widely distributed throughout Central and Western Europe from Italy to Island; Asia; Africa; N. America.

There are three main varieties.
(1) Var. squarrosum Russ. Beitr. zur Kenntn. der Torfm. 1865, 77. Tufts lax and deep, greyish- or bluish-green. Spreading branches horizontal, or more rarely recurved; all leaves loosely imbricate and squarrose.

Brookwood, Surrey (Sherrin) ; Riccall, E. Yorkshire (West).
(2) Var. subquarrosum Warnst. in Hedwigia, 1888, 271. Most of the leaves erecto-patent, but few recurved.

Langdale, Westmoreland (Barnes in Braithw. Sphagn. Brit. Exsicc. No. 24 ; sub nom. S. rigidum var. squarrosum, teste Warnstorf) ; Brookwood, Surrey (Monington \& Horrell).

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

NOTES ON CORNISH PLAN'TS.

By Fred. Hamilton Davey.

Notwithstanding the attention which Cornwall has received at the hands of a continuous line of botanists since the time of Ray, the investigations carried out last year and this by Mr. A. O. Hume, C.B., and myself, for our proposed Flora of the county, have shown that much may be done in some comparatively unexplored districts. In these notes I shall content myself with references to our own personal work, leaving new and interesting records by our numerous co-workers for our "Prodromus," which we trust we shall be able to print in time for next season's work.

Sisymb, ium pannonicum Jacq. Until this year this has only been recorded from the Eastern Green, Penzance, where it was found several years ago by the late Mr. W. A. Glasson. Quite a colony is now flourishing at Devoran, a little port at the head of one of the arms of the Fal. That it was originally introduced with ballast or grain there can be no doubt; but the plant is now growing quite away from the ballast heaps, and appears to have taken a permanent hold of the place. Close at hand there is a very fine lot of Lepidium ruderale Linn.

Brassica Cheiranthus Vill. We have found this Brassica fairly plentiful along the sands at Par, and Mr. R. V. Tellam reports it from Pentewan, a little watering-place a few miles farther west.

Claytonia perfoliuta Donn. First appeared at Pengreep, in the parish of Gwennap, during the early summer of 1898, being, as I suspect, introduced from Surrey with some rhododendrons. This year a great many plants have flowered there, and others have been found at Perranporth, on the north coast, fourteen miles distant.

Trifolium ochroleucon Huds. Has been growing very freely at Falmouth Docks, where it was first noticed by Mr. J. Lawson.

Hippurus vulgaris L. Until last autumn there appears to have been but one record for the county for this widely-distributed species: during the early years of this century it was found at Marazion Marsh by a Canon Rogers. In September last Mr. Hume gathered a single specimen on a moor a mile to the west of Penryn, in the parish of Mabe.

Eryngium campestre L. We have had our attention directed to two distinct groups of this rarity in the Looe district. As far as we are able to judge, it is genuinely native; it has certainly been known there for over thirty years.

Scabiosa maritima L. I found this plant on the cliffs at Newquay in 1896, since which time it has extended its boundary by a good many feet.

Matricaria discoidea DC. This North American and Asiatic plant, which appeared at Falmouth Docks less than a decade ago, is now the commonest of plants there, and has wandered south, west, and north into the parishes of Budock, Mabe, St. Gluvias, Stithians, Perranarworthal, Gwennap, and Mylor, in each of which
it is a frequent object by the wayside. This summer I have found it by the score quite eight miles north of Falmouth. Around Falmouth Docks and railway station it grows in many places to the entire exclusion of other plants.

Omphalodes verna Moench. Has been growing in the woods at Pengreep for quite a quarter of a century in wild luxuriance, its acres of blue flowers outrivalling the forget-me-not and the alkanet. It has also established itself by the Falmouth-Truro turnpike road, near Kea Church.

Mimulus Langsdorffii Donn. Grows in great profusion at Trebarwith, on the north coast, and sparingly at Hessenford, on the south. But perhaps it is most at home in a ravine at Zennor, near St. Ives. I have had magnificent plants sent me from that place this summer, together with a photograph of the Mimulus-decked ravine, accompanied by a letter explaining that the plant swarms there by tens of thousands. - M. moschatus Dougl. Has been growing in two places in the lower portion of the Kennall Valley far away from house and garden for twenty years.

Hippophae rhamnoides L., unrecorded for Cornwall, I found at Devoran a few weeks ago.

Euphorbia platyphyllos Linn., which was recorded for Torpoint in the early forties by Hore and Johns, but which always eluded Briggs, I have collected at Tremough, near Penryn.

Salix purpurea L. Curiously enough, none of my correspondents has been able to furnish records for this widely dispersed willow. I have found the male plant at Lanner, and the female at Pulla, both localities in the parish of Gwennap.

Allium Ampeloprasum var. Babingtonii (Borr.). In large quantities at St. Anthony-in-Roseland.-A. vineale var. bulbiferum Syme. In the neighbourhood of Penryn and Falmouth.

Zannichellia pedunculata Reichb. Occurs in large quantities in the upper part of the canal in the East Looe Valley. New to Cornwall.

Phalaris aquatica Desf. In June last I found this native of South Europe on the embankment between Falmouth station and the signal-box. A few weeks later, when botanizing near Perranwell station, seven miles north of Falmouth, I came upon another very large group in a rather ill-conditioned garden. It will be interesting to watch whether the plant shows any signs of permanence in either place.

In conclusion, I would ask all who have been working at the botany of Cornwall to join us in making our proposed handbook as complete as possible. My address is Ponsanooth, Perranwell Station, Cornwall.

REPORT OF DEPARTMENT OF BOTANY, BRITISH MUSEUM, 1899.

By George Murray, F.R.S.

The additions to the collections by presentation have consisted of :-8 plants from Australia and New Guinea, from F. Manson Bailey; specimens of a Senecio from Prof. Perceval Wright; 327 plants from Tropical Africa, from Lord Delamere; 1239 plants from South Africa, from Major Wolley Dod; 7 Orchids from Sir Trevor Lawrence; specimens of Schimmelia* from E. M. Holmes; 188 plants from Arabia, Prov. Oman, from Surg. Lieut.-Col. Dr. A. S. G. Jayakar; 15 plants from California and Oregon, from H. E. Brown ; 71 phanerogams and 6 cryptogams from Falkland Islands, from Mrs. E. Nichol ; 40 specimens of fruits, barks, woods, \&c., and 2 cryptogams from the Caroline Islands, by F. W. Christian; specimens of Tumboa from Dr. William Newton; 60 phanerogams and 1 cryptogam from Soudan, from Major R. H. Penton; 120 flowering plants, and 47 Ferns, from Jamaica, from W. Fawcett; 100 phanerogams and 62 cryptogams from West Indies, by the West Indian (Natural History) Exploration Committee; 223 phanerogams and 4 cryptogams from Chinese Turkestan, from Capt. H. H. P. Deasey; 100 specimens from India, from J. F. Duthie; specimen of Barneoudia from the Andes, from Miss M. J. Elliott; 25 specimens of Brazilian woods from Mrs. Henry Gale; 12 specimens of Chinese plants from J. D. La Touche and C. B. Rickett; 55 plants from North Mexico, from Prof. Robinson; 79 plants from Malay Peninsula, from H. N. Ridley; 2 cones of Pinus from Prof. Hans Schinz; exhibition specimen of Mimosa from Prof. Stewart; specimen of Mentzelia from C. G. Richards; specimen of Gloriosa from Gambia, from S. Arthur Sewell; fruit of Eriodendron from A. Blayney Percival; specimen of Centaurea from Portugal, from Rev. E. Armitage; 93 plants from Porto Rico, from Dr. Urban ; 19 Orchids, 2 specimens of cultivated Junipers and Podocarpus from Messrs. Veitch; 5 Orchids from J. Sparkes; 7 Orchids from Messrs. Sander; 12 Marine Algæ from Cape Agulhas, by Miss Emily Thwaites; 23 Algæ and 7 Ferns from Falkland Islands, by Rupert Vallentin; 153 microscope preparations of Diatoms from St. Vincent, West Indies, by Edmund Grove; a collection of Phytoplankton from the Atlantic, by Capt. W. H. Milner; 22 Marine Algæ from Swatow, China, by E. B. Howell; 5 cryptogams from Transkii, by Miss Alice Pegler; 6 Freshwater Algæ from the United States of Columbia, by Miss Sophie Fonnegra; Diatomaceous Earth from Ballarat, by W. S. Dun; a collection of Phytoplankton from the North Atlantic and Arctic Oceans, by W. L. Brown; a collection of Phytoplankton from the Red Sea, Indian Ocean, North Pacific, \&c., by Capt. G. K. Wright, R.N.R.; 154 cryptogams from Samoa, by Mrs. Spicer; 31 cryptogams from Mount Kenya, by H. J. Mackinder; the moss herbarium of the late Charles

[^22]
THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Everhart; 250 Fungi, by Sydow; 50 North American Mosses, by Renauld and Cardot; 60 Swiss Fungi, by Winter; 50 Belgian Mosses, by Piré; 60 Austrian Mosses, by Garovaglio; 125 Lichens, by Reichenbach and Schubert; 500 Hungarian Fungi, with 89 illustrations, by Linhart; 60 Hepatics of the Ardennes, by Delogne and Gravet; 200 Fungi, by Krieger; 315 water-colour drawings of cryptogams and other plants, by Highley; 15 sheets of water-colour drawings of Fungi, by W. G. Smith; 7703 slides of Marine Algæ, mostly Floridea, made by the late Prof. Schmitz, of Greifswald.

The following additions have been made by purchase to the British Herbarium :-25 British Hieracia, from Rev. W. R. Linton; 504 slides of Fresh-water Algæ, by West; 200 Micro-Fungi Britannici, by Vize; the herbarium of British Mosses (3121 specimens) of the Rev. H. G. Jameson.

SHORT NOTES.

Hypocheris glabra in Co. Derry.-At p. 497 of the second edition of the Cybele Hibernica, Hypocharis glabra L. is placed in the appendix, where it is given amongst the "excluded species," and Mackay's early records of it, which were not repeated in his Flora Hiber,ica, are described for this reason as " no doubt errors," while the only other record of this plant is extinguished with a "perhaps." It is interesting therefore to be able to record the finding of a quantity of this plant in July, 1900, growing on the extensive wild sandy Magilligan Flats in the north of the County of Derry. The plants were all small, dwarfed perhaps by the sandy soil in which they were growing, and not by any means conspicuous. The station is a level space about a rood in extent, where Thymus Serpyllum. wove a purple carpet, varied with white flowering patches, which was a sight to see. There are indications that at some time or other the patch of ground had been cultivated, as there were slight indications of ridges through it like those left after a crop of potatoes grown in what the Ulsterman calls "rigs," and are elsewhere designated "lazy-beds"; but it is a long time since it bore a crop, as evidenced by the plants now occupying it, and it is now far from any land under tillage. The Hypocharis was also found on the rough ground beyond the limits of the thymy patch. There can be no question from the nature of the locality of its being native.-H. W. Lett and C. H. Waddell.

Carmarthenshire Plants.-During a walk of half a day over part of Pembrey Burrows on August 28th, 1899, we met with the following species; those which appear to be "new records" for the 44th Watsonian vice-county are starred:-Viola Curtisii Forster. Sand-hills, abundant.-*Hypericum quadratum Stokes. Grows in the damper parts. - Rubus anglosaxonicus Gelert var. *setulosus Rogers. In several hedges between the Burrows and the village.*Euphrasia curta Fr. var. glabrescens Wettst. Sand-hills about

Burry Port.-*Chenopodium ficifolium Sm. Alluvial field about a mile west of Pembrey; locally abundant, with C. album var. viridescens and a little C. rubrum : var. pseudobotryoides H. C. Wats. of the last-named occurs on the Burrows.-Spiranthes autumnalis Rich. Not uncommon in sandy hollows (a curious place for it). - In damper ground Epipactis palustris Crantz. is locally plentiful, together with a great quantity of *Juncus obtusiflorus Ehrh.; J. acutus L. being quite scarce.-*Asparagus officinalis L . At one spot, about a mile west of Burry Port; apparently native. The most conspicuous vegetation on these extensive stretches of blown sand is Enothera biennis L., which is here naturalized in great profusion.-Edward S. Marshall and W. A. Shoolbred.

Hypnum rugosum and Catoscopium nigritum in Ireland.-While on a botanical ramble in July, 1900, we spent two days in the neighbourhood of Benevenagh in the north of the County of Derry. Amongst the sandy Magilligan Flats at the entrance of Lough Foyle, we found Hypnum rugosum Ehrh. and Catoscopium nigritum (Hedw.) in some quantity. The former grew in luxuriant masses amongst dwarf heather and grass on the tops of the slight elevations, and the latter-which was in nice fruit-amongst the herbage in the damp hollows of the sandy soil.-H. W. Lett and C. H. Waddell.

Durham Introductions. - I am sending specimens of Lathyrus tuberosus, Coronilla varia, and Euphorbia Esula, all of which I found in July growing together by the railway near Bradbury Station (near Darlington). The railway officials say the two former have been there for at least ten years, and their luxuriant growth supports this statement. -Edward Ротts.

NOTICES OF BOOKS.

Agricultural Botany, Theoretical and Practical. By John Percival, M.A., F.L.S., Professor of Botany at the South-Eastern College, Wye. London: Duckworth \& Co. 8vo, pp. xii, 798, 265 figs. Price 7s. 6d. net.
This text-book has been written for the benefit of students of agriculture, and for all those interested practically in the culture of plants. There has been no book, hitherto, specially adapted to the needs of such students, to whom the practical aspect of botanical study is all-important. Mr. Percival has exactly met their case, and has produced a most interesting, instructive, and remarkably cheap volume, the contents of which, he tells us, are based on many years' experience of agricultural teaching.

The book is divided into seven parts, of which the first two deal with the external and internal morphology of plants. A long section (part iii.) is devoted to plant-physiology, the author always emphasizing the practical side-as for instance, when discussing
the chemical constituents of plants, he gives the relative weights of water and dry matter of the various farm crops; and again, under the heading of reproduction, he adds careful and full instructions as to the best methods of budding and grafting. The final chapter in this division deals with bud-varieties and sports, with some account of how varieties are produced.

The second half of the book is concerned almost entirely with farm plants; there is a short chapter on classification, followed by a detailed study of special plants, such as hop, mangel, turnip, grasses, clovers, \&c. It is always important to bear in mind, when deciding on the value of grasses and clovers for pasture, that the plants that sheep and cattle freely eat should be employed, while those only that are invariably rejected by stock should be excluded. What an old writer called the "bateableness" of particular grasses is their highest recommendation. Tried by this standard, Mr. Percival's condemnation of zig-zag clover, Trifolium medium, is hardly justified, as stock eat it readily. It is the same with yarrow, the use of which " he would restrict to the narrowest limits"; in ordinary conditions it is always eaten down by stock, never being allowed to flower. The careful description of seeds must prove of great assistance to students, but he hardly emphasizes enough the angular end of the rhachilla in perennial rye-grass seed, by which it is chiefly distinguished from meadow fescue. His description of the seed of Poa trivialis only applies after it has been well dressed; in its natural state it is tufted with hairs at the base, and the seeds become matted together, more so than the seeds of P. pratensis.

The last short section (part vii.) deals with Fungi and Bacteria, both treated from an economic point of view, the former more especially with reference to plant diseases. Mr. Percival describes several of the more frequently met with fungal parasites, and gives the methods adopted for their extirpation. Is it by an error on the part of printer or author that Peronospora and the neighbouring genera are said to produce their sexual organs externally? They are always formed in the tissue of the host plant. Mr. Percival should know that fertilization among the Ascomycetes is no longer a matter of conjecture.

The many apt practical examples that follow each discussion form a special and admirable feature of the book; they enable the student to verify practically the statements in the text, and illuminate the subject in an admirable manner. The illustrations are numerous, and have the great virtue of being all new; but, though printers and publishers have done their work well, justice has hardly been done to Mr. Percival's drawings; some of the reproductions are blurred and weak. A good index is provided, but we should also have liked a bibliography, without which such a work is hardly complete.

A. L. S.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
this year's Journal, and which, with Diotis and Salsola, were found on the island by the Marquis of Blandford in 1798 (see Correspondence of Sir J. E. Smith, ii. 435).

Mr. Linton's book naturally suggests comparison with the Flora of Plymouth, a work devoted to a district of the same extent, but we do not find in it the numerous and interesting notes on the lifehistory of the species, which raised Mr. Briggs's work to a level above that of a mere local flora. The most important addition to our knowledge is the description of a new subspecies of Orchis maculata, which we transcribe for the benefit of those who may not possess Mr. Linton's book:
"O. ericetorum.-More slender than the type; stem usually somewhat purplish above; leaves narrower, more or less recurved, even the lower cauline more or less acuminate, carinate and folded; spike 1 to 2 in., broadly pyramidal, at length oblong; bracts purplish; flowers pale, scentless, with rose-purple markings, ground commonly white or tinged with pink, but sometimes of deeper colour ; outer line of markings nearly or quite complete; nectany slender, slightly enlarged or not at all upwards, throat narrow; lower lip sub-orbicular, rounded in outline, rather spreading; midlobe much smaller than the broad obliquely truncate or crenate lateral lobes, not exceeding them in length and usually shorter or somewhat recurved.
"Compared with this subspecies, or rather species, if a sufficient number of these distinctions are found on further examination to hold good, the type is rather a stouter and commonly bigger plant, with broader, straighter leaves, less carinate and folded, frequently flat, spike $1 \frac{1}{2}-2 \frac{1}{2}$ in., ovate-oblong in flowering, oblong at length, bracts more usually (? always) green; flowers with dark rose-purple markings (the outer line pl.m. disjointed) on a pale rose-purple ground; faintly aromatic (? always); nectary stouter, enlarged upwards, throat gaping obviously; lip deeply 3 cleft, vertically pendent; lobes sub-equal, lateral obliquely oblong crenulate; midlobe deltoid-oblong or deltoid-acuminate, distinctly exceeding and not much if at all narrower than the lateral, usually straight.
"These two plants have a wide distribution in Britain; sub-sp. ericetorum has been noted from Caithness and Sunderland to the S. Coast and Guernsey; also from Co. Wicklow. A supposed hybrid between the two occurred in Glen Lochay, Perthshire, but they seldom are found in the same locality."

Genera Siphonogamarum ad Systema Englerianum conscripta ab autoribus Dr. C. G. de Dalla Torre et Dr. H. Harms. Fasciculus primus. 4to, pp. 80. Lipsiæ sumptibus G. Engelmann. 1900. Price 4 marks.
We should be in a better position to describe the scope of this work had the authors favoured us with a preface. We conclude, however, that the "Systema Englerianum" is that of the great Pflanzenfamilien of Engler and Prantl, and that the limits of genera here adopted are those accepted by the authors of the various monographs of which that work is made up. It would appear also that
the nomenclature adopted is based on the rules formulated by Prof. Engler and some of the Berlin botanists, which were translated and commented on in this Journal for 1897, pp. 305-7, and which include the " fifty years' limit," numerous objections to which have been made, some of them formulated in this Journal for 1898, pp. 90-94.

We do not think this limit is likely to be generally received or deserving of such acceptance, but, with this important reservation, we have nothing but praise for the full bibliography which the authors have given us in this first instalment of their work. It will not, indeed, supersede Pfeiffer's excellent Nomenclator Botanicus, which is on somewhat different lines; but as a compendious history of genera it has no equal, and must find a place in every reference library.

The present work, however, is more than a mere synonymic list of genera. The orders are divided into groups of diverse rank, and although no diagnoses are given, a full bibliography is appended to each ; to each genus, in addition to this, is appended an estimate of the number of species it includes, and a brief summary of its geographical distribution. From this it will be seen that the Genera when completed will be invaluable as a work of reference, and will afford another example of that careful industry which, until the advent of Mr. B. D. Jackson, we were accustomed to think was not met with out of Germany.

The work is clearly printed in double columns, the type being well chosen and well selected. Only one detail seems to us un-desirable-the insertion of a colon after the word "in" in quotations such as the following: "Namnorhops H. Wendl. in : Bot. Zeitg. xxxvii. (1879) 147." The fact that the date is in every case assigned to the publication adds materially to the usefulness of the work.

Lehrbuch der 'Botanik für Hochschulen. Von Drs. E. Strasburger, F. Noll, H. Schence, \& A. F. W. Schimper. Vierte verbesserte Auflage. 8vo, pp. viii, 588; figs. 667 (part coloured). Jena: Fischer. 1900. Price 7 M. 50 Pf. (paper) ; 8 M. 50 Pf. (bound).
The appearance of a fourth edition only about five years after the issue of the original must be a gratifying proof both to authors and publisher of the success of this admirable German text-book. That such success is well merited may be gathered from previous reviews in this Journal (1895, p. 57 ; 1898, p. 325), to which we can add little. The book has grown from 570 pages in the third edition, an increase of eighteen, which is accounted for by the considerable addition to the number of figures- 667 as against 617. Many of the additions consist of coloured figures of poisonous or officinal plants in the section dealing with the classification of seedplants; in fact, this last part of the book is becoming quite a blaze of colour, and gives additional attraction to the study of systematic botany.

We would again suggest the advisability of revising parts of the section dealing with physiology, especially as regards the process of
carbon-assimilation, the chemistry of which is seriously out of date. Also, considering that a bound copy costs less than 8s. 6d., the paper-covered edition might be suppressed. The book is well worth the extra shilling charged for binding.
A. B. R.

Exchange Club Reports.

The Botanical Exchange Club of the British Isles. Report of the Distributor [James Groves, F.L.S.] for 1898. (Issued 18th May, 1900.)

The Sixteenth Annual Report of the Watson Botanical Exchange Club, 1899-1900. E. S. \& C. E. Salmon, Distributors.
These reports of two Societies which occupy almost the same ground contain, as usual, much that is of interest to the British botanist, as well as much that can only be of value to the contributor whose specimens are commented upon. In the report of the older Society the usual divergences of opinion among critical botanists are recorded, and there are pages of notes on Rubus-Rosa is having a quiet time of it just now-Salix, Hieracium, and other critical genera.

We observe that questions of nomenclature are finding their way into the Exchange Club Reports. The Messrs. Groves, we are sorry to see, endorse the principle " once a synonym always a synonym"; and Prof. E. Hackel maintains that the employment of a name for a species invalidates its use for a variety of another species in the same genus : we cannot accept either of these positions. Some of the citations given are scarcely accurate: e.g. Mr. Druce writes "Salvia pratensis, var. a., Linn. Sp. Pl. 25." Linnæus had a var. β of his p "atensis, but no "var. a"; and to credit him with one is to make him say what he did not say, and to introduce a new and inaccurate form of reference. The same writer's citation of "Bromus interruptus Druce in Pharm. Journ. Suppl. Oct. 5 (1895) and Linn. Soc. Journ. (1896) [xxxii] 426-30'" is also open to objection. The supplements to the Pharmaceutical Journal are of so little importance that their contents are not even entered in the indexes to the volumes; and even if a name printed there could be considered as a publication, it could hardly hold in this case, as there is no word of diagnosis or description of the plant. The plant was published as a species, with a brief diagnosis, in this Journal for November, 1895, p. 345-a reference omitted by Mr. Druce both here and in his account of the plant in the Linnean Society's Journal.

We extract the following notes of special interest for the benefit of those of our readers who do not belong to either Society.
"Cerastiuın arcticum Lange, var. Edmondstonii Beeby. Serpentine gravels, Unst, Shetland, 31st August, 1897, and 31st July, 1898.W. H. Beeby. When I first gathered this plant in 1886, I brought home roots, and, being very desirous of growing it, also a bag of its native soil. Under these conditions it maintained the dark purplish copper colour of its foliage fairly well, until the plants were lost in a removal some few years later. In 1897 and 1898 I brought home seeds and roots, and have the plants growing this time not in

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

abondance in many spots, prerring, apparently, the sunniest and most sheltered positions. alchogh at a considerable altitade. The idea that it may have been troduced in the locality is, to our minds, quite untenable. Anoxamination of the district readily leads one to understand how i is that this species has remained so long unobserved. The coppics being cut only at intervals of from fifteen to twenty years, it woul be a matter of rare chance if they were explored by botanists ita time when an unobtrusive plant could attract notice. Plongho land exteuds to the wood borders, where there are no paths; aty oddly enongh. if the Stachys grows near a road or track it is neam always on the far side of a hedge.J. W. W.'

The Report of the Watsonllub contains less that is of general interest, although the notes oplants sent in are no doubt aseful to the menbers. Mr. Alfred Figr makes ue following remarks on a form of Potamogetion
" P. crispus Linn. var. sertus Huds. Fïde Rev. W. R. Linton. Canal, Renishaw, Derbsshire,.c. 97. July, 1899.-C. Waterfanl. These specimens differ froin th state of P. erispios generally accepted by British botanists as Hudon's P. serratus by the indistinct, practically obsolete serration f the margins of the leares, in the axillary branchlets baving thlower leares directly sessile on the stem, not mounted on sheathake stipules, and in the presence of minute glands on the stem athe base of many of the leaves. The habit of the plant is rather tht of P. Friezii, or of young states of I^{\prime}. obrusifolius, than of I^{\prime}. crous : the flower-spike, 60 , indicates some kinship to I '. F'irsin. 'le Rer. W. R. Linton. who discovered the plant, tells me that it gre with P. crispus and I. Priesii, and be now thinks that it is a Horid between the two. This is the view I took when I first saw te specimens, and I am disposed to believe that Friesii is the secol parent. When growing Mr. Linton supposed it to be P. obtusifilin, misled, no doubt, by the foliage of a darker green than that of I Frisxii. In accordance with the plan I have followed in the case ohybrid Potamogetons, I propose for this plant the name of its iscorerer. Who has permitted me to describe it, aud who has supied details of the habit of the living plant which leave little doub of the correctuess of the conclusion we independently arrived atas to its hybrid origin. Those who object to accept the name of Potamogeton Lintoni m $\quad 1$ their specimens P. Friosii $\times P$. crpus ; in which case, ho be hoped they will be consistnt enough to discard P. fluitans, P. nitens, aud P'lecipiens. P. Lintoni from the closely allied hybd P. Bennettii ($=$ obtusifolius).'

> While admiring the enere? bur whic
the conduct of these two Clos interests of those who carry doubt there are reasons fo how much there is to do, an it is impossible not to feel th

Bot. Centralblatt (Nos. 30-34).-O. Lörinson, ‘ Ueber Keimungsund Wachsthumsversuchte an Eisen' (concl.). - (No. 30). P. Kosaroff, ' Die Wirkung der Kohlesiture auf den Wassertransport in den Pflanzen.' - (No. 32). EKister, 'Bemerkungen über die Anatomie der Eichen.' - (Nos. 3-35). F. Brand, 'Der Formenkreis von Glacapsa alpina.'-(No35). A. C. Hof, 'Über die Topik der Alkalivertheilung in ptanzlicen Geweben.' - R. v. FischerBenzon, 'Zur Geschichte des Küris' (1 pl.).

Bot. Gazette (19 July).—D. S. Jhnson, ‘Endosperm and embryo of Peperonia' (1 pl.). - J. Cardote I. Theriot, 'Mosses of North America' (4 pl.). - K. M. Wiegal, 'Development of the embryosac' (2 pl.). - A. B. Cordley, 'ople-tree anthracnose.' - B. L. Robinson, 'C'(ryophyllacea \& C'rucirce of Sierra Madre.'-(15 Aug.). H. G. Timberlake, 'Developmes and function of cell-plate in higher plants' (2 pl).-G. T. Moos, ' ('hlorocystis Colnii' (1 pl.).L. Murbach, 'Seed-burying awns f Stipa arenacea.' - E. Nelson, 'New Wyoming plants.' - J. MHolzi nger, 'New N. American Mosses ' (1 pl.).

Bot. Zeitung (16 Aug.).-H. Fting, ' Bau und Entwickelungsgeschichte der Makrosporen von soetes und Selaginella' (2 pl.). F. Schïtt, 'Die Erklärung des entrifugalen Dickenwachthums der Membran.'

Bull. Soc. Bot. France (xlvii. 631 July).-F. Camus, 'Lejeunea Rosettiuna en France, et remarqıs sur les espèces françaises du genre.'-H. de Boissieu, Staphylear'rancheti, sp.n.

Bull. Soc. Bot. Italiana ('Ap. May’: recd. 11 Aug.). - G. Arcangeli,' Ranunculus cassubi rus3 R. polyanthemun.'-C. Casali, 'Sulla classificazione dei generi Blilia e Retama.'

Bull. Torrey Bot. Club (25 Jue). - T. F. Allen, 'Three new Charas from California' (6 pl.).-F. H. Blodgett, 'Vegetative Reproduction and multiplication 1 Erythronium' (2 pl.). - R. S. Williams, 'Two new Grimmias fra Montana' (2 pl.). - H. Lindberg, Pohlia porosa, sp.n. (1 pl.).-R. M. Harper, ‘Flora of Middle Georgia' (1 pl.). -L. F. Hendersn, 'New plants from the Northwest.'

Nuov. Giorn. Bot. Ital. (July recd. 11 Aug.). - A. Preda, Bornetia secundifora (1 pl.). er la Flora Irpina.' - G. Cru ano.' - A. Fiori, 'Flora C scardo \& F. Cavara, ' Fu
'. Cavara, ‘Funghi de Tr
lesterr. Bot. Zeitschrift

[^23] asah \& T. Ferraris, ' Materiali
Tia Flora dell' Abruzzo Terazata e Calabria.' - P. A. .ombrosa.' - G. Bresadola ol.).
.). - L. Celakovský, ‘Die
ose which appear on their covers ed that this is the actual date of
abundance in many spots, preferring, apparently, the sunniest and most sheltered positions, although at a considerable altitude. The idea that it may have been introduced in the locality is, to our minds, quite untenable. An examination of the district readily leads one to understand how it is that this species has remained so long unobserved. The coppices being cut only at intervals of from fifteen to twenty years, it would be a matter of rare chance if they were explored by botanists at a time when an unobtrusive plant could attract notice. Ploughed land extends to the wood borders, where there are no paths; and, oddly enough, if the Stachys grows near a road or track it is nearly always on the far side of a hedge.J. W. W."

The Report of the Watson Club contains less that is of general interest, although the notes on plants sent in are no doubt useful to the members. Mr. Alfred Fryer makes the following remarks on a form of Potamogeton:-
" P. crispus Linn. var. serratus Huds. Fide Rev. W. R. Linton. Canal, Renishaw, Derbyshire, v.c. 97. July, 1899.-C. Waterfall. These specimens differ from the state of P. crispus generally accepted by British botanists as Hudson's P. serratus by the indistinct, practically obsolete serration of the margins of the leaves, in the axillary branchlets having the lower leaves directly sessile on the stem, not mounted on sheath-like stipules, and in the presence of minute glands on the stem at the base of many of the leaves. The habit of the plant is rather that of P. Friesii, or of young states of P. obtusifolius, than of P.crispus; the flower-spike, too, indicates some kinship to P. Fiiesii. The Rev. W. R. Linton, who discovered the plant, tells me that it grew with P. crispus and P. Friesii, and he now thinks that it is a hybrid between the two. This is the view I took when I first saw the specimens, and I am disposed to believe that Friesii is the second parent. When growing Mr. Linton supposed it to be P. obtusifolius, misled, no doubt, by the foliage of a darker green than that of P. Friesii. In accordance with the plan I have followed in the case of hybrid Potamogetons, I propose for this plant the name of its discoverer, who has permitted me to describe it, and who has supplied details of the habit of the living plant which leave little doubt of the correctness of the conclusion we independently arrived at as to its hybrid origin. Those who object to accept the name of \times Potamoyeton Lintoni may label their specimens P. Friesii $\times P$.crispus; in which case, however, it is to be hoped they will be consistent enough to discard such names as P. fuıtans, P. nitens, and P. decipiens. P. Lintoni is very distinct from the closely allied hybrid P. Bennettii $(=P$. crispus $\times P$. obtusifolius)."

While admiring the energy and labour which is bestowed upon the conduct of these two Clubs, we cannot help regretting, in the interests of those who carry them on, that they are not united. No doubt there are reasons for keeping them distinct; but seeing how much there is to do, and how little time there is to do it in, it is impossible not to feel that labour might be economized by such a combination.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Vermehrung der Sporangien von Ginkgo biloba.' - R. Schlechter, 'Acriopsis und ihre Stellung zu der Podochilinea.'-(July). E. Ott, ' Zur Kenntniss der Härte vegetabilischer Zellmembranen.' - A. Degen, 'Uber einige orientalische Pflanzenarten.' - J. Velenovský, 'Misbildung in dem Blïten des Ranunculus acris.'-E. Palla, 'Die Unterscheidungsmerkmale zwichen Anemone trifolia \& A. nemorosa.' - J. Freyn, ' Nachträge zur Flora von Istrien.' - F. Vierhapper, Arnica Doronicum Jacq. (concl.). - (Aug.). V. Schiffner, 'Uber Jungermania collaris.' - R. v. Wettstein, 'Die nordamerikanischen Arten der Gattung Gentiana sect. Endotricha.'-F. Búbak, 'Zweiter Beitrag zur Pilzflora von Tirol.'

Rhodora (Aug.).-F. S. Collins, 'New England species of Dictyosiphon.' - M. L. Fernald, 'Undescribed varieties and hybrids of Carex.'

BOOK-NOTES, NEWS, \&c.

With praiseworthy promptitude Mr. F. M. Bailey has issued a second instalment of his useful manual on The Queensland Flora, the first part of which was noticed on pp. 143-145 of this Journal. The main lines of the work were sufficiently indicated on that occasion, and the present part is of course on the same lines. One could wish that the figures, which are usually of little-known species, were more satisfactory; they sometimes give the impression of having been drawn from insufficient material. The translations of the Latin trivials are not always accurate; e.g. the equivalent of flexilis is not "flexuose" (p.359), nor does grandis mean " a grand species" (p. 660).

We are glad to learn that Messis. F. H. Knowlton and F. V. Coville have for some years been engaged in collecting material for a Biographical Index of American Botanists. It is to be feared, however, that a considerable period must elapse before it will be ready for publication.

We have received the first part (issued February 25th) of Icones Flora Japonica, compiled by the College of Science, Imperial University, 'Tokyo. The plates, which are in large folio and will form an extremely handsome volume, are beautifully executed by T. Makino, and contain a profusion of detail; those in this instalment represent Prunus Pseudocerasus a spontanea (two plates), and Isopyn um nipponicum. The descriptions are in Japanese. The work may be obtained of Maruya \& Co., Tokyo.

Part iv. of the Welwitsch Catalogue has just appeared; it contains the remaining portion of the Dicotyledons and concludes the volume, which has been entirely elaborated by Mr. Hiern.

We are glad to announce the publication of the Rev. W. M. Rogers's Handbook of British Rubi, of which a notice by the Rev. E. F. Linton will appear in our next issue.

6

4

2

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

in Aug. 1891. I saw no more specimens till last October, when I received from Mrs. Robertson some specimens of R. nitida from the same locality, and on examining them I found many specimens of this or a closely-allied species of Nostoc. Mrs. Robertson's plants are larger than those I found in 1891, frequently reaching $1-2 \mathrm{~mm}$. in diameter, are more regularly ovate in form, and are often found growing on the surface of the Rivularia, and not imbedded in its thallus.

Chlorophycee.

8. Prasinocladus lubricus Kuckuck, Bemerk. zur mar. algenveg. von Helgoland, i. p. 261, fig. 28, Feb. 1894. Euglenopsis subsalsa Davis in Ann. Bot. vol. viii. no. 32, p. 388, Dec. 1894. In the autumn of 1897 Mr . Arthur Church sent me specimens of this curious organism from the Marine Biological Association's Laboratory at Plymouth, where it had made its appearance in the glass culture-jars in which Cutleria multifida and other algæ from the Sound were growing. 'These specimens agreed well with the figures and description of Euglenopsis subsalsa given by Davis in the Annals of Botany, while the older films and those presumably grown under unfavourable conditions exactly resembled Kuckuck's figures of Prasinocladus lubricus. There can be little or no doubt that the two descriptions refer to one and the same organism, Kuckuck's Prasinocladus having the priority of publication by a few months. I do not feel equally confident, however, that the organism in question is really an alga, and not rather one of the flagellate protozoa.
9. Cladophora (Egagropila) corynarthra Kützing, Phyc. germ. p. 210 ; Id., Tab. Phyc. vol. iv. t. 72, fig. 2.

Var. spinescens, n. var. Filaments densely packed together, forming a dark green, spongy, thorny layer 1-3 in. in width; branches numerous, stiff, irregularly placed-opposite, dichotomous or three or more in a whorl-branchlets, secund, bluntly pointed; cells $40-120 \mu$ in diameter, two to five times longer than broad.

Lying loosely fixed amongst the roots of Zostera, on a rather muddy bottom in 3-4 fathom water. Roundstone Bay, Connemara, March, 1883, Dr. Painter; April, 1899, H. H. Hanna, Weymouth, April, 1890 ; E. M. Holmes.

This variety differs from the type in the shorter cells, bluntly pointed branchlets, more irregular branching, and somewhat more robust filaments.
10. C. corymbifera Kützing, Spec. Alg. p. 397 ; Id., Tab. Phyc. iv. tab. 8. In pools near low-water mark, Berwick, Oct. 1882 ; E. A. B. Perhaps only a form of C. hamosa Kütz., as Hauck believed it to be, but in any case a very pretty plant.
11. C. Neesiorum Kütz. Spec. Alg. p. 396 ; Id., Tab. Phyc. iv. tab. 5. Var. humilis $=$ C. humilis Kützing, Spec. Alg. p. 396 ; Id., Tab. Phyc. iv. tab. 4. In shallow, sandy-bottomed, sunny pools between tide-marks, Berwick, Aug. 1884, \&c. Swanage, Aug. 1894 ; E. A. B. This species is closely related to C. rupestris, for dwarf specimens of which it might be mistaken, if not closely
examined. The tufts are usually dark green below, and yellowish or brown above. It appears to be a not uncommon species on our shores, and I have seen numerous British specimens, gathered by Mr. E. M. Holmes, but I have no note as to the exact locality or date of gathering.
12. C. (Spongomorpha) Sonderi Kütz. Phyc. germ. p. 208 ; Id., Tab. Phyc. iv. tab. 79. Orkney; J. H. Pollexfen. In the herbarium of the late Dr. Pollexfen there are a couple of specimens of this species marked C. arcta. The filaments, which are very much more robust than in any other British species belonging to the subgenus Spongomorpha, are free, except at the base, where they are matted together by numerous rhizoids. The tufts have much the appearance of the var. Vaucheriaformis of C. centralis. The cells often reach 200μ and more in diameter. The specimens were probably gathered about 1840, but are not dated; the locality being given as "Orkney," without further indication.
13. C. pallida $=$ Acrosiphonia pallida Kjellman, Chlorophycéslägtet Acrosiphonia, p. 88, tab. vii. figs. 11-21. On the leaves of Zostera, Bognor, May, 1885 ; E. A. B. Cumbrae, May, 1899 ; Mrs. Robertson. The widely spreading, compact, almost membranous, basal layer from which the erect filaments arise render the recognition of this species easy.
14. C. stolonifera $=$ Acrosiphonia stolonifera Kjellman, l.c. p. 85 , tab. vi. Berwick, Oct. 1882. Cumbrae, Aug. 1891; E. A. B.

Pheophycez.

15. Myrionema polycladum Sauvageau in Ann. des Sciences naturelles, Bot. 8 e ser. tome v. 1898, p. 73, fig. 13. On the blade of Saccorhiza bulhosa, Swanage, Sept. 1898; E. A. B.
16. M. Corunnte Sauvageau, l.c. p. 77, fig. 14. On the blade of Laminaria saccharina, Cumbrae, Aug. 1891, and Swanage, Sept. 1898; E. A. B.
17. M. papillosum Sauvageau, l.c. p. 82, figs. 15-17. On the blade of L. saccharina and L. diyitata, Weymouth, Sept. 1892, and Swanage, Sept. 1898, E. A. B.
18. Myrionema ? saxicola Kuckuck, Bemerk. mar. algenvegetat von Helgoland, ii. p. 381, fig. 8. On rocks near high-water mark, and on limpet shells, in company with Isactis plana, Swanage, Sept. 1898; E. A. B.
19. Hecatonema maculans Sauv. l.c. p. 88, figs. 18-22. On Corallina officinalis. Peveril Point, Swanage, Sept. 1888. On Rhodymenia palmata and L. saccharina, Swanage, Sept. 1897; E. A. B.
20. Chilionema Nathalie Sauv. 1.c. p. 103, figs. 23-24. On Rhodymenia palmata, Swanage, Sept. 1898, E. A: B. This species is frequently found growing in company with Chilionema ocellatum Sauv. (=Ascocyclus ocellatus Reinke), to which it appears to be united by many intermediate forms. Many, if not all, of the specimens referred by Mrs. Griffiths and Harvey to Myrionema

Lechlancherii, which I have seen, really belong to this species; and it appears to me that this, and not the form of M. strangulans ($=M$. vulgare Thur.) with plurilocular sporangia, as supposed by Prof. Sauvageau, is the plant which Harvey called M. Lechlancherii. It is quite probable, however, that Harvey referred plants belonging to more than one species to his M. Lechlancherii. Chauvin's Rivularia Lechlancherii is, no doubt, Myrionema strangulans Greville $=M$. vulyare Thuret.
21. C. reptans Sauv. l.c. p. 108, fig. 25. Ectocarpus reptans Crouan, Florule du Finistère, p. 161, pl. 24, gen. 158, figs. 3 \& 4. On Fucus serratus, Swanage, Sept. 1898; E.A.B. The Ascocyclus reptans of Mr. Holmes's and my Revised List is not referable to the present species, but to Hecatonema reptans Sauv.
22. Ascocyclus hispanicus Sauv. l.c. p. 115, figs. 26-37. On Saccorhiza bulbosa, Swanage, Sept. 1898, E. A. B.
23. A. spherophorus Sauv. l.c. p. 120, figs. 28-29. On Rhodymenia palmata, Weymouth, Sept. 1892, and Swanage, Sept. 1898; E.A.B. A common and abundant species at Swanage, often covering a considerable portion of the upper part of a Rhodymenia frond, at first with numerous isolated individuals, but finally with an almost continuous brown layer made up of innumerable Ascocyclus plants growing side by side, and more or less overlapping each other.
24. Ectocarpus (?) helophorus Rosenvinge, Deuxième Mém. sur les Alg. mar. du Groenland, p. 82, figs. 17-18. Endophytic in the frond of various species of Cruoria and Petrocelis, Berwick, Jan. 1887 ; E. A. B. Cumbrae, Nov. 1892; G. Brebner.
25. Endodictyon infestans Gran, Kristianiafjordens Algeflora, i. p. 47, tab. i. figs. 12-17. Parasitic in species of Alcyonidium, Southsea, Nov. 1897; E. A. B. The resemblance between this plant and Kuckuck's Phoostroma Bertholdi, as Herr Gran has himself pointed out, is very great; indeed, the parasitic habit and the fact that the branching spreads in all directions through the substance of the host, while Phaostroma is epiphytic and its growth dorsiventral, are almost the only marks by which the two plants can be separated.
26. Punctaria crispata $=$ Phycolapathum crispatum Kütz. Phyc. germ. p. 299 (1843); Id., Tab. Phyc. vi. t. 49. Punctaria laminarioides Crouan, Fl. Finistère, p. 167 (1867). Fronds deep brown, $3-20$ in. long and about as broad, shortly stipitate ; stipe cylindrical, slender, inconspicuous, 2 or 3 lines long, suddenly expanding into an oblong, orbicular or irregularly shaped lacerate-erose frond, with strongly crisped margins. Lamina 150-200 μ thick, formed of 6-8 layers of cells. Internal cells large and colourless; superficial cells small and coloured. Substance firm and coriaceous. Unilocular sporangia scattered, immersed, formed from the superficial cells. Clusters of hairs absent (or not observed?).

On Zostera, Scilly Islands, June, 1899 ; E. George.
The above description applies to some very curious and interesting specimens sent to me last year by Mr. Edward George from

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
perceptible pink stains on them; these he very kindly sent to me for identification. On examining the stains with the microscope I found that they were caused by the innumerable pink dises of an Erythropeltis. In studying this I made many sections of the Flustra, and it was then that I found in the interior of the Bryozoan the plant above described. The patches are of a clear violet or rosy pink colour, but can only be seen by the naked eye when the semitransparent F/ust) a is held against the light. The filaments radiate from the openings through which the tentacles of the living Bryozoan are protruded. In the central portion of the thallus they are always fused into a compact pseudoparenchymatous layer one or more cells in thickness, and it is only at the edges of the expansion that they are free. In many cases, however, the thallus is entirely composed of a membranous layer, the filamentous nature of the various branches by the union of which it is formed being very difficult to trace. The procumbent habit, parasitic mode of life, and the union of the filaments into a membranous layer distinguish this genus from Goniotrichum, the irregular form of the layer from Firythropeltis. The genus is named after Mr. J. T. Neeve, who, it may be remembered, is also the original discoverer of Gonimophyllum Buffhami, described in this Journal for 1892 (p. 65, t. 319).
29. Erythrotrichia ciliaris Batt. (non Thuret nec Berthold nec aliorum) = Bangia ciliaris Carm. in Hook. Br. Fl. ii. p. 316. Fronds dark purple, $500-800 \mu$ long, $10-30 \mu$ broad (in specimens from Arbroath $1-2 \mathrm{~mm}$. long and $10-200 \mu$ broad), several arising from a monostromatic cellular dise ; dises roundish, $50-200 \mu$ in diameter; cells roundısh-polygonal, $15-24 \mu$ in diameter. Spores about 18μ in diameter. Appin, about 1820; Capt. Carmichael. Arbroath, Sept. 1890 ; E. M. Holmes. Scilly Islands, June, 1899 ; E. George.

Hitherto botanists have not been agreed as to the identity of Carmichael's Bangia ciliaris. Kützing thought it was a variety of Erythrotrichia carnea ($=$ Goniotrichum ceramicola Kütz.). Thuret, on the other hand, recognized in Porphyra Boryana Mont. the true B. ciliaris, while still more recently Berthold, not unnaturally, mistook a plant I propose to call E. Bertholdii for Carmichael's species. Cronan, Hauck, and most other recent writers unhesitatingly follow Thuret in uniting E. Boryana with B. ciliaris, which they regard as a species of Porphyra. I am uncertain what the B. ciliaris of the Nereis Boreali-Americana really is, but the specimens from Bridgeport, Connecticut, distributed by Collins in the Phykotheka universalis no. 655, appear to me to be referable rather to E. investiens than to B. ciliaris, Nothing but an inspection of Carmichael's original specimens preserved in the Hookerian Herbarium at Kew could clear up the matter, and I am much indebted to Sir William Thiselton Dyer for permission to examine them. To the naked eye the Bangia forms a hardly perceptible dark border to the Zostera leaves on which it grows; but on the fragment of the host plant examined I found it fairly abundant, although mixed with species of Ectocarpus and Chantransia. Harvey's
figure (Phyc. Brit. pl. 322), though the colouring should have been purple, is, so far as it goes, a correct representation of the erect fronds, the grouping of them even suggesting that they arise from a common basal dise; but none is figured, nor is the nature of the attachment mentioned in the description. I found the short purple filaments described by Carmichael and Hooker always sprung from a well-developed monostromatic cellular basal disc, but I also found many apparently quite mature dises which bore no erect filaments, and which in every way resembled Berthold's figure of the discs of his Erythrotrichia discigera. The only other British specimens that I have seen that I can certainly refer to the same species are some gathered by Mr. E. M. Holmes on Corallina officinalis at Arbroath in September, 1890, and some others on Zostera sent to me last year from the Scilly Islands by Mr. E. George.

The specimens from Appin and Scilly are similar in all respects; those from Arbroath are longer and broader than the others. It is evident that Carmichael's plant cannot be referred either to Erythrotrichia Boryana Berth. or E. ciliaris Berth., but is, on the other hand, very closely related to E. discigera Berth. In Die Natïrlichen Pflanzenfamilien of Engler and Prantl the late Prof. F. Schmitz has made E. discigera the type of a new genus-Erythro-peltis-characterized by the horizontally expanded frond and marginal growth. In the diagnosis of the genus he makes no mention of erect filaments, and states that cell-division is confined to the marginal cells, and does not take place in any other cells of the thallus. Berthold, on the other hand, describes his E. discigera as very like E. ciliaris, but the filaments slightly more slender, not half as long, and arising in groups from a monostromatic dise, which is sometimes alone present. If Schmitz did not intend to exclude from his genus Erythropeltis plants which bore erect filaments, although only occasionally, it is difficult to see why he has excluded E. obscura, in which the dise is often all that is present. ("Aufrechte Thallom, höchstens 3 mm . lang, gewönlich kürzer, oder auch fehlend (in Sommer vielfach)," Berthold, Bang. p. 26.). I am inclined to think that Schmitz overlooked the fact that erect filaments are present in E. discigera Berth., and was consequently mistaken in supposing the specimens on which he founded the genus Erythropeltis belonged to the same species as Berthold's plant, though resembling it in many particulars. There can, I think, be no doubt that either E. discigera Berth. or E. obscura Berth. (which is said to differ from it by the darker colour, relatively larger cells, and occasional branching) rather than E. ciliaris Berth. is the plant described by Carmichael fifty years before, under the name Bangia ciliaris.
30. E. Bertholdii Batt. = E. ciliaris Berth. Bangiaceæ, p. 25 (non Bangia ciliaris Carm.). On Zostera, Scilly Isles, June, 1899 ; E. George. Amongst the plants sent to me last summer from the Scilly Isles by Mr. Edw. George were some leaves of Zostera marina covered with an Erythrotrichia which in every way agrees with Berthold's description of E. ciliaris. The cylindrical filaments are very slender below, gradually tapering from $10-12 \mu$ at the base to a width of $60-70 \mu$ in the widest part. A transverse section of the
upper part of the frond shows $4-8$ cells radially arranged. Each individual filament is attached singly to the Zostera leaf by its slightly expanded basal cell. In many respects the plant resembles a Bangia, but the spores are formed exactly as in the other species of Erythrotrichia. As has been shown above, Berthold is wrong in referring the plant to Bangia ciliaris Carm. (for which the name Erythrotrichia ciliaris must be retained). I have been compelled in consequence to give it a new name, and have called it after the botanist who first clearly described it.
31. E. Boryana Berth. Bang. p. 25. Var. crispa, nov. var. Fronds pale purple, $10-20 \mathrm{~mm}$. long, very slender below and formed of a single cell-row $10-15 \mu$ broad, which by longitudinal and transverse division of the cells gradually expands into a very thin, flat, monostromatic frond 200-800 μ broad ; margins crenate, more or less crisped and curled. On Zostera, in company with E. Bertholdii, \&c., St. Mary's, Scilly, June, 1899 ; E. George.

I found this very pretty variety of E. Boryana growing in company with the preceding, on Zostera leaves sent from the Scilly Isles by Mr. George. The fronds are very much longer and broader than those of any other British specimens of the species that I have seen; and the margins, instead of being quite entire (" margini integerrima"), are notched and crisped, sometimes so much so that the frond appears spirally twisted.
32. Erythropeltis discigera Schmitz in Engler \& Prantl, Pflanzenfamilien, Theil 1, Abtheilung 2, p. 313. Var. Flustre, nov. var. Fronds rose-coloured, horizontally expanded, orbicular, becoming confluent and irregular in outline; discs $50-150 \mu$ and more in diameter ; cells rounded-polygonal, oblong or irregular in outline, $6-9 \mu$ long by $3-6 \mu$ broad; spores globose, about 9μ in diameter. On Flustra foliacea, Deal, Nov. 1899 ; J. T. Neeve.

In a former part of this paper I have mentioned that Mr. J. T. Neeve, of Deal, sent me some Flustra marked with hardly visible pink stains caused by the fronds of an Erythropeltis. Since last November he has liept me constantly supplied with fresh material. I have examined probably many hundred discs, but on none of them have I found any trace of erect fronds. The spores are formed in an exactly similar manner to those of Erythrotrichia. On several occasions I found that they had germinated, and begun to divide on the surface of the frond, just above the mother-cell from which they had been discharged, giving to it the appearance of containing several spores. I have little or no doubt that this plant is really a form of Schmitz's Erythropeltis discigera; but I cannot think it the same as Erythrotrichia discigera Berthold, although the fronds in many respects resemble the discs of that species when no erect fronds are produced.

II.-Floridee.

33. Chantransia endozoica Darbish. in Bericht. der Deutsch. Bot. Gesellsch. 1899, Band xvii. p. 13, taf. 1. On Alcyonidium gelatinosum L., Valencia, Co. Kerry, Ireland; Prof. F. E. Weiss. On A. hirsutum, Alnmouth; Dr. G.S. Brady. This interesting

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

to the Zostera leaves, and in most cases accompanied by Punctaria latifolia and species of Erythrotrichia and Ectocarpus. The frondsat first appear as minute convex protuberances on the margin, or more rarely on the surface, of the Zostera leaf; but they soon swell into globose or pear-shaped fronds, occasionally solitary, but much more commonly clustered in dense masses for a distance of several inches along the edge of the upper portion of the leaf. The sori are borne on fronds of all ages, and greatly resemble those of Rhododermis. The systematic position of the genus is doubtful.

I have dedicated the species to my friend Mr. George, an indefatigable collector, to whom, as this paper proves, I am deeply indebted not only for beautiful specimens of the present plant, but for other rare seaweeds from the Scilly Islands and elsewhere. Mr. George's fine collection of marine algæ, with its sets of magnificent specimens, the reward of assiduous collecting continued for many successive years, is but little known to botanists; but it is in vain that I have repeatedly urged my friend to publish his notes.

Erythrodermis, gen. nov. Fronds membranaceous, horizontally expanded, orbicular or indefinite in outline, adhering closely to the substratum, monostromatic or composed of very few layers of polygonal cells arranged in dichotomous rows, flabellately radiating from several points. Chromatophores small, disc-shaped, several in each cell; tetraspores cruciate, arranged in moniliform, simple or forked filaments, which are packed together in external convex nemathecia. Antheridia and cystocarps unknown.
37. E. Alleni, sp. unica. Characters those of the genus. Fronds 6-7 mm. in diameter, and about 15μ in thickness; cells $6-12 \mu$ long, $6-9 \mu$ broad; nemathecia slightly elevated, about 1 mm . in diameter; nemathecial filaments simple or branched, each formed of 4-6 tetraspores, $9-12 \mu$ in diameter. Tab. nost. figs. 3-7.

On pieces of broken earthenware dredged from 4-6 fathom water, Queen's Ground, Plymouth, March, 1900.

I found this interesting and beautiful little plant on some bits of broken earthenware sent to me, amongst some shells, stones, \&c., with algæ attached to them, from the Plymouth Laboratory. The fronds resemble those of Rhododermis eleyans in size, colour, and structure, but the tetraspores are borne in true nemathecia, not unlike those of Phyllophora membranifolia. I do not know of any other incrusting alga with similar nemathecia. Until the cystocarps are discovered, the systematic position of the genus must remain doubtful, like that of Rhododermis. I have dedicated the species to Mr. E. J. Allen, the able Director of the Plymouth Laboratory.
38. Dermatolithon hapaldioides Foslie $=$ Melobesta hapalidioides Crn. Fl. Finist. p. 150. Berwick-on-Tweed, Jan. 1887; E. A. B. West coast of Ireland ; Foslie.
39. Melobesia zonalis Foslie $=$ Hapalidium zonale Crn. Fl. Finist. p. 149. Plymouth, April, 1897 ; E. A. B.
40. Lithophyllum Crouani Foslie, "Some new or critical Lithothamnia," p. 17. Berwick, Feb. 1889; E. A. B.

I take this opportunity of illustrating, together with the new genera described in this paper, some algæ recently described by me in this Journal, but of which no figures were given at the time of publication.

Explanation of Plate 414.

Figs. 1-2. Porphyrodiscus simulans Batt.:-1. Transverse section of frond through a sorus $\times 50$. 2. Portion of same, $\times 500$.

Figs. 3-7. Erythrodermis Alleni:-3. Transverse section of frond with nemathecia, $\times 200$. 4-5. Simple and branched nemathecial filaments, $\times 500$. 6. Transverse section through edge of sorus, $\times 500$. 7. Surface cells, $\times 300$.

Figs. 8-13. Rhodophysema Georgii:-8. Plant, nat. size, on Zostera leaf. 9. Cluster of fronds, $\times 10$. 10. Section of frond, $\times 50$. 11. Ditto of young frond, $\times 50$. 12. Tetraspores and paraphyses, $\times 500$. 13. Surface cells, $\times 200$.

Fig. 14. Trailliella intricata Batt.:-14. Branch with tetraspores, $\times 100$.
Figs. 15 \& 16. Helminthocladia Hudsoni J. Ag. :-15. Tetrasporic plant, nat. size. 16. Peripheral filaments with tetraspores, $\times 600$.

Fig. 17. Rhodochorton Brebneri Batt. :-17. Tetrasporic branch, $\times 300$.
Figs. 18-22. Neevea repens :-18. Plant in situ, \times 10. 19. Portion of same, $\times 300$. 20. Part of frond after the escape of the spores, $\times 300$. 21. Germinating spores, $\times 300$. 22. Young frond, $\times 300$.

RANUNCULUS A.CER L.

By Frederick Townsend, M.A., F.L.S.
In the Journal of Botany for 1889, p. 140, I published a short paper giving the late Prof. Kerner's views of the specific characters and forms of Ranunculus Steveni and R. acer L.* He recognized these as two species, oue with and one without a creeping root, and described three forms of the latter, one of which-viz. R. Friesianus Jord.-he considered identical with R. Steveni Andrz., whereas other botanists believe them to be distinct and to represent two subspecies.

Dr. Boswell Syme, in the third edition of English Botany, seems to have recognized three forms or subspecies, though he corrects his naming in his Report of the Lond. Bot. Exch. Club, reprinted in Journ. Bot. 1869, p. 137. The third subspecies alluded to is R. Friesianus Jord. Engl. Bot. ed. iii. vol. i. p. 39, the first two being R. Boraanus Jord. and R. Steveni Andrz. Messrs. Rouy and Foucaud, in their Flore de France now in course of publication, also recognise the same three subspecies, and their arrangement of these and of several forms seems to be worthy of notice by our English botanists. The three subspecies are R. Boraanus Jord., R. Steveni Andrz., and R. F'riesianus Jord.

Under Subspecies I., R. Borcanus, Messrs. Rouy and Foucaud describe four forms, viz.:-(1) R. Borcanus Jord. (pro specie), with one var., β tomophyllus Jord. (pro specie) ; (2) R. rectus Bor. (pro specie), with one subvar., pumilus ; (3) R. stipatus Jord. (pro specie); and (4) R. pascuicolus Jord. (pro specie).

[^24]Under Subspecies II., R. Steveni, only one form is recognized and described.

Under Subspecies III., P. Friesianus, three forms are described: (1) R. vulgatus Jord. (pro specie) ; (2) R. Friesianus Jord. (pro specie) ; (3) R. nemoriva!nls Jord. (pro specie).

I have prepared the following dichotomous table of subspecies and forms, followed by descriptions in full which do not pretend to be a literal translation of the text of Messrs. Rouy and Foucaud. I have, in places, taken considerable liberty with the latter, so the authors must not be held responsible for any departure from the original. I may here add that I have myself gathered in situ all the subspecies and forms, and that I am indebted to Mons. Rouy for his examination of my collection.

Dichotomous Table of Subspecies and Forms.

Lobes of the leaves overlapping or their borders touching, or cut into narrow sublinear segments
1.

Lobes of the leaves not overlapping, nor their borders touching, nor cut into narrow sublinear segments
2.

1. Lobes overlapping, longer than broad, finely divided into narrow sublinear segments, rootstock short, thick, rhizome none or, if any, coarse and thick

Boreanus.
Var. β tomophyllus Jord. (pro specie). Plant densely covered with soft hairs, rootstock less short.
Lobes touching or overlapping, nearly or quite as broad as long, not cut into narrow linear segments, root creeping
2. Lobes much longer than broad, rootstock short, thick, oblique
3.

Lobes nearly as broad as long, rootstock creeping, more or less horizontal

Steveni.
3. Plant generally distributed in pastures, \&c. Lobes broader, less cut and more oblong-cuneiform than R. Borcanus .
rectus.
One subvar., pumilus Rouy \& Fouc. Plant dwarf, few-flowered (R. parvulus Clairv., non L.).

Plant alpine, smaller than the last, leaves less divided, divisions more unequal, those of the lower stem-leaves often stalked
stipatus.
Plant alpine, very similar to the last, but the divisions of the leaves broader, carpels smaller, less numerous, and with shorter beak
pascuicolus.
4. Lobes of leaves very broad and overlapping so as to leave little or no sinus at the base of the lobes
Divisions of lobes less broad, lobes touching or overlapping, but with evident sinus
nemorivagus.

$$
5
$$

5. Lobes touching or overlapping, beak of carpels strongly hooked, hook persistent
vulgatus.
Lobes of leaves overlapping, beak of carpels less hooked, hook evanescent

Friesianus.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Form III.-R. stipatus Jord. (pro specie) Diagn. p. 72 ; R. cam. marifolius Arv.-Touv. Essai Pl. Dauph. p. 21.-Exsicc.: Soc. Dauph. no. 2736.- Plant alpine, shorter than the preceding; divisions of the leaves more unequal, less numerous, and the lower stem-leaves often petioled; carpels clearly but shortly beaked, peduncles stout. I have gathered this in Switzerland and Tyrol.

Form IV.-R. pascuicolus Jord. (pro specie) Diagn. p. 73; R. rivularis Arv.-Touv. Notes, 1883, p. 24, non Banks et Sol.Plant alpine, nearly related to the last, but differs in the divisions of the leaves being a little wider and suboblong, with smaller flowers and smaller less numerous carpels, with the beak more hooked. I have gathered this in Switzerland in Cantons Berne and Valais.

Subspecies II.-R. Steveni Andrz. (pro specie) Ap. Bess. Cat. Pl. Volhyn, pp. 22-23; Bor. Fl. Centr. ed. 3, p. 15 ; Reichb. Icon. i. f. 4605 : Gren. Rev. Fl. Jura, p. 28 ; Freyn, l.c. p. 938 ; R. silvaticus Thuill. Fl. Paris (p.p.) ; R. acris Jord. Observat. Fragm. 6, pp. 15-17, non L. nee auct. plur.-Rootstock with prolonged oblique or horizontal rhizome covered with long hairs. Plant villous, hairs patent, at least on the petioles, stems few, leaves more or less broad, reniform-cordate, less deeply 3-5-partite, lobes ovate-cuneiform, borders not overlapping.-Habit of R. nemorosus f. Amansii. I have gathered this in Worcestershire and Wiltshire, and have specimens gathered by Mr. Beeby in Shetland. I have also gathered it at Luchon in the Pyrenees, and at Weissenstein in Switzerland.

Subspecies III.-R. Friesianus. Rootstock with oblique or subhorizontal prolonged rhizoma, more or less covered with fibres; radical leaves more or less hirsute, shortly petioled, short, broad, suborbicular, with broad lobes, less deeply cut, borders of lobes touching or overlapping.

Form I.-R. vulgatus Jord. (pro specie) ap. Bor. Fl. Centre, ed. 3, p. 15. - Beak of carpels strongly hooked, persistent, leaves with whitish pubescence, primary lobes of root-leaves more or less touching, rather deeply toothed, rootstock and rhizome somewhat slender, with few fibres. I have gathered this in Yorkshire, Carnarvonshire, and Aberdeenshire. I have it from Shetland, and also have it from Orleans.

Form II.-K. Friesianus Jord. (pro specie) Observat. Fragm. 6, p. 17 ; Fl. Centre, ed. 3, p. 16.-Beak of carpels much less hooked than the last, leaves greener, with shorter teeth, borders of the primary lobes of root-leaves overlapping above, but with sinus below, rootstock thicker than the last and with more fibres. I have this from Shetland, communicated by Mr. Beeby, and named by Mons. Rouy. I have also gathered it in Canton Vaud, in Switzerland.

Form III.-R. nemorivagus Jord. (pro specie) Diagn. p. 74, excl. syn.; Lamotte, l.c. p. 48.-Similar in habit to the last, but borders of primary lobes of root-leaves completely overlapping, leaving little or no sinus below. I have gathered this in Canton Vaud in Switzerland.

Thus all the subspecies, but not all the forms, are native in Great Britain. The native forms are- R. Boreanus and the var. tomophyllus; R. vectus and the subvar. pumilus; R. Steveni; R.vulgatus; R. Friesianus.

I have no knowledge that the forms R. stipatus, R. pascuicolus, or R. nemorivagus have been found in Great Britain or Ireland. In the recent issue of Desiderata published by the Bot. Exch. Club R. Fi iesianus is added; though it has recently been found in Shetland by Mr. Beeby, I am not aware that it has been detected elsewhere in Great Britain.

In practice I find that the forms can be recognized principally by the root-leaves and the rootstock, but assisted by other characters. Intermediate forms naturally and certainly do occur. I find these between R. Boraanus and R. vectus; it must be recollected that forms, though of higher grade than varieties, are nevertheless of lower grade than subspecies, and as regards the latter I feel that, in my own case, more extended observation is requisite to form a decided opinion as to whether the forms described in this paper satisfactorily group themselves into definite subspecies. I do not find that the form of the beak of the carpels can be depended upon as a distinguishing character, if we except that of R. vulgatus, which appears to be uniformly strongly hooked, the hook being persistent; and I may say that the same uncertainty attends the form of the scale of the petals, and the comparative presence or absence and direction of hairs on the stem; but characters which may be inconstant in small areas where different forms are associated may be more constant in a prevailing form within a large area.

THE EUROPEAN SPHAGNACE \mathbb{E}

 (after Warnstorf)By E. Charles Horrell, F.L.S.
(Continued from p. 353.)
§ vil. Sphagna subsecunda Schimp.
Branch-leaves very small, small, medium size to very large, oval, elongate-ovate, lanceolate or roundish-oval; toothed on the narrowly or broadly truncate apex, border narrow or wide; margin widely inrolled either only in the upper half or to the base; closely or loosely imbricate, frequently secund; when dry without lustre or slightly shining. Chlorophyllose cells in section generally median, rectangular or barrel-shaped and free on both surfaces, more rarely triangular or trapezoid and then nearer either the inner or the outer surface. Hyaline cells always with numerous fibrils; the inner surface where united to the chlorophyllose cells always smooth. Pores very small to small, and frequently with a strong border ; in most cases forming rows like strings of pearls on the commissures, either numerous on the outer or on the inner
surface of the leaf, more rarely with few pores on both surfaces or with numerous pores on both; only in S. Pylaiei are the pores altogether absent. Stem-cortex generally in one or two layers, more rarely in two to several layers, cells of median width to wide, thin-walled; in rare cases with thinnings or pores in the outer wall, non-ibrillose. Stem-leaves sometimes small, sometimes of medium size, sometimes very large; border narrow or wide, generally of equal width throughout, more rarely somewhat wider towards the base; hyaline cells very frequently with numerous fibrils and pores; apex narrowly or widely truncate and toothed or somewhat fimbriate. Colour grass- or grey-green, light- or golden-yellow, dark violet to blackish or red-brown, never purple.

The section comprises some forty or fifty species, of which eleven are inhabitants of Europe.

In the examination of plants belonging to this section it is important that both the branch- and the stem-leaves should be selected from the upper part of the stem, just below the capitulum.
33. S. contortum (Schultz.) Limpr. non Nees et Hornschuch.

Syn. S. laricinum Spruce MSS. 1847 ; S. contortum ס laricinum Wils. Bryol. Brit. 1855, 23 ; S. neglectum Angstr. 1864 ; S. curvifolium (Wils. MSS.) Hunt, 1867.

Exsicc. Braithw. Sphagn. Brit. Exsicc. No. 13 (1877).
Tufts generally loose, $7-15 \mathrm{~cm}$. in height (submerged forms up to 30 and 40 cm . long and generally more slender), pale greyish green to light green or dark green, frequently variegated with brown or light yellowish brown to dark brown or blackish, sometimes somewhat violet.

Stem generally rigid and dark-coloured, rarely greenish. Stemcortex in two to three layers (rarely in four). Wood-cylinder colourless or more frequently brownish red to dark brown.

Fascicles with two to five branches, the two to three spreading generally drepanocladous, sometimes longer, sometimes shorter; leaves generally rather closely arranged but not closely imbricate, frequently secund.

Branch-leates small, generally narrow-ovate to ovate, $\cdot 7-1 \cdot 5 \mathrm{~mm}$. 1 ng ; on the pendent branches lanceolate; somewhat concave with the margin incurved above, when dry frequently weakly undulate. Pores very small, weakly ringed and generally few in number. On the outer surface generally scattered, rarely forming rows, on the inner surface either quite without pores or with a few in the upper part of the leaf.

Stem-leaves snall, triangular-lingulate, generally with the margin incurved above, apex rounded and weakly fimbriate, $\cdot 6-1 \cdot 4 \mathrm{~mm}$. long, generally 1 mm . long, very rarely up to 2 mm . long and then lingulate. Border generally widened below. Non-fibrillose or with a few fibrils in the upper third. Pores on the outer surface very few and very small; on the inner surface larger, non-bordered, and generally only near the apex or in the upper third. Hyaline cells very rarely septate.

Dioicous. Perichætial bracts oblong, with the apex acuminate, border of equal width all round, hyaline cells in the upper part rarely

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Exsicc. Braithw. Sphagn. Brit. Exsicc. No. 15 a (pro parte).
Tufts loose and soft, dark brownish green, yellow or reddish yellow, rarely green alone. Stems woody, but thin and delicate, with the branches generally densely arranged with loose, rarely crisped capitulum.

Wood-cylinder well developed, generally brown.
Stem-cortex in one layer, with scattered pores on the walls.
Stem-leaves generally very small, less than 1 mm . in length, triangular-lingulate, almost always non-fibrillose, rarely with rudimentary fibrils in the upper third, hyaline cells generally nonseptate; pores on the inner surface in the upper third rather large, non-ringed or weakly ringed and rather numerous, on the outer surface fewer in number, smaller and more strongly ringed, and generally in the cell-angles.

Fascicles consisting of $3-5$ branches, 2-3 spreading, short, acuminate, and frequently recurved; leaves loosely arranged and near the apex secund.

Branch-leaves very concave, ovate, shortly acuminate, narrowly bordered, margin inrolled above, strongly fibrillose; pores on the entire outer surface very numerous, small, round and strongly bordered, arranged in rows on the commissures; on the inner surface with very few pores scattered here and there or none.

Chlorophyllose cells in section median, free on both surfaces, barrel-shaped to rectangular; lumen oval.

Dioicous; male branches brownish green, yellow to reddish yellow. Perichætial bracts ovate, with rounded apex, border of equal width all round, formed of both kinds of cells, hyaline cells in the upper part of the leaf rhomboid, non-fibrillose, with scattered pores. Capsule small, spores $28-32 \mu$, yellow, finely papillose.

Hub. In wet places in deep bogs.
Disti ib. Throughout Europe; Asia; N. America. Brookwood, Surrey (Sherrin); Widdy Bank Fell, Teesdale, Durham (Horrell); Aldershot, Hants (Sherrin) ; Shappen's Moss, Brockenhurst, Hants (Ley) ; Stockton Forest, W. York (Stabler).
S. subsecundum Limpr. does not appear to be very common in Britain, most of the plants under this name in herbaria belonging to S. rufescens Warnst. or some other of the numerous segregates. S. subsecundum in the restricted sense is almost always a much more delicate plant than wost other forms, and is less frequently found floating or completely submerged.
36. S. inundatum Warnst. in litt. (1895) teste Cardot in Répertoire Sphagn. 1897, 81.

Syn. S. inundatum Russ. Zur Kenntniss, \&c. 1894, 45, ex parte; S. subsecundum varr. contortum et obesum Auct. ex parte.

Exsicc. Braithw. Sphagn. Brit. Exsicc. No. 15 b.
Plants more robust than S'. subsecundum, but generally less so than S. Gravetei and S. rufescens, completely submerged or in very wet places. Generally green, or with some admixture of purple.

Wood-cylnder strongly developed, dark brown.
Stem-cortex in one layer.

Stem-leaves of medium size, from 1 mm . to 1.4 mm . in length, lingulate, obtuse and rounded at the finely toothed apex, always fibrillose in the upper half, rarely to the base; hyaline cells generally septate; pores on the inner surface numerous, round, weakly or strongly ringed above, and non-ringed towards the base, on the outer surface very few or more numerous, ringed and ṣituated in the cell-angles.

Fascicles of 3-5 branches, the 2-3 spreading, recurved or straight, rather short and acuminate, with the leaves loosely imbricate or spreading, sometimes closely imbricate, frequently more or less secund.

Branch-leaves small to medium size, ovate, obtuse and toothed at apex, concave, with margin incurved above, strongly fibrillose, pores on the outer surface small and strongly ringed, very numerous and in rows on the commissures, or sometimes few; on the inner surface very few or none.

Chloroplyyllose cells in section rectangular, with the thickened walls free on both surfaces; lumen median, oval.

Hab. Submerged or in very wet places in moorland pools.
Distrib. Probably widely distributed throughout Europe and N. America. Pirbright Common, Surrey (Sher, in \& Horrell.); Trengwainton Bog, Penzance (Curnow); Strensall, York (Inyham); Auchmore Burn, Killin (Cocks).
37. S. Gravetii Warnst. in Verh. d. Bot. Ver. d. Prov. Brandenb. xli. 1899, 32.

Syn. S. Gravetii Russ. Arch. Naturk. Liv. Est. und Kurlands, ser. 2, Bd. x. Lfg. 4, 1894, 423, pro parte. S. subsecundum Auct.

Exsicc. Braithw. Sphagn. Brit. Exsicc. 1877, No. 19 c (sub nom. S. subsecundo var. auriculato).

Tufts generally very robust, resembling a large S. rufescens, sometimes less robust and resembling S. subsecundum; submerged or in very wet places, green above, brownish or pale below, sometimes with red or purple intermixed.

Wood-cylinder strong, generally brown.
Stem-cortex in one layer.
Stem-leaves very large, from a narrower base, broadly lingulate, toothed on the widely truncate apex, border narrow, fibrillose to the base, on the inner surface almost without pores and only with scattered small pores near the lateral margins, on the outer surface numerous, in rows on the commissures.

Fascicles of 3-4 branches, 2 or 3 stronger spreading, rather short, acuminate, leaves loosely arranged. Branch-lerves of medium size, ovate-lanceolate, concave, with inrolled margin, toothed at the truncate apex, pores on the outer surface very numerous, in rows on the commissures, on the inner surface very few.

Chlorophyllose cells in section rectangular, free on both surfaces, lumen oval.

Hab. In boggy pools.
Distrib. Germany; England; Wales. Broadgate Bog, Staveley, Westmoreland (Barnes) ; Nant Pedor, Carmarthenshire (Ley).
38. S. rufescens Warnst. in Hedwigia, 1888, 267.

Syn. S. rufescens Nees \& Hornsch. Bryol. Germ. i. 15, 1823, pro parte. S. subsecundum varr. contortum, squarrosulum, auriculatum et laxum Auct. pro parte.

Exsicc. Braithw. Sphagn. Brit. Exsicc. 1877, Nos. 15 a pro parte (sub nom. S. subsecundo), 16 and $16 b$ (sub nom. S. subsecundo, pl. masc.), 17 (sub nom. S. subsecundo var. contorto), 17 b (sub nom. S. subsecundo var. contorto f. rufescente), 19 (sub nom. S. subsecundo var. auriculato), 18 and $18 b$ (sub nom. S. subsecundo var. obeso).

Plants varying greatly in habit, frequently submerged, and then at times exceedingly robust and tumid, sometimes little larger than S. subsecundum ; branches frequently contorted; colour very various, light to dark green, frequently variegated with red and purple, sometimes brown to almost black.

Wood-cylinder strongly developed, generally dark brown.
Stem-cortex in one layer.
Stem-leaves large to very large, lingulate or oval-lingulate, always fibrillose in the upper half, rarely almost to the base; hyaline cells usually septate; either only on the outer surface with very numerous strongly ringed pores arranged in rows on the commissures, with sometimes near the apex a row in the middle of the cell-wall also, and on the inner surface with fewer weakly-ringed, towards the base non-ringed pores, or with very numerous pores on both surfaces.

Fascicles of 3-4 branches, of which the 2-3 spreading ones are generally short and obtuse, but very tumid from the very large loosely imbricate leaves, sometimes very short, sometimes longer and more pointed; branch-leares generally very large, tumid, concave, with inrolled margin, ovate-oblong, with a narrower base and truncate and toothed apex, sometimes much smaller and more acuminate, frequently secund; border narrow and of equal width throughout; hyaline cells usually septate; pores on the outer surface very numerous, small or larger, generally in regular rows on the commissures, on the inner surface either equally numerous and in rows, or fairly numerons and in almost every cell-angle.

Chlorophyllose cells in section median, barrel-shaped to rectangular, free on both surfaces of the leaf, lumen oval and centric; walls non-papillose.

Hab. Most frequently submerged in moorland pools, sometimes in bogs or on dripping rocks.

Distrib. Throughout Europe; Asia; Africa; N. America. S. rufescens is by far the commonest Subsecundum species in this country. Trelleck Bog, Monmouth (Ley); Little Brickhill, Bucks (Saunders); Keston Common, Kent (Cocks); Hole Common, near Lyme Regis, Dorset (Miss Lister); Pirbright Common, Surrey (Sherrin); Wimbledon Common, Surrey (Mayes); Chyandal Moor, Penzance (Curnow); Wyre Forest, Worcestershire (Collins) ; Broadgate Bog, near Staveley, Westmoreland (Stabler) ; Darnholme, Goathland, N.E. Yorksh. (Anderson); Beamsley, Yorksh. (West); Adel, Yorksh. (West); Fishpool, Delamere, Cheshire (Whitehead); Aldershot, Hants (Sherrin); Islay (Ley); Oakmere, Cheshire

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Wood-cylinder pale, yellowish or brown.
Stem-leaves large, widely oval-lingulate, slightly concave, somewhat fimbriate on the rounded apex; border of equal width all round, $4-5$ cells wide. Hyaline cells generally fibrillose to the leaf-base; on the inner surface in the upper two-thirds with numerous small strongly-ringed pores on the commissures; on the outer surface with small pores in the upper, or the upper and lower cell-angles only, or sometimes in the lateral angles also ; the cells above the base only with a single pore in the upper cell-angle, and with oblique cross-walls here and there.

Fascicles with generally three branches; the two spreading thick and long and shortly pointed, the branches of the capitulum short and obtuse, round and with the leaves closely arranged. Branch-leaves very large, broadly round- to oblong-ovate, almost flat and with the margin not inrolled; apex broadly truncate and with 7-9 teeth; border of 3-5 rows of cells; when dry somewhat shining and frequently slightly undulate at the margin. Hyaline cells with numerous fibrils. Pores on the inner surface numerous, small, strongly ringed, in rows on the commissures; on the outer surface in the upper part with pores in the upper or upper and lower cell-angles only, in the basal half and especially near the lateral margins with numerous ringed pores, which are sometimes arranged in interrupted rows on the commissures.

Chlorophyllose cells in section rectangular to trapezoid, free on both surfaces of the leaf, lumen large, oblong-oval, hyaline cells weakly convex on both sides.

Hab. Moorland pools.
Distrib. England; France; Belgium; Germany. Abbot's Moss, Cheshire (Holt) ; between Talsarnau and Maentwrog, Merionethsh. (Jones \& Horrell) ; Blackroot Pool, Sutton Park, Warwick (Bagnall); Wimbledon Common, Surrey (Mayes); Trelleck Bog, Monmouth (Ley) ; Fixby, W. Yorkshire (Hobkirk); Canisp, Sutherland (Dixon) ; near Ightham, Kent (Horrell).
41. S. batumense Warnst. in Schrift. der Naturforsch. Gesellsch. in Danzig, N. F. Bd. ix. Heft 2, 1896, p. 160.

Plants very robust, with large capitula, forming low, greyish- or bluish-green tufts.

Stem-cortex in one layer.
Stem-leaves very large, ovate, up to 2.57 mm . long and 1.43 mm . wide, toothed or somewhat fimbriate on the roundish-truncate apex, margin more or less inrolled, border narrow and of equal width throughout. Hyaline cells generally fibrillose to the leafbase and divided here and there by a cross-wall; pores numerous, small and bordered in the upper half on both surfaces, but somewhat more numerous on the outer surface and here interrupted by pseudopores and generally in rows on the commissures, towards the base of the leaf with pores in the upper or lower cell-angles only.

Fascicles with 4-5 branches; the 2 or 3 stronger spreading branches are as much as 27 mm . long and gradually taper at the apex, and have the leaves arranged uniformly all round; the others are appressed to the stem. Branch-leaves very large, oblong-ovate, up
to 4 mm . long and 2 mm . wide, toothed on the widely truncate apex, margin little or not at all inrolled, border narrow. Hyaline cells with numerous fibrils, on the inner surface in the upper half with small scattered pores in the cell-angles only, in the lower half much more numerous and in part arranged in rows on the commissures; on the outer surface towards the apex almost entirely without pores, only in the middle of the leaf towards the lateral margins with scattered small true pores, which are generally immediately opposite pores on the inner surface, or also with numerous pseudopores.

Chlorophyllose cells in section rectangular to barrel-shaped or also, in part, trapezoid and then with the longer parallel side on the outer surface; wall generally equally thickened all round, free on both surfaces, hyaline cells convex on both sides.

Hab. Moorland pools.
Distrib. Russia; Germany.
42. S. obesum Warnst. in Bot. Gaz. xv. 1890, 247.

Syn. S. subsecundum var. turgidum C. Mull. Syn. i. 1849, 101 ? S. contortum var. obesum Wils. Bryol. Brit. 1855, 22. S. subsecundum var. obesum Schimp, Syn. ed. ii. 1876, 844.

Exsicc. Braithw. Sphagn. Brit. Essicc. 1877, No. 20 (sub nom. S. subsecundo var. auriculato forma immerso).

Almost always completely submerged or floating, with frequently a plumose habit. Very robust and turgid, resembling large aquatic forms of S. rufescens. Frequently dark purple, less frequently green, or variegated.

Wood-cylinder generally dark brown.
Stem-cortex in a single layer.
Stem-leaves large to very large, lingulate, generally fibrillose throughout and with few pores.

Fascicles of 2-3 branches, all of which are generally spreading and similar, very robust and swollen from the very large leaves. Branch-leaves large, oval-oblong, with very few pores on each surface, or almost entirely non-porose; frequently with the hyaline cells more or less replaced by chlorophyllose cells of similar form; sometimes the pores are more numerous on the outer surface, but are then in the cell-angles only, and not in rows on the commissures.

Chlorophyllose cells in section rectangular, median and free on both surfaces.

Hab. Submerged or floating in moorland pools.
Distrib. Throughout Europe; N. America. Lindon Common, Mobberley, Cheshire (Whitehead).
43. S. Pylaiei Brid. Bryol. Univ. i. 1826, 749.

Syn. S. sedoides Brid. l.c. 750.
Tufts loose, above blackish brown, brown below.
Wood-cylinder dark brown.
Stem-cortex in 1-2 layers.
Stem-leaves large, oval, very concave, resembling the branchleaves in form and anatomical structure, generally entirely without
pores or in older leaves with resorption areas on the outer surface between the strongly developed fibrils.

Branches short and slender, or clavate, generally only one or two together and not forming fascicles; pendent branches wanting. Branch-leaves towards the apex of the branch closely imbricate, elsewhere loosely arranged, smaller than but otherwise resembling the stem-leaves; pores entirely absent on both surfaces.

Chlorophyllose cell.s in section rectangular, of the same height as the hyaline cells, free on both surfaces, wall equally thickened all round; lumen small, oval to triangular-oval, centric or nearer the inner surface. Capsule immersed, very small, almost spherical, when empty with wide mouth; stomata absent. Lid very wide, convex. Spores pale yellow.

Hab. Peat bogs and stagnant pools.
Distrib. France, very rare; N. America, common.
This very characteristic species should be looked for in this country; it more closely resembles a Hypmum, such as H. sarmentosum, than any species of its own genus.
(To be continued.)

BIBLIOGRAPHICAL NOTES.

XXIII.—Dupetit-Thouars.

Louis Marie Aubert Aubert Dupetit-Thouars, the celebrated and somewhat eccentric botanist, was born in the Château de Boumois, near Saumur, Nov. 5th, 1758.

He took to botany, he tells us ("Phytologie" [infra, No. 9], p. 133), in October, 1780, and in 1783 had sketched a "Flore des Environs de St. Malo," and had studied more particularly the plants of Anjou. He claims to have furnished notes to Merlet de la Boulaie for his "Herborisations" (op. cit. p. 134, note).

In 1787, when on garrison duty at Lille, he was invited to join a small scientific society called the "Collège des Philalèthes," and to this end wrote his first published pamphlet, the "Enchaînement des Etres."

His brother Aristide, about 1790, endeavoured to equip an expedition in search of La Pérouse, but subscriptions sufficient to cover the cost not being received, the two brothers sold their patrimony and so raised funds. Their vessel was about to sail from Brest, when the Revolution broke out. Aubert was arrested by the revolutionaries on his way to the port, and Aristide only avoided a similar fate by putting out to sea, leaving word for his brother to join him at Mauritius. Aristide was, however, taken prisoner by the Portuguese at Fernando do Noronha and sent to Lisbon.

Aubert, on obtaining his release, sailed Oct. 2nd, 1792 ("Hist. Vegét." [infra, No. 2], preface, p. viii. In the preface to the "Mélanges" [infra, No. 8], p. 12, he says Sept. 7th). The vessel was obliged to touch at Tristan da Cunha for water, and Aubert turned the five days spent there to good account in botanizing; fifteen days at the Cape were similarly utilized.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

2. "Plantes des îles de l'Afrique australe formant des genres nouveaux, ou perfectionnant les anciens; accompagnées de dissertations sur différens points de Botanique." 4to. Paris, 1804.
[" Flora," 1822, Bd. i, Beil. i, p. 2].
The title was afterwards altered to :
"Histoire des Végétaux recueillis sur les isles de France, La Réunion (Bourbon) et Madagascar," dc. Pt. i. Pp. xvi, $40 ; 10$ pls. $\mathrm{N}, \mathrm{B}, \mathrm{K}$.

4to. Paris, 1804.
In this edition the plates are in outline.
—— [Another edition entitled] "Histoire des Végétaux recueillis dans les isles australes d'Afrique." Pt.i. Pp. xvi, 64; pls. iiii-xx, $x: x v-x x: x$. к.

4to. Paris, 1805.
A copy of this edition is preserved in the Library at the Royal Gardens, Kew. Pp. i-xvi and 1-24 are equivalent to pp. i-xvi and 15-38 of the 1804 edition. Plates xxvxxx are shaded.
—— [Another edition: same title as last.] Pp. avi, 72 ; 24 pls. п, в. 4to. Paris, 1806.
This differs from the preceding in having additional pages, and in the plates being consecutively numbered and all shaded.
The half-title reads: "Voyages dans les Isles australes d’Afrique. Partie Botanique."
According to Miltitz (Bibl. Bot. col. 196) it was reissued in 1807 in four parts.
3. "Histoire particulière des Plantes Orchidées, recueillies sur les trois iles australes d'Afrique, de France, de Bourbon et de Madagascar." Pp.vii, 32, 2 tabs.; 110 pls. col. п, в, в, г.

8vo. Paris, [1804-] 1822.
The half-title reads:-"Flore des Îles australes de l'Afrique. Famille des Orchidées." Stated in advertisements on the half-title of the Author's "Essais" (1809) [No. 7] to have been begun in 1804. Sixty-six plates had been completed in 1808 ("Mélanges" [No. 8]: Disc. prélim. p. 28), and seventy-five in 1815 ("Recueil de Rapp. Arbres fruitiers" [No. 10], advt.).
4. "Essais sur l'organisation des Plantes, considérée comme résultat du cours annuel de la Végétation." [p p.31.] 8vo. Paıis, 1805.
[" Flora," loc. cit.] See note to No. 7.
5. "Notice historique sur le genre Caniram, ou Strychnos de Linnæus." Pp. $14 . \quad$ 8vo. Strassbourg, 1806.
["Flora," loc. cit. Miltitz: op. cit., col. 236. Pritzel: No. 2523.]
6. "Genera nova Madagascariensia," \&c. Pp. 29.

8vo. [Paris, 1806.]
Both Pritzel and Baillon ("Dict. Bot.") give the date of publication as 1806, a statement I am unable to prove or disprove. Flourens in his "Eloge" (Mém. Acad. Sci. Paris, tom. xx. 1849, p. xiii) puts it before the "Plantes" [No. 2], but this is evidently wrong. It is reviewed in
the "Göttingische gelehrte Anzeigen" for July, 1808 (p. 1144), and quoted as 1808 by Miltitz (op.cit., col. 196), but this may have been a second issue. It was reprinted in J. J. Roemer's "Collectanea," 1809 (pp. 195-218), and in Dupetit-Thouars' "Mélanges" [No. 8] in 1811, with introductory " Observations sur les Genera nova Madagascariensia " (4 p μ.), and the second sheet filled up with an "Index alphabeticus" and a "Prodromus Phytologicus Vegetabilia exhibens nuperrimè insulà Madagascar detecta . . . Operâ et studio . . . F. Noronha " [2 pp.], which, we are further informed, was to have been printed in 1787 in the Ille de France, if the author had not died.
7. "Essais sur la Végétation considérée dans le développement des Bourgeons," \&ic. Pp. xii. 304; 2 pls. n, в, к, е.

8vo. Paris, 1809.
The two first essays in this work were issued in 1805 [No. 4], and re-issued in 1806 [" Flora," loc. cit. Quérard, loc.cit. See also preface to the present work, p. vii.] Quérard errs considerably when he states that the whole were reproduced in the "Mélanges."
8. "Mélanges de Botanique et de Voyages . . . Premier recueil." $\mathrm{N}, \mathrm{B}, \mathrm{K}, \mathrm{R}$.

8vo. Paris, 1811.
This is composed of a "Discours préliminaire" [$p p$. 32]the "Dissertation sur l'Enchaînement des Etres" [No. 1, $p p .48]$-the "Genera nova" [No. 7, pp. 32], noted above, preceded by some "Observations" [pp.4]-"Observations sur les Plantes qui croissent dans les iles de France," dc., which includes "Observations sur les trois premiers volumes du Dictionnaire de Botanique de.M. Lamarck" [part of the "Encyclopédie méthodique"], with notes for future volumes [pp. 80 ; 2 pls.].-" Cours de Botanique," a fragment for a projected book on popular botany [pp. 16.]-"Description abrégée des Isles de Tristran d'Acugna," with an "Esquisse de la Flore de l'Isle de Tristran d'Acugna," both sample fragments submitted to the Institute $[p p .48$ (2): 15 pls., 1 map].-" Treizième Essai. Notice historique sur la Nature et les fonctions de la Moelle et du Liber" [pp. 48], read before the Institute in 1810 and approved for printing, but never published by that body. It is here printed as a projected continuation of his "Essais" [No. 5].
9. "Phytologie, ou Tableau général de la Botanique." Pp.1~6 1 tab.; 1 pl. N, R.

8vo. [Paris, 1811 ?].
This work, which is without title-page, is not quoted in any bibliography that I can find, though it appears in the advertisement of the Author's works in his "Histoire d'un Morceau de Bois" [No. 12] in 1815, and in his "Revue générale" [No. 14] in 1819, p. 9, where he speaks of the "Tableau Encyclopédique qui a servi d'ouverture à mon Cours en 1813 "; and of the work says, "il pourroit être
publié sous peu de temps." It is also cited on the verso of some of the title-pages of the "Cours" in 1828 [No. 18]. It appeared after the " Mélanges," to which allusion is made on p. 112; and the folding table opposite p. 98, that bears date 1811 , is the scheme of the author's lectures. Pp. 1-105 are a second edition of the Author's article "Botanique" in the "Dict. Sci. Nat." vol. v, 1805.
Pp. 106-110, printed in the same type, contain remarks on the cultivation of Plants, the foundation of the Royal Nursery Grounds, and the Author's appointment thereto. These were reprinted in No. 22.
The remainder, in a different type, comprises "Considérations sur ce Tableau," de., pp. 111-120.—"Plan d'une Histoire générale des Plantes, formée principalement de l'ouvrage de M. Adanson, intitulé Familles des Plantes," pp. 121-132. This last was submitted to the Institute in Aug. 1809.
The concluding portion, headed "Notice sur mes Travaux Botaniques," pp. 133-176, with a plate of Orchids, amounts to a recital of his futile efforts to prevail upon the Institute to accord the same value to his works as they had in his own eyes, and contains reprints of his papers as published in the "Analyse des Travaux . . . Partie Physique" in the Memoirs of the Institute.
10. "Recueil de Rapports et de Mémoires sur la culture des Arbres Fruitiers." Pp. xii, 256; 8 pls. в, r. 8vo. Paris, 1815. [Continued as:]
11. "Le Verger Français, ou Traité général de la culture des Arbres Fruitiers . . . Second recueil . . contenant un mémoire sur les effets de la Gelée dans les Plantes." Pp. xlciii, 84. n, в. 8vo. Paris, 1817.
12. "Histoire d'un Morceau de Bois, précédée d'un Essai sur la Sève . . . et de plusieurs autres morceaux [reprinted from the 'Bulletin de la Société Philomathique'] tendant à confirmer la théorie de Physiologie végétale exposée dans les Essais sur la Végétation," etc. Pp. xxxv, 192; 1 pl. м, в, г.

8vo. Paris, 1815.
13. "Discours sur l'Enseignement de la Botanique, prononcé le 24 Mai 1814, \&c." Pp.48. к, к, в (в). 8vo. [Paris, 1819.] The date of publication is given as 1814 in Pritzel and in the Kew Catalogue ; but both the Kew copy of the work and that in the Natural History Museum have on p. 45 the following :-" Je me suis encore servi de ce Discours pour ouvrir ce Cours le 15 mai 1819, mais je l'ai terminé de la manière suivante." This fixes the date of these copies, and I can find no evidence that this discourse was printed before; had it been, I think the number of pages would have differed. Pp. 34-35 were reprinted in No. 22.
Possibly this was re-issued again in 1824 [see note to No. 21].

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
whilst the copy in the Natural History Museum consists of 15 (iii.) and 16 only, with the addition of portraits of Jung and Brunfels.* The verso of the title-page being blank.
In the British Museum and Kew copies the verso of the title-page bears the following scheme, which is interesting as showing the author's own arrangement of his fragments.
"Recueil des Ouvrages publiés par l'auteur, qui concernent le Cours de Phytologie.

Annonce de ce Cours 1828. 2 feuilles. Tableau général de la Botanique.
C'est l'article Botanique du Diction-
naire des Sciences naturelles . . 1809. 11 feuilles.
Essais sur la Végétation 1809. 20 ,,
Cours de Phytologie.
Introduction 1819. 1
Ire Séance. Discours sur l'Enseignement de la Botanique 1819. 3 ,
IIe Séance. Phytognomie 1820. 7 "
Un vol. in 8vo de 44 feuilles."
19. "La Physiologie végétale devrait-elle être exclue du concours pour le prix fondé par M. de Monthion ?" Pp. 24. 8vo. Paris, 1822.
[Pritzel: No. 2534. La France Littéraire.] 120 copies only were issued.
20. "Sur la formation des Arbres," \&c. Pp. 16. к.

8vo. Paris, 1824.
[Férussac's "Bull. Sci. Nat." tom. ii. (1824), p. 36. Pritzel gives the date as 1828 : probably this was a re-issue.]
21. "Notice historique sur la Pépinière du Roi au Roule; faisant suite à un Discours sur l'Enseignement de la Botanique, prononcé . . . 1824." Pp. 32. n, к, к. 8vo. Paris, 1825.

Either the date of the "Discours" given in the title is a misprint for " 1814 ," or No. 13 was delivered once again in 1824.
22. "Conclusions de deux discours qui ont servi d'ouverture au Cours de Phytologie," de. Pp. 33-64. n. 8vo. [Paris, 1826.]
[" Bibliog. Fr." 3 June, 1826, p. 493, where also the statement occurs that the title on the wrapper reads: "Suite de Notice historique," dc.]
Pp. 33-38 are a reprint of pp. 106-110 of No. 9, and pp. 39-56 of $p p .34-45$ of No. 13.
23. "Rapport sur un mémoire, contenant une Notice d'Anatomie végétale . . . par C. Romain," \&c. Pp. 64. n, к.

8vo. [Paris, 1825.]
[" Bibliog. Fr." 26 Mar. 1825.]
C. Romain was Dupetit-Thouars' old antagonist, C. Romain Féburier. (Féburier's " Précis d'Anat. Vég." 1824, preface, reprinted on $p p$. 51-2 of the above.)
24. "Éclaircissemens sur un Rapport fait à l'Académie Royale des Sciences." Pp. 52. 8vo. Paris, 1826.
[" Bibliog. Fr." 10 June, 1826, and "France Litt." Not recorded elsewhere.]
25. [Anon.] "Examen de deux mémoires de Physiologie végétale, suivi de l'examen d'un passage d'un troisième mémoire publié à Genève, comme les deux autres, sous le titre de Monographia generis Polygoni prodromus." Pp. $32 . \quad$ 8vo. Paris, 1827.
[Férussac's "Bull. Sci. Nat." tom. xiii. (1828), p. 66. Not recorded elsewhere.]
26. "Remarques lues à la Société Philomatique . . . 1816 sur une note relative au Cambium et au Liber, lue par M. Mirbel." Pp. 20.

8vo. Paris, 1828.
[Privately printed. Férussac's "Bull. Sci. Nat." tom. xv. (1828), p. 360. Not recorded elsewhere.]
27. "Explication sommaire de quelques figures destinées à faire voir jusqu'à quel point ces deux assertions sont vraies:
L'Arithmétique de la Nature est toujours conforme à sa Géométrie. N. Grew . . . La Nature a plus de propension à employer le nombre cinq que tout autre. T. Brown (Extrait des Travaux académiques)." Pp. 4. N.

8vo. [Paris, 1828 ?]
Sixteen woodcuts, with explanatory text. There is an allusion to this as a "Mémoire" in Flourens' Éloge (op. cit. p. xxv).
I have come to the conclusion that these figures were prepared by Dupetit-Thouars to illustrate a paper read before the Academy of Sciences in 1828, an abstract of which, by Cuvier, was given in the "Analyse des Travaux"* for that year (Mém. Acad. Sci. Paris, tom. xi. 1832, pp. clix-clxii, and, in advance, in Férussac's "Bull. Sci. Nat." tom. xxi. 1830, pp. 422-425). That he hoped to induce the Academy to publish the illustrations is evident from his statement at the bottom of the title, "Extrait des Travaux académiques." They never did appear, his theories not being acceptable to the authorities of those days; but in one respect Time has brought revenge, as the following extract from the "Analyse" will show:-
"Ces observations intéressent particulièrement M. DuPetitThouars, parce qu'elles lui fournissent l'occasion de présenter sous un nouveau jour . . . cette proposition; que la fleur n'est autre chose qu'une transformation de la

[^25]fenille, proposition depuis long-temps exposée par Linnæus," \&c.
Dupetit-Thouars also contributed articles to the first six volumes (first edition, 1804-6) of the "Dictionnaire des Sciences naturelles" and to the "Dictionnaire d'Agriculture pratique," \&c., edited by Count François de Neufchâteau, the first edition of which appeared in 1833, and the second in 1836.

B. B. Woodward.

SHORT NOTES.

Fossombronia cristata Lindb.-Although there are few records for this hepatic in Britain, it will probably be found to be widely distributed. It is most generally confused with F. pusilla (L.). In West Inverness I have found it to be the commoner of the two species. I also have it from Staffordshire (Rev. H. P. Reader) and North-east Yorkshire (M r. Wm. Ingham). This species can frequently be known at sight from F. pusilla by its smaller size and capitate terminal leaves; but examination of the spores, which ripen in autumn, is necessary in every case. It must be borne in mind that the two species are occasionally to be found growing together, as they have the same habitat-bare damp soil on footpaths, sides of ditches, and fallow fields; thus each gathering must be minutely examined to avoid a mixture. The most frequent mistake made with this genus lies in a sufficiently high microscope power not being used. Under a low power the spores of the various species appear much like each other. As the literature of our species is scattered, I add a key which may be of service until descriptions are given in Mr. Pearson's Hepatica of the British Isles:-

1. $\begin{aligned} & \begin{array}{l}\text { Spores furnished with papillæ } \\ \text { Spores with crests }\end{array} . \\ & \text { Papillæ 20-25 on face and end of spore }\end{aligned}$.
2. $\left\{\begin{array}{l}\text { Papillæ 20-25 on face and end of spore . . . ccspitiformis. } \\ \text { Papillæ about } 100 \text { on face and end of spore . . } \\ \text { Mittenii. }\end{array}\right.$
3. $\left\{\begin{array}{l}\text { Crests in nearly parallel lines } \\ \text { Cress formation }\end{array}\right.$
4. Crests on face 15-24 pusilla.

Crests on face 28-36 cristata
Margin of spores winged; alveoli 7-10 on face of
5. $\left\{\begin{array}{l}\text { spore } \\ \text { Margin crenulate, not winged ; alveoli at least }\end{array}\right.$ 2-3 times as numerous
angulosa.
Dumor tieri.
-Symers M. Macvicar.
Euphorbia Esula var. Pseudo-cyparissias in Berks.-I gathered specimens of this plant from one of two patches observed on the bank of the Thames between Wallingford and Cholsey on Aug. 21st. It appears to be new to the county.-Richard F. Towndrow.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

has been formed, or one that will satisfy every batologist, it would be rash to affirm; for the cross-alliances and resemblances in the species and subordinate forms are so numerous, that, with a method of subdivision confessedly somewhat artificial, it is almost unavoidably a case of quot homines, tot sententia; and we have in Mr. Rogers's arrangement here and there an odd result; of which the wide separation of No. 23, R. pulcherrimus Neum., and No. 52, R. cinerosus Rogers, two closely allied if not confluent forms, is a case in point. The adoption of the intermediate rank of subspecies, though at sight perplexing, really simplifies; in this way some less clearly marked species take a lower grade under their nearest congener, and some varieties possessing more marked and constant characters are raised to a similar level.

The lucidity of the subject-matter is occasionally marred by the want of a like clearness in the arrangement of the type. The subdivisions lettered a, b, c (pp. 43-45, e.g.) are throughout the book separated by a space only from what precedes, but are not spaced off from what follows; and when (as on p. 56) no less than three subdivisions or grouplets follow one another immediately in as many lines, without any spacing and without variation in the type, the reader has not all the aid a more varied typography would afford to help him through the maze of analysis.

The Conspectus of Species is a valuable compendium, presenting in three or four lines apiece the pith of the specific descriptions. The heading of this Conspectus-in which, by the way, the species should have been numbered as in the body of the work, for ease of reference-is dignified with extra large capitals, as for a new chapter. Practically it is Key No. 3-a major key, perhaps, but a key of the same analytical character as the two preceding Keys of groups. However, the printing throughout the book is very creditably done; by way of exception, we notice in the generic account (p.1) "petals 5-abnormally $5-10$ ": even in this genus, bristling with knotty points as it does, we presume it cannot have any of its parts normally and abnormally of the same number. On p. 26 we are told of a panicle" with long, very strongly ascending branches and several 5 -natel'"; and we seem to have met with a new epithet in the last word, till it resolves itself into " 5 -nate l.," an abbreviation which a list of such translates into "leaves."

This list of Abbreviations and Explanations (p. xiv) might with advantage have been made more complete; for, however obvious, the meaning of "incl." (p. 46) and "excl." (p. 106) and " gl." (pp. 45, 61) are, neither these nor perhaps the letters which stand for the points of the compass should have been omitted. Thus a confusion might have been averted; for on p. 99 a few fresh abbreviations are inserted, and the letters E., S., and W. set to represent England, Scotland, and Wales respectively, notwithstanding the fact that they usually stand for three of the cardinal points, and are so employed throughout this work. So (on p. 104) E. and W: signify both England and Wales and east and west, and S. stands for south, though the reader is directed to understand Scotland. With the Appendix, too (p. 99), we get at the sense of
the square brackets enclosing vice-comital numbers, which are there explained, but not before.

It need not be supposed that the Rubi can be easily mastered, even with the help of so excellent a guide as Mr. Rogers has supplied, any more than with the best manual on skating a beginner would at once cut figures or achieve the Dutch roll. In nature many of the types are befogged with untypical forms; the most constant vary under the opposite effects of light and shade. The stem is reddened by exposure to light; the leaves, which are of thicker texture and even rugose in sunny spots, become thin and flat and even less hairy beneath in shady woods and copses. This cause of variation borne in mind, the student will find the Handbook a very efficient guide; its faults lie on the surface, and are, as the papers say of minor Boer successes, regrettable incidents that will not affect the main issue. The volume before us is the fruit of long experience, matured judgment, and unremitting toil; we trust that it will be widely used, and thus lead to a more successful understanding of one of the most labyrinthine puzzles in British botany.
E. F. Linton.

Organography of Plants, especially of the Archegoniate and Spermaphyta. By Dr. K. Goebel. Authorized English Edition by I. B. Balfour, M.A., M.D., F.R.S. Part I.-General Organography. Royal 8 vo, pp. xvi, 270 ; with 130 woodcuts. Oxford: Clarendon Press. 1900. Price 12s. 6d.
English students will welcome Professor Balfour's translation of Dr. Goebel's suggestive book on the Organography of Plants, whether or no all the interpretations and views therein contained are likely to meet with unqualified acceptance. If nothing else, the volume is a useful protest against a too mechanical system of morphology which has threatened to devitalize the science. In his introductory chapter, "Morphology and Organography," the author strikes the keynote of his work-namely, the important bearing of function on structure, and the necessity for a correlated study of the two. The title of his book is based, he tells us, on the idea expressed by Herbert Spencer, " whose work is far too little valued by botanists," as follows :-" Everywhere, structures in great measure determine functions; and everywhere functions are incessantly modifying structures. In nature the two are inseparable co-operators; and science can give no true interpretation of nature without keeping their co-operation constantly in view. An account of organic evolution, in its more special aspect, must be essentially an account of the inter-actions of structures and functions." The author condemns the sharp distinction which has been so often made between the organs of physiology and the members of morphology, an artificial and imperfect distinction which was of service for a time in emphasizing the close relation between the various parts of a plant and in giving definiteness to our idea of the plant-body, but which has been pushed too far, often leading to
" one-sidedness and empty theorizing." Goebel quotes as an outcome of this evil what he calls the "Differentiation Theory," that form of the doctrine of metamorphosis which has arisen from the study of the transformations of leaves, and which assumes that the manifold kinds-foliage-leaves, scale-leaves, bracts, sporophylls, \&c.-have arisen from certain indifferent primordia at the vegetative apex. These variously functioning structures have one thing in common-they are leaves, "a leaf" being an abstraction with which nothing can be identified ; each is the result of a hypothetical transformation of the abstract "leaf," according to the need of the plant. Goebel, on the other hand, contends that the primordium is not an indifferent structure, and any transformation that occurs -as e.g. scale-leaves from foliage-leaves-is actual, not hypothetical, and that this can be demonstrated by observation and experiment. The doctrine which he condemns could never have been developed if the less variable root, and not the protean leaf, had been the object of study.
" The idea that morphology has nothing to do with the function of organs has been acquired entirely because the fact has been overlooked that the transformations seen in organs are conditioned by a change of function. Their functions have been treated as subordinate in determining the characters of organs; external relations alone have been taken as the chief points for consideration.
If we separate function from form, we are at once led into altogether unfruitful speculations."

These remarks preface the first section of the book, entitled "General differentiation of the plant-body"; they are followed by a discussion of the limitations which must be set on the use of the terms "phyllome," "c caulome," and "trichome," especially the latter. The statement that all trichomes arise from the epidermis is often taken to imply that everything that arises out of the epidermis is a trichome. Remaining chapters deal with the progressive formation of organs and division of labour in the thallophytes, the process of regeneration, and a brief but lucid account of concrescence and arrest.

The second section, "Relationships of Symmetry" (pp. 65-138), deals with "the general relationships in space of the configuration of plants," both of the vegetative and floral organs. Dr. Arthur Weisse supplies a sketch of Schwendener's mechanical hypothesis of leaf-position (pp. 74-84), at Dr. Goebel's request, he himself holding "another view of the importance of the mechanical hypothesis of phyllotaxy and of its empirical groundwork, was therefore desirous to have the principles of it explained from the other side."

There is also an interesting account of anisophylly, or the occurrence of leaves of a different size and quality on the different sides of horizontally growing shoots. The phenomenon is intimately associated with the direction of incidence of light-rays; though light must not be regarded as the sole determining factor. In discussing the symmetry of flowers the author uses the terms "radial" and "dorsiventral" in preference to "regular" and "irregular," or "zygomorphic." Much work remains to be done on the causes of dorsiventrality of flowers and inflorescences; the fact that examples

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
anything serious in that direction to offer, and it would seem hardly worth while to point out such trivial slips as are inevitable in a book of this kind. What strikes one most is the extensiveness of the vocabulary of botany, and the very small proportion of it which is in actual use. Its extent, too, increases almost daily, aid Mr. Jackson will soon have material for an enlarged edition; he will find some in Mr. Horrell's revision of Sphagnum now publishing in this Journal. We note, indeed, that the volume has an appendix of twenty-four pages of "additions during the printing of the preceding pages." The only quasi-popular term we miss is "slmemoulds," and with this we can dispense, as indeed we could with a good many which find a place. Among words of portentous length " necrocoleopterophilous" may claim a high position.

The Glossary is well printed, well bound, cheap, and usefulqualities which cannot fail to ensure for it a large circulation.

ARTICLES IN JOURNALS.*

Bot. Centralblatt. (No. 36). - F. Brand, ' Der Formenkreis von Glceocapsa alpina' (concl.). - A. J. M. Garjeanne, 'Ueber ein monströses Köpfchen von Bellis perennis.' - (Nos. 37-39). G. Gillain, ' Zur Anatomie der Palmen- und Pandanaceen-Wurzeln ' (1 pl.).

Bull. Soc. Bot. Belgique (xxxix, 3: 29 Aug.).-C. van Bambeke, ' Monstruosité du Boletus luteus ' (1 pl.).-J. Chalon, 'Herborisations à Banyuls, Pyrénées.'

Bull. Soc. Bot. France (xlvi, 8 : no date).-Ch. Flahault, ‘H. L. de Vilmorin' (1843-1899 ; portr.).-M. Gandoger, 'Flore du Mont Kosciusko, Australie Méridionale.' - Id., 'Plantes nouvelles de l'Himalaya.' - D. Clos, 'Les tuberculoides des Légumineuses.'L. Planchon, 'Polymorphisme des Alternaria.' - E. Boudier, Lucien Quelet (1832-1899). - E. Roze, 'L'Escluse et l'idée de la sexualité végétale.' - M. de Vilmorin, Decaisnea Fargesii. - E. A. Finet, 'Espèces nouvelles du Culanthe' (2 pl .).

Gardeners' Chronicle (22 Sept.). - W. R. Fisher, 'Physiological differences between the Sessile and Pedunculate Oaks.'

Journ. R. Microscopical Soc. (Aug.).-A. L. Smith, ‘New Microscopic Fungi ' (1 pl.).

Mem. de l'Herb. Boissier (20 Aug.). - P. Carbi, 'Les'espèces du genre Mathiola.' - F. R. M. Wilson, 'Lichenes Kerguelenses.' G. E. Post, 'Plantæ Postianæ.' - C. Meylam, 'Flore bryologique du Jura.'

Rhodora (Sept.).—M. L. Fernald, ' The Bilberries of New England.'

[^26]BOOK-NOTES, NEWS, \&c.
We have received a Flora of Skipton [West Yorkshire] and District, "compiled by Lister Rotheray, and published by subscription under the auspices of the Craven Naturalists' and Scientific Association, 1900." It is a well-printed pamphlet of 144 pages, and its completeness is noteworthy-the vascular and cellular cryptogams being fully enumerated, so that the list contains upwards of 2200 species and varieties. A map of the district, the extent of which is not stated, is given. Mr. Rotheray has been fortunate in having obtained the help of specialists; his own investigations of the district have extended over eleven years. There are no observations on any of the species, and no points for comment suggest themselves. The only drawback to the appearance of the book is in the printing of what are conventionally termed the "English names"; these glare out at the reader in thick black type, and embrace such curiosities as "Red Horn-of-Plenty-Lichen," "Koeler's Crested Grass," "Wood False Brome Grass," and the like.

In his Botanizing-"a guide to field-collecting and herbarium work" (Preston \& Rounds Co., Providence, R.I., price 75 cents) Prof. W. W. Bailey has given us, in small compass, all that we need know about the subject. After a brief introduction and a chapter on "equipment," we have an essay on collecting generally, followed by "directions for particular families," including the cryptogams. The herbarium next receives attention, and the book ends with chapters on museums, botanical gardens, and libraries, the last containing an exceedingly well-selected list of systematic books of reference. The book, moreover, is extremely well written, and every page gives evidence of practical knowledge, either from the author or from some good authority whom he has laid under contribution, or who has contributed special information. The printer has done his part well, and the result is an admirable little volume which is certain of a large circulation in America, and which many on this side the Atlantic will find suggestive and useful.

The most recent part of the Icones Plantarum contains several important items. The following new genera are established:Ranalisma Stapf (Alismaceæ) ; Allospondias Stapf (Anacardiaceæ); Botrypleuron Hemsley (Scrophulariaceæ)—the last for four species formerly placed in Calorhabdos. Mr. Hemsley also describes, among other novelties, a new Castilloa (C. Tunu), a new Pandanus (P. Cominsii) from the Solomon Islands, and a Chinese Cydonia (C. cathayensis) of which "a more detailed history will appear in the Kew Bulletin." From this we gather that it is intended to resuscitate the Bulletin, which has been in abeyance for twelve months. Other novelties are described by members of the Kew staff, the labours of the Director being devoted exclusively to the editing of the work. Some of the plants figured are somewhat lacking in special interest-e.g. some of the new oaks, the figure of one of which (Quercus Editha) is extremely poor.

Another Handbook of Plant Collecting comes to us from Messrs. J. \& R. Parlane, Paisley. It is the work of Mr. J. M. B. Taylor, Curator of the Free Museum, Paisley, and is published at the modest price of 6d. net. It contains many useful suggestions, but is marred by the author's unfortunate literary style, which is irritating to the reader. Much of his limited space is taken up with useless or unnecessary remarks, often conveyed in inflated language. Thus we are told that " Botany, in a nut-shell, is that science which takes a comprehensive view of all plants that cover the surface of the earth from the minutest lichen moss or alga, only visible by the aid of the microscope, to the most gigantic productions of the tropics; while it alıke takes notice of the common weeds by the roadside. Association with plants is very close. These lines, common in use in the fourteenth century in the struggle between rich and poor, remind us of its antiquity, viz. :-

> ' When Adam delved and Eve span, Who was then a gentleman? '

This association with plants began to form the science we call Botany." The book is further disfigured by the crudest illustrations which we have ever seen: it is inadequate to say that their absence would improve the book. Nevertheless the little work contains much that is useful, and if Mr. Taylor will submit it to a friend with a blue pencil, it will be greatly improved in a second edition.

We have received the first part of what seems likely to be an important contribution to French botany-a ' Flore descriptive et illustrée de la France de la Corse et des Contrées limitrophes," by the Abbe H. Coste. From the prefatory remarks on the cover, we gather that it is intended to replace Grenier and Godron's admirable work, which has long been out of print, and is moreover half a century old. The special feature of the present work is a small but well-executed original figure of every species described, in the style of those in the illustrated edition of Bentham's Handbook. The present fascicle contains 311 descriptions and figures, and brings the enumeration down to Iber is. The work is to be completed in nine parts, forming three volumes, which will not be sold separately, and cau only be obtained by subscribers; it will cost sixty francs when complete, but until the completion of the first volume may be had for forty-five francs paid in advance to the publisher, M. Paul Klincksieck, 3, Rue Corneille, Paris. The completion of the work in three years is guaranteed. We reserve a more detailed notice until the Flora has farther advanced; meanwhile we warmly commend it to the notice of British botanists. We note, however, that the author claims to belong to " l'école linnéenne et classique, et en conséquence n'admet que les espèces de premier ordre pourvues des caractères constants et faciles à saisir. Les espèces de deuxième ordre et les principales variétés sont cependant mentionnées, mais non figurées." The absence of bibliographical citations and of synonymy is to be regretted, but the inclusion of these would be foreign to the plan of the book.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

1

9

8

5

LEJEUNEA MACVICARI Pearson, sp. n.

(Plate 415.)
Monorcous; loosely cæ̇spitose or creeping upon mosses; minute ; pale yellowish green in colour. Stems slightly and irregularly branched. Leaves alternate, approximate or dissitous, patent to erecto-patent $\left(50^{\circ}-30^{\circ}\right)$, oblong-oval, slightiy concave, apex obtuse or obtusate, rarely subacute; lobule half to a third smaller, oval or cylindrical, ventricose, free angle sometimes notched; texture lax; cells small, 4 -, 5 -, and 6 -angled, walls firm, no trigones or thickened angles. Stipules somewhat similar in size to the lobules, broadly oval, bifid to the middle or slightly more, sinus very narrow, segments acute. Female flowers terminal on short branches. Bracts oval, lobule about half the size, oblong, apex obtuse. Bracteole oblong, bifid to about a third, sinus narrow, segments acute. Perianth projecting about half beyond the bracts, oval-orbicular to orbicular-pyriform, ecarinate. Calyptra delicate, obovate. Capsule globose, dark brown. Andrœecia produced from side of main stem, globose, two pairs of perigonial bracts; antheridia single, oval.

Dimensions. Stems $\frac{1}{4}$ in. long, 04 mm . diam., with leaves $\cdot 5 \mathrm{~mm}$. wide; leaves $\cdot 3 \mathrm{~mm}$. to $\cdot 35 \mathrm{~mm} . \times \cdot 15 \mathrm{~mm}$., lobule $\cdot 15 \mathrm{~mm}$. $\times \cdot 75 \mathrm{~mm}$. ; cells $\cdot 02 \mathrm{~mm}$.; stipules $\cdot 125 \mathrm{~mm} . \times \cdot 1 \mathrm{~mm}$. , segments $\cdot 05 \mathrm{~mm} ., \cdot 15 \mathrm{~mm} . \times \cdot 125 \mathrm{~mm} .$, seg. $\cdot 075 \mathrm{~mm} ., \cdot 175 \mathrm{~mm} . \times \cdot 15 \mathrm{~mm} .$, seg. $\cdot 075 \mathrm{~mm}$.; bract $\cdot 3 \mathrm{~mm} . \times \cdot 175 \mathrm{~mm}$., lobule $\cdot 175 \mathrm{~mm} . \times$ $\cdot 05 \mathrm{~mm}$. ; bracteole $\cdot 275 \mathrm{~mm} . \times \cdot 15 \mathrm{~mm}$. , seg. $\cdot 075 \mathrm{~mm} . ;$ perianth $\cdot 6 \mathrm{~mm} . \times \cdot 4 \mathrm{~mm} ., 5 \mathrm{~mm} . \times \cdot 3 \mathrm{~mm} . ;$ calyptra $\cdot 3 \mathrm{~mm} . \times 225 \mathrm{~mm} . ;$ capsule $\cdot 175 \mathrm{~mm}$. diam. ; andrœcia $175 \mathrm{~mm} . \times \cdot 175 \mathrm{~mm}$.

Habitat. Creeping amongst mosses and other hepatics, Allt-aMhuillin, Kinlochmoidart, West Inverness, 22/4/1898. On old elm stem in ravine, Allt Allan, Moidart, West Inverness, 4/5/99, S. M. Macvicar, Esq.

Obs. This is a very distinct Lejeunea, and distinguished at once from any of the European species by its perfectly smooth perianth; it can also be easily recognized from any of them by the shape of the leaves; these in outline somewhat approach those of Lejecterea diversiloba Spruce, but in that species the lobule varies in a remarkable manner, and the texture is rigid, the stems especially so. L. ulicina Tayl. is dioicous. L. minutissima (Smith) has lobule almost as large as the leaf, and the perianth is 5 -angled.

None of the North American or other species of this genus are like it, as far as I have been able to find out.

I have submitted specimens to Herr F. Stephani, who writes: "The Eu-lejelurea Mucvicaii is certainly a very good species, the perianth not being plicate."

I have great pleasure in naming it after Mr. Macvicar, the discoverer of it, who has made more important additions to our knowledge of the distribution of the British Hepaticæ than any other botanist for many years.

Journal of Botany.—Vol. 38. [Nov. 1900.]

Description of Plate 415. - Fig. 1. Plant, natural size. 2. Portion of stem, postical view, $\times 64$. 3. Ditto, antical view, $\times 85$. 4. Leaf with lobule, postical view, $\times 85$. 5. Portion of leaf, $\times 290$. 6. Stipule $\times 85$. 7. Bract, $\times 85$. 8. Bracteole, $\times 85$. 9. Perianth, with bracts and bracteole, $\times 64$. 10. Cross-section of perianth, $\times 24$. 11. Andrœecia, $\times 85$ (Kinlochmoidart, S. M. Macvicar, Esq.).

SUTHERLANDSHIRE MOSSES.

By William Edfard Nicholson.

The following list of Sutherlandshire mosses is compiled from observations made between the 6th and the 24th July, 1899. From the 6th to the 17th July the district was explored by Mr. H. N. Dixon, who traversed the country from Lairg to Altnaharra, whence Ben Clibreck and Ben Hope were ascended, then went on by Tongue and Erriboll to Durness, exploring from this centre Smoo Cave, Cape Wrath and the Far-out Head, and, travelling south, was joined at Inchnadamph on the 17 th July by Mr. E. S. Salmon and myself.

There was no reason to regret the selection of Inchnadamph as the principal centre for investigating the moss-flora of Sutherlandshire. An outcrop of limestone near the head of Loch Assynt, close to Inchnadamph, extends for some considerable way to the west and south, for the most part comparatively low down, and reaching a maximum elevation of about 2000 ft . in the Breabag Valley, about six or seven miles to the south-west of Inchnadamph, and it was on this limestone that the most interesting plants were found.

The higher mountains in the district were not very productive. Ben More Assynt (3273 ft .) and Coinnembeall (3234 ft .) are capped for some distance with quartzite, and their summits present a wilderness of stones, almost devoid of any vegetation, the only productive parts of them being a bed of stiff reddish clay overlying the quartzite between the two peaks, and for which it was impossible to find any origin in the existing rocks. Quinag (2653 ft.), most of which is composed of very hard conglomerate rocks, was scarcely more productive, though Glyphomitrium Daviesii managed to maintain a precarious existence there.

Owing to this fact, the moss-flora of the district, notwithstanding its high latitude, is very poor in northern or arctic species as compared with the higher parts of the Grampians; indeed, some of the better species which thrive near Inchnadamph -e.g. Tortula princeps and Weisia calcarea-are characteristic of southern rather than northern latitudes.

A list compiled in so short a time is of necessity very incomplete, but a sufficient number of species, several of them of interest, were observed to make the list worth publishing, if only as an encouragement to others who may be tempted to investigate more fully so promising a district.

The numbers refer to the vice-counties, 107 being East Sutherland, which is separated from West Sutherland (108) by the line of the watershed, which is so traced as to divide the south-eastern

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Diphyscium foliosum Mohr. 108. Ben More Assynt and Quinag; both specimens sterile.

Ditrichum homomallum Hpe. Common in both divisions, c.fr.D. fexicaule Hpe. Common on limestone in 108. - Var. densum Braith. 108. Glen Dubh.

Swartzia montana Ldb. 108. Common, c.fr.-S. inclinata Ehrh. 108. Cliffs by Smoo Cave, Durness. Growing with it was a smaller compact form parallel to the var. brevifolia B. \& S. of S. montana, which, although occasionally approaching the type, was on the whole well marked.

Seliger ia Doniana C. M. 108. Limestone rocks, Allt-nan-Uamh, c.fr. - S. pusilla B. \& S. 108. Sandstone rocks near Inch.S. recurvata B. \& S. 108. Wet rocks in Glen Dubh, c.fr.

Ceratodon purpureus Brid. Common in both divisions, c. fr .
Rhabdoweisia denticulata B. \& S. 108. Earth-covered rocks on Quinag, c. $f r$.

Cynodontium polycarpum Schp. 108. Boulders in a stream at Altnaharra.

Dichodontium pellucidum Schp. Common in both divisions, c.fr. A tall form, in habit very like D. flavescens, but with a striate peristome, was gathered by the stream in Glen Dubh. This plant had abundant gemmæ, which generally seem more characteristic of the shorter-leaved form. A form near the var. compactum Schp. occurred on the Far out Head.-D. flarescens Ldb. 108. Glen Dubh.

Dicranella heteromalla Schp. In both divisions, c.fr. A form near to, if not identical with, the var. clata Ferg. occurred on Canisp. -D. secunda Ldb. 108. Sandy ditches near Inch. c.fr.-D. varia Schp. 108. - D. squarrosa Schp. Common. 107. Near Lairg. c. fr. 108.

Blindia acuta B. \& S. 107 \& 108. Common and fruiting well in places.

Dicranoweisia crispula Ldb. 108. Crags on Ben Hope, c. fr .
Campylnpus Schimpeıi Milde. 108. Glen Dubh, Inch. - C. Schwarzii Schp. 108. Fairly common. - C. Hexuosus Brid. 108. Loch-na-Meide, a straight dark form with abundant fruit, near Inch.-C. pyriformis Brid. 108. Not uncommon, c.fr.-C. fragilis B. \& S. 108. Glen Dubh, Inch.; a fine tall form. - C. atrovirens De Not. Common in both divisions. - Var. falcatus Braith. 108. Near Inch. - Var. epilosus Braith. 108. Ben Clibreck and near Inch., common; often very marked, but specimens occur with short hair points.-C. brevipilus B. \& S. 108. (Prof. Barker.)

Dicranodontiun longirostre B. \& S. 108. Ben Hope. - Var. alpinum Sehp. 108. Peaty ground near Inch.

Dicramum fulvellum Sm. 108. Glas Bheinn and conglomerate rocks of Quinag, poor and with scanty fruit. - D. falcatum Hedw. 108. Common on Ben More Assynt, c.fr.. Growing with the type was a form with short cells as in Cynodontium polycarpum, possibly a condition induced by the very wet ground in which it was growing. - D. Starkei W. \& M. 108. Ben More Assynt, c.fr.D. Bonjeani De Not. 107 \& 108.-D. scoparium Hedw. $107 \& 108$. - Var. paludosum Schp. 108. Glen Dubh; wet ground, with the
leaves slightly undulate when moist. - Var. orthophyllum. 108. Boulders in a wood on Ben Hope. - D. majus Turn. 108. Wood by Loch Assynt, \&c. - D. fuscescens Turn. 108. Common; with abundant fruit in the wood by Loch Assynt.-D. Scottianum Turn. 108. Shaded rocks in the wood by Loch Assynt, with abundant fruit. - D. uncinatum C. M. 107. Ben Clibreck, a small form. 108. Glen Dubh, very fine; also in the wood by Loch Assynt and other places. - D. asperulum C. M. 108. Growing with D. uncinatum, as is usually the case, in all the localities of the former.

Leucobryum glaucum Schp. $107 \& 108$.
Fissidens bryoides Hedw. 108. - F. osmundoides Hedw. 108. Wood by Loch Assynt.-F. adiantoides Hedw. 108.- F. decipiens De Not. 108.-FF. taxifolius Hedw. 108.

Grimmia apocarpa W. \& M. 107 \& 108.—Var. rivularis W. \& M. 108. Rocky beds of torrents, Inch., c.fr. Robust and well marked. - G. maritima Turn. 108. Rocks by the sea, common, c.fr.G. funalis Schp. 108. Glas Bheinn and Quinag. - G. torquata Hornsch. 108. - G. pulvinata Sm. Both divisions, c.fr. - G. trichophylla. 108. A robust form was gathered on rocks by Loch Assynt. - G. decipiens Ldb. 108. Stones of a bridge at Scourie, with good and abundant fruit. - G. Hartmani Schp. 108. Glas Bheinn; rocks by Loch Assynt, the latter very fine. - G. patens B. \& S. 108. Ben Clibreck, c.fr. Glen Dubh, with faint traces of a hyaline point to the leaves. - G. Doniana Sm. 103. Not common. Conglomerate rocks on Quinag, c.fr. - A small barren tuft of another species of Grimmia unlike any described European species was gathered in 108, near Inch., on a detached block of limestone. The species most closely resembling it is the American G. calyptrata Hook.; but it has good leaf-characters to distinguish it from this, and appears to be a new and distinct species.

Rhacomitrium ellipticum B. \& S. 108. Quinag, $c . f r .-R$. aciculare Brid. 107. Common. 108. Common, c.fr., Altnaharra, on alder roots and twigs. A very remarkable form was gathered submerged in a stream at an altitude of about 2500 ft . on Ben More Assynt, with elongate stems and distant squarrose-recurved leaves.-R. protensum Braun. $1.07 \& 108$. A black rigid form with broad-pointed leaves was gathered on wet rocks at the base of Quinag. R. fasciculare Brid. In both divisions, c. fr. - R. heterostichum Brid. Abundant in both divisions, c.fr. - Var. alopecurum Hub. 108.-Var. gracilescens B. \& S. 108.-R. lanuyinosum Brid. 107 \& 108. - Forma epilosa. 108. Hollow on Ben More Assynt where snow had recently lain. Many of the stems had the leaves quite devoid of hair points. - R. canescens Brid. Common in both divisions, c.fr.-Forma epilosa. 108. Ben Clibreck, in the sand of a stream, with abundant fruit.

Ptychomitrium polyphyllum Fürnr. 108. Walls, c.fr.
Glyphomitrium Daviesii Brid. 108. Boulder by the road near Scourie, c.fr. Conglomerate rocks, Quinag, c.fr., poor.

Hedwigia ciliata Ehrh. 108. Common on rocks, c.fr. - Var. striata Wils. 108. Rocks by the stream and tarn on Glas Bheinn, c. fr.; a well-marked form of the var.

Tortula muralis Hedw. Walls in both divisions, c.fr.-T. subulata Hedw. In both divisions, c.fr.—T. ruraliformis Dixon. 108. Sandhills near Durness. - T. princeps De Not. 108. Limestone crags to the south of Inch.; in immense rounded cushions, with abundant fruit. The leaves were less interrupted than is often the case, probably owing to the very dense habit.

Barbula rubella Mitt. In both divisions, $c . f r$. - Var. ruberrima Braith. 108. Ben Uidhe, Inch. - B. toplacea Mitt. 108. - B. fallax Hedw. var. brevifolia Schultz. 108. Alt-nan-Uamh. B. recurvifolia Schp. 108. On the limestone near Inch. - B. spadicea Mitt. 108. Sandy detritus by the stream in Glen Dubh, c. $f r$. - B. rigidula Mitt. Walls in both divisions, c.fr., and with the characteristic gemmæ. - B. cylindrica Sehp. 108. Inch., not common. - B. revoluta Brid. 107 \& 108. - B. concoluta Hedw. 107 \& 108.-B. unguiculata Hedw. 108.

Leptodontium flexifolium Hpe. 108. Dry peaty ground on Brea-bag.-L. recuivifolium Ldb. 108. Moist rocks by waterfalls, poor. Ben Uidhe and Coinnemheall.

Weisia microstomá C. M. 108. Limestone rocks near Inch., c.fr. - IV. calcarea C. M. 108. Shallow limestone caves in Glen Dubh; a fine form, in deep tufts, and not fragile. - W. rupestris C. M. 108.-IV. curvirostris C. M. 108. A remarkably robust and apparently undescribed form occurred on stones by waterfalls and rapids in Glen Dubh.-IV. verticillata Brid. 108. Limestone rocks, Inch.

Trichostomum crispulum Bruch. 108. Limestone rocks, Inch.; a robust broad-leaved form. A form with narrower less cucullate leaves occurred in Glen Dubh. - T. mutabile Bruch. 108. Not uncommon. - Var. littorale Dixon. 108. Altnaharra; crags near Allt-na-Caillich, at an altitude of 1000 ft . on Ben Hope, a wellmarked form with small short leaves. Growing with it was a more robust form with larger leaves, but referable to the var. littorale rather than to the type. - T. tenuirostre Ldb. 108. Wet rocks on Quinag and Ben Uidhe. - T. inclinatum Dixon. 108. Limestone rocks south of Inch. Some of the tufts are well characterized, but others are much less so, and approach T. tortuosum through the var. fiagilifolium. The plants gathered tend to confirm the view of Boulay, that when growing under favourable conditions T. inclinatum is easy to recognize and well-characterized, but under less favourable conditions it appears to connect itself with several allied species.-T. tortuosum Dixon. 108. Very common on the limestone at Inch., fruiting sparingly.-Var. fragilifolium Dixon. Smoo Cave, Durness.

Cinclidotus fontinaloides P. B. 108. Common by streams, c.fr. Encalypta ciliata Hoffm. 108. Loose earth in Glen Dubh, c.fr. -E. streptocarpa Hedw. 108. On the limestone.

Anactangium compactum Schwg. 108.
Zygodon Mougeotii B. \& S. 108. Quinag.-Z. viridissimus R. Br. 108. Trees and walls, sparingly.

Ulota Drummondii Brid. 107. Birches near Lairg, c.fr. The numerous stomata in several rows appear to be of some value in

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Webera polymorpha Schp. 108. Ben More Assynt, c.fr.W. acuminata Schp. 108. Ben Clibreck. - W. elongata Schwgr. 108. Quinag, c.fr. - W. nutans Hedw. In both divisions, c.fi. A form which may be the var. caspitosa occurred by the rocky side of a stream at Altnaharra; also another with long rigid innovations as in W. annotina.-Var. longiseta B. \& S. 108. In a peat cutting, Loch-na-Meide, c.fr. - W. annotina Schwgr. 108. Sand and boulders in a stream near Altnaharra; a remarkable form with large hollow bulbils, which very probably belongs to W. bulbifera Warnst. - W. Ludwiyii Schp. 107. Ben Clibreck. 108. Ben More Assynt, c.fr. - V̄ar. elata Sehp. 108. A robust form 3-4 in. tall, with the leaves hardly so wide as is usual with var. latifolia and more strongly toothed, but referable to the var. rather than to the type, occurred on Canisp and Ben More Assynt. - W. commutata Sehp. 108. Ben Clibreck and Glen Dubh, c.fr. A laxly tufted form with bulbils in the axils of the leaves on the barren stems, and much resembling W. annotina in general appearance.W. carnea Sehp. 108. - IV. albicans Schp. 108. Damp sandy ground, not common.

Plagiobryum Zierii Ldb. 108. Ben Hope.
Bryum filiforme Dicks. Not uncommon in both divisions; with immature fruit on wet sandy ground near Inch. $-B$. pendulum Sehp. 108. Limestone crags below Inch., c.fr. - B. inclinatum Bland. 108. Not common, c.fr.-B. pallens Sw. By streams in both divisions, common, $c . f r$., with the cilia of the inner peristome often imperfect. - B. Duvalii Voit. 108. Marshy ground near the heads of springs on Coinnemheall, fine and abundant. - B. pseudotriquetrum Schwg. In both divisions abundant, c. fr. A form with a rather short capsule was gathered in Glen Dubh.-B. intermedium Brid. In both divisions, c. $f r$. - B. caspiticium L. In both divisions, c.fr. - B. capillare L. Common in both divisions, c.fr. A synoicous form was gathered on a wall near Lairg. The capsule, however, is not of the torquescens form, nor are the leaves, which are but little twisted when dry, and denticulate above. - Var Ferchelii B. \& S. 108. Limestone caves, Allt-nan-Uamh, and boulders in Glen Dubh. - B. erythrocarpum Schwgr. 108. Peaty ground, Quinag, $c . f r$. ; some of the capsules with very short necks. -B. alpinum Huds. 107. Ben Clibreck. 108. Common; a compact slender form with small leaves was gathered on Canisp ; Kylesku, c.fr. - B. Mïhlenbeckii B. \& S. 108. Protruding rocks in streams, Glas Bheinn and Coinnemheall. The form from Glas Bheinn is very dark, almost blackish. The Coinnemheall plant is more typical. It was almost invariably associated with a form of B. pseudotriquetrum with short almost borderless leaves, which closely resembled it in a moist state. The resemblance disappeared on drying. - B. Mildeanum Jur. 108. Sandy débris and rocks by streams; very fine on Coinnemheall.

Mnium affine var. elatum. 108.-M. rostratum Schrad. 108.M. undulatum L. In both divisions. - M. hornum L. In both divisions, c. fr. A form with the leaves homomallous on Ben Hope.
-M. serratum Schrad. 108. Glen Dubh and Breabag, c.fr.M. orthorhynchum B. \& S. 108. Limestone rocks, Allt-nan-Uamh. The male plant, and barren ; in large wide tufts intermixed with a little fruiting M. serratum.-M. punctutum L. 108. Inch., a smallleaved form with somewhat the habit of a Cinclidium.-Var. elatum Schp. 108. Marshy ground on Coinnemheall, principally the male plant.

Cinclidium stygium Sw. 108. Wet peaty ground at the head of Loch Maol-a-Choire, abundant and fruiting well in places.

Fontinalis antipyretica L. 108. Streams, common. - Var. gracilis Sehp. 108. Springs at 2000 ft. on Canisp. A rigid form, hardly collapsing when dry. $-F$. squamosa L. 108. Rocks in a stream on Quinag.

Neckera crispa Hedw. 108.-N. complanata Hübn. 108.
Pterygophyllum lucens Brid. 108. A remarkable form was gathered on Canisp growing in springs with Sphagnum, \&c., in tall dense masses of a deep green colour, with erect crowded stems.

Leucodon sciuroides Schwgr. 108.
Pterogonium gracile Sw. 108. Rocks by Loch Assynt.
Antitrichia curtipendula Brid. 108.
Porotrichum alopecurum Mitt. 108.
Anomodon viticulosus H. \& T. 108. Limestone rocks, Inch.
Eterigynandrum filiforme Hedw. 103. Rocks by Loch Assynt,
Heterocladium heteropterum B. \& S. 108. Rocks in the wood by Loch Assynt; a delicate form, but hardly the var. fallax. - H. catenuluta B. \& S. 108. Limestone rocks at Breabag and Allt-nanUamh, fairly common. Growing with it was a paler form, softer than the type, with longer more tapering and more denticulate leaves, with longer cells. At first sight this plant appears very distinct, and might be taken for the var. filamentosa Boul. of P. atrovirens. Intermediates, however, between it and the type were present. It appears to be the same as Leskea Vaucheri Schp. MS., which was reduced by Wilson to a var. of catenulata.

Thuidium tamariscinum B. \& S. 107 \& 108. .-. T'. delicatulum Mitt. Wet rocks on Quinag, Ben Uidhe, and by Loch Assynt. The Quinag plant poor, and with the colour of T. recognitum; that from Loch Assynt very characteristic and well developed. - T. recognitum Ldb. 108. Limestone rocks, Inch.

Climacium dendroides W. \& M. 108. Not uncommon, but poor. Cylindrothecium concinnum Schp. 108. On the limestone near Inch.
Orthothecium rufescons B. \& S. 108. Principally on the limestone, fruiting sparingly in very damp places.-O. intricatum B. \& S. 108. Clefts of rocks on the limestone.

Isothecium myurum Brid. 108.
Pleuropus sericeus Dixon. 108. Not uncommon. A slender form occurred at Cape Wrath resembling at first sight H. cupressiforme var. resupinatum, with which it was growing.

Camptothecium lutescens B. \& S. 108. Common on the limestone. A tall fine pinnate form occurred on the Far-out Head.

Brachythecium glareosum B. \& S. 108. - B. albicans B. \& S.

107 \& 108. - B. salebrosum B. \& S. var. palustre Schp. 107. - B. rutabulum B. \& S. 108.-B. vivulare B. \& S. Abundant on rocks in streams in both divisions.-Var. chrysophyllum Spr. 108. Rocks by the streams in Glen Dubh and elsewhere. Most of the specimens, in fact, approached this form. - B. plımosum B. \& S. 108. -B. purum Dixon. 108. Common.

Hyocomium flagellare B. \& S. 107. Rocks by a stream. 108. Quinag.

Eurhynchium crassinervium B. \& S. 108. Limestone rocks, Glen Dubh; a robust form. - E. prolongum. 108. - Var. Stokesii. 108.-E. Swartzii Hook. 108.-Var. rigidım. 108. Limestone caves, Glen Dubh; not very well marked, but with erect rigid branches and the leaves striate when dry, and not complanate. The plant bears some resemblance to a small form of E. striatum. - E. abbreviatum Schp. 108.-E'. tenellum Milde. 108.-E. myosuroides Schp. In both divisions. A robust prostrate form without the dendroid habit of the type was gathered among rocks on Ben Clibreck. This form, which somewhat resembles a Brachythecium in habit, has also been found on Quinag Hill, Skye, and is certainly deserving of a varietal name.-E. striatum B. \& S. 108.-E. rusciforme Milde. 108. Common in streams, c.fr. - Var. prolixum Turn. (non Brid.). 108. In a waterfall on Quinag, a marked variety with slender julaceous brown branches.

Playiothecinm Mïllerianum. 108. Rock-crevices on Ben Clibreck and Ben Uidhe, poor and scanty. It seems probable that this species will be found to have a wide distribution in Scotland, where suitable conditions occur. - P. Borverianum Spr. 108. Mostly in rock-crevices, fairly common. - P. pulchelluin B. \& S. 108. Widely distributed, but not very common, c. fr. - Var. nitidulum Husn. 108. Ben Uidhe, c.fr. - P. striatellum Ldb. 108. An erect densely-tufted form under rocks on Coinnemheall. -P. denticulatum B. \& S. 108. A form which grew in tall robust bright green tufts, paler below, was common by springs and rivulets on Canisp and Quinag. The leaves are large, tapering to an almost acuminate point, and usually markedly denticulate at the apex, very decurrent, with long double nerves reaching nearly half the length of the leaf, and with large cells. The leaf-margin is also slightly recurved.-P. undulatuin B. \& S. 107 \& 108.

Amblystegium Sprucei B. \& S. 108. Limestone caves at Allt-nan-Uamh. - A. serpens B. \& S. 108. Common, but not so universal as in the south. - Var. depauperatum Boul. Smoo Cave, Durness. - A. filicinum De Not. 108. Common and variable.Var. trichodes Steudel. 108. Rocks in the wood by Loch Assynt. Very slender and delicate. Limpricht distinguishes this var. from gracilescens Schp. chiefly by the comparative absence of rhizoids. A form having leaves with an excurrent nerve, but not otherwise like the var. vallisclausa Dixon, occurred in Glen Dubh. - A. compactum Aust. 108. Limestone caves, Smoo Cave, Durness, Glen Dubh, and Breabag. Two forms occurred in Smoo Cave, which, however, intergraded ; one more compact and tufted, and the other

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
poor; rather finer in the wood by Loch Assynt. - H. brevirostre B. \& S. 108. Ben Hope, a tall erect form. - H. loreum B. \& S. In both divisions. - H. squarrosum B. \& S. Abundant in both divisions.-H. triquetrum B. \& S. In both divisions.

LEPIDIUM HETEROPHYLLUM Bentham.

By Frederick Townsend, M.A., F.L.S.

An examination of specimens, in the Herbaria of Kew and the British Museum, of the genus Lepidium, and especially of L. heterophyllum Benth., L. Smithii Hook., and of the var. alatostyla, led me to enquire how the dehiscence of the silicules of the latter is effected. None of the specimens were sufficiently advanced to show this satisfactorily, so at the commencement of the month of September in the present year I visited the original station at Redbridge, near Southampton, where I found the plant so far advanced that even decay had already commenced; but not one out of the 550 silicules I examined had dehisced, though they were ripe and perfectly formed, and contained perfect seeds. The question arises-Is this indehiscent character constant? I can hardly imagine it to be otherwise, though it might be premature to assert it definitely without the observation of more than one season.

In the normal forms of L. Smithii dehiscence commences at the base of the notch where the valves join the replum. The faint marginal nerve of the wing extends to its summit, and then turns downwards along the notch where it joins the replum and separates from it, in dehiscence, adhering to the cast-off valve. In the silicules of var. clatostyla the wing itself together with its marginal nerve is prolonged, extends upwards, and appears to merge into and adhere to the style in a manner which seems to hinder or preclude dehiscence. If the character be constant, it would be sufficient, independent of the remarkable subacuminate character of the wings of the silicules, to constitute a marked form or variety, and to militate against its being merged into Bentham's typical L. heterophyllım, as proposed by Mr. N. E. Brown in Eng. Bot. Suppl. part i. p. 27 ; but on other grounds I do not see that Mr. Brown's suggested alteration of nomenclature would be satisfactory. In reality he proposes a new and opposing character for Bentham's L. heterophyllum-viz. "Fruit without a notch at the apex," and a new character for the var. canescens of Gren. \& Godr.—viz. "Fruit notched at the apex." I thus designate Mr. Brown's characters because they are neither to be found in the descriptions of Bentham nor of Gren. \& Godr. Bentham's original description is in Cat. des Pl. Indigènes des Pyrénées et du bas Languedoc, par G. Bentham, 1826, p. 95 :-" L. siliculis ellipticis, alatis, vix emarginatis, glabris ; stylo exserto filiformi ; caulibus diffusis, basi ramosis, apice ascendentibus, simplicibus; foliis caulinis, sagittatis, dentatis, glabris." Grenier and Godron also describe the silicules
thus:-"Ailes des silicules arrondies au sommet ou faiblement échancrées." A careful examination of authentic specimens in the Kew Herbarium shows that many of the silicules are really notched. There are two sheets of specimens with the following label:"Lepidium heterophyllum Benth. In superiori vallis Eynes parte à la Bagouta prope torrentem. Pyr. or. Unio itiner. Endress. ad finem Junii 1830." I find, even on the same specimen, silicules some of which are truncate or rounded or slightly notched. One specimen is immature, but the silicules are apparently similar. I also find the silicules notched on specimens with the following label in Bentham's own handwriting:-"86. Lepidium heterophyllum. M. Areasque près les Eaux Bonnes. 5.8.39." The left hand plant of specimens gathered in the Vallée d'Eynes, 24-26, 6,25 , is the only plant which, though immature, has silicules similar to the Redbridge plant.

Thus Mr. Brown's character-" Fruit without a notch at the apex"-would exclude from the L. heterophyllum of Bentham several specimens gathered and named by Bentham himself. Grenier and Godron found the distinction between their a heterophyllum and their β canescens on the character of the leaves only, and they do not allude to any silicule-character except in their specific description. Their a pyrenaicum nob. is described thus"Plante verte, à feuilles presque glabres"; their β canescens nob."Plante d’un vert blanchâtre, feuilles très velus." = Lepidium Smithii Hook. Thus, if Mr. Brown's nomenclature were adopted, confusion would be created, as var. alatostyla would come under his typical L. heterophyllum, whereas it comes under the β canescens of Gren. \& Godr.

I feel a diffidence in suggesting a nomenclature and arrangement which would be most suitable. If we accept subspecies; both L. heterophyllum Benth. and L. Smithii Hook. have, I think, a claim to be considered subspecies of L. campestre L.; any way, in consideration of the marked difference in character and of the different areas. of distribution, distinct and equal rank should be conceded to them, and the var. alatostyla should be retained as a var. of L. Smithii Hook., or be dropped altogether, and the specific character of the latter altered so as to express the variable form of the wing of the silicule. This variability is perhaps better shown in specimens from "Beach near Lydd, Kent," quoted by Mr. Brown as similar to the Redbridge plant, and by other specimens in the herbarium of the British Museum from "Hedge-bank near Hayes, Kent." I have carefully examined the Lydd specimens ex herb. J. S. Mill, and find the silicules are mostly emarginate, though some are truncate or rounded, while one of the Hayes specimens collected by Mr. James Groves has similar silicules, some of which are slightly emarginate and some rounded at the apex.

THE EUROPEAN SPHAGNACE \notin

(after Warnstorf)

By E. Charles Horrell, F.L.S.

(Continued from p. 392.)

§ viil. Sphagna cymbifolia Schimp.

Branch-leaves of medium size to large, ovate or roundish- to oblong-obovate, boat-shaped, with small teeth on the scarcely bordered lateral margins; apex wide, rounded and cucullate, never toothed, frequently with a hyaline border; the margin generally widely inrolled at the apex and for some distance down the leaf; when dry never undulate, and frequently with a slight lustre. Chlorophyllose cells in section broadly equilateral- or narrowly isosceles-triangular or narrowly rectangular to barrelshaped, generally free on the inner surface of the leaf, more rarely free on both surfaces of the leaf or completely enclosed by the hyaline cells; hyaline cells, on the inner wall where united to the chlorophyllose cells smooth, papillose, with so-called comb-fibrils or with 2-3 longitudinal and almost parallel fibrils; pore-formation various, on the inner side generally with the pores chiefly near the lateral margins, on the outer side generally with very numerous pores in rows on the commissures, usually with large membranegaps in the upper cell-angles near the apex. Stem-cortex in several (to 5) layers of very wide, thin-walled cells, always with one or more (to 9) large pores on the outer wall of the superficial layer; generally fibrillose, more rarely quite without fibrils. Cortical cells of the branches not forming retort-cells, but, especially in the pendent branches, always with fibrils and pores. Stem-leaves sometimes rather small, sometimes large, sometimes very large, in most cases lingulate to spatulate, either with hyaline border all round or only at the broadly rounded apex; frequently the margin inrolled in the upper part; non-fibrillose or with fibrils more or less developed, sometimes fibrillose and porose to the base. Colour whitish, green, brown, or purple.

This very distinct section comprises about forty-two species, of which all the seven European species are found in this country. Most of the members of this group are at once recognized as belonging to the section by ther robust size, and by the cucullate apex of the branch-leaves.
44. S. imbricatum (Hornsch.) Russ. Beitr. zur Kenntn. der Torfm. 1865, 21.

Syn. S. Austini Sulliv. apud Aust. Musci Appal. 1870, 3. S. afine Ren. \& Card. in Rev. Bryol. 1885, 4.

Exsicc. Braithwaite, Sphagn. Brit. Exsicc. Nos. 1 \& 2 (1877).
Plants in looser or more compact tufts, $7-15 \mathrm{~cm}$. high, light to rather dark green, grey-green, yellowish, brown to deep brown; generally more delicate than the other European species of the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

membrane-gaps. Capsule dark brown. Spores rusty red. Male inflorescence on the somewhat inflated apex of the comal branches.
$H a b$. On wet elevated heaths and in peat bogs.
Distrib. Scandinavia, Russia, Denmark, Germany, Belgium, France, Scotland, England; Asia; N. America; S. America.

This very distinct species is not primarily characterized by the presence of the peculiar comb-fibrils, in some forms these being entirely absent, but by the form and position of the chlorophyllose cells of the branch-leaves, by the stem-leaves, and the very numerous fibrils in the cortical cells of the stems and branches.

There are three main varieties:-
(1) Var. cristatum Warnst. in Hedwigia, 1889, pp. 367-372. Comb-fibrils numerous throughout the lower half of the branchleaves. Lyth Moss, Westmoreland (Barnes in Braithw. Sphagn. Brit. Exsicc. No. 1, 1877. A form intermediate between var. cristatum and var. sublave); Strath Garve, Ross (Bıaithuaite); between Stornoway and Garynahine, Lewis, Hebrides (Smith); Raplock Moss, New Galloway, Kirkcudbright (1Lc.Andrew) ; Witherslack Moss, Westmoreland (Barnes); Latheron, Caithness (Lillie); Lochan-va-Lairge, Perthshire (Cocks); Meall-nan-Tarmachan, Perthshire (Cocks).
(2) Var. sublave Warnst. l.c. Comb-fibrils only slightly developed, frequently with only slender beginnings of fibrils near the leaf-base.
(3) Var. affine Warnst. in Bot. Gaz. 1890, 250. Syn. S. affine Ren. \& Card.; S. imbricatum. var. lare Warnst. in Hedwigia, 1889, pp. 367-372. Comb-fibrils completely absent.
45. S. degenerans Warnst. in Bot. Centralbl. xlii. 1890, 102.

Plant completely submerged, green above, greyish below. Stem slender, $20-30 \mathrm{~cm}$. long, with long, thin, stem-like branches from the middle or the upper part.

Wood-cylinder whitish or pale yellowish. Stem-cortex of the main axis in 2-3 layers; cells very wide and thin-walled, either quite without fibrils or with few very delicate fibrils ; pores on the superficial wall numerous (up to six in each cell), large and non-ringed. Cortex of the main branches in two layers.

Stem-leaves on the lower part of the main axis large, widely oval, not widened towards the apex nor spatulate as in the other European cymbifolia, but widest in the middle; with a border of narrow, septate, hyaline cells on the broad rounded apex and for same distance down the lateral margins; either quite without fibrils or fibrillose in the upper three-fourths and with pores on both sides; on the outer surface towards the leaf-base with large membranegaps in the middle of the cell-walls. Leaves of the main branches resembling those of the spreading branches in form aud cell-structure, but larger; sometimes quite without fibrils, more frequently fibrillose and porose to the base; not rarely in the upper one-third formed of chlorophyllose cells only.

Fascicles distant, in the lower part of the plant composed of three branches. of which two are stronger and spreading, and the third is weaker and appressed to the stem; the fascicles on the
main branches are generally very incompletely developed, and form at the apex of each branch a very small capitulum with obtuse branches. Cortex of the branches with numerous fibrils and pores. Spreading branches very thin, about $1-1 \frac{1}{2} \mathrm{~cm}$. long, tapering towards the apex, and either recurved or almost horizontal. Leaves on the lower branches more or less loosely placed, on the upper ones closely imbricate and with squarrose apex; from a narrower base much widened to the middle and then narrowed to a shorter or longer, wide, obtuse, cucullate apex, as in S. cymbifolium f. squarrosula ; in the upper part frequently with 2-5 rows of shorter and narrower chlorophyllose cells on the lateral margins, the apex also being frequently formed of such cells alone. Hyaline cells remarkably narrow and long; the chlorophyllose cells, on the contrary, seen from the inner side, very wide, showing, as is the case with many aquatic forms in the cuspidatum group, a tendency for the chlorophyllose cells to increase at the expense of the hyaline cells. Pores on the inner surface scattered; in the upper cellangles, towards the lateral margins, generally more numerous and in the middle of the cell-wall; on the entire outer surface with numerous round pores in almost every cell-angle.

Chlorophyllose cells in section broadly isosceles-trapezoid, free on both surfaces, the wall generally strongly convex on the inner surface, slightly convex on the outer surface; lumen very wide, full of chlorophyll; wall never thickened; hyaline cells almost equally convex on both surfaces, and the inner wall, where united to the chlorophyllose cells, always entirely without papillæ. Towards the leaf-apex the chlorophyllose cells in section are quadrate or even wider than high, approaching the hyaline cells in form and size, and, like these, are flat on both surfaces.

Flowers and fruit unknown.
Distrib. England (Carrington Moss, Cheshire, Holt, 1886); Germany.

This curious bog-moss at the first glance might be taken for a submerged form of S. cuspidatum or a slender and submerged form of S. squarrosum, but it would not be suspected that it was a member of the cymbifolium group, from all the other members of which it is abundantly distinct. The method of branching is peculiar to this plant and to S. monocladum. It is very distinct from any other species in the cymbifolium group by-(1) the almost entire absence of fibrils in the stem-cortex; (2) the form and structure of the stem-leaves; (3) the transection of the branch-leaves; and (4) the pore-formation of the branch-leaves.
46. S. turfaceum Warnst. in Schrift. Naturf. Ges. in Danzig. N. F. Bd. ix. Heft ii. p. 161, 1897.

Tufts dirty brown or green, resembling in habit S. cymbifolium.
Stem-cortex in 3-4 layers; cells wide and thin-walled, with numerous fibrils, each with 3-6 (rarely more) pores.

Wood-cylinder brownish.
Stem-leaves very large, from a narrower base widened to the middle, and thence produced into the broad, cucullate, obtuse apex, Journal of Botany.-Vol. 38. [Nov. 1900.] 2 н
which has the margins incurved; fibrillose to the base; on the inner surface with numerous round pores, especially near the lateral margins; on the outer surface with semi-elliptical pores in rows on the commissures, which pass over near the apex into large membrane-gaps.

Spreading branches elongated, acuminate at the apex, with the cortical cells very fibrose and porose. Branch-leaves very large, longly ovate, and with the upper half distinctly squarrose (? always); pore-formation as in the stem-leaves.

Chlorophyllose cells in section broadly-trapezoid (up to 12μ wide) (rarely broadly-triangular), with the longer parallel side exposed on the inner surface of the leaf, generally free on both surfaces. Hyaline cells not papillose.

Hab. In wet boggy places.
Distrib. Germany; England. Brookwood, Surrey (Monington $\&$ Horrell); Barnet Wood, Hayes Common, W. Kent (Cocks); Hole Common, near Lyme Regis, Dorset (Miss Lister); Wild Moorstone Wood, near Buxton, Derbyshire (Ley); Tilgate Forest, Sussex (Horrell); Trelleck Bog, Monmouth (Ley); Longridge Fell, W. Lancs. (Wheldon) ; Clougha, W. Lancs. (Wheldon) ; Arkholme Moor, W. Lancs, (Wilson); Cockerham Moss, W. Lancs. (Wheldon \& Wilson) ; Lake Gormire, near Thirsk, N. Yorks (Wheldon); near Virginia Water, Surrey (Mayes); Wimbledon Common, Surrey (Mayes).

This species comes very near S. cymbifolium, but must, especially on account of the broadly-trapezoid chlorophyllose cells, be held to be distinct. From S. degenerans, too, with which it agrees in the form of its chlorophyllose cells, it differs in the strongly fibrose stem and branch cortical cells, the wider and shorter hyaline cells of the branch-leaves, and the quite different habit.
(To be continued.)

A NEW SPECIES OF UNCINULA FROM JAPAN.

By Ernest S. Salmon, F.L.S.

Since the completion of my monograph of the Erysiphacea (Memoirs of the Torrey Bot. Club, vol. ix.) much fresh material has been sent to Europe by Japanese mycologists. Dr. Hennings (in Engler's Bot. Jahrb. xxviii. 271-272; and xxix. 147-150 (1900)) and Mr. P. Sydow (Mém. de l'Herb. Boiss. No. 4, p. 4 (1900)) have worked at this material. Notes on some of this new material and an account of all the species known from Japan will be found in my article "The Erysiphacea of Japan" in Bull. Torr. Bot. Club, xxvii. 437-450, pl. 26 (1900).

That the Erysiphacea of Japan have not yet been completely worked out, however, is shown by the occurrence of a very distinct new species, described below, belonging to the genus Uncinula. This new species grows on Quercus glandulifera Bl., and was found,

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

NEW PLANTS FROM CENTRAL ASIA.

The following novelties were collected by Capt. H. H. P. Deasy, in 1897 and 1898, in Northern Tibet and Chinese Turkestan. A sketch-map illustrating his route has been published by the Royal Geographical Socrety (April 2nd, 1900). The types will be found in the Department of Botany of the British Museum.

Lactuca (§ Brachyrhamphus) Deasyi S. Moore. Planta humillima habitu Crepidis cujusdam ad sectionem Glomeratam pertinentis, caule incrassato glabro, foliis parvis spathulatis obtusissimis integris manifeste 3 -nerviis plus minus araneoso-pılosis, capitulis caulis ex apice aliquantulo dilatato convexo oriundis ibique dense aggregatis et subsessilibus, capıtulis anguste cylindricis 4 -flosculosis, involucri phyllis exterioribus 2 quam reliqua paullo brevioribus linearibus deorsum parum dilatatis, phyllis intermediis 2 oblongis una cum intimis 2 oblongo-ovatis et margine scariosis obtusissimis phyllis omnibus sursum pilosis ceteroquin glabris, achæniis compressis oblongis deorsum parum angustatis apice in rostrum brevissimum abrupte contractis multicostatis.

Hab. Aksu, Chinese Turkestan, alt. 16,500 ? ft., July, 1898.
Caulis 4.0 cm . alt., 0.7 cm . diam., sursum usque ad 1.0 cm . dilatatum. Folia $2 \cdot 5-3 \cdot 5 \mathrm{~cm}$. long., $0 \cdot 5-0 \cdot 6 \mathrm{~cm}$. lat., deorsum in sicco corrugata et 0.2 cm . lat. Capitulorum glomeruli circa 3.0 cm . diam. Pedunculi modo $0 \cdot 1-0 \cdot 15 \mathrm{~cm}$. long. Involucrum $1 \cdot 2 \mathrm{~cm}$. long., 0.4 cm . lat.; phylla basin versus connata. Achænia 0.6 cm . et pappi setæ deorsum stramineæ sursum griseæ 1.0 cm . long.

A very remarkable species, so extraordinarily like a Crepis of § Glomerata-resemblance extending even to the partial union of the involucral leaves-that its true affinity was not suspected until the achenes came under examination. There is, I think, no known species of Lactuca with which this could possibly be confounded.

Polygonum tibeticum Rendle. Herba minor caule simplici tenui superne hirsutulo, ocreis vix hypocraterimorphis hirsutulis, limbo brevi vix patente setoso-ciliato; foliis membranaceis ellipticis vel subovatis subacutis vel acutis; petiolo tenui hirsutulo infra ocreæ medium inserto; lamina præcipue venis marginibusque pilosula; spica solitaria, sessili, densa, oblonga, bracteis sanguineis late ovatis subacutis, glabrescentibus, cum margine \pm ciliolato; floribus majusculis sanguineis, perianthii foliis 5 , petalinis; staminibus 7 cum squamulis perigynis alternantibus; stigmatibus binis pileiformibus; achænio

Slender plants $30-35 \mathrm{~cm}$. high, the lower internodes barely 2 mm . thick, glabrous. Ocrea membranous, tubular, with scarcely spreading greenish short limb with a shortly setose margin. Leaves (including petioles) to 5 cm . long by 2 cm . broad, blade passing somewhat abruptly into a petiole about one-third its length. Spike $1 \cdot 5-2 \mathrm{~cm}$. long by 1 cm . broad, bracts with a shortly hairy margin, otherwise almost glabrous; flowers crimson, closely resembling those of Polygonum or ientale L.; perianth-leaves ellipsoidal, 5 mm . long by about 3.5 mm . broad; filaments subulate, about 3.5 mm . long, anthers attached in the middle, 1 mm . long; ovary round,
compressed, equal in length (barely 1.5 mm .) to the style with its two subsessile cap-shaped stigmas: fruit not present.

A member of Meisner's section Amblygonon, and most nearly allied to Polygonum orientale L., the flowers being almost identical in the two species; but ours is a smaller plant with a different habit, expressed in its unbranched stem, and almost sessile solitary flower-spike; the thinner texture and less elongated form of the leaves also distinguish it.

Hab. Northern Tibet.
Allium consanguineum Kunth, var. roseum Rendle, var. nov. Indistinguishable from the species except by its rose-coloured flowers; those of the species are described as golden-yellow.

Hab. Sarok Tuz Valley, alt. 13,000 ft., July, 1898.
Festuca rubra L. var. robusta Rendle, var. nov. Laxe cæspitans, innovationibus extravaginalibus interdum ascendentibus, interdum sub terra repentibus, cum vaginis squamiformibus tectis, demum ascendentibus et caules basi robustos efformantibus; nodis, vaginis, foliisque glabris; foliis flaccidis plicatis vel convolutis; panicula flexuosa sublaxa, spiculis $4-5$-Horis, villosis iis F. arenaria Osbeck (F. rubra var. arenaria Fr.) similibus.

Plants about 35 cm . high, characterized by their robust growth at the base of the shoots, and the leaves, which are remarkably flaccid for the species; the blades are generally between 7 and 14 cm . long and about 3 mm . broad when opened out.

The Turkestan plant resembles somewhat specimens collected by Mr. C. B. Clarke at Karakorum, at 13,500 ft. (No. 30335 in herb.), but the latter has not the robust growth referred to ; and the spikelets have more flowers, with slightly narrower fertile glumes.

Hab. Shiran Maidan Hunza Valley, five miles from Kılak Pass, $13,000 \mathrm{ft}$., October, 1897. Common.

Festuca Deasyi Rendle. Cæspitosa, glabra, glauca, innovationibus intravaginalibus, caulibus cum vaginis membranaceis marcidis basi indutis, florentibus cum internodiis tribus quæ sæpius a vaginis striatis arcte inclusa sunt; ligula brevi membranacea truncata, laminis rigidulis anguste linearibus, sæpius convolutis, venis prominentibus, marginibus scabridulis; panicula sublaxa, sæpius stricta, axi scabridulo, radiis simplicibus, infimis ternis, superioribus binis; spiculis subsessilibus, valde compressis, sæpe 4-6-floris, floribus dioicis; glumis membranaceis et pallide viridibus in parte superiore lucidis et tenuibus; gl. sterili inferiora anguste-lanceolata acuta, uninervia, quam gl. superior ellipsoideo-oblonga obtusa paullo breviore; hac quoque uninervia, vel basi 3-nervia; gl. fertilibus anguste ovatis, apice subobtusis vel subacutis, cum nervo mediano dorso prominente scabridulo, et utrinque nervis binis supra medium obsoletis; palea valde binervata, nervis viridibus scabridulis; lodiculis suboblongis; antheris linearibus; stylis in floribus masculis subfiliformibus, sparse et breviter pilosis.

Plants about $1 \frac{1}{2} \mathrm{ft}$. high, covered for $10-11 \mathrm{~cm}$. at the base with withered leaf-sheaths; ligule $\frac{1}{2} \mathrm{~mm}$. long, generally split, blades $20-25 \mathrm{~cm}$. or less in length by a little over 2 mm . or less in width when flat; panicle $10-12 \mathrm{~cm}$. long, branches subfiliform, scabrid-
ulous, longest branch at the lowest node 6 cm ., at the upper nodes gradually shorter, bearing three, two, or a single spikelet. Spikelets ultimately obovate, $10-12 \mathrm{~mm}$. long, pale green or sometimes tinged with purple, the glumes becoming colourless and transparent in their upper portion. Lowest barren glume 5.5 mm . long, very acute and much narrower than the upper, which is 7 mm . long by 1.75 mm . broad. Fertile glumes $9-7 \mathrm{~mm}$. long by $2 \cdot 5-2 \mathrm{~mm}$. broad, pale $7-6 \mathrm{~mm}$. by $1 \cdot 3-1 \mathrm{~mm}$. Lodicules broadly oblong, becoming somewhat obliquely narrowed at the top, $1 \cdot 3 \mathrm{~mm}$. long, anthers $5-4 \mathrm{~mm}$. long.

Near F. sibiica Hackel, but distinguished by its very acute lower barren glume, longer lower fertile glumes and pales, and other points of detail.

Hab. Plateau near Polu, 10,000 ft., June, 1898. Native name " Kileb."

CAROLI LINNæI REGNUM VEGETABILE.

Linneus's Systema Natura, ed. i - a folio work $21 \mathrm{in} . \times 16 \frac{1}{2} \mathrm{in}$. -is so rare and difficult of access that it is thought a transcript of it, so far as the botanical classification is concerned, may be of interest. The pages in the original devoted to the vegetable kingdom are four in number: the first contains the "Clavis Systematis Sexualis"; the fourth "Observationes in Regnum Vegetabile"; the second and third, which face each other, give in tabular form the classification. This is reproduced textually; the abbreviations (some of them the result of want of space), orthography, punctuation, etc. are those of the original ; and the typographical and other arrangements are as nearly as possible adhered to.

The preface is dated from Leyden, July 23, 1735.]

Auctores Systematici allegati.
A. Acta Parisiens. Tourn.
B. Boerhayve.

Bx. Buxbaum.
C. Cessalpinus.
D. Dillenius.
G. Gronovius. qui multas mecum communicavit plantas peregrinas, e quibus nova genera adposui.
H. Heicherus.

Hs. Heisterus.
I. Jussieu.
K. Knautius fil.
M. Michelius.

Mg. Magnol.
Mr. Martyn.
Pl. Plumier.
Pn. Pontedera.
Rj. Rajus.

Rp. Ruppius.
Rv. Rivinus.
S. Scheuchzer.
T. Tournefortius.
V. Vaillantius.
VI. 100. Vide Hexandriam Hexagyniam, Ubi VI.
100. Alism: Damason. posui, id est: Damasonium Tournefortii, est ejusdem generis cum Alisma in Hexand. Polygynia.

* Indicat plantarum flores, a me hactenus non examinatos, sed à fida Auctorum descriptione vel Figura heic insertos.
\dagger Nova genera a me constituta.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Dipsacus.
Scabiosa.
Succisa Kn.
Knautia. Lychni-scabios. B.
β. Stellate Rj.
Gallium.
Aparine.
Asperula. Rubeola.
Houstonia \dagger. G.
Sherardia D. Dillenia Hs.
Spermacoce D. *
Crucianella.
Rubia.
γ. Varir.
Plantago.
Coronopus T.
Psyllium T.
Sarcocolla \dagger.
Catisbea † G.
Centunculus D.*.
Lippia *.
Camara Pl. Morobatind. V.
Vitex.
Poterium. Sanguisorba Rp.
Epimedium.
Avicennia \dagger. Oepata H M.
Tithonat. Phytolac.sp. T.
Cornus.
Mesomora Rudb.
Ossea Rv. Virg. sang. D.
Evonymus.
Ptelea. Frut. Virg. trif. D.*
Ixorat Schetti H M.
б. Incompleti.

Alchemilla.
Elæagnus.
Mimosa.
§. VI. 1. Conv. Unifolium D. DIGYnia.
Hypecoon.
Bocconia Pl. *.
Cuscuta.
Basella H M. B.
tetragynia.
Ilex. Aguifolium T.
Cassina \dagger.
Potamogeton.
§. V. 5. Lin. Radiola D.

PENTANDRIA.

Stamina Quinque. MONOGYNIA.
a. Fl. Imperfecti.

Herniaria.
Paronychia*.
Blitum.
Vitis.
Persicaria VI. 2.
Glaux.
Rhamnus T. Cervispina XXII. 4.
Frangula T.
Alaternus T .
Paliurus T.
β. Petal. 1. Semina 4.
Anchusa. Buglossum T.
Cynoglossum.
Lappula Rp.
Lithospermum
Pseudo-Anchusa H .
Myosotis D. Scorpiurus Kn.
Heliotropium.
Pulmonaria.
Symphytum T. Consolida Rv.
Lycopsis. Echioides D.
Asperugo.
Borrago.
Cerinthe.
r. Petal. 1. Semin. 2.

Phyllis. Bupleuroides B.
d. Petal. 1. Semin. 1.

Mirabilis Rv. Jalapa T.
Plumbago T. Dentillaria R.
e. Petal. 1. caps. 1-locular.

Hydrophyllum.
Swertia \dagger. Gentiance sp. aliis.
Hottonia B. Myriophyllnm Rp.
Samolus.
Menyanthes.
Nymphoides T.
Lysimachia.
Nummularia B.
Anagallis.
Cyclamen.
Soldanella.
Ruellia Pl.
Primula. Prim. veris T.
Auricula ursi T .

Androsace.
Armeria. Lychnidea D.
३. Рet. 1. caps. 2-locul.

Verbascum T.
Blattaria T.
Hyoscyamus.
Apollinaris. Priapeja Kn. Nicotiana.
Datura. Stramonium T. Myrsine \dagger.
n. Pet. 1. Caps. 3-locul.

Convolvulus.
Convolvuloides Hs.
Ipomœa. Quamoclit T.
Campanula.
Phyteuma. Rapunculus T.
Polemonium.
Trachelium.
Polypremum. \dagger
Э. Petal. 1. Caps. 4-locul.

Diervilla A.

1. Petal. 1. Caps. 5-locul.

Diosma. \dagger an Anisi stellati sp?
Azalea. †. Chamarhododend. T.
x. Petal. 1. Baccifere.

Atropæa. Belladonna T.
Mandragora.
Solanum,
Melongena T.
Lycopersicum T.
Capsicum.
Physalis. Alkekengi T.
Strychnos \dagger. Vomica.*.
Genipa. *.
Tinus.
Phillyrea.
Patagonica D. *.
Sideroxylon *.
Coffea. Coffe Hs.
Fuchsia *.
Tournefortia. Pittonia Pl. *. Lycium. Jasminoides A.
Caprifolium T.
Periclymenum T.
Chamacerasus T.
Xylosteum T.
λ. Petala 5 equalia.
Cuminum. Cuminoides T.

Telephium T.
Brunia †. Levisanus Pet.
Gronovia. Houst. apud. Mr. μ. Pet. 5 inequalia.
Viola.
Impatiens Rv. D. Balsamina Rv. T.
digynia. a. Varie.

Chenopodium.
Beta.
Ulmus.
Salsola. C. Kali T.
Panax *. Araliastrum V.
Gentiana T.
Centaurium minus T.
Heuchera t. Cortusa Hr.
§. XII. 2. Agrimonoides T.
§. XX. 2. Ribes.
§. V. 3. Staph. Zanthoxyl.Ctb.
β. Fr. Bifollicularis.
Plumeria T.
Vinca Rp. Pervinca T.
Nerium.
Tabernemontana Pl. *
Cameraria Pl. *
Apocynum.
γ. Umbella Simplex.
Eryngium.
Hydrocotyle.
Sanicula.
Astrantia.
ס. Umb. Composita, involucro nULLo.
Carum Rv. Carvi T.
Fœniculum T.
Anethum T .
Apium.
Anisum Rv.
Ægopodium Kn. Fodagrar. Rv.
Pimpinella.
Pastinaca.
Heracleum. Sphondylium T.
Smyrnium.
Imperatoria Rv.
\&. Umbella Composita 1, involuoro partioulari.
Cicuta †. Cicutaria Rv.

Phellandrium.
Oenanthe.
Ethusa. Cynapium Rv.
Chærophyllum. Myrrhis Ro.
Myrrhis. Odorata Rv.
Scandix. Cerefolum Ro.
Thapsia.
Coriandrum.
Bupleurum T.

> Perfoliata Rv.
3. Umbella Composita inv. part. et Univers.
Laserpitium.
Angelica.
Sium.
Sisarum T.
Conium. Cicuta Rv.
Thysselinum.
Daucus.
Staphylinus Rv.
Caucalis.
Peucedanum.
Athamanta. Merm T.
Levisticum Rv. Cicutaria T.
Ammi.
Crithmum.
Cachrys.

TRIGYNIA.

Tamarix. Tamariscus T.
Viburnum.
Sambucus T.
Ebulus Pn. Opulus T.
Cotinus.
Staphylæa V: I. Staphylodendr. §. V. 2. Chenopodium.
tetragynia.
Parnassia.
PENTAGYNIA.
Linum IV. 4.
Drosera. Ros Solis T.
Aralia T. V.
Statice ' I .

$$
\text { Limonium } \mathrm{T} .
$$

Crassula D.
Cotyledon.

POLYGYNIA.
Myosurus Kn. D.
HEXANDRIA.
Stamina Sex. MONOGYNIA. a. Fl. Incompl. VI-Petal.

Lirium.
Martagon Rp.
Petilium. Corona Imper. T.
Fritillaria.
Tulipa.
Erythronium. Dens canis T.
Gloriosa. Methonica A.
Ornithogalum.
Scilla.
Asparagus.
Leontice. Leontopetalum T. β. Fl. Incompl. 1-Petal.
Convallaria IV. 1. Lil. Conv. T. Polygonatum T.
Hyacinthus.
Muscari T.
Polyanthes. Tuberosa Hs.
Susiana. Lil. Susianum.
Asphodelus.
Hemerocallis. Lilio-asphod. T. Liliastrum T .
Aloë T .
Yucca D.
r. Fl. Completus.

Ananas T.
Bromelia Pl.
Tillandsia. Caraguata Pl.
Tradescantia Rp. Ephemer. T. Bựmannia. \dagger.
Lithocardium. * Sebestena D.
Berberis.
d. Fl. Spataceus.

Pancratium D.
Narcissus.
Amaryllis. Lilio-Narciss. T.
Leucojum. Narcisso-Leuc. T.
Galanthus \dagger.
Prasum. Scordoprasum M.
Porrum.
Cepa.
Allium.
Pontederia t. G. Pet. Gaz. 1.12.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
r. Stamina Regularia.

Malpighia Pl.
Averrhoa. \dagger Bilimbi H M.
Zygophyllum. Fabago T.
Fagonia T.
Tribulus T.
Portulaca.
Clethra t. G. Alnifolia Plk.
Anacardium. Acaiv T.
d. Calix nullus.

Ledum Rp.
digynia.
Mitella T.
Saxifragia T. Geum T.
Dianthus. Caryophyllus T. Armeria H .
Saponaria \dagger.
Scleranthus. Knawel D. TRIGYNIA.
Garidellia T.
Drypis M.
Silene. X: 5. Muscipula Rp.
Cucubalus. 天 : 10. X: 5 . Behen.
Alsine.
Arenaria Rp. Speryula D.
Lychnoides V.
PENTAGYNIA.
Lychnis.
Agrostema. Nigellustrum.
Cerastium D. Myosotis T.
Spergula \dagger.
Benzoa \dagger. G. Benzoë: an?
Sedum T. VIII. 4. Y. d. dnacampseros T .
§. X. 3. Silen: Viscaria Rp.
§. X. 3. Cucub. Lychnis. DECAGYNIA.
Phytolacca T.

DODECANDRIA.
 Stamina Duodecim. MONOGYNIA.

Asarum.
Lythrum. Salicaria T. DIGYNIA.
Agrimonia V. 2.
Agrimonoides T. V. 2.

TRIGYNIA.

§. XXX: 1. Euph. Tithymalus T.
Euph. Elutheria Pet. * G.
DODECAGYNIA.
Sempervivum Rp.

ICOSANDRIA.

Stamina Calici adnata. MONOGYNIA.
a. Fructu Drupa.

Zizyphus T.
Eugenia M.*
Amygdalus.
Persica T.
Prunus.
Armeniaca T .
Cerasus.
Padus.
Guajacum Pl. *
β. Fr. Bacca vel Ромo.
Myrtus.
Punica.
Styrax.
Citrus. S. 100.
Aurantium T.
Limon.
γ. Fr. Capsula.
Philadelphus. Syringa T.

digynia.

Ribes. Grossularia T. V. 2.
Cratægus T.
Oxyacantha Rp.
TRIGYNIA.
Sorbus.
Aucuparia Rp.
Cotoneaster.
PENTAGYnia.
Mespilus.
Pyrus.
Malus.
Cydonia.
Spiræa.
POLYGYNIA.
Muntingia Pl. *
Rosa.
Rubus.
Chamamorus Rj.

Fragaria.
Camaroides Pn.
Potentilla. Pentaphylloides IT. Quinquefolium T.
Tormentilla. XVI. 8.
Dryadæa \dagger.
Comarum \dagger.
Geum. Caryophyllata T.
POLYANDRIA.
St. multa recept. adnata. MONOGYNIA.
a. Calice Caduco.

Actæa. Christophoriana T.
Podophyllum. Anapodophyl. T. Corchorus.
Sanguinaria D. *
Chelidonium T.
Gǎlaucium T.
Papaver T.
Argemone T.
Sarracena T. Coilophyllum Ms. Tilia.
β. Calice Persistente.
Peganum. Harmala. Nymphæa.

Leuconymphaa B.
Michelia. \dagger Samstravadi H M.
Anacampseros. Telephiastr. D.
Cistus.
Helianthemum T.
Caryophyllus. Car. arom. T.
Thea * \dagger.
Mesua †. Belutta H M.
Capparis.
Plinia. Pl. *
γ. Calice Tabescente.
Euphorbium L. 3.
Cereus.
Opuntia T. Tuna D.
Cactus. Melocactus T.
§. N. 3. Delphinium. DIGYNIA.
Pæonia.
Anona. Guanabanus Pl. TRIGYNIA.
Pereskia Pl. *
Reseda T.
Luteola T.

Hypericum N. 5.
Androsamum T.
Aconitum T. N. 5.
Delphinium N. 1.
Staphisayria Rp.
TETRAGYNIA.
Tetragonia. Tetragonocarpos.
pentagynia.
Aquilegia.
Nigella.
Aizoum *. Ficoidea N.
Mesembryanthemum D.
§. N. 3. Hyper. Ascyrum.
§. N. 3. Aconitum.
HEXAGYNIA.
Stratiotes. Aloides B.
POLYGYNIA.
Dillenia \dagger. Syalita H M.
Magnolia Pl. Tulipifera.
Clematitis.
Atragena. Viticella D.
Pulsatilla.
Anemone.
Anemone-ranunculus D.
Nemorosa Rp.
Caltha Rp. Populago T.
Helleborus.
Trollius Rv. Helleboro-Ran.
Helleboroides B. Aconit. Rv.
Ranunculus.
Ficaria D.
Ranunculoides V.
Ramunculo-asphodel. H S.
Adonis D.
Hepatica D.
Filipendula T.
Ulmaria T .

DIDYNAMIA.

Stam. 4. quor. 2 lonyiora.
Gymnospermia. i.e. Seminibus
Pericarpio nudis.
a. Petali Lab. Sup. nullo.

Bulga. Bugula T.
Polium.
Teucrium.
Trissago. Chumepitys T.
β. Petali Lab. Sup. erecto.
Origanum T.
Majorana T.
Thymus T.
Satureja T.
Serpillum T.
Thymbra T.
Lavendula.
Stoechas.
Hyssopus.
Clinopodium.
Marrubium.
Betonica.
Glechoma. Calamintha T.
Chamaclema B.
Ruyschia. Ruischiana B.
Ocymum.
γ. Petali Lab. sup. concavo.
Mentha.
Menthastrum Rp.
Pulegium Riv.
Moldavica.
Volkamera Hs.
Stachys.
Galeopsis.
Ladanum D. Tetrahit. D.
Lamium.
Molucca.
Cardiaca.
Galeobdolon D.
Leonurus.
ס. Petali Lab. Sup. galeato.
Dracocephalon.
Scutellaria Rv. Cassida T.
Brunella.
Phlomis.
Angiospermia. i.e. Seminibus tectis Pericarpio.
Antirrhinum T.
Linai ia T.
Elatine Rp.
Asarine T. Cymbalar. Rv.
Scrophularia.
Digitalis.
Gratiola Rv.
Volkameria t. Digitalis sp. T.
Chelone A.
Orobanche.
Squammaria Rv. Anblatum T.

Acanthus.
Melampyrum.
Fistularia. Crista galli Ro.
Pedicularis.
Euphrasia. Odontites D.
Verbena Sherardia V.
Selago. Camphorata.
Bontia *.
Dodartia*.
Phelypæa T *.
Crescentia *. Cujete Pl.
Celsia \dagger.
Limosella. Plantaginella D.
Rhinanthus. Elephas T.
Martynia. Houst. apud Mr.
Eginetia \dagger. Tseemcumulu H M.

TETRADYNAM.

Stam. 6, quor. 4 longiora. FRUCTU SILICULOSO.
a. Pericarpio uniloculari.

Isatis.
Crambe.
Cakile.
Myagrum.
Bunias. Rapistrum T.
β. Peric. biloo. dissep. opposito.
Thlaspi T.
Bursa pastoris T.
Iberis D.
Biscutella. Thlaspidium T.
Nasturtium.
Iberis Rp.
Coronopus H. Rp.
Lepidium.
Armoracia Rp.
Cochlearia.
Subularia Rj. Juncifolia Rj.
r. Peric. blloc. dissep. parall.

Alyssum.
Draba D.
Lunaria T. Bulbonac. Rp.
FRUCTU SLLIQUOSO.
Erysimum.
Irio. Eruca T.
Sinapis.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

POLYADELPH.

Fil. coal. in plures part. POLYAN.
Lasianthus \dagger. G. Alcea sp.aliis. §. XX. 1. Citrus.

SYNGENESIA.

St. Anthera coalita. monogamia.
a. Flore Simplici.

Dortmanna Rd.
Rapuntium T. Cardin. Ro. Laurentia M.
Jasione t. Rapunculus scab. cap. β. Semiflosculosi T.
Lampsana.
Cichorium.
Catanance.
Zacintha.
Taraxacum. Dens Leonis T.
Pilosella.
Hieracium.
Sonchus.
Chondrilla.
Picris \dagger.
Lactuca.
Scorzonera.
Tragopogon. r. Flosculosi T.

Chrysocome. Linosyris Mg.
Eupatorium.
Sphærocephalus. Echinopus T.
Santolina.
Vebesina. Bidens T. Pn. Forbicina Pn.
Carlina.
Xeranthemum T. Stocbe Rv.
Serratula D.
Carthamus.
Carduus.
Cinara.
Arctium. Lappa T.
Cnicus.
Petasites.
Klenia \dagger. An Tithymaloides B. POLYGAMIA SUPERFLUA. a. Radio petal. destituto.

Artemisia.
Absinthium.

Abrotanum.
Filago.
Ananthocyclus V.
Tanacetum T.
Baccharis D.
Senecio.
β. Radiati T. calice semigloboso.
Achillea. Millefolium T. Ptarmica T.
Anthemis. Chamamelum T.
Buphthalmum.
Matricaria.
Bellis.
Leucanthemum.
Chrysanthemum.
Cotula.
γ. Radiati T. calice ventricoso.
Calendula. Caltha T.
Dimorphotheca V.
Tussilago.
Doronicum.
Arnica Rp.
Solidago. Doria D. Virga aurea T.
Jacobæa.
Aster.
Amellus \dagger.
Helenium. Enula Camp. Mg.
Erigerum. Conyzoides D.
Othonna. Tayetes T.
polygamia frustranea. a. Radiati T.

Helianthus. Corona Solis T.
Rudbeckia. Obeliscotheca V. β. Flosculosi T.
Jacea.
Cyanus.
Centaurium. Cent. maj. T.
Crupina D.
polygamia necessaria.
Parthenium. Partheniastrum D. Milleria. Houst. apud Mr.

GYNANDRIA.

Stamina Pistillo adnata. DIANDRIA.
Orchis.
Satyrium $\mathrm{R} \nabla$.
Palmata $\mathrm{R} \nabla$.

Satyrium
Orchioides. Trew.
Neottia. Corallorhiza Rp.
Serapias. Helleborine T.
Herminium. Monorchis.M.
Cypripedium. Calceolus Mar.
Epidendron t. G. Orchidiaff. Hr.
Ophris.
? Nidus Avis T.
TRIANDRIA.
Bermudiana.
TETRANDRIA.
Nepenthes \dagger.
PENTANDRIA.
Asclepias. Vincetoxic. Rp.
Beidalsar Kn.
Periploca.
Stisseria. Crassa Rv.
Passiflora. Granadilla T.
Murucuja. T.
Clutia B.
HEXANDRIA.
Aristolochia.
DECANDRIA.
Helicteres. Plk. Isora Pl.
POLYANDRIA.
Grewia †. ? Guidonia B.
Arum T.
Dracunculus T.
Colocasia Rj.
Arisarum T.
Calla. Anguina Trew.
Arioides B.
Acorus VI: 1.
Ruppia *. Bucca ferrea M.
MONCECIA.
Plante Androgynce. MONANDRIA.
Zannichella M*. Aponoget.Pn. Najas *. Fluvialis V. Cynomorion M. *

> TRIANDRIA.

Thalysia. Mays T.
Sphærium *. Lacryma Jobi T. Ægilops. S. *
Ischœmum *. Dactyloides.

Carex. Cyperoides T.
Scirpoides Mg. Carex Rp.
Diasperus. Niruri Mr. IV AND.
Alnus.
Betula.
Buxus.

> §. V. 4. Urtica. V AND.

Amaranthus.
Jatropha*. Manihot T.
Andrachne. Telephioides.
Oxydectes. Ricinoides T.

POLYAND.

Stamina plus quam 7.
Ceratophyllum. Dichotoph. D.
Myriophyllum Pn.
Pentapterophyllum D.
Corylus.
Ostrya M.
Carpinus T. M.
Fagus.
Castanea *.
Quercus.
Ilex T.
Suber T.
Sagittaria Rp. D.
Sparganium.
Typha. MONAD.
Pinus.
Abies.
Larix. *
Thuya. *
Cedrus. *
Xanthium.
POL.
Ricinus.
SYNGENESIA.
Bryonia.
$\mathrm{M}_{\mathrm{o}} \mathrm{m}_{\mathrm{or}}$ dica.
Sicyos. Sicyoides T.
Tamnus.
Luffa Arab.
Anguria.
Colocynthis.
Cucumis.
Melo.
Pepo.
Cucurbita.
Anguina M.

DIECIA.
Pl. Mares \& Femina.
II AND.
Salix.
III AND.
Phœnix *. Palma.
Osyris. Casia T.
IV AND.
Morus.
Hippophaë *. Rhamnoides T.
Myrica. Gale A.
Urtica. V. 4.
§. V: 1. Rham. Cervi Spina D. ∇ AND.
Lentiscus.
Toxicodendron.
Humulus. Lupulus T.
Cannabis. \quad. 10.
Spinacia.
viand.
Smilax.
§. VI: 3. Rum. Acetosa. VIII AND.
Populus.
Laurus.
IXAND.
Mercurialis.
Hydrocharis. Morsus rana D. X AND.
Sassafras \dagger.
Nyssa t. G. Tupelo Catb.
§. X: 3. Cucub. Lychnis.
§. ‥5. Cann. Cannabina T. POL.
Papaya T. *
Aruncus. Barba Capra T.
Kiggelaria \dagger. Arb. Ilicis folio B. MONAD.
Juniperus T.
Sabina Rp.
Taxus *. SYNG.
Ruscus *.
POLYGAMIA.
Species Hybrida. MONGCIA.

Veratrum.	VI: 3
Valantia A. *.	IV: 1
Holcus \dagger.	III: 2

Sorghum M. III: 2
Schœnanthum M. III: 2
Halimus * Mg. X: 2
Atriplex. V: 2
Parietaria. IV: 1
§. IV:1. Poterium N : 2 diecia.
Fraxinus T. Pn. II. I^{-1} Ornus Pn. II. 1
Elichrysum. T: M. §. X. 5. Sedum. Rhodia. TRIECIA.
Empetrum. III: 1

CRYPTOGAMIA.

Flores absconditi. ARBORES.
Ficus.
III: 1
Caprificus Pn. Erinosyce Pn.

FILICES.
Equisetum.
Ophioglossum T.
Lunaria Rp.
Pteris. Thilypteris D.
Polypodium.
Lonchitis.
Hemionitis T. Lingua Cervina T .
Adiantum.
Trichomanes.
Acrosticum \dagger. Muraria.

MUSCI.
Lycopodium D.
Selaginoides Rj.
Selago D.
Lycopodioides Rj .
Fontinalis D.
Sphagnum D.
Mnium D. Muscoides V.
Hypnum D.
Bryum D.
Polytrichum D.
Jungermannia. Hepatica M. Lichenastrum 1.
Marchantia. Lichen D.
Marsilea. Lunularia M.
Lichen. Lichenoides D.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
precisely the same, except for the occasional running of a word or syllable forward or backward on corresponding lines-as, for example, the word "flowers" on page 155, which in the 1853 edition occurs on the fifth line from the bottom, in the 1854 edition on the fourth line from the bottom; and an occasional typographical error, such as pavifolius on page 158 of the 1854 edition, second line from the bottom, which in the 1853 edition reads correctly, parvifolius. The botanical plates are the same as in the 1853 edition, are also lithographed by Ackerman, and appear not to have been redrawn.

Apparently the edition of 1853 was used as copy in setting type for the edition of 1854, and was not submitted to the author for revision. The two therefore differ far less in their make-up than do most editions of these early botanical Government reports. Indeed, for purposes of reference the second is as good as the first, except that its title-page date is misleading.

F. V. Coville. J. N. Rose.

SHORT NOTES.

Elymus arenarius in Sussex.-I have been asked by the Rev. E. N. Bloomfield, of Guestling, Sussex, to place on record the occurrence of the above-named grass in East Sussex. It was found this summer by Mr. L. B. Hall, who, noticing some of the spikes to be ergotized, picked one or two and sent a specimen to Mr. Bloomfield, not knowing the rarity of the plant in the South. He gathered it at Camber, near Rye. In a letter to Mr. Bloomfield he remarks: "There were, as far as I recollect, three or four very fine clumps, about two to four feet in diameter, or larger. There were no rubbish heaps, or any other indication of its being introduced. I saw about four spikes in flower, some of them very large." This brings it near the Kent coast, for which it is on record; but the authors of the Flora of Kent consider it requires confirmation, and in this I agree. E. arenarius is now on record for Essex !, Sussex l, *Hants, Dorset, \dagger N. Somerset. \ddagger The Devon record has not been confirmed, though the plant has been specially sought, in the habitat given, by the Rev. Moyle Rogers. On the west coast it occurs in Merioneth, F. C. Roper, 1892; Carnarvon, "Gibson MS." (Top. Bot.). There is a specimen labelled "Y Mawn," in Hugh Davies's collection, now in the British Museum ; but it is not entered for either county in Mr. J. E. Griffiths's Flora of Anglesea and Carnarvonshire. On the French coast it occurs in Normandy (La Manche), but is absent from the Flore de l'Ouest of Messrs. Lloyd and Foucaud (1886). In Belgium, Crépin records it as "assez rare."-Arthur Bennett.

[^27]Impatiens glandulifera Royle, (pp. 50, 87, 278).-I believe that this plant is frequently grown in cottage and suburban gardens, and remember cultivating it myself at Leicester forty-five years ago. Also I have had it here (Balham) for several seasons recently, unattractive though it is. . In August, 1898, there were a number of plants in the garden of a cottage on Weydown Common (Surrey), near Haslemere, and others evidently self-sown had sprung up on the roadside bank outside of the garden. In the same month of 1899 I was frequently at the spot, but saw no trace of any plants. In so sheltered a spot as Weydown Common the species might easily establish itself.-William Whitwell.

Winter Buds in Zannichellia.-In August of this year, when collecting Zannichellia polycarpa Nolte, which grows in great abundance in the drains of brackish water near Belfast Harbour on the Co. Down side, I found some tuber-like bodies among the tangled masses of weed giving rise to young plants. They are irregular in size and shape, about the size of a lentil-seed, and are probably gemmæ or winter buds. Mr. A. Bennett has kindly looked up the literature of the subject and has also written to enquire of Dr. Ascherson, and cannot find that they have been noticed before. The young plants produced were from an inch to two inches long. -C. H. Waddell.

Arum italicum in Dorset.-I have delayed noticing Mr. Linton's doubts as to the claim of Arum italicum (referred to in your notice (p. 361) of his Bournemouth Flora) to be a Dorset plant, until the October number of the Journal had appeared. I felt sure my letters would have been acknowledged which plainly substantiated the localities claimed for it in my Flora of Dorset, questioned by Mr. Linton on' the negative evidence of himself and Mr. R. P. Murray, on the insufficient ground that after a " careful search " they "could only find A. maculatum among the bushes which grow under the shelter of the walls in the locality indicated." Two localities are specified in the Flora of Dorset-Dancing Ledge and Tilly Whim, a mile and a half distant: Mr. Linton makes short work of these by one sweep of his pen. "Obviously," he says, " they are the same, and not two distinct ones." Why obviously? The station I have given is, "thickets under walls east of Dancing Ledge," or, to speak exactly, a few yards only east of that romantic spot; the other-Tilly Whim-is, as I have said above, a mile and a half distant. I sent Mr. Linton two specimens which I had found myself, one at Dancing Ledge, the other at Round Down, where I found it after the issue of the second edition of my Flora of Dorset, and I have no hesitation in saying that both are undoubted Arum italicum. On returning them to me he asked what characters I relied upon most for separating them. Among other differences I showed that the spadix of A. italicum is short and slender, colour uniformly yellow, and was almost concealed within the spathe; that the lower lobes of the triangularshaped divaricate leaves are long and sharply pointed, resembling Sagittaria sagittifolia; that they appear in the autumn and not in
the following spring, as is the case with Arum italicum, whose spadix is much taller and more robust and conspicuous, with the expanded scape ; although sometimes yellowish, it is invariably accompanied with a decided reddish tinge. The lower lobes of the triangularshaped leaves are rounded-not pointed-and only partially de-current.-J. C. Mansel-Pleydell.
[The excellent specimens collected by Messrs. Ridley and Fawcett at Tilly Whim, and placed by them in the National Herbarium, leave no doubt as to the identity of their plant with A. italicum.-Ed. Journ. Bot.]

Cyperus fuscus in N. Somerset. - In September last I found Cyperus fuscus by a boggy ditch near Clevedon, thus adding a fifth to the counties-Middlesex, Surrey, Dorset, S. Hants-already on record for the plant.-S. J. Coley.

Jubula Hutchinsie in Devon.-This summer I came across Jubula Hutchinsice growing freely on a shady bank in a wood at Wooda Bay, hanging down, and with the water from a small stream gently trickling over it.-T. H. Russell.

Spherotheca Mors-uve Berkl. \& Curt. in Ireland.-This, the "gooseberry fungus," appeared last spring at Whitehall, Broughshane, Co. Antrim. Mr. E. S. Salmon tells me that this is its first appearance in Europe.-S. Arthur Brenan.

NOTICES OF BOOKS.

An Introduction to Vegetable Physiology. By J. Reynolds Green, Sc.D., F.R.S. $8 \mathrm{vo}, \mathrm{pp}$. xx, 459, with 184 figs. in the text. London: Churchill. 1900. Price 10s. 6d.
This book will be heartily welcomed by botanists. As the author remarks in his preface, among the many recent additions to our elementary text-books, there is not one which deals solely or at any length with the subject of plant physiology. In the generally admirable manual by Strasburger and his colleagues, a somewhat belated translation of which appeared in English, the section on physiology is the least satisfactory, and in some points sadly incomplete, and even misleading. The few chapters devoted to this phase of the subject in Vines's Students' Text-book are excellent as far as they go, but they do not go nearly far enough for the student who is working for one of the many higher examinations. Professor Green has endeavoured to fill the gap between these elementary treatments and the fuller discussions of the subject which may be found in the more advanced text-books. His aim has been "to present the plant as a living organism, endowed with particular properties and powers, realizing certain needs, and meeting definite dangers," and "to show it to be properly equipped to encounter such adverse conditions, and to avail itself of all the advantages presented to it by its environment." The method adopted is excellent; the inclusion of a good deal of structural

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

ways in which fossil plants have been preserved, and the other on the classification and nomenclature of fossil plants, a department of palæontology which is in a very unsatisfactory state. The systematic view is followed by an exhibition of the chief characteristics of the successive floras of the earth, and a consideration of the evidence afforded in the study of these floras for the genetic evolution of the vegetable kingdom. M. Zeiller believes that the general tendency of the successive floras tells in favour of progressive evolution. But the earlier forms very rarely throw any light on the origin of generic types, though he thinks Danaopsis of the Trias may be the parent of Danca of the Lias. In the case of allied species he sees no indication of a gradual change into neighbouring forms; the specific peculiarities suddenly appear, and remain fixed throughout. the existence of the species. He therefore concludes that evolution was not gradual and imperceptible, but so sudden and rapid that we are unable to detect it. The systematic view, which forms the bulk of the volume, is carefully done. In the descriptions the author does not deal with anything lower than genera, but these are clearly described and well illustrated.

Dr. Scott's volume consists of a series of studies of the vascular cryptogams and gymnosperms, and incorporates much of the author's original work. It will be valuable to all students who direct their attention to fossil plants. The work is clearly and concisely written, and is fully illustrated with drawings of external forms and with minute histological details which have been made possible for text-books by the recently discovered processes of reproduction. It would not be possible to reproduce a portion of the work which would give a fair notion of its value; it is a great gain to botanists to have in our language so admirable a presentation of the important facts connected with the structure and organization of the palæozoic plants.

Dr. Scott concludes with an inquiry into the relation of the subjects of his study to the theory of the genetic evolution of the vegetable kingdom. While accepting, like M. Zeiller, the theory, he presents some of the many difficulties with which the story of past life on the globe abounds. In speaking of the late appearance of Angiosperms, he says that the facts at present known throw no light on the origin of this subkingdom, or on its relation to the Gymnosperms. Of the Pteridophytes, to which his work is chiefly devoted, he says that palæontology can at present throw no light on their ancestry. They are supposed by evolutionists to be derived from the Bryophytes, but Dr. Scott says emphatically that this theory receives no trace of support from fossil evidence, whatever may be the verdict of comparative morphology, and he concludes that the history of these two groups of plants may fairly be regarded as favouring the view that the course of evolution of the Vascular Cryptogams was altogether independent of that of the Bryophytes. It is obvious that a vivid imagination must be at the command of any one who endeavours to discover, from the known facts of fossil botany, the genetic history of the vegetable kingdom. But, leaving these speculative regions, as Dr. Scott calls them, we
again commend this volume, which may be accepted as a trustworthy guide to the student of the past history of the Pteridophytes and Gymnosperms.

Les espèces du genve Matthiola. Par Pascal Conti. Préface par R. Сhodat. (Mémoires de l'Herbier Boissier, No. 18, pp. 1-86, 20 Aug. 1900.)
Pascal Conti, who died on Aug. 2nd, 1898, at the age of twenty-four, was first a pupil and then an assistant to Prof. Chodat in the Botanical Laboratory of the University of Geneva. The work before us is of considerable merit, and shows a wide knowledge of botanical literature, and we regret that a career so promising has been so abruptly terminated. The species of Mathinla, to adopt the original spelling, may be grouped in two categoriesthe sand-loving species, of which European examples are M. sinuata and M. tricuspidata ; and the rock species, represented by M. tristis and many others. Mathiola is primarily a Mediterranean genus, being limited to the regions which border the great Aralo-Mediterranean depression. Few species are found beyond these limits, the only examples the author quotes being M. elliptica R. Br. from Abyssinia, M. torulosa from the Cape, and M. songarica.

For the purposes of the systematic arrangement of species in a lineal series the author proposes two divisions-" Série iranothibétaine" and "Série sud-iranienne." These divisions are very unequal in numerical strength, as the former includes only M. revoluta Bunge and M. khorassanica Bunge; the latter, the remaining thirty-two species. In the second division are fourteen groups, including from one to five species each. These depend partly on the duration of the plant, partly on the structure of the more important organs, such as leaves, flowers, and fruit. A point upon which the author lays considerable stress is the structure of the nectary-for instance, in M. elliptica R . Br. the nectaries are completely independent ; in M. dumulosa Boiss. \& Buhse and M. flavida Boiss. they anastomose strongly above and below. The diagnostic characters of the groups are not sufficiently contrasted one with the other ; thus, while in certain groups, as has just been said, stress is laid on the structure of the nectary, in many the description of this organ is omitted; again, in group C, the group of M. elliptica R. Br., we are told the seeds are very small and without wings; while in groups A, B, D, E, we are entirely left in ignorance on this point.
M. Conti takes a somewhat comprehensive view of species, and frequently unites plants which have been kept distinct by previous authors: thus he combines M. rupestris DC. and M. unduluta Tineo, which are retained as distinct by Gussone and Lojacono.

Previous to the appearance of this monograph considerable confusion existed in regard to M. odoratissima R. Br. Why this should be the case it is difficult to understand, as an excellent series of Cheiranthus odoratissimus Pallas (the plant on which this species is founded) are in the National Herbarium. A large number
of plants, collected by English collectors in Kashmir, have been referred here which should have been placed under a very different species-M. revoluta Bunge. The area of distribution of M. odoratissima R. Br. is Crimea, Caucasus, and the valley of Harirond, in Afghanistan, where it was collected by Dr. Aitchison; the type has runcinate pinnatisect leaves with lobes irregularly sinuate or dentate, while in M. revoluta they are oval, oblong-spathulate or rarely oblanceolate, grossly dentate or crenulate-incised.

The author gives no list of excluded species, and we are unable to find that he anywhere in the work deals with the three plants Sprengel describes in his Systema, ii. p. 897 (1825)-i. e. M. nana, M. macropetala, and M. lacera. M. macropetala he would doubtless refer to M. oxyceras DC., as it is stated to be synonymous with M. longipetala DC. The following species seem to be omitted :-
M. nudicaulis Trauto. in Act. Hort. Petrop. i. (1871), p. 51.
M. runcinata Regel in Bull. Soc. Nat. Mose. xliii. (1870), i. p. 254.
M. Telum Pomel, Nouv. Mat. Fl. Atl. p. 372.
M. dimolehensis Bak. fil. in Journ. Bot. 1898, p. 2, a plant allied to M. elliptica R. Brown, but differing in length of siliquæ, pubescence of calyx, etc.
M. Smithii Bak. fil. in Journ. Bot. 1896, p. 50, a species intermediate between the genera Mathiola and Morettia.
M. Bolleana Webb ex Christ in Engler, Jahrb. ix. p. 88, from the island of Fuertaventura.
E. G. B.

The Gaelic Names of Plants, Scottish, Irish, and Manx, collected and arranged in scientific order, with notes on their etymology, uses, plant superstitions, etc., among the Celts, with copious Gaelic, English, and scientific indices. By John Cameron. New and revised edition. Glasgow: John Mackay, 1900. 8vo, cloth, pp. xv, 160, portr. Price 7s. 6d.
We reviewed the first edition of this little book on its appearance in 1883 (p. 187), and we are glad to note that the suggestion we then made as to the inclusion of the Gaelic names published in Threlkeld's Synopsis Stirpium has been adopted, although we find no indication that Keogh's Botanologia, which would add many names to Mr. Cameron's list, has been consulted.

The revision of this edition seems to have been very thorough, but it would, we think, have been well to call special attention to some of the numerous and important corrections (which might rather be termed contradictions) of the first issue. It appears to us that these affect not only spelling and interpretation, but even the accuracy of the names themselves. For example, opening at random, we find on p. 10, under Drosera, "lus an Earnaich; 'Earnach' was the name given to a distemper among cattle, caused by eating a poisonous herb-some say the Sundew." This, in view of English names and traditions concerning the plant, seems a likely explanation; but in the first edition (p. 8) it is called "lus na fearnaich, the plant with shields (its leaves have some resemblance

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
E. J. Durand, 'Classification of the fleshy Pezizinea' (6 pl.)E. J. Hill, 'Celtis pumila' (1 pl.). - G. E. Osterhout, ' New plants from Colorado.'

Gardeners' Chronicle (29 Sept.). - C. T. Druery, 'Latent variability' (in ferns). - (6 Oct.). Spiraa Aitchisoni Hemsl., sp. n. (fig. 75).-(20 Oct.). Begonia Augustini Hemsl., sp.n.

Journal de Botanique ("Mai": received 1 Oct.). - P. van Tieghem, Erythrosperinum. - G. Rouy, 'Rosiers hybrides euro-péens.'-F. Guégnen, ' Tissu collecteur et conducteur des Phanérogames.'

Mém. de l'Herb. Boissier (25 Sept.). - M. Gottschall, ' Blatt der Melastomaceen (Miconic)' (3 pl.).-(15 Oct.) H. Schinz, \&c., 'Znr Kenntnis der africanischen Flora' (Dintera, Stapf. gen. nov. Scrophulariaceæ: 2 pl.).-A. Usteri, ' Zur Kenntnis der Platanen' (1 pl.).

Nuov. Giorn. Bot. Ital. (Oct.).-A. Colozza, 'Contribuzione all’ algologia romana.' - T. Ferraris, 'Contribuzione alla Flora del Piemonte.'-C. Papi, 'Richerche sull' Juniperus drupacea.'

Oesterr. Bot. Zeitschrift (Sept.).-R. v. Wettstein, 'Botanischen Nomenclatur.' - A. v. Degen, 'Bornmullera Dieckii, sp.n.' - A. Peter, 'Ueber hoch zusammengesetzte Stärkekörner in Endosperm von Weizen.' - F. Bubák, 'Aussereuropäische Pilze' (1 pl.).L. Celakovský, 'Sporangien von Ginkgo.' - (Sept. \& Oct.). J. Freyn, 'Flora von Steiermark (Rubus).' - A. v. Hayek, 'Eine biologische bemerkenswerthe Eigenschaft alpiner Compositen.' (Oct.). E. Palla, 'Zur Kenntniss der Pilobolus-Arten' (1 pl.).R. v. Wettstein, Euphrasia Cheesemani, sp.n.

Rhodora (Oct.).—M. L. Fernald, 'Rubus Idaus in America.'

> BOOK-NOTES, NEWS, \&c.

The first of the series of Monographs which Prof. Engler has planned as an amplification of the indispensable Pflanzenfamilien deals with the Musacea; these have been elaborated by Prof. Schumann. From the prospectus we learn that the work-which is entitled Das Pflanzenreich-will consist of a complete series of monographs, dealing with each family of the vegetable kingdom, and doing for species what the earlier undertaking did for genera. The task is a gigantic one, and will entail an enormous amount of work, while its usefulness to systematic botanists cannot be overestimated. We trust the rumour is incorrect which states that the whole is to be undertaken by botanists of German nationality; in a work of this kind the assistance of the best men should be obtained, and it is no disparagement to Germany to say that it has not a monopoly of competent botanists. Judging from a cursory glance at Prof. Schumann's monograph, the scheme justifies the highest expectations. We would suggest, however, that each monograph
should be fully dated in a way which would necessitate the preservation of the date: " 1900 " on wrapper is not sufficient. We could have dispensed with the illustrations, especially some familiar blocks showing habit which occupy a whole page.

The Moss Exchange. Club Reports for 1899 and 1900 have recently been issued in the form of a pamphlet of sixty-three pages. From these it is evident that the Club is steadily increasing in activity and in usefulness. The number of specimens distributed during the two years was about 3500 mosses and 1700 hepatics, a total of some 5200 plants. An effort has been made during the last year to check the naming of the specimens, by submitting these to specialists in the particular groups to which the plant belongs; and it is hoped that by so doing the weakest point in the Club's work during previons years has been remedied. According to the report, the condition of the specimens and the quantity of each sent in, as also the method of packing, show a decided improvement on previous years. The report contains numerous critical notes from the Club "Note Book," as well as, apparently, a complete list of all the species with localities distributed. Among the more interesting plants which have been commented upon by various members are-Dicranella Schreberi var. elata, Dicranodontium longirostre var. alpinum, Grimmia arenaria, Weisia crispata, Weisia rupestris var. intermedia, Webera annotina, Amblystegium Serphus var. depauperata, Hypnum hamulosum and H. callichroum, and Fissidens tamarindifolius. The Club now contains some thirty-four members, which is as many as can conveniently be worked; but a beginner's section has just been commenced, which it is hoped will act as a feeder to the parent society, will encourage beginners, and help to carry them over the initial difficulties. In this section specimens to be named may be sent at any time to the Secretary, and named plants will be sent to the members four times a year, the first distribution being on Jan. 1st, 1901. The Secretary is Mr. E. C. Horrell, 49, Danby Street, Peckham, S.E., from whom copies of the rules, \&c., can be procured. In the present reports we notice again the severe indifference with which bryologists regard certain of the laws of nomenclature, and particularly that on the abbreviation of authors' names; for example, Who is intended by the abbreviation Ldb.? Is it Ledebour, Lindberg, Lindeberg, Lindenberg, or who is it? Who are intended by the mysterious combinations of consonants Schp., Schpr., Spr., Schwg., Schwgr.? If a name requires abbreviation at all (a two-syllable word of only five letters would hardly require to be shortened), the rule to be observed is "the first syllable and the first letter of the following one, or the first two letters, if they are both consonants "-e. g. Schimp. for Schimper ; Rich. for Richard.

The Messrs. Groves have issued the second fasciculus of their admirable Characea Britannica Exsiccata, which contains thirty numbers, representing the following species :-Chara fragilis Desv., C. aspera Willd., C. aspera subsp. desmacantha, C. baltica Bruzel var. affinis, C. contraria Kuetz., C. tomentosa L., C. hispida \times contraria, C. hispida L., C. Braunii Gmel., Lamprothamnus alopecuroides

Braun, Tolypella glomerata Leonh., T. prolifera Leonh., T. intricata Leonh., Nitella hyalina Ag., N. Nordstedtiana H. \& J. G., N. tenuissima Kuetz., V. gracilis Ag., N. mucronata Miquel, N. translucens Ag., N. flexilis Ag., N. opaca Ag. The two parts, which cost a guinea each, comprise all but one of the Characee known to occur in the British Isles. A few copies of the first fasciculus are still to be obtained. Perhaps Mr. Bullock-Webster's beautiful specimens of Nitella hyalina, the latest addition to our Chara-flora, are the most noteworthy feature of the present fasciculus.

We note that Mr. Hemsley, in his somewhat disappointing notice in Nature (for Oct. 4) of the Illustrations to the Botany of Cook's Voyage, refers to the printing of "Endeavour's" rather than "Endeavour" River as a "palpable error." The names of places are printed as Banks and Solander wrote them ; and "Endeavour's River " is the form they employ in the herbarium, the MSS., and the drawings. Sir Joseph Hooker, indeed, in his edition of Banks's Journal, uses "Endeavour River"; but in so doing he departs from the transcript of the original from which his copy was taken. It is true that in Cook's Journal (edited by Captain Wharton) Cook speaks of naming it Endeavour River, but in the reproduction of Cook's "original chart," which accompanies the Journal, it appears as "Endeavour's River." The matter is of very slight importance, but it seems hardly fair to single out as a "palpable error" a name which was employed, though not exclusively, by Cook, and uniformly adopted by his fellow-voyagers. Mr. Hemsley says that Mr. Britten has been "permitted to exercise [his] will in this national publication" in the matter of nomenclature; but the rules followed are those which govern the publications of the Department of Botany. We note that Mr. Hemsley implies-unless his phrase be a mere façon de paller-a knowledge of the reasons which prevented the publication of the work by Banks himself: "this is not the place," he says, "to enter into the causes of the cessation." The matter is of so much interest that it is to be hoped that Mr. Hemsley may speedily find a suitable "place" for the publication of any explanation he may have discovered.

Tee second part of M. E. de Halácsy's Conspectus Flora.Graca, the first instalment of which we noticed at p. 234, has appeared, bringing the enumeration down to Crassulacece. We regret that it has not been found possible to adopt our suggestion of adding to the heading of each page the name of the genus of which it treats: this would greatly increase the usefulness of the work.

The twenty-ninth Annual Report (for 1899-1900) of the Chester Society of Natural Science contains a list of additions and notes by Miss Cummings, Miss Payne, and Miss A. Payne to the flora of Chester, and a list of the fungi of the district by Messrs. J. \& A. H. Thompson-the latter list is disfigured by the prominence given to what are absurdly called "English names." The authors have placed a book containing a detailed account and a water-colour drawing of almost every species in the library of the Society.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

We are sorry to find that Mr. J. M. B. Taylor is not pleased with the brief notice of his Handbook of Plant Collecting published on p. 408. It seems best to let Mr. Taylor state his objections in his own way, so we print his letter verbatim et literatim; - "It cannot be hidden from any one who cares to look at your Review that it is largely tinged with an element of spleen. You take a quotation from the book without showing its connection, yet with that you can't bring out what you assert. I defy you to prove that any of the space in the book is taken up "with useless or unnecessary remarks." The fact that you say so proves that you have no experience in collecting or drying plants. So far as Reviews go you stand alone in this matter, and it is clear that you labour under spleenic error. As to the illustrations they do occupy too much space for the size of the book, that is due to an error of the Publisher in making them too big. For you to say that the book would do without the illustrations, it would be as near the mark to say that you would be improved without your eyes, or any of your other five senses. As to the literary style of the book, those who live in glass houses should not throw stones. I have your European Ferns, and no doubt you will look on your literary style as a model. Let me tell you that your style is stiff in the extreme-and is that which will not suit this part of the country. The language you make use of to describe the ferns is that which turns many would be readers away from the study of such beautiful objects as the ferns. My little book can only be looked upon as a labour of love, but with your European Ferns it is different-you have something of a commercial transaction for your pocket. Now with my little book it is a guide to what it professes, and its teachings are free from error-and gives to the world what is new. This cannot be said of your European Ferns: it contains errors, and as long as your book is in use you are a Manufacturer of errors-errors for which one in your position is responsible."

The latest contribution to newspaper botany comes from a recent number of Pearson's Weelily. It appears under the heading "Questions Worth Answering," as to which we are informed that "half-a-crown is paid for every question used, and replies at the rate of two guineas a column":-" 5223 . Why have so Many Plants Leaves with Notched Edges? -A few years ago Professor Rudolph, in a series of lectures on 'The Great Wonders Around Us,' propounded a theory of the function of the finely serrated edges of certain leaves. He considered that these points and edges served to permit the escape of electricity, which might otherwise accumulate on the surface of the earth in dangerous quantities, and give rise to ascending lightning-strokes. The very same points and edges quietly convey away the electricity from the atmosphere and thus to a great extent disarm the tempests. Professor Rudolph supported his theory by pointing out that the highest trees, such as pines, have the most pointed leaves."

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
penicillate tips. On cursory inspection one might suppose the new plant to be a Grangea, which in general appearance it greatly resembles, but dissection reveals important structural differences. Its place would seem to be next to Denekia.

Nicolasia,

Compositarum e tribu Inuloidearum genus novum (tab. 416 B).
Capitula heterogama, disciformia, multiflosculosa, flosculis serierum exteriorum fæmineis, interiorum hermaphroditis, omnibus fertilibus. Involucri late campanulati phylla pauciseriata, imbricata, angusta, membranacea, extima quam reliqua breviora. Receptaculum planum, nudum. Flosculorum fœm. corollæ filiformes, stylo suo breviores, apice minute denticulatæ; flosculorum hermaph. tubulosæ, apice 5 -fidæ. Antheræ breviter apiculatæ, basi caudatæ, candis sejunctis. Flosculorum hermaph. styli filiformes hirtelli, indivisi. Achænia parva, compressa. Omnium achæniorum pappi setæ 3, attenuatæ, caducissimæ.-Suffrutices humiles. Folia alterna, integra vel denticulata, membranacea, ramorum florigerorum imminuta. Capitula parva, ad apicem ramorum solitaria vel pauca.

This appears to be a well-marked genus, and one near to that already described in this memoir. In many respects it resembles Pluchea, but the habit, the free tails to the anthers, the compressed achenes, and, above all, the pappus with its three caducous setæ, furnish good points of distinction. Technically, the affinity is closer with Epaltes, Denekia, and Delamerea; but, among other characters, the absence of a distinct pappus from the achenes of Epaltes and from the circumferential ones of Denekia and Delamerea, and the different pappus of the interior achenes of the two latter genera, furnish ample grounds for establishing this as a new genus.

Specierum Clavis.

Puberula. Folia juniora maxime abbreviata et ovata. Capitula subsessilia. Involucri phylla lanceolata, spinuloso-acuminata

> 1. N. heterophylla.

Albo-pubescens. Folia juniora oblonga. Capitula pedunculata. Involucri phylla linearia, obtusiuscula
2. N. pedunculata.

Nicolasia heterophylla, sp. nov. Caule subtereti procumbente ramulos florigeros parvifoliatos sæpe emittente, foliis lineari-oblanceolatis mucronatis margine denticulatis uninerviis ramulorum florigerorum parvis ovatis summis integris et spinuloso-acuminatis foliis omnibus sessilibus puberulis, capitulis solitariis vel paucis juxta apicem ramulorum oriundis, involucro 3 -seriali hujus phyllis lanceolatis spinuloso-acuminatis albo-marginatis ciliolatis.

Hab. Damaraland, 1879 ; T. G. Een (Herb. Mus. Brit.).
Folia majora $2.0-5 \cdot 0 \mathrm{~cm}$. long. (modica circa 3.0 cm .) et $0 \cdot 4-$ 0.55 cm . lat.; folia minora usque ad $0.3 \times 0.15 \mathrm{~cm}$. imminuta, alia vero $0.5-0.8 \mathrm{~cm}$. long. exstant. Pedunculi circa 0.2 cm . long. Capitula 0.6 cm . diam. Involucri phylla extima 0.2 cm . long., et
0.04 cm . lat., interiora 0.3 cm . long., 0.08 cm . lat. Flosculorum fom. corolla 0.2 cm . long., ima basi parum dilatata; flosculorum hermaph. corolla a basi sensim amplificata, vix 0.3 cm . long. Antheræ subinclusæ. Flosculorum hermaph. styli pars exserta 0.2 cm . long. Achænia oblonga, 0.06 cm . long. ; pappi setæ circa 0.22 cm . long.

Nicolasia pedunculata, sp. nov. Caule gracili subtereti deinde glabrato, foliis sessilibus albo-pubescentibus senioribus oblanceolatis obtusis margine denticulatis uninerviis junioribus oblongis, mucronulatis, capitulis pedunculis folia juvenilia subæquantibus fultis solitariis, involucro circa 4 -seriali hujus phyllis linearibus vel anguste lineari-lanceolatis obtusiusculis puberulis.

Hab. Damaraland, 1879 ; T. G. Een (Herb. Mus. Brit.).
Folia majora $2.5-3.0 \mathrm{~cm}$. long., et $0.5-0.7 \mathrm{~cm}$. lat., demum puberula; minora $0.8-1 \cdot 0 \mathrm{~cm}$. long., $0 \cdot 3-0.4 \mathrm{~cm}$. lat. Pedunculi $0 \cdot 6-1 \cdot 0 \mathrm{~cm}$. long., puberuli. Capitula 0.7 cm . diam. Involucri phylla extima 0.2 cm . long.; interiora circa 0.3 cm . long., et 0.05 cm . lat. Flosculorum fœm. corolla 0.22 cm . long., ima basi dilatata; flosculorum hermaph. 0.32 cm. long., a basi gradatim dilatata. Antheræ omnino inclusæ. Flosculorum hermaph. styli sat validi pars exserta 0.2 cm . long. Achænia immatura oblonga; pappi setæ vix 0.3 cm . long.

It gives me much pleasure to associate with this genus the name of my friend Mr. Nicholas Brown, A.L.S., who for nearly thirty years has been a member of the scientific staff at the Royal Gardens, Kew, in which capacity he has rendered most valuable services to our science.

Aspilia chrysops, sp. nov. Caule simplici erecto folioso ap. presse hispidulo, foliis subsessilibus lanceolatis acutiusculis integris triplinerviis utrinque (præsertim vero pag. superiore) scabridis firme membranaceis, capitulis parvis campanulatis laxe cymosis sat longe pedunculatis, involucri phyllis triseriatis abbreviatis subæquilongis scabridis extimis late oblongis reliquis oblongo-obovatis omnibus obtusissimis herbaceis, ligulis obovatis bilobis, achæniis oblongoturbinatis albo-villosulis minutissime maculatis pappo brevi cupulari inæqualiter biaristato onustis.

Hab. Laskarato, Somaliland, 1899; Dr. Donaldson Smith (Herb. Mus. Brit.).

Folia $4 \cdot 0-6 \cdot 0 \mathrm{~cm}$. long., $1 \cdot 0-1 \cdot 8 \mathrm{~cm}$. lat., in sicco viridia, petiolis hispidis 0.3 cm . long. fulta. Cymæ $5 \cdot 0-10.0 \mathrm{~cm}$. long. Pedunculi graciles. Capitula 1.5 cm . diam. Involucri phylla extima 0.3 cm . long., 0.13 cm . lat.; intima 0.4 cm . long. et 0.3 cm . lat. Paleæ obovato-oblongæ, apice tridentatæ ibidemque luteolæ, nigro-unilineatæ, 0.5 cm . long. Ligulæ modo 0.8 cm . long., $0: 5 \mathrm{~cm}$. lat. Achænia disci 0.4 cm . long., horum aristæ $0 \cdot 15-0 \cdot 25 \mathrm{~cm}$. long.

An elegant species, readily distinguishable from its congeners by reason of its entire lanceolate leaves, small capitula, and short involucral leaves.

Euryops somalensis, sp. nov. Ascendens, humilis, sparsim ramulosus, ramulis dense foliosis subteretibus albo-araneoso-pubes-
centibus, foliis sessilibus oblanceolatis obtusis integris vel apice breviter trifidis carnosulis marginibus cartilagineis revolutis araneosopubescentibus vel puberulis, pedunculis folia multo excedentibus glabris, capitulis mediocribus terminalibus, involucri late campanulati phyllis 11-12 sepe inæqualibus plerisque lanceolatis vel lineari-lanceolatis nonnullis oblongo-ovatis glabris, acbæniis 5 -angulari-cylindricis 10 -costatis hispidulis.

Hab. Somaliland, near Lake Marsabit, 1898; Lord Delamere (Herb. Mus. Brit.).

Folia 2.0-3.0 cm. long., $0 \cdot 2-0 \cdot 6 \mathrm{~cm}$. lat. Pedunculi $8 \cdot 0-10 \cdot 0 \mathrm{~cm}$. long., in longitudinem striati. Capitula usque ad 1.5 cm . diam. Involucri phylla $0 \cdot 65-0.8 \mathrm{~cm}$. long., $0 \cdot 13-0.2 \mathrm{~cm}$. lat., raro usque ad 0.4 cm ., margine scariosa, deorsum eminenter pluristriata. Receptaculum convexum, levissime alveolatum. Radii flosculi eirca 14. Ligulæ oblongæ, tridentatæ, $0 \cdot 2 \mathrm{~cm}$. lat.; disci flosculorum interdum abortivorum corolla infundibularis. Achænia 0.2 cm . long. Pappi setæ caducissimæ, scabridæ, 0.4 cm . long.

A very distinct species, most like E. Iregeana Sch. Bip.; its leaves, ligules, \&c., are, however, quite different from those of the Caperplant. From a geographical point of view, this is extremely interesting.

Tripteris angustissima, sp. nov. Suffrutex, caule ascendente robusto cortice spongioso circumdato foliorum evanidorum reliquiis crebro induto, ramulis foliosis hirtulis, foliis alternis lanceolatis oblanceolatisve obtusis plus minus amplexicaulibus sparsim denticulatis superioribus integerrimis hirto-puberulis, capitulis parvis longe pedunculatis, involucri late campanulati phyllis subuniseriatis inter se subæqualibus lineari-lanceolatis marginibus scariosis, receptaculo plano, ligulis oblongis breviter trifidis, antherarum auriculis acutis, flosculorum hermaph. stylo obscurissime bifido, radii achæniis lineari-clavatis angustissime 3 -alatis.

Hab. Gan Liban, Somaliland, 1899; Dr. Donaldson Smith (Herb. Mus. Brit.).

Caulis circa 0.5 cm . diam., radicibus validis elongatis distanter fibrilliferis suffultis. Folia usque ad 7.0 cm . long. et 2.0 cm . lat. (modica vero $4.0 \times 0.8-1.0 \mathrm{~cm}$.). Pedunculi $5 \cdot 0-10.0 \mathrm{~cm}$. long., foliis parvulis $1-3$, linearibus, circa 0.5 cm . long. onusti. Involucri phylla 0.5 cm . long. et circa 0.13 cm . lat. Ligulæ 1.0 cm . long., 0.25 cm . lat., 4-nervosa. Flosculorum hermaph. corolla vix 0.5 cm . long., juxta basin subito angustata. Radii achænia glabra, $0.6-0.7 \mathrm{~cm}$. long., basi 0.06 cm . superne 0.14 cm . diam.; alæ 0.04 cm . lat. ; achænia abortiva 0.4 cm . long., alba.

At first sight this might pass for an Osteospermum; indeed, it is not at all unlike O. herbaceum L. The fruit, however, is that of Tripteris, though the wings are almost invisible until the achenes have been moistened. The relatively long and slender achenes with their subobsolete wings, together with the hirtulous clothing, the membranous denticulate leaves, and the small heads on long peduncles, are the distinctive marks of the species.

Fagelia (§ Scapose) falklandica, sp. nov. Herbacea, pilis albidis pilulosa, foliis radicalibus ovatis vel ovato-oblongis obtusis

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

late ovatis nunc oblanceolato-oblongis semper obtusissimis basi in petiolum latum satis elongatum desinentibus raro subsessilibus supra glabris subtus appresse hirsutulo-pubescentibus, scapo gracili simplici folia longe excedente 3 -4-floro, floribus fere omnino sessilibus, calycis pilosiusculi subturbinati lobis deltoideis tubo duplo brevioribus, corollæ tubo infundibulari hajus labio superiore ob-longo-ovato evanide emarginato, antheris per paria approximatis, ovario ovoideo compresso.

Hab. Jara, Somaliland, Oct. 1899 ; Dr. Donaldson Smith (Herb. Mus. Brit.).

Foliorum lamina usque 1.5 cm . long. et 1.3 cm . lat., plerumque vero minor, flabellatim $3-5$-nervis, petiolo usque 1.0 cm . long. (sæpe vero breviori) fulta, læte virens, firme membranacea. Scapus $3 \cdot 0-3.5 \mathrm{~cm}$. long., albo-pilosus. Bracteæ modicæ 0.6 cm . long., vix totidem lat., margine ciliatæ, floribus arcte applicatæ. Calyx totus 0.45 cm . long.; lobi 0.15 cm . long., basi 0.1 cm . lat., albociliati. Flores cyanei. Corollæ tubus 0.8 cm . long., juxta basin 0.2 cm . sub limbo 0.35 cm . diam.; hujus labium superius 0.5 cm . long. et 0.4 cm . lat.; labii inferioris lobi laterales ovati, obtusissimi, 0.35 cm . lat., lobus intermedius late obovatus, 0.4 cm . lat. Capsula -.

A very distinct species, agreeing in many details of its inflorescence with the Angolan C. crassifolium Engl., but quite different from it in habit and foliage. In the latter character it is much like C. plantagineum Hochst.

Sopubia Eenii, sp. nov. Minute lepidoto-tomentella demum fere glabra, caule erecto crebro ramoso tetragono folioso, foliis oppositis lineari-lanceolatis obtusis vel obtuse acutis integris rarius breviter denticulatis, pedicellis oppositis raro ternatim verticillatis juxta medium bibracteatis, bracteis linearibus acutis, calycis lobis oblongis obtusissimis tubum excedentibus, corollæ limbi lobis obovatis calyce longioribus.

Hab. Damaraland ; T. G. Een, 1879 (Herb. Mus. Brit.).
Caulis $0 \cdot 15-0 \cdot 3 \mathrm{~cm}$. diam., tetragonus, internodia pleraque circa $1 \cdot 0-1 \cdot 5 \mathrm{~cm}$. long. Folia $1 \cdot 5-2.5 \mathrm{~cm}$. long., $0 \cdot 25-0 \cdot 4 \mathrm{~cm}$. lat., membranaceo-coriacea, sursum deinde fere glabra. Pedicelli $0.5-$ 1.0 cm . long. Bracteæ 0.2 cm . long. Calycis tubus 0.15 cm . long.; hujus lobi 0.2 cm . long., 0.12 cm . lat. Corollæ tubus 0.35 cm . long. ; limbus expansus circa 1.0 cm . diam., lobi 0.45 cm . long. et vix totidem lat. Capsula oblonga, emarginata, 0.4 cm . long. Semina ovoidea, vix 0.1 cm . diam.

Closely allied to S. leprosa S. Moore (vide p. 468), and differing from it in indumentum, shape of leaves, and larger flowers with somewhat diverse calyx and corolla.

Crossandra Smithii, sp. nov. Caule ascendente verisimiliter humili superne folioso pubescente, foliis parvis petiolatis ellipticis obtusis bası angustatis molliter pubescentibus, pedunculis abbreviatis pubescentibus, spicis brevibus paucifloris, bracteis lanceolatooblongis acutis integris muticis piloso-pubescentibus, bracteolis linearibus acuminatis calycem excedentibus, calycis segmento
postico binervi bidentato lateralibus ovatis acuminatis, ovario glabro, stylo pilosiusculo, capsula anguste ellipsoidea acuta 4 sperma.

Hab. British East Africa, Msai, 1899; Dr. Donaldson Smith (Herb. Mus. Brit.).

Specc. nobis obviorum caulis 8.0 cm . alt., demum puberulus. Folia circa 1.5 cm . long. et 1.0 cm . lat., subtus pallidiora, petiolis circa 0.5 cm . long. fulta. Pedunculi circa 0.7 cm . long. ${ }^{\text {S Spicæ }}$ 1.5 cm . long., $0: 8 \mathrm{~cm}$. diam. Bracteæ $0 \cdot 7-0.8 \mathrm{~cm}$. long., $0.3-$ 0.4 cm . lat., trinerves. Bracteolæ 0.7 cm . long. Calycis segmentum posticum 0.6 cm . long. ; segmenta lateralia 0.4 cm . long. Corollaz tubus puberulus, 2.2 cm . long., ima basi 0.2 cm . medio 0.1 cm . sub limbo 0.15 cm . diam. Antheræ pilosæ. Ovarium 0.35 cm : et stylus 2.0 cm . long. Capsula 0.8 cm . long., 0.3 cm . diam. Semina lepidibus ciliatis onusta, 0.2 cm . diam.

Nearest C. leikipiensis Schweinf., but the obtuse petiolate leaves, the extremely short peduncles, the short and narrow spikes, and differently shaped bracts afford good distinctive characters.

Dr. Rand’s Rhodesian Labiate.

Ocimum hians Benth. Salisbury, Sept. No. 621.
Ocimum americanum Mill. Buluwayo, early January and June. Nos. 164, 516.

Ocimum (§ Hierocimum) Randii, sp. nov. Caule erecto puberulo basi lignoso superne sparsim ramoso ramulis ascendentibus tenuibus, foliis sessilibus linearibus vel anguste lineari-oblanceolatis obtusis margine revolutis glabris congestim subverticillatis internodiis subæquilongis vel duplo brevioribus, spicis elongatis, verticillastris distantibus plerumque 4-7-floris, bracteis sæpe coloratis lanceolatis sursum longe attenuatis acutis pedicellos brevissimos dense albo-tomentosos multo excedentibus, floribus parvis, calycis campanulati lobo postico orbiculato brevissime cuspidulato-acuminato lobis lateralibus quam posticus brevioribus truncatis lobis anticis setaceo-acuminatis, corollæ tubo calyci æquilongo limbi lobo antico leviter concavo, staminibus longe exsertis.

Hab. Salisbury; Sept. 1898. No. 618.
Planta sat gracilis, circa 30.0 cm . alt. Folia $1 \cdot 5-2.0 \mathrm{~cm}$. long., $0.1-0.15 \mathrm{~cm}$. (raro $0.25-0.35 \mathrm{~cm}$. attingentia) lat. Spicæ usque 13.0 cm . long., puberulæ. Bracteæ $0 \cdot 4-0.5 \mathrm{~cm}$. long., nunc virescentes nunc purpurascentes. Pedicelli circa 0.1 cm . long. Calyx 0.3 cm . long., pæne totidem lat., breviter necnon appresse albo-puberulus; lobus posticus decurrens, in sicco atripurpureus, $0 \cdot 2 \mathrm{~cm}$. lat., dense albo-ciliatus; loborum anticorum appendices 0.12 cm . long. Corollæ tubus 0.3 cm . long.; limbi lobus anticus 0.2 cm . long.; lobi reliqui oblongo-obovati, 0.15 cm . long. Filamenta circa 0.8 cm . long., staminum posticorum ad 0.1 cm . supra insertionem dense pilifera. Nuculæ -.
O. verticillifolium Baker, a Somaliland plant, has much the appearance of this, but, irrespective of certain differences in leaf and flower, it is a member of another section. The chief distinguishing points of O. Randii among its congeners of § Hierocimum
are the narrow pseudo-verticillate leaves, the relatively elongated bracts and the densely woolly pedicels.

Acrocephalus sericeus Briq. Buluwayo, early January. No. 146. Basilicum myiostachyım O. Kze. Salisbury, July. No. 526. Orthosiphon linearis Benth. Buluwayo, May. No. 386. Orthusiphon Kirkii Baker. Buluwayo, May. No. 384. Orthosiphon Elliottii Baker. Buluwayo, Dec. No. 167. Orthosıphon bracteosum Benth, Salisbury, late Dec. No. 166. Orthosiphon shirensis Baker. Buluwayo, early January. No. 143. Hoslundia verticillata Vahl. Buluwayo, Dec. No. 163.
Plectranthus floribundus N. E. Br. Salisbury, Aug. No. 524.
Coleus ($\underset{\text { C Calceolus) }}{ }$ palliolatus, sp. nov. Caule deorsum procumbente sursum sparsim ramoso, ramis ascendentibus pilosis, foliis late obovatis obtusissimis basi in petiolum brevem sensim angustatis dimidio superiore crenatis inferiore integris puberulis una cum caule calycibusque glandulis minutis rubescentibus copiose obsitis, spicis simplicibus elongatis densifloris, verticillastris circa 6 -floris approximatis ætate paullulum disjunctis, bracteis maximis alabastra laxe circumdantibus latissime rotundatis breviter cuspidatis minute pubescentibus margine piloso-ciliatis decidurs, calyce fructifero deflexo puberulo intus annulatim villoso lobo postico late rotundato breviter cuspidato leviter decurrente lobis reliquis postico longioribus lanceolatis acutis, corollæ tubo defracto calycem bene excedente gracili labio inferiore stipitato cymbiformi.

Hab. Buluwayo; early January, 1898. No. 144.
Caulis sat robustus, eleganter striatus, 0.3 cm . diam. Folia circa 3.0 cm . long., usque ad 2.0 cm . lat. (ramulorum $2.0 \times 1.3 \mathrm{~cm}$.), petiolis 0.3 cm . long. fulta. Spicæ usque 12.0 cm . long., pilosæ. Bracteæ tenuiter membranaceæ, expansæ, fere 1.0 cm . long. et lat. Calycis fructiferi lobus posticus 0.6 cm . lat., 0.25 cm . long.; lobi reliqui 0.3 cm . long., ciliati. Corollæ tubus 0.5 cm , long., 0.2 cm . lat. ; labii inferioris stipes vix 0.3 cm . long., pars cymbiformis $1 \cdot 0 \mathrm{~cm}$. long., acutus. Filamentorum vagina 0.5 cm . long. Nuculæ ovoideæ, 0.15 cm . diam.

Allied to C. barbatus Benth., but its indumentum, extremely broad bracts, different upper calyx-lobe, narrow corolla-tube, and smaller cymbiform part of lower lip of corolla are well-marked distinctive characters.

Pycnostachys urticifolia Hook. Salisbury, July. No. 525.
Mentha sylvestris L. Salisbury, late Dec. No. 145.
Salvia runcinata L. fil. Buluwayo, early January. No. 134.
Scutellaria Livingstonei Baker. Salisbury, Sept. No. 520.
Leucas martinicensis R. Br. Buluwayo, May. No. 385.
Leucas (§ Hemistoma) Randli, sp. nov. Caule procumbente sparsim ramoso villoso-tomentoso, foliis brevipetiolatis oblongoovatis obtusis basi cuneatim angustatis margine deorsum integris sursum crenato-serratis utrinque adpresse villosulo-pubescentibus, verticillastris globosis multifloris, bracteis elongatis lineari-lanceolatis calyci subæquilongis hispidis, calycis villosuli 10 -dentati in fructu recurvi tabo a basi sensim amplificato ore obliquo labii

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
are the narrow pseudo-verticillate leaves, the relatively elongated bracts and the densely woolly pedicels.

Acrocephalus sericeus Briq. Buluwayo, early January. No. 146. Basilicum myniostachyum O. Kze. Salisbury, July. No. 526.
Orthosiphon linearis Benth. Buluwayo, May. No. 386.
Orthosiphon Kirkii Baker. Buluwayo, May. No. 384.
Orthosiphon Elliottii Baker. Buluwayo, Dec. No. 167.
Orthosiphon bracteosum Benth, Salisbury, late Dec. No. 166.
Orthosiphon shivensis Baker. Buluwayo, early January. No. 143.
Hoslundia verticillata Vahl. Buluwayo, Dec. No. 163.
Plectranthus floribundus N. E. Br. Salisbury, Aug. No. 524.
Coleus (§ Calceolus) palliolatus, sp. nov. Caule deorsum procumbente sursum sparsim ramoso, ramis ascendentibus pilosis, folis late obovatis obtusissimis basi in petiolum brevem sensim angustatis dimidio superiore crenatis inferiore integris puberulis una cum caule calycibusque glandulis minutis rubescentibus copiose obsitis, spicis simplicibus elongatis densifloris, verticillastris circa 6 -floris approximatis ætate paullulum disjunctis, bracteis maximis alabastra laxe circumdantibus latissime rotundatis breviter cuspidatis minute pubescentibus margine piloso-ciliatis deciduis, calyce fructifero deflexo puberulo intus annulatim villoso lobo postico late rotundato breviter cuspidato leviter decurrente lobis reliquis postico longioribus lanceolatis acutis, corollæ tubo defracto calycem bene excedente gracili labio inferiore stipitato cymbiformi.

Hab. Buluwayo ; early January, 1898. No. 144.
Caulis sat robustus, eleganter striatus, 0.3 cm . diam. Folia circa 3.0 cm . long., usque ad 2.0 cm . lat. (ramulorum $2.0 \times 1.3 \mathrm{~cm}$.), petiolis 0.3 cm . long. fulta. Spicæ usque 12.0 cm . long., pilosæ. Bracteæ tenuiter membranaceæ, expansæ, fere 1.0 cm . long. et lat. Calycis fructiferi lobus posticus 0.6 cm . lat., 0.25 cm . long.; lobi reliqui 0.3 cm . long., ciliati. Corollæ tubus 0.5 cm , long., 0.2 cm . lat.; labii inferioris stipes vix 0.3 cm . long., pars cymbiformis 1.0 cm . long., acutus. Filamentorum vagina 0.5 cm . long. Nuculæ ovoideæ, 0.15 cm . diam.

Allied to C.barbatus Benth., but its indumentum, extremely broad bracts, different upper calyx-lobe, narrow corolla-tube, and smaller cymbiform part of lower lip of corolla are well-marked distinctive characters.

> Pycnostachys uiticifolia Hook. Salisbury, July. No. 525.
> Mentha sylvestris L. Salisbury, late Dec. No. 145.
> Salvia runcinata L. fil. Buluwayo, early January. No. 134.
> Scutellaria Livingstonei Baker. Salisbury, Sept. No. 520.
> Leucas martinicensis R. Br. Buluwayo, May. No. 385.

Leucas (§ Hemistoma) Randii, sp. nov. Caule procumbente sparsim ramoso villoso-tomentoso, foliis brevipetiolatis oblongoovatis obtusis basi cuneatim angustatis margine deorsum integris sursum crenato-serratis utrinque adpresse villosulo-pubescentibus, verticillastris globosis multifloris, bracteis elongatis lineari-lanceolatis calyci subæquilongis hispidis, calycis villosuli 10 -dentati in fructu recurvi tubo a basi sensim amplificato ore obliquo labii
superioris dentibus elongatis linearibus labii inferioris dentibus abbreviatis deltoideis obtusis erectis, corollæ tubo glabro labio inferiore puberulo galea villoso.

Hab. Salisbury; July, 1898. No. 522.
Caulis 0.2 cm . diam. intervallis $2 \cdot 0-4.0 \mathrm{~cm}$. long. sparsim foliosus. Folia $3 \cdot 0-4 \cdot 0 \mathrm{~cm}$. long., $1 \cdot 5-2 \cdot 2 \mathrm{~cm}$. lat., firma, in sicco pallide viridia; petioli 0.4 cm . long. Verticillastri $3.0-4.0 . \mathrm{cm}$. diam. Bracteæ vix 1.5 cm . long. Calyx totus 1.5 cm . long., basi 0.25 cm . medio 0.5 cm . diam. ; dentes superiores $3,0.4 \mathrm{~cm}$. long.; dentes inferiores vix 0.1 cm . long. Corollæ tubus vix 1.0 cm . long., 0.2 cm . diam. ; galea tubo æquilonga; labii inferioris lobus intermedius bifidus, 0.5 cm . long.; lobi laterales vix 0.3 cm . long. Nuculæ leviter triquetræ, politæ, 0.2 cm . long.
L. Randii should be placed near L. densifora Vatke and L. Holstii Gürke, from both of which it differs in several important points. In external appearance it is much like L. nyassa Gürke, but the dissimilar leaves, calyces, \&c., of the two render further comparison unnecessary. The relatively broad leaves entire at the margin in their lower half, the hispid bracts, and the long teeth of the upper and short teeth of the lower lip of the ultimately reflexed calyx are the chief characteristics of the species.

Dr. Rand notes of this plant:-" The verticillasters are bellshaped and I fancy the seeds are dispersed by the rolling about of these when detached, as the stems are procumbent."

Lasiocorys capensis Benth. Buluwayo, Dec. No. 162.
Leonotis Randii, sp. nov. Caule sparsim ramoso arcte et breviter pubescente, foliis parvis subsessilibus oblanceolatis obtusis deorsum longe sensim angustatis margine grosse serratis basin versus integris utrinque (præsertim subtus) appresse pubescentibus, verticillastris circa 15 -floris, bracteis lineari-subulatis breviter spinoso-acuminatis, floribus breviter pedunculatis, calycis 8-dentati minute puberuli dentibus spinoso-acuminatis dente postico reliquis majori.

Hab. Buluwayo; Dec. 1897. No. 165.
Caulis circa 0.3 cm . diam., aliquantulo tetraqueter. Folia $3 \cdot 0-5 \cdot 0 \mathrm{~cm}$. long., $0 \cdot 5-0 \cdot 8 \mathrm{~cm}$. lat., summa nonnunquam integerrima vel margine serraturis utrinque 1 vel 2 interrupta, subtus eminenter nervosa. Bracteæ paullo ultra 1.0 cm . long., circa 0.1 cm . lat., versimiliter demum reflexa. Pedunculi 0.2 cm . long., pubescentes. Calycis tubus 1.5 cm . long., basi circa 0.2 cm . diam., juxta medium usque 0.5 cm . gradatim dilatatus, ore paullo coartato; dentes laterales subæquales, lanceolati, circa 0.3 cm . long., dens posticus late ovatus, 0.7 cm . long. Corollæ tubus 1.5 cm . long.; galea 1.7 cm . fere attingens.

The verticillasters look much like those of L. dubia E. Mey., but the calyx of the latter is different in some points, and its leaves are altogether dissimilar. L. malacophylla Gürke, a Natal plant, is somewhat like L. Randii in general appearance, but it has much larger and broader long-petioled leaves and calyces different in several respects.

The following was omitted from the list of Dr. Rand's Acanthaceæ (Journ. Bot. xxxviii. 201) :-

Blepharis innocua C. B. Clarke. Buluwayo, early January. No. 281.

Monothecium abbreviatum, sp. nov. Caule verisimiliter elato tereti geniculato pubescente, folis graciliter petiolatis anguste ellipticis obtusiusculis basi cuneatis fere glabris, spicis pedunculatis abbreviatis densifforis, folis floralibus ovato-lanceolatis acuminatis bracteas bracteolasque lanceolatas subæquantibus una cum his et calycis segmentis minute pubescentibus, calycis segmentis linearibus nec setaceis, corolla labio postico integro, staminibus breviter exsertis, capsula claviformi puberula.

Hab. Kavirondo, British East Africa; G. F. Scott Elliot, No. 7016 (Herb. Mus. Brit.).

Foliorum lamina $3 \cdot 0-5 \cdot 0 \mathrm{~cm}$. long., tenuiter membranacea; petioli $0.4-1 \cdot 0 \mathrm{~cm}$. long. Spica modo 1.5 cm . long., 1.0 cm . diam. Folia floralia circa 0.5 cm . long. Calycis segmenta paullo inæqualia, $0-4-0.5 \mathrm{~cm}$. long. Corollæ tubus 0.8 cm . long., $0 \cdot 12 \mathrm{~cm}$. lat., basi parum amplificatus; limbi labium posticum lanceolatum, anticum trifidum, late oblongum, ambo 0.4 cm . long. Capsula 0.6 cm . long., 4 -sperma. Semina normalia, 0.13 cm . diam.

An interesting addition to a very small genus. The extremely short and broad spikes and the linear, not setaceous, bracts and bracteoles are its chief peculiarities.

Justicia (§ Calophanoides) Elliotii, sp.nov. Suffrutex ramosus, rigidus, ramis sat raro foliatis crebro ramulosis minute pubescentibus, foliis parvis sesslibus oblongis vel lineari-oblongis obtusis primo arcte albo-tomentellis mox pubescentibus vetustis puberulis, foliis Horalibus reliquis similibus, bracteolis oblongis acutiusculis calycem semiæquantibus, calycis 5 -partiti tomentelli corollæ tubum subæquantis lobis inter se æqualibus oblongis obtusis, corollæ extus minute pubescentis tubo infundibulari, limbi labio postico bilobo, antherarum loculis inæqualibus vel subæqualibus loc. inferiore nonnunquam ecalcarato vel etiam obsolete, capsula minute pubescente.

Hab. British East Africa, Masailand, at 6000 ft. ; G. F. Scott Elliot (Nos. 6593, 6637 in Herb. Mus. Brit.).

Folia modica $0 \cdot 6-1 \cdot 0 \mathrm{~cm}$. long., ramulorum vero sæpe usque ad $0 \cdot 2-0.3 \mathrm{~cm}$. imminuta. Bracteolæ 0.2 cm . long. Calyx $0 \cdot 4 \mathrm{~cm}$. long.; lobi parum carinati. Corolla purpurea, in toto vix 1.0 cm . long.; hujus tubus 0.45 cm . long.; labium posticum ovatooblongum, circa 0.32 cm . lat., ejus lobi rotundati, undulati, 0.12 cm . long.; labii antici lobi late rotundati, lobus intermedius 0.3 cm . lat., quam laterales paullo latior. Ovarium oblongum, 0.14 cm . long. Stylus pilosus. Capsula 0.7 cm . long., obtusiuscula. Semina triangulari-oblonga, tuberculata, pallide brunnea, 0.22 cm . long.

Apparently nearest J. Urbaniana Lindau, which has strigose or hispid branches, sparsely hairy leaves, a different calyx, normal anthers, \&c.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Hab. Salisbury; July, 1898. No. 573.
Planta $16-35 \mathrm{~cm}$. alt. Caulis vix 0.1 cm . diam. Folia radicalia $1 \cdot 0-2 \cdot 0 \mathrm{~cm}$. long., $0 \cdot 5-0.6 \mathrm{~cm}$. lat.; caulina $2 \cdot 0-3.0 \mathrm{~cm}$. long., 0.15 cm . lat. (internodia $4 \cdot 0-7 \cdot 0 \mathrm{~cm}$. long.), sursum vero minora. Spicæ paullo ultra 1.0 cm . long. Bracteæ modicæ 0.5 cm . long. Bracteolæ setaceæ, vix 0.3 cm . long. Calyx 0.5 cm . long., hujus tubus vix 0.4 cm . et lobi 0.13 cm . long. Corollæ 0.9 cm . long. tubus 0.075 cm . lat., limbus nec ultra 0.3 cm . diam. et revera in sicco modo 0.15 cm . Capsula -.

Apparently nearest B. Welwitschii Engl., its distinguishing features being the somewhat different indumentum, the larger bracts, and, above all, the greatly reduced flowers.

Buchnera (§ Vagiflore) rhodesiana, sp.nov. Tota planta hispidulo-pubescens, caule sparsim ramoso ramis patulo-aseendentibus, foliis linearibus obtusis maxima pro parte ramulos abbreviatos ornantibus, floribus inferioribus distantibus superioribus approximatis, calyce elongato anguste tubuloso bracteas 2-3plo excedente lobis lanceolatis acutis quam tubus 4-plo brevioribus, corollæ tubo attenuato extus pubescente calyce longiore limbi lobis obovatis saturate cyaneis.

Hab. Salisbury, Dec. 1897. No. 154.
Humilis et revera vix 16.0 cm . alt. attingens. Caulis teres, a basi ramosa vel deorsum simplex. Folia $0 \cdot 7-1 \cdot 5 \mathrm{~cm}$. long., $0 \cdot 1-$ 0.15 cm . lat. Spicæ juveniles 1.5 cm . long., maturitate pluricentimetrales. Bracteæ abbreviatæ, ovatæ, acutæ, modicæ 0.2-0.3 cm. long. Calyx in toto 0.7 cm . long. et 0.15 cm . lat., hujus lobi vix 0.2 cm . long., post anthesin divergentes. Corollæ tubus usque 1.0 cm . long., plerumque vero paullo brevior ; limbus circa 0.5 cm . diam. De fructu sileo.

At first sight this seems identical with a species native to Angola, B. Hemriquesii Engl., both having the same general appearance, and calyx-lobes divaricate after flowering is over. But on placing side by side the moistened flowers of each, their calyces are seen to be quite different, those of B. Henriquesii being shorter and broader, with lobes not at all like those of the species here described.

Striga Thunbergii R. Br. Salisbury, July. No. 521.
Rhamphicarpa fistulosa Benth. Buluwayo, May. No. 387.
Cycnium adoense E. Mey. Buluwayo, Dec. No. 161.
Sopubia Dreyeana Benth. Salisbury, Dec. No. 159.
Sopubia leprosa, sp. nov. Partibus juvenilibus (floribus exemptis) arcte ac minute leproso-tomentellis, caule stricto ramuloso sat valido maturitate glabro, ramulis ascendentibus crebro foliosis, foliis oppositis rarissime verticillatim approximatis anguste linearibus obtuse acutis integerrimis, pedicellis oppositis rarissime solitariis nunquam verticillatis folia floralia excedentibus vel ea subæquantibus, bracteolis filiformibus plerisque juxta medium pedicellum insertis, calycis lobis ovato-oblongis obtusissimis tubum excedentibus, corollæ parvæ limbi lobis obovato-rotundatis calyce longioribus.

Hab. Salisbury; Dec̣. 1897. No. 158.

Caulis $0 \cdot 2-0.3 \mathrm{~cm}$. diam., subteres; internodia pleraque $1 \cdot 0-$ 1.5 cm . long. Folia $1 \cdot 5-2 \cdot 5 \mathrm{~cm}$. long., $0 \cdot 1-0 \cdot 2 \mathrm{~cm}$. lat. Pedicelli $0 \cdot 6-1 \cdot 2 \mathrm{~cm}$. et bracteæ $0 \cdot 15-0 \cdot 4 \mathrm{~cm}$. long. Calycis tubus modo $0 \cdot 1 \mathrm{~cm}$. long; hujus lobi 0.13 cm . long. et vix totidem lat. Corollæ lobi 0.4 cm . long., 0.5 cm . lat. Capsula nondum matura oblonga, obscure emarginata.

This has somewhat the general appearance of S. cana Harv., but here the resemblance ceases; neither do I know of any species for which it is likely to be mistaken.

THE EUROPEAN SPHAGNACE \mathbb{E}
 (after Warnstorf)

By E. Charles Horrell, F.L.S.
(Concluded from p. 426.)
47. S. суmbifolium Warnst. in litt. (1895) apud Cardot Repert. Sphagnolog. 1897, 49.

Syn. S. cymbifolium Ehrh. Hannov. Mag. 1780, 235, ex parte.
Exsicc. Braithw. Sphagn. Brit. Exsicc. 1877, Nos. 7 (var. glauco-pallens), 8 (var. fusco-flavescens), 9 (var. glaucescens approaching forma squarrosula).

Tufts looser or denser, $7-20 \mathrm{~cm}$. high, light green, grey or yellow-green to dark green or yellowish white to dirty greenishyellow or brownish, rarely purplish or with any admixture of red.

Stem robust to delicate, yellow-brown, reddish, or rarely colourless.

Stem-cortex 2-4- (generally 3-) layered, the superficial layer smaller than the inner layers, with 1-9 (generally $3-6$) pores, and rather delicate, not numerous fibrils, very rarely without fibrils.

Fascicles of 3-5 branches, of which $2-3$ are spreading; leaves loosely or more densely arranged, generally spreading, more rarely imbricate, in the capitulum in hydrophilous forms frequently squarrose. Cortical cells of the branches always with numerous fibrils and pores. Generally mesocladous, rarely brachy- or macrocladous, sometimes eury-, more rarely dasy-cladous; homalodrepanocladous, rarely anocladous, and very rarely closely compressed, forming compact tufts.

Branch-leaves $1 \cdot 7-3.5$ (mean 2.3) mm. long, broadly ovate from a broad base, or from a narrower base much widened above; apex cucullate, with the more or less inrolled margin, in hydrophilous forms with squarrose recurved apex. Hyaline cells with rather numerous to numerous fibrils. Pores on the outer surface generally numerous in the angles and on the commissures, sometimes very numerous and in three rows on each cell, sometimes few; on the inner surface either numerous and in rows only near the lateral margins, and especially in the lower part, or in the upper part with 1-2 (rarely up to 5) round, large pores in the upper part of each cell.

C'hlorophyllose cells in section narrowly isosceles-triangular to
narrow-trapezoid or almost spindle-shaped; distinctly excentric, with the wall usually of equal thickness all round, or rarely somewhat thickened on the inner surface of the leaf; enclosed on the outer surface by the strongly convex hyaline cells, or free as on the inner surface; hyaline cells never papillose.

Stem-leaves large, lingulate-spatulate, $1 \cdot 5-3 \cdot 1$ (mean $2 \cdot 1$) mm. long, rarely twice as long as wide, generally the width about twothirds the length. Rarely non-fibrillose or with a few delicate fibrils, generally with numerous strong fibrils throughout the entire leaf, and with a few to very numerous pores. Hyaline cells generally non-septate, but not rarely, and especially in the lower half, here and there divided. Border widest at the rounded apex, vanishing more or less towards the base.

Dioicous; the male plant less robust, the antheridium-bearing branches short and thick, olive-green. Inner perichætial leaves very large, formed of the two kinds of cells throughout, or more rarely formed of chlorophyllose cells only in the lower half, in the upper half resembling in structure the stem-leaves. Spores yellowish-brown, $28-33 \mu$ in diameter.

Distrib. Throughout Europe and N. America; Siberia, Japan, \&c. ; Azores; S. America; Oceania (?).

This exceedingly common species can scarcely be mistaken for any other species but one of its own section; some of these, however, are very closely related to it, and are frequently distinguished with difficulty. The character to be chiefly relied upon for distinguishing the species in the Cymbifolium section is the position and form of the chlorophyllose cells as seen in a section from the middle part of the branch-leaves. Purple or brown forms of S. cymbifolium would appear to be rare in this country.

The varieties are based upon the colour of the tufts :-
(1) Var. carneum Warnst. in Verh. Bot. Ver. d. Prov. Prandenb. xli. 28. Flesh-coloured, especially in the capitulum, and with usually more or less green or yellow intermixed.

Dallington Forest, Sussex (N'icholson).
(2) Var. flavo-glaucescens Russ. apud Warnst. in Schrift. d. Naturf. Ges. in Danzig. N. F. Bd. 9, Heft 2 (1897). More or less yellowish in the capitulum, at times mixed with some blue.green, whitish below.

Moidart, Inverness (Macvicar) ; Cardiganshire (Fleure) ; Tilgate Forest, Sussex (Horrell); Theydon Bois, Epping Forest, Essex (Horrell); Oakmere, Cheshire (IVilson).
(3) Var. fuscescens Warnst. Die Europ. Torfm. 1881, 135. Tufts, especially in the upper part, a deep brown.
(4) Var. fusco-flavescens Russ. apud Warnst. Eur. Torfm. No. 322, 1894. Capitula yellowish to pale reddish, below pale greenish, passing over towards the base into a yellowish-brown colour.

Newchurch Bog (IVilson) ; Barmby Moor, Yorks (Wilson); Renfrewshire (Ewing) ; Cantyre (Ewing); between Talsarnau and Maentwrog, Merionethshire (Jones \& Horrell); Aber Waterfall, Carnarvonshire (Ley); Harlech, Merionethshire (Horrell); Braemar

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
(Wilson); Calder Valley, W. Lancs. (Wilson) ; Artro Valley, Merionethshire (Jones \& Horrell) ; Islay (Ley); Keston Common, Kent (Horrell) ; Burnham Common, Bucks (Sherrin); Owston Ferry, N. Lincolnshire (Smith); Tilgate Forest, Sussex (Horrell) ; Goathland, N.E. Yorks. (Horreli).
(12) Var. purpurascens Warnst. in Hedwigia, 1884, No. 7-8• In the upper part, and especially in the capitulum, a beautiful purple-red, paler below.
(13) Var. versicolor Warnst. Eur. Torfm. No. 7, 1888. Colour in the upper part pale reddish-violet, in the middle whitish, towards the base brownish.

Rhinog Fawr, Merionethshire (.Jones \& Horrell); Tilgate Forest, Sussex (Horrell) ; Sea Scales, Cumberland (Ley); Holt, E. Norfolk (Burvell).
48. S. centrale Jensen, Bihang Till K. Svenska Akad. Handl. Bd. xxi. Afd. iii. No. 10, 1896.

Syn. S. palustre L. subsp. intermedium Russ. Zur Anat. der Torfm. 1887, 28. S. papillosum Warnst. var. intermedium (Russ.) Warnst. in Hedwigia, 1891, 159. S'. intermedium Russ. in Archiv Naturk. Liv-, Est-, \& Kurlands, ser. ii. Bd. x. Lief 4, 468, 1894.

Plants generally robust to very robust, 7-20 and also $30-40 \mathrm{~cm}$. high, forming looser or denser tufts; light green, grey, grey-green, greenish-yellow, pale yellow, yellow to brown, brownish-green or dark brown ; rarely submerged.

Stems generally rigid and erect, dark red-brown, rarely pale.
Stem-cortex in 3-5, generally in 4 layers, the superficial cells smaller than the inner, with numerous fibrils and 1-2 or at times 3-7 large round pores, sometimes almost without fibrils, and with only a single pore.

Fascicles of 3-5 branches, of which 2-3 are spreading; leaves loosely or closely arranged; branches meso- and macro-cladous, rarely brachycladous; eurycladous or more frequently dasycladous or very dense and compact; homalo-, drepano-, or ano-cladous, rarely katacladous. Cortical cells of branches strongly fibrillose and porose.

Branch-leaves large to very large, very concave, resembling those of S. cymbifolium. On the inner surface with numerous pores near the margins only, or not rarely in the middle and especially in the upper part of the leaf with 1-6, generally 1-2 large round pores on each cell; on the outer surface generally with numerous pores along the commissures.

Chlorophyllose cells in section triangular-oval, rectangular-trapezoid, barrel-shaped, elliptical to narrow-elliptical or spindle-shaped; outer wall always more or less strongly thickened; lumen always rounded, triangular-elliptical, elliptical, or oval, hypocentric or almost centric, sometimes also excentric.

Stem-leaves lingulate-spatulate, generally almost as large as the branch-leaves, but not rarely much smaller; two-thirds as wide as long or as wide as long; generally non-fibrillose or with a few delicate fibrils, sometimes with numerous fibrils; pores sometimes numerous; hyaline cells only very rarely here and there septate.

Distrib. Russia, Scandinavia, Switzerland, England; Asia; Africa; N. America. Foot of Ben More, Perthshire (Di.xon) ; Strensall Common, N. Yorks. (Wheldon).

This fine species closely resembles S. cymbifolium in general habit, but is distinguished from that essentially by the form of the chlorophyllose cells as seen in section. They resemble those of S. papillosum in form and position, but the lumen is generally narrower, and the wall is quite without papille. It is probably widely distributed, but has not been distinguished.

The varieties are based upon the colour of the tufts :-
(1) Var. fluvescens Russ. apud Warnst. Europ. Torfm. No. 307, 1894. Pale yellowish, with scarcely any admixture of blue-green.
(2) Var. flavo-fuscescens Russ. apud Warnst. in Schrift. d. Naturf. Ges. in Danzig, N. F. Bd. ix. Heft 2, 1896, 162. Yellow predominating, only a little brown.
(3) Var. flavo-glaucescens Russ. apud Warnst. Europ. Torfm. No. 308, 1894. Pale yellow, with some admixture of blue-green.
(4) Var. fuscescens Russ. apud Warnst. in Schrift. d. Naturf. Ges. in Danzig, N. F. Bd. ix. Heft 2, 1896, 162. Tufts almost entirely brown, yellow almost absent.
(5) Var. filsco-flavescens Russ. apud Warnst. Europ. Torfm. No. 313, 1894. Brown predominating, yellow only in the capitulum.
(6) Var. glaucescens Russ. apud Warnst. in Schrift. d. Naturf. Ges. in Danzig, N. F. Bd. ix. Heft 2, 1896, 162. Blue-green throughout the entire upper part.

Glen Lochay, Perthshire (Cocks).
(7) Var. glauco-flavescens Russ. apud Warnst. Europ. Torfm. No. 315, 1894. Blue-green predominating, mixed with pale yellow.
(8) Var. pallescens Warnst. in Schrift. d. Naturf. Ges. in Danzig, N. F. Bd. ix. Heft 2, 1896, 162. Tufts almost white throughout.
49. S. papillosum Lindb. in Act. Soc. Sc. Fenn. x. p. 280 (1872).

Syn. S. cymbifolium var. papillosum Schimp. Syn. ed. 2, p. 848 (1876).

Exsicc. Braithw. Sphagn. Brit. Exsicc. 1877, Nos. 3 a (S. papillosum c. fr. = var. normale), $3 b$ (S. papillosum. "Addend. Exot." = var. normale), $4 a(S$. papillosum, pl. masc. $=$ var. sublave), $4 b$ (S. papillosum $=$ var. normale), $4 c$ (S. papillosum $=$ var. normale), $5 b$ (form، virens $=$ var. normale), $8 b$ (S. cymbifulium $=S$. papillosum var. normale), $10 a$ (S. cymbifolium var. congestum $=S$. papillosum var. normale).

In size and habit not distinguishable from S. cymbifolium; strongly papillose forms, generally deep brown and somewhat rigid.

Stem-cortex in 3-4 layers; cells very wide, thin-walled, and with delicate fibrils; outer wall of the superficial layer with generally 1-2, more rarely 3-4 large pores. Wood-cylinder brown to dark brown-red.

Stem-lecues sometimes smaller, sometimes larger, spatulate, on the wide rounded apex with a broad hyaline border; hyaline cells in the upper part rhombic, generally divided by a cross-wall, generally non-fibrillose and then with membrane-gaps only on the outer

Journal of Botany.-Vol. 38. [Dec. 1900.] 2 l
surface towards the apex, or in the apical half and further down near the margins with fibrils and with pores on the outer surface.

Fascicles with in most cases four branches; the two stronger spreading, the others pendent; cortical cells of the branches fibrillose and porose. Branch-leaves large, wide-oval, with hyaline border on the cucullate apex; margin widely inrolled for some distance down the leaf; on the inner surface, only near the lateral margins, with large round pores; on the outer surface with membrane-gaps near the apex, and on the rest of the leaf with narrow semi-elliptical pores on the commissures, and where three cell-angles meet with large round pores, which near the lateral margin are frequently immediately opposite the pores on the inner surface. Fruiting branches with the cortex in 2-3 layers of thin walled cells with strongly developed fibrils, and with 3-4 large pores on the outer wall of the superficial layer. Perichætial bracts very large, broadly ovate, in the lower half, except near the hyaline border, with elongated, rectangular, chlorophyllose cells only; in the apical half and near the lateral margins down to the base, of both kinds of cells; pores on the inner surface numerous near the margins; on the outer surface more numerous, in the upper cell-angles with large pores, and on the commissures with semi-elliptical pores, which are most numerous near the margins, and in part exactly cover the pores on the inner surface; hyaline cells on the inner surface, which is united to the chlorophyllose cells always more or less papillose.

Chlorophyllose cells in section narrow or wider, spindle-shaped to narrow barrel-shaped or almost rectangular, with the lumen almost or quite median, and with the outer wall much thickened and free on the inner surface of the leaf; on the outer surface either completely enclosed by the more strongly convex hyaline cells or free on both surfaces.

Dioicous; antheridium-bearing branches brown. Spores 28$32 \mu$ in diameter, yellow-brown, papillose.

Hab. On moors both in the lowlands and the highlands. Very common.

Distrib. Throughout Europe, up to 6000 ft . in the Alps; N. America; Java.

This species is readily distinguished from all the others in the Cymbifolium section by the papillæ on the wall common to the chlorophyllose and the hyaline cells, which are not found in any other European species of the section. These papillæ, as in S. squarrosum, S. teres, and S. Wulfianum, in which they likewise occur, vary greatly in their degree of development, and this fact is taken advantage of to divide the forms into the two vars. normale and sublave. The forms are based upon the colour and the compactness or otherwise of the tufts. Most British forms are readily distinguished from S. cymbifolium by their brown colour and their rigid habit.
(1) Var. normale Warnst. Europ. Torfm. No. 208, 1892. Walls having densely arranged, conspicuous papillæ.

Rhaiadr Ddu, Tyn-y-Groes, Merionethshire (Jones \& Horrell) ; Cwm Idwal, Carnarvonshire (Horvell); near Llanbedr, Merioneth-

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Kent (Horrell) ; Theydon Bois, Epping Forest, Essex (Horrell); Hebden Bridge, Yorks. (Needham); Widdy Bank Fell, Teesdale, Durham (Horvell); Whxall Moss, Salop (Ley); Haylot Greave, W. Laucs. (Wheldon \& Wilson); Cockerham Moss, W. Lancs. (Whildon \& Wilson); Calder Valley, W. Lancs. (Wilsor); Brindley Valley, Staffordshire (Bagnall) ; Longridge Fell, W. Lancs. (Wheldon); Jeffrey Hill, W. Laucs. (Wheldon); Whitmoor, W. Lancs. (Wheldon \& Wilson); above Oakenclough, W. Lancs. (Wilson); Fairsnape Clough, W. Lancs. (Vilson).
50. S. medium Limpr. Bot. Centralbl. 1881, 113.

Syn. S. cymbifolium varr. purpurascens et compactum p. p. Russ. Beitr. zur Kenntniss d. Torfm. 1865, 80.

Exsicc. Braithw. Sphagn. Brit. Exsicc. No. 10 b (S. cymbifolium var. purpurascens $=S$. medium var. violascens f. dasyclada).

Not differing in habit from S. cymbifolium; colour varying much, whitish, green, brownish, variegated with green and red, or purple.

Stem-cortex generally of four, more rarely of five layers of wide, thin-walled cells, which are non-fibrillose or with few delicate fibrils; outer wall of the superficial layer of cells with 1-2 large pores; woodcylinder red.

Stem-leaves sometimes small, sometimes large, sometimes wider and shorter, sometimes narrower and longer, spatulate, frequently with the margin inrolled towards the apex, which has a hyaline border; hyaline cells in the upper part of the leaf rhomboid, rarely septate, non-fibrillose or with fibrils more or less developed; in the former case with membrane-gaps only on the outer surface in the apical half; in the latter case on the outer surface with pores in rows on the commissures and with membrane-gaps at the apex.

Fascicles of four branches, of which the two stronger are spreading, and the others are very thin and closely appressed to the stem; cortical cells of all the branches with fibrils and pores. Branch-leaves rather large, broadly ovate or oblong-ovate, with cucullate apex; margin with small teeth and inrolled for a considerable distance from the apex; on the inner surface with large round pores near the lateral margins, and with scattered pseudopores on the remainder of the leaf; on the outer surface with numerous semi-elliptical pores in rows on the commissures, which near the lateral margins of the leaf are to some extent immediately opposite the pores on the inner surface.

Upper perichatial bracts very large, broadly ovate, in the lower half with rectangular chlorophyllose cells only, above with both kinds of cells, the hyaline cells with or without fibrils; on the outer surface with numerous large membrane-gaps. Cortex of the fruiting branches generally in four layers of thin-walled cells of medium size, which are non-fibrillose or have a few delicate fibrils; outer wall of the superficial layer with 1-2 pores.

Chlorophyllose cells of the branch-leaves in section elliptical, centric, with oval lumen, completely enclosed on both sides by the biplanar hyaline cells, which are united together for some distance, but without having the wall thickened; hyaline cells on the inner surface, where united to the chlorophyllose cells, quite smooth.

Dioicous; male branches purple. Spores $24-28 \mu$ in diameter, reddish, finely punctulate.

Hab. On moors, chiefly in the mountains, but not usually in very wet places.

Distrib. Throughout Europe, up to 4600 ft . in the Riesengebirge; Asia; N. America; S. America.

This species is very distinct in the position of the chlorophyllose cells, and may generally be at once recognized from the other species of the section by the colour, which is, in most cases, distinctly red or purple.

The varieties are based upon the colour :-
(1) Var. albescens Warnst. in Bot. Gaz. 1890, 254 (ut var. lave f. albescens). Plants completely bleached and white throughout.
(2) Var. flavo-glaucescens Russ. apud Warnst. in Schrift. d. Naturf. Ges. in Danzig, N.F. Bd.ix. Heft 2, 1896, 164. Capitulum yellowish, at times blue-green, pale below.
(3) Var. fuscescens Warnst. in Bot. Gaz. 1890, 254 (ut var. lave f. fuscescens). Plants more or less brown above, whitish or violetbrown below.
(4) Var. glaucescens Russ. apud Warnst. in Schrift. d. Naturf. Ges. in Danzig, N.F. Bd. ix. Heft 2, 1896, 164. Blue-green throughout the whole upper part, pale below or at times mixed with some brown; red quite absent.
(5) Var. glauco-purpurascens Russ. l.c. More or less red in the capitulum (at times passing over into a dirty brownish-red), sometimes green, whitish or more or less brown below.
(6) Var. obscurum Warnst. Europ. Torfm. No. 23, 1888. In the upper part a dark dirty brownish-green, in the middle pale reddish, paler below.

Brookwood, Surrey (Sherrin).
(7) Var. purpurascens Warnst. in Flora, 1884. Red predominating in the entire tuft, which in the capitulum and in the lower part frequently passes over into a brownish red; green and yellow almost entirely absent.

Jura (Ewing); Lochar Moss, Dumfries (B.\& H. Hamilton); Creag Mhor, Glen Lochay, Perthshire (Cocks); near Coleman's Hatch, Ashdown Forest, Sussex (Nicholson).
(8) Var. roseo-pallescens Warnst. Tufts a mixture of rose-red and almost white.

Chartley Moss (Bagnall); Cockerham Moss, W. Lancs. (Wheldon \& Wilson) ; Wolfhole Crag, W. Lancs. (Wilson) ; Middle Hill, Killin (Cocks).
(9) Var. roseum Warnst. Europ. Torfm. No. 19, 1888. The capitulum and upper part a pale rose- or flesh-colour mixed with a little green.

Widdy Bank Fell, Teesdale, Durham (Horrell.) ; Ulpha Moss, Westmoreland (Ley); Whixall Moss, Salop (Ley); Keston Common, Kent (Horrell) ; White Moss, Hindburn, W. Lancs. (IWheldon \& Wilson) ; Foulshaw Moss, Westmoreland (Stabler, Lett \& Waddell); Upper Roeburndale, W. Lancs. (Wheldon \& Wilson); Tarnbrook Fell, W. Lancs. (Wheldon \& Wilson); Allt Dhubh Ghalair, Glen Lochay, Perthshire (Cocks).
(10) Var. versicolor Warnst. in Bot. Gaz. 1890, 253 (ut var. lave f. versicolor). Capitula more or less red, in the middle green, and at the base yellowish or whitish.
(11) Var. violascens Warnst. Tufts a uniform dark violet.

Witherslack Moss, Westmoreland (Barnes); Ulpha Moss, Westmoreland (Boswell) ; Holt, E. Norfolk (Holmes).
(12) Var. virescens Warnst. in Bot. Gaz. 1890, 254 (ut var. lave f. virescens). In the entire upper part pale-, grey-, or dark-green, brown, or whitish below.

INDEX TO SPECIES AND VARIETIES.

[Synonyms are in italics: the number in square brackets following the name is that attached to the species in the body of the work.]
acutifolium R. \& W. 221 [7]
var. chlorinum Warnst. 232
var. Havescens Warnst. 222
var. flavo-glaucescens Warnst. 222
var. flavo-rubellum Warnst. 222
var. fusco-glaucescens Warnst. 223
var. fusco-virescens Warnst. 223
var. griseum Warnst. 223
var. obscurum Warnst. 223
var. pallescens Warnst. 223
var. pallido glaucescens Warnst. 223
var. purpurascens Warnst. 223
var. roseum Warnst. 223
var. rubrum Warnst. 223
var. versicolor Warnst. 223
var. virescens Warnst. 223
var. viride Warnst. 223
acutifolium Ehrh. 221
var. Alavicomans Card. 256
var. fuscum Schimp. 219
var. gracile Russ. 215
var. late-virens Braithw. 254
var. luridum Hibn. 254
var. pallens Warnst. 254
var. plumosum Milde, 254
var. quinquefarium Braithw. 252
var. robustum Russ. 166
var. rubellum Russ. 217
var. tenellum Schimp. 217
var. tenue Bryol. Germ. 163
affine Ren. \& Card. 422
Angstroemii Hartm. 353 [32]
angustifolium Jens. 346
annulatum Lindb. fil. 347 [27]
annulatum Warnst. 348
aquatile Warnst. 389 [39]
auriculatum Angstr. 385
Austini Sulliv. 422
balticum Russ. 346 [26]
batumense Warnst. 390 [41]
centrale Jensen, 472 [48]
var. flavescens Russ. 473
var. flavo-fuscesceñs Russ. 473
var. flavo-glaucescens Russ. 473
var. fuscescens Russ. 473
var. fusco-flarescens Russ. 473
var. glaucescens Russ. 473
var. glauco-flavescens, 473
var. pallescens, 473
compactum DC. 352 [31]
var. imbricatum Warnst. 353
var. rigidum Bryol. Germ. 352
var. squarrosum Russ. 352
var. subsquarrosum Warnst. 352
contortum (Schultz) Limpr. 384 [33]
var. laricinum Wils. 384
var. obesum Schimp. 391
var. subsecundum Wils. 385
crassicladum Warnst. 389 [40]
curvifolium (Wils.) Hunt, 384
cuspidatum Russ. \& Warnst. 313 [18]
var. Dusenii Jens. 338
var. falcatum Russ. 314
var. majus Russ. 338, 342
var. monocladum Warnst. 313
var. miquelonense Ren. \& Card. 341
var. mollissimum Russ. 346
var. plumosum Nees \& Hornsch. 315
rar. serratum Lesquer. \& James, $3: 38$
var. speciosum Russ. 310
var. submersum Schimp. 314
var. submersum Schimp . f. serrulatum Schlieph. 338
var. Torreyanum Braithw. 341
var. brevifolium Lindb. 346
cymbifolium Ehrh. 469
cymbifolium Warnst. 469 [47]
var. carneum Warnst. 470
var. compactum Russ. 476
var. flavo-glaucescens Russ. 470
var. fuscescens Warnst. 470
var. fusco-flavescens Russ. 470
var. fusco-glaucescens Warnst. 471
var. fusco-pallens Warnst. 471
var. fusco-rubescens Warnst. 471
var. glaucescens Warnst. 471
var. glauco-flavescens Russ. 471
var. glauco-pallens Warnst. 471

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
quinquefarium Warnst. 252 [9]
var. fusco-flavum Warnst. 254
var. pallens (Warnst.), 254
var. pallescens Warnst. 254
var. pallido-viride Warnst. 254
var. roseum Warnst. 254
var. virescens Warnst. 254
var. viride Warnst. 254
recurvum Russ. \& Warnst. 344 [24]
var. amblyphyllum Warnst. 345
var. mollissimum Russ. 346
var. mucronatum Warnst. 345
var. obtusum Limpr. 338, 342
var. parvifolium Warnst. 346
var. pulchrum Lindb. 340
rigidun Schimp. 352
riparium Angstr. 310 [15]
robustum Roell. 166
rubellum Wils. 217 [5]
var. flavum C. Jens. 219
var. pallescens Warnst. 219
var. pallido-glaucescens Warnst. 219
var. purpurascens Warnst. 219
var. rubrum Grav. 219
var. versicolor Russ. 219
var. violaceum Warnst. 219
var. viride Warnst. 219
rufescens Warnst. 388 [38]
rufescens Nees \& Hornsch. 388
Russowii Warnst. 166 [3]
var. flavescens Russ. 167
var. Girgensohnioides Russ. 167
var. pecilum Russ. 167
var. purpurascens Russ. 167
var. rhodochroum Russ. 167
var. virescens Russ. 167
sedoides Brid. 391
serratum Aust. $: 338$
speciosum Klinggr. 310
spectabıle Schimp. 310
squarrosulum Lesquer. 305
squarrosum Pers. 303 [12]
var. imbricatum Schimp. 304
var. laxum Braithw. 162
var. semi-squarrosuin Russ. 304
var. spectabile Russ. 304
var. subsquarrosum Russ. 304
var. teres Schimp. 304
strictum Lindb. 163
subnitens R. \& W. 254 [10]
var. carneum Russ. 256
var. flavescens Warnst. 256
var. flavicomans Card. 220, 256
var. flavo-rubellum Warnst. 256
var. griseum Warnst. 256
var. obscurum Warnst. 256
var. pallens Warnst. 256
var. pallescens Warnst 256
var. purpurascens Schlieph. 256
var. versicolor Warnst $2 \overline{5} 6$
var. violascens Warnst. 256
var. virescens Warnst. 257
var. viride Warnst. 257
subsecundum Limpr. 385 [35]
subsecundum Nees, 385, 387, 389
var. auriculatum Auct. 388
var. contortum Auct. 386, 388
var. isophyllum Russ. 385
var. laxum Auct. 388
var. obesum Auct. 386, 391
var. squarrosulum Auct. 388
var. turgidum C. M. 391
tenellum Ehrh. 349
tenellum Klinggr. 217
var. flavum C. Jens. 219
var. pallescens Warnst. 219
var. pallido-glaucescens Warnst. 219
var. purpurascens Warnst. 219
var. rubrum Grav. 219
var. versicolor Russ. 219
var. violaceum Warnst. 219
var. viride Warnst. 219
tenerum Warnst. 223 [8j
teres Angstr. 304 [13]
var. imbricatum Warnst. 30
var. squarrosulum Warnst. 305
var. squarrosum Warnst. 303
var. subsquarrosum Warnst. 305
Torreyanum Sulliv. 341 [22]
trinitense C. Muill. 338 [19]
turfaceum Warnst. 425 [46]
Warnstorfii Russ. 215 [4]
var. flavescens Warnst. 217
var. flavo-glaucescens Warnst. 217
var. pallescens Warnst. 217
var. purpurascens Russ. 217
var. versicolor Russ. 217
var. virescens Russ. 217
var. viride Russ. 217
Wulfianum Girgens. 350 [30]
var. squarrosulum Russ. 351
var. versicolor Warnst. 351
var. viride Warnst. 351

NOTE ON ERIOCAULON.

By James Britten, F.L.S.

The six species of Eriocaulon described by Smith in vol. xiii. of Rees's Cyclopadia seem to have been entirely overlooked by subsequent botanists. They are included neither in Steudel's Nomenclator nor in the Index Kewensis; nor does Körnicke cite them in his monograph in Linnaa, xxvii. 560-692 (1854). It seems desirable that these species should be brought into notice, as they involve certain changes in nomenclature which will be the more inconvenient the longer they are postponed ; and as the specimens referred to by Smith are in his Herbarium at the Linnean Society and in the National Herbarium, there is no difficulty in placing the species in their proper position.

Smith introduces his descriptions by the following paragraph:"The following 6 species we believe are hitherto entirely nondescript. They will probably appear, with others, more fully illustrated hereafter from the pen of Mr. R. Brown, when he has time to resume the study of this genus, of which we believe he has ascertained about 30 species. In the meantime, to secure his specific names and our own thus far, we shall attempt definitions of what we have determined from actual observation."

Of the six species, four are Australian. 'Two are cited from Brown's MSS., one from Solander's, and one is given without any citation and is thus to be credited to Smith himself. The date of this volume of Rees being December, 1809,* the publication here of Brown's names antedates his Prodromus (1810), and they must be cited as from the Cyclopicdia. So far as E.fistulosum is concerned, this is the only alteration needed, but the case of E. depressum is more complicated. As Bentham points out ($F /$. Austral. vii. 198), the name depressum was first applied (by Banks and Solander and in Brown's MSS.) to the plant which Brown in the Prodromus subsequently called E. deustum. That this is so is evident from Brown's ticket in the herbarium and from his MSS., as well as from Smith's Herbarium (where Brown has named it) and description, and as a consequence the name must stand as E. depressum Br. ex Sm. in Rees Cyclop. xiii. (1809), non Br. Prodr. (1810), taking E. deustum as a synonym. E. depressum of Br. Prodr. would thus need a name, and would be called E. heterogynum F. Muell., assuming that Bentham (l.c. 197) is right in considering this identical with Brown's plant, as seems to be admitted by Mueller in his Census (ed. 2, p. 207).

From the specimens and tickets in the National Herbarium we also learn the identity of E. nigricans Br . with the earlier E. pygmém Soland., which of course must stand. The much later E. pygnaum of Körnicke (in Fl. Bras. iii. pt. 1, p. 477) may be called E. Koernicaer.
E. scariosum of Smith is not the E. scariosum of Brown's Prodromus, but is the plant there described by him as E. Smithii. This again is clear when Smith's Herbarium is consulted, but a specimen of the same plant in the National Herbarium labelled by Brown "E. scariosum mscr. nost." at first sight seems to suggest some doubt as to the identity of the species. A reference to Brown's MSS., however, shows that he there entered the plant as "E. scariosu!n Smith"; and the specimen in question is a fragment of Smith's type given by him to Brown-Brown marks it "ex Herb. Smith," and on Smith's sheet is a memorandum, "give Mr. Brown." Smith's name must of course stand, with E. Smithii Br. as a synonym; the scariosum of the Prodromus may be called E. Brunonis.

There remain for consideration two African species. That E. latifolium Sm. is the plant described forty years later by Bentham in the Niger Flora as E. rivulare G. Don admits of no discussion, as we have in the National Herbarium specimens of E. latifolium Sm. from Afzelius (who according to Brown's MSS. gave the name to the species), and the type of Don's E. rivulare.
E. stupeum Sm., from Bourbon, may be referred to E. striatum Lam. Encycl. iii. 275, so far as Lamarck's diagnosis is concerned; his synonymy and part of his detailed description belong to another species, and his figure (t. 50 , fig. 1) should also, I think, be excluded. Smith's specimen from Sonnerat has the shorter and more rigid leaves which Körnicke says characterize specimens from Commerson and Thouin; our example from Commerson exactly agrees with Smith's type in these respects.

It may be convenient to tabulate the synonymy resulting from these investigations :-
E. Brunonis, nom. nov.
E. scaıiosum Br. Prodr. 255 ; Benth. Fl. Austr. vii. 197 ; et auct.: non Sm.
E. depressum Br. MSS. ex Sm. in Rees Cyclop. xiii. (Dec. 1809), non Br. Prodr. 255 (1810).
E. deustum Br. Prodr. 255.
E. fistulosum Br. MSS. ex Sm. in Rees Cyclop. xiii. (Dec. 1809) ; Br. Prodr. 255 (1810).
E. heterogynum F. Muell. Fragm. i. 93 (1858).
E. depressum Br. Prodr. 255 ; Benth. Fl. Austr. vii. 197; et auct. : non Br. ex Sm. in Rees Cyclop.
E. Koernickei, nom. nov.
E. pygmaum Korn. in Fl. Bras. iii. pt. 1, 477 ; non Sol. nec Dalz. nec Mart.
E. latifolium Sm. in Rees Cyclop. xiii. (Dec. 1809).
E. rivulare G. Don ex Benth. in Hook. Niger Flora, 547 (1849); non Dalz.
E. pygmeum Soland. MSS. ex Smith in Rees Cyclop. xiii. (Dec. 1809), non Dalz. nec Mart. nec Körn.
E. nigıicans Br. Prodr. 254 (1810); Benth. Fl. Austral. vii. 194.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

claimed that this grass had a right to be considered as a native of the Channel Islands. This year I have obtained a striking confirmation of this view in the discovery of the herbarium of Joshua Gosselin, whose list of Guernsey plants, compiled in 1790, was published in Berry's History of the Channel Islands, 1805. This herbarium is now in the possession of Mr. Edgar Dupuy, The Arcade, Guernsey. On a sheet labelled "Phalaris canuriensis," I found three specimens of P. minor with one of P. canariensis. The plant was therefore in the Island more than a hundred years ago, though until last year it was confused with P. canariensis, which is really far less common than P. minor. The right of the latter to be treated as a native can hardly now be doubted.

Equisetum maximum Lam. Hedge in a wet field-corner, Alderney. The only previous record in the Channel Islands is Prof. Lagasca's for Jersey, which has never been confirmed.

I am indebted to Mr. Arthur Bennett for examining and confirming some of these plants.

MOSSES OF NORTH•EAST YORKSHIRE (V.-C. 62).

By Wm. Ingham, B.A.

The Mosses in this list I gathered during the years 1897-1900. The most interesting habitats I have found to be the siliceous bogs of Strensall Common, Terrington Carr (both now rapidly disappearing as bog-land), and Coatham Marshes. The limestone districts of Castle Howard and Kilburn (the Hambleton Hills) are also interesting. I am much indebted to Mr. H. N. Dixon for kindly verifying all doubtful mosses in the list, and to Dr. Braithwaite, Mr. M. B. Slater of Malton, and Mr. Bagnall for their kind additional help with a few of the more critical mosses.

Sphaynum cymbifolium Ehrh. Strensall Common, Leckby Carr. -Var. squaırosulum N. \& H. Strensall Common.-Var. congestum Schimp. Strensall Common. - S. papillosum Lindb. Strensall Common, Kilburn, Askham Bog.-Var. confertum Lindb. Strensall Common. - S. medium Limpr. Leckby Carr, Sept. 1898.S. rigidum var. compactum. Schimp. Strensall Common.-S. tenellum Ehrh. Strensall Common.-S. subsecundum Nees. Strensall Common. - Var. contortum Schimp. Strensall Common. - Var. viride Boul. Strensall Common.-S. squarrosum Pers, Arncliffe Wood, Askham Bog.-Forma compacta Strensall Common.-S. acutifolium Ehrl. Strensall Common, Pilmoor.-Var. arctum Braithw. Strensall Common.-Var. patulum Schimp. Strensall Common.-Var. tenellum Schimp. Leckby Carr. - S. fimbriatum Wils. Strensall Common, Terrington Carr, Askham Bog. - S. inteımedium Hoffm. Strensall Common, Leckby Carr.-S. cuspidatum Ehrh. Strensall Common. - Var. submersum Schimp. Top of Hambleton Hills, Kilburn, June, 1899; with habit of var. Torreyanum Braithw., teste Warnstorf and Horrell.

Tetraphis pellucida Hedw. Strensall Common, Helmsley, Leckby Carr, c.fr.-T. Browniana Grev. Mallyam Spout, Goathland.

Catharinea undulata W. \& M. Castle Howard, Strensall Com-mon.-Var. minor W. \& M. Strensall Common.

Polytrichum aloides Hedw. Castle Howard. - P. unige um L. Strensall Common. - P. formosum Hedw. Helmsley, Strensall, Hackness.-P. piliferum Schreb. Strensall Common, Kirkham.P. juniperinum Willd. Strensall Common, Kirkham, Kilburn.P. strictum Banks. Pilmoor. - P. gracile Dicks. Huntingdon.P. commune L. Terrington Carr. - Var. minus Weis. Strensall Common.

Pleulidium axillare var. strictum Braithw. Terrington; verified by Dr. Braithwaite.-Y. subulatum Rabenh. R. Foss, York.

Ditrichum homomallum Hampe. Castle Howard.-D. fexicaule Hampe. Kilburn, abundant.

Seligeria pusilla B. \& S. Castle Howard, Kilburn.-S. recurvata B. \& S. Kilburn.-S. Doniana C. M. Castle Howard.

Brachyodus trichodes Fürur. Castle Howard.
Ceratodon purpureus Brid. Moormonkton, Hammerton, Castle Howard, Strensall Common, Askham Bog, Terrington Carr; a marked form. - Near var. brevifolius Milde. Coatham Marshes.C. conicus Lindb. Hackness, c.fr., Kilburn, the latter with claretcoloured leaves.

Dichodontium pellucidum Schimp. Lastingham, in abundant fruit; Mallyam Spout, in abundant fruit; Kirkham, Arncliffe Wood.-D. flavescens Lindb. Mallyam Spout, c.fr.

Dicranella heteromalla Schimp. Kilburn, Strensall Common, Castle Howard, Healaugh, Helmsley, Askham Bog. - D. varia Schimp. Saltburn, Helmsley, Scarborough, Strensall Common, Filey.-D. Schreberi var. elatum Schimp. Terrington.

Blindia acuta var. trichodes Braithw. Goathland, in leaf form, being barren.

Dicranoweisia cirrata Lindb. Arncliffe Wood, Castle Howard.
Campylopus pyriformis Brid. Kilburn, c.fr., Strensall Common. -C. flexuosus Brid. Strensall Common. - C. frayilis B. \& S. Kilburn.

Dicranum majus Turn. Helmsley, c.fr. - D. scoparium Hedw. Goathland, c.fr., Helmsley, c.fi., Castle Howard. - D. Bonjeani De Not. Strensall Common, Kilburn, Askham Bog. - Var. ruyi. folium Bosw. Strensall Common. - D. spurium Hedw. Strensall Common.

Leucobryum glaucum Schimp. Strensall Common, Hackness.
Fissidens viridulus Wahlenb. Appleton Roebuck, an interesting form in having the border almost obsolete, and yet it is not the var. Lylcii Wils. - F. pusillus Wils. Malton, Castle Howard.F. bryoides Hedw. R. Foss, Kilburn, Kirkham, Clifton, Strensall. $-F$. crassipes Wils. Clifton. - F. decipiens De Not. Kilburn.F. taxifolius Hedw. Mallyam Spout, Clifton, Strensall Common.

Grimmia apocarpa Hedw. Kilburn. - G. pulvinata Sm. Kil. burn, Pickering, Grosmont, Kirkham.-G. trichophylla Grev. Arn. cliffe Wood.

Phacomitrium aciculare Brid. Kirkham, Hackness, Arncliffe Wood, Mallyam Spout.-R. fasciculure Brid. Kirkham.-R.lanuyinusum Brid. Strensall Common, Coatham Marshes.-R. canescens Brid. Kirkham.

Ptychomitrium polyphyllum Fürnr. Kirkham, Coatham Marshes, on block of cinder.

Campylostelium saxicola B. \& S. Arncliffe Vood.
Phascum cuspidatum Schreb. Clifton, R. Foss, Castle Howard, Kilburn.

Pottia Heimii Fürnr. Coatham Marshes, very abundant; Thorp Arch (on wall).-P. truncatula Lindb. Clifton, Appleton Roebuck.

Tortula pusilla Mill. Kilburn. - T. rigida Schrad. Castle Howard. - T. aloides De Not. Castle Howard. - T. marginata Spruce. Castle Howard. - 1'. muralis Hedw. Kilburn, Kirkham. -T. subulata Hedw. Kilburn.-T'. mutica Lindb. R. Foss, York. —T. intermedia Berk. Kılburn, Terrington. - T. ruralis Ehrh. Kilburn, Helmsley.-T'. ruraliformis Dixon. Coatham, Saltburn.

Barbula rubella Mitt. Castle Howard, Coatham Marshes, in abundance. - B. tophacea Mitt. Coatham Marshes, in abundance; Scarborough, Saltburn, Askham Bog.-B. fullax Hedw. Strensall, Clifton, Lastingham.-Var. lirevifolic Schultz. Strensall Common, Castle Howard. - B. recuvifolia Schimp. Clifton. - B. spadicea Mitt. Castle Howard, Saltburn, Mallyam Spout.-B. riuidula Mitt. Lastingham, Kilburn. - B. cylindrica Schimp. Kirkham, c.fr. (young). - B. vinealis Brid. R. Foss, York, Boston Spa. - B. Hornscluchiana Schultz. Castle Howard, c. fr. - B. revoluta Brid. Castle Howard. - B. convoluta Hedw. Grosmont, c. fr., Arncliffe Wood, Saltburn, R. Foss.-B. unguiculata Hedw. Kilburn, Castle Howard.

Weisia microstoma C. M. Kilburn.-Var. brachycarpum Schimp. Kilburn. - Var. obliqua C. M. Streusall Common. - W. viridula Hedw. Kilburn, Castle Howard, Grosmont, Pllmoor, Kirkham, Saltburn.-IV. tenuis C. M. Boston Spa.-W. calcarea var. viridula C. M. Castle Howard.-W. verticillata Brid. Saltburn.-W. curvirostris C. M. Saltburn.

Encalypta vulgaris Hedw. Leckby Carr.-E. streptocarpa Hedw. Castle Howard.

Zygodon viridissimus R. Br. Helmsley.
Oıthotrichum affine Schrad. Kirkham, Kılburn, Hackness, Saltburn, Helmsley.-O. leiocarpum B. \& S. Helmsley.-O. diaphanum Schrad. Boston Spa, Helmsley, Ouse-bank, York. - O. Lyellii H. \& T. Hackness. - O. cupulatum var. mudum Braithw. Boston Spa.-O. Sprucei Mont. Clifton.-O. stramineum Hornsch. Helms-ley.-O. pulchellunn Sm. Saltburn.

Ulota Bruchii Hornsch. Helmsley. - U. crispa var. intermedia Dixon. Castle Howard, Helmsley.-U. phyllantha Brid. Saltburn.

Plyscomitrium pyriforme Brid. Terrington Carr.
Funaria hygrometrica Sibth. Askham Bog, Strensall. Coatham Marshes, Thorparch, Castle Howard (approaching var. calvescens B. \& S.).

Amblyodon dealbutus P.B. Coatham Marshes, in great abundance.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
sall Common. - B. rivulare B. \& S. Castle Howard, Mallyam Spout, Kilburn. - Intermediate between type and var. latifolium Husn. Mallyam Spout.-B. velutinum B. \& S. Kilburn, Helmsley, Colton. - B. plumosum B. \& S. Goathland. - B. purum Dixon. Strensall, Castle Howard, c. f r.

Hyocomium flagellare B. \& S. Kilburn, small form; Mallyam Spout.

Eurhynchium piliferum B. \& S. Bolton Percy. - E. pralongum B. \& S. Helmsley, Strensall, Askham Bog, Kirkham, Saltburn, Healaugh, Coxwold, c.fr., Tockwith, c.fr., Mallyam Spout, Castle Howard. - E. speciosum Schimp. Clifton Ings. - E. pumilum Schimp. Healaugh. - E. Swartzii Hobk. Castle Howard, c.fr., dark green; Clifton Ings, c.fr., pale green; Strensall, yellowish; Boston Spa, large form. - E. abbreviatum Schimp. Healaugh.Var. igidum Boul. Kirkdale Cave. - E. myosuroides Schimp. Kirkdale, Arncliffe Wood, c.fr. - Var. cavernarum Mol. Kirkdale. - E. striatum B. \& S. Hackness, Hessay. - E. rusciforme Milde. R. Foss, York, Castle Howard, Helmsley, Kirkham. - E. murale Milde. Castle Howard, Helmsley, Malton, R. Foss, Kilburn, Kirkham. - Var. julaceum, Schimp. Kirkdale. - E. confertum Milde. Helmsley, Boston Spa.

Plagiothecium depressum Dixon. Kirkdale Cave, Castle Howard. - P. Borrerianum Spruce. Heworth (York); Castle Howard; Goathland, large form; Arncliffe Wood, large form. - P. denticulatum B. \& S. Askham Bog, Kilburn, Strensall, Saltburn. - Var. densum, c. fr. (short and striate), Kilburn. - Var. majus Boul. Tockwith, c.fr., Huntingdon. - P. sylvaticum B. \& S. Kilburn, a very short form; Helmsley, $c . f r$., Castle Howard. - P. undulatum B. \& S. Arncliffe Wood, c. fr., Castle Howard.

Amblysteyium serpens B. \& S. Askham Bog, Castle Howard, R. Foss, Coatham Marshes, Helmsley, Kirkdale, Saltburn, Scar-borough.-A. varium Lindb. Clifton Ings, c.fi., R. Foss, Askham Bog, c.fr.-A. irigunm B. \& S. Saltburn, c.fr. - A. filicinum De Not. Helmsley, Saltburn, R. Foss, Castle Howard (approaching var. gracilescens Schimp.), Clifton Ings, Strensall.—Var. Vallisclausa Dixon. Helmsley.-A. Kochii B. \& S. Clifton Ings.-A. Juratzke Schimp. Appleton Roebuck, Lastingham, Healaugh, Askham Bog.

Hypnum riparium L. Castle Howard, Clifton Ings, Askham Bog, R. Foss, Saltburn, Kilburn. - Var. longifoliun Schimp. Healaugh, c.fr., R. Foss.-Var. abbreviatum Schimp. Clifton Ings. -H. polygamum Schimp. Pilmoor.-H. stellatum Schreb. Strensall, Heworth, Kilburn.-Var. protensum B. \& S. Scarborough.H. chrysıphyllum Brid. Strensall. - H. Sommerfeltii Myr. Terrington Carr, in abundant fruit; Thorparch. - H. elodes Spruce. Strensall Common. - H. aduncum Hedw. Askham Bog, Coatham Marshes. - Var. intermedum Schimp. Strensall Common. - Var. paternum Sanio. Strensall Common. - Var. gracilescens Schimp. Clifton Ings, Strensall Common. - Group Typicum, forma fulcata Sanio. Coatham Marshes.-H. lycopodioides Schwaegr. Pilmoor, Strensall.-H. fluitans L. Strensall, Terrington Carr.-Var. Arnellii Sanio. Strensall, Terrington Carr. - Group obsoletum. Arnclifie

Wood, with nerve often forking.-H. exannulatum Gümb. Strensall, Terrington Carr, Pilmoor. - Marked form, approaching var. stenophyllum Hobk. Pilmoor. - Var. stenophyllum Hobk. Strensall.H. uncinatum Hedw. Hackness. - Var. plumosum Schimp. Salt-burn.-H. intermedium Lindb. Strensall Common.-H. commutatum Hedw. Castle Howard, Kirkham, Goathland, c. fr. - H. falcatum Brid. Mallyam Spout. - Var. virescens Schimp. Helmsley (Beck Dale).-H. incurvatum Schrad. Terrington.-H. cupressiforme L. Castle Howard, Strensall, Kirkham, Arncliffe Wood, Helmsley.Var. between var. lacunosum Brid. and var. elatum Schimp. Strensall. - Var. filiforme Brid. Castle Howard, c.fr., Saltburn, Arncliffe Wood, c.fr. - Var. minus Wils. Castle Howard. - Var. longirostre Schimp. Kilburn, c.fr. - Var. resupinatum Schimp. Goathland: - Var. elatum B. \& S. Kilburn, one fruit. - Var. lacunosum Brid. Strensall. - H. imponens Hedw. Strensall Common. - H. Patientia Lindb. Strensall Common. - H. molluscum Hedw. Strensall, Arncliffe Wood. - Var. fastigiatum Bosw. Kilburn (Hambleton Hills).-H. palustre L. Saltburn, Castle Howard, Kilburn, Clifton. - H. ochraceum Turn. Arncliffe Wood, c. fr.Var. flaccidum Milde. Arncliffe Wood. - H. cordifolium Hedw. Askham Bog, Strensall, R. Foss (York). - H. giganteum Schimp. Strensall Common, Pilmoor (male plant), Askham Bog.-H. cuspidatum L. Askham Bog, c.fr., Strensall, c.fr., Helmsley, Pilmoor, Saltburn, Kirkham, Clifton Ings, Kilburn.-Very near var. pungens Schimp. Saltburn Wood. - H. Schreberi Willd. Strensall, Askham Bog.

Hylocomium squarrosum B. \& S. Strensall, Askham Bog, Castle Howard, R. Foss (York).-H. triquetrum B. \& S. Helmsley, c.fr., Strensall.-H. splendens B. \& S. Askham Bog.

ROBERT MORGAN.

I_{T} is with great regret that we announce the death of one whose name has been familiar to readers of this Journal for nineteen years, and whom it will be difficult to replace. It was in February, 1882, that "Robert Morgan del. et lith." first appeared on one of our plates, and from that time it has rarely been absent from the Journal.

Robert Morgan was born at Norwood on the 9th of May, 1863, and early evinced a taste for drawing. A member of the Presbyterian congregation to which Mr. Carruthers, then Keeper of the Department of Botany, belonged, his father brought the qualifications of the lad, on his leaving school, under his notice; and Mr. Carruthers gave him that encouragement to which many since well-known in botanical circles, either as artists or observers, have acknowledged their indebtedness. Robert drew plants in the field, and studied the excellent series of lessons by W. H. Fitch published in the Gardeners' Chronicle. He obtained work in connection with the plates illustrating the voyage of the 'Challenger,' and

Journal of Botany.-Vol. 38. [Dec. 1900.] 2 m
became acquainted with Mr. Percy Highley, who rendered him much assistance.

Robert Morgan's first botanical plate was the one already mentioned, and it is with his botanical work that we are here concerned. This, however, formed but part of his undertakings; numerous works dealing with entomology-among them Fowler's Coleoptera and Barrett's Lepidoptera-were illustrated by him. Morgan's work was characterized as a whole by conscientiousness and accuracy rather than by genius, unless we accept the definition that genius is "an infinite capacity for taking pains," in which case he may lay claim to that gift. Another qualification he had which only those who employ draughtsmen can estimate at its proper value; he could be depended upon to complete punctually any work which he undertook. A considerable number of his plates will be found in the Transactions and Journal of the Linnean Society (of which body he became a Fellow in 1887), among the best of these being the figures of Milanji plants published in 1894 ; these were both drawn and lithographed by Morgan; he also lithographed all the plates illustrating Trimen's Flora of Ceylon. His most recent work was the reproduction, for the Botany of Cool's First Voyage, of two or three of Sydney Parkinson's drawings of Banks's Australian plants: these are admirably executed, and it might be wished that the whole could hare been thus reproduced.

It might, indeed, perhaps be said that Morgan was better at interpreting other people's work than in original execution, were it not for the masterly drawings of Potamogeton which accompany Mr. Fryer's monograph of the British species of that genus, now in progress, of which, happily, all the plates but three have been drawn. Mr. Fryer had the highest opinion-and no better can be obtained-of Morgan's work, and has expressed it from time to time in the pages of this Journal, where his letterpress accompanied Morgan's drawings. In this genus alone did I ever hear Morgan express interest; he was always glad when I told him a "Pot" was wanted, and put his best work into the plate. Naturally, therefore, he was able to display his capabilities to greater advantage on the quarto plates of Mr. Fryer's book, and it may be doubted whether these have ever been surpassed, either in accuracy or elegance. He went to Chatteris to draw some of the plants, and the original sketches for the plates will ultimately be placed by Mr. Fryer in the Department of Botany; and Mr. Fryer allows me to quote from a letter received from him on the occasion of Morgan's death the following reminiscence of his visit, which is the more interesting on account of the appreciation of character which it contains:-
"Mr. Morgan spent some days with us to learn what was required in the illustrations of our book; he at once found his way to our hearts. Simple, unassuming, with almost boyish high spirits, controlled in all things by early religious training, always deferring everything to duty, he refused every relaxation until his long day's work was done. And his working hours were long, almost all the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

of no mean ability-conscientious in his work, always ready to be helpful even in matters outside his profession, he will be greatly missed whether by those who knew him as artist or man; and his loss leaves a blank which will not easily be filled.

The portrait accompanying this notice is from a photograph taken in the early summer of this year.

James Britten.

BIBLIOGRAPHICAL NOTES.

XXV.—Aubert du Petit-Thouars.

Mr. B. B. Woodward's interesting article (pp. 392-400) on Aubert du Petit-Thouars fairly raises the question of date for several of the works dealt with. The work no. 2 in Mr. Woodward's list (p. 394), " Plantes des iles de l'Afrique australe formant des genres nouveaux . . ." or alternative titles, 4to, Paris, 18041807, contained twenty-four plates (exclusive of two plates of Cycas), and was issued, or re-issued, as stated by Mr. Woodward, in four fascicles. De Theis, Glossaire de Botanique, 8vo, Paris, 1810, quoted most of the genera according to their fascicles; also Pfeiffer, Nomencl. Bot. (1873-74), quoted all the genera according to their fascicles and dates; there is a little discrepancy between these two authorities. Jaume St. Hilaire, Expos. Fam. Nat. ii. Suppl. (1805), quoted the first eight of the genera figured on the twenty-four plates; he also supplied specific names to the plants figured, most of which names are not contained in the Kew Index. A consideration of all the evidence gives the probable dates and fascicles of the twenty-four plates, as follows:-

> tt. $1-4,1804$; fasc. i.
> tt. $5-8,1804$; part of fasc. ii.
> tt. $9-12,1805$; part of fasc. ii.
> tt. 13-18, 1806 ; fasc. iii.
> tt. 19-94, 1807; fasc. iv.
tt. 1-8 and the two plates of Cycas were included in livraison i., tt. 9-18 were intended to make up livraison ii., and tt. 19-24 to belong to livraison iii. See Pet.-Th. Mélanges, Discours préliminaire, p. 5 (1811).

Besides the twenty-four plates illustrative of new genera and the two plates of Cycas, there appeared six plates, numbered 25-30; they were issued as an additional fascicle or livraison, and are apparently the six plates referred to and announced with the text for sale in Pet.-Thouars, Rev. Gén. Mat. Bot. p. 5 (1819). These plates are shaded in lithograph, and in the Kew (Bibl. Hook.) copy they are lettered with the names on the plates, as follows:-

$$
\begin{array}{ll}
\text { Pl. xxv. } & \text { Haronca ovata } \\
\text { Pl. xxvi. } & \text { Ocrorocarpos } \\
\text { Pl. xxvii. } & \text { Brindonia oxycarpa } \\
\text { Pl. xxviii. } & \text { Cerea radicans } \\
\text { Pl. xxix. } & \text { Arding hella } \\
\text { Pl. xxx. } & \text { Hemistema Aubertii Decand. }
\end{array}
$$

The corresponding text is not found in the Kew volume; neither the plates nor text are mentioned in Pritzel's Thesaurus.
T. 25 : Haronca is obviously a mistake for Haronga; the latter name occurs at the foot of the text, p. 72, at the end of the description of 24. Chrysopia fasciculata, indicating the first word to follow; the genus Haronga is described in the Nova Genera Madagascariensia, n. 49. The plate represents Harungana paniculata Pers. (Avingana) (1806); Haronga madagascariensis Choisy. The name Haronga ovata does not occur in the Kew Index.
T. 26 represents apparently Ochrocarpos Goudotianus Planch. \& Triana in Ann. Sci. Nat. sér. 4, xiv. p. 365 (1860) (Ochrocarpus).
T. 27 is the same as Sieber, Exsicc. Fl. Maurit. ii. n. 262, and is Garcinia indica Choisy in DC. Prodr. i. p. 561 (1824); Vesque, Monogr. Guttif. pp. 423, 656 (1893).

The name Brindonia oxycarpa does not occur in the Kew Index.
T. 28 : the genus Cerea is not recorded in the Kew Index; the plant is an Elaocarpus, and apparently the species is E. grandiforus Bojer, Hort. Maurit. p. 45 (1837); Baker, Fl. Maurit. \& Seych. p. 33 (1877) ; non Sm. in Rees, Cyclop. vol. xii. sp. nº. 5 (1809); it may now be called E. radicans.
T. 29 is probably Ochrocarpus angustifolius Vesque, l.c. p. 524 ; Mammea? angustifolia Planch. \& Triana, l.c. xv. p. 246 (1861). It does not belong to Ardinghelia Commers. ex Adr. Juss. Tent. Euphorb. p. 21, t. 4, fig. 14 (1824), which is a section of Phyllanthus.
T. 30 is Hemistemma Aubertii DC. Regn. Veg. Syst. Nat. i. p. 413 (1818), and Prodr. i. p. 71.

The work no. 6 (p. 394), "Genera nova Madagascariensia . ." 8 vo , is usually regarded on the authority of Pritzel to belong to the date of 1806 ; but, as Mr. Woodward suggests, this date is doubtful; indeed, an entry of it in the catalogue of books in the Berlin Botanical Museum gives the date of 1804, but Dr. Otto Kuntze, Rev. Gen. Pl. i. p. cxxvii (1891), failed to find the book in the Museum, and he therefore discarded the earlier date. The work was composed in 1796 ; see Pet.-Thouars, Mélanges, Discours préliminaire, pp. 8, 9 (1811), but it seems not to have been printed until many years afterwards; none of the names are quoted from it in Pers. Syn. Pl. ii. (1806-1807), although Persoon, l.c. ii. p. 588 (1807) under Hecatea quotes "A. du Petit-Thouars, Pl. ins. Afr. austr. p. 27, t. $5^{\prime \prime}$; and I am unable to find any mention of it made by any author or noticed in any publication before 1808; it is possible that the dates of 1804 and 1806 may have been attributed to it by confusion with the work no. 2, previously discussed, on account of the occurrence in the title of the words "genres nouveaux." The following register of Milititz, Handb. Bot. Lit. column 196 (1829), which is referred to by Mr. Woodward, appears accurately to supply the date:-" 1808.-Genera nova Madagascariensia secundum methodum Jussienanam disposita. Par. 8, p. 29 (R. Götting. gel. Anz. 1808. ii. 1144)." About the same time the work was published in J. J. Roemer, Collect. Bot. pp. 195-218, 4to, Zürich, as stated by Mr. Woodward; in this
publication there are found a few differences or misprints which do not occur in the octavo edition-for instance, the no. 3, Ouviranda, on p. 196, is printed instead of Owirandra of p. 2 in the octavo edition; at the end of the account of no. 38, p. 204, Siburatia, the synonym "Maesa, Forskæl" is given, whereas in the octavo edition, p. 12, it is "Maesa, Forschal"; the name of no. 41, Dicophe, on p. 205, is an error for Dicoryphe, as it correctly appears on p .12 of the octavo edition; and no. 74 , Trilepsium, on p. 212 of the quarto edition, is Trilepisium on p. 22 of the octavo edition. No. 86 is wanting from both editions; both editions under no. 70 quote Bruguiera, A. P. Dict. Sc. Nat. [v. p. 375 (1806)]; and under no. 66, Paropsia Nor., both editions quote "Nov. Gen. Tab. xix.," referring doubtless to the work Plantes des iles, the date of t .19 of which has been previously given as 1807 .

There is also some doubt as to the date of publication of J. J. Roemer's Collect. Bot.; the title-page of the book contains the date 1809, but Miltitz, l.c. col. 109, registers it as follows:-" 1807. Roemer (Joa. Jac.) : Collect. ad omnem rem botanicam spectantia. Partim e propriis, partim ex amicorum schedis manuscriptis concinnavit et edidit. Turici, 4. c. tab. æn. 4, p. 314. (3 Thl. 10 gr.)
(R. Allg. Hall. Lit. Zeit. 1810. Nr. 282-Heidelb. Jahrb. im Jahrg. 1 Heft.)"

The Collectanea apparently extended over three years, and not improbably the part containing Petit-Thouars' Nova genera madagascariensia was published in 1808. It is not certain that the octavo edition (of 1808 ,) of which the quarto edition was a reprint (see Petit-Thouars, Mélanges, Disc. prélim. p. 19), was ever published until it appeared in the Mélanges in 1811.

W. P. Hiern.

SHORT NOTES.

Castanea sativa Mill.-I do not know whether Messrs. Hanbury and Marshall's opinion (as expressed in their Flora of Kent) concerning the propagation of this tree is shared by others, but as such a statement, occurring in so excellent a work, is certainly due to imperfect observation, it may be as well to correct it. The authors remark of the Spanish Chestnut: "Frequently planted in woods and copses, but apparently never reproducing itself from seed." I have paid some attention to Castanea sativa as we find it growing in parks and plantations, and during the past two years have in the autumn frequently found abundance of ripe fruit where chestnut trees grow. Previously I had entertained the opinion that fruit was rare. Chestnuts, brought from a Surrey copse, have in my possession developed into vigorous plants. The reason, no doubt, why seedling chestnut trees are seldom seen where C. sativa is planted is that the chestnuts have a market value, and are seldom allowed to lie about for long. In a Midhurst guide-book it is stated that from the celebrated avenue of chestnut trees in Cowdray Park

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies
gatherings of 1885 , the following list of $R u b i$ has been drawn up. The notes are in all cases Mr. Rogers's :-Rubus Idaus L.-R. lasioclados Focke, var. angustifolius Rogers. - R. echinatus? Lindl. R. Babingtonii Bell Salter. - R. rosaceus W. \& N. A very strong form of the large aggregate R. rosaceus W. \& N. It is very near to, if not identical with, the form for which Mr. Druce in his Fl. Berks suggests the varietal name bercheriensis, and a near ally of var. hystrix. Yielding to Mr. Rogers's fuller study of the genus, Mr. Druce acquiesces in his opinion that bercheriensis is scarcely entitled to varietal rank. - R. dasyphyllus Rogers $=R$. pallidus Bab., not W. \& N.-R. dumetorum W. \& N. var. bi itannicus Rogers. Perhaps not quite typical, but better under var. britannicus than under var. ferox, to which it makes some approach. - R. corylifolius Sm. var. sublustris Lees.-Var. cyclophyllus Lindeb.-R. imbricatus Hort. A remarkable form. On Putney Common I have seen together with it both the typical plant and an intermediate form.-R. carpinifolius W. \& N. Very abundant. - R. incurvatus Bab. - R. Lindleianus Lees. - R. erythrinus Genev. forma glandulosa. - R. rhamnifolius W. \& N.-R. Bakeri F. A. Lees.-R. pulcherrimus Neum. Common. -R. argentatus P. J. Muell., var. Very abundant. - R. rusticanus Merc.-R. rusticanus Merc. flore pleno. For a number of years this very beautiful "double" bramble, in which all the stamens are converted into petals, has been known on the Common-three bushes of it-on that margin which forms one side of Dorlcote Road, College Park. To all appearance the bushes are quite wild, and they are found in a line with others of the common rusticanus type. The variety is, however, unrecorded as wild, but it is grown by floriculturists for shrubbery planting. I recently ascertained that, before the College Park roads were laid out and houses erected, twelve to fourteen years ago, a nursery garden existed on the site of Dorlcote Road, hedged off from the Common at the line of private ownership; and my informant-who had been an employé in the garden-remembered this bramble as one of its specialities. Its presence on the Common is thus fully explained. I have since seen a large clump of the same form in Kew Gardens, under the name R. ulmifolius var. flore pleno.-William Whitwell.

Koeleria cristata. - When at the Lizard, Cornwall, early in June, this year, I came across a considerable patch of a grass allied to Koeleria cristata, though with marked characteristics of its own. Mr. Arthur Bennett, who has kindly examined the plant, believes that it is the variety villosa Lloyd, Fl. de l'Ouest de la France (4th ed. 1886, p. 403).-W. F. Miller.

Introductions.-In a potato-field near Edinburgh I gathered in August a fine plant of Melilotus sulcata Desf. Another alien, which I found in considerable plenty on waste ground, Tunbridge Wells, is Potentilla recta L., recorded in the Flora of Kent for two localities, but in different parts of the county.-W. F. Miller.

ARTICLES IN JOURNALS.*

Bot. Centralblatt. (Nos. 44, 45).-L. Hering, ' Zur Anatomie der monopodialen Orchideen' (3 pl.). - (No. 44). A. J. M. Garjeanne, ' Zur Kenntniss monströser Bellis-köpfchen.' - (No. 46). W. Busse, 'Zur Kenntniss des Leitgewebes in Fruchtknoten der Orchideen.' - W. Taliew, 'Ueber die russischen myrmecophilen Pflanzen.' - (Nos. 47, 48). L. Cador, 'Anatomische Versuchung der Mateblätter.'-(No.48). B. Fedtschenko, 'Uber einige Hedy-sarum-Arten.'

Bot. Gazette (15 Oct.).-R. A. Harper, 'Cell and nuclear division in Fuligo varians' (1 pl.). - W. J. G. Land, 'Double fertilization in Composita' (2 pl.). - M. Hefferan, 'A new chromogenic Micro-coccus.'-E. R. Hodson, Neovossia Iowensis, sp. n.

Bull. Torrey Bot. Club (July). - D. S. Johnson, ' Development of Saururus cernuus' (1 pl.). - E. P. Bicknell, Hydastylus (= Sisyrinchiun californicum and allies). - K. M. Wiegand, Saxifraga and Primula.-C. V. Piper, ' New North Western Plants.'-H. Hasselbring, Globulina antennaria, sp. n.-("August": $=6$ Sept.). R.M. Harper, ' Flora of South Georgia.'-E. L. Salmon, 'Erysiphacea of Japan' (1 pl.). - A. McComb, 'Development of karyokinetic spindle in vegetative cells of higher plants ' (2 pl.$)$. - (26 Oct.). K. M. Wiegand, ' Juncus tenuis Willd.'-P. A. Rydberg, 'Rocky Mountain Melanthacea.'-N. L. Britton, 'Torrey as a botanist' (bibliography). -(14 Nov.). J. B. Ellis \& J. M. Everhart, 'New Fungi.'-W. H. Long, 'Fungi of Austin, Texas.' - J. H. Barnhardt, 'Heteromorphism in Helianthemum.'

Gardeners' Chronicle (3 Nov.).-Mormodes Oberlanderianum Lehm. \& Kränzl., sp. n. (fig. 96). - (10 Nov.). Helichrysum Gulielmi (fig. 103). - E. A. Bowles, Crocus niveus, sp. n. - W. G. Smith, 'Abnormal growth of Agaricus albus' (fig. 104). - (17 Nov.). Lysionotus carnosa Hemsl., Passifora europhylla Mast., spp. nn.

Journ. Linn. Soc. (xxxiv, no. 241 ; 1 Nov.). - E. S. Barton, 'Halimeda from Funafuti' (1 pl.). - O. Stapf, 'Dicellandra and Phaoneuron' (1 pl.).

Malpighia (xiv, fasc. 1-4; received 9 Nov.). - E. Chiovenda, 'Contributo alla Flora Mesopotamica.' - O. Mattirolo, ' Gli Ipogei di Sardegno e di Sicilia' (1 pl.$)$. - L. Petri, 'Gasteromiceti di Borneo' (3 pl.: Clathrogaster, gen. nov.). - A. Baldacci \& P. A. Saccardo, 'Onorio Belli e Prospero Alpino.' - A. Noelli, ' Infiorescenza anomala di un' Orchis' (1 pl.).-G. Capeder, 'Lithothamnion' (1 pl.).-J. Zodda, Ophrys Nicotra, sp. n. (1 pl.).

Mém. de l'Herb. Boissier (15 Nov.). - R. Schlechter, ' Monographie der Podochilina.' - A. Minks, 'Der Flechtengattung Omphalodium.'

[^28]Oesterr. Bot. Zeitschrift (Nov.). - K. Fritsch, 'Lathyrus.' - E. Palla, 'Pilobolus-Arten' (1 pl.). - J. Freyn, 'Flora von Steiermark' (cont.: Sedum and Saxifraga). - J. Velenovský, 'Die Achselknospen der Carpinus.'-L. Sarnthein, 'Pilzflora von Tyrol.'

Rhodora (Nov.).-C. W. Bissell, 'Abnormal flowers in Leonurus Cardiaca.'

Trans. Linn. Soc. (2nd Ser.: vol. v. part 13). - A. B. Rendle, 'Supplementary Notes on Najas.' - (part 14). W. C. Worsdell, ' Comparative anatomy of Encephalartos' (1 pl.).

BOOK-VOTES, NEWS, \&c.

Dr. C. A. M. Lindman, of the Swedish Regnell Expedition to Brazil, 1892-4, has recently published some interesting and valuable results obtained in the course of his travels. In "Vegetationen i Rio Grande do Sul " (Stockholm: Nordin \& Josephson, 1900) we have a series of sixty-nine sketches, mostly clever reproductions from photographs, with accompanying letterpress to illustrate the botanical topography of the southern extremity of Brazil and the neighbouring districts in Uruguay and the Argentine Republic. The series, which is admirably complete and presented with much judgment, is designed to give the reader a good idea of South American subtropical vegetation, and does this with conspicuous success. "Beitrage zur Palmenflora Südamerikas" (extr. from the K. Svenska Vet-Akad. Handlingar, Band 26) records the careful study of a difficult natural order of plants. The memoir is capitally illustrated with five double plates, besides several photographs, and, while treating of the same subject as that upon which Dr. Barbosa Rodriguez recently wrote (vide Journ. Bot. 1898, p. 355), and based upon material collected largely in the same districts, still adds considerably to our knowledge of South American Palms. Another memoir from the same pen is "Några bilder från den sydamerikanska vildmarken el gran chaco" (extr. from Tidsk. af svenska sällskapet för antropologi och geographi, 1899), which, besides illustrating and describing the botanical topography of the Gran Chaco, that little-known but extensive region, deals also to some extent with its ethnology. A fourth memoir bears the title "Zur Morphologie und Biologie einiger Blätter und belaubter Sprosse," and is extracted from the tiventy-fifth volume of the serial quoted above. This treats of the adaptation of certain South American plants to their surroundings, including the curious several-faced leaves ("folia tabulata") of certain Iridacea (Alophia, Cypella), the form and direction of the leaves and shoots of plants growing in the forest-glades, resupination of leaves with the result of placing them in the most favourable position towards incident light, and the form and direction of the leaves of climbing plants (hanging position, cordate shape, well-pronounced points for carrying off rain-water).

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

having been formed by the hand of man, but are really natural growths, due to the fact that light surface-soil has been laid down over what appear to have been lake-deposits. Any given line of country will show large plantations, with quite a home-like look, separated by grass-lands; and, as Tanganyika is approached, they dwindle in size till they consist of a few shrubs, overshadowed by giant Euphorbias, cactus-like in appearance. Then come stretches of grass, dotted with Euphorbias, and, last of all, the salt steppes by the lake, which is now held to have had at one time an outlet to the sea. Mr. Moore's explanation is that at first only the Euphorbias would grow on the salt steppes; but as these sprang up they afforded a shade and shelter to self-sown shrubs, each of which, as it established a footing, contributed to the natural planting of the area by the distribution of the seeds, till this process reached its highest development in the large plantations where the shrubs overtopped the Euphorbias to which they owed their growth.

We ventured last year to comment on the irrelevant details introduced into the biographical notices published in the Proceedings of the Linnean Society, and the part just issued seems to justify a repetition of our strictures. In one case, six lines are devoted to the connection of a Fellow with the local Rifle Volunteers; he was also a freemason of long standing, and an angler. This gentleman, however, did work which justifies his inclusion in the biographies of a learned society; but as much cannot be said for the Fellow whose claims to distinction, apart from his proprietorship of a preparatory school, rest on his cultivation of single Dahlias, and his success in showing them. "His first hobby in gardening was the Rose, but he relinquished it in favour of a flower which came into perfection at a period of the year when he could devote more time to it."

Prof. Delpino publishes, in the Memoirs of the Accademia delle Scienze dell' Istituto di Bologna, a very interesting "Comparazione biologica di due flore estreme artica ed antartica," of which we may give some account at a later date.

We are glad to learn that Mr. Fraser Robinson and others are steadily working at a Flora of the East Riding of Yorkshire.

Mr. I. H. Burwil is leaving the Kew Herbarium for Calcutta, where he will act as assistant to Dr. Watt, whom he will ultimately succeed. Mr. Burkill leaves England in January.

Vol. xvi. of the Acta Horti Petropolitana is occupied by an enumeration of the plants collected in the Caucasus in 1890 by Drs. S. Sommier and E. Levier. It forms a volume of 586 pages, and is illustrated by forty-nine excellent plates, representing the more interesting of the new species described. In vols. xvii. and xviii. of the same Acta, M. J. Palibin gives a "Conspectus Floræ Koreæ," extending to Salicaceæ, and illustrated by four plates.

The inaccuracy in dating publications, to which we have frequently called attention, still continues. A new and important work, to which we may return later-Die Flora der Deutschen

Schutzebiete in der Siudsee, by Drs. Karl Schumann and Karl Lauterbach-is dated 1901 on the cover and on the title-page, although it was received at the Department of Botany on Nov. 17. The fourth edition of Prof. E. Mace's Traité pratique de Bactériologie, bears on its title-page the date " 1901 "! it was received in this country in October.

Ir is not often that we have to record the conferring of the highest civic honour upon a British botanist, but it is our pleasant duty to congratulate Mr. G. C. Druce on his election as Mayor of Oxford. We are indebted to an unknown friend for a copy of the Oxford Chronicle for Nov. 16, in which a full account of the proceedings is given. After paying a high tribute to Mr. Druce's civic virtues, Mr. Alderman Saunders, in proposing his election, said he "did not think they were all acquainted with Mr. Druce's position in the outside world. If they would permit him, he would read a short extract from Who's Who. There they saw that George Claridge Druce was apprenticed to a firm of pharmaceutical chemists, and afterwards he became President of the Northampton Pharmaceutical Society, Secretary of the Northampton Natural History Society, and, he believed, he was the founder of that Society. Also, he was a member for ten years of the Board of Examiners of the Pharmaceutical Society of Great Britain. He founded the Oxfordshire Natural History Society, of which he was president for two years, and its treasurer since its institution. He was, he believed, Chairman of the Pharmaceutical Conference, which would be held this year in Dublin. So they saw Mr. Druce's reputation extended far beyond the limits of Oxford. He was also an author of no mean power. He had produced a work on Flora (sic), and the University authorities, for his researches and erudition in that direction, conferred upon him the honorary degree of Master of Arts."

We are glad to infer from a reference to "Rolfe in Kew Bulletin 1900, ined." which appears under Dendrobium inaquale in the November issue of the Botanical Magazine, that our little contemporary's suspended animation will be restored before the close of the century. The year's issue at present consists of four appendices, but nothing has appeared of the volume to which they are presumably supposed to be appended; and the Bulletin for 1899 is still incomplete.

Among several papers which the pressure on our space has not permitted us to notice may be mentioned that on "Hybridization viewed from the standpoint of Systematic Botany," which Mr. R. A. Rolfe contributed to the "Hybrid Conference" held in July, 1899, by the Horticultural Society, and of which we received a copy reprinted from the Report of the Conference issued by the Society in April last. The paper contains a vast amount of information brought together from various sources. The following extract, bearing upon the controversy as to hybridity in Epilobium carried on in this Journal for 1891-2 by Messrs. E. S. Marshall and C. B. Clarke, will be read with interest:-"One of these very plants
[E. roseum] had long previously been raised artificially, though none of the authors mentioned seems to have been aware of the fact. Sir James E. Smith, in 1800, had remarked concerning Epilobium roseum: ' Is it possible it may have originated from seeds of the latter [E. tetragonum] impregnated by the pollen of E. montanum?' [Engl. Bot. x. t. 693). In order to test this suggestion Dr. Bell-Salter, about the year 1842, fertilized E. tetragonum with pollen of E. montanum; seeds were readily produced, and hybrids obtained, which were described as intermediate between the parents, but different from E. roseum. He then reversed the cross, but the progeny proved indistinguishable, These hybrids were raised true from seed for four successive years, and up to the date of his writing (1852) plants continued to make their appearance (Phytologist, iv. p. 379). The result of this experiment was doubly interesting, for not only is E. roseum now recognized as a common and widely diffused species, but the hybrid has also long been known in a wild state. According to Haussknecht, it was described as long ago as 1831 by Lasch under the name of E. subtetragono-nontanum (Linnaa, vi. p. 495), and Celakovsky, in 1881, as E. Freynii (Prodr. Fl. Bohem., p. 881). It is found in several different localities where its parents grow intermixed."

The latest issue of the Transactions of the Perthshire Society of Natural Science (vol. iii. part 2) contains a paper on the alpine flora of Clova, by Miss M. Thomas, and the conclusion of the admirable paper on "Plant Associations of the Tay Basin," by the late Robert Smith, of whom we hope to say more later; it is accompanied by an excellent map and a portrait of the author.

The second instalment of Das Pflanzenreich contains the Typhacea and Sparganiacea, by Dr. P. Graebner.
W_{e} have received the first part of what seems likely to be an important work on Cactacex-Bliihende Kakteen-which Mr. Neumann of Neudamm is publishing. It is edited by the indefatigable Dr. K. Schumann, who describes a new species-Echinocactus Anisitssi. Each instalment is to contain four quarto coloured plates-those in the present number are excellent-at the cost of four marks. The book will be useful both to botanists and horticulturists.

Tae Botanica Department of the British Museum has lately acquired M. Bescherelle's herbarium of exotic Musci and Hepaticæ. It consists of 14,800 specimens of Musci and 3500 specimens of Hepaticæ. It contains the types of the many species described by Bescherelle, and a large number of specimens collected in the French Colonies during the last thrty years, as well as collections made in the islands of Amsterdam and St. Paul, in Brazil, Paraguay, Tahiti, Japan, Mexico, and the Marquise Islands, which were described by Bescherelle. There are also numerous authentic specimens from older workers, such as Schimper and Montagne, and from the older French explorers, such as Bory de St. Vincent, D'Orbigny, D'Urville, and Du Petit Thouars.

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

Baitaria, 76
Baker, E. G., Species of Cracca, 12, 53 ; Hibiscus clypeatus, 52 ; Engler's African Combretaceæ (rev.), 99; on Eryngium (t. 411), 241; Conti's 'Matthiola' (rev.), 449
Baker, F., Suffolk aliens, 24
Baker, J. G., Verbenaceæ of Tropical Africa (rev.), 280
Bangia ciliaris, 374
Barleria Delamerei,*206; Randii,* 206
Barstow's Melanospermex (rev.), 237
Barton, E. S., Algological Literature of 1899, 89, 136; Cyanophyceæ Danicæ (rev.), 232; Key to Melanospermeæ (rev.), 237
Basidiomycetes new to Britain, 134
Batters, E. A. L., Marine Algæ (t. 414), 369

Bennett, Arthur, Alisma, 24 ; Potamogeton rutilus (t. 407), 65 ; Juncus alpinus, 88 ; notes on Potamogeton, 125; Tragopogon vulgaris var. grandiflorus, 279 ; Elymus arenarius, 444
Benthamantha, 17 ; sericea,* 19
Berggren's N. Zealand Hepaticæ (rev.), 58
Berlandier, 151
Bescherelle's Herbarium, 502
Bibliographical Notes, 189, 224, 392, 443, 492
Blepharis tenuiramea,* 205
Blodgett on Carnation Rust, 288
Botanical Exchange Club, 239, 364
Botrypleuron, 407
Boulger, G. S., :Notes by Plukenet, 336; History of Essex Botany, 103; his 'Flowers of the Field' (rev.), 195
Brachythecium densum, 175
Brebner, J., Schœnus ferrugineus, 87
Brenan, S. A., Sphærotheca Morsuvæ, 446
Britten, J., Species of Cracca, 12, 53 ; Nomenclature, 10, 49 ; Impatiens Roylei (glandulifera), 50, 278; Cosmia, 76 ; Two Colonial Floras (rev.), 141 ; Potamogeton spathulæformis, 129 ; Mathiola in Britain, 168; ' Flowers of the Field' (rev.), 195 ; Rolland's ‘Flore Populaire' (rev.), 197; Drosera Banksï (t. 410 в), 207; Paper by Rafinesque, 224; Botanists of

Philadelphia (rev.), 230 ; Halácsy's Flora Græca (rev.), 234; on Eryngium (t. 411), 241; Draba muralis, 279; Flora of Tropical Africa (rev.), 279; First Records of British Plants (rev.), 281; ' Flora der Schweiz' (rev.), 282; Notes on Rhus, 315; Congo Plants (rev.), 322 ; Botany of Cook's Voyage, 320; 'Flora of Bournemouth’ (rev.), 361 ; ‘Genera Siphonogamarum '(rev.), 362; ' Exchange Club Reports' (rev.), 364; Jackson's ' Botanic Terms' (rev.), 405; Cameron's 'Gaelic Names' (rev.), 450; Eriocaulon, 481; Robert Morgan, 489
British Museum Bot. Dept. Report, 1898, 22; 1899, 356
Britton, C. E., Cerastium apetalum, 270 ; Castanea sativa, 494
Brombeadia scirpoides,** 71
Bryum arcticum, 331; formosum* (t. 413), 329 ; Lawersianum, 331

Bubani's 'Flora Pyrenæa' (rev.), 283
Buchnera Randii,* 467; rhodes. iana,* 468
Bulbophyllum hirtum,*71
Burkill, I. H., on Roraima Plants, 199 ; leaving England, 500
Buxbaumia aphylla, 279
Calandrinia, 76
Calceolaria (see Fagelia)
Cameron's 'Gaelic Plant Names' (rev.), 450
Cape Plants, New, 170
Carruthers, J. B., leaving England, 64
Carruthers, W., Nomenclature of Platycerium, 123; Scott's Memoirs (rev.), 145; Botany of Cook's Voyage (rev.), 320 ; Zeiller's'Paléobotanique' (rev.), 447; Scott's ' Fossil Botany' (rev.), 447
Castanea sativa, 494
Catena, 327
Caulerpa, 140
Catoscopium nigritum, 359
Cerastium apetalum, 276; arcticum var. Edmondstonii, 364
Channel Islands plants, 31, 33, 278, 288, 319, 483
'Characeæ Britannicæ exsiccatæ,' 453
Cheirostrobus, 145

Christie, A. C., Draba muralis, 279
Christmas Island Plants, 199
Chinese Plants, Enumeration of, 30
Cinclidotus fontinaloides var. pseudo-aquaticus,* 495
Cirrhopetalum maximum,* 70
Cladophora, 139, 370
Clarke, C. B., Impatiens glandulifera, 278 ; his Cyperaceæ Antillanæ (rev.), 284
Clarke's (W. R.) 'First Records of British Plants' (rev.), 281
Clerodendron, African, 280
Closterium idiosporum,* 290; parvulum var. angustum,* 290
Clusius' Fungi, 151
Coleus palliolatus,* 464
Coley, S. J., Cyperus fuscus, 446
Colgan, N., Artemisia Stelleriana, 317
Collabium nebulosum, 71
Colours of Flowers, 53, 146
Combretaceæ, African (rev.), 99
Compsonema, 95
Constantinea, 137
Conti's ' Matthiola ' (rev.), 449
Cook's First Voyage, Botany of, 320, 454
Cosmarium, 291 ; pericymatium var. eboracense,* 292 ; Pokornyanum,* 293 ; subexcavatum var. ordinatum,* 293 ; subtrinodulum,* 292
Cosmia, 76; caulescens, 77; prostrata, 77 ; quadrivalvis,* 77
Costantin's 'Flore Tropicale' (rev.), 196
Coste's ' Flore de la France,' 408
County Records:-
Anglesea, 67
Beds, 83
Berks, 32, 51, 328, 400
Brecon, 4, 5, 6, 7
Bucks, 83, 338
Cambridge, 67, 336
Cardigan, 6, 247
Carmarthen, 4, 6, 358
Carnarvon, 4, 168, 445
Chester, 74, 277, 319, 454
Cornwall, 20, 354, 496
Cumberland, 88
Denbigh, 78
Derby, 182, 366
Devon, 20, 31, 87, 169, 230, 445, 446
Dorset, 51, 152, 169, 190, 361, 445, 446
Durham, 3, 259, 278, 359
Essex, 103, 445

Glamorgan, 6, 106, 168
Gloucester, 7, 365
Hants, $51,152,169,319,361,445$, 455
Hereford, 4, 7
Herts, 83, 106, 338
Kent, 3, 23, 32, 169, 190, 336, 337, 338, 421, 494, 496
Lancaster, 40, 51, 86, 87
Lincoln, 336, 337
Merioneth, 168, 182
Middlesex, 50, 336, 338
Monmouth, 4, 7
Norfolk, 62, 88, 106, 208, 263, 336
Pembroke, 133
Radnor, 5
Somerset, 319, 328, 337, 445, 446
Stafford, $65,278,400$
Suffolk, 24, 62, 106
Surrey, 23, 51, 336, 337, 446, 495
Sussex, $67,109,169,277,445$
Warwick, 52, 65
Westmoreland, 3, 4, 86, 229
Wilts, 32
Worcester, 88, 229, 495
Yorks, 4, 51, 67, 337, 338, 400, 407, 485, 495
See also Mr. Horrell's papers on Sphagnum, and the papers ou Alga, pp. 289-298, 369-378
Coville, F. V., Sitgreave's Report, 443
Cracca, species of, 12, 53 ; holosericea* (=virginiana), 15, 53; Seemanni,* 16 ; virginiana, 12,53
Craterostigma hirsutum,* 461; Smithii,* 462
Crocodilodes Zeyheri,* 160
Crossandra Smithii,* 462
Cutleriaceæ, 91, 95
Cyanophyceæ Danicæ (rev.), 232
Cymbidium Stephensi,* 71
Cyperus fuscus, 446
Dalla Torre's 'Genera Siphonogamarum' (rev.), 362
Dates of publications, 500
Davey, F. H., Cornish Plants, 354
Davis's ' Flowering Plant,' 149
De Wildeman, E., on Congo Plants (rev.), 323; Icones Horti Thenensis, 328
Deasy's New Tibet Plants, 428
Delamerea* procumbens * (t. 416), 457
Delpino's 'Comparazione biologica,' 500
Demensia, 286

Dendrobium Foxii,* 70
Derœmera, 101
Detris fascicularis,* 159 ; simulans,* 159 ; tenella,* 159
Didymium Trochus, 84
Didymocarpus corchorifolia, 68 ; cyaneus,* 68
Diel's African Combretaceæ (rev.), 99
Dintera, 452
Dixon, H. N., Pembrokeshire Mosses, 133 ; Amblystegium compactum, 175; Ben Lawers Mosses, 330
Draba muralis, 279
Drift Seeds, 135
Drosera Banksii (t. 410.B), 207
Druce, G. C., appointed Mayor of Oxford, 501 ; proposed Flora, 240
Dupetit-Thouars, 392, 492
Durand, T., on Congo Plants, 323
Echinodontium, 147
Ectocarpus, 89, 95
Elatine Alsinastrum, 190
Elymus arenarius, 444
Engler's African Combretaceæ(rev.), 99 ; his 'Das Pflanzenreich,' 452
Enhydrias* angustipetala,* 69
Epilobium hybrids, 501
Eriocaulon Brunonis,* 482; depressum, 481 ; deustum, 481 ; fistulosum, 481 ; heterogynum, 481 ; Koernickei,* 481; latifolium, 482; nigricans, 481; pygmæum, 481 ; rivulare, 481; scariosum, 482; Smithii, 482 ; striatum, 482 ; stupeum, 482
Ernst, A., 150
Eryngium, Notes on (t. 411), 241 ; amethystinum, 245 ; aquaticum, 241 ; articulatum, 245 ; Baldwini, 243 ; filiforme, 244 ; integrifolium, 244 ; nasturtifolium, 245 ; orientale, 245 ; pallescens, 246 ; petiolatum, 244 ; yuccifolium, 243
Erythrodermis,* 378; Alleni,* 378 (t. 414)

Erythropeltis discigera, 376
Erythrotrichia Bertholdii,* 375; ciliaris,* 374
Euastrum lobulatum, 290
Euphorbia Esula var. pseudocyparissias, 400 ; portlandica, 277, 319
Euphrasia, British forms of, 51 ; Dorset, 290; Irish, 186; Cardigan, 250

Euryops somalensis,* 459
Fagelia falklandica,* 460 ; plantaginea,* 461
Fernald, M. L., Artemisia Stelleriana, 130
Festuca Deasyi,* 429 ; rubra var. robusta,* 429
Florideæ, Key to, 236
Flower, T. B., 32
Flowers, Colours of, 53, 146
Fossombronia cristata, 400
France, Coste's Flora of, 408
Franchet, A., 104
Fry's ' Mycetozoa' (rev.), 55
Fryer's Potamogetons, 64, 490
Fumaria muralis, 495
Funtumia, 32
Gagea fascicularis, 229
Geissorhiza pubescens,* 171
George, Edward, 455
Gepp, A., Hepaticæ of N. Zealand and California (rev.), 58
Gerard, J., Colours of Flowers (rev.), 53, 146
Glyptostrobus, 57
Gnaphalium rosulatum,* 156 ; Simonsii,* 157
Goebel's 'Organography ' (rev.), 403
Graebner's European Grasses, 193
Graminées, Husnot's (rev.), 59
Grantia flabellata,* 158
Green's 'Physiology ' (rev.), 446
Groves, H. \& J., Ranunculus intermedius, 134; their 'Characeæ Exsiccatæ,' 453
Guernsey Plants, 31, 34
Guiton, S., Vicia lutea, 278; Jersey Plants, 319
Gutenbergia araneosa,* 153
Halácsy’s Flora Græca (rev.), 235,454
Hapalospongidium, 95
Harms's 'Genera Siphonogamarum ' (rev.), 362
Harshberger's Philadelphia Botanists (rev.), 230
Hartig's ' Pflanzenkrankheiten,' 323
Harveyella, 137
Hemsley on Tibet Botany, 238
Hepaticæ of N. Zealand and California (rev.), 58
Hervey's 'Colors of Flowers' (rev.), 53, 146
Hiern, W. P., Impatiens Roylei, 87 ; Bubani's 'Flora Pyrenæa' (rev.), 283; Dupetit-Thouars, 492

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Mentha, species and hybrids of, 171 Mesembryanthemum calcaratum,* 170
Milium scabrum (t. 406), 33
Miller, W. F., Schœnus nigricans, 319 ; Koeleria cristata, 497 ; Introductions, 497
Mniurn lycopodioides, 333
Monington, H. W., Sphagnum medrum (t. 405), 1
Monothecium abbreviatum,* 466
Moore, J. E. S., on African " parklands," 499
Moore, Spencer le M., Alabastra diversa (tt. 409, 410), 153, 201, 457 ; Lactuca Deasyi,* 428
Morgan, Robert, 489
Mosses, Falmouth, 20 ; Warwickshire, 52 ; Denbighshire, 78 ; Pembrokeshire, 133; Durham, 259 ; Ben Lawers, 330 ; Sutherland, 410; Yorkshire, 485, 495 ; Exchange Club Report, 453
Murray, G., Report Bot. Dept. Brit. Mus. for 1898, 22 ; for 1899,356 ; Mycetozoa (rev.), 55 ; Hartig's 'Pflanzenkrankheiten' (rev.), 323
Mycetozoa (rev.), 55 ; of Midlands, 83
Myriotrichia, 94
Myurella julacea, 333
Najas, 328 ; British species of, 105 ; Hexilis, 107 ; gıaminea, 107 ; marina, 106 ; minor (t. 408), 107
Nasturtium fontanum, 234
Neevea * repens * (t. 414), 373
Neocosmospora, 103
Nereocystis, 136
Newspaper Botany, 31, 200, 240, 456
Nicholson, W. E., Ulota phyllantha var. stricta,* 134 ; Sutherland Mosses, 410
Nicolasia * heterophylla * (t. 416), 458 ; pedunculata,* 459
Nomenclature, O. Kuntze and J. Britten on, 7, 47 ; C. B. Clarke on, 150 ; popular, 197
Notheia, 96

Obituary:-

Allen, Charles Grant Blairfindie, 62
Ernst, Adolfo, 150
Flower, Thomas Bruges, 32
Franchet, Adrien, 104
George, Edward, 455

Lowe, Edward Joseph, 152
Morgan, Robert, 489
Paget, Sir James, 62
Rawson, Sir Rawson William, 63
Ruskin, John, 62
Ocimum Randii,* 463
Orchideæ, Kranzlin's (rev.), 100 ;
Costa Rica, 294
Orchis ericetorum, 362; Traunssterneri, 185
Organography, Goebel's (rev.), 401
Orobanche amethystea, 365
Owataria, 147
Oxalis corniculata, 31 ; denticulata,* 170 ; versicolor var. latifolia,* 170

Paget, Sir James, 62
Painter, W. H., Falmouth Mosses, 20
Pallas's ' Flora Rossica,' 189
Pearson on Andine Flora, 239
Pearson, W. H., Lejeunea Macvicarii $*$ (t. 415), 409
Penium curtum var. obtusum,*289
Perceval's (S. G.) 'Banks's Journal,' 328
Percival's 'Agricultural Botany' (rev.), 359
Pfeffer's ' Physiology of Plants' (rev.), 324
Phæocephalus * gnidioides* (t. 409), 158
Phæosaccion Collinsii, 373
Phalarıs minor (t. 40b), 33
Phycolapathum, 373
Phyllophora, 137
Physosiphon minor,* 275
Platycerium, Nomenclature of, 123
Pleurothallis Simmleriana,* 274
Plukenet, MS. Notes by, 336
Pottia Neesiana, 275
Polygonum Deasyi * (errore tibeticum), 428
Polyporus juniperinus, 499
Porphyrodiscus simulans (t. 414), 379
Potamogeton Claytonii, 128; crispus var. serratus, 366 ; Curtissii, 127; lateralis, 128; lonchites, 129; mystıcus, 128 ; nitens, 126 ; rutilus (t. 407), 65; scleropus, 128 ; serrulatus, 125 ; spathulæformis, 129; stenostachys, 128
Potts, E., Durham Introductions, 359
Praeger on Irish plant distribution, 151

Prasinocladus lubricus, 370
Primrose, 63
Pseudoleskea atrovirens, 334
Pteronia decumbens,* 156
Pugsley, H. W., Ranunculus Baudotii, 23
Pulicaria Phillipsiæ,* 157
Punctaria crispata,* 373
Pyrola minor, 86
Rafinesque, Paper by, 224
Ranalisma, 407
Ranunculus acer, 379 ; Baudotii, 23 ; intermedius, 134 ; scoticus, 184
Rawson, Sir R. W., 63
Rea, C., Impatiens Roylei, 88
Reader, H. P., Buxbaumia aphylla, 278
Rendle, A. B., Husnot's Graminées (rev.), 59 ; Juncus tenax, 80 ; Kränzlin's Orchidaceæ (rev.), 100; British species of Najas (t. 408), 105, 106; Books on Grasses (rev.), 191 ; Coulter's Plant Relations (rev.), 293 ; Costantin's ' Nature Tropicale' (rev.), 196; Xyris Jupicai, 230; Humboldt CentenarSchrift (rev.), 235 ; Orchids from Costa Rica, 274 ; Cyperaceæ Antillanæ (rev.), 284 ; Pfeffer's ' Physiology' (rev.), 324 ; 'Botanik für Hochschulen' (rev.), 363 ; Goebel's 'Organography' (rev.), 403 ; Green's 'Physiology,' 446 ; New Tibet Plants, 428
Reviews:-
Synopsis Ruborum Germaniæ et Virginiæ. E. H. L. Krause, 25
Coloura of Flowers. E. W. Hervey, 53, 146
N. American Slime Moulds. T. H. MacBride, 55
Mycetozoa. Sir E. Fry and A. Fry, 56
N. Zealand Hepaticæ. S. Berg. gren, 58
Hepaticæ of California. M. A. Howe, 58
Graminées. T. Husnot, 59
Linnæi Hortus Uplandicus. J.A. H. Hammar and T. M. Fries, 60

African Combretaceæ. A. Engler and L. Diels, 99
Orchideacearum Genera and Species. F. Kranzlin, 100
Algological Literature of 1899, 89, 136

Flora of N. Zealand. T. Kirk, 141
Queensland Flora. F. M. Bailey, 143
Cheirostrobus; Spencerites; Medullosa Anglica. D.H. Scott, 145
Flora of Ceylon. H. Trimen and J. D. Hooker, 191

Natal Plants. J. M. Wood, 192
Synopsis der Mitteleuropäischen Flora. P. Ascherson and P. Graebner, 193
Plant Relations. J. M. Coulter, 193
Flowers of the Field. C.A. Johns and G. S. Boulger, 195
La Nature Tropicale. J. Costantin, 196
Flore Populaire. E. Rolland, 197
Botanists of Philadelphia. J. W. Harshberger, 230
CyanophyceæDanicæ. J. Schmidt, 232
Conspectus Floræ Græcæ. E. de Halácsy, 234
Humboldt Centenar-Schrift, 235
Key to Melanospermeæ and Florideæ. R. A. Bastow, 236
Flora of Tropical Africa, 279
First Records of British Plants, W. A. Clarke, 281

Flora der Schweiz. H. Schinz and R. Keller, 282

Flora Pyrenæa. P. Bubani, 283
Cyperaceæ Antillanæ. C. B• Clarke, 284
Botany of Cook's Voyage, 320
Congo Plants. E. de Wildeman and T. Durand, 322
Pflanzenkrankheiten. R.Hartig, 232
Physiology of Plants. W. Pfeffer and A. J. Ewart, 324
Agricultural Botany, J. Percival, 359
Flora of Bournemouth. E. F. Linton, 361
Genera Siphonogamarum. Della Torre and Harms, 362
Lehrbuch der Botanik. E. Strasburger, 363
Botanical Exchange Club Reports, 364
Handbook of British Rubi. W.M. Rogers, 491
Organography. K. Goebel (trans. I. B. Balfour), 403

Glossary of Terms. B. D. Jackson, 405

Physiology: J. R. Green, 446
Paléobotanique. R. Zeiller, 447
Fossil Botany. D. H. Scott, 447
Mathiola. P. Conti, 449
Gaelic Plant-names. J. Cameron, 450
Rhadinocladia, 327
Rhaphidium, 298
Rhinanthus angustifolia, 301
Rhodesian Compositæ, 159 ; Acanthaceæ, 201
Rhodochorton Brebneri, 379 (t. 414)
Rhodophysema,* 377 ; Georgii,* 377 (t. 414)

Rhus chinensis, 316; Engleri,* 316 ; incana, 316 ; javanica, 315 ; lucida, 317
Rickia, 29
Ridley, H. N., New Malayan Plants, 68
Robinson, B. L., 64
Rogers, Patrick Kerr, 231
Rogers's (W. M.) Handbook of Rubi (rev.), 25
Rolfe on Hybridization, 501
Rolland's 'Flore Populaire' (rev.), 197
Romulea papyracea,* 170
Roraima Botany, 198
Rosa Melvini, 88
Rose, J. N., Sitgreave's Report, 434
Rotheray's Flora of Skipton, 407
Royle's 'Himalayan Plants,' 87
Rubi, Krause on (rev.), 25; Rogers's Handbook of (rev.), 401; Wandsworth, 495
Ruppia rostellata var. nana, 302
Ruskin, John, 62 ; his ' Proserpina' 199
Russell, T. H., Jubula Hutchinsiæ, 446

Saccolabium undulatum,* 72
Salix hexandra, 224
Salmon, C. E., Pyrola minor, 86 ; Sutherland and CantirePlants,299
Salmon, E. S. Bryum formosum * (t. 413), 329 ; Uncinula septala,* 426 ; his Erysipheæ, 499
Sarcanthus rostellatus,* 72
Sarcochilus biserratus,* 73
Saunders, J., elected A.L.S., 30; Mycetozoa of Midlands, 83
Saxifraga Andrewsii, 365
Scænophora, 96
Schimmelia, 356
Schinz's 'Flora der Schweiz' (rev.), 282

Schmidt's Cyanophyceæ Danicæ (rev.), 232
Schœnus nigricans, 319
Schumann's Musaceæ, 452; Flora Südsee, 500 ; Kakteen, 502
Scott, (D. H.), on Cheirostrobus Spencerites and Medullosa (rev.), 145; his 'Fossil Botany' (rev.), 447
Scottish Plants, 3, 24, 64, 87, 134, 195, 275, 279, 299, 330, 364, 400, 409, 410, 496, 499
Seeds, Vitality of, 200
Sitgreave's Report, 443
Smith, A. L., Agricultural Botany (rev.), 359
Smith (Erwin) on Neocosmospora, 103
Smith, W. G., Basidiomycetes new to Britain, 134
Sopubia Eenii,* 462 ; leprosa,* 468
Spencerites, 145
Sphærotheca Mors-uvæ, 446
Sphagnaceæ, European, 110, 161, $215,252,393330,383,422$; index to, 478
Sphagnum medium (t. 405), 1, 87
Stachys alpina, 365
Stapf on Dicellandra and Phæoneuron, 287 ; on Trapa, 327
Statice lychnidifolia, 483
Staurastrum cosmospinosum,*295; erostellum,* 296 ; gladiosum var. delicatulum,* 296
Stephanolepis* centauroides*(t.409), 153
Strasburger's ‘Lehrbuch '(rev.), 363
Stratton's Wild Flowers, I. Wight, 455
Strobılanthopsis* hircina* (t. 410).
Sutera fissifolia,* 467
Symphytum patens, 279
Taxodium, 35
Taylor's ' Plant Collecting,' 408, 456
Tephrosia spicata, 15; virginiana, 12, 53
Terms, G'ossary of (rev.), 405
Thouars, Dupetit, 392, 492
Thunbergia Delameri,* 205; Randii,* 201
Towndrow, R. F., Hieracium sciaphilum, 88; Rosa Melvini, 88; Gagea fascicularis, 229; Euphorbia Esula, 400 ; Fumaria muralis, Hieracium rigidum, 495
Townsend, F., Ranunculus acer, 379;
Lepidium heterophyllum, 420
Toxicodendron, 317

THIS PAGE IS LOCKED TO FREE MEMBERS

 Purchase full membership to immediately unlock this page
FORGOTTEN BOOKS
 CUN

797,885 Books! All you can read for only $\$ 8.99 / m o n t h$

Continue

*Fair usage policy applies

[^0]: * Translated by the author from the Gaertnerisches Zentrallutat, Berlin, 1899, No. 2. The article contains a new motive for 1737, and at the last a new international proposition not yet known to English botanists.
 \dagger [The date of the first edition of the Systema Naturce.-Ed.]

[^1]: * The misprint "Mich." is confined to Sp. Pl. ed. 1. Elymus Mitch. is correctly cited in Sp..Pl. ed. 2, p. 1408, as a synonym of Zizania.

[^2]: * Cited as of Curtis by Miss Vail and Dr. Robinson, but the context shows that the " N " after the name $=$ Nuttall.

[^3]: * Mr. Hiern, in his notice of vol. iii. of the Revisio, referred (Journ. Bot. 1898,498) to the numbering of its pages in two series, each in Arabic numerals differing only in the thickness of the type, as "apt to cause confusion." This is a very mild criticism of the method adopted by Dr. Kuntze, which, for purposes of quotation, would seem to have been devised for the express purpose of causing the greatest possible amount of confusion and inconvenience, with no compensating advantages.

[^4]: * The modern American invention of trinominals seems to demand strenuous protest.
 \dagger We note that Dr. Millspaugh (l.c. p. 364) proposes a new name-Baulinia Cavanillei-for Pauletia inermis Cav.; he has apparently overlooked our identification of this plant with B. ungulata L. (see Journ. Bot. 1897, 232.)

[^5]: * The dates assigned to the numbers are those which appear on their covers or title-pages, but it must not always be inferred that this is the actual date of publication.

[^6]: * "Esta especie de Hibiscus perteneciente á la sección Furcaria no aparece descrita en ningún autor, así no dudo sea una nueva especie, y aunque la doy el nombre especifico de tomentosus espero que esta clasificación provisional sea confirmada por botánicos mas competentes."-Stahl, l.c.

[^7]: * The dates assigned to the numbers are those which appear on their covers or title-pages, but it must not always be inferred that this is the actual date of publication.

[^8]: * The dates assigned to the numbers are those which appear on their covers or title-pages, but it must not always be inferred that this is the actual date of publication,

[^9]: * This is a rare book, and I am not aware that there is a copy in this country, so it may be well to say that the description is reprinted in this Journal for 1896, p. 2.

[^10]: * See Journ. Bot. 1895, p. 373.

[^11]: * Botaniska Notiser, 1880, 137, and 1893, 111; Journ, Bot. xxxii. 70.
 \dagger Journ, Bot. l.c. 104 ,

[^12]: * The dates assigned to the numbers are those which appear on their covers or title-pages, but it must not aiways be inferred that this is the actual date of publication.

[^13]: * 「Translated (from the Comptes-rendus du Congres des Societes Savantes en 1898-Sciences) and printed in the belief that M. Malinvaud's views will interest critical botanists among ourselves.-Ed. Journ. Bot.]
 \dagger See Bulletin Soc. Bot. de France, vol. xxi. (1877), Revue, p. 43.
 \ddagger We have not renounced our former view of Mentlua viridis as a subspecies of M. sylvestris; but here the error, chiefly relative and bearing upon a point of individual perception, is in any case purely a matter of theory, while practically the elevation of M. viridis to the rank of a species materially facilitates the demonstration of facts.

[^14]: * Linnæus (l.c.) quotes "Scorpii spina Hern. mex. 222" as a synonym of E. fortidum; in ed. ii. he transfers this to E. aquaticum. Hernandez has a figure of the plant, and describes it thus:-"Ocopiaztli, quam alij Hoitzcolotli, seu Scorpij spinam vocant, herba est spinifera, folia proferens Cirsij spinis horrentia prælonga et angusta, caules longos, teretes, ac læves, quorum supremis partibus hærent capitula spinis horrida, illis Dipsaci haud dissimilia, ac Hosculis contecta purpurels. Provenit Tonayuce montanis, humidisque locis." This seems to us very closely allied to, if not identical with, E. axilliforum Turcz. in Bull. Soc. Nat. Mosc. xx. 172 (1847), from the peak of Orizaba. We would refer to the same species a plant recently distributed as "E. cymosum Delaroche," from Pachuca, Prov. Hidalgo, Pringle 6939, and, according to Messrs. Coulter and Rose (Proc. Washington Acad. Sci. i. 125 (1900)), accepted as such by Mr. Hemsley. This plant, however, differs in several points from Delaroche's plate and description (p. 63, t. 31), notably in the marginal teeth of the leaves, and we cannot consider the two identical. Palmer's Rio Blanco plant (no. 681, 1886 collection) referred doubtfully to E. cymosum by Sereno Watson (Proc. Amer. Acad. xxi. 415) more closely resembles Delaroche's figure.

[^15]: * This species dates from Ort. Bot. Padova, 1842, p. 137, not from " Illustr. Piante Nov. Ort. Padov." 19 (1844), as given in the Index.

[^16]: * The dates assigned to the numbers are those which appear on their covers or title-pages, but it must not aimays be inferred that this is the actual date of publication.

[^17]: * Elsewhere in Herb. Banks cited as "Hort. Dni. Ph. Carteret Webb ad Bus bridge." Webb was the great-grandfather of the botanist Philip Barker Webb; he lived at Busbridge (near Godalming) from 1718 untıl his death in 1770.

[^18]: * Correspondence of Linnaus, i. 267.

[^19]: * The dates assigned to the numbers are those which appear on their covers or title-pages, but it must not aimays be inferred that this is the actual date of publication.

[^20]: * Since this was written Dr. Best's Revision has been published in Bull. Torrey Bot. Club, May, 1900.

[^21]: * Possibly "Captain," mentioned as a cousin of Plukenet's (Flora of Middlesex, p. 374).
 \dagger These wells, frequently mentioned in the notes, would seem, from information kindly furnished me by M. Teesdale, Esq., of Dulwich, to have been those between Sydenham and Lewisham mentioned by Evelva in 1675, and in Notable Things by Dr. Peters (1648).

[^22]: [* This plant, described by Mr. Holmes in Pharm. Journ. lxii. 53, was subsequently identified (l.c. 205) with Amyris balsamifera.-Ed. Journ. Bot.]

[^23]: he dates assigned to t ages, but it must no

[^24]: * A clerical error in that paper may here be noticed and corrected: line 18 from the top, for "Linneus" read "Fries."

[^25]: * Probably a good many interesting observations by Dupetit-Thouars are buried in these annual summaries, the contents of which have not been indexed by the Royal Society.

[^26]: * The dates assigned to the numbers are those which appear on their covers or title-pages, but it must not always be inferred that this is the actual date of publication.

[^27]: * Journ. Bot. 1886, p. 284; by error as "S. Wilts."
 \dagger Sp. c. p. 312, 1888.
 \ddagger Record Club Report for 1883, p. 26 (1884).

[^28]: * The dates assigned to the numbers are those which appear on their covers or title-pages, but it must not aiways be inferred that this is the actuai aate of publication.

