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1 Introduction
1.1 Preliminary discussion
This thesis concerns computational musical style analysis and introduces a novel
approach of style classiication and style modiication on a symbolic level, tailored
to monophonic bass guitar music in general and to the music of Jaco Pastorius
speciically. Computationally analyzing musical style has several possible cases of
application: Finding an artist in big music collections is an interesting retrieval
task, modifying music could have use cases in entertainment industry and in artis-
tic production and giving feedback concerning style could also ind usage in music
education.

Jaco Pastorius is attributed as one of the pioneers of electric bass guitar and one of
the most virtuoso bass players in jazz rock. He is especially well known for his eclectic
and melodic playing on the fretless bass. His work in the band Weather Report,
whereby he introduced himself as “the greatest electric bass player in the world”,
as well as his solo projects form important cornerstones in the history of jazz rock.1
Since the fretless electric bass guitar sound is connoted with Pastorius, it is especially
challenging, yet promising, to ignore all aspects of “sound” and concentrate only on
the symbolic note level. Although one could be tempted to focus on the more
supericial sound features in this context, it should be borne in mind that Pastorius
was a stunning improviser, who especially made his artistic expression recognizable
by the melodic lines he formed in his solos. Following these tracks by computational
means will be the guidance of this work. One could criticize that the boundary
between composition and interpretation is blurred within this thesis, but the “style”
of Pastorius, in the sense considered here, only emerges in the inal realization of the
music, when composition and interpretation melts together. Modelling his complex
style of improvisation is a challenge in contrast to simple walking bass style.2

1 For an introduction to Jaco Pastorius in general see Bill Milkowski: Jaco: The Extraordinary
and Tragic Life of Jaco Pastorius, “the World’s Greatest Bass Player”, Milwaukee 1995. For
a more scholarly appreciation see Mark S. Frandsen: Forecasting fusion at low frequencies:
The bass players of “Weather Report”, PhD thesis, Texas Tech University, 2010, url: http:
//repositories.tdl.org/ttu-ir/handle/2346/45478, pp. 70 et seqq. and the references
mentioned there.

2 For such simple styles, rules-based algorithms can be suicient, e.g. Rui Dias/Carlos Guedes:
A Contour-based Jazz Walking Bass Generator, in: Proceedings of the Sound and Music Com-
puting Conference 2013, pp. 305–308.
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1.1 Preliminary discussion Introduction

Musical style recognition is a hard task, even for a human.3 Several things can be
meant by “musical style”: Charles Rosen distinguishes between period style and
group style in his investigation about the style of Haydn, Mozart and Beethoven.4
Even although it is a completely diferent musical context, his indings are interesting
to notice: Style is the handling of a musical language and thus is able to express
a variety of things. The personal style of an artist can only be described when
it’s contrasted by a period style. In the case of this thesis one could analogize:
It’s only meaningful to talk about Pastorius’ style when contrasted by other fusion
bass guitarists. This can be regarded as close to what is described in the upcoming
sections: computationally we try to understand Pastorius’ style, not only by his
music, but also by counterexamples. The task to deine the term musical style
precisely is a hard one, not attempted here. Even the musicologist Guido Adler
states in his early, grand monograph about musical style:

So [regarding the deinition of style] one has to content oneself with
periphrases. Style is the center of artistic approaching and conceiving, it
proves itself, as Goethe says, as a source of knowledge about deep truth
of life, rather than mere sensory observation and replication. 5

Beside the notion of the impossibility of a precise deinition of style, it is hard to take
the hint, that style isn’t just mere sensory observation, to heart when attempting
to model musical style computationally. In the view of Guido Adler a thesis like
this may be foredoomed to fail. Nearly 80 years after that, the composer and music
philosopher Leonard B. Meyer expresses a rather opposite view:

Once a musical style has become part of the habit responses of composers,
performers, and practiced listeners it may be regarded as a complex
system of probabilities. That musical styles are internalized probability

3 For a study supporting this, see Merilyn Jones: An Investigation of Skills in Recognition of
Musical Style Among College Freshman Music Majors, in: Contributions to Music Education
16 (1989), pp. 77–86.

4 Charles Rosen: The Classical Style: Haydn, Mozart, Beethoven, New York 1995.
5 Guido Adler: Der Stil in der Musik. 1. Buch: Prinzipien und Arten des Musikalischen Stils,

Leipzig 1911, p. 5, translation by the author. Original version:

So muß man sich mit Umschreibungen begnügen. Der Stil ist das Zentrum kün-
stlerischer Behandlung und Erfassung, er erweist sich, wie Goethe sagt, als eine
Erkenntnisquelle von viel tieferer Lebenswahrheit, als die bloße sinnliche Beobach-
tung und Nachbildung.
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1.1 Preliminary discussion Introduction

systems is demonstrated by the rules of musical grammar and syntax
found in textbooks on harmony, counterpoint, and theory in general. […]
For example, we are told that in the tonal harmonic system of Western
music the tonic chord is most often followed by the dominant, frequently
by the subdominant, sometimes by the submediant, and so forth.6

There are a couple of things to notice here: First, Meyer also supports the view
that style isn’t in the music per se, but only when regarded in relation with other
systems. Second, style is seen probabilistic, supporting the attempt of this thesis to
model style computationally. Third, in the textbooks he mentions, probabilities are
used in a very broad sense. Words like frequently or sometimes aren’t enough for
the models of this thesis. So one cannot rely on textbooks and has to work through
real data.

One of the most prominent researchers, engaging computationally with musical style,
especially in symbolic style synthesis, is David Cope.7 In his basic form his style
replication program EMI (“Experiments in Musical Intelligence”) has to be fed by
over a thousand of user input questions.8 Cope also attempts to overcome this by
automatically analyzing a corpus of music. Roughly, this involves inding what
Cope calls signatures, frequently reoccurring sequences, assigning functional units
to them9 and recombining the corpus with special regards to those functional signa-
tures. This leads to impressive results for music with rather homogeneous texture,
but I expect it to perform poorly for more eclectic and erratic styles, like the one
of Pastorius. Whereas the signatures to be found in the music of Mozart are very
evident10, it is not very plausible to talk about Pastorius’ signatures. See igure 50
in section 4 on p. 64 for what could be considered a signature. By far it isn’t as
earmarking as the Mozart examples of Cope.

Although there stand some arguments against the application of Cope’s methods
to Pastorius, it still could be an interesting undertaking, since Cope developed
his methodology sophisticatedly, far exceeding the rough and basic ideas touched
here. But nevertheless, it would involve a considerable amount of work to re-create

6 Leonard B. Meyer: Meaning in Music and Information Theory, in: The Journal of Aesthetics
and Art Criticism 15.4 (1957), pp. 412–424, quotation from p. 414.

7 David Cope: Computers and Musical Style, Oxford 1991 (henceforth cited as Musical Style),
see there pp. 27 et seqq. for a nice short overview about musical style in general, that is also
valid within the scope of this thesis; idem: Virtual Music. Computer Synthesis of Musical
Style, Cambridge 2001 (henceforth cited as Virtual Music); idem: Computer Models of Musical
Creativity, Cambridge 2005 (henceforth cited as Musical Creativity).

8 Musical Style, pp. 89 et seqq.
9 What Cope calls SPEAC: Statement, Preparation, Extension, Antecedent, Consequent.
10 Virtual Music, pp. 109 et seqq.
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1.1 Preliminary discussion Introduction

and implement Cope’s methods. Developing an original methodology seemed more
research-intensive and thus promising for this thesis.

Cope describes basic categories into which music composing programs fall:

The approaches […] include rules-based algorithms, data-driven-program-
ming, genetic algorithms, neural networks, fuzzy logic, mathematical
modeling, and soniication. Although there are other ways to program
computers to compose music, these seven basic processes represent the
most commonly used types.11

If one would like to force the approach of this thesis, to fall into these categories,
rules-based programming – since in Cope’s terminology Markovian processes fall into
this category – and data-driven-programming would it, but a considerable amount
of this work wouldn’t be described. Especially Cope’s category of genetic algorithms
is too speciic and could be generalized to metaheuristics, which then would also it
for this thesis. But the exact details about it will become more clear in the upcoming
chapter.

Markov chains have a great tradition in music. They found application very early
in both computer aided music generation12 and in musicological studies.13 More re-
cently, researchers from the Sony Computer Science Laboratory rediscovered Markov
chains by combining them with constraint based programming, yielding very inter-
esting results.14

Having mentioned those two major branches of automatic music generation, the
author recommends a more complete survey of Jose D. Fernández and Francisco
Vico15 for those interested in more branches of this ield.

11 Musical Creativity, p. 57.
12 Frederick P. Brooks et al.: An experiment in musical composition, in: IRE Transactions

on Electronic Computers, vol. 6, 1957, pp. 175–82; Lejaren Hiller/Leonard Isaacson:
Experimental Music. Composition With an Electronic Computer, New York 1959; Iannis
Xenakis: Formalized Music. Thought and Mathematics in Composition, ed. by Sharon
Kanach, revised edition, Stuyvesant 1992, pp. 43 et seqq.

13 R. C. Pinkerton: Information theory and melody, in: Scientiic American 194.2 (1956),
pp. 77–86; Joseph E. Youngblood: Style as Information, in: Journal of Music Theory,
vol. 2, 1958, pp. 24–35.

14 François Pachet/Pierre Roy: Markov constraints: steerable generation of Markov se-
quences, in: Constraints 16.2 (2011), pp. 148–172 (henceforth cited as Markov Constraints);
François Pachet/Pierre Roy/Gabriele Barbieri: Finite-length Markov Processes with
Constraints, in: Proceedings of the 22nd International Joint Conference on Artiicial Intelli-
gence, 2011, pp. 635–642.

15 Jose D. Fernández/Francisco Vico: AI Methods in Algorithmic Composition: A Com-
prehensive Survey, in: Journal of Artiicial Intelligence Research, vol. 13, 2013, pp. 513–582.
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Research in classifying artists on symbolic level is quite rare. The large majority of
research focuses on audio.16, e.g. evidenced by MIREX (Music Information Retrieval
Evaluation eXchange), the main community-based framework for the formal eval-
uation of Music Information Retrieval algorithms, where all classiication tasks are
related to audio.17 When classifying symbolic music, it is rather common to focus on
composers,18 genre19 or on musical qualities (like “frantic” or “lyrical”)20. There is
a very current project called Jazzomat, that is highly related to the present thesis.21

Although there is some astonishing overlap,22 the author discovered this project not
until a late stage of the present thesis. However, while the Jazzomat-project should
also be an excellent environment for artist identiication, the classiication results
published so far, are rather concerned with genre.23 Nevertheless, the fact that there
does exist such a related project, gives evidence that this topic is a highly relevant
and interesting one.

The next section in this introduction gives an overview about the project of this
thesis. Afterwards three chapters from the main part: irstly a novel approach
of classifying the music of Pastorius is presented, secondly a novel approach of

16 E.g. Jakob Abeßer: Automatic Transcription of Bass Guitar Tracks applied for Music
Genre Classiication and Sound Synthesis, PhD thesis, Technische Universität Ilmenau, 2014,
url: http://www.db-thueringen.de/servlets/DocumentServlet?id=24846. This thesis
speciically concerns the bass guitar and could be valuable when trying to expand the ideas of
the present thesis to audio.

17 J. Stephen Downie: The music information retrieval evaluation exchange (2005–2007):
A window into music information retrieval research, in: Acoustical Science and Technology,
vol. 29, 2008, pp. 247–255. For more up-to-date information see the MIREXWiki: http://www.
music-ir.org/mirex/wiki/MIREX_HOME. Symbolic Melodic Similarity could be attempted by
clustering, but still it isn’t classiication.

18 E.g. see Peter van Kranenburg: A Computational Approach to Content-Based Retrieval of
Folk Song Melodies, PhD thesis, Utrecht University, 2010, url: http://dspace.library.uu.
nl/handle/1874/179892, especially chapter 5 (pp. 71–88).

19 Alexios Kotsifakos et al.: Genre classiication of symbolic music with SMBGT, in: Fil-
lia Makedon et al. (eds.): Proceedings of the 6th International Conference on Pervasive
Technologies Related to Assistive Environments, 2013, 44:1–44:7.

20 Roger B. Dannenberg/Belinda Thom/David Watson: A Machine Learning Approach to
Musical Style Recognition, in: Proceedings of the International Computer Music Conference,
1997, pp. 344–347.

21 Martin Pfleiderer/Klaus Frieler: The Jazzomat project. Issues and methods for the
automatic analysis of jazz improvisations, in: Concepts, Experiments, and Fieldwork: Studies
in Systematic Musicology and Ethnomusicology 2010, pp. 279–295; Klaus Frieler et al.:
Introducing the Jazzomat Project and the Melo(S)py Library, in: Proceedings of the Third
International Workshop on Folk Music Analysis 2013, pp. 76–78.

22 In particular focus on jazz solos and feature extraction from symbolic music representations.
23 Arndt Eppler et al.: Automatic Style Classiication of Jazz Records with Respect to Rhythm,

Tempo, and Tonality, in: Timour Klouche/Eduardo Miranda (eds.): Proceedings of the
8th Conference on Interdisciplinary Musicology (CIM14), 2014.

5

http://www.db-thueringen.de/servlets/DocumentServlet?id=24846
http://www.music-ir.org/mirex/wiki/MIREX_HOME
http://www.music-ir.org/mirex/wiki/MIREX_HOME
http://dspace.library.uu.nl/handle/1874/179892
http://dspace.library.uu.nl/handle/1874/179892


1.2 Overview Introduction

modifying existing music with the aim of making it closer to the style of Pastorius is
introduced and lastly some additional research indings are mentioned. A conclusion,
including suggestions for further research, inishes this thesis.

1.2 Overview
This section gives a brief overview about the project content. All steps are described
in more detail and with references in the following chapter.

Two main ideas are dominating: The irst one is classiication. Given a symbolic
representation of bass guitar music, the program should decide, whether it is the
style of Pastorius or not. The second idea is the one of style modiication. The ability
of classiication should be used for modifying existing bass guitar music, pushing it
closer to the style of Pastorius.

For classiication, two diferent approaches have been taken into account, both an-
alyzing a corpus of solo pieces by Pastorius and a corpus of pieces by the bassists
Victor Wooten. In the irst approach, the pieces have been split into windows of
a ixed musical length and 416 diferent musical features have been extracted from
each window. Diferent window lengths have been tried out (2, 4, 6, 8, 10 and 12
quarter lengths), all with a hop size of 50%. So this constitutes a supervised binary
classiication task, mapping 416 features to the bassist, Pastorius or Wooten. The
idea of classifying a window in based on the assumption, that the style is remark-
able even on a local level. Some quarter lengths of music should be suicient to
recognize the artist, not only the whole piece. If this should be used for classifying
a whole piece, a simple majority voting across all windows can be done. Gradient
Tree Boosting turned out to be a well performing machine learning model for this
task. Beside its good performance Decision Tree based learning has another advan-
tage: Feature importance can be estimated and one can attempt to give a kind of
comprehensible reason why a speciic decision has been taken.

The other approach is training several Markov chains. This is done separately for
Pastorius and Wooten, separately for note durations and pitches and for every type
of chord that is underlying the span of music used for training the chain. Pitches
have been transposed according to the root of the underlying chord for the pitch
related Markov chains. There is the possibility of using ixed order Markov chains
or variable order Markov chains. After training, the Markov chains can be used
for classiication straightforwardly: One just has to compute the product of all
transition-probabilities of the piece to be considered – respectively for the Pastorius
and the Wooten Chains. The higher product indicates the estimated artist. See
igure 1 for a graphical outline of the classiication.

6
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DatabaseSolo

Feature-
extraction

Classiication

Score

Markov-Chain

Score

Figure 1: Model for classiication

Soloinput Neighbor Solonew

Classiication

Scoreinput Scorenew

Solo with
better score
will replace…

Figure 2: Model for Jaconizer

This classiication result can be used as a score within a local search procedure to get
a piece of music that has a higher score, i.e. that appears more like Jaco Pastorius
according to the classiication. This modiication procedure is called “Jaconizer”
here. See igure 2 for a graphical outline. Local search is an iterative procedure.
In each step a small random modiication is made to the music according to pitch
or rhythm. When classiication reports it to be closer to Pastorius than the step
before, this version replaces the one before. Otherwise this step is rejected. This is

7



1.2 Overview Introduction

repeated until a time threshold is surpassed or until there are no possible changes
that improve the score anymore.

Although igure 1 suggests that there are two scores to be taken into account, ac-
tually there are four ones, some of them already compound of diferent scores. The
scores are described in more detail in section 3.3 on pp. 49 et seqq., but the point
to notice here is, that this local search is a multi-objective optimization, so it is not
straightforward to decide which of two versions is more optimal, because some of
the scores could be higher and some could be lower. So, for the local search, only
Pareto improvements are accepted: steps that improve at least one score without
making any other one worse.

8



2 Classiication
2.1 Data corpus
In this chapter a novel approach of classifying the music of Pastorius is presented:
Firstly the investigated data corpus is described, then customly developed feature
extractors, useful for classiication, are explained. Afterwards two diferent ap-
proaches for classiication are described in detail – Gradient Tree Boosting as well
as Markov models – and inally classiication results are presented.

For analyzing the musical style a corpus of pieces of music is needed, consisting of
music by Pastorius and at least one counterexample. For getting started, initially
user transcriptions in form of Guitar Pro Files, a popular ile format among guitar
and bass guitar musicians, related to Jaco Pastorius or Marcus Miller have been
searched for in the world wide web, regardless of the music being solo or accompani-
ment and monophonic or polyphonic. Those iles are easily and quickly available and
made an early starting with the coding possible. See appendix E.3 on p. 80 for a list
of used pieces. The indiscrimination of choosing the pieces as well as the luctuating
quality of the user transcriptions led to unsatisfactory classiication results.

Then better transcriptions have been involved: The transcriptions of solo pieces by
Pastorius-expert Sean Malone24 as well as transcriptions of pieces of Victor Wooten
by himself25 have been transcribed into a machine readable format. For Wooten the
corpus isn’t restricted to solo pieces, also accompaniment is added. It nevertheless
can operate as a counterexample. Solo pieces would be beneicial, but it is not
so easy to ind a monophonic corpus of electric bass guitar solos, transcribed in
high quality. Wooten has been chosen, because his style, although inluenced by
Pastorius, is quite diferent: compared to him his playing can be described as more
diatonic, rather steady in rhythm and more closer to Funk.

They irst have been transcribed into Lilypond26 with chord annotations as simple
markup. This can be transformed into Lilypond’s internal Scheme representation.27

A custom Lisp parser has been written for converting the needed subset of Lilypond’s
Scheme code into Python code, that could be read by the music21-library.28 This

24 Sean Malone: A Portrait of Jaco. The Solo Collection, Milwaukee 2002 (henceforth cited as
Jaco Portrait).

25 Victor Wooten: The Best of Victor Wooten. Transcribed by Victor Wooten, Milwaukee
2003.

26 http://www.lilypond.org
27 This can be done easily with Lilypond’s \displayMusic function.
28 http://web.mit.edu/music21

9
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2.2 Feature extraction Classification

one inally can output MusicXML,29 the most popular exchange format for symbolic
music. Although that seems to be a bit roundabout, it was a solution for transcribing
the music as well as the chord annotation in a single worklow. See appendix E.4 on
p. 81 for a list of pieces in the inal corpus. It also includes some pieces by Charlie
Parker in versions arranged for bass guitar.30 These pieces are not used for training,
but as a test case for some further investigations concerning the inluence of Parker
on Pastorius.

All music examples in this thesis are newly typesetted versions of the publications
mentioned here (Malone for Pastorius, Wooten for himself, Shellard for Parker),
when not mentioned otherwise. The various examples won’t be quoted every time.

Depending on the window size diferent amounts of training examples are in the
corpus:

window size (in ql31) Jaco Pastorius Victor Wooten Charlie Parker

2 1977 3465 1141
4 1050 1765 617
6 718 1181 420
8 542 886 315
10 433 709 251
12 358 592 211

Figure 3: Amount of windows per bassist for diferent window sizes.

2.2 Feature extraction

2.2.1 music21’s feature extractors
music21 provides some rich feature extraction facilities,32 implementing both native
feature extractors and the ones of jSymbolic, a standard-set of features for sym-

29 http://www.musicxml.com
30 Martin Shellard: Charlie Parker for Bass. 20 Heads & Sax Solos Arranged for Electric

Bass with Tab, Milwaukee 2014. The book doesn’t mention the author being Martin Shellard,
but see appendix D on p. 77 for a clariication of the authorship.

31 Short for quarter length. A quarter note has 1 ql, a half note has 2 ql, an eighth-triplet has 1/3
ql, etc.

32 Michael S. Cuthbert/Christopher Ariza/Lisa Friedland: Feature Extraction and Ma-
chine Learning on Symbolic Music using the music21 Toolkit, in: Anssi Klapuri/Colby Lei-

10
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2.2 Feature extraction Classification

bolic music classiication.33 Although some of jSymbolic’s extractors have not been
implemented yet and some are not applicable for the use case discussed here (e.g.
ViolinFractionFeature, the “Fraction of Note Ons belonging to violin patches”34),
there is a considerable amount of feature extractors by music21 used in this project:
6 native ones (each outputting a single dimension) and 47 ones from jSymbolic,
outputting 324 dimensions. See appendix F on p. 82 for a list of used features.

2.2.2 Custom Feature extractors
2.2.2.1 Preface

In this section all custom feature extractors are explained and examples are given for
the sake of clariication. Some notes regarding notation: The single symbol f refers
to the feature currently explained. A succession of notes is called n and its single
notes are ni with 1 ≤ i ≤ N . dur(ni) means the duration of a note in quarter-length,
pitch(ni) means the pitch of note as midi number.35

A feature that is used, but which doesn’t need its own subsection is the window
position. The relative position of each window within the work of music also forms
a piece of information that is only revealing when combined with the other features
to capture the evolution of the features across the work of music.

2.2.2.2 SeqsPerNote

Some of the custom features use the concept of sequences of notes with common
direction. Common direction means either successively ascending or descending in
pitch. Unisons are considered “neutral” and always count into the current direction.

This feature presents the ratio of the number of sequences and the amount of notes
within the piece of music to be considered.

Figure 4 shows the sequences with brackets above the corresponding notes: lower
brackets for descending sequences and upper brackets for ascending sequences. In
this example there are two diferent bars with a diferent amount of sequences and
notes. The irst bar contains 15 notes and presents 7 sequences, so f = 7/15 ≈ 0.467

der (eds.): Proceedings of the 12th International Society for Music Information Retrieval Con-
ference (ISMIR 2011), 2011, pp. 387–392, url: http://ismir2011.ismir.net/papers/PS3-
6.pdf.

33 Cory McKay: Automatic Music Classiication with jMIR, online (accessed 4-August-2015),
PhD thesis, Montreal, 2010, url: http://jmir.sourceforge.net/publications/PhD_
Dissertation_2010.pdf (henceforth cited as jMIR), especially section 4.5, pp. 204 et seqq.

34 Ibid., p. 208.
35 With 60 being middle C.
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2.2 Feature extraction Classification

whereas the second bar contains 13 notes and presents only 3 sequences, so f =
3/13 ≈ 0.231.

Z�ZZ ZZZZ
� Z Z�Z�8va

�
��Z� Z ZlocoZ

� Z� Z�
22

44
� Z

�
	ZZZZZ Z ZZZ Z

Figure 4: Bar 22–23 of Pastorius’ Port of Entry.

2.2.2.3 DominantChordType

This feature doesn’t describe the style of the bass player, but can be valuable when it
is related to other features. The kinds of chords36 found in the corpus are enumerated
and the feature relects the number related to the most dominant chord Ĉ to be
found. It should be noted that this is a nominal scale.

The following table shows the numbers for the pitch classes of each chord in the
corpus.

f Ĉpitchclasses f Ĉpitchclasses f Ĉpitchclasses

0 ∅ 1
{

0 1 3 4 7 t
}

2
{

0 1 3 7 t
}

3
{

0 1 4 6 t
}

4
{

0 1 4 7 t
}

5
{

0 2 3 4 7 t
}

6
{

0 2 4 7
}

7
{

0 2 4 7 t
}

8
{

0 2 7
}

9
{

0 3 4 7 t
}

t
{

0 3 4 7 e
}

e
{

0 3 4 8 t
}

12
{

0 3 5 t
}

13
{

0 3 5 7 t
}

14
{

0 3 6
}

15
{

0 3 6 t
}

16
{

0 3 7
}

17
{

0 3 7 t
}

18
{

0 4 5 7
}

19
{

0 4 6 e
}

20
{

0 4 7
}

21
{

0 4 7 t
}

22
{

0 4 7 e
}

23
{

0 7
}

24
{

0 7 t
}

Figure 5: Value of DominantChordType for the pitch classes of each chord in the
corpus.

Some examples: f = 16 means there is a plain minor chord, f = 21 there is a
dominant seventh chord and f = 22 means there is a major seventh chord.

36 Here the kind of a chord is deined by its pitch classes, when the chord is transposed to C.
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2.2 Feature extraction Classification

2.2.2.4 DurationStd

Here the standard deviation of durations is calculated hence the diversity in used
duration is measured. Recall that the standard deviation is the square root of
average squared deviations from the mean:

f =

√

√

√

√

1

N

N
∑

i=1

(dur(ni)− µ)2 , where µ =
1

N

N
∑

i=1

dur(ni) (1)

ZZZ
�

3

�87

44
� � �Z

Figure 6: Bar 87–88 of Pastorius’ (Used to be a) Cha Cha.

In the irst bar there is only a single note, so the standard deviation is 0. In the
next bar there is the following succession of durations:

(

3/2 1/2 2/3 2/3 2/3
)

, so
f =

√

19/150 ≈ 0.356.

2.2.2.5 HarmonicAnticipationDelay

In Jazz, harmonic anticipation is quite common:37 Notes of the chord that follows,
are used before that chord is reached. In addition to that, I call the practice of using
notes from the previous chord within the current chord “harmonic delay”.

The duration of notes, that match the last resp. following chord without interrup-
tion, are counted – backwards in the case of anticipation and in normal order in the
case of delay. The duration of those notes is related to the sum of the durations of
all notes – without rests.

ô ����� ���ô �
ô

¦ ��
���
3

�
Dm7

���
��
�

ô
¦ ��

��33

44�L
�

25

44��
Am7

� �� ���
�
E�7
�

�� �
Fmaj7

�

Figure 7: Bar 25–26 and 33–34 of Pastorius’ Days of Wine and Roses

On the left side there is an example of a full bar being anticipated, hence f = 1:
Bar 25 shows a broken triad of Dm7 without its root. a and c is shared by both

37 Richard Lawn/Jeffrey Hellmer: Jazz Theory and Practice, Los Angeles 1996 (henceforth
cited as Jazz Theory and Practice), p. 77.
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2.2 Feature extraction Classification

chords, but f indicates the full bar anticipates the next chord. In bar 33 the last
note g can be seen as anticipated (although it matches both chords), but the second
last note f does not match E 7, so no further notes are taken into account. For this
bar f = 1/4.

In contrast, only the irst note of bar 26 can be seen as a delay, so f = 1/7 ≈ 0.143.
Bar 34 shows a more suggestive example: All notes except the last one match Fmaj7,
so f = 3/4.

2.2.2.6 IntervalDurationAutoCorrelationInfos

First the autocorrelation function of the intervals between the notes (without rests)
as well as the duration of the notes (with rests) are computed. Then the average,
maximum,38 minimum and standard deviation of both autocorrelation functions
is returned. So this feature represents an 8-dimensional vector that is correlated
with motivic similarity. For getting an undisturbed correlation measure, a couple of
additional calculations have to be taken into account:

• For dissimilar signals negative and positive values should cancel out. So before
doing the autocorrelation the values have to be centered to zero, i.e. the mean
has to be subtracted.39

• The autocorrelation has to be divided by the number of notes to be invariant
to diferent amounts of notes to be compared.

• For not favoring the beginning of the piece of music to be considered, circular
correlation is used.40

38 For computing the maximum, the irst value of the autocorrelation is not taken into account.
The irst value corresponds to a comparison of the values with themselves hence there is always
maximum similarity.

39 Although it is not a standard procedure, Orfanidis also points out, for computing the auto-
correlation function of a random signal the mean should be zero: Sophocles J. Orfanidis:
Introduction to Signal Processing, online (accessed 2-July-2015), 2010, url: http://www.ece.
rutgers.edu/~orfanidi/intro2sp/, p. 713.

40 The relation between correlation and circular correlation is equivalent to the relation of convo-
lution and circular convolution. The latter one is more frequently described in literature, e.g.
ibid., p. 515 et seq.
For circular correlation holds:

F−1(X∗Y ) =

N
∑

l=1

x∗

l
y(n+l) mod N
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2.2 Feature extraction Classification

Rnn(l) =
1

N

N
∑

i=1

n̄in̄(i+l) mod N , where n̄ = n−
1

N

N
∑

i=1

ni (2)

Note that the equation could be formulated twice, for dur(ni) as well as for
pitch(ni+1)− pitch(ni), in the latter case up to N − 1.

Z
Z Z Z

Z
Z Z Z� Z

333
3

33
33 Z Z

Z
Z
Z Z ZZ� 44

37

Z � �
Z ZZZ� Z

Figure 8: Bar 37–38 of Pastorius’ Havona

This example is of high motivic similarity. Each triplet presents a perfect ifth
followed by G3 which acts like a pedal point.41 There is no literal motivic repetition,
but the motif is varied constantly and the autocorrelation is able to capture this
property.

0 5 10 15 20

l

−100

−50

0

50

100

150

R
n
n
(l
)

Figure 9: Autocorrelation function of the intervals of igure 8.

In igure 9 it is clearly visible by the high values of the autocorrelation function that
every third note there is some motivic repetition.

41 The intervals of this example can be represented as
( −7 −2 11 −7 −4 14 −7 −7 16 −7 −9 19 −7 −12 16 −7 −9 18 −7

−11 14 −7 )

and after subtracting the mean approximately
( −6.9 −1.9 11.1 −6.9 −3.9 14.1 −6.9 −6.9 16.1 −6.9 −8.9 19.1 −6.9 −11.9 16.1 −6.9 −8.9 18.1 −6.9
−10.9 14.1 −6.9 )

.
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2.2 Feature extraction Classification

2.2.2.7 MostCommonSeqLen

This feature presents the most common length of the sequences of notes with com-
mon direction.42 The group length of 2 is excluded when inding the most frequent
one.

See igure 10 for a clear example of Pastorius with the most common sequence length
of 4. All but the last groups have the length of 4.

ZZ Z�ZZZ ZZ� 3
3

3

3

8va
3

3 3

Z� 3

� Z � Z� Z Z
Z

47

44����
�

Z
ZZ

Z
�

Z
ZZ

ZZ Z Z

Figure 10: Bar 47–48 of Pastorius’ Donna Lee.

For another obvious example see igure 8, where f = 3.

2.2.2.8 MostCommonSeqDirection

This feature returns the direction of the most common sequence length:43 −1 for
descending, 1 for ascending, or 0 if there isn’t any interval within the piece of music
to be considered. So for both igure 10 and igure 8 f = −1.

2.2.2.9 MostCommonSeqIntervalInfos

For each sequence having the most frequent group length, the interval between the
irst and the last note is considered. From this succession of intervals, the average,
maximum, minimum and standard deviation is returned. So this feature is correlated
with the steadiness or diversity of the sequences.

Figure 11 shows the frame intervals of the sequences of length 4 for igure 10. Its
intervals are

(

−10 −10 −9 −10 −10
)

and so f =
(

−49/5 −9 −10
√

4/25
)

C
CC

8va

CC
C

C C
47

44����
�

C
�C�

Figure 11: Bar 47–48 of Pastorius’ Donna Lee, frame intervals of the sequences of
length 4.

42 See section SeqsPerNote on p. 11 for more elaboration on sequences in this context.
43 See directly above for a description of the most common sequence length.
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2.2 Feature extraction Classification

2.2.2.10 NonchordNoteProportion

This feature relates the duration of notes, that don’t it into the underlying harmony
to the duration of all notes. So passing notes, neighbor notes, chord substitutions
and the like contribute to high values of the feature.

Z Z Z Z � �� � Z��
3

3

Z� �
E�7

� � � Z
D7

�
Fmaj7

� � 44
1

Z Z Z� Z Z
	�

Figure 12: Bar 1–3 of Pastorius’ Days of Wine and Roses.

In this example Pastorius greatly varies this feature. Especially in the second bar
E 7 is rather substituted by E7 – no note matches the harmony, so the feature
would be 1.0 for this bar. The irst bar is rather inside the harmony, but there is
the emphasized passing note d and the anticipation e , so 11/2 ql of 22/3 ql doesn’t
match the harmony, so f = 9/16.

2.2.2.11 NoteRestRatios

This feature presents the ratio of the duration of all notes and all rests. Consider
the 3 bars of igure 12: The notes take 62/3 ql and the rests take 51/3 ql, so f = 5/4.

2.2.2.12 PitchClassHistogramRelativeToChord

A pitch class histogram relative to the root of the current harmony is a 12-dimensional
vector and captures important information about how the musician plays within the
chord.

17
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1 1♯ 2 3♭ 3 4 4♯ 5 5♯ 6 7♭ 7

Chord notes (enharmonic ignored)
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1 1♯ 2 3♭ 3 4 4♯ 5 5♯ 6 7♭ 7

Chord notes (enharmonic ignored)

Victor Wooten

Figure 13: Bar chart of PitchClassHistogramRelativeToChord for all transcribed
titles of Pastorius and Wooten.

The plots in igure 13 already give a shallow impression of the more chromatic style
of Pastorius playing. He uses dissonant notes more frequently than Wooten, like the
minor ninth or the minor seventh whereas Wooten seems to really like to play the
ifth of the chord.

2.2.2.13 PitchClassHistogramRelativeToChordForBeats

In this case not only one, but four pitch class histograms relative to the root of the
current harmony are calculated – for notes on the 1st, 2nd, 3rd or 4th beat. So it is
a 48-dimensional vector.

See igure 14 for some plots. Pastorius seems to use the pitches rather uniformly on
all beats – although there are slight preferences, e.g. playing the root on beat 1 or
3, playing the tritone more likely on later beats and playing the minor seventh on
the irst beat. Preferences for pitches on particular beats are way more dominant
for Wooten, e.g. playing the root or the major third on the irst beat, the ifth on
the second beat or playing the major seventh on the 4th beat.
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1 1♯ 2 3♭ 3 4 4♯ 5 5♯ 6 7♭ 7

Chord notes (enharmonic ignored)
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Jaco Pastorius

1st beat

2nd beat

3rd beat

4th beat

1 1♯ 2 3♭ 3 4 4♯ 5 5♯ 6 7♭ 7

Chord notes (enharmonic ignored)

Victor Wooten

1st beat

2nd beat

3rd beat

4th beat

Figure 14: Bar chart of PitchClassHistogramRelativeToChordForBeats for all tran-
scribed titles of Pastorius and Wooten.

2.2.2.14 PitchStd

This feature presents the standard deviation of the used pitches so it is a measure
of how the pitch is varied and it complements music21’s built-in PitchVariety.44

0.0 0.2 0.4 0.6 0.8 1.0

Relative position in piece

0

2

4

6

8

10

12

14

16

f

PitchStd

PitchVariety

Figure 15: Development of PitchStd and PitchVariety over the full piece of Pastorius’
Punk Jazz (window size of 4 ql a hop size of 1 ql)

44 That one only counts how many pitches are used once, so it doesn’t take into account how
diferent the pitches are. 19



2.2 Feature extraction Classification

In igure 15 it is visible that both values are somehow related, but there is no real
correlation. If the PitchVariety is 1 than the PitchStd must be 0. But let’s consider
the interesting relative position at about 0.45 – there both features seem to have
contrary tendencies.

g
�
��
15ma

loco�
�

�
�
�

30

44
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Figure 16: Bar 30 of Pastorius’ Punk Jazz.

The reason for this can easily be seen by looking at the music. A very high pitched
harmonic increases the standard deviation because it is very diferent from the aver-
age pitch in this bar. That is something that cannot be captured by PitchVariety.45

2.2.2.15 QuarterLenSeqLenRatio

This feature relates the value of the most common quarter length46 and the Most-
CommonSeqLen. So it tries to model a musical characteristic that is one of Pastorius’
most striking ones according to Malone:

Measure 47 [of Donna Lee, author’s note] contains the irst occurrence of
what would become a Pastorius trademark: eighth-note triplets in four-
note groups, outlining descending seventh-chord arpeggios. The efect
is polyrhythmic – the feeling of two separate pulses within the bar that
don’t share an equal division. […] As we will see, Jaco utilizes this same
technique (including groupings of ive) in many of his solos.47

This feature is calculated by taking the fractional part of the quotient of the Most-
CommonSeqLen and the denominator of most common quarter length.

f =
fMostCommonSeqLen

b
mod 1, where a

b
= fMostCommonNoteQuarterLength,

gcd(a, b) = 1
(3)48

45 The pitches of this bar are
(

58 50 54 93 58 54
)

, so f =
√

7565/36 ≈ 14.496.
46 That is one of music21’s built-in native features.
47 Jaco Portrait, p. 6.
48 gcd means greatest common divisor. This line is just for the purpose to indicate hat a/b is

irreducible in lowest terms.
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2.3 Classification of features Classification

See igure 10 for an example. The most common quarter length of this example
is 1/3 and the MostCommonSeqLen is 4, so f = 1/3. In igure 8 Pastorius doesn’t
show this characteristic – the most common quarter length is 1/3 as well, but the
MostCommonSeqLen is 3, so f = 0.

2.2.2.16 WholeToneScaleAmount

This feature returns the ratio of the amount of notes that its into a whole tone scale.
The two possible pitch class sets for a whole tone scale are

{

0 2 4 6 8 t
}

and
{

1 3 5 7 9 e
}

and the bigger ratio of the both is returned.

Figure 17 shows an example of a nearly full whole tone scale usage, so f = 1.0
if you don’t consider the harmonic chord and if you consider it f = 6/7. In the
implementation of the described project the chord wouldn’t be taken into account.
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Figure 17: Bars 35–36 of Pastorius’ Donna Lee.

2.3 Classiication of features

2.3.1 General
A model should be trained to get musical features as input variables and predict if
the corresponding bassist is Pastorius or not. Diferent machine learning algorithms
have been tried out for inding a good classiication. Gradient Tree Boosting proved
to be one of the best ones in the scenario of the project described here.49 In the
following, an overview about Gradient Tree Boosting is given, including an overview
about Decision Trees. Gradient Tree Boasting utilizes many Decision Trees, so both
methods are important in this scope.

49 For the performance of other classiication algorithms with their default-parameters from the
scikit-learn library (http://scikit-learn.org), see the following table. The conditions for
the reports are equivalent with the ones described in section 2.5 (with window size of 6 ql and
3 folds).
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2.3 Classification of features Classification

In general, we want to ind a function f , that receives a feature vector xi from a
feature matrix x and predicts an output variable yi. For that purpose, we utilize N

training examples for itting the function. x are called the descriptor variables and
y is called the dependent variable.

Let’s consider a concrete example. Figure 18 shows a subset of the training corpus
with window size 6 ql. We have N = 10 training examples, each of them a 2-
dimensional50 feature vector and the bassist as the dependent variable.

This test data set serves for illustration purposes in the following.51 Since there are
only two descriptor variables, it can easily be plotted, see igure 19.

Support vector machine with stochastic gradient descent training 71.119% ( 4.483%)
K-nearest neighbors 80.701% ( 0.855%)
Feed-Forward Neural Network* 83.168% ( 1.082%)
Decision tree classiier 83.175% ( 0.328%)
C-Support Vector Classiication 86.941% ( 0.681%)
AdaBoost classiier 87.757% ( 1.093%)
Extra-trees classiier 87.915% ( 0.165%)
Random forest classiier 88.863% ( 1.036%)
Gradient Boosting classiier 91.917% ( 0.417%)

* This one not from scikit-learn, but from pybrain (http://www.pybrain.org). Non-default
parameters – topology: input layer: 250, 1st hidden layer: 125, 2nd hidden layer: 83, output
layer: 2), learning rate=0.001, weight decay=0.01.

50 For a description of the features see paragraph 2.2.2.10 on p. 17 and paragraph 2.2.2.9 on p. 16.
Subscript 2 means the second value (the maximum) of this 4-dimensional vector.

51 Note that for this purpose it is balanced between too easy and too complicated, which can be
done manually in such a small example set. For the same windows one easily can ind another
subset of descriptor variables that would be correctly classiied even with an unsupervised
clustering algorithm, e.g.
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Figure 18: Test data set for illustration purposes
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Figure 19: Scatter plot of the test data set.

2.3.2 Decision Trees
Decision Trees segment the domain of the descriptor variables into rectangle-alike
regions. A constant (e.g. the index of a class) is assigned to each region, so classifying
is just a look-up in the appropriate region. So the question is how to ind good
segmentations of the domain of the descriptor variables. There exist methods to do
this – a commonly used one is CART52 for regression, which is used in this project.

The main idea is irstly splitting one variable. The constants assigned to the two
emerging regions are just the mean of the dependent variable of all training items
corresponding to this region. The variable and split-point are chosen to achieve
the best it. Then this process is continued until the training items are perfectly
explained or some stopping criteria is achieved. Finally the model has learned a
function:

f(x) =
M
∑

m=1

cm1Rm
(x) (4)

with
cm = ave(yi|xi ∈ Rm) (5)

52 Trevor Hasties/Robert Tibshirani/Jerome H. Friedman: The Elements of Statistical
Learning. Data Mining, Inference, and Prediction, 2nd ed., New York 2009 (henceforth cited
as Statistical Learning), p. 305.
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2.3 Classification of features Classification

Here M is the number of regions R1, R2, . . . , RM ; cm is the constant assigned to a
particular region, averaging the dependent variable of all training items correspond-
ing to this region; and 1Rm

(x) is an indicator function, evaluating to 1 if x is within
the region and 0 otherwise.

The open question is, how to ind the best splitting variable j and split point s.
That can be found by the values that solve

(j, s) = min
j,s

(

min
c1

∑

x1∈R1(j,s)

(yi − c1)
2 + min

c2

∑

x1∈R2(j,s)

(yi − c2)
2
)

. (6)

Both inner minimizations can already be solved, see equation 5. j can be found by
brute-force and s can, e.g., be found by sorting all values and trying out the mean
values of all neighboring values that have diferent classes.53 This process can then
be repeated for all regions. The remaining question – how large the tree should be –
is related to the value of M . This is a tuning parameter which should be estimated
with regards to the data. There are several ways to do that, not discussed here.54

If a single decision tree would be used for classiication, some adoptions would have
to be made55, but for solving a binary classiication task56 with Gradient Boosting,
Regression Trees are used anyway. So decision trees for classiication are not used
in this project.

Figure 20 shows three decision trees with successive depth learned on the training
data. Note that with increasing depth the decision boundary becomes more complex,
more itted to the data and less training items are misclassiied. Some remarks to the
tree visualizations: Numbers are rounded to 3 decimal places. MCSII and NNP are
abbreviations of the feature names.57 For learning, an integer number was assigned
to each bassist as a dependent variable: 0 to Wooten and 1 to Pastorius. So the
values of the constant, therefore denote the average of the dependent variable of
the corresponding region, can be explained. Mse stands for mean square error, a
measure of how many items are misclassiied.

mse(x, y) = 1

N

N
∑

i=1

(f(xi)− yi)
2 (7)

53 Stuart Russell/Peter Norvig: Artiicial Intelligence. A Modern Approach, 3rd ed., Harlow
2014 (henceforth cited as Artiicial Intelligence), p. 718.

54 See Statistical Learning, p. 308, and the references mentioned there.
55 Ibid., pp. 308 et seqq.
56 That is the case in the project described here: Pastorius or Non-Pastorius.
57 MCSII stands for MostCommonSeqIntervalInfos and NNP for NonchordNoteProportion, see

p. 23.
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Figure 20: Contour plot (left) and tree visualization (right) of three decision trees,
that have been trained on the test data set.58 The trees have been restricted to
diferent depths: 1 (top), 2 (middle), 3 (below).
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2.3 Classification of features Classification

2.3.3 Gradient Tree Boosting
The idea of Tree Boosting is instead of using a single tree f , an ensemble of trees
F is used, consisting of J simple trees.59 The idea of an ensemble of small trees
is related to the idea of weak learners, classiiers that perform only slightly better
than random guessing, but can be transformed into strong learners, classiiers of
high accuracy.60 Instead of learning a highly accurate prediction rule, many rough
rules of thumb are learned, combined being as strong or even stronger as the highly
accurate one.

If you consider equation 4, a tree is deined by its regions Rm and its constants
cm. They form the parameters of the tree Θ = {Rm, cm}

M
1 . When specifying a tree

f(x) with its parameters, we call it f(x; Θ). This way an ensemble of trees can be
deined, where the output of each tree is scaled by a factor β:

F (x) =
J
∑

j=1

βjf(x; Θj). (8)

So the task is inding all parameters {βj,Θj}
J
1 . After learning the parameters for the

initial tree, f1 can be found as usual (see previous section) and the parameters for
the next trees can be found by minimizing a loss function L in a stagewise approach.
In equation 6 the loss function is the squared diference, but other loss functions are
possible.

(βj,Θj) = arg min
Θ,β

N
∑

i=1

L
(

yi, Fj−1(xi) + βf(xi; Θ)
)

(9)

where
Fj(x) = Fj−1(x) + βjf(x; Θj). (10)

This minimization can be quite diicult. Instead of solving it formally, one tries to
come closer to a form similar to equation 6. But not to be restricted to the squared

58 See p. 23 for details.
59 Jerome H. Friedman: Greedy Function Approximation: A Gradient Boosting Machine, in:

The Annals of Statistics 29.5 (2001), pp. 1189–1232 (henceforth cited as Greedy Approximation),
Jane Elith/John R. Leathwick/Trevor Hastie: A working guide to boosted regression
trees, in: Journal of Animal Ecology 77.4 (2008), pp. 802–813 and Statistical Learning, pp. 353
et seqq.

60 For further details on this see Robert E. Schapir: The Strength of Weak Learnability, in:
Machine Learning 5.2 (1990), pp. 197–227.
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2.3 Classification of features Classification

diference, something more general is needed: The negative gradient of all training
items with respect to the loss function can be used as a “pseudo-response” ỹi for
training the next tree.

ỹi = −

[

∂L
(

yi, F (xi)
)

∂F (xi)

]

F (x)=Fj−1(x)

(11)

As a loss function, deviance turned out to give the best results for the project
described here:61

L(y, x) = −
2

N

N
∑

i=1

yif(xi)− log(1 + ef(xi)) (12)

This response is used for learning the parameters of the next tree. Sometimes this
is also called Bernoulli deviance.62 Tweaking some further parameters improved the
results.

• The number of boosting iterations J is 800.

• The maximum size for each tree is restricted to 4.

• The learning rate, a constant factor that is multiplied by the output of all
trees, is 0.45. (That is relatively high compared with common values.63)

• There must be at least 3 training examples in each leaf node of a tree.

• For each splitting point only half of the overall number of features are consid-
ered at maximum.

Again, let’s illustrate the classiication process with the test data set from p. 23.
A Gradient Boosting Classiier with three Decision Trees has been learned, each of
them restricted to the depth of 2. Figure 21 shows those trees. There is a minor
diference between the regression trees shown in the previous section: it uses fmse

61 For more details on loss functions see Greedy Approximation, p. 9 and Statistical Learning, pp.
346 et seqq. and 360.

62 This term and some additional information about this loss function, like its gradient, is to be
found in Greg Ridgeway: Generalized Boosted Models. A guide to the gbm package, 2012,
url: https://github.com/harrysouthworth/gbm/blob/master/inst/doc/gbm.pdf,
gradually developed online paper for the R gbm package, version from May 23, 2012, p. 10.

63 Statistical Learning, p. 365.
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2.3 Classification of features Classification

instead of mse as split criterion. Fmse means Friedman mean square error and is
a slightly improved version of equation 7.64 It shouldn’t be confused with deviance:
Both are used as some kind of loss function, but fmse is used for building a single
tree whereas deviance is used to build up the ensemble of trees.
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64 See Greedy Approximation, p. 12 (equation 35).
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Figure 21: Three Decision Trees of the Gradient Boosting Classiier after training
on the test data.65 Contour plots (left) and tree visualizations (right).

When summing all three trees, we get decision values, that can be converted into
probabilities, like this:

P (x = Pastorius) = 1

1 + e
∑J

j=1
f(x)

P (x = Wooten) = 1− P (x = Pastorius)
(13)

Using these probabilities a binary decision for class estimates can be made.
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Figure 22: Contour plots of the summed decision trees (left) and class estimates
(right) of the Gradient boosting classiier.

65 See p. 23 for details. 30



2.4 Markov model Classification

For the sake of illustration all 10 training examples have been used for training.
When doing a real training, in practice not all examples are used – some are held out
for validating the model on unseen data. For investigating how all training items
can be classiied when they have not been used for training, this whole process
is repeated at least 3 times: Splitting the data set in 3 portions (each relecting
the same proportion of classes as the whole) and then one can do training and
validating 3 times: each time leaving out one portion, training on the other portions
and validating on the one left out. This process is called stratiied k-folds cross
validation (k=3 when splitting into 3 portions, but more portions are possible).66

2.4 Markov model
A Markov model is a generative model that takes a diferent approach compared the
to previous section. Instead of calculating abstract features, the raw note sequences
are involved in learning the model: The probabilities of sequences of a speciic
length are estimated. In note sequences, each event contains at least two pieces of
information: The pitch and the note duration. So two Markov models can be made:
One for pitch and one for note durations. There would also be the possibility for
accepting pitch and duration to be a single compound event, but this would make
all events more rare and that has some drawbacks described below.

Firstly let’s describe Markov models more formally.67 Markov models are useful for
processes where discrete events succeed each other and where each event depends
on the previous ones. Let’s assume there are N distinct states S1, S2, . . . , SN . The
process is in a state qt at time t with t ∈ N>0. So q1 = S1 means that at the start
of the process it is in the irst state. This irst state inluences the next one yet to
come. So the probability of each event occurring depends on its previous states:

P (qt = Si|qt−1 = Sj, . . . , q1 = Sk), with 1 ≤ i, j, k ≤ N. (14)

The so called irst-order Markov assumption means that an event doesn’t depend
on all but only its immediate previous state:

P (qt = Si|qt−1 = Sj, . . . , q1 = Sk) = P (qt = Si|qt−1 = Sj). (15)

66 Statistical Learning, pp. 241 et seqq.
67 Ethem Alpaydın: Introduction to Machine Learning, 2nd ed., Cambridge and London 2010,

p. 363 et seqq.
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2.4 Markov model Classification

In general this doesn’t hold true, but it is a simpliication needed for computational
feasibility. Of course one isn’t restricted to irst-order Markov chains. Also second-,
third-, etc. order Markov chains are possible. An Oth-order Markov chains implies
that an event only depends on its O immediate predecessors.

For music, even when limO→∞, an Oth-order Markov chain wouldn’t hold true,
because the probability of a note can even be inluenced by its successors. Just
think of the climax of a musical phrase that is headed for already some time before.
So music isn’t a real Markov process but some impressive results nevertheless can
be achieved easily, whereby it has a long tradition in music generation.68

For the sake of this explanation, let’s stay with the irst-order model. There is still
one further step of simpliication: For using it in a generative model, one assumes
that the transition probabilities are independent of time:

aij ≡ P (qt = Si|qt−1 = Sj), with aij ≤ 0 and
N
∑

j=1

aij = 1. (16)

That way, one can hold all probabilities in a N ×N matrix A, where each row sums
to 1. Since each state depends on its predecessor, the model still does not describe
its irst state. Therefore one needs a further piece of information for completing the
model: The initial probabilities Π with π1, π2, . . . , πN are needed, which state the
probabilities for the irst state of the process.

πi ≡ P (q1 = Si), with πi ≤ 0 and
N
∑

i=1

πi = 1. (17)

Such a Markov model can be represented graphically, but already small models
exhibit quite some complexity in their representations, as seen in igure 23:

68 See section 1.1 on pp. 1 et seqq. for some references, speciically footnotes 12–14.
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Figure 23: Graphical representation of a irst-order Markov chain with 3 diferent
states. Each vertex represents a state and each edge represents a probability –
transition probabilities in the case of edges connecting states and initial probabilities
in the case of the “virtual edges” coming out of nowhere.

Classiication with Markov models is an easy task: At least two models have to
be given and than two probabilities can be assigned to an observation sequence
Q = (q1, q2, . . . , qT ). The two probabilities state how probable it is that the one or
other process has produced such a sequence.

P (Q|A,Π) = P (q1)
T
∏

t=2

P (qt|qt−1) = πq1aq1q2 · · · aqT−1qT (18)

Since we are constantly multiplying numbers smaller or equal to zero, the result
can be ininitesimal small in the case of large observation sequences. So it can be
beneicial to compute the probabilities in the log space for preventing computational
round-of errors. Now they aren’t actual probabilities anymore but it is still ine for
comparing the results of diferent models.

logP (Q|A,Π) = logP (q1) +
T
∑

t=2

logP (qt|qt−1) = log πq1 + log aq1q2 + · · ·+ log aqT−1qT

(19)

One further consideration has to be taken into account: Longer sequences always
tend to have lower probabilities, because there exist more possible long sequences
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2.4 Markov model Classification

than short ones. So, when comparing sequences of diferent length, the mean prob-
ability can be used.

P̄ (Q|A,Π) =
P (q1) +

∑T

t=2 P (qt|qt−1)

T
=

πq1 + aq1q2 + · · ·+ aqT−1qT

T
(20)

Training a Markov model from K sequences is straightforward: The probability for
a transition from state i to state j is the number of transitions from Si to Sj, divided
by the number of transitions from Si to any other state.

aij =

∑K

k=1

∑Tk−1
t=1 1{Si}(q

k
t )1{Sj}(q

k
t+1)

∑K

k=1

∑T k−1
t=1 1{Si}(q

k
t )

(21)

The initial probabilities are even more easy to estimate: The probability for state
i being the initial one, is just the number of sequences starting with Si, divided by
the overall numbers of sequences.

πi =

∑K

k=1 1{Si}(q
k
1)

K
(22)

When few sequences are involved, one often has to ind an alternative way to deine
the initial probabilities. Two methods are possible:

1. Assign an equal distribution to all initial probabilities: πi = 1/N.

2. Use a zeroth-order Markov chain: πi =
∑K

k=1

∑Tk

t=1
1{Si}

(qkt )
∑K

k=1
T k

Method 2 is used in the project described here. Let’s illustrate it with a short
example.
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Figure 24: First bars of Pastorius’ Havona.
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The note sequences of ig. 24 can be translated into both pitch sequence Qp in midi
numbers and duration sequence Qd in ql:

Qp =
(ρ, 59, 66, 68, 59, 59, 59, ρ, 60, 66, 67, 67, 67
ρ, 70, 71, 70, 66, 63, 70, 68, 68, 68, 68, 66, 68
69, ρ, 74, ρ, 64, 64, 64, ρ, 66, 66, 69, 66)

Qd =
(3/2, 1/2, 1/2, 1/4, 1/4, 1, 4, 3/2, 1/2, 2/3, 1/3, 1, 4
7/3, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 2/3, 1, 1, 1/3, 1/3, 1/3
1/2, 1/4, 1/4, 1/2, 1/2, 2, 2, 2/3, 2/3, 1/3, 1/3, 2)

Rests are deined having pitch ρ, so they are just considered to be notes with no pitch.
Also note, that several musical attributes are not described by those sequences, e.g.
tempo, vibrato, bend notes, metre, etc. Ties are also not represented, but successive
rests are joined. With those sequences, we easily can set up our set of states Sp for
pitch and Sd for duration.

Sp, = (59, 60, 63, 64, 66, 67, 68, 69, 70, 71, 74, ρ)

Sd, = (1/4, 1/3, 1/2, 2/3, 1, 3/2, 2, 7/3, 4)

By just counting the transitions between states, one can easily estimate the transi-
tion probabilities. See igure 25 for a graphical display of the matrices:69

69

The matrices shown here are
of course rather sparse be-
cause of the small training
set. See here the pitch-related
irst-order Markov transition-
probabilities for the whole Pas-
torius and Wooten corpora.
They show much more transi-
tions and ofer more alterna-
tives (i.e. there are no proba-
bilities equal to one).
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Ap =









































1/2 0 0 0 1/4 0 0 0 0 0 0 1/4
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 2/3 0 0 0 0 0 0 0 1/3
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Figure 25: Graphical display of the matrices of transition probabilities.

Such a graphical display can also illustrate the problem of accepting pitch and
duration to be a single compound event. With those, one would have a much larger
amount of states Spd, each being a tuple of pitch and duration:
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Spd = ((59, 1), (59, 4), (59, 1/2), (59, 1/4), (60, 1/2), (63, 1/3), (64, 2), (64, 1/2), (66, 2),

(66, 1/2), (66, 1/3), (66, 2/3), (67, 1), (67, 4), (67, 1/3), (68, 1), (68, 1/3), (68, 1/4),

(68, 2/3), (69, 1/2), (69, 1/3), (70, 1/3), (71, 1/3), (74, 1/4), (ρ, 1/2), (ρ, 1/4), (ρ, 2/3),

(ρ, 3/2), (ρ, 7/3))

The corresponding matrix of transition probabilities is much more sparse, containing
more zeros and ones. Probabilities of one mean that there are no alternatives, so
the Markov model is less able to generalize.
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Figure 26: Graphical display of the matrices of transition probabilities for pitch and
duration as single compound events.

So let’s put the idea of compound events aside and come back to the idea of separate
Markov models for pitch and duration. The initial probabilities are computed by
the zeroth-order Markov chain:

Πp, = (2/19, 1/38, 1/38, 3/38, 7/38, 3/38, 3/19, 1/19, 3/38, 1/38, 1/38, 3/19)

Πd, = (2/19, 6/19, 3/19, 2/19, 2/19, 1/19, 3/38, 1/38, 1/19)

With those probabilities one can put a weighted random process into operation to
generate two diferent note sequences, both conforming to the Markov properties de-
scribed above. Note that such a process can produce illegal sequences, e.g. duration
sequences like

(

1/2, 1/3, 1/3, 1/2
)

, especially for such a low-order Markov model.
Nevertheless below are two generated legal sequences:
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2.4 Markov model Classification

Q
p
1, =

(68, 66, 63, 70, 66, 67, 67, ρ, 66, 66, 63, 70, 71, 70, 71, 70,
71, 70, 68)

Qd
1, =

(2, 2, 2/3, 1/3, 1/3, 1/3, 1/3, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4, 1, 4, 3/2,
1/2, 2/3, 1/3)

Q
p
2, = (68, 66, 63, 70, 68, 68, 68, 68, 68, 68, 59, 66, 69, ρ, 64, ρ, 66)

Qd
2, = (4, 3/2, 1/2, 1/4, 1/4, 1, 4, 3/2, 1/2, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/2, 1/2)

C� �� � � ���� �� �
33

3 ��� �� �� � � � � �C� 44 � � � �� �C ��
Z��Z � Z � Z� �

� ��� Z� Z� Z Z� Z����� 44 � Z � Z� Z Z ZZ
Figure 27: Two note sequences generated by the Markov model described above.

Finally the note sequences can be compared to ind out which one is more probable
according to the Markov model.

P̄ (Qp
1) = 1/19

(

3/19 + 1/6 + 1/6 + 1 + 1/3 + 1/6 + 2/3 + 1/3 + 1/6 + 1/6 + 1/6 + 1 + 1/3+

1 + 1/3 + 1 + 1/3 + 1 + 1/3
)

= 503/1083 ≈ 0.464

P̄ (Qd
1) = 1/19

(

3/38 + 1/2 + 1/2 + 1/2 + 2/3 + 2/3 + 2/3 + 1/12 + 1/3 + 1/3 + 1/2 + 1/2+

1/2 + 1/4 + 1/2 + 1/2 + 1 + 1/6 + 1/2
)

= 997/2166 ≈ 0.46

P̄ (Qp
2) = 1/17

(

3/19 + 1/6 + 1/6 + 1 + 1/3 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/6 + 1/4 + 1/6+

1/2 + 1/6 + 1/3 + 1/6
)

= 1385/3876 ≈ 0.357

P̄ (Qd
2) = 1/19

(

1/19 + 1/2 + 1 + 1/3 + 1/2 + 1/4 + 1/2 + 1/2 + 1 + 1/3 + 1/2 + 1/2 + 1/2+

1/2 + 1/2 + 1/4 + 1/3
)

= 9/19 ≈ 0.474
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2.4 Markov model Classification

Since P̄ (Qp
1)P̄ (Qd

1) > P̄ (Qp
2)P̄ (Qd

2) the irst sequence can be considered more close
to the beginning of Havona according to the Markov model.

In the project described here some tweaks are incorporated for further improving
the performance of Markov models: Two diferent Smoothing-techniques as well as
Chord-based Markov chains.

Smoothing refers to techniques to counteract the zero-frequency problem. That
means according to an oth-order Markov model, any unseen sequence of length o

has the probability of 0. Indiferent of a sequence that is quite probable at irst
glance, according to model, if there is any unseen subsequence, the whole sequence
has the probability of 0, because probabilities will be multiplied.

The irst technique is linear interpolation smoothing: Lower-order Markov chains
tend to consider few sequences as 0-probable, but are not very meaningful. Higher-
order Markov chains are more meaningful, but tend to consider more sequences 0-
probable. So one idea is to combine several Markov models up to some order bound
O by combining their probabilities.70 If Po denotes the oth-order Markov model with
its individual transition- and initial-probabilities Ao and Πo, the smoothed Markov
model can be described:

P̂Interpolation-smooth(qt|qt−1 . . . q0) =
O
∑

o=1

λoPo(qt|qt−1 . . . q0) (23)

The scaling factors λo have to be chosen so that
∑O

o=1 λo = 1. In our project λo = 1/O
meaning an averaging of several Markov models. Beside of counteracting the zero-
frequency problem, a local and a more global view on the music is combined.

Nevertheless, if the sequence contains an event that is not in the training set for the
Markov model at all, the overall probability is still 0, independent of how probable
the rest of the sequence is. Additive smoothing71 rids the zero-frequency problem

70 See Artiicial Intelligence, pp. 846 et seq. for a general depiction and Markov Constraints, p.
160 for one referring to Markov model music generation. For a more theoretical and rigorous
discussion see Frederick Jelinek/Robert L. Mercer: Interpolated Estimation of Markov
Source Parameters from Sparse Data, in: Pattern Recognition in Practice. Proceedings of an
International Workshop held in Amsterdam 1980, pp. 381–397.

71 See Stanley F. Chen/Joshua Goodman: An Empirical Study of Smoothing Techniques for
Language Modeling, in: Proceedings of the 34th Annual Meeting on Association for Computa-
tional Linguistics 1996, pp. 310–318 for a comparison of diferent smoothing techniques. There
on p. 311 it is argued, that additive smoothing generally performs poorly, but note in the case
of this project it is used in combination with interpolation smoothing (related to what is there
called Jelinek-Mercer-Smoothing).
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2.5 Markov model Classification

of the model by assuming there is always a small probability for seeing yet unseen
events. A generalized version of this problem can be stated as follows:

P̂Additive-smooth(qt|qt−1 . . . q0) =
P (qt|qt−1 . . . q0) + α

1 + αNO+1
(24)

Where α > 0 is a smoothing factor and NO+1 is the number of transition possibilities
for a ixed-order Markov model.

Chord-based Markov chains means that several Markov chains are trained for each
chord-type, deined by its pitch classes when the chord is transposed to C. Of course
the events belonging to this chord are also transposed by the same amount, when
training or when classifying with such a Markov model. Obviously within a major
chord the major third might be expected to be more probable than within a minor
chord, so the beneit of such a model in music is apparent. See igure 5 on p. 12 for
an overview of the chord types to be found in the corpora of this project. So when
25 chord types are to be found, there is a separation between pitch and duration
and order 0 up to 4 is involved, 2 · 25 · 5 = 250 diferent Markov chains would be
involved for each bassist.72

For applying chord based Markov chains the note succession to be classiied should
show the same chords like in the training corpus. The following table provides
information concerning the relative amount of the chord types with respect to the
duration they occupy within the training corpus. Chords with higher percentages
are preferable when trying to classify a note succession.

Cpitchclasses amount Cpitchclasses amount Cpitchclasses amount

∅ 35.02%
{

0 4 7 t
}

18.27%
{

0 3 7 t
}

15.89%
{

0 4 7
}

8.66%
{

0 4 7 e
}

5.03%
{

0 4 6 e
}

3.59%
{

0 3 7
}

2.78%
{

0 3 4 7 t
}

2.24%
{

0 2 4 7
}

2.15%
{

0 1 3 4 7 t
}

1.08%
{

0 3 4 7 e
}

0.81%
{

0 3 4 8 t
}

0.72%
{

0 3 5 7 t
}

0.72%
{

0 3 6
}

0.58%
{

0 3 6 t
}

0.54%
{

0 7
}

0.36%
{

0 2 3 4 7 t
}

0.36%
{

0 2 7
}

0.36%
{

0 1 4 6 t
}

0.31%
{

0 1 3 7 t
}

0.18%
{

0 1 4 7 t
}

0.18%
{

0 2 4 7 t
}

0.09%
{

0 3 5 t
}

0.07%

Figure 28: Relative amount of chord types to be found in the Pastorius corpus.

72 In fact there aren’t because for Pastorius the chords
{

0 4 5 6
}

and
{

0 7 t
}

are not to
be found in the corpus and for Wooten only 10 chords are to be found, so 230 + 100 = 330
overall Markov models are used for this thesis.
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2.5 Classification results Classification

2.5 Classiication results
As already explained in section 2.3.3 on p. 31 we estimate the performance of the
models with a stratiied 3-fold cross-validation. In the following confusion matrices,
always the mean and standard deviation of the relative classiication rates on the
hold out test set are given. Although relative details are unusual, I prefer it for
comparison between the diferent window sizes. See igure 3 on p. 10 for the absolute
number of training items. Since used in a 3-fold cross-validation the relative details
in the matrices correspond to the size of the test sets, i.e. 1/3 of the overall numbers,
while being trained on the other 2/3. ACC stands for accuracy and gives the number
of correctly classiied items relative to the overall number of items in the test set.

In igure 29 on p. 42 it can be seen that the overall classiication results are quite
decent, always exceeding 90%. So for classifying whole pieces, each consisting of
dozens of windows, the majority vote among all windows would probably result in
correct classiication of the pieces. Nevertheless, the amount of correctly classiied
Wooten is always higher. A reason for this could be the more repetitive style of
playing of Wooten resulting in features that are more similar to each other.

For the sake of comparability the same windowing was made for the following con-
fusion matrices of the Markov chain classiication in igure 30 on p. 43. Note that
in contrast to the feature classiication described above, here windowing isn’t an in-
herent procedure. It’s more natural to learn on sequences without windows because
a sequence of N notes contribute with N − O events to the transition probabilities
of an Oth-order Markov chain. So when splitting the sequence into windows, less
notes contribute to transition probabilities. This is partly compensated by overlap-
ping windows, but they don’t fully make up for it when the average note duration
isn’t suiciently small, i.e. there are relatively few notes per window. That is one
reason why increasing the window size in principle increases the performance of the
Markov classiication.73 For the following confusion matrices, both smoothing tech-
niques described in section 2.4 are used, for orders 0 to 4 and with the additive term
α = 0.001. Also note, that there are cases of undecided estimates – windows for
which the Markov probabilities of being Pastorius or Wooten are equal.

73 Apart from greatly varying performance of classifying Wooten across the folds in the case of
4ql.
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Figure 29: Confusion matrices for Gradient Tree Boosting
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Figure 30: Confusion matrices for chord based Markov models
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See igure 31 for three exemplary windows for both bassists that have been misclas-
siied in the 12ql-case in both procedures. 12ql doesn’t give the best performance
in both cases, but long windows are better for human evaluation. All windows are
not completely incomprehensible: 31a and 31c show long and rather diatonic 16th
runs, what could be considered more typical for Wooten. 31b is nearly occupied by
rests for 2/3, so being unsure in the case of few notes is also understandable. 31d and
31f show some amount of chromaticism and 31f also shows some non-chord notes,
e.g. during G 7 3 of 4 notes are non-chord notes. Both chromaticism and non-chord
notes can be considered more typical for Pastorius. 31e is an example where the
restriction to monophonic music could exhibit its drawback. Only the upper voice
is taken into account and the lower one is ignored. So when regarding a “iltered”
version of a window, a misclassiication isn’t a surprise either.
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d: from Wooten’s Cherokee (Indian Love Song)
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e: from Wooten’s Norwegian Wood (This Bird Has Flown)
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f: from Wooten’s Sinister Minister

Figure 31: Some 12ql windows that have been misclassiied with both the Gradient
Tree Boosting and the Markov classiication. Note that in subigure e the octaving
15ma refers to the upper voice only. The lower voice isn’t used in this project
anyways because it is restricted to monophonic music.
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3 Modiication
3.1 Overview
The classiication procedures described in the previous chapters will now be utilized
for a modiication process. An existing note succession with a corresponding chord
annotation should be modiied in such a way that it comes closer to Pastorius ac-
cording to the classiication. In that sense, it can be considered a style changing
procedure.

this task is viewed as a local search for a multi-objective optimization.74 The main
idea is to start from a note succession and try out “neighbors”. If a neighbor is better
than the original one, according to an objective function, the neighbor is saved and
the process is iteratively continued with this one. What is considered a neighbor
to a note succession is yet to be deined, see section 3.2. The objective function is
responsible for increasing the probability of a given piece of music to be classiied as
Jaco Pastorius. Beside the two classiication procedures described in the previous
sections, there are other objectives as well, described in section 3.3.

So there isn’t a single objective function, but several ones. Since in principle it
is possible that for a given neighbor the value of one objective function increases
and another one decreases, it is not quite clear if the neighbor should be considered
“better”. In this context the term of Pareto optimality75 is important: a neighbor
is regarded better if and only if the values of all objective functions are equal or
higher and at least one value is higher. This is a strict regulation that ensures that
the note succession doesn’t become less similar to Pastorius in any regard.

Most metaheuristics comprise of the idea of iteratively doing small random changes
so that the value of the objective function becomes better. Since this procedure
is most probably threatened to be trapped in a local optimum, many eforts in
metaheuristics are employed to overcome local optima for inding the global one or
at least solutions better than the irst local optimum: For example genetic algorithms
have been applied for melody generation.76 But there is a relaxing property in the

74 For a thorough but still accessible overview of stochastic optimization see Sean Luke: Essen-
tials of Metaheuristics, 2nd ed., Raleigh 2013, available at http://cs.gmu.edu/~sean/book/
metaheuristics (henceforth cited as Metaheuristics).

75 Ibid., pp. 133 et seqq.
76 See John A. Biles: GenJam: A Genetic Algorithm for Generating Jazz Solos, in: Proceedings

of the 1994 International Computer Music Conference, 1994, pp. 131–137 and George Pa-
padopoulos/Geraint Wiggins: A Genetic Algorithm for the Generation of Jazz Melodies,
in: Proceedings of the Finnish Conference on Artiicial Intelligence, 1998, pp. 7–9.
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3.1 Overview Modification

use case of this thesis: There is no need for inding the global optimum anyway.
The idea is to change a bass line so that it becomes closer to Pastorius – but it
should still be recognized as the original bass line. Finding the global optimum
would mean to allow to completely throw away the original one and replace it by
the “most-Pastorius-alike” bass line ever possible. That one would probably be one
of the Pastorius corpus or a combination of the most frequent phrases from it. In
our case it is more desirable not to throw away the original bass line, but to change
it until there are no more small modiications to improve the objective functions.
So inding a local optimum is perfectly ine.

Figure 32 shows a decision surface of only two successive pitches regarding the
average smoothed Pastorius Markov probability with order 0 and 1. Note how
rugged it already is in this simple case. It is obvious that a simple hill climbing
approach wouldn’t ind the global optimum in most cases, because there are multiple
local maxima. In the scope of this thesis, this is a preferable property because it
will prevent the pitches being changed too strongly.
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Figure 32: Surface of an objective function of two successive pitches regarding the
average smoothed Pastorius Markov probability (order 0 and 1).
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But even if there is no need to overcome local optima, there is still something in the
toolbox of metaheuristics that can be deployed. Tabu search77 helps to accelerate
the search. That means a history of already tried out neighbors is saved, so that they
won’t be tried out again. In its original form the oldest item from the tabu history
is removed if the history exceeds some size limit. In this project it is implemented in
such a way, that the history is emptied after a candidate was accepted. From that
on, the tabu history is built anew. This allows the tabu list to not contain complete
neighbors, but only possible modiications to the current state.

3.2 Neighborhood
The neighborhood is a rather problematic ield of the optimization process. Ideally
one wants to have a manageable amount of neighbors so that every one can be tried
to ind out which one is best. Unfortunately the amount isn’t manageable in the
case of this thesis. Below the four diferent possible modiications to a given note
succession are described. Note that only a single modiication can be applied for
achieving a neighbor.

• Changing the pitch of a single note by any semitone between a major third
downwards and a major third upwards.

A major third is an amount that seems a reasonable balance between too small and
too large. A second may be too small, e.g. because in a triadic arpeggio it is more
common to continue with a third instead of of a second. So if we have N notes in
the note succession, here there are 8N possibilities for a neighbor.

• Changing the duration of two notes so that the overall duration of the note
succession stays the same.

The duration of a note can be changed to any duration to be found in the corpus of
Pastorius – that are 17 diferent ones – excluding the duration that is the current one.
Then another note has to be found that can be changed, so that the overall duration
isn’t changed. So for this second note there is no choice in duration. In practice
not all note positions are possible, e.g. because the alteration of the duration of
the second note is ixed (because the overall duration has to stay the same) and
that duration could possibly not be in the durations to be found in the corpus of
Pastorius. But disregarding this fact, at maximum, here there are 16N(N − 1)
possibilities for a neighbor.

77 Metaheuristics, pp. 26 et seqq.
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3.2 Neighborhood Modification

• A note is divided into multiple ones.

The duration of a note can be divided into two ones having the duration (1/2, 1/2) or
(2/3, 1/3) or into three notes having the duration (1/3, 1/3, 1/3) relative to the original
duration. The irst pitch of the new notes is the pitch of the original note and the
remaining pitches are decided by the Markov model. When disregarding, that the
Markov model decides in a weighted random manner and thus can produce diferent
pitches each time tried, here there are still 3N possibilities for a neighbor.

• Two notes are joined into a single one.

Two nearby notes are joined into a single note with the duration being the sum of
both original ones. The pitch of the new note is one of the pitches of the two original
ones, determined in a weighted random manner with the weights being proportional
to the note durations. Again, let’s ignore the pitch-related possibilities, so there are
still N − 1 possibilities in this case.

When summing all possibilities, we are left with 16N2 − 4N − 1 neighbors. Since
this amount depends on the number of notes which can vary during the optimization
process (by joining or dividing notes), the amount of possible neighbors isn’t stable
during the optimization. Although this amount isn’t exponential, there are too many
neighbors to try all of them. So one has to be satisied with randomly picking one
possible neighbor. If this one isn’t better than the current state, one tries another
one, etc.
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Figure 33: Number of possible neighbors, dependent on the number of notes of the
sequence.

One could think of how to incorporate the Markov models more strongly, to try less
possibilities by just using pitches and durations that are probable according to the
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3.3 Objectives Modification

Markov model. By this means one could speed up the optimization, but there would
be quite a strong emphasis on the Markov model. With the current rather random
neighborhood, the Markov model and the other objectives are equally responsible
for the inal result.

3.3 Objectives
There are four objectives that are considered during the optimization process. Here
each of them is explained.

• Feature classiication

This corresponds to sections 2.2 and 2.3. In short: The note succession is divided
into windows by a given size (with hop size 50%), features are extracted from each
of them and then each of them is being classiied by the Gradient Tree Boosting
algorithm. Instead of using a binary decision, the logarithmic probability of being
Pastorius is used. The sum of them forms the value of this irst objective.

• Markov classiication

The value of this objective is the average smoothed Markov probability of Pastorius,
described in section 2.4.

• Ratio of the Pastorius and Wooten Markov property

The preceding objective only takes the Pastorius Markov model into account. So
it also rewards changes that make a given note succession more close to general
musical characteristics or fusion bass guitar characteristics. To foster the speciic
characteristics of Pastorius, the value of this objective is the ratio of the average
smoothed Markov probability of Pastorius and average smoothed Markov probability
of Wooten.

To get a sense of how diferent this is from the previous objective, see here the
surface of this objective regarding the succession of two pitches. Compare this with
igure 32 on p. 46.
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Figure 34: Surface of an objective function of two successive pitches regarding the ra-
tio of the average smoothed Pastorius Markov probability and the average smoothed
Wooten Markov probability (order 0 and 1).

• Time correlations for chord repetitions

This is an objective not related to the ones yet described. The main idea is to
capture some large scale structural similarities with the pieces of Pastorius. A
shallow idea of large scale structure should also be given by the Gradient Tree
Boosting, because it also considers the relative position of the window. But in
practice large scale structure is something one misses most in the generated music.
So this is an additional approach to include that.

The assumption is, that structure evolves by the absence or presence of repetition.
Repetition in a “closed” view is already captured78 – but a more “global” view should
be modeled here, e.g. the varied reoccurrence of material already played some time
ago. The second assumption is that such kind of repetition most probably occurs
when the relative changes in harmony also repeat. See igure 35 for an example:

78 See section 2.2.2.6 on page 14.
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Figure 35: Two parts of Pastorius’ Donna Lee with the same intervals between
the roots of the chord progression (when enharmonic change is ignored): ascending
fourths.

When enharmonic change is ignored, the roots of the chords form a progression of
ascending fourths in both parts. Although there isn’t a real theme or motif that is
repeated, the same kind of material is used – the mixture of scale sections and triadic
sections are at least kind of related. The two notes sequences can be transformed
into a piano-roll representation:
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Figure 36: Plot of piano roll representation of the music from igure 35.

After subtracting the mean and dividing by 64 from these piano-roll representa-
tions79, a circular cross-correlation is performed, as explained in section 2.2.2.6 on
p. 14.

79 Since midi pitches range between 0 and 127, by doing this it is ensured that it is scaled within
-1 and 1.
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Figure 37: Circular correlations of the piano-roll representations of the music from
igure 35.

Here one sees three prominent maxima. These correspond to rough structural sim-
ilarities of the second note sequence with the irst. Let’s consider the greatest
maximum with a lag of 12 ql.
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Figure 38: Two parts of igure 35, put together, with a lag of 12ql and circular
wrapping in the second part.

Figure 38 shows the examples from igure 35 with a lag of 12ql for the second
example. Since it’s circular correlation, the end of the second example wraps at the
beginning again. In this case there is the maximum “pseudo-parallel” movement
of both examples. Even although that is not directly perceptible in music, the
assumption in this thesis is, that it contributes to the large scale feeling of coherence
within a piece of music.

And that’s how it is applied in the optimization: All cross-correlations between
parts with related chord-progressions in the Pastorius corpus are pre-computed.
During the optimization also the cross-correlations between parts with related chord-
progressions are computed. Then the inner product between each correlation of the
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3.4 Results Modification

piece of music to be optimized and the ones of the Pastorius corpus are computed
and the maximum one is returned as value of this objective. Since the dot product
of correlations of diferent lengths cannot be computed, all correlations of the same
progression length are brought to the same length by linear interpolation.

By that means one ensures that the correlation within the chord progressions be-
comes more similar to one of the examples in the Pastorius corpus.

3.4 Results

3.4.1 Ex. 1: New Britain (traditional)
In contrast to the classiication, where the performance can be evaluated relatively
impartial, such an objective evaluation is not possible for the modiication. One
can only try it out and evaluate the result subjectively. So the assessment heavily
depends on the judges, their musical knowledge, taste, etc.

As a irst example, a simple traditional melody has been chosen: New Britain (ear-
liest sources 1831), often sung along with the Christian hymn Amazing Grace.80 See
here its original version:81
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Figure 39: New Britain resp. Amazing Grace, original version.

During the modiication process, 3398 diferent changes have been tried out whereby
only 14 ones have been accepted by Pareto optimality. See the inal version below:

80 Sheet music origins from http://www.free-notes.net/cgi-bin/noten_Song.pl?song=
Amazing+Grace, arrangement by the author.

81 Original here means that it is original for the modiication process. Of course the arrangement
isn’t original.
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Figure 40: New Britain resp. Amazing Grace, “jaconized” version.

It is obvious that major parts of the original version remain intact. Here is a list of
the accepted changes:82

1. B. 2,1: half note f was split into two
quarter notes with pitches

(

e f
)

.
2. B. 11,3: g changed to e 
3. B. 1,3; c changed to c.
4. B. 11,3: quarter note e  was split into

two eighths with pitch
(

e  c
)

.
5. B. 15,3: quarter note g was split into

two eighths with pitch
(

g a
)

.
6. B. 4,3: quarter note d and b. 5,1: half

note c have been joined into a single
one with pitch c.

7. B. 13,3: c changed to e.

8. B. 12,3: d changed to e .
9. B. 3,3: quarter note g was split into

two eighths with pitches
(

g ρ
)

.
10. B. 11,1: half note a was split into two

quarter notes with pitches
(

a g ).
11. B. 10,1: c changed to b .
12. B. 2,1: 2nd quarter note e was

changed to an eighth and b. 1,1: du-
ration of half note rest was changed
to 5/2.

13. B. 12,3: e  changed to f .
14. B. 3,1: a changed to b.

82 For the sake of readability the list uses pitch class names instead of numbers. ρ stands for rest.
B. stands for bar and the number following the comma indicates the beat. So B. 1,3 means the
3rd beat of the 1st bar.
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Figure 41: Evolvement of the four objectives during the optimization process for
New Britain. O1, O2, O3 and O4 are ordered in the same way the objectives are
described in section 3.3.83

From the author’s view it is hard to evaluate the inal result aesthetically since he
is quite biased. The tieing of notes from bars 4 to 5 seems to interrupt the arc of
suspense, thus it rather seems to be a mistake from a musical viewpoint. The run
from bar 9 seems interesting and coherent. The two eighths in bar 9 as well as the
ones in bar 15 seem to surround the following principal note – especially the irst
example can be considered a Doppelvorschlag84 –, which lets the music appear quite
natural. Some succession seem harsh, like the succession of the minor to the major
third of the chord in bar 11 or the melodic succession of a semitone and a tritone in
bars 12–13, but such harsh elements are not unusual in the music of Pastorius, see
igure 42. Maybe they seem spurious, since one rather bears in mind the consonant
original version, which is still noticeable in the modiied version to a big extend. But
from that point of view, the result is a successful blending of the original version and

83 For this and the following evolvement curves holds that in some cases they can be a bit inaccu-
rate. During the optimization a list of pitches and durations is considered. Accepted steps are
saved as MusicXML and from these accepted steps the curves are generated. So if e.g. the lists
contain succession of rests, they may be joined in the MusicXML iles. So the curves can difer
to a certain degree from the actual values during the optimization. Nevertheless they give an
impression of tendency and magnitude. By inaccuracies due to such diferences between the
lists and the MusicXML iles e.g. the minor decrease in O2 by ca. 1.63 · 10−4 from change 13
to 14 can be explained.

84 Untranslatable. See Frederick Neumann: Ornamentation in Baroque and Post-baroque
Music. With special emphasis on J.S. Bach, 3rd ed., Princeton 1983, p. 488. According to
Neumann the translation “double appoggiatura” would be a modern coinage. It means the
sequence of lower neighbor, upper neighbor and principal note.
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the style of Pastorius, even if it is very doubtful if Pastorius would have improvised
over New Britain like this.
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Figure 42: Pastorius examples, that could be the model for “harsh” results in the
modiication. a and b: Succession of the minor on the major third of the chord. c
and d: Melodic succession of a semitone and a tritone.

3.4.2 Ex. 2: Johannes Brahms’ Cello Sonata No. 1 in E
minor, Op. 38

After the previous, rather naive, traditional music example, a more sophisticated
one follows: With the irst phrase of the Cello Sonata No. 1 in E minor, Op. 38
(1862–65) by Johannes Brahms, the modiication process is investigated within a
very diferent musical context.
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Figure 43: First bars of the opening movement of Johannes Brahms’ Cello Sonata
No. 1.85

During the modiication process, 4103 diferent changes have been tried out whereby
27 ones have been accepted by Pareto optimality. See the inal version below:

85 Chord annotations by the author with regards to igure 28 on p. 40.
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Figure 44: First bars of the opening movement of Johannes Brahms’ Cello Sonata
No. 1, “jaconized” version.

Again, see the list of accepted changes.

1. B. 1,1: half note e and b. 1,3: dotted
quarter note g have been joined into
a single one with pitch e.

2. B. 6,1: duration of tied (5/2) note f 
was changed to half and b. 4,2: half
note f  was changed to 5/2.

3. B. 8,3: half rest was split into three
quarter triplet rests. (Had no efect
on inal result.)

4. B. 8,1: half note b was split into three
quarter triplet notes with pitch b.

5. B. 7,4: two sixteenths
(

g  a) have
been joined into a single one with
pitch a.

6. B. 5,1: d changed to f

7. B. 4,1: e changed to c
8. B. 7,1: g changed to a
9. B. 2,1: half note c was split into

three quarter triplet notes with pitch
(

c ρ f
)

.
10. B. 6: two half notes f  have been

joined into a single one with the same
pitch.

11. B. 4,1: c changed to b

12. B. 5,1: second eighth f  changed to f

13. B. 5,2: dotted quarter note e  was
split into a quarter and eighth with
the same pitch.

14. B. 7,1: a changed to g 
15. B. 3,2: irst eighth g changed to b

16. B. 5,1: second eighth f changed to e

17. B. 5,1: second eighth e changed to c

18. B. 4,1: half note b changed to d
19. B. 5,3: duration of quarter note d

was changed to eighth and b. 1,1:
double dotted half note e was changed
to whole note.

20. B. 3,3–4: eighth note a and dotted
quarter note b have been joined into a
single one with pitch b.

21. B. 5: last eighth f  and the following
tied whole note, was changed to a

22. B. 1,1: whole note e was changed to
c

23. B. 1,1: whole note c was changed to
a

24. B. 5,2: irst eighth c was changed to
d

25. B. 5,3: irst eighth d was changed to
e

26. B. 5,2: irst eighth d was changed to
f

27. B. 4,1: half note beginning at second
eighth d was changed to c
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Figure 45: Evolvement of the four objectives during the optimization process for the
Brahms example. O1, O2, O3 and O4 are ordered in the same way the objectives are
described in section 3.3.

Again, despite the bias, some remarks on the result: The very low a in contra octave
at the beginning and the triplet repeats of b at the ending are both kind of witty
and act like brackets around the phrase. The second bar shows a rather a-metrical
rhythmic structure, something that seems unfavorable in this way. The result may
have been better without step 19 being accepted. The same musical unfavorability
holds for bar 4, in a less critical way. So paying attention to the metrical structure
is deinitely something that could be improved in the modiication process. The
second half of bar 5 could be considered a mediant substitution, something quite
common in jazz.86 Ignoring the suspension of the fourth in the irst half of bar 6
seems relatively adventurous, but note that in the corpus there is no suspended
chord to be found,87 so there isn’t a model to be found in this case. Although one
may regard the result as a blending of Pastorius into the Brahms excerpt, I ind it
less successful then the previous example.

3.4.3 Ex. 3: Brainsheep’s Shepherd’s Tale
As the last example the bass line of a rock song is considered. It is Shepherd’s
Tale (2011) of the band Brainsheep, of which the bass line was composed by Stefan
Escaida. He made the transcription of his bass line, speciically for the experiment
of the modiication in the scope of this thesis.

86 Jazz Theory and Practice, p. 111 et seqq.
87 See igure 28 on p. 40.
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Figure 46: Bass line of Brainsheep’s Shepherd’s Tale.

Since a Cm9 chord doesn’t have a model in the corpus88, for the modiication all
Cm9 has been changed into Cm7. Although there are no suspended chords as well,
these haven’t been changed. During the modiication process, 3210 diferent changes
have been tried out whereby 94 ones have been accepted by Pareto optimality. See
the inal version below:

88 See igure 28 on p. 40.
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Figure 47: Bass line of Brainsheep’s Shepherd’s Tale, “jaconized” version.

Unlike the previous examples, this time the inal result won’t be described by the
author. Instead a quote from the author of the original bass line, Stefan Escaida,
should be given as evaluation:

I think the result is interesting and certainly it has both the original com-
ponent as well an additional lavour from Pastorius and jazz in general.
Nonetheless, this statement is much clearer for the second set of chord
changes, than for the irst one. In the irst section the revamped version
doesn’t sound very musical to my ears, i.e. very random, whereas the
second version seems more natural and the style features are much more
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recognizable. I imagine that a tool like this could be useful for someone
who’s already a playing musician interested in learning the “language”
of a new musical style.

As far as I understand, the reinterpretation considers only melody and
harmony factors, but from a bass players’ point of view, the constraints
due to a band’s rhythm section should be equally important. It would
be interesting to see how these constraints would eventually improve the
result. Also, a factor that was handled implicitly was the timbre of the
instrument. When listening to the result on a fretless bass sound-bank
the resemblance to Pastorius was more evident.89

89 Stefan Escaida, September 9, 2015.
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4 Further Investigations
In this section a couple of additional, rather unrelated, small research indings,
developed during this thesis project, shall be presented.

By his own accounts Jaco Pastorius has been strongly inluenced by Charlie Parker,90

so it seems natural, to try to ind relations between Parker and Pastorius. For that
purpose some Charlie Parker solos have been transcribed91 for inding commonalities
and quotations.92

Z� �Z Z � �Z Z Z� � Z
�

Z Z Z Z Z ZZ� �� 44
125 ��

{ Z Z Z
�
� Z �� Z

Z Z Z Z Z ZZ Z Z Z
Z Z Z Z Z Z�Z� ���� 44

31
Z Z ZZ �Z �Z

Figure 48: Bars 125–128 of Parker’s Anthropology (above), bars 31–33 of Pastorius’
version of Donna Lee (below)

The igure above shows a literal quote from Charlie Parker’s Anthropology in Jaco
Pastorius’ version of Donna Lee. The majority is just an ascending scale and de-
scending triad, but the inal intervals (minor sixth and minor second) makes is
recognizable. Note that although the author of Donna Lee probably is Charlie
Parker,93 this line isn’t to be found in Parker’s version of Donna Lee. So maybe it
is an unconscious reference of Pastorius to Parker. Of course one can also search for
retrograde or inversion quotes, but that seems very far from the musical sphere of
both musicians. See igure 49 for an example.

90 Steve Rosen: Portrait of Jaco, in: International Musician and Recording World August
1978, available online via http://jacopastorius.com/features/interviews/portrait-of-
jaco/.

91 See appendix E.4.
92 For an overview of inding repetitions in symbolic music representations see Berit Janssen

et al.: Discovering repeated patterns in music: state of knowledge, challenges perspectives, in:
Mitsuko Aramaki et al. (eds.): Sound and Muic. 10th International Symposium on Computer
Music Multidisciplinary Research 2013, 2014, pp. 277–297.

93 It remains unclear to some extend if Miles Davis or Charlie Parker is the author. See Jaco
Portrait, p. 6.
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4 Further Investigations

One can try to ind something that could be considered a signature in the terminol-
ogy of David Cope.94 The table in igure 50 on p. 64 is about the interval succession
(

−1 −1 −1 4 3
)

with a tolerance of 2 semitones (i.e. one interval could difer
by a whole tone or two intervals could difer by a semitone each). Although one
rather could call it a motif of Donna Lee, it also can be found in some other works.
But nevertheless one wouldn’t consider it as a characteristic signature, like in the
examples of Cope.

Z �

3

ZZZ
(42)

44�
�� Z ZZ ����� ����

� �33

44
�

� ��

Figure 49: Bar 42–43 of Parker’s Moose the Mooche (left), and bar 33 of Pasto-
rius’ Havona (right). Both share the interval succession in inverted relationship
( −1 3 4 1 −5 2 ).

Finally it should be mentioned that during this project basic approaches to proto-
types for the following have been constructed.95

• A web interface for Markov generation of note sequences. The user inputs a
chord structure into a user interface and one can easily generate some music
using the Markov model. This is quite fast but way less advanced, because
it doesn’t include the optimization procedure. Sheet music can be generated
within the browser by Verovio.96

• A “reason tracker” during the optimization. Every accepted change is tracked
and the objectives that improved are connoted with a reason why the change
has been accepted. For the Markov objectives one can easily ind models in
the corpus, for the correlation objective one can present models as well and for
the Gradient Tree Boosting one can ind the tree that improved most and then
ind the most important feature within that tree. Although it is not always
the reason in a strict sense, at least it is some heuristic that could enable one
to use the modiication for some pedagogical setup.

• It has been tried to use the Automated Analytics view of SAP Predictive Ana-
lytics97 to replace the Gradient Tree Boosting. It performs some kind of pro-
prietary logistic regression that attempts to ind the best model given some

94 Musical Style; Virtual Music; Musical Creativity. Also see section 1.1 on pp. 1 et seqq.
95 See appendix E for the code.
96 http://www.verovio.org
97 http://go.sap.com/product/analytics/predictive-analytics.html
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4 Further Investigations

data in a black box fashion. Although it does not perform as well as Gra-
dient Tree Boosting in terms of the accuracy, in some settings it performed
a remarkable feature selection (i.e. using few features for classifying). See
appendix E for a digital report of these experiments. It is not included in the
printed version of this thesis because after this comparison, the project was
further developed, so it isn’t a fair comparison with the inal Gradient Tree
Boosting results anymore, but it has been one then.
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Figure 50: Examples of Pastorius all containing the interval succession ( −1 −1 −1 4 3 )
with a tolerance of 2 semitones.
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5 Conclusion
5.1 Suggestions for further research
There are dozens of ways of improving aspects of this thesis or adding new interesting
perspectives. Here I want to focus on some aspects, that seem especially promising
for me.

• Speed

The current implementation of the modiication procedure is a proof of concept
and quite slow. This has several reasons. Firstly the project was developed while
programming, so the goal wasn’t clear when starting and so speed was no priority.
Rewriting the software anew with a clear goal surely would result in code, that is
more clean and eicient. A irst attempt would also be to port the project from
Python 2 (current state) to Python 3.

Secondly this project, especially the feature extraction, heavily relies on music21.
music21 is designed for being a solution to all computational-musicological problems,
so the majority of it isn’t needed within this project. So writing a custom, more
specialized music representation and dropping music21 as dependency would clearly
be a beneit in respect to speed. On the other hand that would considerably increase
the amount of code to be maintained in this project.

Another way for gaining speed, would be to use a more directed local search proce-
dure. E.g., if one would not restrict the note events to be discrete, but continuous
one could apply some quasi-Newton method.98 Afterwards the note events could be
quantized again. However, that would require the computing of neighbors as well
as the evaluation of the objectives to be quite fast already, because that is needed
many times by this type of algorithm.

According to Philip N. Johnson-Laird99 “there are only three sorts of algorithm
that could be creative”100. In his terminology probably the project presented in
the present thesis would be a neo-Darwinian one, which is ineicient according to

98 Like the BFGS-method, see Jorge Nocedal/Stephen J. Wright: Numerical Optimization,
2nd ed., New York 2006, pp. 136 et seqq. with the approximated gradient, see ibid., pp. 195
et seqq.

99 Philip N. Johnson-Laird: How Jazz Musicians Improvise, in: Music Perception 19.3 (2002),
pp. 415–442.

100 Ibid., p. 420.
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5.2 Summary Conclusion

him. The suggestion of his research would be to add neo-Lamarckian elements if
the algorithm should create fully creative results.

• Paying more regard to the metrical structure

Since an obvious drawback of the modiication results is the insuicient regard of
the metrical structure, one could try to overcome this by an additional metrical
objective. One could analyze the corpus for often reoccurring metrical patterns and
reward similar patterns during the optimization.

• Relation of Jaco Pastorius and Charlie Parker

There could be more research about the relation of Jaco Pastorius and Charlie Parker
when one would transcribe larger amounts of music by Parker. Then the queries
presented in section 4 could be more fruitful. Besides searching for quotes one could
also search for and analyze sections with similar feature distributions, which would
open a new application of this thesis.

• Music generation based on a theme

Currently an initial state of the music has to be complete for a modiication process.
It would be interesting to extend it the way, that the initial state is only a theme
with chord progression of a couple of bars and from this a larger “improvisation” is
developed. This could have considerable use cases for jazz musicians.

• Using the modiication pedagogical

In section in section 4 I already shortly described a way how to produce “reasons”
for the accepted modiication steps. By enhancing this and properly putting this
into layman’s terms, one could built a pedagogical application with possible use
cases in practical music education.

• Evaluation of modiication procedure

The evaluation of the results of the modiication is very subjective. A systematic
survey among a representative group – people with some experience with jazz at
least – could give empirical evidence concerning the performance of the modiication
procedure.
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5.3 Summary Conclusion

5.2 Summary
In this thesis irstly a novel approach of style classiication was presented. It consists
mainly of Gradient Tree Boosting of several features, many of which are customly
developed, and of chord based Markov models. The classiication results are quite
satisfying. Secondly, this classiication is then used as objective, among others, in a
local search for the sake of style modiication. The objectives try to reward similarity
to Pastorius’ style as well as his type of large scale structure. By that means a given
piece of music can be transformed with the aim of making it closer to the style of
Pastorius. In addition a short introductory overview about some aspects of style
modiication was given, some additional research indings have been presented and
possibilities for further research have been suggested.

The results of the modiication exhibit the desired blending of the style of Pastorius
into an existing piece of music. Nevertheless, usually the result doesn’t achieve
the quality of a real improvisation or composition, mainly because of the lack of
regard to the metrical structure and the lack of data. However, it is considerably
better than purely random modiications and one often can feel the style of Jaco in
the modiied results. This is approved by a bass player who also emphasized the
potential of this method as a tool for learning a musical style. So this approach can
be regarded as quite promising.

5.3 Closing remarks
To round of here is an insightful quotation from a completely diferent area: a
deinition of “stylistic copy” from the perspective of an art historian concerning
German sculptures of the 16th and 17th century.

However, as stylistic copy should be considered an adoption of form, that
wants to give the aura of the ancient, of something longly overcome,
something approved by time to a new work and thereby goes so far that
a utopian identity between present and past is induced [...]101

101 Claude Keisch: Zu einigen Stilkopien in der deutschen Plastik des 16. und 17. Jahrhunderts,
in: Forschungen und Berichte, Bd. 15, Kunsthistorische und volkskundliche Beiträge 1973,
pp. 71–78, p. 71, translation by the author. Original version:

Als Stilkopie hingegen sollte man nur eine Formenübernahme bezeichnen, die dem
neuen Werk die Aura des Alten, seit langem Überkommenen, durch die Zeit
Bestätigten vermitteln möchte und dabei so weit geht, eine utopische Identität
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5.3 Closing remarks Conclusion

With this in mind, I hope this thesis partly enables to induce such a utopian identity.
The method presented has been tailored to the monophonic bass guitar music of Jaco
Pastorius, but it could also be extended to other monophonic types of music and
diferent style, as appropriate with custom feature extractors and music data.

As for myself, I learned much during this project: Dealing with data science and
symbolic music processing as well as working in an professional environment are
valuable experiences that inluenced me in a positive manner, not least qualiied
myself for a position as research fellow as from October at Saarland University
where my activity with music processing will continue.

zwischen dem Gegenwärtigen und dem Vergangenen herzustellen [...]
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D E-Mail from Hal Leonard Product Support
Sender Hal Leonard Product Support <halinfo3@halleonard.com>
Sent July 23, 2015 13:17 -0500 (CST)

Thank you for your email,

We spoke to our production editor and they were able to provide the
following information for you:

Martin Shellard did the arrangements and can be considered the ‘author’.
Martin worked from existing transcriptions from our various Charlie
Parker publications.

We hope this helps with your research.

Sincerely,
Hal Leonard Product Support

Sender Frank Zalkow <frank_zalkow@web.de>
Sent July 23, 2015 11:09 -0500 (CST)

Dear Sir or Madam,

for my Master's thesis I am consulting “Charlie Parker for Bass” (Hall
Leonard, 2014). For quoting I would like to know, who 1.) transcribed
the songs and 2.) who arranged them for bass. I also would like to
know who is considered the author or editor of this volume.

Thanks a lot for any information and best wishes,

Frank Zalkow
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E Digital appendix

E.1 CD-R
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E.2 Directory structure
/

modification ............ Contains MusicXML and MIDI iles for the exam-
ples of section 3.4.

sklearn_vs_sappa........Contains iles related to the comparison of SAP
Predictive Analytics and scikit-learn’s Gradient
Tree Boosting, mentioned in section 4. See the
ile README.md there for further information, us-
age instructions and dependencies.

src.......................Contains the main source code of the thesis, in-
cluding multiple scripts and utilities for diferent
tasks. See the ile README.md there for further in-
formation, usage instructions and dependencies.

data_guitarpro. ...... Contains the Guitar Pro data corpus, see appendix
E.3, including several computed iles from that,
e.g. extracted features and iles for the Markov
model.

data_transcribed.....Contains the transcribed data corpus, see ap-
pendix E.4, including several computed iles from
that, e.g. extracted features and iles for the
Markov model.

jacolib................Contains the main library, used all over the place
in all scripts of this digital appendix.

transcriptions..........Contains the Lilypond iles that made up the tran-
scribed data corpus as well as scripts for converting
them into formats to be processed by other scripts.
See the ile README.md there for further informa-
tion, usage instructions and dependencies.

brahms
escaida
jaco
parker
wooten

web_ui. .................. Contains iles for the browser interface for gener-
ating music by the Markov models, mentioned in
section 4. See the ile README.md there for further
information, usage instructions and dependencies.

79



E Digital appendix APPENDICES

E.3 Pieces collected as Guitar Pro iles

Marcus Miller

• Marcus Miller: Bruce Lee
• Marcus Miller: Bruce Lee
• Marcus Miller: Frankenstein
• Luther Vandross: If Only for One

Night
• Marcus Miller: Introduction
• Boz Scaggs: Lowdown
• Marcus Miller: Mr Pastorius
• Luther Vandross: Never Too Much
• Marcus Miller: People Make The

World Go Round
• Marcus Miller: Power
• Marcus Miller: Rampage
• Marcus Miller: Run for Cover
• Luther Vandross: She’s A Super

Lady

Jaco Pastorius

• Weather Report: A Remark You
Made

• Jaco Pastorius: Amerika
• Weather Report: Barbary Coast
• Weather Report: Birdland
• Weather Report: Black Market
• Jaco Pastorius: Blackbird
• Pat Metheny: Bright Size Life
• Johann S. Bach: Chromatic Fantasy
• Jaco Pastorius: Come On, Come

Over
• Jaco Pastorius: Continuum
• Charlie Parker Donna Lee
• Joni Mitchell: Dry Cleaner From

Des Moines
• Weather Report: Elegant People
• Jaco Pastorius: Havona
• Jaco Pastorius: Jam In E
• Mike Stern: Mood Swings
• Jaco Pastorius: Opus Pocus
• Weather Report: Palladium
• Wayne Shorter: Port Of Entry
• Jaco Pastorius: Portait Of Tracy
• Jaco Pastorius: Punk Jazz
• Jaco Pastorius: Reza
• Jaco Pastorius: Slang
• Weather Report: Teentown
• Jaco Pastorius: The Chiken
• Jaco Pastorius: (Used To Be A) Cha

cha
• Jaco Pastorius: Word Of Mouth
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E.4 Transcribed pieces

Jaco Pastorius

• Pat Metheny: Bright
Size Life

• Charlie Parker:
Donna Lee

• Jaco Pastorius:
Havona

• Wayne Shorter: Port
Of Entry

• Jaco Pastorius: Punk
Jazz

• Jaco Pastorius: Slang
• Henry Mancini: The

Days of Wine and
Roses

• Jaco Pastorius: (Used
To Be A) Cha Cha

Charlie Parker

• Charlie Parker and
Dizzy Gillespie: An-
thropology

• Charlie Parker:
Moose the Mooche

• Charlie Parker and
Bennie Harris: Or-
nithology

• Charlie Parker: Yard-
bird Suite

Victor Wooten

• Victor Wooten: A
Show of Hands

• Bela Fleck, Victor
Wooten and Howard
Levy: Blu-Bop

• Ray Noble: Cherokee
(Indian Love Song)

• Victor Wooten: Clas-
sical Thumb

• John Lennon and
Paul McCartney:
Norwegian Wood
(This Bird Has
Flown)

• Victor Wooten: Sex in
a Pan

• Bela Fleck: Sinister
Minister

• Victor Wooten and
Bela Fleck: Stomping
Grounds
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F Used feature extractors from music21
See Cory McKay’s PhD105 and music21’s reference106 for a description of the feature
extractors. There is one dimension per feature if not stated otherwise.

music21.features.jSymbolic.AmountOfArpeggiationFeature
music21.features.jSymbolic.AverageMelodicIntervalFeature
music21.features.jSymbolic.AverageNoteDurationFeature
music21.features.jSymbolic.AverageTimeBetweenAttacksFeature
music21.features.jSymbolic.AverageVariabilityOfTimeBetweenAttacksForEachVoiceFeature
music21.features.jSymbolic.BasicPitchHistogramFeature (128 dimensions)
music21.features.jSymbolic.ChangesOfMeterFeature
music21.features.jSymbolic.ChromaticMotionFeature
music21.features.jSymbolic.CompoundOrSimpleMeterFeature
music21.features.jSymbolic.DirectionOfMotionFeature
music21.features.jSymbolic.DistanceBetweenMostCommonMelodicIntervalsFeature
music21.features.jSymbolic.DurationFeature
music21.features.jSymbolic.DurationOfMelodicArcsFeature
music21.features.jSymbolic.FifthsPitchHistogramFeature (12 dimensions)
music21.features.jSymbolic.ImportanceOfBassRegisterFeature
music21.features.jSymbolic.ImportanceOfHighRegisterFeature
music21.features.jSymbolic.ImportanceOfMiddleRegisterFeature
music21.features.jSymbolic.InitialTimeSignatureFeature (2 dimensions)
music21.features.jSymbolic.IntervalBetweenStrongestPitchClassesFeature
music21.features.jSymbolic.IntervalBetweenStrongestPitchesFeature
music21.features.jSymbolic.MaximumNoteDurationFeature
music21.features.jSymbolic.MelodicIntervalHistogramFeature (128 dimensions)
music21.features.jSymbolic.MinimumNoteDurationFeature
music21.features.jSymbolic.MostCommonMelodicIntervalFeature
music21.features.jSymbolic.MostCommonMelodicIntervalPrevalenceFeature
music21.features.jSymbolic.MostCommonPitchClassFeature
music21.features.jSymbolic.MostCommonPitchClassPrevalenceFeature
music21.features.jSymbolic.MostCommonPitchFeature
music21.features.jSymbolic.MostCommonPitchPrevalenceFeature
music21.features.jSymbolic.NoteDensityFeature
music21.features.jSymbolic.NumberOfCommonMelodicIntervalsFeature
music21.features.jSymbolic.NumberOfCommonPitchesFeature
music21.features.jSymbolic.PitchClassDistributionFeature (12 dimensions)
music21.features.jSymbolic.PitchClassVarietyFeature
music21.features.jSymbolic.PitchVarietyFeature
music21.features.jSymbolic.PrimaryRegisterFeature
music21.features.jSymbolic.QuintupleMeterFeature
music21.features.jSymbolic.RangeFeature
music21.features.jSymbolic.RelativeStrengthOfMostCommonIntervalsFeature
music21.features.jSymbolic.RelativeStrengthOfTopPitchClassesFeature
music21.features.jSymbolic.RelativeStrengthOfTopPitchesFeature
music21.features.jSymbolic.RepeatedNotesFeature
music21.features.jSymbolic.SizeOfMelodicArcsFeature
music21.features.jSymbolic.StaccatoIncidenceFeature
music21.features.jSymbolic.StepwiseMotionFeature
music21.features.jSymbolic.TripleMeterFeature
music21.features.jSymbolic.VariabilityOfTimeBetweenAttacksFeature
music21.features.native.FirstBeatAttackPrevalence
music21.features.native.MostCommonNoteQuarterLengthPrevalence
music21.features.native.MostCommonNoteQuarterLength
music21.features.native.RangeOfNoteQuarterLengths
music21.features.native.TonalCertainty
music21.features.native.UniqueNoteQuarterLengths

105 jMIR.
106 http://web.mit.edu/music21/doc/moduleReference/
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