DOCsys - English Translation of the Graphical User Interface (GUI)

DOCsys - system.db		_ 0 X
<u>D</u> atei <u>B</u> earbeiten Be <u>r</u> echnen		<u>H</u> ilfe
Flugzeugdaten	Flugmissionsdaten	
Max. Abflugmasse, MTOW [kg] 540000	Flugzeit (airborne time), FT [s]	36000
Max. Masse ohne Kraftstoff, MZFW [kg] 356000	Reiseflughöhe, h_CR [m]	11887
Anzahl der Triebwerke, n_engine [-]	Fluggeschwindigkeit - Steigflug	j, v_CLB_TAS [m/s] 220.5
L/D im Steigflug, L/D_CLB [-] 20.1	Fluggeschwindigkeit - Reiseflug	g, v_CR_TAS [m/s] 251
L/D im Reiseflug, L/D_CR [-] 20.1	Fluggeschwindigkeit - Sinkflug,	v_DES_TAS [m/s] 155.4
L/D im Sinkflug, L/D_DES [-] 20.1	Steigrate, ROC [m/s]	6.35
Triebwerkstyp RR-Trent900	Sinkrate, ROD [m/s]	6.5
	Anzahl der Flüge pro Jahr, NFY [[-] 436
allgemeine Systemdaten	weitere Systemdaten zu DOC-E	Bestandteilen
ATA-Kapitel ATA 38 Wasseranlage	▼ <u>A</u> bschreibung	Kraftstoff für <u>v</u> ariable Massen
Systempreis, PriceSys [US\$] 355661	<u>W</u> artung	Kraftstoff für Wellenleistung
Ökonomische Daten	Verspä <u>t</u> ung	Kraftstoff für Zapfluft
Stundensatz, LR [US\$] 69	<u>E</u> rsatzteilbevorratung	Kraftstoff für <u>S</u> tauluft
Kraftstoffpreis, FuelPrice [US\$/kg] 0.2	Kraftstoff für <u>f</u> ixe Massen	Kraftstoff für Widerstand
Manustonpiers, rueirnice (05\$/kg) 0.2		

Datei = File with New, Open ..., Save, Save as ..., Print, Exit

Bearbeiten = Edit with Cut, Copy, Paste

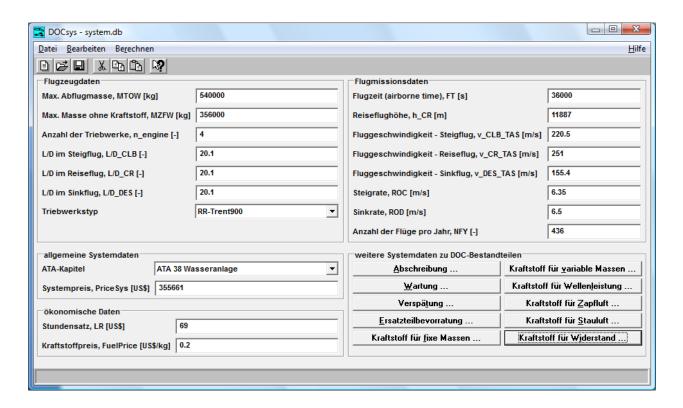
Berechnen = Calcute with DOCsys, Extended DOCsys

Window Top Left:

Flugzeugdaten = Aircraft Data with:

Max. Take-Off Mass, MTOW
Max. Zero Fuel Mass, MZFW
Number of Engines, n_engine
L/D in Climb, L/D_CLB
L/D in Cruise, L/D_CR
L/D in Descent, L/D_DES
Type of Engine

Window Top Right:


Flugmissionsdaten = Flight Mission Data with:

Cruise Altitude, h CR

Aircraft Speed – Climb, v_CLB_TAS Aircraft Speed – Cruise, v_CR_TAS Aircraft Speed – Descent, v_DES_TAS

Rate of Climb, ROC Rate of Descent, ROD

Number of Flights per Year, NFY

Window Bottom Left:

allgemeine Systemdaten = General System Data with

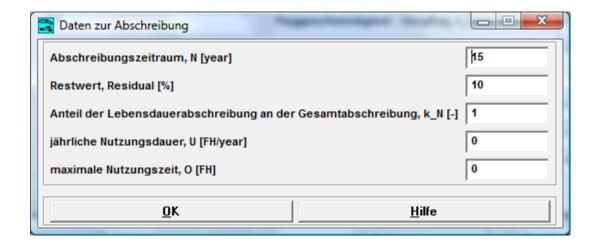
ATA-Chapter

ökonomische Daten = Economic Data with

Labor Rate, LR

Window Bottom Right:

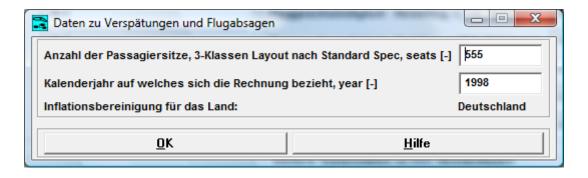
weitere Systemdaten zu DOC-Bestandteilen = More System Data for DOC Cost Components

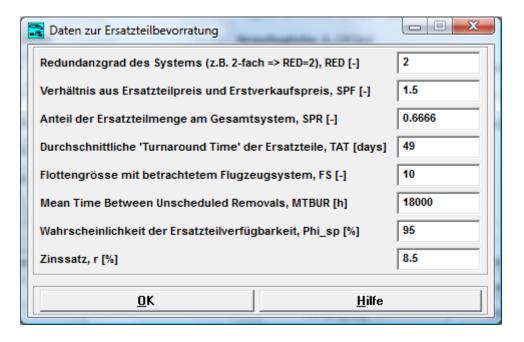

Left Column

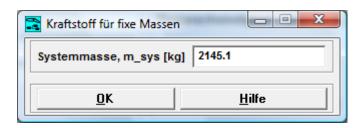
Abschreibung = Depreciation
Wartung = Maintenance
Ersatzteilbevorratung = Spare Holding
Kraftstoff für fixe Massen = Fuel for Fixed Mass

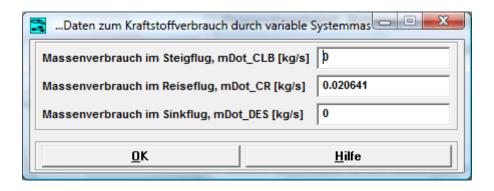

Right Column

Kraftstoff für variable Massen = Fuel for Variable Mass
Kraftstoff für Wellenleistung = Fuel for Shaft Power
Kraftstoff für Zapfluft = Fuel for Bleed Air
Kraftstoff für Stauluft = Fuel for Ram Air

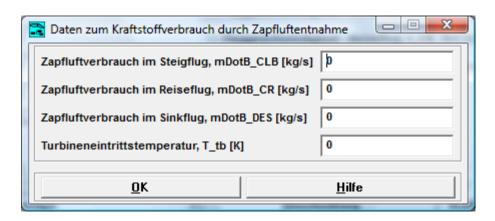

Kraftstoff für Widerstand = Fuel for (Additional) Drag

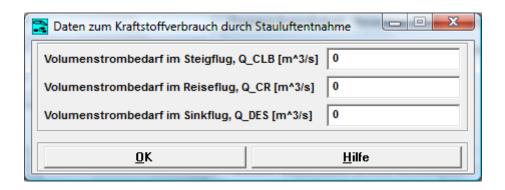

Time of Depreciation, N
Residual Value, Residual
Share of Life Time Dependant Depreciation in Total Depreciation, k_N
Annual Utilization, U
Maximum Utilization, O


Maintenance Hours per Flight Hour and System 'On Aircraft', MMH_on Maintenance Hours per Flight Hour and System 'Off Aircraft', MMH_off Material Costs per Flight Hour and System, MC

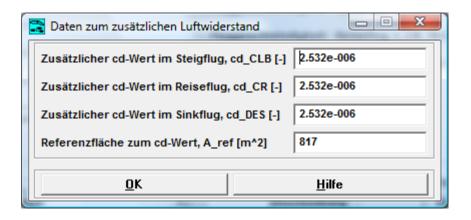

Number of Passenger Seats, 3-Class Layout according to Specification, seats Calendar Year for which the Calculation is Done, year Inflation Data Taken for the Country [specified in separate file]:

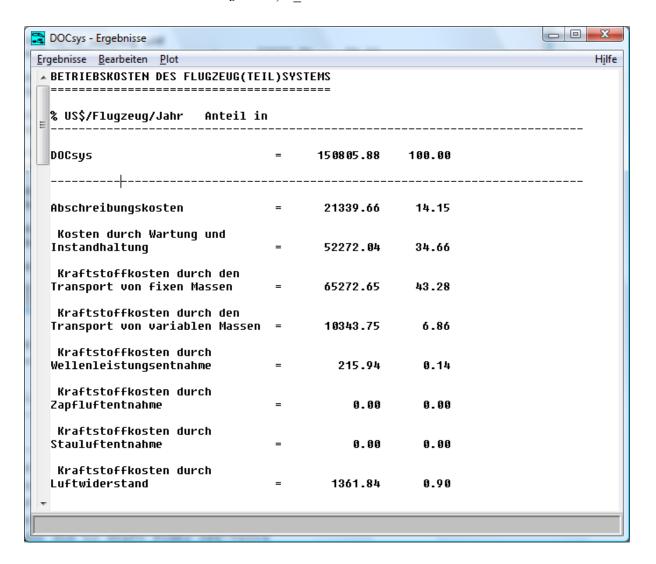
Redundancy Level of the System (e.g. 2-fold => RED=2), RED
Ratio of Spare Part Price versus Initial Purchase Price [new aircraft], SPF
Share of Spares in Total System, SPR
Average 'Turnaround Time' of Spare Parts, TAT
Fleet Size of the Fleet that Includes Aircraft System under Consideration, FS
Mean Time Between Unscheduled Removals, MTBUR
Probability of Spare Part Availablility, Phi_sp
Interest Rate, r


System Mass [fixed], m_sys


Mass Consumption in Climb, mDot_CLB Mass Consumption in Cruise, mDot_CR Mass Consumption in Descent, mDot_DES

Daten zum Kraftstoffverbrauch du	ırch Wellenleist	ungsentna 🖳 🗀 🔀
Wellenleistungsentnahme im Steigfl	ug, P_CLB [W]	2301
Wellenleistungsentnahme im Reiseflug, P_CR [W]		2301
Wellenleistungsentnahme im Sinkflug, P_DES [W]		2301
<u>o</u> k		<u>H</u> ilfe


Shaft Power Off-Takes in Climb, P_CLB Shaft Power Off-Takes in Cruise, P_CR Shaft Power Off-Takes in Descent, P_DES


Bleed Air Off-Takes in Climb, mDotB_CLB Bleed Air Off-Takes in Cruise, mDotB_CR Bleed Air Off-Takes in Descent, mDotB_DES

Ram Air Requirements in Climb, Q_CLB Ram Air Requirements in Cruise, Q_CR Ram Air Requirements in Descent, Q_DES

Additional C_D-Value in Climb, cd_CLB Additional C_D-Value in Cruise, cd_CR Additional C_D-Value in Descent, cd_DES Referenz Area for Calculation of C_D-Value, A_ref

Ergebnisse = Results

Bearbeiten = Edit with Copy

Plot = Plot [Opens Bar Chart in Gnuplot]

jebnisse <u>B</u> earbeiten <u>P</u> lot				H
BETRIEBSKOSTEN DES FLUGZEUG(TEI	•			
		====		
% US\$/Flugzeug/Jahr Anteil in	l			
DOCsys	=	150805.88	100 00	
-				
Abschreibungskosten	=	21339.66	14.15	
		2.007.00		
Kosten durch Wartung und		F0070 0b	01-77	
Instandhaltung	=	52272.04	34.66	
Kraftstoffkosten durch den				
Transport von fixen Massen	=	65272.65	43.28	
Kraftstoffkosten durch den				
Transport von variablen Massen	=	10343.75	6.86	
Kraftstoffkosten durch Wellenleistungsentnahme	_	215.94	0.14	
wellenielscungsenchanme	_	213.74	0.14	
Kraftstoffkosten durch				
Zapfluftentnahme	=	0.00	0.00	
Kraftstoffkosten durch				
Stauluftentnahme	=	0.00	0.00	
Kraftstoffkosten durch				
Kraftstoffkosten uurch Luftwiderstand	=	1361.84	0.90	

OPERATING COST OF THE AIRCRAFT (SUB) SYSTEM

% US\$/Aircraft/Year Share in

DOCsys

DOCSYS

Depreciation

Costs due to Maintenance and Overhaul

Fuel Costs due to Fixed Mass $\,$

Fuel Costs due to Variable Mass

Fuel Costs due to Shaft Power Off-Takes

Fuel Costs due to Bleed Air

Fuel Costs due to Ram Air

Fuel Costs due to (Additional) Drag

FURTHER SINGLE RESULTS ACCORDING TO FLIGHT PHASE

Fuel Consumption and Costs due to Transport of Fixed Mass (1.

Fuel Consumption and Costs due to Transport of Variable Mass (2.

Fuel Consumption and Costs due to Shaft Power Off-Takes (3.

Fuel Consumption and Costs due to Bleed Air (4.

Fuel Consumption and Costs due to Ram Air (5.

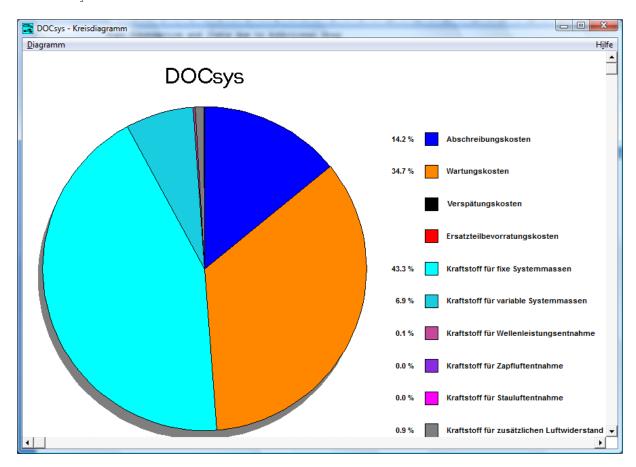
Fuel Consumption and Costs due to Additional Drag (6.

INTERMEDIATE RESULTS

Duration of Climb

Duration of Cruse

Duration of Descent


related to 2: Change of Mass due to Variable Mass

related to 6: Additional Drag

related to 5 and 6: Air Density

Air Density in Cruise Altitude

Air Density in One Half of Cruise Altitude Used to Calculate Climb and Descent

Depreciation

Maintenance Costs

Delay Costs

Spare Holding Costs

Fuel Costs for Fixed Mass

Fuel Costs for Variable Mass

Fuel Costs due to Shaft Power Off-Takes

Fuel Costs due to Bleed Air

Fuel Costs due to Ram Air

Fuel Costs due to Additional Drag