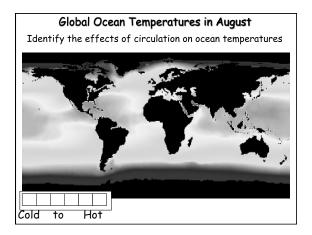
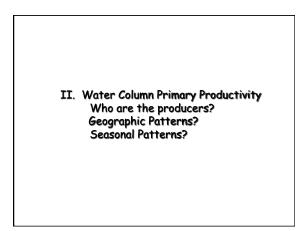
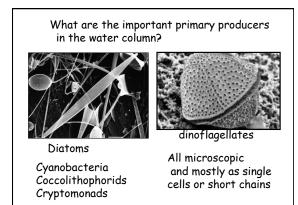
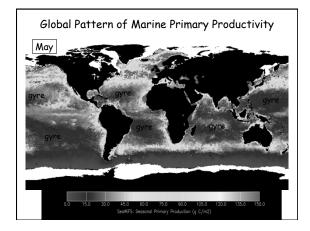


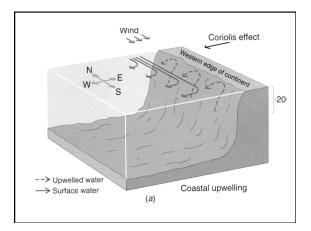
- I. Ocean Circulation
- II. Water Column Production
 - A. Coastal Oceans
 - B. Open Oceans
 - E. Micronutrients
 - F. Harmful Algal Blooms
- III. Zooplankton and Nekton

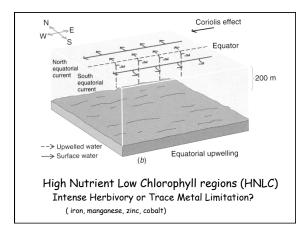

Includes the coastal zone and the pelagic zone, the realm of the oceanographer

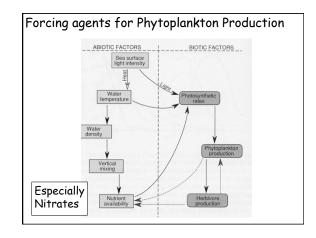


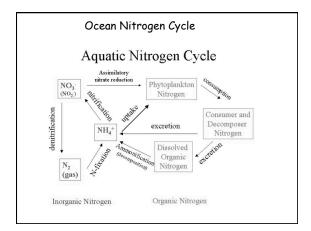


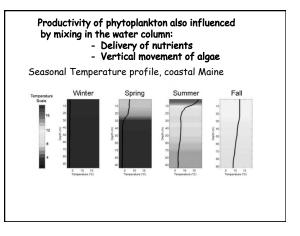


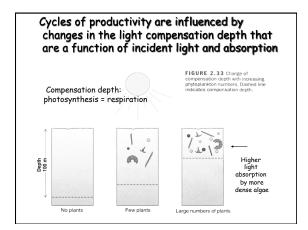


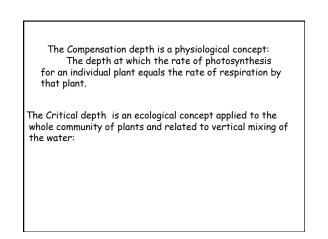


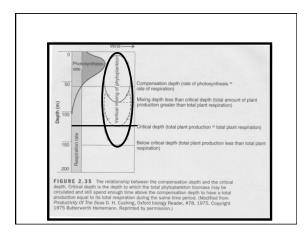


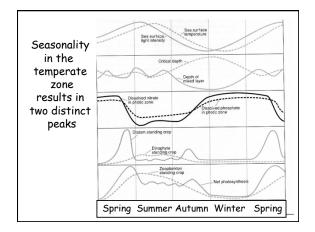

Production by	Tab	ole 9.1						
phytoplankton	Typical rates of primary producti	ion in various marine environments*						
is generally	ENVIRONMENT	RATE OF PRODUCTION (grams of carbon fixed/m ² /yr)						
lower than		Invironments						
that of bottom plants	Arctic Ocean	0.7-1						
	Southern Ocean (Antarctica)	40-260						
	Subpolar seas	50-110						
	Temperate seas (oceanic)	70-180						
	Temperate seas (coastal)	110-220						
	Central ocean gyres**	4-40						
	Equatorial upwelling areas**	70-180						
	Coastal upwelling areas**	110-370						
	Benthic I	Benthic Environments						
	Salt marshes	260-700						
	Mangrove forests	370-450						
	Seagrass beds	550-1,100						
	Kelp beds	640-1,800						
	Coral reefs	1,500-3,700						
	Terrestrial Environments							
	Extreme deserts	0-4						
	Temperate farmlands	550-700						
	Tropical rain forests	460-1,600						

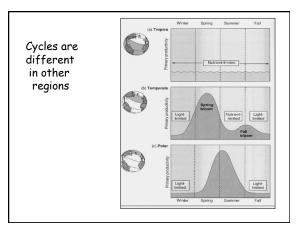






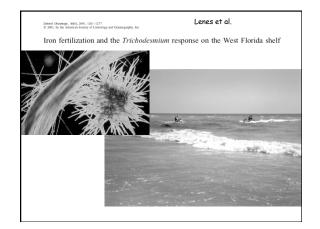


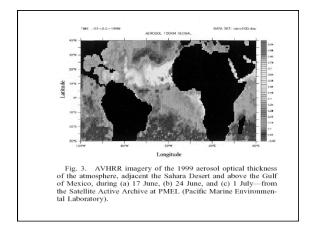


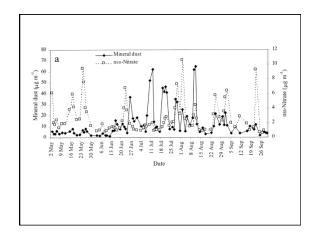

The Compensation depth is a physiological concept: The depth at which the rate of photosynthesis for an individual plant equals the rate of respiration by that plant.

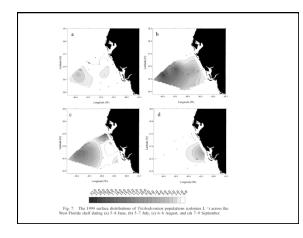
The Critical depth is an ecological concept applied to the whole community of plants and related to vertical mixing of the water:

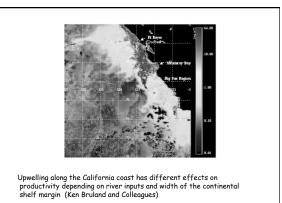
It is the depth to which the total phytoplankton biomass may be circulated and still spend sufficient time above the compensation depth to have the total production equal the total respiration for a given time period Thus the depth of vertical mixing is another important determinant of productivity

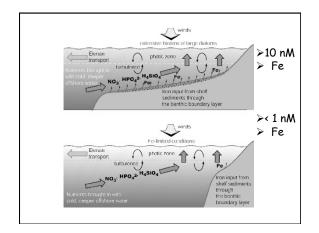


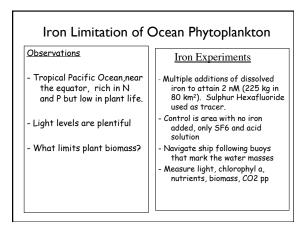


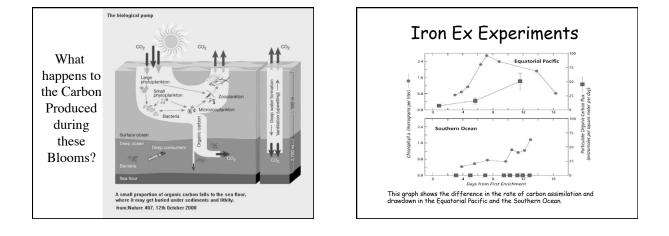


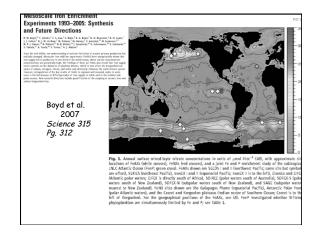

Ecology of the Water Column (Biological Oceanography)


- I. Ocean Circulation
- II. Water Column Production
 - A. Coastal Oceans
 - B. Open Oceans
 - E. Micronutrients
 - F. Harmful Algal Blooms
- III. Zooplankton and Nekton



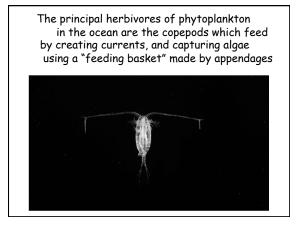


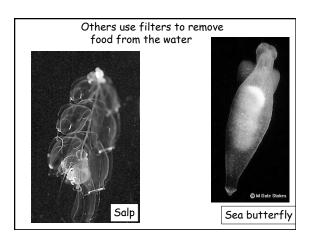


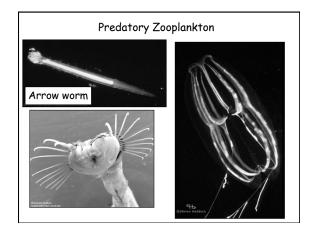


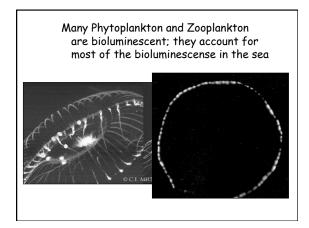
- Photosynthetic capacity: immediate and sustained increases.
- Phytoplankton Growth rate: doubled, abundance increased 20x.
- Nitrate concentrations: declined by half.
- Shift dominance to larger diatoms; release control by herbivory

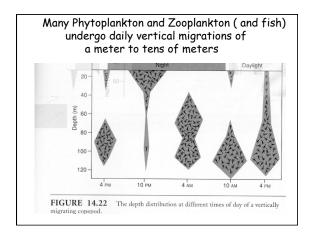
		nent experiments taken from the US JGOFS lux Study) newsletter					
Experiment	Date	Results					
IronExI	1993	3-fold increase in chlorophyll					
IronExII	1996	10-fold increase in chlorophyll, 90µatm drawdown in CO2					
SOIREE	1999	6-fold increase in chlorophyll, 25µatm drawdown in CO					
EisenEx	2000	4-fold increase in chlorophyll					
SEEDS	2001	40-fold increase in chlorophyll					
SOFeX (N)	2002	Greater than 10-fold increase in chlorophyll, Greater than 40µatm drawdown in CO2					
SOFeX (S)	2002	Greater than 10-fold increase in chlorophyll, Greater than 40µatm drawdown in CO2					
SERIES	2002	Greater than 10-fold increase in chlorophyll					




details, see (#)) conditions, ecosy climate, defined a mixed layer, was is mean mixed-lay vertical light atte	stem structo is the mean calculated ac ver inradiance	ure, and l irradiance cording to e (FAR), h	tiogeocher available 1 / _ Je 1 - is the se	mical resp to phytopla exp(=K_z)) bourface P/	nses. Lig nkton in t K.z. where R. X. is t	ht thed he ∆DK sJ chan he that	ata on mixe denote ma pe fielative	d-layer de sómum m to the su currently	pth (MLD). inus initial rrounding available.	Terms pre concents HNLC wat The ratio	fixed wit attores; in ansi; bla af maxim	integral by using th a delta such as k, no significant nut cells indicate num to minimum
Property	ا XBnorl (بی)	Iron EX. II (30)	501REE (49)	Eisen Ex (56)	SEEDS (5.7)	50 FEX-S (54, 58)	SOFEK-N (5 <i>8</i>)	EIFEX (45)	5E 10 ES (127)	S EEDS 11 (59)	54GE (59)	Fee.P (59)
Fe added (kg)	450	450	1750	2350	350	1300	1700	2820	490	480	1100	1890
Tempeature (*Q	23	25	2	3 10 4	11	-1	5	4 10 5	13	9 10 12	11.8	21
Season	Fall	Summer	Summer	Spring	Summer	Summer	Summer	Summer	Summer	Summer	Fall	Spring
light climate lumol ouanta	254 Ima20 to	21.6 to	59 to 33	82 10	178 to	103 to 62	125 10		172 10		59 to 52	
m ⁻² x ⁻¹)	(mably to 230 (min)	108	35	40	29	95	74		12		25	
Dilution ate (day ⁻¹)	0.27	0.58	0.07	0.04 to 0.43	0.05	0.08	0.1		0.07 to 0.15			0.4
chlorophyll, z = 0 Ima m ⁻²)	0.2	0.2	0.2	0.5	0.9	0.2	0.3	0.6	0.A	0.8	0.6	0.04
Chlorophyll, matrimum Ima m ⁻⁹)	0.5	33	2.3	2.8	23.0	2.5	2.4	3.0	5.5	2,4	1.3	0.07
ALL (m)	35	40*	65*	80*	13	35	45	100	30*	30	70*	30*
bloom phase	Evolving	Decline	Evolving	Evolving	Erolying	Evolving	Evolving	Partial	Decline	Evolving	No	No
duration,	ເຈ	(17)	(12)	(21)	(00)	1280	(27)	decline,	(25)	(25)	bloom	bloom
daya)	subducted						subducted	evoMing 137)			цŋ	UN
5DK (mmol m ⁻²)	6	26	17	14	58	21	13		26		ĸ	<1
SDNS lumol m ⁻²)	0.8	1.8	2.9	1.3, then to 0†	ĸ	nc	In: reased		8.5, then to -5.7†	n:	ĸ	nc .
phytoplantion	litted	Diatom	Diatom	Diatom	Diatom	Diatom	Mixed	Diatom	Diatom	Albed	Milled	Cyan obacteria Pro chloro coccus
Daport	nc	increase	ec.	nc	inc.	Increase	Increase5	Increase	acrease.	nc i	ec.	
Mesosooplantion stocts	Increased	Increase	ac.	nc	nc	nc	n:	Increase	Increase	In: mase	nc	mc.
Primary production (mat/min_matio)	4	6	9	4	4	6	10	2	50		2	1.7




- I. Ocean Circulation
- II. Water Column Production
 - A. Coastal Oceans
 - B. Open Oceans
 - E. Micronutrients
 - F. Harmful Algal Blooms
- III. Zooplankton and Nekton


The Meroplankton are the drifting larvae of bottom-dwelling animals

