Ecology of the Water Column
(Biological Oceanography)

I. Ocean Circulation

II. Water Column Production
A. Coastal Oceans
B. Open Oceans
E. Micronutrients
F. Harmful Algal Blooms

ITI. Zooplankton and Nekton

Includes the coastal zone and the pelagic zone,
the realm of the oceanographer

Intertidal

A Neritic
High tide mark e N Pelagic
Low tide m: o TN
\

,,,,,, = Oceanic

Hadopelagic

The water column is also important to benthic production
over a great part of the ocean

I. Ocean Circulation

Winds and coriolis forces push waters to the
right in the northern hemisphere, left in the South

Because of the Coriolis Effect, surface currents
do not move parallel to the wind but at an angle
of 45 deg. from wind direction

In the main ocean basins, the currents form
circular systems (gyres) that dominate global
circulation and climate.




6Global Ocean Temperatures in August
Identify the effects of circulation on ocean temperatures

II. Water Column Primary Productivity
Who are the producers?
Geographic Patterns?

Seasonal Patterns?

What are the important primary producers
in the water column?

Diatoms

) All microscopic
Cyanobacteria and mostly as single
Coccolithophorids cells or short chains
Cryptomonads
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Global Pattern of Marine Primary Productivity
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(b)

High Nutrient Low Chlorophyll regions (HNLC)
Intense Herbivory or Trace Metal Limitation?

(iron, manganese, zinc, cobalt)

Forcing agents for Phytoplankton Production

Especially
Nitrates

Ocean Nitrogen Cycle

Aquatic Nitrogen Cycle
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Productivity of phytoplankton also influenced
by mixing in the water column:

- Delivery of nutrients

- Vertical movement of algae

Seasonal Temperature profile, coastal Maine

Winter Spring Summer Fall

Cycles of productivity are influenced by
changes in the light compensation depth that
are a function of incident light and absorption

Compensation depth:
photosynthesis = respiration
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The Compensation depth is a physiological concept:
The depth at which the rate of photosynthesis
for an individual plant equals the rate of respiration by
that plant.

The Critical depth is an ecological concept applied to the
whole community of plants and related to vertical mixing of
the water:




The Compensation depth is a physiological concept: SE—
The depth at which the rate of photosynthesis 3

for an individual plant equals the rate of respiration by
that plant.

Compensation depth (rate of photosynthesis =
rate of respiration)

The Critical depth is an ecological concept applied to the
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Productivity Of The Seas D. H. Cushing, Oxford biology Reader, #78, 1975. Copyright
1975 Butterworth Heinemann. Reprinted by permission.)
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Fig. 3. AVHRR imagery of the 1999 aerosol optical thickness
of the e, adjacent the Sahara Desert and above the Gulf
of V 2 (a) 17 June, (b) 24 June, and (c) 1 July
the Sa Active Archive at PMEL (Pacific Marine Environmen-
tal Laboratory).
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Upwelling along the California coast has different effects on
productivity depending on river inputs and width of the continental
shelf margin (Ken Bruland and Colleagues)
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Iron Limitation of Ocean Phytoplankton

Observations

- Tropical Pacific Ocean,hear
the equator, richinN
and P but low in plant life.

- Light levels are plentiful

- What limits plant biomass?

Iron Experiments

- Multiple additions of dissolved
iron to attain 2 nM (225 kg in
80 km?). Sulphur Hexafluoride
used as tracer.

- Control is area with no iron
added, only SF6 and acid
solution

- Navigate ship following buoys
that mark the water masses

- Measure light, chlorophyl a,
nutrients, biomass, CO2 pp




+ Photosynthetic capacity: immediate and sustained increases.

+ Phytoplankton Growth rate: doubled, abundance increased 20x.
+ Nitrate concentrations: declined by half.

+ Shift dominance to larger diatoms; release control by herbivory

Iron Ex Experiments

Results of iron enrichment experiments taken from the US JGOFS
(Joint Global Ocean Flux Study) newsletter

Experiment | Date Results
TronExI 1993 | 3-fold increase in chlorophyll
TronExIT 1996 | 10-fold increase in chlorophyll, 90y atm drawdown in
CO2
SOIREE 1999 | 6-fold increase in chlorophyll, 25patm drawdown in CO2
EisenEx 2000 | 4-fold increase in chlorophyll
SEEDS 2001 | 40-fold increase in chlorophyll

SOFeX (N) 2002 | Greater than 10-fold increase in chlorophyll,
Greater than 40patm drawdown in CO2

SOFeX (S) 2002 | Greater than 10-fold increase in chlorophyll,
Greater than 40y atm drawdown in CO2

SERIES 2002 | Greater than 10-fold increase in chlorophyll

The biological pump
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A small proportion of organic carbon falls to the sea floor,
where it may get buried under sediments and lithity.

from:Nature 407, 12th October 2000

Tron
Experiments 1993-2005: Synthesis
and Future Directions

Boyd et al.
2007
Science 315

Pg. 312
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This graph shows the difference in the rate of carbon assimilation and
drawdown in the Equatorial Pacific and the Southern Ocean.
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The Meroplankton are the drifting

larvae of bottom-dwelling animals
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Others use filters to remove

The principal herbivores of phytoplankton food from the water

in the ocean are the copepods which feed
by creating currents, and capturing algae
using a “feeding basket” made by appendages

Many Phytoplankton and Zooplankton
are bioluminescent; they account for

Predatory Zooplankton
most of the bioluminescense in the sea

Arrow worm




Many Phytoplankton and Zooplankton (and fish)
undergo daily vertical migrations of
a meter to tens of meters
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FIGURE 14.22  The depth distribution at different times of day of a vertically

The nekton consists mostly of Larger,
IV. The Nekton predatory type animals

migrating copepod.
V. Water [2* A
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The microbial food web, an important
component of water column trophic dynamics

To Zooplankton K

Protozoan grazers




