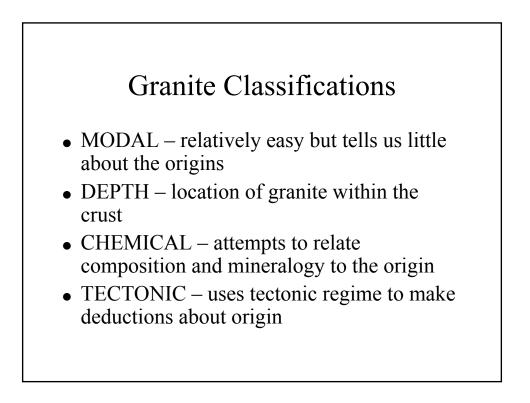
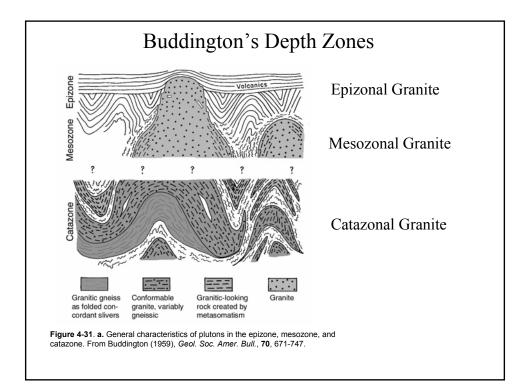
Lecture 25 Granites

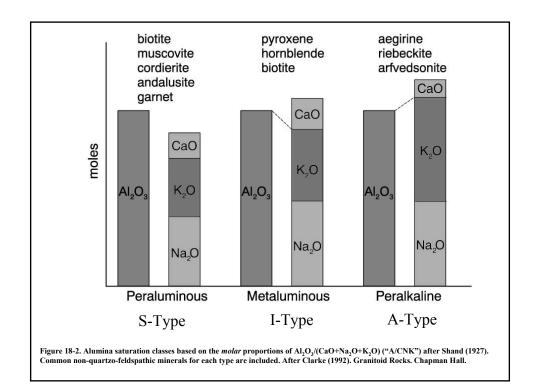
Wednesday, May 4th, 2005

Chapters 17 & 18: Granitoid Rocks

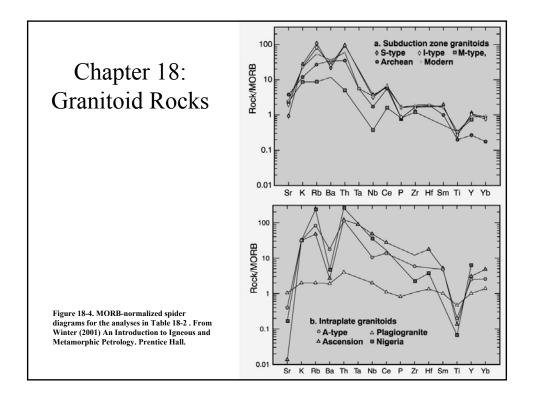

"Granitoids" (*sensu lato*): loosely applied to a wide range of felsic plutonic rocks (granite (*sensu stricto*), granodiorite, tonalite

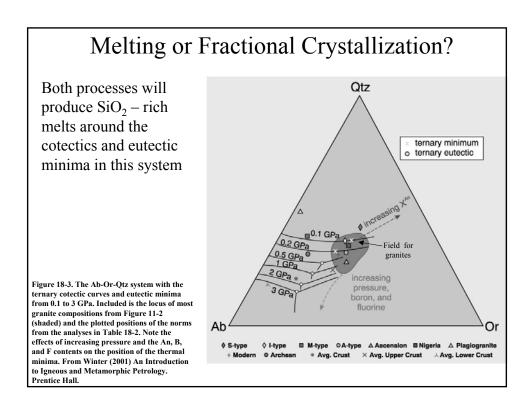

- Associated volcanics occur and have same origin, but are frequently eroded away
- Typically associated with diorites and gabbros in granitic batholiths
- Granitoids are the most abundant plutonic rocks in the upper continental crust
- Origins are diverse and very controversial!

Chapter 18: Granitoid Rocks


A few broad generalizations:

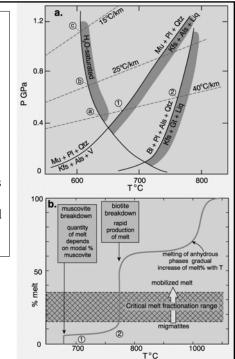
- Most granitoids of significant volume occur in areas where the continental crust has been thickened by orogeny, either continental arc subduction or collision of sialic masses. Many granites, however, may postdate the thickening event by tens of millions of years.
- 2) Because the crust is solid in its normal state, some thermal disturbance is required to form granitoids
- 3) Most workers are of the opinion that the majority of granitoids are derived by crustal anatexis, but that the mantle may also be involved. The mantle contribution may range from that of a source of heat for crustal anatexis, or it may be the source of material as well

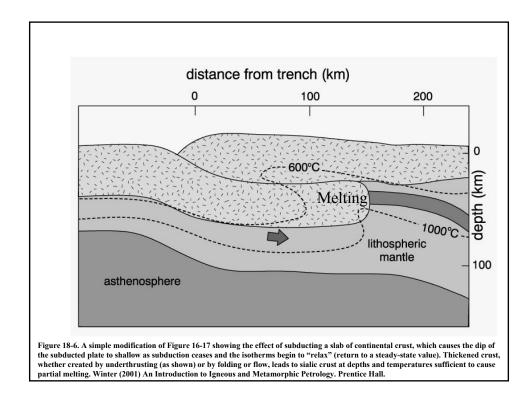


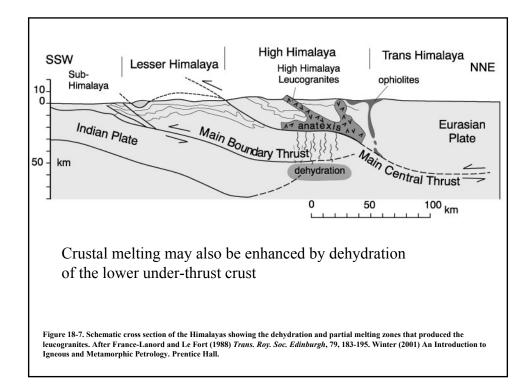


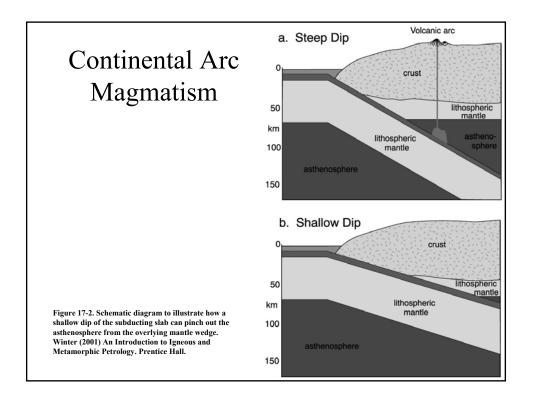
	Chemical Classification												
Table 18-3. The S-I-A-M Classification of Granitoids													
Туре	SiO ₂	K ₂ O/Na ₂ O	Ca, Sr	A/(C+N+K)*	Fe ³⁺ /Fe ²⁺	Cr, Ni	δ ¹⁸ Ο	⁸⁷ Sr/ ⁸⁶ Sr	Misc	Petrogenesis			
м	46-70%	low	high	low	low	low	< 9‰	< 0.705	Low Rb, Th, U Low LIL and HFS	Subduction zone or ocean-intraplate Mantle-derived			
I	53-76%	low	high in mafic rocks	low: metal- uminous to peraluminous	moderate	low	< 9‰	< 0.705	high LIL/HFS med. Rb, Th, U hornblende magnetite	Subduction zone Infracrustal Mafic to intermed. igneous source			
S	65-74%	high	low	high metaluminous	low	high	> 9‰	> 0.707	variable LIL/HFS high Rb, Th, U biotite, cordierite Als, Grt, Ilmenite	Subduction zone Supracrustal sedimentary source			
A	high → 77%	Na₂O high	low	var peralkaline	var	low	var	var	low LIL/HFS high Fe/Mg high Ga/Al High REE, Zr High F, Cl	Anorogenic Stable craton Rift zone			
* molar	I_ ∙ Al₂O₃/(CaC	I = M $S = m$	mantl Ielting neltin	e derived g of igne g of sedi in anoro	ous so ment s	urce	mate e ma	rial terial	High F, Cl (1983), Clarke (1992 Controver:				

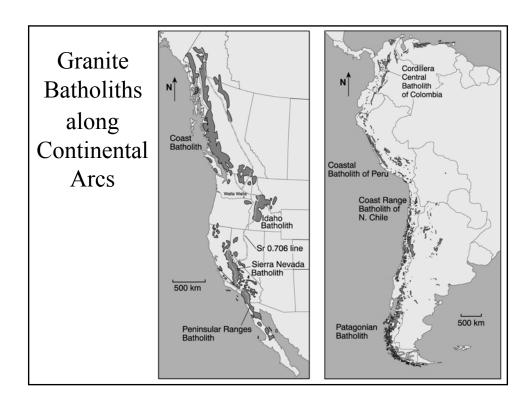
			Tab	ole 18-2. i	Represen	tative Che	mical Ana	lyses of t	Selected (Granitoid 1	Types.		
		1 Δ	2 🔺	3 🗆	4 ■	5 💠	6 🔶	70	8•	9 +	10 Q	11 X	12
These analyses of granitic	Oxide SiO ₂	Plagiogr. 68.0	Ascen. 71.6	Nigeria 75.6	M-type 67.2	I-type 69.5	S-type 70.9	A-type 73.8	Archean 69.8	Modern 68.1	Av. Crust 57.3	t U. Crust 66.0	L. Cr 54
These analyses of granitic	TiO ₂	0.7	0.2	0.1	0.5	0.4	0.4	0.3	0.3	0.5	0.9	0.5	ľ
rocks are on p. 347 in	St Al₂O₃ FeO* MnO	14.1 6.6	11.7 4.0	13.0 1.3	15.2 4.1	14.2 3.1	14.0 3.0	12.4	15.6 2.8	15.1 3.9	15.9 9.1	15.2 4.5	1
TOCKS are on p. 547 m		0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.6	0.3	
your textbook. Those of	u Gen W Na₂O	1.6 4.7	0.2	0.1	1.7 4.3	1.4	1.2 1.9	0.2	1.2 3.2	1.6 3.1	5.3 7.4	2.2 4.2	
your textbook. Those of		3.5	5.5	3.9	4.0		2.5	4.1	4.9	3.7	3.1	3.9	3
you with granitic "pet	K ₂ O P ₂ O ₅	0.3	4.7	4.7	1.3 0.1	3.5	4.1	4.7	1.8	3.4 0.2	1.1	3.4	
you will grannic per	Total	99.6	98.1	99.3	98.4	98.5	98.3	98.9	99.7	99.6 22.8	100.7	100.2	10
rocks" may find it useful	q or	31.9 1.8	23.1 28.3	31.7 28.2	25.5 7.8	27.5 21.2	33.7 25.1	28.6 28.3	24.0 10.6	20.3	8.2 6.5		
TOEKS may ma it useful	ab ⊨ an	29.6 21.9	36.8	35.6 2.5	36.6 20.1	29.4 14.4	23.2 8.4	37.5 1.6	44.0 15.2	33.5 14.2	27.8 26.2		2
to plot some of these	Lo cor	0.0	0.0	0.7	0.0	0.0	2.8	0.0	0.0	0.2	0.0	0.0	
1	E an cor N di hy di wo	9.4	4.1		0.8	4.1	3.7	1.4	3.6	0.0 5.8	8.4 19.2	5.5 5.9	2
analyses with your own	ວ wo ac	0.0	0.0		0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	
undryses with your own	mt	3.2	0.0	0.0	2.1	2.0	2.1	1.9	1.9	2.1	2.5	2.1	
data.	il hem	1.3 0.0	0.0	0.0	0.7	0.6	0.6	0.4	0.4	0.7		0.7	
dutu.	ns n Ni	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13
	Incompatible	9			-	10 20	10 30	3	29	23	29 185	10 35	35
	E Cu	4		45	42	9	9	2	29	23	75	25	9
	⊆ Zn v	13		99 3	56 72	48 57	59 49	120 6	35	76	80 230	71 60	8
	£ Ce	4 11	91 274	116 166	16	31 66	27 61	55 137	32 56	31 67	16 33	30 64	1
	Nd		122	100	10	30	28	67	21	27	16	26	1
	e Sm Eu	3	17			6	6	16 2	3	5	4	5	3
	Gd	4	4					14	2	6	3	4	1
	Dy							-	1	5	4	4	4
	Yb Lu	5 1	17			3 1	3 1	9 1	1	3 1	2	2	2
	Rb	4 38	94 53	471 94	18 236	164 519	245 440	169 352	55 690	110 715	32 250	112 550	1
	⊐ _{Sr}	124	1	20	282	235	112	48	454	316	260	350	23
	Pb Zr	97	1089	42 202	5 108	19 150	27 157	24 528	152	171	8 100	20 190	7
	Hf	3	42	9 52	1	20	19	8 23	5	5	3 4	6	2
Table 18-2. Representative Chemical Analyses	≌ Nb	7	168	124	1	11	19	37	6	12	11	25	1
of Selected Granitoid Types. From Winter	T Ta U	1	16		0	5	5	5	1 2	1 3	1	2	1
(2001) An Introduction to Igneous and		30	92	191	22	31	32	75	8	26	20	22	1
Metamorphic Petrology. Prentice Hall.	1: ave. of 6 ophiolite plagiogranites from Oman and Troodos (Coleman and Donato, 1979). 2: Granite from Ascension Island (Pearce et al., 1984) 3: ave. of 11 Nigerian biotite granites (Bowden et al., 1987). 4: ave of 17 M-type granitoids, New Britain arc (Whalen et al. (1987).												
	5: ave. of 1074 7: ave of 148 A	I-type granit -type granito								I and White n grey gneis:		1994).	
9: ave of 250 <200Ma old i- and M-type granitoids (Martin, 1994), 10-12: est, ave., upper, and lower continental crust (Taylor & McClennan, 1985).													

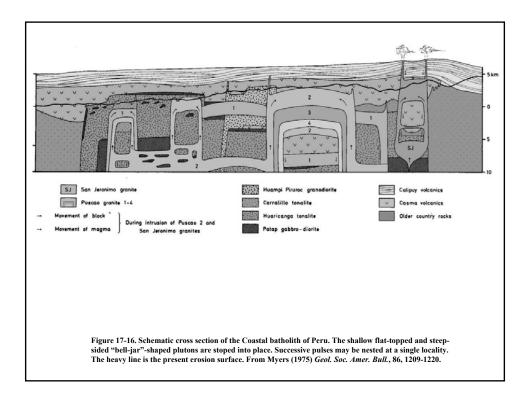

Crustal melting Note that the zircon has a rounded core (detrital sediment) surrounded by euhedral zones (magmatic origin)

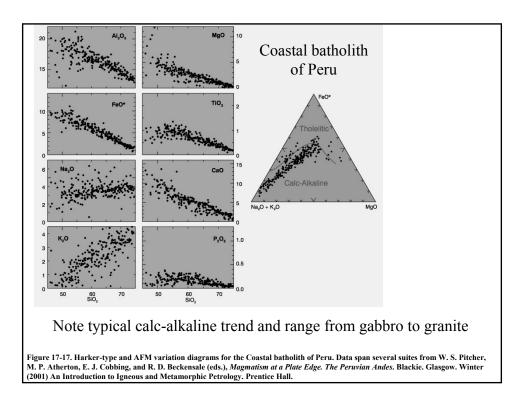

Figure 18-1. Backscattered electron image of a zircon from the Strontian Granite, Scotland. The grain has a rounded, un-zoned core (dark) that is an inherited high-temperature non-melted crystal from the pre-granite source. The core is surrounded by a zoned epitaxial igneous overgrowth rim, crystallized from the cooling granite. From Paterson et al. (1992), Trans. Royal. Soc. Edinburgh. 83, 459-471. Also Geol. Soc. Amer. Spec. Paper, 272, 459-471.

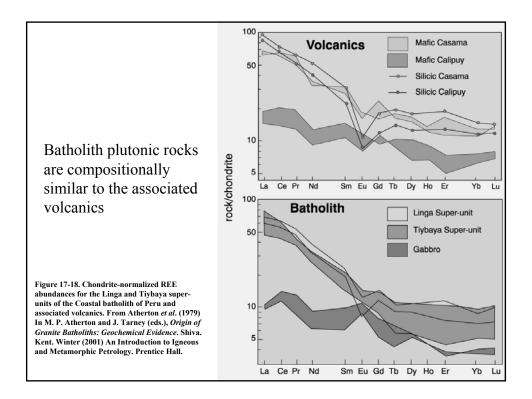


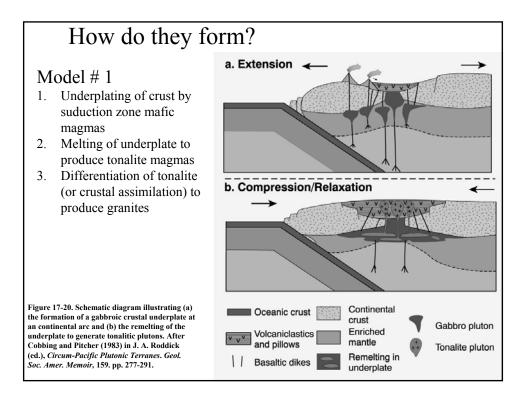

- 1. Melting of water-saturated metamorphosed sediments will be initiated at a, b, c depending on P/T but insufficient melt is produced
- Breakdown of muscovite at (1) produces <10% melt – sufficient for migmatites
- Only after breakdown of biotite at 760°C (2) is there sufficient melt to produce a mobile granitic magma
- 4. Continued melting of anhydrous phases may produce up to 60% melt
- 5. Refractory residue left behind is termed RESTITE

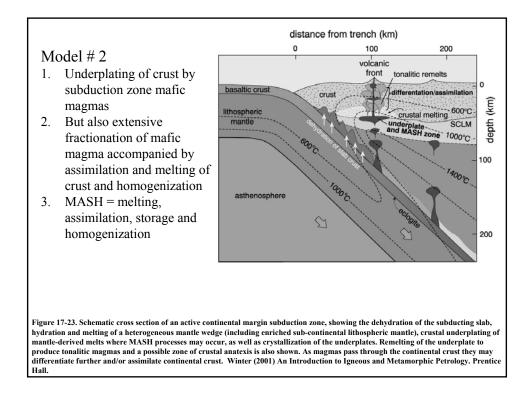

Figure 18-5. a. Simplified P-T phase diagram and b. quantity of melt generated during the melting of muscovite-biotite-bearing crustal source rocks, after Clarke (1992) *Granitoid Rocks*. Chapman Hall, London; and Vielzeuf and Holloway (1988) *Contrib. Mineral. Petrol.*, 98, 257-276. Shaded areas in (a) indicate melt generation. Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

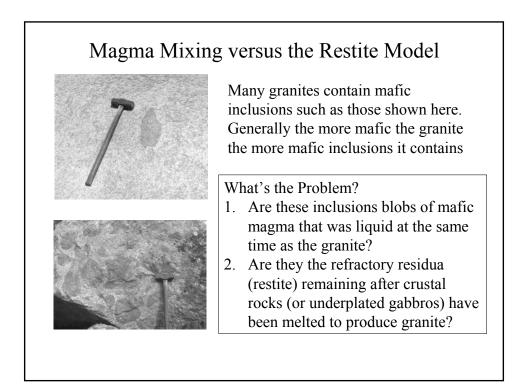


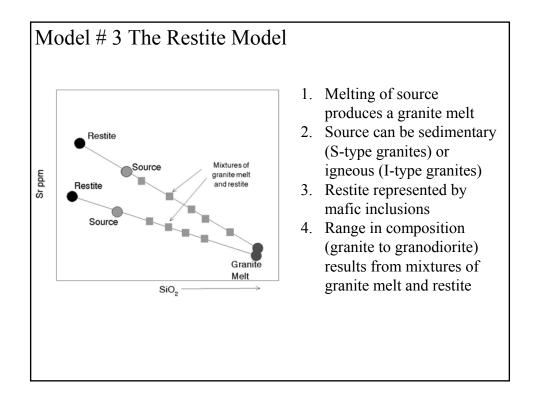


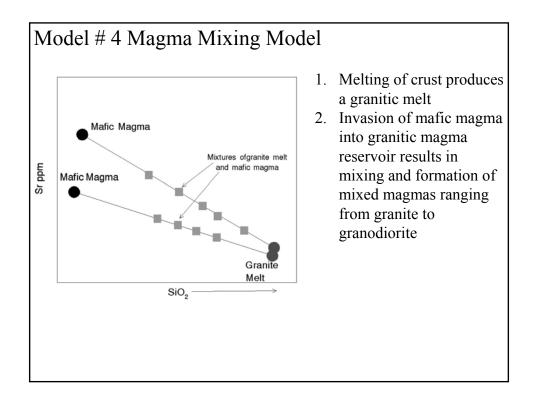


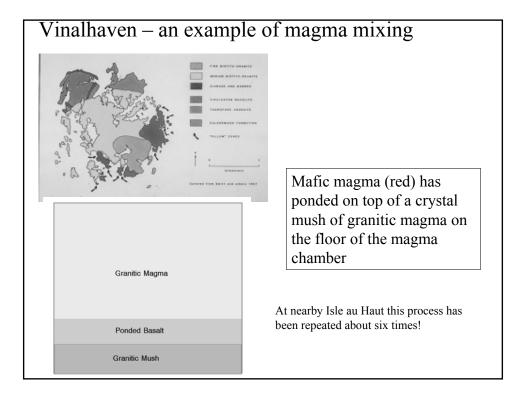


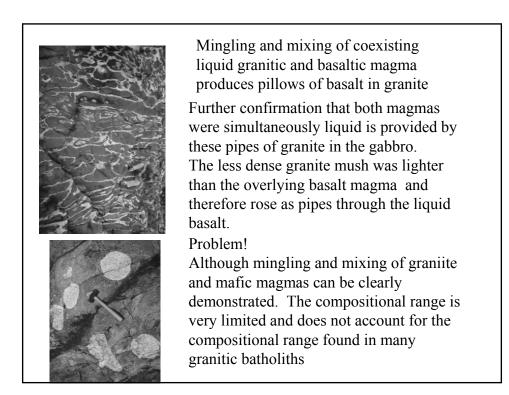


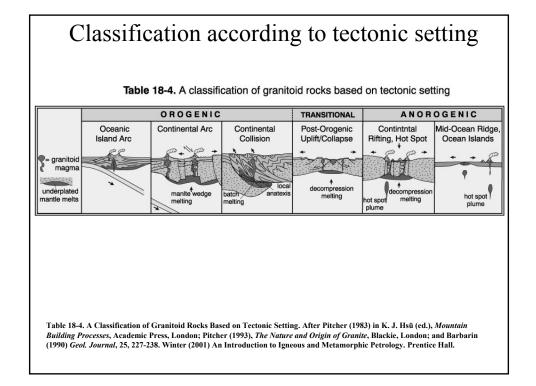


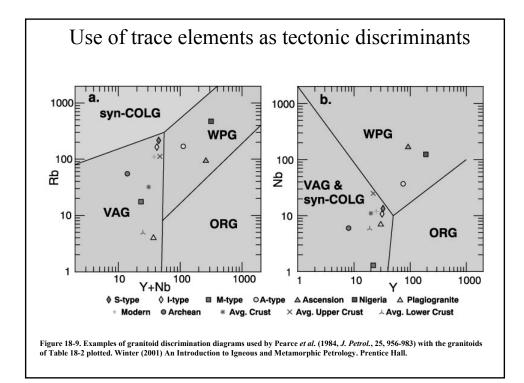












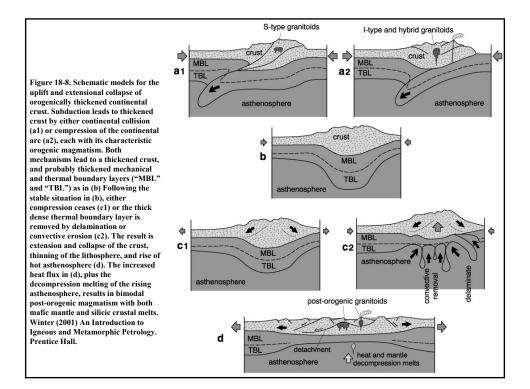


		Table	18-4. A classifi	cation of granite	oid rocks based	on tectonic set	ting	
			OROGENIC		TRANSITIONAL	ANOR	OGENIC	
		Oceanic Island Arc		Continental Collision	Post-Orogenic Uplift/Collapse	Contintntal Rifting, Hot Spot	Mid-Ocean Ridge, Ocean Islands	
	granitoid magma underplated mantle melts	*	manite wedge metting	batch anatexis melting	decompression melting	tot spot melting	hot spot	
	Examples	Bougainville, Solomon Islands, Papua New Guinea	Mesozoic Cordilleran batholiths of west Americas Gander Terrane	Manaslu and Lhotse of Nepal, Amorican Massif of Brittany	Late Caledonian Plutons of Britain, Basin and Range, late Variscan, early Northern Proterozoic	Nigerian ring complexes, Oslo rift, British Tertiary Igneous Province, Yellowstone hotspot	Oman and Troodos ophiolites; Iceland, Ascension, and Reunion Island intrusives	
Table 18-4. A	Geo-	Calc-alkaline > thol.	Calc-alkaline	Calc-alkaline	Calc-alkaline	Alkaline	Tholeiitic	
Classification of	chemistry	M-type & I-M hybrid	I-type > S-type	S-type	I-type S-type (A-type)	A-type	M-type	
Granitoid Rocks Based		Metaluminous	Met-Al to sl. Per-Al	Peraluminous	Metalum. to Peralum	Peralkaline	Metaluminous	
on Tectonic Setting. After Pitcher (1983) in	Rock types	qtz-diorite in mature arcs	tonalite & granodior. > granite or gabbro	migmatites & leucogranite	bimodal granodiorite + diroite-gabbro	Granite, syenite + diorite-gabbro.	Plagiogranite	
K. J. Hsü (ed.), Mountain Building	Associated Minerals	Hbl > Bt	Hbl, Bt	Bt, Ms, Hbl, Grt, Als, Crd	Hbl > Bt	Hbl, Bt, aegirine fayalite, Rbk, arfved.	НЫ	
Processes, Academic Press, London; Pitcher	Associated Volcanism	Island-arc basalt to andesite	Andesite and dacite in great volume	often lacking	basalt and rhyolite	alkali lavas, tuffs, and caldera infill	MORB and ocean island basalt	
(1993), The Nature and Origin of Granite,	Classification Barbarin (1990)	T _{IA} tholeiite island arc	H _{CA} hybrid calc-alkaline	C _{ST} C _{CA} C _{CI} continental types	H _{LO} hybrid late orogenic	A alkaline	T _{oR} tholeiite ocean ridge	
Blackie, London; and Barbarin (1990) <i>Geol</i> .	Pearce et al. (1984)	VAG (volcar	nic arc granites)	COLG (collis	ion granites)	WPG and ORG (within plate and ocean ridge granites		
<i>Journal</i> , 25, 227-238. Winter (2001) An	Maniar & Piccoli (1989)	IAG island arc granite	CAG contin. arc granite	CCG cont. collision gran.	POG post-orogenic gran.	RRG CEUG rift & aborted/hotspot	OP ocean plagiogranite	
Introduction to Igneous and Metamorphic	Origin	Partial melting of mantle-derived mafic underplate	PM of mantle-derived mafic underplate + crustal contribution	Partial melting of recycled crustal material	Partial melting of lower crust+ mantle and mid-crust contrib	Partial melting of mantle and/or lower crust (anhydrous)	Partial melting of mantle and frac- tional crystallization	
Petrology. Prentice Hall.	Melting Mechanism	dissolved species	transfer of fluids and from slab to wedge. ansfer of heat upward	Tectonic thickening plus radiogenic crustal hea	Crustal heat plus mantle heat (rising asthen. + magmas)	Hot spot and/or adiabatic mantle rise		
	After Pitc	her (1983, 1993), B	arbarin (1990)					

