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Abstract

Girella punctata and Girella leonina are sympatric sister species showing extensive distributional overlap in shallow
rocky reefs in the Pacific Ocean south of the Japanese Islands. Differences between the two species in external
morphological characters, such as number of pored lateral line scales, colour of opercular flap and shape of caudal fin,
are congruent with genetic divergence. Nucleotide identity between the two species in the 3.3 kbp region of partial
mitochondrial DNA containing the D-loop region, in 12S and 16S ribosomal RNA (rRNA) and transfer RNA genes is
95%. To estimate divergence time, Bayesian analysis was conducted using a dataset comprising concatenated
nucleotide sequences from the two rRNA genes of three girellid and nine other fish species. Using the Elopomorpha —
Clupeocephala split (265 million years ago (mya)) as a calibration point, divergence between G. punctata and G. leonina
is estimated as having occurred 6.0+ 1.4 mya. Speciation is suggested to have been caused by geographical isolation

associated with formation of the Japanese Islands, which resulted in disjunction of Girella habitat.
© 2006 Gesellschaft fiir Biologische Systematik. Published by Elsevier GmbH. All rights reserved.
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Introduction

In East Asia, the genus Girella is represented by three
species, Girella punctata Gray, 1835, Girella leonina
(Richardson, 1846) and Girella mezina Jordan and
Starks, 1907; the known distribution area extends from
Hong Kong to Japan. Despite slight differences in
habitat preference, the three species are closely related
(Yagishita and Nakabo 2000, 2003). Kanda and
Yamaoka (1995) suggested that G. mezina is herbivor-
ous, G. leonina omnivorous, and G. punctata intermedi-
ate. G. punctata and G. leonina, which are regarded as
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sister species, occur sympatrically in an area of overlap
between their distributional ranges: the shallow rocky
reefs in the Pacific Ocean south of the Japanese Islands
(Fig. 1) (Kanda and Yamaoka 1995; Yagishita and
Nakabo 2000, 2003). There has been some taxonomic
confusion about Girella in East Asia: specimens were
classified variously as Crenidens melanichthys Richard-
son, 1846 or as Girella melanichthys; this name was
placed in varying junior synonymy with G. punctata
or Crenidens leoninus (the original combination for
G. leonina; Richardson 1846; Yagishita and Nakabo
2000), and G. melanichthys was incorrectly used as
the valid name for G. leonina (Yagishita and Nakabo
2000). Yagishita and Nakabo (2000) recently revised
the classification of Girella in East Asia. However,
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Fig. 1. Geographic distribution and sampling localities of G.
punctata and G. leonina; modified from Yagishita and Nakabo
(2001). Principal distribution areas enclosed by solid lines and
obliquely shaded, additional areas enclosed by broken lines.
Open circles on map for G. punctata represent localities of
Girella samples: a = Joetsu; b = Kashima; c¢ = Kawasaki;
d = Shimoda; e = Muroto; f = Izumi; g = Goto.

the genetic relationships and behaviour of G. punctata
and G. leonina remain interesting, particularly within a
phylogenetic context.

In the present study, we use a combination of external
characters and mitochondrial DNA (mtDNA) se-
quences that included part of D-loop region, 12S and
16S ribosomal RNA (rRNA) genes, and transfer RNA
(tRNA) genes, in order to differentiate between the two
species. In addition, we estimate the time of divergence
between G. punctata and G. leonina, and discuss their
speciation in lights of their respective environments,
with a view to understanding organismal diversity.

Material and methods
Fish specimens

A total of 113 specimens belonging to the genus
Girella were collected at Joetsu, Niigata (n = 28, 168 —

478 g); Kashima, Ibaraki (n = 5, 77 — 291 g); Kawasaki,
Kanagawa (n=15, 58 — 139g); Shimoda, Shizuoka
(n=21, 24 — 168 g); Muroto, Kochi (n =29, 550 —
1100 g); Tzumi, Kagoshima (n = 10, 269 — 448 g); and
Goto, Nagasaki (n = 11, 388 — 900 g) in Japan (Fig. 1).
These specimens were stored at below —20 °C until use.
Four G. mezina specimens (26 — 52 g) were collected at
Shimoda, Shizuoka (Fig. 1).

Morphological analysis

With the exception of four G. mezina specimens, the
morphological character states of 109 specimens were
evaluated. Characters included numbers of pored lateral
line scales, of spines and soft rays in the dorsal fin and
soft rays in the anal fin, depth of emargination of the
caudal fin, and colour of the opercular flap (Fig. 2A),
based on the report by Yagishita and Nakabo (2000).

DNA extraction and PCR amplification

A small portion of skeletal muscle, liver or caudal fin
was excised from each specimen. Total genomic DNA
was extracted from skeletal muscle, liver or caudal fin of
all 113 specimens, using the method of Sezaki et al.
(1999). The mtDNA fragment including part of D-loop
region, tRNAF™ 128 rRNA, tRNAY?, 16S rRNA and
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Fig. 2. Differences in external characters between G. punctata
and G. leonina: (A) body overviews; arrowheads indicate
locations of characters evaluated in this study (see text);
(B) pigmentation of opercular flap: blackish in G. leonina, “‘not
black” in G. punctata (C) shape of caudal fin: shallowly
emarginate in G. punctata, deeply emarginate in G. leonina.
For additional characters see Tables 1, 2.
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part of tRNA™" genes were amplified by PCR. Primers
fDloop_F  (5-TTCCTGGCATTTGGTTCCTACTT-
CAG-3) and ftRLeu R (5-CTGTTBRAAGGGCT-
TAGGBCTTTTGC-3") were designed by referring to
the corresponding regions of Pagrus major (GenBank
accession number NC_003196), Takifugu rubripes
(AJ421455), and Tranchurus tranchurus (AB108498).
PCR amplification was performed using a reaction
mixture containing genomic DNA as a template, 2 pl of
10 x Ex Tag DNA polymerase buffer, 0.8 ul of 10 uM
primers, 2 pl of 2mM dNTP, and one unit of Takara Ex
Tag DNA polymerase (Takara, Otsu, Japan), brought
to a total volume of 20 ul with sterile water. The PCR
profile consisted of initial denaturation at 95°C for
1 min, followed by 40 cycles of denaturation at 95 °C for
10s, annealing at 55°C for 10s, and extension at 72 °C
for 90s, with a final extension step at 72 °C for 2 min.
PCR products were cloned into the TA site of pPGEM-T
Easy vector (Promega, Madison, WI, USA) according
to Marchuk et al. (1991), using Escherichia coli strain
DH5o as a host bacterium.

Sequencing of PCR products

Sequencing of PCR products was performed for both
strands with an ABI PRISM 3100 Genetic Analyzer
(Applied Biosystems, Foster City, CA, USA), using a
BigDye Terminator v3.1 Cycle Sequencing Ready
Reaction Kit (Applied Biosystems). Alignment of
partial mtDNA sequences for G. punctata, G. leonina
and G. mezina obtained in this study with several
elopocephalan taxa from the DDBJ/EMBL/GenBank
databases was carried out using the program CLUSTAL
W (Thompson et al. 1994, 1997).

Phylogenetic analysis

The nucleotide sequences of the 16S rRNA gene for
various elopocephalan taxa were collected and aligned
with those of the girellid species examined using
CLUSTAL W (Thompson et al. 1994, 1997). Max-
imum-parsimony (MP) and neighbor-joining (NJ)
methods were used to construct phylogenetic trees using
PAUP* 4.0b 10 (Swofford 2003) and heuristic searches
with TBR branch swapping. Additional trees were
constructed under the Bayesian approach, using the
MrBAYES ver 3.1.1 program (Huelsenbeck and Ron-
quist 2001) with a best-fit model (GTR + G) and para-
meters optimized by the program MrModeltest ver. 2.2
(see http://www.ebc.uu.se/systzoo/staff/nylander.html).
A set of 12S and 16S rRNA gene sequences from
Anguilla japonica was used as an outgroup.

Bayesian analysis of divergence time (Thorne and
Kishino 2002) was conducted using the multidistri-
bution package (see http://statgen.ncsu.edu/thorne/

multidivtime.html) with a set of 12S and 16S rRNA
genes. Branch lengths were estimated using the test-
branches_dna program in conjunction with tree
topology. As recommended by the authors of the
multidistribution package, we used the baseml program
in the PAML ver. 3.14b package (Yang 1997) to
optimize parameters for the F84 (Felsenstein 1984)
model and gamma distribution.

Divergence time was estimated using the program
multidivtime. Markov chain Monte Carlo (MCMCQC)
approximations were obtained with a burn-in period of
100,000 cycles. Subsequently, samples of the Markov
chain were taken every 100 cycles until a total of 10,000
samples were obtained. To diagnose the possibility of
failure arising from an inability of the Markov chains to
converge and acquire a stationary distribution, we
performed at least three replicate MCMC runs with
different initial starting points for each analysis.
Application of the multidivtime program requires a
mean value for the prior distribution for the time
separating the ingroup root from the present (rttm). As
a reference point for dating, the divergence time of the
Elopomorpha — Clupeocephala split (265 million years
ago (mya)) was used for the age of the root node
following previous analyses based on fossil records
and molecular data (Inoue et al. 2005). Data used
for the analysis were 12S and 16S rRNA genes in
the mitochondrial DNA of 4. japonica (NC_002707),
Arctoscopus  japonicus (NC_002812), Coregonus lava-
retus (AB034824), Cyprinus carpio (X61010), Pagrus
major (NC_003196), Polymixia japonica (AB034826),
Pterocaesio tile (NC_004408), Salmo salar (NC_001960),
and Sardinops melanostictus (NC_002616).

Results
Differences in morphological characters

Analysis of morphological characters using 109
specimens belonging to the genus Girella yielded the
following results. The numbers of pored lateral line
scales divided the specimens into two discrete groups:
one ranging between 50 and 56, which corresponds to
G. punctata; the other group, G. leonina, with 60 — 65
(Table 1). Pigmentation of the opercular flap was
blackish in specimens corresponding to G. leonina,
whereas in G. punctata it was not black (Fig. 2B).
Furthermore, the shape of the caudal fin in G. punctata
was shallowly emarginate, whereas in G. leonina it was
deeply emarginate with acute upper and lower lobes
(Fig. 2C). No difference between the two species was
observed in the other morphological characters exam-
ined. The numbers of spines and soft rays in the dorsal
fin ranged from 14 to 15 and from 12 to 16, respectively,
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Table 1. Number and distribution of pored lateral line scales in Girella punctata and G. leonina; numbers in parentheses after

Yagishita and Nakabo (2000)

Pored lateral line scales

50 51 52 53 54 55 56

58 59 60 61 62 63 64 65  Total

G. punctata 11 17 29 17 16 4 1
nH @ a3 @EH an a2 ©®

G. leonina

95
(75)
1 4 2 3 3 1 14
© an @n (25 (2 @6 12) (6 (19D

Table 2. Dorsal and anal fin ray counts in G. punctata and G. leonina; numbers in parentheses after Yagishita and Nakabo (2000)

Dorsal fin Anal fin

Spines Soft rays Soft rays

14 15 16 8 12 13 15 16 11 12 13 14 Total
G. punctata 20 75 3 50 4 2 79 14 95

(®) (69) O @ (53 6] 3 67 (6 0] a7
G. leonina 2 12 8 1 1 12 1 14

48 (152 (D 1 ade ®2 @ 24 a7 @ (201)

and those of the soft rays in the anal fin ranged between
11 and 14 (Table 2). The number of tooth rows was not
measured in this study, as in G. punctata they develop
gradually with age, increasing from a single row in
juveniles to two or three rows in adults (Yagishita and
Nakabo 2000).

The resulting classification according to external
characters corroborates that derived for G. punctata
and G. leonina in a previous report on the revision of the
genus Girella, including G. mezina, G. punctata and G.
leonina, by Yagishita and Nakabo (2000). These results
strongly suggest that the 109 specimens examined in the
present study comprised 95 specimens of G. punctata
and 14 specimens of G. leonina. No G. leonina specimens
were detected in the samples from Kashima, Kawasaki
and Muroto, although they have been reported from
these areas (Yagishita and Nakabo 2000).

Sequence analysis

Sequence analysis was performed for the partial
mtDNA sequence amplified with the primers fDloop_F
and ftRLeu_R. Nucleotide sequences of the amplified
DNA fragments were approximately 3.3kbp in size
and included the D-loop region, as well as the tRNAP"®,
12S rRNA, tRNAY¥ 16S rRNA and tRNA™" genes
from 14 specimens of G. punctata, five specimens
of G. leonina, and four specimens of G. mezina. Given
that several haplotypes were obtained for both partial
mtDNA sequences of G. punctata and G. leonina from
various areas (data not shown), the majority consensus
sequences of 12S and 16S rRNA genes were used for the

phylogenetic analysis of G. punctata, G. leonina and
G. mezina. The partial sequences for the D-loop
region revealed 86% identity between G. punctata and
G. leonina, whereas those of the tRNAs and rRNAs
were highly conserved, with identities of 96 — 100%. In
addition, comparison of the partial mtDNA sequences
from G. punctata and G. leonina revealed that it may be
possible to distinguish between these two Girella taxa
using RFLP haplotypes of the D-loop region generated
with Ddel and Xbal, and for the 16S rRNA gene with
Hinfl. These partial mtDNA sequences that included
part of the D-loop region, together with the tRNAF",
12S rRNA, tRNAY¥ 16S rRNA and tRNAM" genes
from G. punctata, G. leonina and G. mezina have been
submitted to the DDBJ/EMBL/GenBank databases
under the accession numbers AB208648, AB208649
and AB214535, respectively. Additional haplotypes
of partial mtDNA sequences from G. punctata and
G. leonina have been registered under the accession
numbers AB233479 — AB233491 and AB233475 -
AB233478, respectively, whereas those from G. mezina
have been registered under the accession numbers
AB236128 — AB236130.

Phylogenetic analysis and estimation of divergence
time

A combined analysis was performed using a non-
clupeocephalan species of the Elopocephala, 4. japoni-
ca, as an outgroup. The phylogenetic trees were
constructed from the topology retrieved by Bayesian
analysis with Bayesian posterior probabilities support
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(Fig. 3), and by maximum-parsimony and neighbor-
joining analysis with bootstrap probabilities support
(data not shown). These phylogenetic trees support the
monophyly of Girella (100% support; node I in Fig. 3
and Table 3), with the tree showing G. punctata and
G. leonina as sister species (64 — 95% support; node J in
Fig. 3 and Table 3).

The Bayesian approach using the Elopomorpha —
Clupeocephala split (265mya) as a calibration point
estimated the divergence between G. punctata and
G. leonina at 6.0+ 1.4mya with a standard deviation
interval of 4.6 — 7.4 my (node J in Table 3 and Fig. 4).
Divergence between G. punctata+ G. leonina and G.
mezina was estimated at 7.3+ 1.6 mya (node I in Table 3
and Fig. 4). Divergence times of other splits (nodes A —
F in Table 3 and Fig. 4) were consistent with those
estimated by Inoue et al. (2005).

Discussion

In the present study, G. punctata and G. leonina have
been found to differ in the number of pored lateral line
scales, colour of the opercular flap, and shape of the
caudal fin (see Table 1). While these findings corrobo-
rate those of Yagishita and Nakabo (2000), no
differences were observed in the other morphological
characters examined, including the numbers of spines
and soft rays in the dorsal and anal fins (see Table 2).
The phylogeny derived using mtDNA was congruent

Elopomorpha

with the grouping obtained using the morphological
characters of G. punctata and G. leonina.

Although the absolute divergence time inferred using
molecular data cannot be calculated due to the absence
of a fossil record in Girella, it can be evaluated by the
molecular clock approach with calibration against the
fossil record for other fish species. Recently, Inoue et al.
(2005) estimated divergence times for various fish species
to infer the age of the two coelacanths, Latimeria

Table 3. Support values and estimated divergence times for
nodes in Fig. 5

Divergence time
(million years ago)

Tree support value (%)

Node MP NJ BA

A — — — 226.2+1.1
B 59 54 100 203.7+10.5
C 88 100 100 195.449.2
D 100 100 100 49.6+12.5
E 99 100 100 137.6+12.5
F — — 100 89.6+10.8
G 98 100 100 80.0+10.4
H 52 85 98 72.34+9.9
1 100 100 100 7.3+1.6
J 64 66 95 6.0+1.4

Tree support values are bootstrap scores for maximum parsimony
(MP) and neighbor joining (NJ) analyses, and Bayesian posterior
probabilities for Bayesian analysis (BA). Only values exceeding 50%
are shown. Divergence time estimated using the Elopomorpha-
Clupeocephala split (265 mya; Inoue et al. 2005) as calibration point;
shown as mean + standard deviation.

Anguilla japonica

100 E Cyprinus carpio
Sardinops melanostictus

100 E Salmo salar
Coregonus lavaretus

Otocephala
Elopocephala
Protacanthopterygii
Clupeocephala

100

Euteleostei
100
Neoteleostei

100

Polymixia japonica

83 E Pagrus major
Arctoscopus japonicus

Pterocaesio tile

95 Girella punctata
Girella leonina

98

100

Fig. 3. Phylogenetic tree resulting from Bayesian analysis of complete 16S rRNA gene sequences; A. japonica used as outgroup.
Girella species indicated by white letters in black boxes. Numbers at nodes are Bayesian posterior probabilities (%); only

values > 50% are shown.
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Fig. 4. Posterior distribution of divergence times among Clupeocephala, based on Bayesian approach described under Material and
methods. Tree nodes positioned according to estimated divergence times derived from Bayesian analysis (Table 3); divergence times
estimated using the Elopomorpha — Clupeocephala split (265 mya; Inoue et al. 2005) as calibration point. White horizontal
rectangles represent estimated standard deviation intervals of divergence times; Girella species indicated by white letters in black

boxes.

menadoensis and Latimeria chalumnae. Using their
calculated times for calibration purposes, we estimated
divergence between G. punctata and G. leonina at
approximately 6.0mya, and that between G. mezina
and G. punctata+ G. leonina at approximately 7.3 mya
(see Table 3 and Fig. 4). Divergence times of other nodes
were similar to those reported by Inoue et al. (2005)
using whole mtDNA sequences. Our results show that
12S and 16S rRNA gene sequences are as useful as
whole mtDNA sequences for accurate estimation of
divergence time. However, we used only a single and
fairly distant calibration point (the Elopomorpha —
Clupeocephala split); more accurate divergence time
estimation would require the use of multiple and close
calibration points.

The distribution pattern of Girella species in East Asia
has prompted important suggestions about their dis-
persal and biogeography. Okuno (1971) suggested that
the original areas previously inhabited by G. punctata
and G. leonina were in the Japan Sea and the Pacific
Ocean, respectively. Yagishita and Nakabo (2000, 2002)
also suggested that G. punctata and G. leonina might
have diverged from a common ancestral species. Some
of its members may have become isolated in the Japan
Sea while those remaining in the Pacific Ocean might
have differentiated into G. punctata and G. leonina.
Assuming that the common ancestor of the three Girella
species was distributed in paleo-East/South Asia, alter-
native models have been proposed to explain the
evolutionary history of the Girella species in East Asia.
One scenario involves changes of vegetation in the
habitat region. The period of 6 — 7mya was character-
ized by important climatic variations leading to drastic

vegetation changes all over the world according to
isotope studies (Cerling et al. 1997). According to the
second model, geographic isolation of the habitat region
of Girella in paleo-East/South Asia had been caused by
tectonic processes and/or by the ice ages, leading to
changes in sea surface level. Considering these alter-
natives, we believe that the estimated times of divergence
between the three Girella species make the hypothesis of
geographic isolation caused by tectonic processes the
most likely scenario. Thus we describe the latter as
follows.

As shown in Fig. 5, the divergence time between
G. mezina and G. punctata+ G. leonina corresponds to
the period when the East/South China Sea was isolated
from the Pacific Ocean by the subduction of the
Philippine Sea plate leading to uplift of the Ryukyu
Arc (Taira 2001). Following that event, the divergence
time between G. punctata and G. leonina corresponds to
the period when the Japanese Islands, during their
geographical formation, were connected to the Korean
Peninsula for extended periods of time (Taira et al. 1989;
Taira 2001). Moreover, the analysis of the hydrocarbon
potential showed that approximately 6.0 mya the paleo-
Japan Sea was isolated from the Pacific Ocean, except in
the north, and that this period was followed by a period
of cooling with glaciation of the Japan Sea approxi-
mately 4.0mya (Tada 1994, 1995). Therefore, we
propose that the tectonic activity surrounding the
paleo-Japanese Islands, followed by climate changes in
the Japan Sea, was responsible for the divergence of
G. punctata and G. leonina (see Fig. 5).

In summary, we identified G. punctata and G. leonina
based on differences in their external characters and
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nucleotide sequences of partial mtDNA. We estimated
divergence between G. punctata and G. leonina to have
taken place approximately 6.0mya; the divergence
event may have been caused by geographical isolation
associated with the formation of the Japanese Islands.
Further investigations are required in order to reveal
the physiological and ecological differences between
G. punctata and G. leonina. At present, the differences
in species distribution appear to be due to the cold
temperature of their habitat in winter.

")

12 million years ago

G. leonina
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