Introduction

After a brief presentation of Richard Prestage's talk on

Open Source Radio Telescope

John Makous will give a longer presentation on Digital Signal Processing in Radio Astronomy – a Research Experience for Teachers

Open Source Radio Telescope

- http://opensourceradiotelescopes.org/
- a resource for radio astronomy telescope construction at any level, from simple feed horns to phased-array feeds and interferometers.
- Discussion Forums
- Telescope Designs

•

- LightWork Memo Series
 - **Additional Resources:**
 - Larger Scale Home Built Radio Telescope, Radio Astronomy Supplies
 - Canadian Centre for Experimental Radio Astronomy (CCERA)
 - Digital Signal Processing in Radio Astronomy (DSPIRA)
 - Society of Amateur Radio Astronomers (SARA)
 - Such A Lovely Small Antenna (SALSA)

Digital Signal Processing in Radio Astronomy – a Research Experience for Teachers

John L. Makous Providence Day School Charlotte, NC john.makous@providenceday.org

Outline

- Introduction
- Design and construction
- Operation and capabilities

Introduction – Horn Telescopes

- This talk is the result of 2 summers attending the RET DSPIRA program at WVU and GBO.
- The horn telescopes described here are designed to detect the 21 cm radio waves transmitted by neutral atomic hydrogen (HI) emitted by interstellar hydrogen in the galaxy.

Horn Telescope Design

Stand - constructed

4" wood

Horn

- aluminized insulation board
- 60 cm x 75 cm horn opening

Waveguide & Antenna

- 4 ½ ″ x 6 ½ ″ metal can
- ¹/₄ wave antenna: 5.25 cm

Low noise amplifier:

- optimized for 21 cm radio waves at 1420.4 MHz
- gain = 50 db
- Stabilized for operation in urban environments

Horn Telescope Operation

Software Defined Radio (SDR)

• Airspy radio

- 24 MHz 1800 MHz range
- 10 MHz bandwidth
- Gnuradio program:
 - used to perform the signal processing
 - free & open source

🗟 - 🔛 - 🖄 🗶 🗶 🕌 | 🔏 👘 🔕 | 🍖 A | 😄 🍪 | < 🔪 | < 🔺 🔤 🖉 🗞 👘 🔍 📿

Horn Telescope Calibration

Calibrated Scans on the Run

Horn Calibration

Signals detected include inputs from extraneous sources

P_{measured} = G x (T_{object} + T_{system})

P_measured= detected signalG= gainT_object= signal from object of interest
(galaxy, pulsar, etc.)T_system= signal from extraneous sources

These are allfunctions of frequency

- Calibration involves measuring spectra of 2 known temperatures
 - "T_{hot}" = temperature of ground = 300 K (assumed)
- "T_{cold}" = temperature of empty sky = 10 K (assumed)

Horn Calibration

• By collecting spectra of the ground and empty sky, the gain and system temperature can be determined:

P_{hot} - P_{cold}

T_{hot} - T_{cold}

T_{hot} - T_{cold}(P_{hot} /P_{cold})

 $(P_{hot}/P_{cold}) - 1$

Calibration on the Fly

 We built a gnuradio block to accommodate calibration runs that can be incorporated into the live display during a run

Features of the Calibration Block & Display

Calibration Procedure

Calibrated Spectrum Displayed

Future Modifications

Horn Telescope Performance Can detect neutral hydrogen (HI) from the Milky Way Galaxy.

•

Students can measure the Doppler shift of the hydrogen signal from the expected 1420.4 MHz → the MW galaxy is rotating!

MWG Rotation Curve

from horn data 7/26/18

Possible Projects

- Interferometry
- Pulsar detection
- Fast Radio Burst detection

Implementation in the classroom

Utilizing a horn telescope covers many STEM standards:

- Math in all phases of use
- Engineering & Technology build/design horns, test/modify cycle
- Computer programming gnuradio, python
- Astronomy
 - radio waves, EM spectrum, signals, energy
 - telescopes: purpose & design, astronomical measurements
 - structure and motion of galaxies
 - Physics
 - Kepler's laws, motions of galaxies, dark matter

Rich in Science Standards

NGSS HS.Space Systems

Horn Telescope Activity	Science & Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Measuring H1 spectrum; determining rotation curve	Developing and using models	ESS1.B – Kepler's laws, orbits, etc.	Scale, Proportion, and Quantity
	Using mathematical and computational thinking	PS4.B – EM Radiation	Interdependence of Science, Engineering, and Technology
	Constructing Explanations and Designing Solutions		Scientific Knowledge Assumes an Order and Consistency in Natural Systems
	Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena		

SUMMARY

Horn telescopes offer:

- Rich STEM experience for students
- Hands-on science learn by doing
- Ability for students to develop and/or test models of nature
- Ability for students to experience a part of the world of digital signals

Acknowledgements

We would like to thank the following for their expertise, patience, and support:

- Dr. Kevin Bandura, West Virginia University
- Dr. Natalia Schmid, West Virginia University
- Dr. Loren Anderson, West Virginia University
- Dr. Richard Prestage, Green Bank Observatory
- Sue Ann Heatherly, Green Bank Observatory
- Pranav Sanghavi, West Virginia University

We would like to thank the following for their generous support and contributions to the Research Experience for Teachers in Digital Signal Processing in Radio Astronomy (RET DSPIRA) program:

- National Science Foundation
- West Virginia University
- Green Bank Observatory

RET DSPIRA PROGRAM

 Kevin Bandura kmbandura@wvu.edu kevin.bandura@mail.wvu.edu

 Sue Ann Heatherly (at Green Bank Observatory) sheather@nrao.edu