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The bountiful biological activities of cyclotides

Abstract

Cyclotides are exceptionally stable circular peptides (28–37 amino acid residues) with a unique cyclic cystine 
knot (CCK) motif that were originally discovered through ethnobotanical investigations and bioassay‑directed 
natural products screenings. They have been isolated from four angiosperm families (Violaceae, Rubiaceae, 
Curcurbitaceae, and Fabaceae), and they exhibit a wide range of bioactivities including antibacterial/antimicrobial, 
nematocidal, molluscicidal, antifouling, insecticidal, antineurotensin, trypsin inhibiting, hemolytic, cytotoxic, 
antitumor, and anti‑HIV properties. Reports indicate that the mechanism of cyclotide bioactivity is the ability 
to target and interact with lipid membranes via the development of pores. Additionally, the nature of their 
surface‑exposed hydrophobic patch and CCK play integral roles in the potency of cyclotides. Their extraordinary 
stability and flexibility have recently allowed for the successful grafting of analogs with therapeutic properties 
onto their CCK framework. This achievement, coupled with the myriad of useful naturally occurring bioactivities 
displayed by cyclotides, makes them appealing candidates in drug design and crop management.
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Discovering Cyclotides

The discovery of cyclotides is attributed to ethnobotanical 
investigations and bioassay-directed screenings of 
potentially therapeutic plants. In 1965, a professor of 
Pharmacognosy at Uppsala University, Dr. Finn Sandberg, 
reported his observations of indigenous plant use in 
the Central African Republic. A  remedy from the plant 
“Wetegere” (Gbaya language), later identified as Oldenlandia 
affinis (Roem. & Schult.) DC (Rubiaceae), was administered 
to hasten uterine contractions.[1] In the 1970s, the 
Norwegian physician Lorents Gran participated in a Red 
Cross Relief Mission which included harvesting medicinal 
plants in the northern Congo of Africa. Dr. Gran observed 
women of the Lulua tribe (Tsjiluba language) harvesting the 
above-ground tissues of a plant called “kalata-kalata” which 
subsequently was taxonomically verified as O. affinis. Elder 
healers prepared an aqueous decoction (~1 part powdered 
aerial tissue to 1 part boiling water) and then ingested the 
“tea” to induce labor. Use of the plant as an uterotonic was 
surrounded by a degree of secrecy among the women, and 

although the decoction produced rapid deliveries, in some 
cases severe spasms ensued and emergency caesarian 
sections were required.[2-5]

Upon returning to his native country, Dr.  Gran isolated 
several polypeptides in samples of O.  affinis extracts that 
exhibited remarkably strong uterotonic activity. With 
the aid of protein chemist, Dr. Knut Sletten, the principal 
bioactive peptide, now named kalata B1, was identified 
and almost fully sequenced.[6] This peptide was speculated 
to be a cyclic structure; however, it was exceptionally 
resistant to degradation and N-terminal amino acid 
sequencing, and at the time the available enzymatic tests 
were insufficient to provide conclusive proof of the cyclic 
nature of kalata B1. Therefore, the complete sequence of the 
prototypic cyclotide, kalata B1, was not reported until the 
three-dimensional solution structure was confirmed using 
two-dimensional magnetic resonance (NMR) spectroscopy 
and distance-restrained simulated annealing.[7]

At around this time (mid-1990), three independent research 
facilities reported the discovery of macrocyclic peptides with 

Review Article

Access this article online

Website:

http://www.cysonline.org

Quick Response Code

DOI:

10.4103/2229-5186.99559

[Downloaded free from http://www.cysonline.org on Monday, February 17, 2014, IP: 46.143.232.10]  ||  Click here to download free Android application for this journal

https://market.android.com/details?id=comm.app.medknow


Gerlach and Mondal: Bioactive cyclotides

 170 Chronicles of Young Scientists Vol. 3 | Issue 3 | Jul-Sep 2012 170 

six cystine residues isolated from violaceous and rubiaceous 
plants. During a screening for new saponins, the hemolytic 
violapeptide I (from Viola sp.; Violaceae) was isolated, and 
the finding was published in a German specialist trade 
journal.[8] In 1994, the National Cancer Institute in the USA 
was evaluating a collection of plants for anti-HIV activity; the 
cyclotides, circulin A and circulin B, were characterized from 
extracts of the tropical tree Chassalia parvifolia K. Schum 
(Rubiaceae).[9] Finally, Merck Laboratory Researchers (USA) 
identified cyclopsychotride A from extracts of Psychotria 
vellosiana Benth. (Rubiaceae) while testing natural products 
for neurotensin antagonistic activity.[10] During the next 
decade, additional reports on the isolation of polypeptides 
with a circular nature and unique cyclic cystine knot (CCK) 
motif from violaceous, rubiaceous, and cucurbitaceous plants 
were reported which prompted the formal designation of the 
cyclotides as a plant protein family in 1999.[11-13]

Cyclotide‑Producing Plant Families

Violaceae
Roughly 198 cyclotides have been discovered from 36 species 
in the Violaceae, Rubiaceae, Cucurbitaceae, and Fabaceae 
plant families [Table 1]. Seventy-two percent of sequenced 
cyclotides have been characterized from 24 species of 
Violaceae, and cyclotides are present in every violaceous 
species analyzed. The family comprises ~23 genera and 800 
species of cosmopolitan shrubs, herbs, and rarely trees[16] and 
takes its name from the genus Viola, the violets/pansies, which 
are tiny herbaceous perennials. In terms of economic revenue, 
violaceous flowers are frequently used in the fragrance and 
cuisine industries. Traditional Chinese medicine routinely 
incorporates the violets into healing practices, as several 
species have antioxidant anthocyanins, vitamin A and C, 
glycosides, saponins, flavonoids, carotenoids, and cyclotides. 
Furthermore, extracts from Viola odorata L., a species rich in 
cyclotides, display antineoplastic, antiviral, anti-HIV, and 
antitumor effects.[17]

Rubiaceae
The distribution of cyclotides in Rubiaceae is more limited 
(i.e., many species screened for cyclotides do not express 
them) compared with Violaceae, yet the extent to which 
cyclotides are present in Rubiaceae remains unclear, in part 
because fewer than 10% of the existing rubiaceous species 
have been evaluated for cyclotide expression. Rubiaceae 
is the fourth largest angiosperm family with ~650  genera 
and 13,000  species of shrubs and small trees that occur 
mostly in tropical and subtropical regions of the world.[18] 
Alkaloids are prevalent throughout the family, and familial 
members are an important source of coffee, timber, dyes, 
ornamentals, and prescription medicines.[19-21]

Cucurbitaceae
Only two cucurbitaceous cyclotides have been isolated from 
Momordica cochinchinensis (Lour.) Spreng. These cyclotides, 

MCoT-I and MCoT-II, inhibit trypsin, an enzyme essential 
for nutrition in mammalian systems, and are circular 
with the CCK motif yet they share no further sequence 
similarity to other cyclotides; therefore, these peptides 
have been described as cyclic knottins, trypsin inhibitors, 
or cyclotides.[22,23] The family of the melons and squashes, 
Cucurbitaceae, comprises ~125  genera and 960  species 
of predominantly annual vines.[24] The genus Momordica 
consists of ~60 species of climbing herbs and lianas that have 
a history of use in Chinese folk medicine.[25] A systematic 
search for cyclotides in Cucurbitaceae is warranted to 
explain their distribution.

Fabaceae
The most recent addition to the cyclotide-expressing plant 
families is Fabaceae, the family of the legumes;[26] 24 novel 
cyclotides have been isolated from Clitoria ternatea L. 
Fabaceae is the third largest family of angiosperms with 
~730 genera and over 19,400 species of mainly herbs and 
large trees. Throughout history, humans have heavily 
relied upon fabaceous plants for agricultural and medicinal 
purposes. Fabaceous species provide one-third the global 
crop production. The cyclotide-expressing genus Clitoria 
consists of ~60 species of woody plants with papilionaceous 
flowers and leguminous fruits. Remedies of C. ternatea have 
been used to enhance fertility, control menstruation, treat 
gonorrhea, induce vomiting, and provide an antidote to 
animal bites in traditional healing systems throughout Asia, 
Africa, and South America.[27]

Cyclotide Structure

Cyclotides are circular proteins characterized by 27–38 amino 
acids and a unique cystine knot topology of six highly 
conserved cystine residues linked via three disulfide bonds 
as illustrated in Figure  1. The disulfide bonds (in yellow) 
connect cystine residues (Roman numerals I–VI) to create a 
ring and knotted configuration that generates six backbone 
segments (loops  1–6) between the successive residues. All 
cyclotides have an associated secondary structure involving 
a β-hairpin centered in loop 5.[13,28]

Cyclotides can be divided into three subfamilies. Möbius 
cyclotides have a cis-peptide bond prior to the Proline 
(Pro, P) in loop  5 which creates a twist in the conceptual 
ribbon of the peptide backbone; bracelet cyclotides lack this 
bond. Members of the Möbius subfamily generally show 
less variation in loop size and amino acid sequence, have 
fewer positively charged residues, and are less hydrophobic 
compared with bracelet cyclotides. The third subfamily, 
trypsin inhibitors, has been suggested, but as mentioned 
only two trypsin inhibitor cyclotide sequences have been 
discovered. Although structural variations provide the 
basis for subfamily delineation, a few natural chimeras (i.e., 
cyclotides containing some loops with characteristics of the 
Möbius subfamily and others with characteristics of the 
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bracelet subfamily) have been described.[29] As additional 
cyclotides are discovered, subfamily classifications may 
require evaluation.

The primary structural elements of cyclotides include a 
cystine knot associated with a distorted triple-stranded 
β-sheet stabilized by a number of hydrogen bonds, an 
almost strictly conserved glutamic acid (Glu, E) in loop  1 
that is involved in hydrogen bonding interactions with 
loop  3, and a surface-exposed hydrophobic patch that 
influences retention time on RP-HPLC and bioactivity.[30,31] 
The highly conserved asparagine (Asn, N) or occasionally 
aspartic acid (Asp, D) in loop 6 is thought to be necessary for 
cyclization.[32] Almost all cyclotides have a glycine (Gly, G) 

residue preceding Cys IV[33] which readily adopts a positive 
φ angle required for the type II β-turn needed to connect 
loop 3 to the cystine knot.[30]

Biologically Active Properties of Cyclotides

In general, the use of peptides as pharmaceuticals has 
been limited due to inadequate stability and bioavailability 
under physiological conditions. However, the exceptional 
stability, sequence plasticity, and framework flexibility of 
cyclotides, coupled with their numerous potent bioactivities 
resulting from their ability to target lipid membranes, 
emphasize the assertion that these cyclic polypeptides 
are ideal candidates for studies in the development of 

Table 1: Known taxonomic distribution and abundance of cyclotides in angiosperms
Family Taxa Cyclotide

Violaceae Gloeospermum blakeanum (Standl.) Hekking Globa A‑G
G. pauciflorum Hekking Glopa A‑G 
Hybanthus denticulatus Ballard, Wetter, Zamora Hyde A
H. floribundus (Lindl.) F. Muell. hyfl A–F; hyfl I–M
H. parviflorus Baill. Hypa A 
Hymanthera obovata Kirk Hobo A
Leonia cymosa Mart. Cycloviolin A–D 
Melicytus ramiflorus J.R. & G. Forster mram 5, 10, 11
M. macrophyllus A. Cunn Mema A; Mema B
Orthion oblanceolatum Lundell Orto A
Rinorea gracilipes Engl. Rigra A
R. lindeniana Kuntze Rili A; Rili B
Viola arvensis Murr. Varv peptide A–H; violapeptide 1; tricyclon B
V. abyssinica Steud. ex Oliv. Vaby A–E 
V. biflora L. Vibi A–K 
V. cotyledon Ging. Vico A–B 
V. decumbens L.f. Vide A
V. hederacea Labill. Cycloviolacin H1–H4; vhr1; vhl1‑2
V. labridorica Schrank Vila A–D 
V. nivalis Roem. & Schult. Vini A
V. odorata L. Cycloviolacin O1‑O25; Vodo M,
V. philippica Cav. N, O; violacin A Viphi A‑H 
V. tricolor L. Vitri A‑F; tricyclon A; Varv Hm; Varv He 
V. yedoensis Makino Cycloviolacin Y1–Y5 

Rubiaceae Chassalia parvifolia Schum. Circulin A ‑ F 
Chassalia discolor K. Schum. CD‑1
Oldenlandia affinis (Roem. & Schult) DC Kalata B1–B17; S 
Hedyotis biflora Hedyotide B1, B2
Palicourea condensata Standl. Palicourein 
Palicourea rigida Kunth Parigidin‑br1
Psychotria leptothyrsa Miq. Psyle A‑F
Psychotria suterella Müll. Arg PS‑1
Psychotria vellosiana Benth. Cyclopsychotride A 

Cucurbitaceae Momordica cochinchinensis Spreng. MCoTI‑I, MCoTI‑II 
Fabaceae Clitoria ternatea L. Cter A‑L; cliotide T1–T12
Family Violaceae Rubiaceae Cucurbitaceae Fabaceae Total
Genera 8 5 1 1 15
Species 24 10 1 1 36
Cyclotides 134 38 2 24 198

The table provides a list of known cyclotides and the taxa from which they were originally isolated accumulated from Cybase and SciFinder 
Scholar searches[14,15]

[Downloaded free from http://www.cysonline.org on Monday, February 17, 2014, IP: 46.143.232.10]  ||  Click here to download free Android application for this journal

https://market.android.com/details?id=comm.app.medknow


Gerlach and Mondal: Bioactive cyclotides

 172 Chronicles of Young Scientists Vol. 3 | Issue 3 | Jul-Sep 2012 172 

novel drugs and biopesticides.[34,35] The speculated natural 
function of cyclotides is in plant defense as illustrated by 
several reports of their antibacterial/antimicrobial,[36] 
insecticidal,[37,38] antihelmintic,[39-41] nematocidal,[42] 
antifouling,[43] and molluscicidal properties.[44] The use 
of cyclotides in human health applications was first 
explored during the discovery of kalata B1, and although 
its uterotonic activity was established in rat, rabbit, and 
human uteri, it is not recommended as an oxytocic agent 
because of the severe side effects.[4] During the past decade, 
a profusion of bioactivity-directed research demonstrates 
that cyclotides display an assortment of activities, including 
antineurotensin,[10] trypsin inhibiting,[22,23] hemolytic,[30,31] 
cytotoxic/antitumor,[45-56] and anti-HIV activities;[9,29] 
several of these properties have prospective therapeutic  
relevance.

Table construction to assemble cyclotide bioactivities
In an effort to amass the literature available pertaining to 
cyclotide biological activity and concisely illustrate it using 
informative reference tables, a series of SciFinder Scholar 
searches was first performed, and Table 2 shows the number 
of articles retrieved when using the search key word function 
and then searching either cyclotide by itself or cyclotide 
plus a biological activity. After reviewing each abstract and 
eliminating irrelevant publications, the decision was made 
to summarize those bioactivities that may have the greatest 
potential in agricultural and pharmaceutical applications 

(i.e., host defense, anticancer, and anti-HIV properties); any 
manuscripts that had not been read were obtained for review. 
Tables 3-6 provide a wealth of information summarizing the 
bioassays and potency of evaluated cyclotides in/against the 
specified bioactivity. The remainder of this review highlights 
the factors affecting cyclotide potency and describes their 
potential use as natural defense agents and in the treatment 
of cancer and HIV.

Structural and Molecular Features of Cyclotides 
Impact Bioactivity

The mechanism of cyclotide bioactivity is membrane 
interaction
Changes in cyclotide bioactivity have been reported 
when different targets or cyclotides are compared which 
may indicate that a variety of membrane and cyclotide 
characteristics influence bioactivity. An increasing body 
of evidence suggests that membrane interactions and 
the formation of pores are responsible for cyclotide 
bioactivity.[47,50,52,69-73] For instance, reports indicate that 
kalata peptides selectively bind to bacterial membranes,[69,74] 
and some cyclotides may form discrete pores on the external 
surface of nematodes and thereby interact with the lipid-rich 
epicuticle layer at the surface of the worm.[42]

Furthermore, the antitumor properties of cyclotide, 
cycloviolacin O2 (CyO2) are caused first by the disruption 
of lipid membranes followed by leakage of contents from 
whole cells as well as liposomes.[70] CyO2 causes rapid (within 
5  minutes) disruption of lipid bilayers and is selectively 
cytotoxic in a dose-dependent manner. As a result of 
their pore-forming properties, CyO2 and psyle cyclotides 
chemosensitize drug-resistant breast cancer cells to 
doxorubicin.[50,70] As illustrated in Table 5, cyclotides display 
potent cytotoxic properties against a range of cancer cell 
types, and a recent study evaluating neutral (zwitterionic) 

Figure 1: A representation of cyclotide structure and sequence. 
Kalata B1 (PDB ID 1nb1) has a seamless peptide backbone with 
three disulfides (yellow) connecting cysteine residues (Roman 
numerals). Backbone segments are labeled loops 1–6. Amino 
acid sequences are provided.

Table 2: Results of SciFinder Scholar searches for 
cyclotide bioactivity literature
Key word(s) searched Number of articles

Cyclotide 449
Cyclotide and uterotonic or uteroactive 38
Cyclotide and hemolysis or hemolytic 52
Cyclotide and neurotensin 11
Cyclotide and antimicrobial 71
Cyclotide and antifungal 3
Cyclotide and insecticidal 77
Cyclotide and cancer 34
Cyclotide and antitumor 43
Cyclotide and cytotoxic 9
Cyclotide and anticancer 1
Cyclotide and HIV 80
Cyclotide and AIDS 12
Cyclotide and infectious disease 24
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membranes with and without cholesterol and/or anionic 
lipids demonstrates that the membrane binding and 
disrupting properties of cyclotides are dependent on lipid 
composition since CyO2, a member of the bracelet subfamily, 

was a potent membrane disrupter with selectivity toward 
anionic membranes, while Möbius cyclotides, kalata B1 
and kalata B2, display significantly less lytic activity toward 
those membranes.[72,75]

Table 3: Cyclotides exhibiting antibacterial, antimicrobial, insecticidal, or molluscicidal activity
Activity Cyclotide Taxa or Cell line Assay Bioactivity Ref.

Antibacterial and 
antimicrobial

Circulin A Staphylococcus (St) aureus; Candida kefyr; 
Candida tropicalis

ARD 0.19, 18.6, & 19.4* [36]

Circulin B Escherichia coli; Proteus (Pr) vulgaris; Klebsiella 
oxytoca; St. aureus

ARD 0.41, 6.80, 8.20, & 
13.5*

[36]

Cyclopsychotride A E. coli; K. oxytoca; Pr. vulgaris; Pseudomonas 
(Ps) aeruginosa

ARD 1.55, 5.8, 13.2, 13.5* [36]

Cycloviolacin O2 E. coli ; K. pneumonia; Ps. Aeruginosa; 
Salmonella (S) enterica servoar Typhimuium LT2

ARD, MIC, TK 2.2 to >50** [56,57]

Kalata B1 E. coli; S. enterica servoar Typhimuium LT2; St. 
aureus; C. kefyr 

ARD 0.26 to21.4*, >100** [36,57]

Kalata B2 E. coli; St. aureus; St. enterica MIC >35** [57]

Hedyotide B1 E. coli; St. salivarius ARD 3.4 & 5.9* [58]

Vaby A E. coli; St. aureus; St. enterica MIC 32.5 to >90 [56,57]

Vaby D E. coli; St. aureus; St. enterica MIC 50 to >90** [56,57]

Insecticidal Kalata B1 Helicoverpa punctigera (cotton budworm) FT, MIC †,** [37]

Kalata B2 Helicoverpa armigera (cotton bollworm) FT, MIC †;> 35** [38]

Kalta B1 H. armigera FT ‡ [59]

Hypa A Ceratitis capitata (Medfly) MT 58–100% [60]

Parigidin‑br‑1 Diatraea saccharali (sugarcane borer) 
Spodoptera frugiperda (SF‑9)

FT, CVT 60%†, 1.7¶ [61]

Reverse antifouling Cycloviolacin O2 Balanus improvises (barnacle) LAB 0.25§ [43]

Molluscicidal Kalata B2 Pomacea (Po) canaliculata (golden apple snail) MAA, MA 53¶, 78% [44]

Kalata B1 Po. canaliculata MA 68% [44]

Cycloviolacin O1 Po. canaliculata MA 100% [44]

ARD = antimicrobial radial diffusion assays; CVT = cell viability tests using an insect cell line; FT = feeding trials; MT = mortality trials; 
LAB = larval attachment bioassays; MAA = molluscicidal activity assays; MA = mortality assays; MIC = minimum inhibitory concentration; 
Ref. = reference and; TK = time‑kill kinetics; Percentages indicate percent mortality; *The values reflect the inhibitory concentration 50 (IC50) (µM) 
from respective references; †The cyclotide significantly inhibited growth and increased mortality; ‡The cyclotide inhibited growth and caused 
swelling and lysis of midgut cells; §The concentration (µM) required for complete inhibition of settlement; ¶The concentration (µM) required to 
cause 50% mortality or cytotoxicity; **The values reflect the MIC (µM)

Table 4: Cyclotides displaying antihelminthic activity
Cyclotide Taxa or Cell line Level of bioactivity (IC50 µM)* Ref.

Cycloviolacin O1 Haemonchus contortus, Trichostronglyus columbriformis (sheep nematodes) 2.82, 3.89 [39]

Cycloviolacin O2 H. contortus†, T. columbriformis 0.12, 0.24 [39]

Cycloviolacin O3 H. contortus, T. columbriformis 0.21, 0.23 [39]

Cycloviolacin O8 H. contortus, T. columbriformis 0.24, 0.22 [39]

Cycloviolacin O13 H. contortus, T. columbriformis 0.21, 0.19 [39]

Cycloviolacin O14 Necator americanus (human hookworm), Ancylostoma caninum (dog 
hookworm), H. contortus†, T. columbriformis

1.40, 0.37, 0.41, 0.64 [39,41]

Cycloviolacin O15 H. contortus, T. columbriformis 0.38, 0.41 [39]

Cycloviolacin O16 H. contortus, T. columbriformis 0.27, 0.45 [39]

Cycloviolacin O24 H. contortus, T. columbriformis 1.74, 2.99 [39]

Cycloviolacin H3 H. contortus, T. columbriformis 0.85, 5.90 [39]

Cycloviolacin Y4 H. contortus, T. columbriformis 2.01, 2.27 [39]

Cycloviolacin Y5 H. contortus, T. columbriformis 2.28, 2.40 [39]

Kalata B1 H. contortus†, T. columbriformis, N. americanus, A. caninum‡ 2.26, 5.22, 3.63, 1.57 [39,41]

Kalata B2 H. contortus, T. columbriformis 1.59, 5.69 [39]

Kalata B6 H. contortus, T. columbriformis, A. caninum 0.87, 2.62, 7.13 [39,41]

Kalata B7 H. contortus, T. columbriformis 6.29, 5.64 [39]

*The level of bioactivity (inhibitory concentration 50 = IC50) was evaluated in larval development assays. †Significant decreases in motility were 
observed in adult worm motility assays. ‡Significant decreases in motility and survival were observed in adult worm motility assays. Ref. = reference
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The potency of anti-HIV activity for cyclotides (as 
exemplified in Table  6) is also influenced via membrane 
interactions. For example, kalata B1 is sequestered on 
the membrane most likely through self-association and 
then forms conductive pores with channel-like activity 
via the insertion of oligomers into the lipid bilayers of 
membranes.[76] Furthermore, specific interactions with 
phospholipids containing phosphatidylethanolamine (PE) 
headgroups and nonspecific lipid hydrophobic interactions 
can alter anti-HIV potency. Kalata B1 can target and disrupt 
HIV particles that have raft-like membranes and are rich in 
PE phospholipids.[71] The activity is not dependent on the 
recognition of chiral receptors since the all D-enantiomer 
of kalata B1 that was synthesized was still active in 
cytotoxic and hemolytic assays.[73] Taken together, this 
body of evidence indicates that the mechanism of cyclotide 
bioactivity is membrane interactions via pore formation.

A defined hydrophobic patch influences bioactive 
potency
One prominent characteristic of cyclotides is a hydrophobic 
patch which is formed by solvent-exposed amino acids 
that protrude outward to the molecular surface due to the 

occupation of the core by the disulfide bonds of the cystine 
knot; this feature impacts antibacterial,[36,57] insecticidal,[38] 
cytotoxic,[75] anti-HIV,[64,65] and hemolytic activities[77,78] such 
that increases in the hydrophobic surface area correlate 
with enhanced bioactivities.[64] As mentioned, the cyclotide 
subfamilies, bracelet and Möbius, differ in the absence and 
presence of a cis-Pro peptide bond in loop 5, respectively. 
These subfamilies also differ in their orientation in 
the membrane due to variations in the distribution of 
surface-exposed hydrophobic amino acid residues and 
their net charge. For instance, the bracelet cyclotide, 
CyO2, interacts with the lipid bilayers via the hydrophobic 
segments of loops 2 and 3, while the hydrophobic loops 5 
and 6 are buried in the membrane of the Möbius peptide 
varv A. This feature impacts bioactivity in that bracelet 
cyclotides tend to be more potent. Interestingly, chimeric 
cyclotides such as kalata B8 and psyle A demonstrate the 
importance of the amphiphatic structure of cyclotides 
in that they resemble Möbius cyclotides except for their 
loop  5 composition. In this loop, the loss of hydrophobic 
residues generally seen in Möbius cyclotides disrupts their 
amphipathicity and decreases cytotoxicity by greater than 
30-fold.[72,75]

Table 5: Cyclotides exhibiting cytotoxic or antitumor activity
Taxa Cyclotide Cell line or type IC50 (µM) Ref.

Psychotria leptothyrsa Psyle A ‑ F U‑937GTB, MCF‑7, MCF‑7/ADR 0.72 to >10 [51,52]

Viola odorata CyO2 A549, ACHN, BEL‑7402, BGC‑823, BEL‑7402, DU145, 
CCRF‑CEM, CCRF‑CEM/VM‑1, CLL,NCI‑H66, NCI‑H69AR, 
MDA‑MB‑231, OVCA, PBMC, RPMI‑8226/s, RPMI‑8226/
Dox40, RPMI‑8226/LR‑5, U251, U‑937GTB, U‑937VcR

0.1 to 17.05 [45,49,52,55]

V. abyssinica Vaby A U‑937 GTB 7.6 [56]

Vaby D A549, BEL‑7402, BGC‑823, DU145, MDA‑MB‑231, 
U251, U‑937 GTB

2.8 to 46.62 [53,56]

V. arvensis Varv A ACHN, CCRF‑CEM, CCRF‑CEM/VM‑1, CLL,NCI‑H66, 
NCI‑H69AR, OVCA, PBMC, RPMI‑8226/s, RPMI‑8226/
Dox40, RPMI‑8226/LR‑5, U‑937GTB, U‑937VcR

2.7 to 12.1 [45]

Varv F ACHN, CCRF‑CEM, CCRF‑CEM/VM‑1, CLL,NCI‑H66, 
NCI‑H69AR, OVCA, PBMC, RPMI‑8226/s, RPMI‑8226/
Dox40, RPMI‑8226/LR‑5, U‑937GTB, U‑937VcR

2.6 to 7.4 [45]

V. labridorica Vila A A549, BEL‑7402, BGC‑823, DU145, MDA‑MS‑123, U251 5.08 to >10 [49]

Vila B A549, BEL‑7402, BGC‑823, DU145, MDA‑MS‑123, U251 6.25 to 34.65 [49]

Vila D A549, BEL‑7402, BGC‑823, DU145, MDA‑MS‑123, U251 >10 to 49.59 [49]

V. philippica Viphi A–G BGC‑823, HeLa, HFF‑1, MM96L 1.03 to 6.35 [55]

Viba 15, 17, Varv A, Kalata B1 BGC‑823, HeLa, HFF‑1, MM96L 1.32 to 10.21 [55]

V. tricolor Varv A,D, E, F, H, He, Hm RPMI‑8226/s, U‑937GTB 4 to 74.39 [46,54]

Vitri A–F A549, BEL‑7402, DU145, MDA‑MB‑231, RPMI‑8226/s, 
U251, U‑937GTB 

0.6 to 54.39 [46,54]

V. biflora Vibi D U‑937GTB >30 [49]

Vibi E U‑937GTB 3.2 [49]

Vibi G U‑937GTB 1 [49]

Vibi H U‑937GTB 1.6 [49]

A549 (human lung carcinoma); ACHN (renal adenocarcinoma); BEL‑7402 (human hepatocellular carcinoma); BGC‑823 (gastric carcinoma); 
CCRF‑CEM and CCRF‑CEM/VM‑1 (T‑cell leukemia and drug resistant sub‑line); CLL – Chronic lymphocytic leukemia; Hela – human epithelial 
carcinoma; HFF‑1 – Human foreskin fibroblasts; MDA‑MB‑231 (human breast carcinoma); MM96L (human melanoma); NCI‑H66 and NCI‑H69/AR 
(small cell lung cancer and resistant sub‑line); OVCA – Ovarian carcinoma; PBMC – Peripheral blood mononuclear cells; RPMI‑8226/s and 
RPMI‑8226/Dox40 and RPMI‑8226/LR‑5 (myeloma and two drug resistant sub‑lines); U‑937GTB and U‑937VcR (histiocytic lymphoma and drug 
resistant sub‑line); MCF‑7 and MCF‑7/ADR (human adenocarcinoma breast cancer and drug resistant sub‑line) and U251 (human glioblastoma). 
CyO2 = cycloviolacin O2 and Ref. = reference
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Two amino acid residues that can impact potency of 
several bioactivities are the conserved Glu in loop  1 and 
tryptophan (Trp, W). For instance, the esterification of Glu 
in the bracelet cyclotide, CyO2, results in a 48-fold decrease 
in cytotoxic potency[48] and a near loss of antibacterial 
activity against Salmonella sp.[57] Apparently Glu does not 
similarly affect the Möbius cyclotide, varv A, which displays 
only a three-fold decrease in potency when the residue is 
esterified. The hydrophobic Trp residue common in many 
cyclotides plays an important role in bioactivity because 
when peptides containing Trp bind to the membrane, Trp 
is buried into the lipid bilayers and enhances cytotoxicity. 
Hydroxlyation of Trp in models of varv A and CyO2 results 
in dramatic decreases in cytotoxicity.[72,75]

An intact circular backbone is essential for several 
cyclotide bioactivities
The unique features of cyclotides (i.e., circular structure 
and CCK motif) are considered crucial traits impacting their 
bioactivity. Indeed, the reduction/alkylation of disulfide 
bonds and/or linearization of the circular backbone can result 
in a complete loss of antibacterial, cytotoxic, or hemolytic 
activity.[30,48,58,79] Reduced peptides in general are significantly 
more susceptible to denaturation via enzymes or chemicals 
compared with oxidized species.[80,81] However, psyle C is 
a linear peptide (or “uncyclotide” as suggested by Nguyen 
and colleagues)[58] that retains the other unique features of 
cyclotides, and it is active against lymphoma, breast cancer, 
drug-resistant breast cancer, and chemosensitizes cells to 

the anticancer drug doxorubicin.[50-52] Violacin A is also an 
uncyclotide although it has dramatically reduced hemolytic 
activity compared with other cyclotides which is thought 
to be attributed to its atypically low hydrophobicity and 
linear nature.[78] Hedyotide B2, a third naturally occurring 
uncyclotide, has no bacterial activity.[58] Thus, it appears 
that forced reduction results in a loss of activity, and 
further studies on the retained cytotoxicity of psyle C and 
bioactivity potency of the other uncyclotides may shed new 
insight on the importance of the CCK.

Cyclotides may be therapeutic and useful scaffolds in 
drug design
Recently, analogs with vascular endothelial growth factor 
(VEGF) antagonism were successfully grafted onto the CCK 
framework of kalata B1. The normal function of VEGF is 
the creation of new blood vessels; however, when VEGF is 
overexpressed, it can contribute to disease. Solid cancers 
will not grow beyond a limited size without a supply of 
blood. Cancers that express VEGF have an ample source 
of blood and are able to grow and metastasize. Therefore, 
the development of stable peptide analogs with VEGF 
antagonism which are grafted onto cyclotides is a novel 
approach that may be useful in the treatment of diseases 
where angiogenesis is an important component.[35]

Additionally, cyclotides display potent, salt-dependent 
antibacterial properties against both Gram-negative and 
Gram-positive bacteria as illustrated in Table  3.[36] Since 

Table 6: Cyclotides exhibiting anti‑HIV activity
Taxa Cyclotide IC50 (µM) EC50 (µM) Ref.

Chassalia parvifolia Circulin A 0.04–0.26 0.05 [9]

Circulin B 0.04–0.26 0.05 [9]

Circulin C 0.05–0.275 * [62]

Circulin D 0.05–0.275 * [62]

Circulin E 0.05–0.275 * [62]

Circulin F 0.05–0.275 * [62]

Leonia cymosa Cycloviolin A 0.13 0.56 [63]

Cycloviolin B 0.13 0.56 [63]

Cycloviolin C 0.13 0.56 [63]

Cycloviolin D 0.13 0.56 [63]

Viola odorata Cycloviolacin O2† * * [50]

Cycloviolin O13 0.32 6.4 [64]

Cycloviolacin O14 0.44 4.8 [64]

Cycloviolacin O24 0.308 6.17 [64]

Viola yedoensis Cycloviolin Y1 1.21 4.47 [65]

Cycloviolin Y4 0.12 1.72 [65]

Cycloviolin Y5 0.04 1.76 [65]

Oldenlandia affinis Kalata B1 0.14 3.5 [66]

Kalata B8 2.5 11 [67]

Palicourea condensata Palicourein 0.1 1.5 [29]

Viola tricolor Varv E 0.35 3.98 [65]

Viola hederacea Vhl‑1 0.87 * [68]

IC50 refers to the cytotoxicity to target cells, and EC50 refers to the cytopathic inhibitory activity in XTT (tetrazolium salt) cell proliferation assays.
Ref. = Reference. *Not tested. †Cycloviolacin O2 (1.5 µM) caused ~60% membrane disruption on HIV type 1 HTLVIIIB cells which was four‑fold 
greater than uninfected human T‑cell lymphoma HuT78 cells[50]
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the cyclic structure and cystine knot motif of cyclotides 
closely resembles current antimicrobial drug leads, such 
as microcin J25, cyclotides may be useful templates for 
designing novel antibiotics. Tables 3 and 4 also emphasize 
the fact that cyclotides can inhibit the movement, growth, 
and development of insect larva and parasites and increase 
mortality.[37,38,59-61] Taken together, these reports support the 
supposition that cyclotides alone or as scaffolds can deter or 
be engineered to inhibit interactions associated with cancer, 
infectious disease, and pest management.
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