

What Makes it a Solidago?

Member of the Asteraceae
-- inflorescence a head or capitulum
-- involucre subtending the florets
-- calyx (sepals) modified to form a pappus

Member of the Tribe Astereae
-- receptacle \pm naked, chaffy bracts are NOT present (= receptacular bracts, or paleae)
-- ray florets pistillate, \$ corolla short
-- disc florets perfect, corolla yellow, 5-lobed

Northern goldenrod (Solidago multiradiata) Paul Slichter

Figure Parts of a radiate head. Note that receptacular bracts are often absent.

What Makes it a Solidago?

Member of Solidago

-- capitula radiate
-- receptacle slightly convex, low ridges surrounding the attachment point of florets, \$ few marginal paleae -- involucres 3-10 mm, phyllaries lanceolate, ovate or oblong, in 3-5 series, with translucent midrib
-- ray florets pistillate, corollas yellow (rarely white)
-- disc florets perfect, corollas yellow (rarely white), 5-lobed
-- pappus in 2 series of $25-45$ barbellate bristles

R.W. Lutz http://iowaplants.com/index.html

Solidago Reference Table. Data compiled by Dr. Thomas Rosburg from Semple and Cook 2006, Eilers and Roosa 1994, Kartesz 2015, Voss and Reznicek 2012, Yatskievych 2006, Iowa Natural Areas Inventory

Fields

1-Currently accepted scientific name in Flora of North America. Iowa status (if listed) and data concerning occurrence in Iowa. Iowa Coefficient of Conservatism.
Species with shading are most likely to be encountered and included in further discussion. Green = forest, woodland species, yellow = grassland species, blue $=$ wetland species.
2-Nomenclature and synonyms in Eilers and Roosa 1994. Key identification characteristics.
3-Common names indicated by Eilers and Roosa 1994 or observed in general use.
4-General habitat description
5-Biogeographical range according to BONAP NOTE: USE RANGE MAPS IN IOWA PRAIRIE PLANTS FOR DESIGNING SEED MIXES
Digital version available at: http://uipress.lib.uiowa.edu/ppi/

Flora of North America	Eilers and Roosa 1994	Common Names	Habitat	BONAP Biogeography
Solidago altissima subsp. altissima * subsp. gilvocanescens * Iowa CC: 0 to 2 H	NEW SPECIES leaves triple-veined; stems \& inflorescence pubescent; leaf margins serrulate to subentire	tall goldenrod late goldenrod similar species: Canada goldenrod giant goldenrod	dry to mesic soils, in prairies, grasslands, fields, thickets, roadsides, riparian and disturbed areas	
Solidago canadensis var. hargeri* var. canadensis Iowa CC: 0 to 2 H	Solidago canadensis var. gilvocanescens var. hargeri var. scabra = Solidago altissima leaves triple-veined; stems \& inflorescence pubescent; leaf margins serrate	Canada goldenrod similar species: tall goldenrod giant goldenrod	dry to mesic soils in prairie, pastures, open woodlands, roadsides, old fields	
Solidago flexicaulis Iowa CC: 6 to 7 H	Solidago flexicaulis $=$ S. latifolia zigzag upper stem; leaves broadly ovate, coarsely serrate with a rounded base and winged petiole	zig-zag goldenrod similar species: cliff goldenrod rough-leaved goldenrod	mesic soils in forest and woodland; shaded streambanks and riparian soils	

Solidago gigantea Iowa CC: 3 to 3 H	Solidago gigantea var. Serotina leaves triple-veined; stems glabrous, glaucous; inflorescence pubescent	giant goldenrod smooth goldenrod similar species: Canada goldenrod tall goldenrod early goldenrod	seasonally wet-mesic to mesic soils, in prairie, open woodland, wet meadows or swales, ditches or roadsides, and thickets; flood plains and riparian areas	
Solidago hispida Iowa CC: 10 to 10 M	Solidago hispida $=$ S. bicolor var. concolor basal and lower cauline leaves much larger than mid cauline leaves; softly pubescent leaves and stems	hairy goldenrod similar species: cliff goldenrod soft goldenrod	dry sandy, gravelly or rocky soils in forests and woodlands; sand dunes, sandy fields and shorelines, disturbed areas	
Solidago missouriensis Iowa CC: 5 to 6 H	Solidago missouriensis var. fasciculata leaves triple-veined; stems \& inflorescence glabrous, stems sometimes red; short, leafy branches in upper leaf axils	Missouri goldenrod prairie goldenrod similar species: giant goldenrod early goldenrod	sandy and rocky soils, clay and loam soils in prairies, grasslands, pastures, savanna, open woodland, rock ledges, limestone glades, disturbed soils, roadsides	
Solidago mollis Iowa CC: pending	NEW SPECIES (treated as a variety of Solidago nemoralis) leaves triple-veined, grayish green, densely strigulose to puberulent basal leaves withering	soft goldenrod similar species: rigid goldenrod gray goldenrod	dry sandy, loam to clay soils in prairies, savanna, and open woodland;	
Solidago nemoralis subsp. nemoralis * subsp. decemflora * Iowa CC: 4 to 5 H	Solidago nemoralis var. longipetiolata $=$ S. decemflora $=$ S. longipetiolata leaves single-veined, grayish green; stems $<60 \mathrm{~cm}$	gray goldenrod old-field goldenrod similar species: soft goldenrod hairy goldenrod	dry sandy, gravelly or clay soils in prairies, grasslands, pastures, open deciduous and conifer woodlands, disturbed sites, old fields, roadsides	

Solidago patula var. patula * var. strictula	Solidago patula	rough-leaved goldenrod swamp goldenrod	wet to mesic soils in swamps and wet woodlands, wet meadows and seeps, fens,	
Endangered 3 observations (1 site) last observation 2001 Iowa CC: 10 to 10 M	leaves scabrous, basal leaves up to 30 cm long and 10 cm wide with winged petioles; stems striate, 2 or 3 angled	similar species: elm-leaf goldenrod	roadside ditches	
Solidago ptarmicoides Iowa CC: 9 to 9 M	Solidago ptarmicoides = Aster ptarmicoides leaves linear, more than 10X longer than wide; margins with a narrow cartilaginous strip	upland white goldenrod white flat top goldenrod similar species: most likely confused with a Symphyotrichum species	dry, sandy, usually calcareous soils, rocky outcrops and rock ledges in prairies, savanna and open woodland	
Solidago riddellii Iowa CC: 8 to 9 H	Solidago riddellii leaves linear, more than 10X longer than wide, blades recurved and Vshaped with sheathing bases	Riddell's goldenrod similar species: some resemblance to Helianthus maximiliani	shallow marshes, wet prairies, sedge meadows, fens, wet seeps	
Solidago rigida subsp. rigida * subsp. humilis * subsp. glabrata Iowa CC: 4 to 4 H	Solidago rigida var. humilis stems stout, leafy, hairy leaves broadly ovate to lanceolate, upper smaller \& sessile, lower larger \& long petiolate	rigid goldenrod stiff goldenrod similar species: soft goldenrod	prairies, glades, oak savannas, open woodlands, pastures, dry calcareous soils, utilizes disturbances	
Solidago sciaphila Iowa CC: 10 to 10 H	Solidago sciaphila basal and lower cauline leaves the largest and serrate, becoming smaller and entire distally	cliff goldenrod similar species: showy goldenrod hairy goldenrod	sandstone and limestone bluffs and ledges along the upper Mississippi River	

Solidago speciosa subsp. pallida subsp. speciosa * var. rigidiuscula * var. speciosa * Iowa CC: 7 to 7 H	Solidago speciosa var. jejunifolia var. rigidiuscula leaves single-veined, glabrous, lanceolate to ovate-elliptic, usually entire, lower withering	showy goldenrod similar species: cliff goldenrod	sandy, silty, gravelly soils in grasslands and prairie, pasture, savannas, open woodlands, on road embankments	
Solidago uliginosa Endangered 1 observation, 1 county last observation 1989 Iowa CC: 10 to 10 H	Solidago uliginosa stems glabrous, often reddish; leaves linear, glabrous, lower leaves with sheathing and clasping bases	swamp goldenrod bog goldenrod similar species: Riddell's goldenrod	fens, bogs, marshes, swamps, wet meadows	
Solidago ulmifolia var. ulmifolia * var. palmeri Iowa CC: 6 to 6 H	Solidago ulmifolia stems glabrous below the inflorescence; leaves elliptic to narrowly lanceolate, \pm scabrous, lower serrate, upper entire margins	elm-leaf goldenrod similar species: rough-leaved goldenrod	dry to mesic upland forest and woodland	

Solidago species unknown for Iowa, but which occur in adjacent states

Solidago sphacelata (IL)
Solidago arguta (IL, MO)
Solidago ohioensis (IL, WI)
Solidago drummondii (IL, MO)
Solidago caesia (WI, IL, MO)
Solidago simplex (SD, MN, WI)
Solidago gattingeri (MO)
Solidago juncea (MN, WI, IL, MO)
Solidago sempervirens (IL)
Solidgo radula (IL, MO)
Solidago bicolor (WI, IL, MO)
Solidago buckleyi (IL, MO)
Solidago petiolaris (NE, MO, IL)
Solidago odora (MO)

Splitting up 13 lowa Solidago species

Group A - dome-like (convex) to flat outline across the top, the outer (lower) branches longer than the central (upper) branches

- upland white
- rigid
- Riddell’s

Group B - elongate \pm cylindrical, a terminal "wand" or "rod"

- showy
- zigzag
- hairy
- cliff

Group C - pyramidal, broadest at or near the base and tapering to the apex, which may nod; lower branches in some species are \pm recurved with the heads one-sided (oriented on top of the branches)

- gray
- elm-leaf
- Missouri
- giant
- tall
- Canada

GROUP A - flat-topped

* disc and ray corollas white or less commonly pale cream-color * disc and rat corollas yellow
\rightarrow leaves narrow, blades linear, narrowly lanceolate or oblanceolate, more than 10X longer than wide, glabrous, margins entire; stems glabrous below the inflorescence Riddell's
\rightarrow leaves broad, blades broadly oblanceolate to elliptic-obovate, or oblong-elliptic, less than $3 X$ longer than wide, densely hairy, margins crenate or serrulate (subentire); stems densely short hairy rigid Sin 4-Riddells.

- 5-Riddell's

8-rigid

stem below the inflorescence hairy;

B2

stem below the inflorescence glabrous; upper surface of leaf blade glabrous to sparsely hairy * leaf margins entire to shallowly serrulate or crenulate, leaves mostly 4-5 times longer than wide; cypselae (fruit) glabrous; secondary inflorescence typically dense, compact showy

* leaf margins sharply and distinctly serrate, leaves mostly 1.5-3.5 times longer than wide; cypselae (fruit) moderately to strongly strigose; secondary inflorescence open, diffuse zigzag
 * leaf margins entire to shallow sis

upper surface of leaf blade hairy hairy

\rightarrow basal and lower cauline leaves the largest and longest, the leaves progressively reduced in size distally; stem \pm straight cliff
\rightarrow basal and lower cauline leaves smaller than the longest ones, which occur a third to a half of the way up the stem; stem tending to zigzag between upper nodes zigzag

C1

cauline leaves with a distinct midrib, the other weaker veins \pm pinnate, NOT triple-nerved

* stems and leaves densely pubescent with minute (0.1-0.3 mm) mostly curved hairs; leaves surfaces dull green; plants of dry grassland, prairie, open woodland gray * stems and leaves moderately pubescent with longer (0.51.5 mm) mostly spreading hairs; leaf surfaces clear green; plants of upland savanna, woodland or forest elm-leaf

C2
cauline leaves (at least the main ones) triple-nerved, with a pair of elongate, lateral veins arising below the middle of the midrib that are distinctly stronger than other lateral veins, \pm parallel with the leaf margins, and present for over half the length of the blade

GROUP C2 - pyramidal

stem glabrous all of its length below the inflorescence, rarely with a few scattered, spreading, short hairs

* axis, branches and pedicels of the secondary inflorescence glabrous Missouri * axis, branches and pedicels of the secondary inflorescence sparsely to moderately and distinctly pubescent giant

* involucres mostly 3.1-4.6 mm long; ray florets 10-16, ray corollas $3.0-4.0 \mathrm{~mm}$, disc corollas $3.0-3.5 \mathrm{~mm}$; mid to distal cauline leaves minutely serrate to entire tall * involucres mostly 2.0-3.0 mm long; ray florets 6-12, ray corollas $2.0-3.0 \mathrm{~mm}$, disc corollas $2.3-2.7 \mathrm{~mm}$; mid to distal cauline leaves evidently serrate Canada

Glossary

A. Needielike

C. Linear

B. Scalelike

H. Ovate
I. Broadly elliptic
J. Obovate

F. Elliptic

K. Orbicular

G. Oblanceolate

A. Glabrous

D. Strigose

J. Stellate

B. Pilose

H. Puberulent

K. Stipitate Glandular

C. Villous

F. Hirsute

I. Tomentose

L. Sessile Glandular

Reproductive Terms

Achene - a single seeded indehiscent dry fruit with the seed free from the pericarp except at the funicule (the stalk of an ovule attaching it to the placenta of the ovary)
Calyx - collective term for the sepals of a flower, the lower and outermost (or first) whorl of flower parts
Corolla - collective term for the petals of a flower, the second whorl of flower parts
Cypsella - a certain type of achene characteristic of the Asteraceae, developed from an inferior ovary and usually bearing a pappus
Inflorescence - the part of a shoot above the uppermost node with foliage leaves that bears flowers, also, the groupings or arrangements in which these flowers are borne
Involucre - one or more whorls of bracts immediately subtending a flower or inflorescence, often forming a cup-like structure
Pappus - specialized and modified calyx consisting of scales, bristles, or awns characteristic of the Asteraceae
Phyllary - one of the involucral bracts present in the involucre of a head (or capitulum) inflorescence in Asteraceae
Primary inflorescence - the arrangement of individual flowers or florets
Radial head - inflorescence in the Asteraceae bearing disk flowers in the center and ray florets around the periphery
Secondary inflorescence - the arrangement of the primary inflorescences

Vegetative Terms

Areole - the non-vascularized spaces or tissue between the veins and veinlets of a net-veined leaf
Cauline - describing leaves borne on an aerial stem, usually separated by elongated internodes
Caulescent - possessing a stem visible above the ground
Clasping - a sessile leaf with lobes of blade tissue projecting around either side of the stem
Crenate - margin with regular rounded teeth making a scalloped margin
Crenulate - minutely crenate, with very small rounded teeth
Entire - margin that is smooth or of unbroken outline, without teeth
Glabrous - surface smooth or lacking trichomes (plant hairs, or epidermal outgrowths)
Glaucous - a bluish-green, pale gray/whitish waxy surface covering
Hispid - pubescent with stiff bristle-like hairs
Involute - the margins of a flat surface rolled inward toward the upper surface
Node - the joint (or transverse plane) of a stem at which one or more leaves and associated axillary buds arise
Petiolate - a leaf possessing a stalk or petiole, attached by a leaf stalk
Puberulent - pubescent with very short hairs, minutely pubescent
Pubescent - surface with trichomes present
Scabrous - pubescent with short, stout hairs making the surface feel like sandpaper
Serrate - sawtooth margin with sharp teeth bent toward the leaf apex
Serrulate - minutely serrate, with very small teeth bent toward the leaf apex
Sessile - a leaf blade attached directly to a node, lacking a petiole
Sheathing - a modified petiole that is prolonged into a tube that partially or completely surrounds the stem above the node to which the leaf is attached
Striate - with several parallel longitudinal lines or ridges, often rather fine and close, usually separated by grooves
Strigose - pubescent with short hairs that lie flat against the surface
Subentire - nearly or almost entire
Subsessile - a leaf with a very short, or barely perceptible petiole
Proximal - near to the point of origin or attachment (e.g., in regard to leaves, near the base of the stem)
Distal - remote from the point of origin or attachment (e.g., in regard to leaves, near the top of the stem)

References

Eilers, L.J. and D.M. Roosa. 1994. The Vascular Plants of Iowa: An Annotated Checklist and Natural History. University of Iowa Press, Iowa City, IA
Kartesz, J.T. 2015. The Biota of North America Program (BONAP). North American Plant Atlas. http://bonap.net/napa. Chapel Hill, NC.
Kaul, R.B., D.M. Sutherland, and S.B. Rolfsmeier. 2006. The Flora of Nebraska. School of Natural Resources, University of Nebraska-Lioncoln, Lincoln, NE, 966 pages

Murrell, Z. 2010. Vascular Plant Taxonomy. Kendall Hunt Publishing Company, Dubuque, IA
Semple, J.C., and R.E. Cook. 2006. Solidago In: Flora of North America Editorial Committee, eds. 1993+. Flora of North America North of Mexico. 19+ vols. New York and Oxford. Vol. 20

Voss, E.G. and A.A. Reznicek. 2012. Field Manual of Michigan Flora. University of Michigan Press, Ann Arbor, MI, 990 pages
Yatskievych, G. 2006. Steyermark's Flora of Missouri Volume 2. Missouri Botanical Garden Press, St. Louis MO and Missouri Department of Conservation, Jefferson City, MO, 1,181 pages

Adapted from keys in Yatskievych, G. 2006. Steyermark's Flora of Missouri Volume 2. Missouri Botanical Garden Press; Voss, E.G. and A.A. Reznicek 2012. Field Manual of Michigan Flora. University of Michigan; Kaul, R.B., D.M. Sutherland, and S.B. Rolfsmeier. 2006. The Flora of Nebraska. School of Natural Resources, University of Nebraska-Lioncoln; Semple, J.C, and R.E. Cook. 2006. Solidago. In: Flora of North America Editorial Committee, eds. 1993+. Flora of North America North of Mexico. 21+ vols. New York and Oxford. Vol. 20; by Thomas R. Rosburg (January 2021).

1a. Secondary inflorescences a terminal \pm flat-topped (or somewhat domed to convex) corymbiform inflorescence; heads solitary or in small clusters at the branch tips

2a. Disc and ray corollas white or less commonly pale cream-color.......S. ptarmicoides (upland white goldenrod)
2 b. Disc and ray corollas yellow
3a. Leaves relatively narrow, blades linear, narrowly lanceolate, or narrowly oblanceolate, more than 10 times as long as wide, glabrous, margins entire; stems glabrous below the inflorescence
S. riddellii
(Riddell's goldenrod)
3b. Leaves relatively broad, blades broadly oblanceolate to elliptic-obovate, ovate or oblong-elliptic, less than 3 times as long as wide, densely hairy, margins crenate or serrulate (subentire); stems densely short hairy S. rigida (rigid goldenrod)

1b. Secondary inflorescences either consisting of axillary clusters, or if terminal then elongate and racemose or pyramidal panicles; heads usually oriented upward and singly or in small clusters along the branches

4 a . Secondary inflorescences consisting of axillary clusters, or if terminal then the inflorescence narrow with small clusters of heads or spikelike branches in leaf axils along the main stem, the branches not arching with heads oriented in several directions

5a. Stem glabrous below the inflorescence; upper leaf blade surfaces glabrous or sparsely puberulent 6a. Basal and proximal cauline leaves tapering to a long petiole with a sheathing and clasping base, blades oblanceolate, 5 to 15 times longer than wide; plants in wetlands..............S. uliginosa (swamp goldenrod) 6 b. Basal and proximal cauline leaves tapered to a petiole, leaf bases not clasping, blades broadly ovate, broadly elliptic-ovate, oblanceolate, elliptic to obovate, 1.5 to 6 times longer than wide; plants in prairie, woodland or forest, clearly not a wetland

7a. Leaf margins of basal and lower leaves entire to shallowly serrulate or crenulate, leaves mostly 4-5 times longer than wide; cypselae glabrous; secondary inflorescence typically dense, compact, broadly cylindrical, and paniculiform, consisting of axillary clusters or more commonly strongly ascending and racemiform branches.
.S. speciosa (showy goldenrod)
7b. Leaf margins of basal and lower leaves sharply and distinctly serrate, leaves mostly 1.5-3.5 times longer than wide; cypselae moderately to strongly strigose; secondary inflorescence open, diffuse, narrowly cylindrical and paniculiform, consisting of short axillary clusters, short axillary racemiform branches that do not exceed the subtending leaf bracts, and terminal racemiform clusters

8a. Basal and lower cauline leaves the largest and longest, the leaves progressively reduced in size distally; stem \pm straight.
S. sciaphila (cliff goldenrod)

8 b. Basal and lower cauline leaves smaller than the longest ones, which occur a third to a half of the way up the stem; stem tending to zigzag between upper nodes.........S. flexicaulis (zigzag goldenrod)

5b. Stem pubescent below the inflorescence (strigulose, puberulent, hispid, or villous); upper leaf blade surfaces pubescent (scabrous, strigulose, hispid, or villous)

9a. Basal and lowermost cauline leaves usually withered by flowering, middle and upper leaves clearly 3-veined; disc florets 3-8; cypselae sparsely strigillose;. .S. mollis (soft goldenrod) 9 b. Basal and lowermost leaves persistent and present at flowering, middle and upper leaves 1 -veined; disc florets 6-12; cypselae glabrous. .S. hispida (hairy goldenrod)

4b. Secondary inflorescences \pm a terminal pyramidal panicle, the lower branches arching with heads mostly oriented upward

Iowa Solidago

10a. Cauline leaves (at least the main ones) "triple-nerved," i.e., with a pair of elongate, lateral veins arising below the middle of the midrib that are distinctly stronger than other lateral veins, \pm parallel with the leaf margins, and present for over half the length of the blade
11a. Axis, branches and pedicels of the secondary inflorescence glabrous....S. missouriensis (Missouri goldenrod)
11 b . Axis, branches and pedicels of the secondary inflorescence sparsely to moderately and distinctly pubescent 12a. Stem glabrous all of its length below the inflorescence, rarely with a few scattered, spreading, short hairs

12b. Stem pubescent all or most of its length
13a. Involucres mostly 3.1-4.6 (-5) mm long; ray florets $10-16$, ray corollas $3.0-4.0 \mathrm{~mm}$, disc corollas $3.0-3.5 \mathrm{~mm}$; mid to distal cauline leaves minutely serrate to entireS. altissima (tall goldenrod) 13b. Involucres mostly $2.0-3.0 \mathrm{~mm}$ long; ray florets $6-12$, ray corollas $2.0-3.0 \mathrm{~mm}$, disc corollas $2.3-2.7 \mathrm{~mm}$; mid to distal cauline leaves evidently serrate..................................S. canadensis (Canada goldenrod)

10b. Cauline leaves with a distinct midrib but the other weaker veins \pm pinnate, not triple-nerved 14a. Stems moderately to densely pubescent with curved to spreading hairs, sometimes becoming less dense toward the stem base; plants in upland, non-wetland habitats

15a. Stems and leaves densely pubescent with minute ($0.1-0.3 \mathrm{~mm}$) mostly curved hairs; leaves surfaces dull green (grayish); plants of dry grassland, prairie, open woodlandS. nemoralis (gray goldenrod) 15 b . Stems and leaves moderately pubescent with longer ($0.5-1.5 \mathrm{~mm}$) mostly spreading hairs; leaf surfaces clear green; plants of upland savanna, woodland or forest......................S. ulmifolia (elm-leaf goldenrod)
14b. Stems below the inflorescence glabrous or sparsely pubescent with mostly spreading hairs; plants in wetland habitats.

