Power Transmission Products

Full Line Catalog

T) ाiाiा

GOOD TEAR.

Call Toll Free: 1-866-711-4673
WebSales@GoodyearRubberProducts.com

Terms \& Conditions of Sale

THE INFORMATION HEREIN CONTAINED CONSTITUTES A CONFIRMATION OF CUSTOMER'S ORDER OR A CONFIRMATION OF CHANGE TO CUSTOMER'S

 ORDER, AS APPLICABLE, (COLLECTIVELY "CONFIRMATION") AND WHICH CONFIRMATION IS EFFECTIVE UPON VEYANCE'S DISPATCH OF THIS CONFIRMATION. ANY PRIOR RECEIPT BY CUSTOMER FROM ANY OTHER SOURCE OF ALL OR PART OF THE INFORMATION HEREIN IS FOR INFORMATIONAL PURPOSES ONLY AND DOES NOT CONSTITUTE A LEGALLY BINDING CONFIRMATION. THIS CONFIRMATION IS EXPRESSLY MADE SUBJECT TO AND IS STRICTLY LIMITED TO THE TERMS AND CONDITIONS OF SALE STATED HEREIN AND ANY INCONSISTENT TERMS OR CONDITIONS APPEARING ON CUSTOMER'S ORDER ARE SPECIFICALLY OBJECTED TO AND DISCLAIMED. IN ANY COMMUNICATION WITH VEYANCE REGARDING THIS ORDER, PLEASE REFER TO VEYANCE'S DOCUMENT OR ORDER CONFIRMATION NUMBER.1. This Confirmation and any distributor's agreement, if any, between Customer and Veyance or Veyance affiliate, together with any specifications, schedules, exhibits, riders, or other writings which may be annexed hereto or provided for hereunder and by reference made a part hereof, sets forth the complete and final agreement between Veyance and Customer in respect of the subject matter hereof, and supersedes all prior understandings, assurances, and Customer's order form, if any. THIS AGREEMENT CONTAINS THE ENTIRE UNDERSTANDING BETWEEN CUSTOMER AND VEYANCE AND NO OTHER REPRESENTATION OR INDUCEMENT, ORAL OR WRITTEN, HAS BEEN MADE WHICH IS NOT SET FORTH HEREIN. EXCEPT FOR THE WARRANTIES AND REPRESENTATIONS, IF ANY, SET FORTH IN THIS AGREEMENT, NO OTHER STATEMENT, WARRANTY, REPRESENTATION OR INFORMATION, ORAL OR WRITTEN, SHALL BE LEGALLY BINDING UPON VEYANCE OR SHALL BE THE BASIS FOR RELIANCE BY CUSTOMER. CUSTOMER DOES NOT RELY AND IS NOT RELYING UPON ANY ORAL OR WRITTEN STATEMENT, WARRANTY, OR REPRESENTATION OF VEYANCE, ITS EMPLOYEES, AGENTS, AND/ OR REPRESENTATIVES NOT FULLY SET FORTH HEREIN. No amendments or modifications of or supplements to the provisions of this Confirmation will be valid and binding upon Veyance unless such amendment, modification, or supplement is mutually agreed to in writing and signed by an officer of Veyance and an authorized representative of Customer. In the event of any inconsistency between these Terms and Conditions of Sale and the provisions on the other side of this document or any supplement attached hereto, the provision contained on the other side of this document or on such supplement shall control.
2. Product sold hereunder manufactured by Veyance meets agreed specifications according to established tests performed under controlled laboratory conditions and specific test requirements. These tests are not intended to reflect the performance of the product under actual conditions. Performance of the product as a component in a finished product may not necessarily meet the test requirements. Due to the number and variety of applications for which any product sold hereunder may be purchased and because Veyance has no control over (or knowledge of) the conditions under which the product may be used by others, VEYANCE DOES NOT RECOMMEND SPECIFIC APPLICATIONS OR PRODUCT DESIGNS OR ASSUME RESPONSIBILITY FOR USE RESULTS OBTAINED OR SUITABILITY FOR SPECIFIC APPLICATIONS. No statement contained herein shall be construed as a license to operate or as a recommendation or inducement to infringe existing patents or as an endorsement of products of specific manufacturers or systems.
3. NO RELIANCE. CUSTOMER ACKNOWLEDGES THE USE OF ITS OWN KNOWLEDGE, SKILL, JUDGMENT, EXPERTISE, AND EXPERIENCE IN (i) the selection of the product and/or (ii) in the selection, provision, or designation of any specification or set of specifications for a product agreed upon by Customer and Veyance; and CUSTOMER ACKNOWLEDGES THAT CUSTOMER DOES NOT RELY AND IS NOT RELYING ON ANY ORAL OR WRITTEN STATEMENTS, REPRESENTATIONS, OR SAMPLES MADE OR PRESENTED BY VEYANCE, ITS EMPLOYEES, AGENTS, AND/OR REPRESENTATIVES TO CUSTOMER. CUSTOMER ACKNOWLEDGES THAT CUSTOMER DOES NOT RELY AND IS NOT RELYING ON ANY KNOWLEDGE, SKILL, JUDGMENT, EXPERTISE, OR EXPERIENCE OF VEYANCE, ITS EMPLOYEES, AGENTS, AND/OR REPRESENTATIVES IN CUSTOMER'S SELECTION OF THE PRODUCT OR IN CUSTOMER'S SELECTION, PROVISION, OR DESIGNATION OF ANY SPECIFICATION OR SET OF SPECIFICATIONS. Without limiting the foregoing, CUSTOMER ACKNOWLEDGES THAT VEYANCE SHALL NOT BE LIABLE FOR, AND CUSTOMER ASSUMES ALL RISK OF, INACCURATE OR UNSUITABLE SPECIFICATIONS OR INFORMATION PROVIDED, SELECTED, OR DESIGNATED BY CUSTOMER.
4. LIMITATION OF WARRANTY. PRODUCT NOT MANUFACTURED BY VEYANCE IS SOLD WITHOUT WARRANTY, "AS-IS" AND IS SUBJECT TO THE LIMITATION OF LIABILITY SET FORTH IN SECTION 5. SUBJECT TO THE LIMITATIONS OF SECTION 5 AND UNLESS OTHERWISE EXPRESSLY PROVIDED HEREIN, product sold hereunder that has been manufactured by Veyance, unless sold without warranty "AS-IS", is warranted to be free from defects in material and workmanship. Subject to the preceding sentence, and except as otherwise expressly provided herein, VEYANCE MAKES NO REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AS TO MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR ANY OTHER MATTER WITH RESPECT TO THE PRODUCT OR ANY OTHER PRODUCT SOLD HEREUNDER, WHETHER USED ALONE OR IN COMBINATION WITH ANY OTHER MATERIAL OR PRODUCT OR IN ANY PROCESS. VEYANCE SHALL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, AND/OR CONSEQUENTIAL DAMAGES, EVEN IF VEYANCE HAS BEEN NOTIFIED OF THE POTENTIAL OF SUCH A LOSS OR CLAIM. OTHER THAN THOSE SPECIFICALLY SET FORTH HEREIN, THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTION OF THE PRODUCTS ON THE FACE HEREOF, EITHER EXPRESS OR IMPLIED.
5. LIMITATION OF LIABILITY OF VEYANCE AND EXCLUSIVE REMEDY. Any Veyance-manufactured product claimed to be defective in material or workmanship shall, upon Veyance's approval, be returned to Veyance as designated, at the Customer's expense. VEYANCE WILL, AS THE EXCLUSIVE REMEDY, MAKE AN ADJUSTMENT FOR PRODUCT IT FINDS TO BE DEFECTIVE IN MATERIAL OR WORKMANSHIP EITHER BY REPAIRING IT OR REPLACING IT AT AN ADJUSTMENT PRICE, OR IN LIEU THEREOF, AT VEYANCE'S OPTION, VEYANCE MAY REFUND THE PURCHASE PRICE UPON RETURN OF THE PRODUCT. Whenever a warranty for a specific product provides that no adjustment shall be made after a specified period of time, Veyance shall not be responsible under the terms of such warranty unless claim is made within such period of time. VEYANCE'S TOTAL RESPONSIBILITY AND LIABILITY FOR ANY AND ALL CLAIMS, LOSSES, AND DAMAGES OF ANY KIND WHATSOEVER ARISING OUT OF ANY CAUSE WHATSOEVER (WHETHER UNDER ANY WARRANTY OR BASED IN CONTRACT, NEGLIGENCE, OTHER TORT, STRICT LIABILITY, BREACH OF WARRANTY, OTHER THEORY, OR OTHERWISE) SHALL NOT EXCEED THE ORIGINAL PURCHASE PRICE OF THE PRODUCTS IN RESPECT TO WHICH SUCH CAUSE ARISES, AND IN NO EVENT SHALL VEYANCE BE LIABLE FOR SPECIAL, INCIDENTAL, CONSEQUENTIAL, EXEMPLARY, OR PUNITIVE DAMAGES RESULTING FROM ANY SUCH CAUSE. NO EMPLOYEE, AGENT AND/OR REPRESENTATIVE HAS AUTHORITY TO MAKE ANY REPRESENTATION, PROMISE OR AGREEMENT, EXCEPT AS STATED HEREIN. VEYANCE SHALL NOT BE LIABLE FOR, AND CUSTOMER ASSUMES ALL LIABILITY FOR, PERSONAL INJURY AND PROPERTY DAMAGE CONNECTED WITH THE HANDLING, TRANSPORTATION, OR FURTHER MANUFACTURE, FABRICATION, ASSEMBLY, OR PROCESSING OF THE PRODUCT.
6. Prices are subject to change without notice, and such items will be billed at prices in effect at the time of shipment. Customer will be notified of any price increase and may cancel any undelivered portion of the order by written notice to Veyance, provided such written notice is received by Veyance not more than 10 days after your receipt of notification of the increase. Upon such cancellation Customer shall have no liability to Veyance for the canceled portion of the order except as to product manufactured or in process, components procured by Veyance from outside sources, and special tooling and equipment procured for performance of this order.
7. All prices are subject to increase from time to time to compensate for any tax, excise, or levy imposed upon the products sold, or upon the manufacture, sale, transportation, or delivery of them or whenever any tax, excise, levy law, or governmental regulation has the effect, directly or indirectly, of increasing the cost of manufacture, sale, or delivery. If any government action or law should have the effect of establishing a maximum price on product to be delivered, Veyance may, at its option and without liability to Customer, terminate its obligation with respect to future shipments upon thirty (30) days written notice.
8. Veyance shall not be liable or deemed in default for failure to deliver or delay in delivery due to any cause beyond its reasonable control. If unable to meet delivery schedules, Veyance will endeavor to allocate material fairly among its Customers, but reserves to itself final determination of the deliveries to be made without liability.
9. Veyance will indemnify its Customer against all claims and demands for infringement of any United States patent by the product furnished under any accepted order, provided the Customer notifies Veyance of any patent infringement and upon request tenders Veyance the defense of the claim. CUSTOMERS WHO FURNISH SPECIFICATION TO VEYANCE AGREE TO HOLD VEYANCE HARMLESS AGAINST ANY CLAIMS WHICH ARISE OUT OF VEYANCE'S COMPLIANCE WITH SUCH CUSTOMER SPECIFICATIONS.
10. Title to the goods shall pass to Customer upon passage of the risk of loss; provided, however, that to the extent permitted by law, until each of the goods delivered hereunder has been paid for in full, Veyance shall retain title to the goods; however, all risk of loss and responsibility for transportation and storage, taxes, and duties shall transfer in accordance with these terms of sale. Customer hereby agrees that notwithstanding any information shown in this confirmation regarding any estimated shipment, production, or requested date(s) for the goods, Veyance is not obligated to produce, deliver or ship the goods by that estimated shipment, production, or requested date(s). Customer hereby agrees that unless Customer notifies Veyance in writing within ninety (90) calendar days of the estimated shipment date as shown on the last dated Confirmation referencing the goods, there shall be a presumption that goods conforming to the goods ordered were received by Customer.
11. Due to the varying location of the operations of Customer and Veyance and the locations that may be involved in the performance and documentation of an order to which these Terms and Conditions of Sale are applicable, in order to settle upon and to eliminate any doubt as to the rights of the Customer and Veyance, Customer and Veyance agree that this Confirmation shall be governed by and construed in accordance with the laws of the State of Ohio, United States of America, applicable to agreements to be performed in the State of Ohio, except that for sales or orders originating and to be performed in Canada by Canadian subsidiaries or affiliates of The Veyance, Customer and Veyance agree that this Confirmation shall be governed by and construed in accordance with the laws of the Province of Ontario, Canada, applicable to agreements to be performed in Canada. Customer and Veyance exclude the application of the United Nations Convention on Contracts for the International Sale of Goods to this Confirmation and order.

RUBOER PRODUCTSINQ.

Table of Contents

OVERVIEW
Terms and Conditions of Sale Inside Cover
Power Transmission Products 2-3
MaximizerPro ${ }^{\text {TM }}$ 4
Drive Change Tools 5-6
Synchronous Belt Products
Introduction to Synchronous Belts 7
Eagle NRG ${ }^{\text {m }}$ 8-10
Eagle NRG Sprockets 11-15
Falcon HTC 8M, 14M
17-18
Falcon HTC Sprockets
$3 \mathrm{M}, 5 \mathrm{M}, 8 \mathrm{M}, 14 \mathrm{M}, 20 \mathrm{M}$
$3 \mathrm{M}, 5 \mathrm{M}, 8 \mathrm{M}, 14 \mathrm{M}, 20 \mathrm{M}$ 19-20 19-20
Hawk Pd ${ }^{\oplus}$
Hawk Pd ${ }^{\oplus}$
$3 \mathrm{M}, 5 \mathrm{M}, 8 \mathrm{M}, 14 \mathrm{M}, 20 \mathrm{M}$ 21-24
Blackhawk Pd ${ }^{\text {® }}$ $8 \mathrm{M}, 14 \mathrm{M}$. 25-26
Blackhawk Pd Sprockets $3 \mathrm{M}, 5 \mathrm{M}, 8 \mathrm{M}, 14 \mathrm{M}, 20 \mathrm{M}$ 27-28
Positive Drive Pd" MXL, XL, L, H, XH, XXH 29-34
Super Torque Pd ${ }^{\star}$ S3M, S4.5M, S5M, S8M, S14M. 35-36
Dual Hi-Performance Pd ${ }^{\text {™ }}$ 8M, 14M 37-38
Dual Positive Drive XL, L, H 37-38
Open End Pd ${ }^{\text {mu }}$
-
Polyurethane Belts 41-42
Eagle Pd ${ }^{\circledR}$ Acculinear ${ }^{\circledR}$ 43-46
Banded Belt Products
Introduction to Banded Belts 47
Torque Team ${ }^{\circledR}$ (Laminated) 48HY-T® Wedge Torque Team ... $3 \mathrm{VX}, 3 \mathrm{~V}, 5 \mathrm{VX}, 5 \mathrm{~V}, 8 \mathrm{~V}$
49-50Torque Team Plus ${ }^{\circledR}$$5 \mathrm{VF}, 8 \mathrm{VF}$
51-52HY-T Torque Team (Classical)
BX, CX, D.
Poly-V ${ }^{\circledR}$ H, J, K, L, M 55-56
V-Belt Products
Introduction to V -Belts 57
Open End V-Belting A, B, C, D. 58
Wedge TLP ${ }^{\text {wi }}$ $3 \mathrm{~V}, 5 \mathrm{~V}, 8 \mathrm{~V}$ 59-60
HY-T Wedge $3 \mathrm{VX}, 3 \mathrm{~V}, 5 \mathrm{vx}, 5 \mathrm{~V}, 8 \mathrm{~V}$ 61-62
HY-T Plus (Classical) A, B, C, D, E 63-65
Torque-Flex ${ }^{\text {® }}$ AX, BX, CX 66-67
GY Metric ${ }^{\circledR}$ 68-70
Hex AA, BB, CC, CCP 71-72
Insta-Power ${ }^{\oplus}$ (Flexten ${ }^{\oplus}$ Classical) $83,84,85,87,89$ 73-74
FHP 2L, 3L, 4L, 5L 75-76
Metal Sheaves/Pulleys 77-93
Bushing Hardware Bushings $94-102$
Specialty Belt Products
Neothane ${ }^{\oplus}$.. $3 \mathrm{M}, 5 \mathrm{M}, 7 \mathrm{M}, 11 \mathrm{M}$ 103-104
Variable Speed 105-106
Flat Belting (Truly Endless) 107-109
Bowling Machine 110
Cotton Cleaner $61 \mathrm{CCB}, 63 \mathrm{CCB}, 64 \mathrm{CCB}, 65 \mathrm{CCB}$ 110
Axial Fan Pd ${ }^{\otimes}$ Belts 14M 111
Axial Fan Pd Sprockets 14M 111
Automotive \& Truck Belt Products
Gatorback ${ }^{\ominus}$ Poly- ${ }^{\circledR}$ Belt 112
Gatorback V-Belt 112
Timing Belt 113
Truck Refrigeration Belt 113
General Information
Belt Size Information 114
Technical Information 115-122
Mandrel Quantity Requirements 123
Belt Storage 124-125
Matchmaker System 126
Oil \& Chemical Resistance of Power Transmission Belts 127
Static Conductive Belts 128
Product Accessories \& Sales Aids 129-130
Warnings 131

Call Toll Free: 1-866-711-4673
We Shin WebSales@GoodyearRubberProducts.com World Wide

Innovative Products

Goodyear Engineered Products are industry leaders with an enviable history of product innovation and power transmission industry firsts，including：

Falcon HTC synchronous belts－voted 2009 Product of the Year by Plant Engineering are setting the new standard in synchronous belt drive systems．

Eagle NRG enhanced premium synchronous belts， with a patented H．O．T．（Helical Offset Tooth）design for reduced noise，reduced vibration，and increased efficiency，have increased horsepower and temperature ratings designed to perform．

The MaximizerPro ${ }^{\text {™ }}$ Drive Selection Analysis software program for easy，accurate selection of the best money－ saving components for your application．

Wedge TLP ${ }^{\text {Tw4 }}$ provides an advanced homogeneous construction，allowing unprecedented performance that requires virtually no maintenance．

8 Torque Team Plus ${ }^{\circledR}$ belts with the strength and power transmission capacity to replace large chain drives．

Poly－V^{\circledR} belts with nylon fabric rib facing，fiber－loaded rib compounds，and fully machined rib surfaces．

Equally important，the research and development that produced these dramatic improvements is a continuing process．We continue to have a multitude of new innovations that are being developed at our Research and Development Center in Lincoln，Nebraska．

That means our branded Power Transmission Products will continue to meet the increasing demands for improved drive efficiency，long belt life，and competitive costs．

We Provide Much More Than Quality Products

Veyance Technologies is the exclusive manufacturer of Goodyear Engineered Products．Working with us，you will receive the high level of service and support that is critical to stay ahead in today＇s business environment．Our branded power transmission products are available through qualified distributors that are carefully selected and trained to provide much more than quality Goodyear Engineered Products．A complete selection of value－added services are available including cost reduction programs，sales and technical support， and inventory control programs．

Distribution
 You Can Count On

Goodyear Engineered Products authorized distributors are committed to providing you the absolute best in products and service．They are thoroughly trained on Goodyear Engineered Products belting and stand ready to meet all your power transmission needs．

These distributors are backed by a staff of Goodyear Engineered Products technical managers（GTMs）who are specially trained and qualified to conduct in－depth studies of your current operations．In addition，GTMs and our distributors have access to powerful computer programs needed to optimize your current drive／belt applications．
Take comfort in the high level of service，delivery，and technical expertise that only comes from a local source backed by a manufacturer with advanced worldwide research and production capabilities．

Cost Reduction Programs

We can provide you with the tools and services to reduce your operating costs associated with power transmission products． Through training and drive analysis software，we can show you how to eliminate problem drives that are bringing down your productivity．

Customized Training

Whenever you need it，wherever you want it，customized training is available for your associates．From maintenance and installation clinics to in－depth training on analyzing failed power transmission products，our distributors and GTMs can give you the guidance needed to choose，install，and maintain your power transmission products．

Installation，Maintenance and

Troubleshooting Tools
From initial installation to routine maintenance checks，we offer the tools that makes your job easier．Simple to use，reliable and more important，keeping your operations productive and efficient．

Technical Assistance

We're proud to offer you the very finest "problem solvers" in the industry. All our distributors are factory-trained in the applications of the products we manufacture. Our professional design engineers are also available for consultation by calling your local sales representative. Their combined knowledge and experience are there for you around the clock.

Customer Satisfaction

Customer satisfaction is foremost in our guiding principles. It shows in our services. It shows in our products. Most importantly, it shows in the unparalleled customer quality rating our branded power transmission products have received from several key OEMs.
We've determined that the surest route to customer satisfaction is through a constant effort to improve. This commitment guarantees the quality of Goodyear Engineered Products, our services, deliveries and more-both now and in the years to come.

ISO 9001 Certified

Global Sourcing

With state-of-the-art manufacturing facilities around the world, we have the capability of meeting market demands by strategically sourcing product to fill the product supply pipeline. You can also count on the same quality product no matter where in the world our products originate.

ISO 9001 is one of the most widely accepted international standards for quality. Our belt manufacturing plants are all ISO 9001 certified.

Quality Service

Our pledge is a simple one: Quality service that you can always depend on. It is a commitment from us and our distributors to you.

DRIVEGK_CHANGE"

MAXIMIZING YOUR ENERGY

With Veyance Technologies, you're much more than a customer. You are an integral piece to success. We pledge to support you with quality products, inventory, service, technical help, and more.
Goodyear Engineered Products have a tradition of product excellence. Along with our extensive distributor network, Veyance forms a team second to none in total product and service offerings. Our goal is to supply you with the best products.
We are constantly looking for ways to help you save money on your existing processes, combining your expertise with our knowledge of power transmission products to make every operation as efficient as possible.
Drive Change is a program we promote to maximize efficiencies, reduce maintenance costs, and increase your productivity. We know that it only takes minor improvements in drive efficiency to improve your facility's efficiency with each energy dollar spent. To pinpoint the improvements, we have developed easy-to-use software programs such as MaximizerPro ${ }^{\text {T". }}$. With MaximizerPro, mechanical drive costs can be analyzed, thus identifying the best drive belts for your needs.
In many instances, Drive Change involves upgrading your drives to the latest innovative belt technology that allows for increased efficiency and reduced cost of operation. For example, upgrading from a standard classical V-belt to a narrow V -belt can reduce hardware and maintenance costs while increasing horsepower and load carrying capabilities. To take it a step further, V-belts could be replaced altogether with a premium synchronous belt like Eagle $N R G^{\text {™ }}$ or Falcon $H T C^{\circ}$, permitting less maintenance and more efficiency.

MaximizerPro is an exciting program which allows the user to have Goodyear Engineered Products belt specifications and information right at their fingertips．It is easy to install and easy to use，making drive recommendations a snap．With MaximizerPro， drive requirements specified by the user are matched with available belts，sprockets，pulleys，and bushings．Working like an equation for improved performance，MaximizerPro takes specific physical data and calculates how the system can be upgraded with multiple options for belt drive designs．These options address the end－user＇s goals related to energy efficiency，quieter operation， increased output，and extended life to name a few．

The Data Collection Form：

The data collection form allows you to gather all of the drive specifications required to run the selection program．Specifications include：
－Drive Operation Time
－Horsepower Load
－DriveR and DriveN RPMs
－Center Distance
－Service Factor
－Energy Cost

The Maximization

Screen：

The maximization screen provides an easy way to view，sort and print the resulting selections．From the maximization screen，drive selections can be sorted by：
－Face Width
－Noise Level
－Energy Cost
－Service Factor
－Belt Speed
－Drive Cost Index

The Drive Design Printouts：

The printout function provides the pertinent information for the selected drive．Information available from the detail screen includes：
－Belt，sprocket，and bushing part numbers
－Engineered drawings on all drive part numbers（where applicable）
－Drive Layout
－Installation \＆Maintenance Tensioning

Power Up the Value.

DRIVEAKCHANGE

MAXIMIZING YOUR ENERGY

With our Drive Change program, you'll get the perfect mix of technology, tools and training designed to increase value with each purchase of power transmission products.
With Veyance Technologies and our Goodyear Power Transmission Products Authorized Distributors, we offer an exclusive, all-encompassing Drive Change Program that optimizes the life and performance of your belt drives. Drive Change is our way of ensuring you are up-to-date on required installation and maintenance tools and procedures necessary to maximize plant operations and optimize output where belt drives are used to transfer power. Schedule an in-plant seminar with your local Goodyear Engineered Products Sales Representative and dedicated Goodyear Authorized Distributor. The next step is yours!

Laser Alignment Tool

The Goodyear Engineered Products brand Laser Alignment Tool is fast, convenient and attaches in a few seconds, delivering a highly visible sight line. When the laser line lies within the target openings, the pulleys/sprockets are correctly positioned. The result is a fast and precise alignment. Power transmission belts including synchronous, V-belts, flatbelts and more can be aligned equally well. The smart design of the magnetic attachment surface also allows for alignment of both small and large sheaves. For nonmagnetic pulleys, double-sided tape can be used to affix the tool for an added range of applications.

Key Features \& Benefits

- Detects both radial and axial misalignment
- Easier to use than conventional methods of misalignment detection
- Affixes to most pulley and sprocket types
- Also suitable for nonmagnetic pulleys/sprockets
- Single operator friendly

TensionRite ${ }^{\circledR}$ Belt Frequency Meter

Provides a simple, repeatable and reliable method for tensioning belts using optical technology. It displays the natural vibration frequency of a belt so you can closely monitor belt tension. The device calculates the corresponding belt tension in either English or SI units.

Key Features \& Benefits

- Light optics based tensioning
- Quartz crystal-based solid-state circuitry
- Direct vs. indirect measurement of vibration frequency
- Meter range matches "real-life" belt installation parameters
- Can be used with all belt types

Power Up the Value．

TensionRite ${ }^{\circledR}$ Strips

Designed specifically for use with our single and banded V－belts， TensionRite is a plastic strip that adheres to belts during installation．Simply check the correct tension setting listed on the back of the TensionRite card and tighten the belt．The gauge window will indicate when the desired setting has been reached． It＇s that simple！

Key Features \＆Benefits

－Smarter way to quickly and accurately tension belts
－Seven easy steps to assure proper belt tensioning
－Easy－to－read measurement cards for both banded and V－belts

MaximizerPro ${ }^{\text {tM }}$ Drive Selection Analysis Program

Maximize your energy savings with MaximizerPro－the newest and most powerful version of our exclusive drive system analysis software．Still as simple and intuitive to use as ever，MaximizerPro has all the features you＇ve come to know，plus some new，powerful upgrades．Data entered into the software is cross－checked against MaximizerPro＇s robust database of available belts，sprockets， pulleys and bushings．The resulting customized report outlines specific products that can help you reach maximum efficiency and energy savings．MaximizerPro can enhance your drive systems the first time and every time．

Key Features \＆Benefits

－Chain drive data solutions（even for old－fashioned chain drive systems）
－Multi－pulley design to layout drive geometries for drives with more than two pulleys
－Specific drive solutions for maximum optimization

Large Tension Tester

The Large Tension Gauge，when used with a straight edge or tight string，can be an aid in setting the proper belt tension for a drive system．The relationship between deflection and belt span has been incorporated in the index scale printed on the face of the gauge．This eliminates one calculation associated with the tensioning operation．

Key Features \＆Benefits

－Quickly helps determine belt tension
－Compares force measured with recommended values for your application
－If values are not equal，simply adjust the belt tension and repeat force measurement until measured force matches target value

WebSales＠GoodyearRubberProducts．com

Synchronous Belts

Goodyear Engineered Products synchronous difive products

Synchronous, or Positive Drive, Belts are a relatively new concept in power transmission belting evolution. These belts combine the advantages of chain and gear with the advantages of V-belts, but without the limitations usually associated with these conventional types of drives. There is minimal elongation, no metal-to-metal contact, and no constant lubrication. Synchronous belts are amazingly versatile with possible applications on drives up to 600 hp and from speeds under 100 feet per minute to over 6,000 feet per minute.

Positive Drive, or Pd , is the term applied to our synchronous belts and their method of power transmission. As the name indicates, Positive Drive belts make possible power transmission that is efficient and accurate to a precise degree.

Positive Drive Belts also make possible important savings in weight, space, and construction without the sacrifice of efficiency. They are adaptable to almost any type of power transmission drive from printers to heavy industrial milling machines and grinders.

Engineered and manufactured with extreme care with pitch, tooth depth, width, and other measurements accurate to a precise degree, Positive Drive Belts are highly engineered products. The materials used in these remarkable belts consist of highstrength tension members, specially compounded rubber, and proven synthetic fabrics. The belts are designed to eliminate excessive heat build-up and to operate efficiently.

The Evolution of the Belt Line

Veyance manufactures several different designs. Some are available as open-end constructions and some are available in dual-sided constructions.

Positive Drive Pd^{\otimes} is our trademark line of trapezoidal tooth profile synchronous belts. These belts were the first profile types developed in the continual evolution of synchronous drive belts. This Positive Drive product line includes a stock selection of MXL, XL, L, H, XH, XXH, and Metric T pitches. Trapezoidal belts make an excellent means for transmitting power; however, time and technological advances have led to the more advanced product lines mentioned below.

Super Torque Pd^{\circledR} represents the next evolution in synchronous drive belt development in the Goodyear Engineered Products line. The Super Torque Pd belt has a unique modified round tooth design that minimizes tooth shear and operates quieter than traditional trapezoidal tooth profiles. Super Torque tooth pitches include S3M, S4.5M, S5M, S8M, and S14M and are available as special manufacture parts with minimal runs.

Eagle $\mathrm{NRG}^{\mathrm{m}}$ Belts and Sprockets are a unique technological breakthrough. A patented H.O.T. (Helical Offset Tooth) design provides for continuous rolling tooth engagement, allowing the Eagle NRG System to run quieter with less vibration than any other synchronous belt available today. With specialized materials, Eagle NRG offers a much higher horsepower and temperature rating than its predecessor, Eagle Pd ${ }^{\circledR}$. The use of a flangeless sprocket also ensures more compact, lighter drives with precision performance.

Eagle NRG Belts and Sprockets come in a wide variety of stock sizes with custom manufactured sizes being available for specialty drive requirements.

Falcon HTC^{\circledR} is a synchronous belt designed to handle increased horsepower, low torque applications. Falcon HTC belts feature a high-grade rubber compound. This blended compound handles temperatures much higher than common polyurethane belts
used in similar applications. Also, it is formulated to resist tooth deformity and increase tooth rigidity, extending belt life and saving you money. Falcon HTC belts also feature a patented cord treatment which provides excellent dimensional stability and high-impact strength. Falcon HTC belts can also be used in applications requiring backside idlers, allowing for greater flexibility in various applications. For ease of ordering, the Falcon HTC part number interchanges with the Gates counterpart belt, making replacement easy.

Hawk Pd^{\circledR}, with its strength and unique construction using our advanced compounding technology, is a line of curvilinear, synchronous belts that offers universal performance that stands alone. Designed to fit the majority of high-capacity synchronous application, Hawk Pd belts fulfill existing drive requirements, matching industrial standards of belt width and length. With the Universal Profile Design (UPD) profile, Hawk Pd performs in the GT and HTD profiles, replacing Gates PowerGrip HTD and PowerGrip GT 2 belts*. In addition, Hawk Pd replaces Carlisle RPP and RPP Plus belts*, running in RPP sprockets, as well as TB Wood's synchronous QD profile*. The UPD is a simple solution in satisfying the multitude of belt and sprocket combinations in the market. Take universal performance to a higher level with Hawk Pd.

Blackhawk Pd^{\circledR} is a high-performance, curvilinear belt that offers maximum performance in your 8 mm and 14 mm synchronous applications. Blackhawk Pd is precisely designed and can replace existing Carlisle Panther ${ }^{\oplus}$, Browning Panther, and TB Wood's QT PowerChain belts, matching competitive offerings of belt width and length. Dynamic testing of Blackhawk Pd has shown this durable belt actually lasts 3 to 4 times longer than Carlisle RPP Panther ${ }^{\circledR}$. Maximize the performance of your timing belt application with Blackhawk Pd, designed to deliver longer life and less maintenance. Choose the belt that takes performance to greater heights-Blackhawk Pd.

Part No: B-1750
B \quad Blue $=14 \mathrm{~mm}$ Pitch, 35 mm Width
$1750 \quad 1750 \mathrm{~mm}$ Pitch Length

The Evolution Continues with the Next Generation in Synchronous Belt Technology

Eagle NRG is the next generation in synchronous belt technology. This unique, state-of-the-art alternative to straighttooth belts and drive chains has been enhanced to improve the overall performance of your drive design - and help you save Energy (NRG).

Eagle NRG is the same H.O.T. (Helical Offset Tooth) design offering continuous rolling tooth engagement, ensuring a much quieter, synchronous drive with reduced vibration. A flangeless sprocket offering used with Eagle NRG also provides a reduced weight, more compact drive providing efficiencies up to 98%.

Higher Horsepower Rating

With the emergence of higher horsepower requirements and the need to reduce the size of drives, Eagle NRG's increased horsepower capacity, up to 25% improvement, has the ability to handle an even wider variety of applications. Newly engineered materials and specialty compounds are formulated to give this next-generation Eagle belt more value in the most demanding applications.

Improved Operating

Temperature Range

Knowing that elevated temperatures can significantly reduce belt life, we have made improvements in Eagle NRG's ability to perform at $200^{\circ} \mathrm{F}$ continuous operation and withstand peak temperatures as high as $300^{\circ} \mathrm{F}$.

With Eagle NRG, you can experience a whole new level of performance and value in reinforced rubber synchronous belts.

To learn more visit www.goodyearep.com/ptp.

> Applications
> Eagle NRG belts and sprockets are ideal on a wide variety of applications in all industries.
> - Agricultural Equipment - Paper Presses
> - Packaging Conveyors - Hog Dehairers
> - Aggregate Crushers
> - Chain Drives
> - Poultry/Meat Grinders
> - Baking Mixers
> - Wood Debarkers and Saws
> - Textile Machines
> - Mining Equipment
> - Horizontal Drives
> - Aluminum/Steel Conveyors - Printing Machines
> Key Features \& Benefits
> - Reduced Noise
> - Increased Horsepower
> - Higher Efficiency
> - Less Bearing Load
> - Greater Precision
> - Higher Temperature Operation - Static Conductive*

Belt Materials Compounded
 to Last Longer

Durability starts with the Eagle NRG belt's rubber compound, a cross-linked elastomer formulated to resist tooth deformity and increase tooth rigidity. Eagle NRG is also chemically stable to resist the effects of oils, coolants, heat, and ozone.

Eagle NRG's high-strength Flexten tensile member provides optimal resistance to flex fatigue, elongation, and shock loads while operating at high torque conditions. The facing of Eagle NRG belts also reduce tooth engagement friction while standing up to oil and chemical permeation.

Increased Efficiency

DRIVE CHANGE OPPORTUNITY

The unique tooth configuration of Eagle NRG provides continuous tooth engagement and eliminates slippage. With a power efficiency rating of 98%, Eagle NRG can offer you an impressive 5% edge over typical V-belt drives.

Simply stated, with Eagle NRG, you get what you pay for with each energy dollar. This is especially true when the Eagle NRG is applied to high-energy consuming drives that are used 24 hours a day, as well as high horsepower drives that inflate energy consumption during peak periods.

A Quieter, Reduced Vibration Drive

The H.O.T. design of Eagle NRG belts and sprockets reduces vibration and decreases operating noise by as much as 19 decibels versus other synchronous systems. This can lead to a quieter working environment with improved worker efficiency. Costs associated with monitoring, training, and testing to meet OSHA regulations can be virtually eliminated with Eagle NRG drives.

Eagle $\mathrm{NRG}^{\mathrm{m}}$

Lower Maintenance Costs

Unlike chain drives, Eagle NRG belts and sprockets do not require lubrication. After initial run in and rechecking tension after 8 hours of operation, Eagle NRG belts do not need additional retensioning like V-belts and chain.

Matching Belt to Sprocket
 Has Never Been Easier

The Eagle NRG Color Spectrum System makes it the easiest power transmission drive to sell, purchase, and install.

The part numbering system for Eagle NRG centers around a color-coded sizing system for the belts and sprockets. Each belt and sprocket part number includes a letter corresponding to a color and is also branded in that color. The letters Y, W, P, B, G, O, and R indicate the colors Yellow, White, Purple, Blue, Green,

Orange and Red. All Yellow belts are designed to function with all Yellow sprockets, as is the case for the White, Purple, Blue, Green, Orange and Red sizes. An example of the part numbering system nomenclature for belts, sprockets, and bushings follows and also appears on subsequent pages.

Belt Part Number Nomenclature

G-2800	
G	Green Color
2800	2800 mm Pitch Length

Y-896
Y Yellow Color
896896 mm Pitch Length

EaGle NRG YELLOW (8 mm Pitch - 16 mm Width)

Part Number	No. of Teeth	Length (in)	Part Number	No. of Teeth	Length (in)
Y-640	80	25.20	Y-1280	160	50.39
Y-720	90	28.35	Y-1440	180	56.69
Y-800	100	31.50	Y-1600	200	62.99
Y-896	112	35.28	Y-1792	224	70.55
Y-1000	125	39.37	Y-2000	250	78.74
Y-1120	140	44.09	Y-2240	280	88.19
Y-1200	150	47.24		300	94.49

The belt length in mm is given in the part number.

EaGle NRG WHITE (8 mm Pitch - 32 mm Width)

Part Number	No. of Teeth	Length (in)	Part Number	No. of Teeth	Length (in)
W-640	80	25.20	W-1280	160	50.39
W-720	90	28.35	W-1440	180	56.69
W-800	100	31.50	W-1600	200	62.99
W-896	112	35.28	W-1792	224	70.55
W-1000	125	39.37	W-2000	250	78.74
W-1120	140	44.09	W-2240	280	88.19
W-1200	150	47.24			

The belt length in mm is given in the part number.

EaGle NRG PURPLE (8 mm Pitch -64 mm Width)

Part Number	No. of Teeth	Length (in)	Part Number	No. of Teeth	Length (in)
P-720	90	28.35	P-1200	150	47.24
P-800	100	31.50	P-1280	160	50.39
P-896	112	35.28	P-1440	180	56.69
P-1000	125	39.37	P-1600	200	62.99
P-1120	140	44.09			

The belt length in mm is given in the part number.

EaGle NRG

EAGLE NRG BLUE (14 mm Pitch - 35 mm Width)

Part Number	No. of Teeth	Length (in)	Part Number	No. of Teeth	Length (in)
B-994	71	39.13	B-2240	160	88.19
B-1120	80	44.09	B-2380	170	93.70
B-1190	85	46.85	B-2520	180	99.21
B-1260	90	49.61	B-2660	190	104.72
B-1400	100	55.12	B-2800	200	110.24
B-1568	112	61.73	B-3136	224	123.46
B-1750	125	68.90	B-3304	236	130.08
B-1960	140	77.17	B-3500	250	137.80
B-2100	150	82.68	B-3920	280	154.33

The belt length in mm is given in the part number.

EaGLE NRG GREEN (14 mm Pitch -52.5 mm Width)

Part Number	No. of Teeth	Length (in)	Part Number	No. of Teeth	Length (in)
G-994	71	39.13	G-2240	160	88.19
G-1120	80	44.09	G-2380	170	93.70
G-1190	85	46.85	G-2520	180	99.21
G-1260	90	49.61	G-2660	190	104.72
G-1400	100	55.12	G-2800	200	110.24
G-1568	112	61.73	G-3136	224	123.46
G-1750	125	68.90	G-3500	236	130.08
G-1960	140	77.17	G-3920	280	137.80
G-2100	150	82.68			154.33

The belt length in mm is given in the part number.

EaGle NRGORANGE (14 mm Pitch -70 mm Width)

Part Number	No. of Teeth	Length (in)	Part Number	No. of Teeth	Length (in)
O-1120	80	44.09	O-2380	170	93.70
O-1190	85	46.85	O-2520	180	99.21
O-1260	90	49.61	O-2660	190	104.72
O-1400	100	55.12	O-2800	200	110.24
O-1568	112	61.73	O-3136	224	123.46
O-1750	125	68.90	O-3304	236	130.08
O-1960	140	77.17	O-3500	250	137.80
O-2100	150	82.68	O-3920	280	154.33
O-2240	160	88.19			

The belt length in mm is given in the part number.

EaGLE NRG RED (14 mm Pitch -105 mm Width)

Part Number	No. of Teeth	Length (in)	Part Number	No. of Teeth	Length (in)
R-1260	90	49.61	R-2520	180	99.21
R-1400	100	55.12	R-2660	190	104.72
R-1568	112	61.73	R-2800	200	110.24
R-1750	125	68.90	R-3136	224	123.46
R-1960	140	77.17	R-3304	236	130.08
R-2100	150	82.68	R-3500	250	137.80
R-2240	160	88.19		280	154.33
R-2380	170	93.70			

The belt length in mm is given in the part number.

Eagle $\mathrm{NRG}^{\text {" }}$ Sprockets

Eace Color Spectrum System
 MATCHING BELT TO SPROCKET HAS NEVER BEEN EASIER!

Part No: Y-28S-H

Y	Yellow $=8 \mathrm{~mm}$ Pitch, 16 mm Width
28	28 Teeth
S	Sprocket
H	Hub/Bushing Type

Sprocket Combinations to Fit Your Drive System's Needs

Eagle NRG sprockets have been designed to insure maximum service life and performance. Over 1,500 sprocket combinations are available, making it easier to match the desired design speed. More speed ratio options also means more design flexibility and more compact drives.

Eagle NRG sprockets do not require flanges and are stocked in ductile iron constructions. Other materials such as aluminum, steel, and stainless steel are available upon request as made-toorder items.

Matching Belt to Sprocket Has Never Been Easier

The part numbering system for Eagle NRG centers around a color-coded sizing system for the belts and sprockets. Each belt and sprocket part number includes a letter corresponding to a color and is also branded in that color. The letters Y, W, P, B, G, O and R indicate the colors Yellow, White, Purple, Blue, Green, Orange, and Red. All Yellow belts are designed to function with all Yellow sprockets, as is the case for the White, Purple, Blue, Green, Orange, and Red sizes. An example of the part numbering system nomenclature for sprockets and bushings is given below.

APPlications

Eagle NRG belts and sprockets are ideal for use on a wide variety of applications in all industries.

Key Features \& Benefits

- More design flexibility with more compact drives.
- No flanges.
- Self-tracking design.
- Available in ductile iron, aluminum, steel, or stainless steel.

Sprocket Part Number

Nomenclature

Minimum Plain Bore, MPB:

O-40S-MPB

This is an Orange size sprocket with 40 teeth and a Minimum Plain Bore (MPB) style hub. The MPB style sprockets are supplied with a minimum bore, typically ${ }^{1 / 2 \prime}$ or $1^{\prime \prime}$ with H 7 tolerances, and will require machining of a keyway and setscrew holes, and possibly boring to a desired bore size.

Quick Disconnect, QD:

R-168S-N

This is a Red size sprocket with 168 teeth and a hub machined to fit an " N " size QD bushing. A bushing is required to install this sprocket on a shaft. Please note that smaller diameter sprockets are not available in the QD style due to space limitations.

Finished Stock Bore, FSB:
 G-34S - $1^{7 / 8}$

This is a Green size sprocket with 34 teeth and a Finished Stock Bore (FSB) style hub featuring a bore of $17 / 8$ ". FSB sprockets are supplied ready to install with a standard keyway and setscrew holes machined.

Bored To Suit, BTS:
 B-28S-BTS — 13/16

This is a Blue size sprocket with 28 teeth and a hub that has been bored (BTS) to $113 / 16^{\prime \prime}$, per customer specification, and machined for setscrew holes and a keyway. BTS sprockets can be made to almost any bore including metric sizes.

Note: All MPB-, QD-, and FSB-style sprockets are stock items. $B T S$ sprockets are made to order and may require lead times.

Bushing Part Number Nomenclature

E 21/8:	E	Bushing Size
	$2^{1 / 8}$	Bushing Bore

Bushings are supplied with bolts, lock washers, and set screws. Keys are supplied only if a special shallow key is required. The E $21 / 8^{\prime \prime}$ bushing can be used to install any sprocket with an "E" hub on a $21 / 8^{\prime \prime}$ shaft. The QD bushing system is an industry standard, however, to ensure the best match between sprocket and bushing, we recommend using bushings supplied by Veyance for Eagle NRG sprockets.

Eagle $\mathrm{NRG}^{\text {¹ }}$ Sprockets

White

EaGle NRGYellow (8 mm Pitch -17 mm Width)

Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth
Y-18S-MPB	18	Y-28S-MPB	28	Y-40S-MPB	40	Y-60S-MPB	60	Y-90S-MPB	90
Y-18S-FSB	18	Y-28S-H*	28	Y-40S-SH	40	Y-60S-SDS	60	Y-90S-SK	90
Y-20S-MPB	20	Y-30S-MPB	30	Y-44S-MPB	44	Y-63S-MPB	63	Y-112S-MPB	112
Y-20S-FSB	20	Y-30S-H*	30	Y-45S-MPB	45	Y-63S-SDS	63	Y-112S-SK	112
Y-22S-MPB	22	Y-32S-MPB	32	Y-45S-SDS	45	Y-64S-MPB	64	Y-140S-MPB	140
Y-22S-FSB	22	Y-32S-H*	32	Y-48S-MPB	48	Y-68S-MPB	68	Y-140S-SK	140
Y-24S-MPB	24	Y-34S-MPB	34	Y-48S-SDS	48	Y-72S-MPB	72	Y-180S-MPB	180
Y-24S-FSB	24	Y-34S-H*	34	Y-50S-MPB	50	Y-75S-MPB	75	Y-180S-SF	180
Y-25S-MPB	25	Y-36S-MPB	36	Y-50S-SDS	50	Y-75S-SDS	75	Y-224S-MPB	224
Y-25S-FSB	25	Y-36S-SH	36	Y-52S-MPB	52	Y-76S-MPB	76	Y-224S-E	224
Y-26S-MPB	26	Y-38S-MPB	38	Y-56S-MPB	56	Y-80S-MPB	80		
Y-26S-FSB	26	Y-38S-SH	38	Y-56S-SDS	56	Y-80S-SDS	80		

EaGle NRGWhite (8 mm Pitch -33 mm Width)

Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth
W-18S-MPB	18	W-28S-MPB	28	W-40S-MPB	40	W-60S-MPB	60	W-90S-MPB	90
W-18S-FSB	18	W-28S-H*	28	W-40S-SH	40	W-60S-SK	60	W-90S-SF	90
W-20S-MPB	20	W-30S-MPB	30	W-44S-MPB	44	W-63S-MPB	63	W-112S-MPB	112
W-20S-FSB	20	W-30S-H*	30	W-45S-MPB	45	W-63S-SK	63	W-112S-SF	112
W-22S-MPB	22	W-32S-MPB	32	W-45S-SDS	45	W-64S-MPB	64	W-140S-MPB	140
W-22S-FSB	22	W-32S-H*	32	W-48S-MPB	48	W-68S-MPB	68	W-140S-E	140
W-24S-MPB	24	W-34S-MPB	34	W-48S-SDS	48	W-72S-MPB	72	W-180S-MPB	180
W-24S-FSB	24	W-34S-SH	34	W-50S-MPB	50	W-75S-MPB	75	W-180S-E	180
W-25S-MPB	25	W-36S-MPB	36	W-50S-SDS	50	W-75S-SF	75	W-224S-MPB	224
W-25S-FSB	25	W-36S-SH	36	W-52S-MPB	52	W-76S-MPB	76	W-224S-F	224
W-26S-MPB	26	W-38S-MPB	38	W-56S-MPB	56	W-80S-MPB	80		
W-26S-FSB	26	W-38S-SH	38	W-56S-SK	56	W-80S-SF	80		

Eagle NRG White Slab Sprockets

Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth
W-18S-SLB	18	W-27S-SLB	27	W-36S-SLB	36	W-48S-SLB	48	W-68S-SLB	68
W-19S-SLB	19	W-28S-SLB	28	W-37S-SLB	37	W-50S-SLB	50	W-70S-SLB	70
W-20S-SLB	20	W-29S-SLB	29	W-38S-SLB	38	W-52S-SLB	52	W-72S-SLB	72
W-21S-SLB	21	W-30S-SLB	30	W-39S-SLB	39	W-54S-SLB	54	W-75S-SLB	75
W-22S-SLB	22	W-31S-SLB	31	W-40S-SLB	40	W-56S-SLB	56	W-76S-SLB	76
W-23S-SLB	23	W-32S-SLB	32	W-42S-SLB	42	W-58S-SLB	58	W-80S-SLB	80
W-24S-SLB	24	W-33S-SLB	33	W-44S-SLB	44	W-60S-SLB	60	W-90S-SLB	90
W-25S-SLB	25	W-34S-SLB	34	W-45S-SLB	45	W-63S-SLB	63		
W-26S-SLB	26	W-35S-SLB	35	W-46S-SLB	46	W-64S-SLB	64		

[^0]
Eagle NRG ${ }^{\text {º }}$ Sprockets

Purple

Blue

EaGle NRG Purple (8 mm Pitch -65 mm Width)

Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth
P-24S-MPB	24	P-32S-MPB	32	P-44S-MPB	44	P-56S-MPB	56	P-68S-MPB	68
P-25S-MPB	25	P-34S-MPB	34	P-45S-MPB	45	P-60S-MPB	60	P-72S-MPB	72
P-26S-MPB	26	P-36S-MPB	36	P-48S-MPB	48	P-63S-MPB	63		
P-28S-MPB	28	P-38S-MPB	38	P-50S-MPB	50	P-64S-MPB	64		
P-30S-MPB	30	P-40S-MPB	40	P-52S-MPB	52				

Eagle NRG Purple Slab Sprockets

Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth
P-25S-SLB	25	P-33S-SLB	33	P-42S-SLB	42	P-56S-SLB	56	P-75S-SLB	75
P-26S-SLB	26	P-34S-SLB	34	P-44S-SLB	44	P-58S-SLB	58	P-76S-SLB	76
P-27S-SLB	27	P-35S-SLB	35	P-45S-SLB	45	P-60S-SLB	60	P-80S-SLB	80
P-28S-SLB	28	P-36S-SLB	36	P-46S-SLB	46	P-63S-SLB	63	P-90S-SLB	90
P-29S-SLB	29	P-37S-SLB	37	P-48S-SLB	48	P-64S-SLB	64		
P-30S-SLB	30	P-38S-SLB	38	P-50S-SLB	50	P-68S-SLB	68		
P-31S-SLB	31	P-39S-SLB	39	P-52S-SLB	52	P-70S-SLB	70		
P-32S-SLB	32	P-40S-SLB	40	P-54S-SLB	54	P-72S-SLB	72		

Eagle NRG BLUE (14 mm Pitch -37 mm Width)

Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth
B-28S-MPB	28	B-36S-SF	36	B-48S-MPB	48	B-63S-F	63	B-112S-MPB	112
B-28S-SK	28	B-38S-MPB	38	B-48S-SF	48	B-71S-MPB	71	B-112S-F	112
B-30S-MPB	30	B-38S-SF	38	B-50S-MPB	50	B-71S-F	71	B-140S-MPB	140
B-30S-SK	30	B-40S-MPB	40	B-50S-E	50	B-75S-MPB	75	B-140S-J	140
B-32S-MPB	32	B-40S-SF	40	B-56S-MPB	56	B-75S-F	75	B-168S-MPB	168
B-32S-SK	32	B-43S-MPB	43	B-56S-E	56	B-80S-MPB	80	B-168S-J	168
B-34S-MPB	34	B-43S-SF	43	B-60S-MPB	60	B-80S-F	80	B-180S-E*	180
B-34S-SK	34	B-45S-MPB	45	B-60S-E	60	B-90S-MPB	90	B-200S-E*	200
B-36S-MPB	36	B-45S-SF	45	B-63S-MPB	63	B-90S-F	90	B-224S-E*	224

EaGle NRG Green (14 mm Pitch -54.5 mm Width)

Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth
G-28S-MPB	28	G-34S-SK	34	G-45S-E	45	G-63S-F	63	G-112S-J	112
G-28S-FSB	28	G-36S-MPB	36	G-48S-MPB	48	G-71S-MPB	71	G-140S-MPB	140
G-30S-MPB	30	G-36S-SF	36	G-48S-E	48	G-71S-J	71	G-140S-M	140
G-30S-FSB	30	G-38S-MPB	38	G-50S-MPB	50	G-75S-MPB	75	G-168S-MPB	168
G-30S-SK	30	G-38S-SF	38	G-50S-E	50	G-75S-J	75	G-168S-M	168
G-32S-MPB	32	G-40S-MPB	40	G-56S-MPB	56	G-80S-MPB	80	G-180S-F*	180
G-32S-FSB	32	G-40S-SF	40	G-56S-E	56	G-80S-J	80	G-200S-F*	200
G-32S-SK	32	G-43S-MPB	43	G-60S-MPB	60	G-90S-MPB	90	G-224S-F*	224
G-34S-MPB	34	G-43S-E	43	G-60S-E	60	G-90S-J	90		
G-34S-FSB	34	G-45S-MPB	45	G-63S-MPB	63	G-112S-MPB	112		

*Special lightweight design. Contact Veyance Technologies to ensure suitability for your application.
Sprockets with MPB (Minimum Plain Bore) are specified when the sprocket does not allow room for a bushing that will handle the maximum load.
Call Toll Free:

Eagle $\mathrm{NRG}^{\text {m }}$
 Sprockets

Orange

RED

EaGle NRGORANGE (14 mm Pitch - 72 mm Width)

Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth
O-28S-MPB	28	O-36S-FSB	36	O-48S-MPB	48	O-63S-J	63	O-112S-MPB	112
O-28S-FSB	28	O-38S-MPB	38	O-48S-E	48	O-71S-MPB	71	O-112S-M	112
O-30S-MPB	30	O-38S-FSB	38	O-50S-MPB	50	O-71S-J	71	O-140S-MPB	140
O-30S-FSB	30	O-40S-MPB	40	O-50S-F	50	O-75S-MPB	75	O-140S-M	140
O-32S-MPB	32	O-40S-FSB	40	O-56S-MPB	56	O-75S-J	75	O-168S-MPB	168
O-32S-FSB	32	O-43S-MPB	43	O-56S-F	56	O-80S-MPB	80	O-168S-M	168
O-34S-MPB	34	O-43S-E	43	O-60S-MPB	60	O-80S-J	80		
O-34S-FSB	34	O-45S-MPB	45	O-60S-J	60	O-90S-MPB	90		
O-36S-MPB	36	O-45S-E	45	O-63S-MPB	63	O-90S-J	90		

EAGLE NRGRED (14 mm Pitch -107 mm Width)

Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth
R-28S-MPB	28	R-36S-FSB	36	R-48S-MPB	48	R-63S-J	63	R-112S-MPB	112
R-28S-FSB	28	R-38S-MPB	38	R-48S-F	48	R-71S-MPB	71	R-112S-M	112
R-30S-MPB	30	R-38S-FSB	38	R-50S-MPB	50	R-71S-M	71	R-140S-MPB	140
R-30S-FSB	30	R-40S-MPB	40	R-50S-J	50	R-75S-MPB	75	R-140S-N	140
R-32S-MPB	32	R-40S-FSB	40	R-56S-MPB	56	R-75S-M	75	R-168S-MPB	168
R-32S-FSB	32	R-43S-MPB	43	R-56S-J	56	R-80S-MPB	80	R-168S-N	168
R-34S-MPB	34	R-43S-FSB	43	R-60S-MPB	60	R-80S-M	80		
R-34S-FSB	34	R-45S-MPB	45	R-60S-J	60	R-90S-MPB	90		
R-36S-MPB	36	R-45S-F	45	R-63S-MPB	63	R-90S-M	90		

Eagle NRGRED Slab Sprockets

Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth
R-28S-SLB	28	R-35S-SLB	35	R-43S-SLB	43	R-54S-SLB	54	R-75S-SLB	75
R-29S-SLB	29	R-36S-SLB	36	R-44S-SLB	44	R-56S-SLB	56	R-80S-SLB	80
R-30S-SLB	30	R-37S-SLB	37	R-45S-SLB	45	R-58S-SLB	58	R-90S-SLB	90
R-31S-SLB	31	R-38S-SLB	38	R-46S-SLB	46	R-60S-SLB	60		
R-32S-SLB	32	R-39S-SLB	39	R-48S-SLB	48	R-63S-SLB	63		
R-33S-SLB	33	R-40S-SLB	40	R-50S-SLB	50	R-70S-SLB	70		
R-34S-SLB	34	R-42S-SLB	42	R-52S-SLB	52	R-71S-SLB	71		

Sprockets with MPB (Minimum Plain Bore) are specified when the sprocket does not allow room for a bushing that will handle the maximum load. FSB = Finish Stock Bore
See page 15 for sizing information.

Eagle NRG ${ }^{\text {m }}$
 Finished Stock Bore Sizes

Sprocket Size	Stock Bore Sizes (in.)							
	78"	$17 / 8^{\prime \prime}$	$13 / 8^{\prime \prime}$	15/8"	17/8"	21/8"	$23 / 8^{\prime \prime}$	27/8"
Y-18S	X							
W-18S	X							
Y-20S	X	X						
W-20S	X	X						
Y-22S	X	X						
W-22S	X	X						
Y-24S	X	X	X					
W-24S	X	X	X					
Y-25S	X	X	X					
W-25S	X	X	X					
Y-26S	X	X	X	X				
W-26S	X	X	X	X				
G-28S					X	X	X	
O-28S					X	X	X	
R-28S					X	X	X	X
G-30S					X	X	X	
O-30S					X	X	X	
R-30S					X	X	X	X
G-32S					X	X	X	
O-32S					X	X	X	X
R-32S					X	X	X	X
G-34S					X	X	X	
O-34S					X	X	X	X
R-34S					X	X	X	X
O-36S					X	X	X	X
R-36S					X	X	X	X
O-38S					X	X	X	X
R-38S					X	X	X	X
O-40S					X	X	X	X
R-40S					X	X	X	X
R-43S					X	X	X	X

[^1]
Applications

Any application where a chain drive could be used.
Can also be used with a backside idler when needed, allowing for additional applications.
Suitable for high horsepower, low torque drives.

Key Features \& Benefits

- Increased Horsepower Rating up to 30%
- Increased Continuous Operating Temperature up to $200^{\circ} \mathrm{F}$
- Static Conductive**
- Size for size convenience. Example: 8GTR-640-21 = Gates 8MGT-640-21*
- Reduced operating noise levels to comparable belt drives.
- Exceptional tensile strength for premium performance.
- Rubber construction provides better resistance to flex fatigue.
- Versatility in a wide range of operating temperatures.

Falcon HTC is quickly setting the new standard in synchronous drive system belting. When compared to conventional polyurethane synchronous belts, the benefits of Falcon HTC become evident.

Specialty Compounded Materials Give This Belt Superior Advantages

A reinforced-rubber synchronous belt designed to work in a variety of demanding drives, Falcon HTC now offers up to 30 percent more horsepower over its predecessor. The ability to operate continuously in temperatures up to $200^{\circ} \mathrm{F}$, along with being static conductive, helps Falcon HTC perform in special applications, providing longer life and higher output to meet your needs.

Lower Maintenance Costs
 Reduce the Pain

Falcon HTC synchronous belts do not require lubrication often found in chain drive applications. High-modulus cord members minimize the need for retensioning normally required in standard v -belts, reducing your overall maintenance cost.

Quiet Operation

Falcon HTC runs quieter, up to 6 dB in operation for a better environment while offering advanced flex-fatigue resistance to help extend belt life.

POWER RATING COMPARISON

Conditions: 14 mm Pitch Belt, 20 mm Width Belt, 32 Tooth Sprockets

8 M (8 mm Pitch)

Pitch Length (mm	Pitch Length (mm)	Pitch Length (mm)
640	1280	2520
720	1440	2840
800	1600	3200
896	1792	3600
1000	2000	4000
1120	2240	4480
1200	2400	

Stock Widths: $12 \mathrm{~mm}, 21 \mathrm{~mm}, 36 \mathrm{~mm}, 62 \mathrm{~mm}$

Pitch Length (mm	Pitch Length (mm)	Pitch Length (mm)
994	1890	2800
1120	1960	3136
1190	2100	3304
1260	2240	3500
1400	2380	3920
1568	2520	4410
1750	2660	

Stock Widths: $20 \mathrm{~mm}, 37 \mathrm{~mm}, 68 \mathrm{~mm}, 90 \mathrm{~mm}, 125 \mathrm{~mm}$

* Gates, Poly Chain and GT are trademarks of the Gates Corporation.
**Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

Falcon CONH:

Part No: GTR-22G-8M-12

GTR	Falcon HTC Sprocket
22G	22 Grooves/Teeth
8 M	8 mm Pitch Length
12	12 mm Width

Compact Drives With

High Performance

Falcon HTC sprockets are designed to be a part of a complete high performance drive system. Working with our premium synchronous Falcon HTC belts allows for a lot of performance in a small space, giving you flexibility in design and application.
Falcon HTC belts and sprockets are ideal for use on a wide variety of applications and industries.

Matching Belt To Sprocket Is Simple

The part numbering system for Falcon HTC sprockets is simple and easy. Just match the belt's width and pitch length to that of the sprocket and select the preferred number of grooves/teeth to provide the desired performance characteristics. Refer to the part number example above for a part number breakdown.

Get What You Pay For drivegchange

With Falcon HTC belts and sprockets, you get more of what you pay for with each energy dollar. This is especially true when Falcon HTC is applied to high-energy consuming drives that are used 24 hours a day, as well as high horsepower drives that inflate energy consumption during peak periods.

Applications

Any applications where a chain drive could be used or there is a need for a high-efficiency drive system.
For use where Falcon HTC belts are specified or desired.
System is backside idler compatible allowing for additional applications.

KEy FEATURES \& BENEFITS

- Goodyear Engineered Products GTR-22G-8M-12 replaces $8 \mathrm{MX}-22 \mathrm{~S}-12$
- Convenient replacement for existing Poly Chain ${ }^{\circledR}$ GT ${ }^{\circledR} 2$ and Poly Chain GT Carbon ${ }^{\text {®* }}$ drives
- Cast iron or steel construction
- Stock on most popular application sizes. Other sizes available as special order.

Quieter, More Flexible DRIVE SYSTEM

Falcon HTC belt and sprocket systems also offer a decrease in operating noise. Tests show up to 6 dB quieter operation than comparable Poly Chain GT 2 and Poly Chain GT Carbon* belt systems.
Proprietary rubber construction provides better resistance to flex fatigue and versatility in a wide range of operating temperatures.

A System That Works With Less Maintenance

Since Falcon HTC belts are made of our proprietary high-grade rubber compound, you get a solution that can handle very demanding synchronous drive systems. Falcon HTC does not require lubrication. There is also no need for retensioning after the initial run in period like V-belts drives. Install a Falcon HTC drive system and watch your maintenance costs drop.

[^2]
Falcon HTC ${ }^{\star}$ Sprockets

8 M

	Part Number	No. of Teeth	Replaces Sprocket	Part Number	No. of Teeth	Replaces Sprocket	Part Number	No. of Teeth	Replaces Sprocket
\cdots	GTR-22G-8M-12	22	8MX-22S-12	GTR-34G-8M-21	34	8MX-34S-21	GTR-50G-8M-36	50	8MX-50S-36
<	GTR-25G-8M-12	25	8MX-25S-12	GTR-35G-8M-21	35	8MX-35S-21	GTR-56G-8M-36	56	8MX-56S-36
2	GTR-26G-8M-12	26	8MX-26S-12	GTR-36G-8M-21	36	8MX-36S-21	GTR-60G-8M-36	60	8MX-60S-36
\bigcirc	GTR-28G-8M-12	28	8MX-28S-12	GTR-38G-8M-21	38	8MX-38S-21	GTR-64G-8M-36	64	-
エ	GTR-30G-8M-12	30	8MX-30S-12	GTR-40G-8M-21	40	8MX-40S-21	GTR-75G-8M-36	75	8MX-75S-36
ס	GTR-31G-8M-12	31	8MX-31S-12	GTR-42G-8M-21	42	8MX-42S-21	GTR-80G-8M-36	80	8MX-80S-36
\bigcirc	GTR-32G-8M-12	32	8MX-32S-12	GTR-45G-8M-21	45	8MX-45S-21	GTR-90G-8M-36	90	8MX-90S-36
z	GTR-34G-8M-12	34	8MX-34S-12	GTR-48G-8M-21	48	8MX-48S-21	GTR-112G-8M-36	112	8MX-112S-36
2	GTR-36G-8M-12	36	8MX-36S-12	GTR-50G-8M-21	50	8MX-50S-21	GTR-140G-8M-36	140	8MX-140S-36
0	GTR-38G-8M-12	38	8MX-38S-12	GTR-53G-8M-21	53	8MX-53S-21	GTR-168G-8M-36+	168	-
C	GTR-40G-8M-12	40	8MX-40S-12	GTR-56G-8M-21	56	8MX-56S-21	GTR-192G-8M-36 ${ }^{+}$	192	-
\sim	GTR-41G-8M-12	41	8MX-41S-12	GTR-60G-8M-21	60	8MX-60S-21	GTR-30G-8M-62	30	-
	GTR-45G-8M-12	45	8MX-45S-12	GTR-64G-8M-21	64	-	GTR-32G-8M-62	32	-
	GTR-48G-8M-12	48	8MX-48S-12	GTR-67G-8M-21	67	8MX-67S-21	GTR-34G-8M-62	34	8MX-34S-62
	GTR-50G-8M-12	50	8MX-50S-12	GTR-75G-8M-21	75	8MX-75S-21	GTR-36G-8M-62	36	8MX-36S-62
	GTR-56G-8M-12	56	8MX-56S-12	GTR-80G-8M-21	80	8MX-80S-21	GTR-38G-8M-62	38	8MX-38S-62
	GTR-60G-8M-12	60	8MX-60S-12	GTR-90G-8M-21	90	8MX-90S-21	GTR-40G-8M-62	40	8MX-40S-62
	GTR-64G-8M-12	64	-	GTR-112G-8M-21	112	8MX-112S-21	GTR-45G-8M-62	45	8MX-45S-62
	GTR-75G-8M-12	75	8MX-75S-12	GTR-140G-8M-21	140	8MX-140S-21	GTR-48G-8M-62	48	8MX-48S-62
	GTR-80G-8M-12	80	8MX-80S-12	GTR-25G-8M-36*	25	-	GTR-50G-8M-62	50	8MX-50S-62
	GTR-90G-8M-12	90	8MX-90S-12	GTR-28G-8M-36*	28	-	GTR-56G-8M-62	56	8MX-56S-62
	GTR-22G-8M-21	22	8MX-22S-21	GTR-30G-8M-36	30	-	GTR-60G-8M-62	60	8MX-60S-62
	GTR-25G-8M-21	25	8MX-25S-21	GTR-32G-8M-36	32	8MX-32S-36	GTR-64G-8M-62	64	-
	GTR-26G-8M-21	26	8MX-26S-21	GTR-34G-8M-36	34	8MX-34S-36	GTR-75G-8M-62	75	8MX-75S-62
	GTR-27G-8M-21	27	8MX-27S-21	GTR-36G-8M-36	36	8MX-36S-36	GTR-80G-8M-62	80	8MX-80S-62
	GTR-28G-8M-21	28	8MX-28S-21	GTR-37G-8M-36	37	8MX-37S-36	GTR-90G-8M-62	90	8MX-90S-62
	GTR-30G-8M-21	30	8MX-30S-21	GTR-38G-8M-36	38	8MX-38S-36	GTR-112G-8M-62	112	8MX-112S-62
	GTR-31G-8M-21	31	8MX-31S-21	GTR-40G-8M-36	40	8MX-40S-36	GTR-140G-8M-62	140	8MX-140S-62
	GTR-32G-8M-21	32	8MX-32S-21	GTR-45G-8M-36	45	8MX-45S-36	GTR-168G-8M-62+	168	-
	GTR-33G-8M-21	33	8MX-33S-21	GTR-48G-8M-36	48	8MX-48S-36	GTR-192G-8M-62+	192	--

14 M

Part Number	No. of Teeth	Replaces Sprocket	Part Number	No. of Teeth	Replaces Sprocket	Part Number	No. of Teeth	Replaces Sprocket
GTR-28G-14M-20	28	14MX-28S-20	GTR-64G-14M-37	64	-	GTR-38G-14M-90	38	14MX-38S-90
GTR-29G-14M-20	29	14MX-29S-20	GTR-72G-14M-37	72	-	GTR-40G-14M-90	40	14MX-40S-90
GTR-30G-14M-20 ${ }^{\circ}$	30	14MX-30S-20	GTR-80G-14M-37	80	14MX-80S-37	GTR-44G-14M-90	44	-
GTR-32G-14M-20 ${ }^{\circ}$	32	14MX-32S-20	GTR-90G-14M-37	90	14MX-90S-37	GTR-48G-14M-90	48	14MX-48S-90
GTR-34G-14M-20	34	14MX-34S-20	GTR-112G-14M-37	112	14MX-112S-37	GTR-50G-14M-90	50	14MX-50S-90
GTR-36G-14M-20	36	14MX-36S-20	GTR-140G-14M-37	140	14MX-140S-37	GTR-56G-14M-90	56	14MX-56S-90
GTR-38G-14M-20	38	14MX-38S-20	GTR-168G-14M-37+	168	14MX-168S-37	GTR-60G-14M-90	60	14MX-60S-90
GTR-40G-14M-20	40	14MX-40S-20	GTR-180G-14M-37+	180	14MX-180S-37	GTR-64G-14M-90	64	-
GTR-44G-14M-20	44	-	GTR-192G-14M-37+	192	-	GTR-72G-14M-90	72	-
GTR-48G-14M-20	48	14MX-48S-20	GTR-200G-14M-37^	200	14MX-200S-37	GTR-80G-14M-90	80	14MX-80S-90
GTR-50G-14M-20	50	14MX-50S-20	GTR-224G-14M-37^	168	14MX-168S-20	GTR-90G-14M-90	90	14MX-90S-90
GTR-56G-14M-20	56	14MX-56S-20	GTR-28G-14M-68	28	-	GTR-112G-14M-90	112	14MX-112S-90
GTR-60G-14M-20	60	14MX-60S-20	GTR-29G-14M-68	29	14MX-29S-68	GTR-140G-14M-90	140	14MX-140S-90
GTR-64G-14M-20	64	-	GTR-30G-14M-68	30	14MX-30S-68	GTR-168G-14M-90+	168	14MX-168S-90
GTR-72G-14M-20	72	-	GTR-32G-14M-68	32	14MX-32S-68	GTR-180G-14M-90+	180	-
GTR-80G-14M-20	80	14MX-80S-20	GTR-34G-14M-68	34	14MX-34S-68	GTR-192G-14M-90+	192	-
GTR-90G-14M-20	90	14MX-90S-20	GTR-36G-14M-68	36	14MX-36S-68	GTR-38G-14M-125	38	-
GTR-112G-14M-20	112	14MX-112-20	GTR-38G-14M-68	38	14MX-38S-68	GTR-40G-14M-125	40	-
GTR-140G-14M-20	140	14MX-140S-20	GTR-40G-14M-68	40	14MX-40S-68	GTR-44G-14M-125	44	-
GTR-168G-14M-20	168	14MX-168S-20	GTR-44G-14M-68	44	-	GTR-48G-14M-125	48	-
GTR-180G-14M-20 ${ }^{+}$	168	14MX-168S-20	GTR-48G-14M-68	48	14MX-48S-68	GTR-50G-14M-125	50	14MX-50S-125
GTR-200G-14M-20^	168	14MX-168S-20	GTR-50G-14M-68	50	14MX-50S-68	GTR-56G-14M-125	56	14MX-56S-125
GTR-224G-14M-20^	168	14MX-168S-20	GTR-56G-14M-68	56	14MX-56S-68	GTR-56G-14M-125*	56	14MX-56S-125
GTR-28G-14M-37	28	14MX-28S-37	GTR-60G-14M-68	60	14MX-60S-68	GTR-60G-14M-125	60	14MX-60S-125
GTR-29G-14M-37	29	14MX-29S-37	GTR-64G-14M-68	64	-	GTR-64G-14M-125	64	-
GTR-30G-14M-37*	30	14MX-30S-37	GTR-72G-14M-68	72	-	GTR-72G-14M-125	72	-
GTR-32G-14M-37*	32	14MX-32S-37	GTR-80G-14M-68	80	14MX-80S-68	GTR-80G-14M-125	80	14MX-80S-125
GTR-34G-14M-37*	34	14MX-34S-37	GTR-90G-14M-68	90	14MX-90S-68	GTR-90G-14M-125	90	14MX-90S-125
GTR-36G-14M-37*	36	14MX-36S-37	GTR-112G-14M-68	112	14MX-112S-68	GTR-112G-14M-125	112	14MX-112S-125
GTR-38G-14M-37	38	14MX-38S-37	GTR-140G-14M-68	140	14MX-140S-68	GTR-140G-14M-125	140	14MX-140S-125
GTR-40G-14M-37	40	14MX-40S-37	GTR-168G-14M-68	168	14MX-168S-68	GTR-168G-14M-125+	168	14MX-168S-125
GTR-40G-14M-37*	40	14MX-40S-37	GTR-180G-14M-68	180	14MX-180S-68	GTR-180G-14M-125	180	14MX-180S-125
GTR-44G-14M-37	44	-	GTR-192G-14M-68 ${ }^{+}$	192	-	GTR-192G-14M-125+	192	-
GTR-48G-14M-37	48	14MX-48S-37	GTR-30G-14M-90*	30	-			
GTR-50G-14M-37	50	14MX-50S-37	GTR-32G-14M-90	32	-			
GTR-56G-14M-37	56	14MX-56S-37	GTR-34G-14M-90	34				
GTR-60G-14M-37	60	14MX-60S-37	GTR-36G-14M-90	36	14MX-36S-90			

Hawk 局

Part No: 480-8M-20
480 480mm Pitch Length
$8 \mathrm{M} \quad 8 \mathrm{~mm}$ Pitch
$20 \quad 20 \mathrm{~mm}$ Wide

A High-Performance Synchronous Belt With a Universal Profile

With its universal tooth profile, Hawk Pd is precisely designed and manufactured to fit the majority of existing high-capacity synchronous applications. Hawk Pd can fulfill most existing drive requirements in its class matching competitive offerings of belt width and length.
Sprocket compatibility with Gates HTD*, Power Grip GT and GT 2*, Carlisle RPP and RPP Plus*, and TB Wood's Synchronous QD*. Industry-compatible nomenclature for easy part number interchange.

Belt Materials That Last Longer

Hawk Pd belts feature an enhanced rubber compound. This compound is formulated to resist tooth deformity and increase tooth rigidity, increasing belt life and decreasing replacement costs.
The demands of synchronous drives put additional strain on the belt and tooth surface for high-speed and low-speed applications. The Hawk Pd tooth profile resists ratcheting and provides accurate positioning for synchronous drive applications. Enhanced Goodyear Engineered Products materials and tooth profile enable the teeth to engage the sprocket smoothly.

[^3]Applications
Nearly every conceivable industrial drive application where shaft synchronization is required. Hawk Pd belts can also be used as an alternative to problem V-belt and chain drives.
- Aggregate Machinery - Office Equipment
- Paper Industry Machinery
- Machine Tool
- Printing Trade Machinery
- Home Appliances
- Food Processing Equipment
- Packaging Machinery
- HVAC Units
- Mining Equipment
- Textile Machinery
- Farm Machinery
- Woodworking Machinery - Vending Machines

Key Features \& Benefits

- Universal tooth profile drops into existing HTD, GT and RPP sprockets. Industry-compatible nomenclature.
- High-grade compounding.
- Requires little, if any, retensioning and less drive maintenance.
- Oil, heat, ozone, and abrasion resistant.
- Designed for high-capacity performance.
- Higher horsepower rating than traditional timing belts.

High Capacity Performance

Hawk Pd synchronous belts are designed for high-capacity performance, exceeding the traditional speed limitations of chain and performance limitations of belt drives. The new material technology delivers a higher horsepower rating and improved life.

Lower Maintenance Costs

Unlike chain drives, Hawk Pd belts and matching sprockets do not require lubrication. There is also virtually no need for retensioning like there is for V-belts and chain drives. Install Hawk Pd and reduce your maintenance costs.

Hawk po

*Nonstock, made to order. Minimum quantities required.

5 M Available Sizes

Pitch Length (mm)	Pitch Length (mm)	Pitch Length (mm)
350	635	1125
375	670	1195
400	710	1270
425	740	1420
450	800	1595
475	850	1690
500	890	1790
535	950	1895
565	1000	2000
600	1050	

Stock Widths: $9 \mathrm{~mm}, 15 \mathrm{~mm}, 25 \mathrm{~mm}$

14 M Available Sizes

Pitch Length (mm)	Pitch Length (mm)	Pitch Length (mm)
966	2450	4578
1190	2590	4956
1400	2800	5320
110	3150	5740
1778	3360	6160
1890	3500	6860
2100	3850	
2310	4326	

Stock Widths: $40 \mathrm{~mm}, 55 \mathrm{~mm}, 85 \mathrm{~mm}, 115 \mathrm{~mm}, 170 \mathrm{~mm}$
*Static conductive

20 M Available Sizes

Pitch Length (mm)	Pitch Length (mm)	Pitch Length (mm)
2000	4200	5400
2500	4600	5800
3400	5000	6200
3800	5200	6600

Stock Widths: $115 \mathrm{~mm}, 170 \mathrm{~mm}, 230 \mathrm{~mm}, 290 \mathrm{~mm}, 340 \mathrm{~mm}$
*Static conductive
In addition to our stock lineup of synchronous belts, we can manufacture additional sizes (lengths) not listed.
For full product availability and specifications, please visit www.goodyearep.com/ptp or contact a Goodyear Engineered Products sales representative.

[^4]
Hawk Pod Synchronous Sprockets

Part No: P34-14M-55-SK
P34 34 Grooves/Teeth
$14 \quad 14 \mathrm{~mm}$ Pitch Length
$55 \quad 55 \mathrm{~mm}$ Width
SK QD Bushing

5 Mm Sprockets

Part No.	SAP No.	Wt . ${ }^{\text {* }}$	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
P32-5M-15**	20182279	0.8	P44-5M-25-JA	20182356	1.4	P68-5M-15-SDS	20182446	2.0
P32-5M-25**	20182280	1.1	P48-5M-15-JA	20182371	1.0	P68-5M-25-SDS	20182447	2.4
P34-5M-15**	20182292	1.0	P48-5M-25-JA	20182372	1.2	P72-5M-15-SDS	20182458	2.3
P34-5M-25**	20182293	1.3	P52-5M-15-JA	20182388	1.2	P72-5M-25-SDS	20182459	2.7
P36-5M-15**	20182307	1.1	P52-5M-25-JA	20182389	1.4	P80-5M-15-SDS	20182475	3.1
P36-5M-25**	20182308	1.5	P56-5M-15-SH	20182400	1.5	P80-5M-25-SDS	20182476	3.5
P38-5M-15-JA	20182323	0.6	P56-5M-25-SH	20182401	1.7	P90-5M-15-SDS	20182492	4.1
P38-5M-25-JA	20182324	0.9	P60-5M-15-SH	20182417	1.8	P90-5M-25-SDS	20182493	4.6
P40-5M-15-JA	20182339	0.7	P60-5M-25-SH	20182418	2.1	P112-5M-15-SDS	20182192	5.9
P40-5M-25-JA	20182340	1.1	P64-5M-15-SH	20182429	2.0	P112-5M-25-SDS	20182193	5.9
P44-5M-15-JA	20182355	1.0	P64-5M-25-SH	20182430	2.3			

${ }^{* *}$ MPB

8 MM SPROCKETS

Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.
P22-8M-20**	20182242	1.2	P36-8M-85-SKL	20182313	3.0	P64-8M-30-SK	20182432	8.4
P22-8M-30**	20182243	1.5	P38-8M-20-SH	20182325	2.0	P64-8M-50-SK	20182433	10.0
P24-8M-20-JA	20182244	0.7	P38-8M-30-SH	20182326	2.3	P64-8M-85-SF	20182434	12.2
P24-8M-30-JA	20182245	0.8	P38-8M-50-SH	20182327	3.1	P72-8M-20-SDS	20182460	5.8
P26-8M-20-JA	20182247	0.8	P38-8M-85-SKL	20182329	3.8	P72-8M-30-SK	20182461	8.0
P26-8M-30-JA	20182248	0.9	P40-8M-20-SH	20182341	2.2	P72-8M-50-SK	2018246213.0	
P28-8M-20-QT	20182256	1.0	P40-8M-30-SH	20182342	2.6	P72-8M-85-E	20182463	16.2
P28-8M-30-QT	20182257	1.4	P40-8M-50-SH	20182343	3.6	P80-8M-20-SDS	20182477	7.4
P28-8M-50**	20182258	4.2	P40-8M-85-SKL	20182345	4.9	P80-8M-30-SK	20182478	9.8
P30-8M-20-QT	20182270	1.3	P44-8M-20-SDS	20182357	2.4	P80-8M-50-SF	20182479	13.1
P30-8M-30-QT	20182271	1.7	P44-8M-30-SDS	20182358	2.8	P80-8M-85-E	20182480	21.3
P30-8M-50**	20182272	4.9	P44-8M-50-SD	20182359	4.6	P90-8M-20-SDS	20182494	7.2
P32-8M-20-QT	20182281	1.4	P44-8M-85-SFL	20182361	5.5	P90-8M-30-SK	20182495	11.5
P32-8M-30-QT	20182282	1.6	P48-8M-20-SDS	20182373	3.0	P90-8M-50-SF	20182496	16.1
P32-8M-50**	20182283	5.3	P48-8M-30-SDS	20182374	3.5	P90-8M-85-E	20182497	27.7
P34-8M-20-SH	20182294	1.4	P48-8M-50-SD	20182375	5.8	P112-8M-30-SK	20182194	13.5
P34-8M-30-SH	20182295	1.6	P48-8M-85-SFL	20182377	7.5	P112-8M-50-SF	20182195	20.0
P34-8M-50-SH	20182296	2.1	P56-8M-20-SDS	20182402	4.4	P112-8M-85-F	20182196	58.0
P34-8M-85**	20182298	8.4	P56-8M-30-SDS	20182403	5.0	P144-8M-50-E	20182208	31.2
P36-8M-20-SH	20182309	1.7	P56-8M-50-SK	20182404	7.4	P144-8M-85-F	20182209	52.0
P36-8M-30-SH	20182310	2.0	P56-8M-85-EL	20182405	10.1	P192-8M-50-E	20182230	51.0
P36-8M-50-SH	20182311	2.7	P64-8M-20-SDS	20182431	5.9	P192-8M-85-F	20182231	70.0

[^5]
14 MM SPROCKETS

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
P28-14M-40-SK	20182252	5.2	P44-14M-85-E	20182351	21.0	P72-14M-170-J	20182449	112.2
P28-14M-55-SK	20182253	6.5	P44-14M-115-E	20182346	25.2	P80-14M-40-E	20182467	34.2
P28-14M-85-SFL	20182254	8.8	P44-14M-170-FL	20182348	39.0	P80-14M-55-F	20182468	51.5
P28-14M-115-SFL	20182250	11.3	P48-14M-40-E	20182365	19.0	P80-14M-85-F	20182469	60.6
P29-14M-40-SK	20182260	5.9	P48-14M-55-E	20182366	21.9	P80-14M-115-J	20182465	84.8
P29-14M-55-SK	20182261	7.5	P48-14M-85-E	20182367	27.6	P80-14M-170-J	20182466	103.9
P29-14M-85-SFL	20182262	10.1	P48-14M-115-E	20182362	33.2	P90-14M-40-E	20182484	34.4
P29-14M-115-SFL	20182259	13.0	P48-14M-170-FL	20182364	51.0	P90-14M-55-F	20182485	47.7
P30-14M-40-SK	20182266	5.6	P52-14M-40-E	20182380	23.1	P90-14M-85-F	20182486	58.1
P30-14M-55-SK	20182267	6.7	P52-14M-55-E	20182381	26.3	P90-14M-115-J	20182482	73.3
P30-14M-85-EL	20182268	7.8	P52-14M-85-E	20182382	32.6	P90-14M-170-J	20182483	88.2
P30-14M-115-EL	20182264	10.0	P52-14M-115-F	20182378	43.4	P112-14M-40-E	20182184	45.0
P32-14M-40-SK	20182275	7.2	P52-14M-170-F	20182379	54.2	P112-14M-55-F	20182185	61.8
P32-14M-55-SK	20182276	8.7	P56-14M-40-E	20182392	27.7	P112-14M-85-F	20182186	78.8
P32-14M-85-EL	20182277	10.7	P56-14M-55-E	20182393	31.1	P112-14M-115-J	20182182	100.5
P32-14M-115-EL	20182273	13.7	P56-14M-85-F	20182394	44.4	P112-14M-170-M	20182183	158.0
P34-14M-40-SK	20182286	8.6	P56-14M-115-F	20182390	51.3	P144-14M-40-E	20182200	72.2
P34-14M-55-SK	20182287	10.5	P56-14M-170-F	20182391	63.0	P144-14M-55-F	20182201	95.9
P34-14M-85-EL	20182288	13.6	P60-14M-40-E	20182409	32.5	P144-14M-85-F	20182202	107.9
P34-14M-115-EL	20182284	17.3	P60-14M-55-E	20182410	36.4	P144-14M-115-J	20182198	143.5
P36-14M-40-SF	20182302	7.7	P60-14M-85-F	20182411	52.4	P144-14M-170-M	20182199	233.5
P36-14M-55-SF	20182303	10.6	P60-14M-115-F	20182407	60.2	P168-14M-40-F	20182212	92.9
P36-14M-85-SF	20182304	13.9	P60-14M-170-J	20182408	76.0	P168-14M-55-F	20182213	99.8
P36-14M-115-FL	20182299	17.0	P64-14M-40-E	20182421	28.8	P168-14M-85-J	20182214	133.0
P36-14M-170-FL	20182301	23.0	P64-14M-55-F	20182422	52.2	P168-14M-115-M	20182210	215.0
P38-14M-40-SF	20182317	10.3	P64-14M-85-F	20182423	60.4	P168-14M-170-M	20182211	258.6
P38-14M-55-SF	20182318	12.2	P64-14M-115-J	20182419	73.0	P192-14M-40-F	20182222	114.0
P38-14M-85-SF	20182319	16.1	P64-14M-170-J	20182420	87.0	P192-14M-55-F	20182223	122.8
P38-14M-115-FL	20182314	21.0	P68-14M-40-E	20182438	31.1	P192-14M-85-J	20182224	162.0
P38-14M-170-FL	20182316	28.0	P68-14M-55-F	20182439	37.0	P192-14M-115-M	20182220	256.0
P40-14M-40-SF	20182333	12.1	P68-14M-85-F	20182440	53.7	P192-14M-170-M	20182221	337.0
P40-14M-55-SF	20182334	14.4	P68-14M-115-J	20182436	84.8	P216-14M-40-F	20182234	147.0
P40-14M-85-SF	20182335	19.1	P68-14M-170-J	20182437	99.3	P216-14M-55-F	20182235	158.0
P40-14M-115-FL	20182330	25.0	P72-14M-40-E	20182450	29.9	P216-14M-85-J	20182236	224.0
P40-14M-170-FL	20182332	34.0	P72-14M-55-F	20182451	47.6	P216-14M-115-M	20182233	304.0
P44-14M-40-E	20182349	14.8	P72-14M-85-F	20182452	58.2	P216-14M-170-M	20182234	405.0
P44-14M-55-E	20182350	16.9	P72-14M-115-J	20182448	96.7			

[^6]
20 MM SPROCKETS

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*	Part No.	SAP No.	. Wt. *
P72-20M-115-J	20182453	118.7	P90-20M-340-P	20182491	425.4	P168-20M-230-P	20182217	635.0
P72-20M-170-M	20182454	195.5	P112-20M-115-M	20182187	238.5	P168-20M-290-W	20182218	891.2
P72-20M-230-N	20182455	286.9	P112-20M-170-N	20182188	308.9	P168-20M-340-W	20182219	947.2
P72-20M-290-N	20182456	310.4	P112-20M-230-N	20182189	356.8	P192-20M-115-N	20182225	499.9
P72-20M-340-N	20182457	330.2	P112-20M-290-P	20182190	513.2	P192-20M-170-P	20182226	680.0
P80-20M-115-M	20182470	181.5	P112-20M-340-P	20182191	542.9	P192-20M-230-W	20182227	935.1
P80-20M-170-M	20182471	214.1	P144-20M-115-N	20182203	340.5	P192-20M-290-W	20182228	1060.3
P80-20M-230-N	20182472	279.5	P144-20M-170-N	20182204	426.2	P192-20M-340-S	20182229	1367.8
P80-20M-290-N	20182473	313.9	P144-20M-230-P	20182205	542.0	P216-20M-115-N	20182237	565.7
P80-20M-340-P	20182474	406.3	P144-20M-290-P	20182206	637.2	P216-20M-170-P	20182238	812.9
P90-20M-115-M	20182487	211.8	P144-20M-340-W	20182207	813.4	P216-20M-230-W	20182239	1061.5
P90-20M-170-M	20182488	249.8	P168-20M-115-N	20182215	417.2	P216-20M-290-W	20182240	1238.9
P90-20M-230-N	20182489	318.4	P168-20M-170-P	20182216	560.0	P216-20M-340-S	20182241	1554.9
P90-20M-290-N	20182490	359.2						

8 MM PITCH TAPER-LOCK Synchronous Sprockets

Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.
P22-8M-20-1108	20182754	0.4	P36-8M-50-1610	20182797	2.4	P56-8M-85-2517	20182842	9.8
P22-8M-30-1108	20182755	0.5	P36-8M-85-1615	20182798	3.8	P64-8M-20-2012	20182851	7.6
P24-8M-20-1108	20182756	0.6	P38-8M-20-1610	20182803	1.8	P64-8M-30-2517	20182852	9.2
P24-8M-30-1108	20182757	0.7	P38-8M-30-1610	20182804	2.1	P64-8M-50-2517	20182853	11.2
P26-8M-20-1108	20182758	0.8	P38-8M-50-1610	20182805	2.8	P64-8M-85-2517	20182854	13.8
P26-8M-30-1108	20182759	0.9	P38-8M-85-1610	20182806	3.8	P72-8M-20-2012	20182863	10.0
P28-8M-20-1108	20182763	1.0	P40-8M-20-1610	20182811	2.1	P72-8M-30-2517	20182864	12.4
P28-8M-30-1108	20182764	1.2	P40-8M-30-2012	20182812	2.1	P72-8M-50-2517	20182865	15.1
P28-8M-50-1108	20182765	1.6	P40-8M-50-2012	20182813	2.9	P72-8M-85-3020	20182866	17.3
P30-8M-20-1210	20182773	1.0	P40-8M-85-2012	20182814	4.0	P80-8M-20-2517	20182871	13.2
P30-8M-30-1210	20182774	1.2	P44-8M-20-2012	20182819	2.6	P80-8M-30-2517	20182872	16.1
P30-8M-50-1210	20182775	1.7	P44-8M-30-2012	20182820	3.0	P80-8M-50-2517	20182873	26.0
P32-8M-20-1210	20182780	1.3	P44-8M-50-2012	20182821	3.9	P80-8M-85-3020	20182874	23.0
P32-8M-30-1210	20182781	1.5	P44-8M-85-2012	20182822	5.4	P90-8M-20-2517	20182879	12.2
P32-8M-50-1210	20182782	2.0	P48-8M-20-2012	20182827	3.5	P90-8M-30-2517	20182880	13.4
P34-8M-20-1610	20182787	1.2	P48-8M-30-2012	20182828	3.9	P90-8M-50-3020	20182881	26.0
P34-8M-30-1610	20182788	1.4	P48-8M-50-2012	20182829	5.2	P90-8M-85-3020	20182882	30.0
P34-8M-50-1610	20182789	1.9	P48-8M-85-2012	20182830	7.2	P112-8M-30-2517	20182751	28.0
P34-8M-85-1615	20182790	2.9	P56-8M-20-2012	20182839	5.4	P112-8M-50-3020	20182752	27.0
P36-8M-20-1610	20182795	1.5	P56-8M-30-2012	20182840	6.1	P112-8M-85-3020	20182753	35.0
P36-8M-30-1610	20182796	1.7	P56-8M-50-2517	20182841	7.6			

[^7]
14 MM PITCH TAPER-LOCK Synchronous Sprockets

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
P28-14M-40-2012	20182760	5.2	P38-14M-115-3020	20182799	19.2	P64-14M-40-3020	20182848	29.0
P28-14M-55-2012	20182761	6.4	P $40-14 \mathrm{M}-40-2517$	20182808	13.3	P64-14M-55-3020	20182849	34.0
P28-14M-85-2012	20182762	9.0	P40-14M-55-2517	20182809	15.6	P64-14M-85-3535	20182850	71.0
P29-14M-40-2012	20182766	5.9	P40-14M-85-3020	20182810	18.5	P64-14M-115-4545	20182847	80.0
P29-14M-55-2012	20182767	7.4	P40-14M-115-3020	20182807	23.0	P68-14M-40-3020	20182856	31.0
P29-14M-85-2012	20182768	10.3	P44-14M-40-2517	20182816	16.6	P68-14M-55-3020	20182857	37.0
P30-14M-40-2012	20182770	5.8	P44-14M-55-2517	20182817	18.7	P68-14M-85-3535	20182858	83.0
P30-14M-55-2517	20182771	6.5	P44-14M-85-3020	20182818	22.0	P68-14M-115-4545	20182855	94.0
P30-14M-85-2517	20182772	8.7	P44-14M-115-3535	20182815	28.0	P72-14M-40-3020	20182860	34.0
P30-14M-115-2517	20182769	11.0	P48-14M-40-2517	20182824	21.0	P72-14M-55-3020	20182861	41.0
P32-14M-40-2012	20182777	7.4	P48-14M-55-3020	20182825	23.0	P72-14M-85-3535	20182862	70.0
P32-14M-55-2517	20182778	8.5	P48-14M-85-3020	20182826	29.0	P72-14M-115-4545	20182859	109.0
P32-14M-85-2517	20182779	11.6	P48-14M-115-3535	20182823	38.0	P80-14M-40-3020	20182868	35.0
P32-14M-115-2517	20182776	14.8	P52-14M-40-2517	20182832	26.0	P80-14M-55-3020	20182869	43.0
P34-14M-40-2012	20182784	8.7	P52-14M-55-3020	20182833	28.0	P80-14M-85-3535	20182870	74.0
P34-14M-55-2517	20182785	10.3	P52-14M-85-3535	20182834	41.0	P80-14M-115-4545	20182867	143.0
P34-14M-85-2517	20182786	14.1	P52-14M-115-4040	20182831	45.0	P90-14M-40-3020	20182876	36.0
P34-14M-115-2517	20182783	17.8	P56-14M-40-2517	20182836	21.0	P90-14M-55-3020	20182877	40.0
P36-14M-40-2517	20182792	9.7	P56-14M-55-3020	20182837	34.0	P90-14M-85-3535	20182878	72.0
P36-14M-55-2517	20182793	11.2	P56-14M-85-3535	20182838	51.0	P90-14M-115-4545	20182875	127.0
P36-14M-85-3020	20182794	12.3	P56-14M-115-4040	20182835	56.0	P112-14M-40-3020	20182748	47.0
P36-14M-115-3020	20182791	15.4	P60-14M-40-3020	20182844	27.0	P112-14M-55-3020	20182749	55.0
P38-14M-40-2517	20182800	11.5	P60-14M-55-3020	20182845	40.0	P112-14M-85-3535	20182750	89.0
P38-14M-55-2517	20182801	13.4	P60-14M-85-3535	20182846	61.0	P112-14M-115-4545	20182747	136.0
P38-14M-85-3020	20182802	15.4	P60-14M-115-4040	20182843	68.0			

[^8]
BLACKHAWK

Part No: 480 8M BH 12
480480 mm Pitch Length
8 M 8 mm Pitch
BH Blackhawk Belt
1212 mm Wide

A High-Performance Synchronous Belt With a Universal Profile

For a curvilinear belt that offers improved performance in your synchronous application, look no further than Blackhawk Pd. The high-performance belt offers best-of-breed technology and higher horsepower for the money. Its proven durability and strength makes it a compatible upgrade for many other timing belts.

Belt Materials That Last Longer

Blackhawk Pd belts feature a patented high-grade rubber compound. This cross-linked elastomer is formulated to resist tooth deformity and increase tooth rigidity, increasing belt life and decreasing replacement costs.
Blackhawk Pd's Flexten ${ }^{\circledR}$ tensile members provide excellent dimensional stability and high impact strength. Blackhawk Pd requires virtually no retensioning and minimum maintenance.
The demands of synchronous drives put additional strain on the belt and tooth surface for high-speed and low-speed applications. The Blackhawk Pd tooth profile resists ratcheting and provides accurate positioning for synchronous drive applications.

High Capacity Performance

Blackhawk Pd synchronous belts are designed for high-capacity performance, exceeding the traditional speed limitations of chain and performance limitations of belt drives. Blackhawk Pd belts are able to perform in drives ranging from fractional horsepower to 400 horsepower. The new material technology delivers a higher horsepower rating.

Key Features \& Benefits

- Universal tooth profile drops into existing HTD and RPP sprockets.
- High-grade Hibrex compound.
- Flexten tensile members provide excellent
dimensional stability and high-impact strength.
- Requires little, if any, retensioning and less drive
dimensional stability and high-impact strength.
- Requires little, if any, retensioning and less drive maintenance.
- Oil, heat, ozone, and abrasion resistant.
- Designed for high-capacity performance.
- Designed for high-capacity performance. timing belts.
- Static conductive*

Lower Maintenance Costs

Unlike chain drives, Blackhawk Pd belts and matching sprockets do not require lubrication. There is virtually no need for retensioning like there is for V-belt and chain drives. Install Blackhawk Pd and watch your maintenance costs drop to practically nothing.

[^9]To learn more visit www.goodyearep.com/ptp.

BLACKHAWK

$8 \mathrm{M} \quad$ Available Sizes

Pitch Length (mm)	Pitch Length (mm)
480	1440
560	1600
600	1760
640	1800
720	2000
800	2400
880	2600
960	2800
1040	3048
1120	3280
1200	3600
1280	4400

Stock Widths: $12 \mathrm{~mm}, 22 \mathrm{~mm}, 35 \mathrm{~mm}, 60 \mathrm{~mm}$

Blackhawk foio Synchronous Sprockets

Part No:	W38-14M-20-SF
W38	38 Grooves/Teeth
14	14 mm Pitch Length
20	20 mm Width
SF	QD Bushing

8MM SYNCHRONOUS Blackhawk Sprockets

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.*
W22-8M-12**	20182589	0.9	W34-8M-60**	20182641	6.6	W64-8M-35-SK	20182713	8.8
W22-8M-22**	20182590	1.2	W36-8M-12-SH	20182647	1.3	W64-8M-60-SF	20182714	10.2
W22-8M-35**	20182591	1.6	W36-8M-22-SH	20182648	1.6	W72-8M-12-SDS	20182725	5.1
W22-8M-60**	20182592	2.3	W36-8M-35-SH	20182649	2.0	W72-8M-22-SDS	20182726	6.0
W24-8M-12-JA	20182593	0.5	W36-8M-60-SKL	20182650	2.4	W72-8M-35-SK	20182727	11.6
W24-8M-22-JA	20182594	0.7	W38-8M-12-SH	20182656	1.6	W72-8M-60-E	20182728	14.0
W24-8M-35**	20182595	2.0	W38-8M-22-SH	20182657	1.9	W80-8M-12-SDS	20182734	6.7
W24-8M-60**	20182596	2.7	W38-8M-35-SH	20182658	2.3	W80-8M-22-SDS	20182735	7.8
W26-8M-12-JA	20182597	0.6	W38-8M-60-SKL	20182659	3.0	W80-8M-35-SF	20182736	11.3
W26-8M-22-JA	20182598	0.7	W $40-8 \mathrm{M}-12-\mathrm{SH}$	20182665	1.9	W80-8M-60-E	20182737	18.5
W26-8M-35**	20182599	2.4	W40-8M-22-SH	20182666	2.3	W90-8M-12-SDS	20182743	6.3
W26-8M-60**	20182600	3.3	W40-8M-35-SH	20182667	2.8	W90-8M-22-SDS	20182744	7.5
W28-8M-12-QT	20182606	0.7	W40-8M-60-SKL	20182668	3.8	W90-8M-35-SF	20182745	14.0
W28-8M-22-QT	20182607	1.1	W44-8M-12-SDS	20182674	2.1	W90-8M-60-E	20182746	24.5
W28-8M-35-QT	20182608	1.5	W44-8M-22-SDS	20182675	2.5	W112-8M-12-SK	20182557	10.6
W28-8M-60**	20182609	4.0	W44-8M-35-SD	20182676	3.8	W112-8M-22-SK	20182558	12.0
W30-8M-12-QT	20182620	0.9	W44-8M-60-SFL	20182677	4.4	W112-8M-35-SF	20182559	17.2
W30-8M-22-QT	20182621	1.3	W48-8M-12-SDS	20182683	2.6	W112-8M-60-F	20182560	53.3
W30-8M-35-QT	20182622	1.8	W48-8M-22-SDS	20182684	3.2	W144-8M-12-SK	20182566	18.5
W30-8M-60**	20182623	4.8	W48-8M-35-SD	20182685	4.9	W144-8M-22-SK	20182567	20.7
W32-8M-12-QT	20182629	1.1	W48-8M-60-SFL	20182686	6.1	W144-8M-35-E	20182568	27.5
W32-8M-22-QT	20182630	1.4	W56-8M-12-SDS	20182697	3.9	W144-8M-60-F	20182569	45.3
W32-8M-35-QT	20182631	1.6	W56-8M-22-SDS	20182698	4.5	W192-8M-12-SF	20182580	27.5
W32-8M-60**	20182632	5.7	W56-8M-35-SK	20182699	6.2	W192-8M-22-SF	20182581	30.6
W34-8M-12-SH	20182638	1.2	W56-8M-60-EL	20182700	8.4	W192-8M-35-E	20182582	46.2
W34-8M-22-SH	20182639	1.3	W64-8M-12-SDS	20182711	5.3	W192-8M-60-F	20182583	62.0
W34-8M-35-SH	20182640	1.6	W64-8M-22-SDS	20182712	6.1			

*Weight does not include bushing.
${ }^{* *}$ MPB

14MM SYNCHRONOUS Blackhawk Sprockets

Part No.	SAP No.	Wt. ${ }^{\text {. }}$	Part No.	SAP No.	Wt. ${ }^{*}$	Part No.	SAP No.	Wt.*
W28-14M-20-SK	20182602	3.2	W40-14M-120-FL	20182660	31.9	W72-14M-65-F	20182723	51.1
W28-14M-42-SK	20182603	5.1	W44-14M-20-E	20182670	12.0	W72-14M-90-F	20182724	61.6
W28-14M-65-SFL	20182604	6.7	W44-14M-42-E	20182671	14.6	W72-14M-120-J	20182720	96.0
W28-14M-90**	20182605	18.9	W44-14M-65-E	20182672	17.7	W80-14M-20-E	20182730	28.0
W28-14M-120**	20182601	21.0	W44-14M-90-FL	20182673	27.0	W80-14M-42-E	20182731	34.0
W29-14M-20-SK	20182611	3.6	W44-14M-120-FL	20182669	31.9	W80-14M-65-F	20182732	53.0
W29-14M-42-SK	20182612	6.2	W48-14M-20-E	20182679	14.7	W80-14M-90-J	20182733	74.7
W29-14M-65-SFL	20182613	7.2	W48-14M-42-E	20182680	18.8	W80-14M-120-J	20182729	84.0
W29-14M-90**	20182614	20.2	W48-14M-65-E	20182681	23.0	W90-14M-20-E	20182739	29.4
W29-14M-120**	20182610	22.0	W48-14M-90-FL	20182682	36.0	W90-14M-42-F	20182740	43.6
W30-14M-20-SK	20182616	4.0	W48-14M-120-FL	20182678	41.3	W90-14M-65-F	20182741	52.3
W30-14M-42-SK	20182617	5.5	W52-14M-20-E	20182688	17.6	W90-14M-90-J	20182742	67.0
W30-14M-65-EL	20182618	5.7	W52-14M-42-E	20182689	23.0	W90-14M-120-M	20182738	149.0
W30-14M-90-EL	20182619	7.4	W52-14M-65-E	20182690	28.0	W112-14M-20-E	20182553	39.1
W30-14M-120-EL	20182615	9.2	W52-14M-90-F	20182691	37.0	W112-14M-42-F	20182554	76.9
W32-14M-20-SK	20182625	4.9	W52-14M-120-F	20182687	43.0	W112-14M-65-J	20182555	82.6
W32-14M-42-SK	20182626	7.0	W56-14M-20-E	20182693	21.0	W112-14M-90-J	20182556	90.6
W32-14M-65-EL	20182627	7.6	W56-14M-42-E	20182694	27.4	W112-14M-120-M	20182552	147.0
W32-14M-90-EL	20182628	10.0	W56-14M-65-F	20182695	39.0	W144-14M-20-E	20182562	63.3
W32-14M-120-EL	20182624	12.8	W56-14M-90-F	20182696	44.0	W144-14M-42-F	20182563	111.0
W34-14M-20-SK	20182634	5.8	W56-14M-120-F	20182692	51.1	W144-14M-65-M	20182564	189.0
W34-14M-42-SF	20182635	7.4	W60-14M-20-E	20182702	25.2	W144-14M-90-M	20182565	199.0
W34-14M-65-EL	20182636	10.0	W60-14M-42-E	20182703	32.2	W144-14M-120-M	20182561	214.0
W34-14M-90-EL	20182637	13.2	W60-14M-65-F	20182704	46.0	W168-14M-20-F	20182571	131.0
W34-14M-120-FL	20182633	14.4	W60-14M-90-F	20182705	53.0	W168-14M-42-F	20182572	138.0
W36-14M-20-SF	20182643	6.4	W60-14M-120-F	20182701	59.8	W168-14M-65-M	20182573	196.0
W36-14M-42-SF	20182644	8.5	W64-14M-20-E	20182707	23.0	W168-14M-90-M	20182574	235.0
W36-14M-65-FL	20182645	11.4	W64-14M-42-E	20182708	28.0	W168-14M-120-M	20182570	273.0
W36-14M-90-FL	20182646	13.8	W64-14M-65-F	20182709	53.7	W192-14M-20-J	20182576	146.0
W36-14M-120-FL	20182642	17.0	W64-14M-90-F	20182710	60.1	W192-14M-42-J	20182577	157.0
W38-14M-20-SF	20182652	7.5	W64-14M-120-J	20182706	73.0	W192-14M-65-M	20182578	264.0
W38-14M-42-SF	20182653	10.2	W68-14M-20-E	20182716	25.2	W192-14M-90-M	20182579	279.0
W38-14M-65-FL	20182654	14.1	W68-14M-42-E	20182717	31.2	W192-14M-120-N	20182575	365.0
W38-14M-90-FL	20182655	17.4	W68-14M-65-F	20182718	46.8	W216-14M-20-J	20182585	171.0
W38-14M-120-FL	20182651	21.5	W68-14M-90-F	20182719	55.0	W216-14M-42-J	20182586	186.0
W40-14M-20-SF	20182661	8.6	W68-14M-120-J	20182715	84.0	W216-14M-65-M	20182587	303.0
W40-14M-42-SF	20182662	11.9	W72-14M-20-E	20182721	24.4	W216-14M-90-M	20182588	377.0
W40-14M-65-FL	20182663	17.8	W72-14M-42-E	20182722	30.2	W216-14M-120-N	20182584	423.0
W40-14M-90-FL	20182664	21.6						

*Weight does not include bushing.
${ }^{* *}$ MPB

Positive Drive foo

Part No: 100 XL 025
$10010.0^{\prime \prime}$ Pitch Length
XL Pitch-Trapezoidal Tooth Profile
025 . $25^{\prime \prime}$ Wide

Speed, Accuracy \& Dependability for Precision-Engineered Drives

Goodyear Engineered Products Positive Drive belts give you the opportunity to design your drives for the speed, accuracy, and dependability consistent with the best synchronous belt drives, all without the bulk, weight, and added cost that is inherent in chain and gear power transmission systems.

Goodyear Engineered Products Pd belts have precision-molded teeth to deliver the synchronized power you need. Because they're made of specially compounded rubber, reinforced with highstrength, stable fiberglass tensile cord members, and have a longwearing nylon facing, they are durable and provide a smooth, precise operation.

Engineered for Full-Power

Transmission, Smooth Operation
Our Positive Drive belts are made with world-class rubber technology which is specifically compounded to resist damaging environmental factors that can shorten belt life. Our specialized compound technology has excellent oil, heat, and ozone resistance, increasing durability and preserving belt flexibility leading to extended belt life.

Available in a Variety of Pitches

Goodyear Engineered Products Pd belts are available in a variety of pitches depending on the application.

Applications
Nearly every conceivable industrial drive application where precise shaft synchronization is required. Positive Drive belts can also be used as an alternative to problem V-belt and chain drives.
- Aggregate Machinery
- Office Equipment
- Chain Drives
- Machine Tools
- Farm Machinery
- Packaging Machinery
- Home Appliances
- Food Processing Equipment
- Textile Machinery
- Printing Trade Machinery
- Mining Equipment
- Woodworking Machinery

Key Features \& Benefits

- Universal trapezoidal tooth profiles drop into existing sprockets.
- High-grade compounding.
- Fiberglass tension cords for excellent resistance to shrinkage/elongation.
- Oil, heat, ozone, and abrasion resistant.
- Low-maintenance/high-efficiency rating.

Positive Drive foio

M XL (Mini Extra Light)
For small business machines, office equipment, electric equipment, etc.

$13 / 16^{\prime \prime}$ Pitch		
Standard Part Numbers		
40MXL	72MXL	112MXL
44MXL	80MXL	120MXL
48MXL	88MXL	140MXL
64MXL	96MXL	168 MXL

Stock Widths* $1 / 8$ inch $=012$
$3 / 16$ inch $=019$
$1 / 4$ inch $=025$

H (Heavy)
For machine tools, pumps, fans, press-
es, motor generator sets, etc.

$1 / 2 " \prime$ Standard Part Numbers		
210 H	450 H	730 H
220 H	480 H	750 H
230 H	490 H	780 H
240 H	510 H	800 H
270 H	540 H	820 H
300 H	560 H	850 H
320 H	570 H	900 H
330 H	585 H	960 H
360 H	603 H	1000 H
390 H	630 H	1100 H
400 H	645 H	120 H
410 H	660 H	1400 H
420 H	700 H	1700 H

[^10]

XL (Extra Light)
For business machines, instruments, sound equipment, etc.

$1 / 5 "$ Standard Part Numbers 50XL 190XL 350XL 60XL 200XL 370XL 70XL 210XL 380XL 80XL 220XL 390XL 90XL 230XL 400XL 100XL 240XL 420XL 110XL 250XL 450XL 120XL 260XL 460XL 130XL 280XL 480XL 140XL 290XL 500XL 150XL 300 XL 570XL 160XL 310 XL 630XL 170XL 330 XL 770XL 180XL 340 XL
Stock Widths*

X H (Extra Heavy)

For medium torque applications on heavy industrial equipment.

$7 / 8 \prime \prime$ Standard Part Numbers		
507XH	770 XH	1260 XH
560XH	840 XH	1400 XH
630XH	980XH	1540 XH
700XH	1120 XH	1750 XH

Stock Widths* 2 inches $=200$
3 inches $=300$
4 inches $=400$

L (Light)
For fraction power-rated motor applications such as in-home appliances, small tools, pumps, blowers, etc.

$3 / 8 "$ Standard Part Numbers		
124L	255 L	450 L
135L	270 L	480 L
150L	285L	510 L
165L	300 L	540 L
187L	322 L	600 L
195L	345 L	660 L
210L	367 L	817 L
225L	390 L	900 L
240L	420 L	

Stock Widths* $1 / 2$ inch $=050$
$3 / 4$ inch $=075$
1 inch $=100$

X X H (Double Extra Heavy)

For high torque applications on heavy industrial equipment.

I $1 / 4^{\prime \prime}$ Pitch		
Standard Part Numbers		

$$
\begin{aligned}
& \text { Stock Widths* } 2 \text { inches }=200 \\
& 3 \text { inches }=300 \\
& 4 \text { inches }=400 \\
& 5 \text { inches }=500
\end{aligned}
$$

$13.00^{\prime \prime}$ wide Pd sleeves are available from stock in XL, L, H, XH and XXH profiles. Please consult your PTP List Prices Pages publications for the full range of sizes.

*Stock Widths: Use the three-digit size number as a suffix to the belt number when ordering.
Note: For nonstock sizes, contact your local Goodyear Engineered Products PTP industrial distributor.
**Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

Positive Drive Profo

 XL SYNCHRONOUS(TIMING) SPROCKETS

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
10XL037**	20178894	0.03	21XL037**	20181963	0.19	40XL037**^	20182075	0.31
11XL037**	20178895	0.03	22XL037**	20181974	0.22	42XL037**^	20182091	0.31
12XL037**	20181888	0.06	24XL037**	20181990	0.25	44XL037**^	20182094	0.31
14XL037**	20181896	0.06	28XL037**	20182022	0.34	48XL037**^	20182104	0.38
15XL037**	20181901	0.09	30XL037**	20182035	0.41	60XL037**^	20182119	0.38
16XL037**	20181909	0.09	32XL037**^	20182041	0.22	72XL037**^	20182134	0.50
18XL037**	20181927	0.13	36XL037**^	20182060	0.30	32XL037**	20395679	0.20
20XL037**	20181950	0.19						

LSYNCHRONOUS
(TiMING) SPROCKETS

Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt. ${ }^{*}$
10L050**	20178893	0.2	22L050-JA	20181968	0.8	40L075-SDS	20182081	3.0
12L050**	20181886	0.3	22L075-JA	20181969	0.8	40L100-SDS	20182082	3.4
12L075**	20181887	0.4	22L100-JA	20181970	0.9	44L050-SDS	20182099	3.1
14L050**	20181893	0.5	24L050-SH	20181984	0.5	44L075-SDS	20182100	3.5
14L075**	20181894	0.6	24L075-SH	20181985	0.7	44L100-SDS	20182101	3.9
14L100**	20181895	0.7	24L100-SH	20181986	0.9	48L050-SDS	20182109	4.2
16L050**	20181906	0.7	26L050**	20182000	2.3	48L075-SDS	20182110	4.6
16L075**	20181907	0.8	26L050-SH	20182001	0.9	48L100-SDS	20182111	5.1
16L100**	20181908	1.0	26L075-SH	20182002	1.1	60L050-SD	20182124	5.6
17L050**	20181910	0.8	26L100-SH	20182003	1.2	60L075-SD	20182125	6.1
17L075**	20181911	1.0	28L050-SH	20182016	1.1	60L100-SD	20182126	6.7
17L100**	20181912	1.1	28L075-SH	20182017	1.3	$72 L 050-S D$	20182139	6.7
18L050-JA	20181917	0.4	28L100-SH	20182018	1.6	72L075-SD	20182140	7.6
18L075-JA	20181918	0.5	30L050-SDS	20182029	1.2	72L100-SD	20182141	7.5
18L100-JA	20181919	0.6	30L075-SDS	20182030	1.5	84L050-SD	20182153	7.9
19L050**	20181936	1.0	30L100-SDS	20182031	1.8	84L075-SD	20182154	8.7
19L075**	20181937	1.2	32L050-SDS	20182047	1.5	84L100-SD	20182155	9.6
19L100**	20181938	1.4	32L075-SDS	20182048	1.7	96L050-SD	20182167	9.6
20L050-JA	20181944	0.6	32L100-SDS	20182049	1.9	96L075-SD	20182168	10.6
20L075-JA	20181945	0.7	36L050-SDS	20182065	2.0	96L100-SD	20182169	11.6
20L100-JA	20181946	0.9	36L075-SDS	20182066	2.3	120L050-SD	20181880	12.5
21L050**	20181960	1.3	36L100-SDS	20182067	2.6	120L075-SD	20181881	13.7
21L075**	20181961	1.5	40L050-SDS	20182080	2.6	120L100-SD	20181882	15.0
21L100**	20181962	1.8						

H Synchronous (Timing) Sprockets

Part No.	SAP No.	Wt. ${ }^{\text {* }}$	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt. ${ }^{*}$
14H100**	20181889	1.4	26H100-SDS	20181996	2.4	43H100-SK	20182093	10.0
14H100-JA	20181890	0.7	26H150-SD	20181997	3.6	44H100-SK	20182095	9.9
14H150-JA	20181891	1.0	26H200-SD	20181998	3.9	44H150-SK	20182096	10.8
14H200-JA	20181892	1.2	26H300-SD	20181999	4.7	44H200-SK	20182097	12.1
16H100-JA	20181902	0.8	27H100-SDS	20182011	2.7	44H300-SK	20182098	14.7
16H150-JA	20181903	0.8	28H100-SDS	20182012	3.0	45H100-SK	20182102	11.2
16H200-JA	20181904	1.3	28H150-SD	20182013	4.5	46H100-SK	20182103	11.8
16H300**	20181905	4.1	28H200-SD	20182014	5.1	48H100-SK	20182105	9.1
18H100-SH	20181913	1.0	28H300-SD	20182015	6.4	48H150-SK	20182106	10.5
18H150-SH	20181914	1.4	29H100-SDS	20182023	3.3	48H200-SF	20182107	14.0
18H200-SH	20181915	1.7	30H100-SD	20182025	4.6	48H300-SF	20182108	16.9
18H300**	20181916	5.4	30H150-SD	20182026	5.3	60H100-SF	20182120	11.1
19H100**	20181932	3.0	30H200-SD	20182027	6.0	60H150-SF	20182121	12.8
19H150**	20181933	3.7	30H300-SD	20182028	7.6	60H200-SF	20182122	15.9
19H200**	20181934	4.6	31H100-SD	20182040	4.9	60H300-SF	20182123	20.0
19H300**	20181935	6.2	32H100-SK	20182043	4.1	72H100-SF	20182135	16.9
20H100**	20181939	3.4	32H150-SK	20182044	5.2	72H150-SF	20182136	18.9
20H100-SH	20181940	1.4	32H200-SK	20182045	5.8	72H200-SF	20182137	19.9
20H150-SH	20181941	1.8	32H300-SK	20182046	7.6	72H300-SF	20182138	24.0
20H200-SH	20181942	2.2	33H100-SK	20182053	5.0	84H100-SF	20182149	21.0
20H300**	20181943	7.0	34H100-SK	20182054	5.4	84H150-SF	20182150	23.0
$21 \mathrm{H} 100-\mathrm{SH}$	20181956	1.5	35H100-SK	20182059	5.9	84H200-SF	20182151	27.0
21H150**	20181957	4.8	36H100-SK	20182061	5.8	84H300-SF	20182152	32.0
21H200**	20181958	5.6	36H150-SK	20182062	6.6	96H100-SF	20182163	25.0
21H300**	20181959	7.5	36H200-SK	20182063	7.6	96H150-SF	20182164	28.0
22H100-SDS	20181964	1.5	36H300-SK	20182064	9.6	96H200-E	20182165	35.0
22H150-SD	20181965	2.2	37H100-SK	20182071	6.8	96H300-E	20182166	42.0
22H200-SD	20181966	2.7	38H100-SK	20182073	7.3	120H100-SF	20178896	31.0
22H300-SD	20181967	3.6	39H100-SK	20182074	7.8	120H150-SF	20178897	36.0
23H100-SDS	20181979	1.7	40H100-SK	20182076	8.4	120H200-E	20178898	47.0
24H100-SDS	20181980	1.9	40H150-SK	20182077	9.1	120H300-E	20178899	55.0
24H150-SD	20181981	2.8	40H200-SK	20182078	10.2	156H100-SF	20181897	45.8
24H200-SD	20181982	3.3	40H300-SK	20182079	12.3	156H150-SF	20181898	52.0
24H300-SD	20181983	4.3	41H100-SK	20182090	8.9	156H200-E	20181899	68.0
25H100-SDS	20181995	2.1	42H100-SK	20182092	9.4	156H300-E	20181900	79.0

[^11]
XH Synchronous (Timing) Sprockets

| Part No. | SAP No. | Wt. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

XXH Synchronous (Timing) Sprockets

Part No.	SAP No.	Wt.**	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
18XXH200-SK	20181928	16.1	26XXH200-E	20182007	35.1	48XXH200-J	20182115	73.0
18XXH300-SF	20181929	19.6	26XXH300-E	20182008	43.3	48XXH300-J	20182116	90.0
18XXH400-SF	20181930	24.0	26XXH400-F	20182009	57.2	48XXH400-J	20182117	104.0
18XXH500**	20181931	48.6	26XXH500-F	20182010	61.0	48XXH500-M	20182118	154.0
20XXH200-SK	20181951	19.8	30XXH200-F	20182036	48.0	60XXH200-J	20182130	93.0
20XXH300-SF	20181952	25.2	$30 \mathrm{XXH} 300-\mathrm{F}$	20182037	64.6	60XXH300-J	20182131	112.0
20XXH400-SF	20181953	31.1	30XXH400-F	20182038	67.0	60XXH400-M	20182132	169.0
20XXH500**	20181954	61.0	30XXH500-J	20182039	93.0	60XXH500-M	20182133	195.0
22XXH200-E	20181975	23.8	$34 \mathrm{XXH} 200-\mathrm{F}$	20182055	57.0	72XXH200-J	20182145	111.0
$22 \mathrm{XXH} 300-\mathrm{E}$	20181976	30.0	$34 \mathrm{XXH} 300-\mathrm{F}$	20182056	68.0	72XXH300-J	20182146	142.0
$22 \mathrm{XXH} 400-\mathrm{E}$	20181977	36.2	34XXH400-J	20182057	86.0	72XXH400-M	20182147	224.0
$22 \mathrm{XXH} 500-\mathrm{E}$	20181978	42.5	34XXH500-J	20182058	97.0	72XXH500-M	20182148	231.9
24XXH200-E	20181991	29.5	40XXH200-F	20182086	60.0	90XXH200-J	20182159	140.9
24XXH300-E	20181992	36.9	40XXH300-F	20182087	75.8	90XXH300-J	20182160	192.8
24XXH400-E	20181993	44.4	40XXH400-J	20182088	96.0	90XXH400-M	20182161	259.0
24XXH500-F	20181994	56.0	40XXH500-J	20182089	110.0	90XXH500-M	20182162	314.0

[^12]** MPB

L Taper-Lock Timing Sprockets

Part No.	SAP No.	Wt. ${ }^{*}$	Part No.	SAP No.	Wt. ${ }^{*}$	Part No.	SAP No.	Wt. ${ }^{*}$
TL18L050 1008	20182508	0.5	TL22L100 1008	20182524	1.3	TL28L075 1610	20182544	1.2
TL18L075 1008	20182509	0.5	TL24L050 1210	20182529	1.0	TL28L100 1610	20182545	1.7
TL18L100 1008	20182510	0.7	TL24L075 1210	20182530	1.0	TL30L050 1610	20182546	1.5
TL20L050 1008	20182515	0.7	TL24L100 1210	20182531	1.3	TL30L075 1610	20182547	1.5
TL20L075 1008	20182516	0.7	TL26L050 1210	20182536	1.2	TL30L100 1610	20182548	2.2
TL20L100 1008	20182517	1.0	TL26L075 1210	20182537	1.2	TL32L050 1610	20182549	1.9
TL22L050 1008	20182522	0.9	TL26L100 1210	20182538	1.7	TL32L075 1610	20182550	1.9
TL22L075 1008	20182523	0.9	TL28L050 1210	20182543	1.2	TL32L100 1610	20182551	2.7

H Taper-Lock Timing Sprockets

Part No.	SAP No.	Wt. ${ }^{*}$	Part No.	SAP No.	Wt. ${ }^{*}$	Part No.	SAP No.	Wt. ${ }^{*}$
TL14H100 1008	20182499	0.8	TL20H150 1215	20182512	2.3	TL24H300 2012	20182528	4.5
TL14H150 1008	20182500	1.0	TL20H200 1215	20182513	2.7	TL26H100 2012	20182532	2.4
TL16H100 1008	20182501	1.3	TL20H300 1215	20182514	4.0	TL26H150 2012	20182533	3.4
TL16H150 1008	20182502	1.5	TL22H100 1610	20182518	1.8	TL26H200 2012	20182534	3.8
TL16H200 1008	20182503	1.9	TL22H150 1615	20182519	2.7	TL26H300 2012	20182535	5.6
TL18H100 1210	20182504	1.2	TL22H200 1615	20182520	3.0	TL28H100 2012	20182539	3.0
TL18H150 1215	20182505	1.7	TL22H300 1615	20182521	4.2	TL28H150 2012	20182540	4.3
TL18H200 1215	20182506	1.9	TL24H100 1610	20182525	1.8	TL28H200 2012	20182541	5.3
TL18H300 1215	20182507	2.7	TL24H150 2012	20182526	2.4	TL28H300 2012	20182542	7.0
TL20H100 1210	20182511	1.7	TL24H200 2012	20182527	2.8			

[^13]
Super Torque

Part No: 100S4.5M175
$100 \quad 10 \mathrm{~mm}$ Width
S Super Torque Positive Drive Belt
$4.5 \mathrm{M} \quad 4.5 \mathrm{~mm}$ Pitch - Modified Round Tooth Profile
175175 mm Pitch Length

Built For Strength \& Endurance

Super Torque Pd belts are designed for high-capacity performance. They are also made of the highest quality materials.
The tensile members are made from high-strength, stable fiberglass. They have excellent flex life and are resistant to elongation. The backing is made of our proprietary compound technology that is highly heat-resistant and shear-resistant. And the nylon facing is fabricated to provide low friction interface between belt and sprocket.

A Different Positive Drive Tooth Design

Goodyear Engineered Products Super Torque Pd belt tooth carries some significant advantages over competitive synchronous belts. You can run your finger along the bottom of the tooth and feel the flat surface. When the belt engages the uniquely designed pulley profile, forces are distributed throughout the entire belt tooth to disperse critical stresses over more area, resulting in reduced tooth shear and longer life.
The pulley for our Super Torque Pd belt has an arch in the bottom of the grooves that projects up to support the belt tooth. This support from the pulley is the key dynamic feature to increased belt capabilities. Together, the pulley and tooth of the Super Torque Pd belt extend the possibilities at both ends of the design spectrum.

[^14]
Applications

Nearly every conceivable industrial drive application where precise shaft synchronization is required. Super Torque Pd belts can also be used as an alternative to problem V-belt and chain drives.

- Milling Machines
- Engine Accessory Drives
- Conveyors
- Internal Combustion Engines
- Timers or Controllers
- Debarkers
- Lathes
- Shapers
- Compressors
- Textile Machinery
- Wood Chippers
- Mixers

Key Features \& Benefits

- Unique tooth profile for quiet tooth engagement.
- Improved horsepower capacity over standard HTD profiles.
- High-grade compound.
- Fiberglass tension cords for excellent resistance to shrinkage/elongation.
- Oil, heat, ozone, and abrasion resistant.
- Mating sprockets required.
- Low-maintenance/high-efficiency rating.

Super Torque 層

S 3 M	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth
	S3M120	40	S3M252	84	S3M363	121	S3M501	167
	S3M150	50	S3M264	88	S3M384	128	S3M537	179
	S3M177	59	S3M276	92	S3M420	140	S3M564	188
	S3M201	67	S3M300	100	S3M459	153	S3M633	211
	S3M225	75	S3M339	113	S3M486	162		

S 4.5M	Part Number	No. of Teeth						
T	S4.5M175	39	S4.5M247	55	S4.5M306	68	S4.5M504	112
$2.8 \mathrm{~mm} \overrightarrow{4.5 \mathrm{~mm}}$	S4.5M180	40	S4.5M297	66	S4.5M342	76	S4.5M621	138
2.8 Pitch	S4.5M225	50						

Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth
S5M255	51	S5M475	95	S5M700	140	S5M1270	254
S5M295	59	S5M500	100	S5M550	150	S5M1350	270
S5M325	65	S5M525	105	S5M800	160	S5M1420	284
S5M350	70	S5M560	112	S5M850	170	S5M1800	360
S5M375	75	S5M575	115	S5M900	180	S5M2000	400
S5M400	80	S5M600	120	S5M950	190	S5M2770	554
S5M425	85	S5M625	125	S5M1000	200		
S5M435	87	S5M650	130	S5M1050	210		
S5M450	90	S5M675	135	S5M125	225		

S 8 M \downarrow	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth
	S8M440	55	S8M824	103	S8M1120	140	S8M1488	186
	S8M448	56	S8M840	105	S8M1136	142	S8M1544	193
	S8M480	60	S8M848	106	S8M1160	145	S8M1552	194
	S8M496	62	S8M880	110	S8M1176	147	S8M1600	200
	S8M512	64	S8M896	112	S8M1184	148	S8M1680	210
	S8M528	66	S8M920	115	S8M1200	150	S8M1696	212
	S8M560	70	S8M928	116	S8M1208	151	S8M1760	220
	S8M576	72	S8M936	117	S8M1224	153	S8M1800	225
	S8M592	74	S8M944	118	S8M1248	156	S8M2000	250
	S8M600	75	S8M960	120	S8M1256	157	S8M2032	254
	S8M632	79	S8M976	122	S8M1264	158	S8M2240	280
	S8M648	81	S8M984	123	S8M1280	160	S8M2272	284
	S8M656	82	S8M992	124	S8M1304	163	S8M2392	299
	S8M680	85	S8M1000	125	S8M1312	164	S8M2400	300
	S8M688	86	S8M1024	128	S8M1360	170	S8M2496	312
	S8M712	89	S8M1032	129	S8M1384	173	S8M2600	325
	S8M720	90	S8M1040	130	S8M1400	175	S8M2800	350
	S8M752	94	S8M1056	132	S8M1432	179	S8M3200	400
	S8M760	95	S8M1072	134	S8M1440	180		
	S8M800	100	S8M1096	137	S8M1480	185		

	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth	Part Number	No. of Teeth
	S14M1120	80	S14M1778	127	S14M2310	165	S14M3500	250
	S14M1190	85	S14M1890	135	S14M2450	175	S14M3850	275
	S14M1400	100	S14M2002	143	S14M2590	185	S14M4004	286
	S14M1540	110	S14M2100	150	S14M2800	200	S14M4508	322
	S14M1610	115	S14M2240	160	S14M3150	225	S14M5012	358

*Static conductive
Note: All Super Torque Pd belts are nonstock. Standard factory lead times will apply. Mandrel quantity minimums apply. Other sizes available upon request.
*Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

Dual Hi-Performance fodo \& Dual Positive Drive

Dual Hi-Performance Pd

Part No: D10408M20
D Dual Sided
$1040 \quad 1040 \mathrm{~mm}$ Pitch Length
$8 \mathrm{M} \quad 8 \mathrm{~mm}$ Pitch - Round Tooth Profile
$20 \quad 20 \mathrm{~mm}$ Wide

Dual Positive Drive
Part No: D225L050
D Dual Sided
225 22.5" Pitch Length
L L Pitch - Trapezoidal Tooth Profile
050 . 50 " Wide

Improved Efficiency With Dual Synchronous Belts

Goodyear Engineered Products dual synchronous belts have precision teeth on both sides. This allows the design of more sophisticated, more efficient, and more compact drives where a single belt is needed to provide accurate timing from either side, rotation direction changes, or both.
Since a Dual Hi-Performance Pd or Dual Positive Drive belt can replace two or more single-sided synchronous belts, less space is needed. This reduction in space means smaller sprockets can be used, bringing the weight and component cost of the drive system down considerably, contributing to a more efficient drive system.
Dual Hi-Performance Pd Belts8M \& 14 M Profiles

Dual Hi-Performance Pd belts, with their unique round tooth profile, drop into corresponding HTD sprockets. They were designed to minimize interference between belt and sprocket during mesh, providing greater horsepower capacity without slippage or speed variation. By designing the tooth to disperse critical stresses and create a positive engagement with the sprocket, belt performance is improved along with assuring longer belt life.

Applications

For precision drives where synchronized reverse rotation drive shafts are encountered and compactness is desired.

KEy FEATURES \& BENEFITS

- Dual-sided teeth versatility in $8 \mathrm{M}, 14 \mathrm{M}, \mathrm{XL}$, L , and H profiles.
- High-grade compounding.
- Fiberglass tension cords for excellent resistance to shrinkage/elongation.
- More compact drive designs.
- Oil, heat, ozone, and abrasion resistant.

Dual Positive Drive BeltsXL, L, \& H Profiles

Goodyear Engineered Products Dual Positive Drive belts drop into existing trapezoidal profiled sprockets.

High-Strength Tension Cords

The tension-carrying member in Dual HPPD and Dual Positive Drive belts is twisted from multiple strands of fiberglass cord which are high in tensile strength, flex life, and resistance to elongation.

Advanced Compound
 Technology For Long Life

Our dual synchronous belts are made with specialized compound technology designed to resist damaging environmental factors that can shorten belt life. This compound technology has excellent oil, heat, ozone, and abrasion resistance, increasing durability and preserving belt flexibility leading to extended belt life.

Dual Hi-Performance Po \& Dual Positive Drive

Dual

S O ONO YHJNAS

Part Number	No. of Teeth	Part Number	No. of Teeth
D720 8M	90	D2000 8M	250
D800 8M	100	D2400 8M	300
D880 8M	110	D2600 8M	325
D960 8M	120	D2800 8M	350
D1040 8M	130	D3048 8M	381
D1120 8M	140	D3280 8M	410
D1200 8M	150	D3600 8M	450
D1280 8M	160	D4400 8M	550
D1440 8M	180		
D1600 8M	200	Available in 20, 30, 50 \& 85 mm widths.	
D1760 8M	220		
D1800 8M	225		

Part Number	No. of Teeth	Part Number	No. of Teeth
D1400 14M	100	D3850 14M	275
D1610 14M	115	D4326 14M	309
D1778 14M	127	D4578 14M	327
D1890 14M	135	D6160 14M	440
D2100 14M	150		
D2450 14M	175	115 mm widths.	
D3150 14M	225		
D3500 14M	250		

Dual Positive Drive

XL (Extra Light)
$1 / 5$ inch pitch
For business machines, instruments, sound equipment, etc.

L (Light)
$3 / 8$ inch pitch
For fraction power-rated motor applications such as in-home appliances, small tools, pumps, etc.

H (Heavy)

$1 / 2$ inch pitch
For machine tools, pumps, fans, presses,
motor generator sets, etc.

XL Part Numbers		
D60XL	D170XL	D290XL
D70XL	D180XL	D300XL
D80XL	D190XL	D310XL
D90XL	D200XL	D330XL
D100XL	D210XL	D362XL
D10XL	D220XL	D392XL
D120XL	D230XL	D450XL
D130XL	D240XL	D492XL
D140XL	D250XL	D690XL
D150XL	D260XL	D900XL
D160XL	D280XL	

Stock Widths* $1 / 4$ inch $=025,3 / 8$ inch $=037$

L Part Numbers		
D124L	D270L	D420L
D150L	D285L	D450L
D187L	D300L	D480L
D210L	D322L	D510L
D225L	D345L	D540L
D240L	D367L	D600L
D255L	D390L	D660L

Stock Widths ${ }^{*} 1 / 2$ inch=050, $3 / 4$ inch=075, 1 inch $=100$

H Part Numbers		
D240H	D510H	D800H
D270H	D540H	D850H
D300H	D560H	D900H
D330H	D570H	D1000H
D360H	D600H	D1100H
D390H	D630H	D1250H
D420H	D660H	D1400H
D450H	D700H	D1700H
D480H	D750H	

Stock Widths ${ }^{3} 3 / 4$ inch $=075,1$ inch $=100$, $11 / 2$ inch=150, 2 inches $=200,3$ inches $=300$

[^15]
Open End 用

Part No: XL 075

$$
\begin{array}{ll}
\text { XL } & \text { Pitch-Trapezoidal Tooth } \\
075 & 0.75^{\prime \prime} \text { Wide }
\end{array}
$$

Your Choice for Speed,
 Accuracy \& Dependability

In power transmission or synchronization applications such as conveying, linear motion, or positioning, Goodyear Engineered Products Open End Pd belts are the economical and trouble-free drive solution.

Economy is derived from the Open End Pd belt's reduced bulk weight and lower costs compared to chain drives. Precision-molded teeth efficiently deliver the required power while running smoother and quieter than chain drives. They require less maintenance, as well as provide more design options.

Goodyear Engineered Products Open End Pd belts are available in Hawk Pd^{\circledR}, Falcon HTC ${ }^{\circledR}$, Positive Drive Pd^{\circledR}, Super Torque Pd^{\circledR} and Metric T Pd ${ }^{\circledR}$ constructions. Regardless of the application, the entire product line is designed to provide increased belt life, reduced overall costs, and lower noise generation. In short, Open End Pd synchronous belts give you the power to drive your designs better than ever.

Applications

For synchronized applications.

- Elevation Mechanisms
- Linear Motion Drives
- Open/Close Mechanisms
- Reciprocating Drives
- Replaces Chain Applications
- Synchronized Tracking

KEy FEATURES \& BENEFITS

- Wide load range available from various cross sections.
- High power-to-weight ratio allows for lighter metallic or nonmetallic pulleys for greater weight savings.
- Provides space-saving design opportunities using small pulleys, short centers, and narrow belts.
- Smooth engagement of belt and pulley eliminates chatter and vibration.
- Low noise improves aesthetic acceptance of equipment.
- Requires no lubrication or retensioning.

To learn more visit www.goodyearep.com/ptp.

Part No.	Roll Length (ft)	Roll Length (m)	Part No.	Roll Length (ft)	Roll Length (m)	Part No.	Roll Length (ft)	Roll Length (m)
3M06	285	87	8M10	633	193	8M75	56	17
3 M 09	190	58	8M15	420	128	14M25	308	94
5M06	935	285	8M20	312	95	14M40	184	56
5M09	620	189	8M25	246	75	14M55	128	39
5M15	367	112	8M30	203	62	14M85	75	23
5M25	217	66	8M40	151	46	14M115	49	15

Call Toll free: 1-866-711-4673
WebSales@GoodyearRubberProducts.com

Open End 回 ${ }^{\circ}$

Positive Drive (Trapezoidal Tooth)

$\frac{\sigma^{0.045 "}}{\substack{\text { a }}}$		$\nabla_{\substack{ \\4}}^{\substack{0.09 "}}$			H			
Part No.	Roll Length (ft)	Roll Length (m)	Part No.	Roll Length (ft)	Roll Length (m)	Part No.	Roll Length (ft)	Roll Length (m)
XL037	711	217	H050	551	168	H200	123	37
L050	516	157	H075	361	110	H300	75	23
L075	338	103	H100	266	81			
L100	249	76	H150	170	52			

* MXL and XH profiles available as special order only. Standard factory lead times will apply. Minimums apply.

Contact your local Goodyear Power Transmission Products Distributor.

Falcon HTC ${ }^{\circledR}$

8 M (8 mm Pitch)

Part Number	Roll Length (ft)	Roll Length (m)
8GTR-12	436	133
8.8 mm Pitch		
8GTR-21	243	74
8GTR-36	135	41
8GTR-62	72	22

14 M (14 mm Pitch)

Part Number	Roll Length (ft)	Roll Length (m)
14GTR-20	253	77
14GTR-37	128	39
14GTR-68	62	19

Super Torque Pd ${ }^{\circledR}$ (Round Tooth)

Part No.	Roll Length (ft)	Roll Length (m)	Part No.	Roll Length (ft)	Roll Length (m)	Part No.	Roll Length (ft)	Roll Length (m)
50S3M	289	88	150S5M	413	126	350S8M	174	53
60S3M	240	73	250S5M	246	75	400S8M	151	46
90S3M	157	48	100S8M	633	193	250S14M	- 225	69
100S3M	144	44	150S8M	420	128	400S14M	135	41
60S45M	236	72	175S8M	358	109	500S14M	104	32
100S45M	141	43	200S8M	312	95	600S14M	85	26
60S5M	1050	320	250S8M	246	75			
100S5M	627	191	300S8M	203	62			

METRIC T Pd ${ }^{\circledR}{ }_{\text {(Trapezoidal Tooth) }}$

Part No.	Roll Length (ft)	Roll Length (m)	Part No.	Roll Length (ft)	Roll Length (m)	Part No.	Roll Length (ft)	Roll Length (m)
6T5	217	66	$16 T 10$	249	76	32 T10	121	37
7T5	187	57	20 T10	197	60	25 T 20	128	39
10T5	131	40	25 T10	157	48			
15T10	266	81	30 T 10	131	40			

Polyurethane Belts

Elatech* Distributed By Veyance Technologies

Belting For A Wide Variety of Applications

ELATECH distributed by Veyance Technologies is a full line of polyurethane belting covering a full range of applications - linear motion, and conveying and power transmission.
ELATECH's Polyurethane belts are a combination of a polyurethane body reinforced with special steel or aramid tension members to fulfill the most severe industrial requirements.

Available product styles include:
ELATECH M - Open End
ELATECH V - Jointed
ELA-flex SD - Truly Endless
iSync - TrulyEndless Sleeves

Wide Range of Backings and
 Cleat Attachments

The unique chemical and mechanical characteristics of polyurethane belts along with the possibility of a variety of backings are ideal for conveying applications.
It is possible to attach a variety of cleats on all of ELATECH's polyurethane belts for conveying, handling, and positioning.

Belt Construction Engineered For ExCellence

ELATECH belts are manufactured with a body of thermoplastic polyurethane providing superior wear and abrasion resistance. It can be an ideal choice where cleanliness is critical. The precise manufacturing process, coupled with the polyurethane belt material, ensures a reliable and dimensionally stable product.

Applications

Polyurethane belts can be used in open end, jointed/ spliced, or truly endless configurations in a variety of applications.
Typical applications for the open end configuration are in linear motion devices and other drives where precise motion is required.
Typical application for the spliced configuration are in light conveyors and other material process and transfer industries.

Truly endless due to having no splice or welding, are ideal in high load conveying or power transmission applications.

Key Features \& Benefits

- Polyurethane material resists flaking, has higher dimensional stability, and has superior wear and abrasion resistance.
- Higher flexibility

The tension members are high tensile steel that offer excellent dimensional stability for accurate positioning and less maintenance. Construction with special cords is available upon request.

A special polyamide fabric on the tooth facing (special order) can reduce friction, improve tooth engagement, and reduce noise.

Built For Extreme Conditions

The chemical properties of polyurethane belting make them highly resistant to:

- Hydrolysis
- Ozone
- UVA
- Aging
- Oils, greases and fats
- Gasoline
- Good resistance to acids

ELATECH's product line has a working temperature range of $15^{\circ} \mathrm{F}$. to $175^{\circ} \mathrm{F}$ (peaks up to $230^{\circ} \mathrm{F}$).

More information

Full product offering, technical data, and drive data can be obtained in the ELATECH Polyurethane Belts catalog.

[^16]
Polyurethane Belts

Elatech* Distributed By Veyance Technologies

Available Sizes
T

	T5 Width (mm)	T10 Width (mm)	T20 Width (mm)
4	10	10	25
6	12	16	32
10	16	20	50
20	20	25	5
50	25	32	100
100	32	50	150
	50	75	
	75	100	
	100	150	

AT

AT5 Width (mm)	AT I 0 Width (mm)	AT20 Width (mm)
10	10	25
12	16	32
16	25	50
20	32	75
25	50	100
32	75	150
50	100	
75	150	
100		

Truly Endless

Profile	Available Lengths (mm)	Available Max. Widths (mm)
T2.5	$120-950$	
T5	$165-1440$	 T10 $260-2250$
AT5	$330-1050$	
AT10	$560-1940$	

ATL

ATL5 Width (mm)	ATLI0 Width (mm)	ATL20 Width (mm)
10	10	25
12	16	32
16	25	50
20	32	75
25	50	100
32	75	150
50	100	

RTD

RTD5M Width (mm)	RTD8M Width (mm)	RTD I4M Width (mm)
10	10	40
15	15	55
25	20	85
50	30	100
100	50	115
	85	
	100	

INCH

XL Width (mm)	L Width (mm)	H Width (mm)	XH Width (mm)
6.35	12.7	12.7	25.4
9.4	19.05	19.05	38.1
12.7	25.4	25.4	50.8
19.05	38.1	38.1	76.2
25.4	20.8	20.8	101.6
38.1	101.6	76.2	
50.8		101.6	
101.6			

HTD

HTD3M Width (mm)	HTD5M Width (mm)	HTD8M Width (mm)	HTD I4M Width (mm)
10	10	10	40
15	15	15	55
25	25	20	85
50	50	30	100
100	100	50	115
		85	
		100	

Flat

F I Width (mm)	F2 Width (mm)	F3 Width (mm)
10	25	25
25	50	50
50	75	75
100	100	100

STD5M Width (mm)	STD8M Width (mm)
10	10
15	15
25	20
50	30
100	50
	85
	100

TK

TK-K6 Width (mm)	TKIO-KI3 Width (mm)
16	25
25	32
32	50
50	75
75	100
100	

ATK

ATK5-K6 Width (mm)	ATKIO-KI3 Width (mm)
16	25
25	32
32	50
50	75
75	100
100	

Eagle Rod Acculinear*

The Benefits of Eagle Synchronous Belts... Now in Polyurethane Material

Eagle Pd Acculinear combines the advantages of polyurethane with the unique H.O.T. (Helical Offset Tooth) geometry for a low-maintenance belt that resists wear. Polyurethane belts resist flaking, offer high resistance to oils, fats and greases, and are more abrasion-resistant than rubber products. With high flexibility and long life, Eagle Pd Acculinear is a revolutionary choice for a wide range of applications.

Self-Tracking Sprocket

When it comes to performance, Eagle Pd Acculinear belts and sprockets are right on track. The key to success lies in the system's patented H.O.T. geometry. With this self-tracking configuration, the sprocket's left and right helixes guide the thermoplastic polyurethane belt to the center of the Eagle Pd Acculinear sprocket. And there it remains: no waste, no wander, just improved efficiency and wear resistance in a compact design. The H.O.T. geometry eliminates belt wander and the need for flanges. As a result, Eagle Pd Acculinear sprockets can be used on slider bed applications where flanges would normally protrude above the bed surface.

Low Vibration

Eagle Pd Acculinear and the H.O.T. design minimize belt vibration on flat pulleys used on the entry and exit of slider beds. The belt moves progressively over straight edges, reducing noise and vibration.
The tooth geometry eliminates the chordal effect that occurs around the tooth sprocket and reduces drive vibration.

Applications
 Eagle Pd Acculinear belts can be used in open-end or spliced configurations in a variety of applications.
 Typical applications for the open-end configuration are in linear motion devices and other drives where precise motion is required.
 Typical application for the spliced configuration are in light conveyors and other material processing and transfer industries.
 Key Features \& Benefits
 - Polyurethane material resists flaking, has higher dimensional stability, and has superior wear and abrasion resistance.
 - Self-tracking and compact drives.
 - Less vibration and reduced noise.
 - High flexibility.
 - High-Precision linear positioning.
 H.O.T. Geometry Delivers Quieter Drive

This innovative polyurethane belt and sprocket system uses our proprietary technology to deliver noise levels far below the industry standard. The unique design of Eagle Pd Acculinear belts and sprockets is the reason for the system's superior noise reduction. The self-tracking belt is guided to the center of the sprocket-delivery that smooths out tooth engagement unlike any other tooth geometry.

Belt Constructions Engineered For Excellence

The tooth and backing material are made of thermoplastic polyurethane, which provides superior wear and abrasion resistance. It's an ideal choice in applications where cleanliness is critical. The precise manufacturing process, coupled with the polyurethane belt material, ensures a reliable and dimensionally stable product.
The tension members are high tensile steel and offer excellent dimensional stability for accurate positioning and less maintenance.
The tooth facing offers reduced coefficient of friction with the sprocket and also provides wear and abrasion protection.

Open-End Belt Configuration

Eagle Pd Acculinear belts are manufactured in open-end rolls with a standard roll length of 300 feet. The belt is manufactured with the tension members lying parallel to the belt edge so that the load is equally distributed across all tension members. A common plates are available for open-end Eagle Pd Acculinear belts to mechanically join the belt's ends.

Spliced Belt Configuration

Lengths of open-end Eagle Pd Acculinear can also be thermetically spliced to obtain any continuous length of endless belting. These spliced Eagle Pd Acculinear belts are primarily used in light conveyor applications, where long endless belts are required.

SPROCKETS
Eagle Pd Acculinear Sprockets for the polyurethane belt line are available for all eight belt widths in a wide range of diameters.
The Eagle Pd Acculinear product shares the same sprockets as the rubber Eagle Pd^{\circledR} product. The only exception is with the " M " (25 mm width) and the "L" (50 mm width) sprockets. These two widths are stocked in aluminum and are offered in a limited size range. All other sprocket widths are stocked either in ductile or cast iron. Refer to the "Eagle Pd Acculinear Sprocket" section for more information.

Special Belt Constructions

In addition to the standard belt construction (polyurethane backing material), Eagle Pd Acculinear is available in a variety of special constructions. Several materials can be applied to the back of the belt to enhance its performance in specific drive environments. These backing materials are typically used when special characteristics are required on the back of the belt to transfer specific materials in conveyor applications.

A number of special backings are available on request. Refer to the appropriate engineering manual or to the Web site for more information on these special backings.

Eagle Pd Acculinear is available in 8 standard widths (in 8 and 14 mm pitch configurations)

Sample Part Number
Y-8-Pu-16-Std
Belt Type: Open-End Belt Length: 800 mm

$\mathrm{Y}=$ Eagle Pd 16 mm Wide Belt $8=8 \mathrm{~mm}$ Pitch
$\mathrm{PU}=$ Polyurethane
$16=$ Belt Width, in mm
STD $=$ Belt Construction (STD = Standard Construction)

Eagle Po Acculinear*

Eagle Pd Acculinear Sprockets for 25 mm Wide Belt Sprocket Face Width $(\mathrm{F})=26 \mathrm{~mm}$, Pitch $=8 \mathrm{~mm}$

Sprocket Part Number	Hub*	Bore Range (inches)		$\begin{gathered} \mathrm{No.} \\ \text { of } \\ \text { Teeth } \end{gathered}$	Type*	PitchDiameter(inches)	0	I	E	H	T	L	Material	Wt. (lbs)	Approx. WR ${ }^{2}$ (lbs. $-\mathrm{ft}^{2}$)
		MIN.	MAX.				(inches) (Refer to Type I below)								
M-20S-MPB	MPB	0.5000	1.0630	20	1	2.0050	1.9508	-	0.4700	1.6000	-	1.5000	AI	0.33	0.0009
M-22S-MPB	MPB	0.5000	1.2200	22	1	2.2060	2.1513	-	0.4700	1.8100	-	1.5000	AI	0.41	0.0015
M-24S-MPB	MPB	0.5000	1.3390	24	1	2.4060	2.3518	-	0.6300	2.0100	-	1.6500	AI	0.55	0.0023
M-26S-MPB	MPB	0.5000	1.5350	26	1	2.6070	2.5523	-	0.6300	2.2800	-	1.6500	AI	0.68	0.0034
M-28S-MPB	MPB	0.5000	1.6140	28	1	2.8070	2.7528	-	0.6300	2.4400	-	1.6500	AI	0.80	0.0047
M-30S-MPB	MPB	0.5000	1.7720	30	1	3.0080	2.9533	-	0.6300	2.6400	-	1.6500	Al	0.93	0.0063
M-32S-MPB	MPB	0.5000	1.8900	32	1	3.2080	3.1538	-	0.6300	2.8300	-	1.6500	AI	1.08	0.0083
M-34S-MPB	MPB	0.5000	2.0080	34	1	3.4090	3.3543	-	0.6300	3.0300	-	1.6500	Al	1.23	0.0108
M-36S-MPB	MPB	0.5000	2.1650	36	1	3.6090	3.5549	-	0.6300	3.2300	-	1.6500	Al	1.40	0.0138
M-38S-MPB	MPB	0.5000	2.2830	38	1	3.8100	3.7554	-	0.6300	3.4300	-	1.6500	Al	1.57	0.0174
M-40S-MPB	MPB	0.5000	2.4410	40	1	4.0100	3.9559	-	0.6300	3.6200	-	1.6500	AI	1.75	0.0217
M-56S-MPB**	MPB	0.5000	3.5040	56	1	5.6140	5.5600	-	0.6300	5.2400	-	1.6500	AI	3.53	0.0903
M-90S-MPB**	MPB	1.0000	2.8740	90	2	9.0230	8.9686	8.0299	0.6300	4.7200	0.3150	1.6500	AI	5.29	0.2867

**These sprocket sizes are nonstock items.
Eagle Pd Acculinear Sprockets for 50 mm Wide Belt
Sprocket Face Width (F) $=51 \mathrm{~mm}$, Pitch $=8 \mathrm{~mm}$

Sprocket Part Number	Hub*	Bore Range (inches)		$\begin{gathered} \hline \text { No. } \\ \text { of } \\ \text { Teeth } \end{gathered}$	Type*	Pitch Diameter (inches)	0	I	E	H	T	L	Material	$\begin{aligned} & \text { Wt. } \\ & \text { (lbs) } \end{aligned}$	Approx. WR ${ }^{2}$ (lbs. ft ²)
		MIN.	MAX.				(inches) (Refer to Type I below)								
L-20S-MPB	MPB	0.500	1.063	20	1	2.005	1.9508	-	0.4700	1.6000	-	2.4800	AI	0.55	0.0027
L-22S-MPB	MPB	0.500	1.220	22	1	2.206	2.1513	-	0.4700	1.8100	-	2.4800	AI	0.69	0.0036
L-24S-MPB	MPB	0.500	1.339	24	1	2.406	2.3518	-	0.6300	2.0100	-	2.6400	AI	0.90	0.0054
L-26S-MPB	MPB	0.500	1.535	26	1	2.607	2.5523	-	0.6300	2.2800	-	2.6400	AI	1.10	0.0072
L-28S-MPB	MPB	0.500	1.614	28	1	2.807	2.7528	-	0.6300	2.4400	-	2.6400	Al	1.29	0.0089
L-30S-MPB	MPB	0.500	1.772	30	1	3.008	2.9533	-	0.6300	2.6400	-	2.6400	AI	1.51	0.0111
L-32S-MPB	MPB	0.500	1.890	32	1	3.208	3.1538	-	0.6300	2.8300	-	2.6400	AI	1.74	0.0138
L-34S-MPB	MPB	0.500	2.008	34	1	3.409	3.3543	-	0.6300	3.0300	-	2.6400	AI	1.99	0.0179
L-36S-MPB	MPB	0.500	2.165	36	1	3.609	3.5549	-	0.6300	3.2300	-	2.6400	Al	2.25	0.0228
L-38S-MPB	MPB	0.500	2.283	38	1	3.810	3.7554	-	0.6300	3.4300	-	2.6400	AI	2.53	0.0287
L-40S-MPB	MPB	0.500	2.441	40	1	4.010	3.9559	-	0.6300	3.6200	-	2.6400	AI	2.83	0.0357
L-56S-MPB**	MPB	0.500	3.504	56	1	5.614	5.5600	-	0.6300	5.2400	-	2.6400	Al	5.65	0.1470
L-90S-MPB**	MPB	1.000	2.874	90	2	9.023	8.9686	8.0299	0.6300	4.7200	0.3937	2.6400	AI	8.16	0.4820

**These sprocket sizes are nonstock items.

Notes:

1. $\mathrm{Al}=$ Aluminum (uncoated).
2. Sprockets are only available in MPB.
3. The "L"(50 mm width) and " M " (25 mm width) belts are nonstock items which need to be quoted and may have a longer lead time.
4. Sprocket dimensions and material are subject to change.
5. Please contact your Goodyear Engineered Products PTP industrial distributor for sprocket sizes and materials not listed in this manual or visit goodyearep.com to locate one.

LH is the left-hand helix.
RH is the right-hand helix.
Note: For proper installation, orientation of teeth must be
 in the same direction on all sprockets in the drive.

Call Toll Free:

Acculinear Clamping Plates

Clamping Plates are available for Eagle Pd Acculinear Open-end belts to allow them to be used in Linear Motion Devices.

	Belts	Clamping Plates				
		$\begin{gathered} \mathrm{A} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L} \\ (\mathrm{~mm}) \end{gathered}$	Material	Part Number
1:	Y-8-PU-16	12	75	120	AL	Eagle Pd - 8mm - Clamping Plate
2:	M-8-PU-25	12	75	120	AL	
3:	W-8-PU-32	12	75	120	AL	
4:	L-8-PU-50	12	75	120	AL	
5:	B-14-PU-35	18	130	200	AL	Eagle Pd - 14mm - Clamping Plate
6:	G-14-PU-52.5	18	130	200	AL	
7:	0-14-PU-70	18	130	200	AL	
8:	R-14-PU-105	18	130	200	AL	

$\mathrm{AL}=$ Aluminum

Banded Belts

Because of their banded or joined construction, these belts tend to prevent rollover and reduce vibration tendencies. Banded belts are usually better suited to unusual drive situations than
are matched belt sets. They are available in the classical cross sections ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{D}$), narrow cross sections $(3 \mathrm{~V}, 5 \mathrm{~V}, \& 8 \mathrm{~V})$, and Poly- V^{\circledR} cross sections (H, J, L, \& M).

Classical \& Narrow Banded V-Belts

Typical applications for banded V-belts include vertical shaft drives, clutching drives, and V-flat drives. (V-belt drives are where the inside of the belt drives a flat pulley on the slower speed shaft.)
Banded V-belts are recommended for use where belt vibration or belt whip causes unsatisfactory results when conventional multiple single V-belts are used. Such situations are not uncommon on drives with a combination of long belt spans and/or pulsating loads as created by an internal combustion engine or reciprocating pumps and compressors. In such cases, belt whip may become
so severe that belts interface with each other and turn over in the grooves or even jump out of the grooves. Banded V-belts eliminate such problems.
Another advantage of banded V-belts is the considerable degree of design flexibility they can provide since they operate just as effectively when they, in turn, are used as match sets. A twobelt unit for example, has sufficient lateral rigidity so as to not interface with the units in adjacent grooves.

Torque Team Plus ${ }^{\circledR}$ (Flexten ${ }^{\circledR}$-Reinforced Banded V-Belts)

These belts are available for low-speed, high-power applications which were previously considered to be in the domain of chain or gears. Flexten-reinforced Torque Team Plus 5 V and 8 V
banded belts are ideally suited to handle many of the applications that have been reserved for chain or gears.

Poly-V (V-Ribbed)

Poly-V belts are flat belts with a series of longitudinal ribs on the driving face that mate with grooves in the sheave rim. Relatively thin, with a well-supported tensile member, these belts perform better than V-belts on drives with small sheave, high speeds, reverse bends, and high-speed ratios. Poly-V belts generally run smoother than V-belts, and their low weight makes them suitable for high-speed drives.

Three cross sections, designated J, L, and M, handle the same range of industrial applications as narrow or classical belts. A smaller section, H , is used for small sheave and miniature drives. Finally, the K section Poly-V is often located in the Automotive industry.

Torque Team ${ }^{\text {(Laminated) }}$

Part No: 3/5VL800

$3 /$	3 Rib Joined Construction
5 V	$0.62^{\prime \prime}$ Top Width - Narrow Profile Rib
L	Laminated Construction
800	$80.0^{\prime \prime}$ Nominal Outside Length

SOLVE THE TOUGHEST SAWMILL

Applications

Some of the most common drives recommended for consideration include:

- Debarkers	- Gang Saws
- Chip-n-Saws	- Deck Saws
- Cut-Off Saws	- Trimmers
- Chippers	

Key Features \& Benefits

- Narrow profile ribs provide savings through efficiency.
- Joined construction for problem drives.
- High horsepower capacity.
- High-strength Vytacord tensile members.
- Laminated construction engineered to slip.
- Tough fabric backing.
- Oil, heat, ozone, and abrasion resistant.
- Static conductive.*

Goodyear Engineered Products Torque Team Laminated V-belts are particularly effective when installed on drives that experience frequent slippage caused by logs and heavy lumber that jam or impact the equipment.

Reduce Downtime \& Maintenance

Goodyear Engineered Products Torque Team Laminated V-belts can withstand the punishment that results from jams in \log and lumber processing applications.
Standard V-belts resist slipping when a jam occurs, causing excessive heat buildup that can lead to belt failure and costly downtime. But that won't happen with Torque Team Laminated V-belts on the job.

The special sidewall of Torque Team Laminated V-belts acts as a control switch, allowing the belts to slip as needed until the obstruction is cleared. As a result, the superior wear-resistant capabilities of Torque Team Laminated V-belts are maintained, increasing belt life up to four times longer than standard V-belts.

Available in a Wide Variety of Sizes

Goodyear Engineered Products Torque Team Laminated V-belts are available in the 5 VL belt cross section and in most standard lengths. The 5VL laminated V-belt is interchangeable with all standard 5V and 5VXV-belts currently found on these drives. They can also be cut to a variety of rib widths, depending on your drive requirements. This ensures a perfectly-matched set of V-belts that can further enhance drive performance.

High Strength for Long Life

Goodyear Engineered Products Torque Team Laminated V-belts feature our powerful Vytacord ${ }^{\circledR}$ tensile members. Vytacord provides high strength and horsepower ratings, yet serves as a more forgiving reinforcement that will give under excessive tension instead of snapping. That means increased belt life.

Sizes		
5VL800	5VL1000	5VL1250
5VL850	5VL1060	5VL1320
5VL900	5VL1120	5VL1700
5VL950	5VL1180	

5 Vl Cross Section View

For longer 5V, as well as 3 V and 8 V laminated profiles not listed here, contact your Goodyear Engineered Products PTP industrial distributor.
*Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

Call Toll Free:

HY- ${ }^{\odot}$ Wedge Torque Team ${ }^{\circ}$

Part No: 3/8V1900

$$
\begin{array}{ll}
3 / & 3 \text { Rib Joined Construction } \\
8 \mathrm{~V} & 1.00^{\prime \prime} \text { Top Width - Narrow Profile Rib } \\
1900 & 190.0^{\prime \prime} \text { Nominal Outside Length } \\
& \text { Single Envelope Ply on 5Vs } \\
& \text { 2 Envelope Plies on 8Vs } \\
& \text { Envelope Uncogged Construction Shown }
\end{array}
$$

Tame Your Problem Drives

Pulsation, vibration, shock loads, and misalignment are problems for any team of V-belts, no matter how perfectly matched the individual units. These conditions often lead to chronic belt whip or to belt turnover, resulting in premature wear or sudden failure of one or more belts. Of course, when one belt goes, the whole team has to be replaced.
HY-T Wedge Torque Team belts are built with multiple belts joined by a tough, rubber-impregnated fabric backing that regulates belt travel so all ribs pull together as a single, perfectly matched team. Yet each rib is free to wedge into the sheave groove for maximum traction, maximum power, and transmission efficiency.
Operating in standard sheave grooves without sheave or drive modification, they can tame any problem drives now in operation. Or they can fit right in with your new drive designs without special modifications.

DESIGNED \& BUILT TO DELIVER Superior Performance

V-belt performance begins with the tension members, so we built HY-T Wedge Torque Team V-belts with super strong Vytacord. It provides the high-strength, high-horsepower rating capacity needed to effectively transmit drive power. And it's tough enough to tolerate the misalignment that quickly destroys belts. The Vytacord material is a polyester construction with excellent strength and minimal elongation. Drive performance is consistent, reliable, and predictable over the life of the belt.

We then add a tough oil-and abrasion-resistant fabric backing to provide maximum longitudinal flexibility and lateral strength to withstand the dynamic forces acting within a joined belt. The backing also has special adhesion characteristics that enable it to bond to the V -sections to maintain the integrity of the belt.

Applications

For shock load applications. Ideal for pulsating loads, high capacity drives, and for short-center, heavy-duty drives.

Key Features \& Benefits

- Narrow profile ribs provide savings through efficiency.
- Joined construction for problem drives.
- Strong Vytacord ${ }^{\circledR}$ tensile members.
- Tough fabric backing.
- Oil, heat, ozone, and abrasion resistant.
- Available in raw edge construction with cogs or envelope construction.
- Matchmaker to eliminate mismatch.
- Static conductive.*

The cushion is made of fiber-reinforced, engineered compounds providing oil, heat, ozone, and abrasion resistance.

Wedge or Envelope Constructions Provide Optimum Performance

HY-T Wedge Torque Team belts are available in a raw edge
construction with cogs for increased flexibility and heat dissipation
HY-T Wedge Torque Team belts are available in a raw edge
construction with cogs for increased flexibility and heat dissipation or envelope construction for drives where pulsation, shock loads, high tension, and long center are involved.
HY-T Wedge Torque Team Cogged belts have high-horsepower belt construction and are identified with a 3 VX or 5 VX prefix and are available in lengths up to $140^{\prime \prime}$. The cogged construction provides the high flexibility required for short center distances. The cogs also provide a larger surface area to dissipate heat and prolong cogs also provide a larger surface area to dissipate heat and prolong
belt life. Improved material properties and advanced construction technology result in an average horsepower increase of 30% over standard joined "Classical" V-belts.
HY-T Wedge Torque Team Envelope belts are identified with a $3 \mathrm{~V}, 5 \mathrm{~V}$, or 8 V prefix and are recommended for drives where pulsation, shock loads, high tension, and long centers are involved. They feature a continuous V-section that is protected by a wide angle, synthetic fabric-impregnated, high-quality rubber compound. The unique envelope achieves the high strength that the HY-T Wedge Torque Team belts need to withstand high loading forces. It also helps provide the torsional rigidity in long center drives delivering the traction needed for accurate tracking and precision performance.

[^17]Call Toll Free:

HY-T ${ }^{\circ}$ Wedge Torque Team

MATCHMAKER ${ }^{\text {® }}$ PERFORMANCE

Our Matchmaker technology results in belt consistency run to run. That means each HY-T Wedge Torque Team is equal in size and performance to every other HY-T Wedge Torque Team belt in that size, no matter when or where it was produced.

By eliminating mismatch problems, there is no costly and complicated belt matching to get a drive back on line; no problems with belts that are too tight or too loose.

Available in the Most Extensive Stock Line in the Industry

HY-T Wedge Torque Team belts are available from stock in any number of belts per team, up to the number of ribs indicated. Nonstock lengths are also available in these rib counts, up to a maximum of $730^{\prime \prime}$ ($180^{\prime \prime}$ for 3 V cross sections).

Envelope

 $5 \mathrm{~V}, 8 \mathrm{~V}$ CROSs SECTION
Cut Edge
$3 \mathrm{VX}, 5 \mathrm{Vx}$ Cross Section

Part Number	Max No. Ribs per Slab	Part Number	Max No. Ribs per Slab	Part Number	Max No. Ribs per Slab	Part Number	Max No. Ribs per Slab
3VX250	90	3VX400	90	$3 V$ 3V630	90	3VX950	90
3VX265	90	3VX425	90	3VX670	90	3VX1000	90
3VX280	90	3VX450	90	3V670	90	3VX1060	90
3VX300	90	3VX475	90	3VX710	90	3VX1120	90
3VX315	90	3VX500	90	3VX750	90	3VX1180	90
3VX335	90	3VX530	90	3VX800	90	3VX1250	90
3VX355	90	3VX560	90	3VX850	90	3VX1320	90
3VX375	90	3VX600	90	3VX900	90	3VX1400	90

Part Number	Max No. Ribs per Slab	Part Number	Max No. Ribs per Slab	Part Number	Max No. Ribs per Slab	Part Number	Max No. Ribs per Slab
5VX500	53	5VX850	53	5V1120	42	5V2000	42
5VX530	53	5V850	42	5VX1180	53	5V2120	42
5VX560	53	5VX900	53	5V1180	42	5V2240	42
5VX600	53	5V900	42	5VX1250	53	5V2360	42
5VX630	53	5VX950	53	5VX1320	53	5V2500	42
5VX670	53	5 V 950	42	5VX1400	53	5V2650	42
5VX710	53	5VX1000	53	5V1500	42	5V2800	42
5VX750	53	5V1000	42	5V1600	42	5V3000	42
5V750*	53	5VX1060	53	5V1700	42	5V3150	42
5VX800	53	5V1060	42	5V1800	42	5V3350	42
5V800	42	5VX1120	53	5V1900	42	5V3550	42

Part Number	Max No. Ribs per Slab	Part Number	Max No. Ribs per Slab	Part Number	Max No. Ribs per Slab	Part Number
8 V 1000	14	8 V 1600	24	8 V 2500	24	8 Max No.
8 V 1060	14	8 V 1700	24	8 V 2650	24	24
8 V 1120	14	8 V 1800	24	8 V 2800	24	8 Ver Slab

[^18]
Torque TEam Plus ${ }^{\circ}$

Part No: 3/5VF2000

3/ 3 Rib Joined Construction
5V 0.62" Top Width - Narrow Profile Rib
F Torque Team Plus With Flexten ${ }^{\circledR}$ Tensile Member
2000 200.0" Nominal Outside Length Single Envelope Ply on 5Vs, 2 Envelope Plies on 8Vs

Performance Plus for High Horsepower Drives

Torque Team Plus belts are our highest capacity V-belts and known for strength, durability, and performance.
Their tension members are Flexten or aramid cable cords. They are twisted from aramid fiber which is five times stronger than steel, then are treated for improved adhesion, improved flex life, and increased resistance to shrinkage. Torque Team Plus belts exhibit only one half of the initial elongation of other belts and maintain greater dimensional stability over the life of the belt. They stand up to higher horsepower, high-tension drive requirements, shock loads, and abusive installations better than standard joined belts, multiple V-belt teams, or chain and sprocket drives.

The cushion is made of a highly engineered compound that resists harsh operating environments and compression fatigue. The envelope is also rubber compound-impregnated to protect the carcass from abrasion, heat, ozone and oil. Together, these components offer a strong, flexible, efficient belt with extended service life.

The Advantages of
 Torque Team Plus Belting

With Torque Team Plus, there's less cost involved in the drive design due to the fact that each belt can handle a given load with a narrower width belt than either multiple V-belt or chain and sprocket drives. This means that there is less cost incurred for the drive medium (belts/chains), less cost for the narrower sheaves and pulleys they use, and less cost for the downtime and labor involved in the retensioning required by both multiple V-belt and chain belt drives. There is no need for the lubricants and lubrication system that chain drives need. These are some very clear advantages, especially when you consider that you get these savings along with a dramatic performance advantage.

Applications

Ultimate upgrade belt; for all heavy-duty industrial machinery and equipment. Ideal for operation in harsh elements on the toughest high horsepower drives.

- Crushers
- Screens
- Saws
- Sanders
- Blow Tanks
- Washers

Key Features \& Benefits

- Narrow profile ribs provide savings through efficiency.
- Joined construction for problem drives.
- Up to 50% more horsepower capacity.
- High-strength Flexten tensile members.
- Oil, heat, ozone, and abrasion resistant.
- Static conductive.*

There is also less weight because the smaller sheaves used for drives using Torque Team Plus belts are a dramatic 50% lighter than a sheave required to drive an equal horsepower multiple V-belt drive. When compared to an equal horsepower chain drive, the sheave weighs an incredible 65% less than the sprocket required for the chain drive.
Torque Team Plus is more compact. In fact, a typical Torque Team Plus belt is only one-third the width of an equivalent multiple V-belt team. It needs 17% less space than an equivalent chain drive.

And since Torque Team Plus belts give you all the advantages of the joined principal (smooth tracking, no belt turnover, no matching problems, less belt threatening vibration, even and consistent tensioning), there is less maintenance required.

Premium Torque Team Plus Belts Require Adequate Sheaves

The high strength of Torque Team Plus belts provides exceptional high-torque capabilities and horsepower ratings. These high belt capacities may exceed standard sheave capabilities. To assure safety and satisfactory drive operation, consult your sheave supplier for sheave recommendations.

Call Toll Free:

Torque Team Plus*

5Vf \& 8Vf Cross Section View
Belt Cross Sections \& Lengths Available

| Part
 Number | Max No
 Ribs per Slab | Part
 Number | Max No.
 Ribs per Slab | Part
 Number | Max No.
 Ribs per Slab | Part
 Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ribs per Slab | | | | | | |

Part Number	Max No. Ribs per Slab	Part Number	Max No. Ribs per Slab	Part Number	Max No Ribs per Slab	Part Number	Max No. Ribs per Slab
8VF1250	24	8VF2000	24	8VF3150	24	8VF5000	24
8VF1320	24	8VF2120	24	8VF3350	24	8VF5600	24
8VF1400	24	8VF2240	24	8VF3550	24	8VF6000	24
8VF1500	24	8VF2360	24	8VF3750	24		
8VF1600	24	8VF2500	24	8VF4000	24		
8VF1700	24	8VF2650	24	8VF4250	24		
8VF1800	24	8VF2800	24	8VF4500	24		
8VF1900	24	8VF3000	24	8VF4750	24		

Torque Team Plus was designed to belt a drive with one band. They are not to be used in matching sets.

HY-T* Torque Team ${ }^{\circ}$ (Classical)

Part No: 3/BX112
3/ 3 Rib Joined Construction
B $\quad 0.66^{\prime \prime}$ Top Width - Classical Profile Rib
X Premium Cogged Construction
112 Approximate 112" Inside Length
Cut-Edge, Molded Cog Construction Shown

Applications

For shock load applications. Ideal for pulsating loads, high-capacity drives, and short center heavy-duty drives.

Key Features \& Benefits

- Classical profile ribs.
- Joined construction for problem drives.
- High-strength Vytacord tensile members.
- Available in cut-edge or envelope construction with Plioflex cushion.
- Tough fabric backing.
- Heat, ozone, and abrasion resistant.
- Matchmaker to eliminate mismatch.
- Static conductive.*
a larger surface area to dissipate heat and to prolong belt life.
HY-T Torque Team Envelope belts are identified with a B or C prefix and both cogged and non-cogged are static conductive. They are recommended for drives where pulsation, shock loads, high tension, and long centers are involved.

MATCHMAKER ${ }^{\circledR}$ PERFORMANCE

Our Matchmaker technology results in belt consistency run to run. That means each HY-T Torque Team Classical belt is equal in size and performance to every other HY-T Torque Team Classical belt in that size, no matter when or where it was produced.

By eliminating mismatch problems, there is no costly and complicated belt matching to get a drive back on line; no problems with belts that are too tight or too loose.

Designed \& BuIlt To Deliver

HY-T Torque Team Classical belts are built with strong Vytacord ${ }^{\circledR}$ tension members. This provides the high-strength, high-horsepower rating capacity needed to effectively transmit drive power. And it's tough enough to tolerate the misalignment that quickly destroys belts. The Vytacord material has a very good dimensional stability. Drive performance is consistent, reliable, and predictable over the life of the belt.

We then add a tough oil- and abrasion-resistant fabric backing to provide maximum longitudinal flexibility and lateral strength to withstand the dynamic forces acting within a joined belt. The backing also has special adhesion characteristics that enable it to bond inseparably to the V -sections to maintain the unitary integrity of the belt.
The cushion in the envelope construction is fiber-loaded Plioflex ${ }^{\circledR}$. Cut-edge constructions have a fiber-loaded, latest-technology compound that contributes heat and oil resistance and strength.

Cut-Edge or Envelope
 Construction Provide Optimum
 Performance

HY-T Torque Team Classical belts are available in a cut-edge construction with cogs for increased flexibility and heat dissipation or envelope construction for drives where pulsation, shock loads, high tension, and long centers are involved.
HY-T Torque Team Cogged belts are high horsepower belt constructions identified with a BX or CX prefix and are available in lengths up to $136^{\prime \prime}$. The cogged construction provides the high flexibility required for short center distances. The cogs also provide

HY-T ${ }^{\circledR}$ TORQUE TEAM ${ }^{\circledR}$ (Classical)

Envelope
Cross Section

B Profile

Part Number	Max No. Ribs per Slab	Part Number	Max No. Ribs per Slab	Part Number	Max No. Ribs per Slab	Part Number	Max No. Ribs per Slab
BX35	49	BX65	49	BX90	49	B112	38
BX38	49	BX66	49	BX93	49	B114	38
BX42	49	BX67	49	BX95	49	B115	38
BX43	49	BX68	49	BX96	49	B116	38
BX46	49	BX70	49	BX97	49	B118	38
BX48	49	BX71	49	BX99	49	B140	38
BX50	49	BX72	49	BX100	49	B144	38
BX51	49	BX73	49	BX103	49	B148	38
BX52	49	BX74	49	BX105	49	B150	38
BX53	49	BX75	49	BX108	49	B158	38
BX54	49	BX77	49	BX112	49	B162	38
BX55	49	BX78	49	BX120	49	B173	38
BX56	49	BX79	49	BX124	49	B180	38
BX57	49	BX80	49	BX128	49	B195	38
BX58	49	BX81	49	BX133	49	B210	38
BX59	49	BX82	49	BX136	49	B225	38
BX60	49	BX83	49	*B55	49	B240	38
BX61	49	BX84	49	*B56	49	B255	38
BX62	49	BX85	49	B96	38	B270	38
BX63	49	BX87	49	B103	38	B300	38
BX64	49	BX88	49	B105	38	B315	38

* Cut-edge non-cogged.

C Profile

Part Number	Max No. Ribs per Slab	Part Number	Max No. Ribs per Slab	Part Number	Max No. Ribs per Slab	Part Number	Max No. Ribs per Slab
CX60	36	CX109	36	C112	26	C270	26
CX68	36	CX112	36	C144	26	C285	26
CX75	36	CX120	36	C158	26	C300	26
CX81	36	CX124	36	C162	26	C315	26
CX85	36	CX128	36	C173	26	C330	26
CX90	36	CX136	36	C180	26	C345	26
CX96	36	C85	26	C195	26	C360	26
CX99	36	C90	26	C210	26	C390	26
CX100	36	C96	26	C225	26	C420	26
CX105	36	C105	26	C240	26		
CX108	36	C109	26	C255	26		

D Profile

| Part
 Number | Max No.
 Ribs per Slab | Part
 Number | Max No.
 Ribs per Slab | Part
 Number | Max No.
 Ribs per Slab | Part
 Number | Max No.
 Ribs per Slab |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D120 | 10 | D210 | 18 | D315 | 18 | D480 | 18 |
| D144 | 18 | D225 | 18 | D330 | 18 | D540 | 18 |
| D158 | 18 | D240 | 18 | D345 | 18 | D600 | 18 |
| D162 | 18 | D255 | 18 | D360 | 18 | D660 | 18 |
| D173 | 18 | D270 | 18 | D390 | 18 | | |
| D180 | 18 | D285 | 18 | D420 | 18 | | |
| D195 | 18 | D300 | 18 | D450 | 18 | | |

Poly-V ${ }^{\circledR}$

Part No: 180J6
18.0" Nominal Outside Length

J J Section Poly-V
$6 \quad 6$ Ribs

One Belt That Can Do
The Work of Many
The Poly-V belt is a single, endless belt with longitudinal V-shaped ribs that mate consistently with the V-grooves in the sheaves. It combines the convenience of a thin, one-piece flat belt with the strong gripping traction of multiple V-belts to make the Poly-V belt far better than either for many applications.

One Continuous Tension Member
for Matchless Performance
To distribute the drive load evenly across the full width of the sheave, the Poly-V belt is built as a single unit with a completely supported, uninterrupted tension member. There is no matching problem. No separate belts to turn over, grab, slip, or interfere with each other.

The thin cross section profile allows use of smaller pulleys than standard V-belts, and Poly-V belts handle speed ratios of 40:1.
With all this capacity, the Poly-V belt tracks properly without special guides, flanges, crowns or deep grooves. And it resists seating in the grooves, so speed ratios remain more consistent and output speed remains more uniform.

More Power in Less Space

Continuous engagement with the sheave driving surface gives you greater power capacity per inch of width. In addition, wasted space between separate V-belts is eliminated and converted into narrower, shallower grooves. These provide substantially greater contact area for stronger and more uniform traction.

APPlications

For small sheave compact designs requiring limited vibration. Ideal for high-speed ratio drives with short center distances.
$\begin{array}{ll}\text { - Exercise Equipment } & \text { - Automobiles } \\ \text { - Medical Equipment } & \text { - Power Equipment } \\ \text { - Farm Equipment } & \text { - Machine Tools }\end{array}$

Key Features \& Benefits

- Multiple V-ribbed profile provides friction and wedge advantages.
- High-grade engineered rubber.
- Strong Vytacord ${ }^{\circledR}$ tensile member.
- L \& M cross sections are milled in shorter lengths and are molded in longer lengths.
- Heat, ozone, and abrasion resistant.

Longer Belt \& Sheave Life

Complete support of the tension member, combined with full and uniform engagement with the sheave grooves, eliminates differential driving and equalizes belt stresses. That, in turn, minimizes belt elongation and leads to significantly longer flex life.
Even distribution of stress on the belt also reduces differential loading and wear on sheaves. It's not unusual for Poly-V belt sheaves to last significantly longer than standard V-belt sheaves and to experience lower maintenance requirements during this longer life.

Improve Drive Design While You Reduce Drive Cost

The combination of high-power capacity and low-profile design means the Poly-V drive can improve the drive design while lowering drive costs.
Poly-V belts allow narrower mounting clearances, need less center distance adjustment, and require less take-up for tensioning. Additionally, they allow the use of sheaves that are narrower in width and smaller in diameter without sacrificing power capacity. Smaller, narrower sheaves mean a reduction in weight so more of the drive gets to the load for increased efficiency.

Poly-V ${ }^{\circledR}$

H and K Sections are nonstock. Standard factory lead times will apply. Minimums apply. Contact your local Goodyear Engineered Products PTP industrial distributor.

Stock Construction: No minimum quantity required. Can order any number of ribs up to maximum number of ribs per belt (Max Ribs/Belt) shown below.

SECTION	Part Number	Max Ribs/Belt	Part Number	Max Ribs/Belt	Part Number	Max Ribs/Belt
	180J	68	650J	68	420J*	145
\downarrow	190J	68	730 J	68	444J*	68
	200J	68	870J	68	552J*	68
. 14 -	220 J	68	920 J	68	546J*	68
4	240 J	68	980 J	68	575J*	145
$\rightarrow+$	260 J	68	100J*	40	640J*	68
	280 J	68	105J*	40	690J** $^{\text {770J* }}$	145
0.092	300 J	68	$110{ }^{*}$	40	770J*	145
	320 J	68	120J*	40	776J*	68
	340 J	68	140J*	46	${ }^{810 J^{*}}$	145
	360 J	68	147J*	45	878J*	145
	380J	68	204J*	68	890J**	68
	400 J	68	$210{ }^{*}$	68	895J**	145
	430J	68	$230 J^{*}$	70	904J**	145
	460 J	68	$243 J^{*}$	68	940J**	145
	490 J	68	$270{ }^{*}$	68	994J**	145
	520 J	68	$310{ }^{*}$	145	1000J**	145
	550 J 580 J	68 68	$3285{ }^{*}$ $353{ }^{*}$	145 145	1200J*	145
	6101	68	353J*	145		

LSECTION*	Part Number	Max Ribs/Belt	Part Number	Max Ribs/Belt	Part Number	Max Ribs/Belt
	500L	96	840L	96	385L*	96
\downarrow	540L	96	865L	96	455L*	96
38"	560L	96	915L	96	505L*	72
.38"	615L	96	975L	96	622L*	96
-	635L	96	990L	96	748L*	96
	655 L	96	1065L	96	770L*	96
	675L	96	1120L	96	845L*	96
	695L	96	1150L	96	880L*	96
$0.185^{\prime \prime}$	725 L	96	1215L	96	1073L*	96
	765L	96	1230L	96	1098L*	72
	780L	96	1295L	96	1180L*	96
	795L	96	1310L	96		
	815L	96	1455L	72		

M SECTION ${ }^{*}$	Part Number	Max Ribs/Belt	Part Number	Max Ribs/Belt	Part Number	Max Ribs/Belt
-	900 M	36	1310M	74	2130 M	74
\downarrow	940M	36	1390M	74	2410 M	74
	990M	36	1470 M	74	2560 M	74
.51"	1060M	36	1610M	74	2710M	74
\%	1115 M	36	1650M	74	3010 M	74
	1150 M	36	1760M	74	3310 M	74
	1185 M	36	1830M	74	3610 M	74
	1230 M	36	1980M	74		

Special Note: Special Manufacture Belts are available. ${ }^{*}$ Please check factory for availability.
*Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

V－Belts

V－belts include not only traditional classical and narrow profiled belts，but also Double－V and FHP belts．When synchronization or timing is not required，V－belts make an excellent low－cost，quiet，and efficient means of transmitting
power．However，not all V－belts perform the same．Depending on your application and your objectives，some V－belts will be better at getting you closer to your end goal．

Narrow V－Belts

Effectively handling drives from 1 to $1,000 \mathrm{hp}$ ，these belts rank high in horsepower－hours per dollar，the ultimate measure of drive value．The narrow－belt cross sections（ $3 \mathrm{~V}, 5 \mathrm{~V}$ ，and 8 V ），offer higher power capacity for any sheave size and weight．
The narrow or＂wedge＂design provides more tensile member support than classical V－belts．Narrow belts handle an equivalent
load，but with narrower face width and smaller diameters than the traditional classical V－belts．These features allow the use of smaller belts or fewer belts to transmit the load， an important advantage if your goal is to maximize power transmission efficiency by reducing drive weight and size．

Classic V－Belts

The most widely used V－belts are A，B，C，and D classical belts． Used more out of habit and convenience than design，these belts can handle fractional to $500-\mathrm{hp}$ drives，usually at the lowest cost．However，they occupy more space，and the drives weigh more than narrow－belt drives．Also，classical belts are usually less efficient than narrow belts．But their versatility and wide range of sizes and types make them an attractive alternative to wedge belts．

Many classical belts are used for replacement because it is considered too costly to replace sheaves when upgrading from classical to narrow or other belt types．Therefore，when replacing classical sheaves，it is an opportune time to upgrade to narrow or other belt types．

Specialty V－Belts

When equipment calls for metric precision，you need a belt that not only measures up，but one that won＇t get lost in translation． GY Metric belts are engineered to universal metric profiles， but manufactured by Veyance Technologies in North America， so you don＇t have to go elsewhere to get them．

Strong，flexible and able to work in wide temperature ranges，GY Metric ${ }^{\circledR}$ replaces many common metric cross section belts such as XPZ，XPA，SPA，，XPB，SPB，XPC and SPC．

Double－V Or HEX BELTS

A variation of the classical belt，Hex belts come in AA，BB，CC，or a deep ССР cross section．These belts transfer power from either side in serpentine drives．A drive design using Hex belts is more
complicated and engineering manuals should be consulted when replacing or troubleshooting these drives．

FHP（Fractional Horsepower Belts）

The 3L，4L，and 5L light－duty FHP belts are part of the V－Belt line also．As the name implies，these belts are used
soley on drives of 1 hp or less．

Cogged，Raw－Edge Construction vs．Envelope Construction

Goodyear Engineered Products provide a complete offering of cogged，raw－edge belts in narrow，classical，and FHP styles． Designated 3VX，5VX，AX，BX，CX，4L，and 5L，cogged，raw－ edge V－belts have higher capacity and efficiency，and they use smaller sheaves than traditional envelope（wrapped）belts．These belts have a higher coefficient of friction and are more aggressive， which makes them a very efficient belt for power transmission．
Unlike conventional fabric－covered V－belts，raw－edge belts have no cover．Thus，the cross－sectional area normally occupied by the cover is used for more load－carrying cord．Cogs on the inner surface of the belt increase air flow to enhance cooler running． They also increase flexibility，allowing the belt to operate with smaller sheaves．With classical V－belts，certain under－designed or
problem drives can be upgraded to＂satisfactory＂by substituting classical cogged belts for classical envelope belts without replacing sheaves．

Because of their higher coefficient of friction，cogged belts tend to be more sensitive to alignment．While envelope belts can tolerate some misalignment，cogged belts are more likely to turn over under the same conditions．Cogged belts should not be used in clutching drives，drives with severe shock loads，and drives that have changing center distances，such as shaker screens．In these applications，the aggressive nature and flexibility of cogged belts can cause vibration，belt turnover，and belt breakage．Cogged belts should also be avoided in drives that require slippage during frequent stops and starts．

Open End V-Belting

Part No: B-Open End
B $\quad 0.66 "$ Top Width - Classical Profile Available Roll Lengths (see chart below)

Applications

Ideal solution for temporary replacement in emergency situations or for long center drives. They can be used on all types of industrial applications.

Key Features \& Benefits

- Universal classical profile.
- Multiple-ply, square-woven fabric tension members.
- Oil, heat, ozone, and abrasion resistant.
- Easy installation with spliced ends.
- Static conductive.*

Horsepower Ratings

The horsepower ratings for fastened Open End V-belts are approximately 30% of published horsepower ratings for Goodyear Engineered Products standard multiple V-belts as shown in our V-belt Engineering Manual (20044896).
Note: Because of differences in the elongation characteristics and variations in cross section dimensions, Open End V-belts and Endless V-belts should not be used together on multiple drives.

Regular Construction	Cut Lengths
A Section	A Section
B Section	B Section
C Section	C Section
D Section	

Roll Lot: Either 250^{\prime} (max. 2 pcs.) or 500^{\prime} (max. 3 pcs.) approx. rolls. "D" section available only in 250^{\prime} (max. 2 pcs.) approx. rolls.

[^19]

Part No: 3V950
$\begin{array}{ll}3 \mathrm{~V} & \text { 0.38" Top Width — Narrow Profile } \\ 950 & \text { 95.0" Nominal Outside Length } \\ & \text { Envelope Uncogged Construction Shown }\end{array}$

Introducing The Newest,
Longest-lasting Narrow V-belt
in the Goodyear Engineered
Products Lineup
Constructed with a homogenous, one-piece design, the Wedge TLP Narrow V-Belt delivers better, lasting performance. Its highmodulus, high-denier cord can handle a significant increase in horsepower over our current HY-T ${ }^{\circledR}$ Wedge.

Little Maintenance, With No Worries

Wedge TLP's unique advanced construction process includes use of a specialized reinforcement and compounds that make this narrow V-belt virtually maintenance free. Install this belt the first time with proper installation techniques and take advantage of reduced downtime and maintenance.

Increase Savings by USing

Fewer Belts
With its greater horsepower capacity, Wedge TLP allows you to deliver the same amount of horsepower with a lesser number of belts. Fewer belts mean fewer sheave grooves; the combination of the two means lower-cost belt drives.

Applications

Premium, longer-life narrow-profile belts for compact, high-horsepower drives. Excellent in short-centered drives or where high shock loads are present; can be used any place you find traditional narrow V-belts, but require a more robust composition for improved service life.

Key Features \& Benefits

- Homogenous design
- Specialty blended, fiber rich compounding
- Higher modulus, higher denier cord
- Virtually no maintenance
- Static conductive*, with oil-resistant surface
- Supreme durability and wear resistance

Durability That Goes The Distance
Wedge TLP belts offer supreme durability and wear resistanceplus better fit even in worn sheaves. That's all because of its two envelope plies and specialty blended, fiber-rich compounding that help support increased horsepower, with less deformation under tension.

[^20]
WEDGE TLP ${ }^{m}$ NARROW V-BELTS

Part Number	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)
3V500	50.0	3 V 630	63.0	3 V 800	80.0	3 V 1000	100.0	3 V 1250	125.0
3V530	53.0	3 V 670	67.0	3 V 850	85.0	3 V 1060	106.0	3V1320	132.0
3V560	56.0	3 V 710	71.0	3 V 900	90.0	3 V 1120	112.0	3V1400	140.0
3V600	60.0	3 V 750	75.0	3 V 950	95.0	3V1180	118.0		

Part Number	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)
5 V530*	53.0	5 V 800	80.0	5 V 1180	118.0	5 V 1700	170.0	5 V 2360	236.0
$5 \mathrm{~V} 560^{*}$	56.0	5 V 850	85.0	5 V 1250	125.0	5 V 1800	180.0	5 V 2500	250.0
$5 \mathrm{~V} 600^{*}$	60.0	5 V 900	90.0	5 V 1320	132.0	5 V 1900	190.0	5 V 2650	265.0
$5 \mathrm{~V} 630^{*}$	63.0	5 V 950	95.0	5 V 1400	140.0	5 V 2000	200.0	5 V 2800	280.0
$5 \mathrm{~V} 670^{*}$	67.0	5 V 1000	100.0	5 V 1500	150.0	5 V 2120	212.0	5 V 3000	300.0
5V710	71.0	5 V 1060	106.0	5 V 1600	160.0	5 V 2240	224.0	5 V 3150	315.0
5V750	75.0	5 V 1120	112.0						

Part Number	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)
8V1000	100.0	8 V 1500	150.0	8 V 2000	200.0	8 V 2650	265.0	8 V 3550	355.0
8V1120	112.0	8 V 1600	160.0	8 V 2120	212.0	8 V 2800	280.0	8 V 3750	375.0
8V1180	118.0	8 V 1700	170.0	8 V 2240	224.0	8 V 3000	300.0	8 V 4000	400.0
8V1250	125.0	8 V 1800	180.0	8 V 2360	236.0	8 V 3150	315.0	8 V 4250	425.0
8V1320	132.0	8 V 1900	190.0	8 V 2500	250.0	8 V 3350	335.0	8 V 4500	450.0
8V1400	140.0								

[^21]
HY-T ${ }^{*}$ Wedge

Part No: 5V1400
5V 0.62" Top Width - Narrow Profile
1400 140.0" Nominal Outside Length
Envelope Uncogged Construction Shown

A Narrower Cross Section \& Stronger Construction Reduces Drive Costs

The savings start in the basic wedge or narrow design of the HY-T Wedge belt. It has a narrower cross section than standard V-belts so it distributes stresses more uniformly to deliver more consistent, more reliable power transmission.

A wedge cross section means the belts are narrower and weigh less. Narrower belts allow for the use of thinner and lighter sheaves, resulting in a more efficient drive.

The savings continue through the higher horsepower capacity provided by Goodyear Engineered Products HY-T V-belt construction. Vytacord tension members, provide strength and dimensional stability. Higher horsepower capacity is also provided through a tough engineered rubber compound cushion, adding to belt strength.
HY-T Wedge, with its narrow cross-section, makes it possible to achieve a required horsepower with fewer HY-T Wedge belts than with standard V-belts, reducing sheave size, sheave costs, and belt costs even more.
Since less power is required to run the smaller, lighter drives, more power gets to the load. Therefore, you may be able to downsize drive motors and/or increase drive efficiency for even more savings.

Matchmaker ${ }^{\circledR}$ Performance

HY-T Wedge belts eliminate mismatch problems as each Matchmaker belt is mirrored in size and performance to every other HY-T Wedge belt in that size, no matter when or where it was produced.

Applications

Narrow profile belts for compact, high horsepower drives, high shock loading on short centers and small diameters. For designing compact, heavy-duty drives where space limitation is a factor.

Key Features \& Benefits

- Narrow profile provides savings through efficiency.
- Greater horsepower than the classical belt.
- Strong Vytacord ${ }^{\otimes}$ (polyester) tensile members.
- High-grade engineered rubber.
- Heat, ozone, and abrasion resistant.
- Available in raw-edge construction with cogs or envelope construction.
- Matchmaker ${ }^{\circledR}$ to eliminate mismatch.
- Static conductive.*

CuT-EDGE OR ENVELOPE

Constructions Provide Optimum Performance

HY-T Wedge belts are available in a cut-edge construction with cogs for increased flexibility and heat dissipation or envelope construction for drives where pulsation, shock loads, high tension, and long centers are involved.

HY-T Wedge Cogged belts are high-horsepower belt constructions that are identified with a 3 VX and 5 VX prefix and are available in lengths up to $200^{\prime \prime}$. The cogged construction provides the high flexibility required for short center distances. The cogs also provide a larger surface area to dissipate heat and prolong belt life. Improved material properties and advanced construction technology results in an average horsepower increase of 30% over standard "Classical" V-belt and wedge belts.
HY-T Wedge Envelope belts are identified with a $3 \mathrm{~V}, 5 \mathrm{~V}$, or 8 V prefix and are recommended for drives where pulsation, shock loads, high tension, and long centers are involved. It features a continuous V-section that is protected by a wide angle, synthetic fabric impregnated with high-quality engineered rubber compound. This unique envelope achieves the high strength HY-T Wedge belts need to withstand high loading forces. It also provides the torsional rigidity required in long center drives delivering the traction needed for accurate tracking and precision performance.

Call Toll Free:

HY-T ${ }^{*}$ Wedge

CoGGED SizES

Part Number	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)
3VX250	25.0	3VX375	37.5	3VX560	56.0	3VX850	85.0	3VX1250	125.0
3VX265	26.5	3VX400	40.0	3VX600	60.0	3VX900	90.0	3VX1320	132.0
3VX280	28.0	3VX425	42.5	3VX630	63.0	3VX950	95.0	3VX1400	140.0
3VX300	30.0	3VX450	45.0	3VX670	67.0	3VX1000	100.0	3VX1500	150.0
3VX315	31.5	3VX475	47.5	3VX710	71.0	3VX1060	106.0		
3VX335	33.5	3VX500	50.0	3VX750	75.0	3VX1120	112.0		
3VX355	35.5	3VX530	53.0	3VX800	80.0	3VX1180	118.0		

Part Number	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)
5VX450	45.0	5VX590	59.0	5VX740	74.0	5VX930	93.0	5VX1250	125.0
5VX470	47.0	5VX600	60.0	5VX750	75.0	5VX950	95.0	5VX1320	132.0
5VX490	49.0	5VX610	61.0	5VX780	78.0	5VX960	96.0	5VX1400	140.0
5VX500	50.0	5VX630	63.0	5VX800	80.0	5VX1000	100.0	5VX1500	150.0
5VX510	51.0	5VX650	65.0	5VX810	81.0	5VX1030	103.0	5VX1600	160.0
5VX530	53.0	5VX660	66.0	5VX830	83.0	5VX1060	106.0	5VX1700	170.0
5VX540	54.0	5VX670	67.0	5VX840	84.0	5VX1080	109.0	5VX1800	180.0
5VX550	55.0	5VX680	68.0	5VX850	85.0	5VX1120	112.0	5VX1900	190.0
5VX560	56.0	5VX690	69.0	5VX860	86.0	5VX1150	115.0	5VX2000	200.0
5VX570	57.0	5VX710	71.0	5VX880	88.0	5VX1180	119.0		
5VX580	58.0	5VX730	73.0	5VX900	90.0	5VX1230	123.0		

Noncogged Sizes

Part Number	Effective Length (in)	Part Number	Effective Length (in)	$\begin{aligned} & \text { Part } \\ & \text { Number } \end{aligned}$	Effective Length (in)	Part Number	Effective Length (in)	Part Number	Effective Length (in)
3V250	25.0	3V375	37.5	3V560	56.0	3V850	85.0	3V1250	125.0
3V265	26.5	3V400	40.0	3V600	60.0	3V900	90.0	3V1320	132.0
3V280	28.0	3V425	42.5	3V630	63.0	3V950	95.0	3V1400	140.0
3V300	30.0	3V450	45.0	3V670	67.0	3V1000	100.0		
3V315	31.5	3V475	47.5	3V710	71.0	3V1060	106.0		
3V335	33.5	3V500	50.0	3V750	75.0	3V1120	112.0		
3V355	35.5	3V530	53.0	3V800	80.0	3V1180	118.0		
Part Number	Effective Length (in)								
5V500	50.0	5V850	85.0	5V1250	125.0	5V1900	190.0	5V2800	280.0
5V560	56.0	5V900	90.0	5V1320	132.0	5V2000	200.0	5V3000	300.0
5V630	63.0	5V950	95.0	5V1400	140.0	5V2120	212.0	5V3150	315.0
5V670	67.0	5V1000	100.0	5V1500	150.0	5V2240	224.0	5V3350	335.0
5V710	71.0	5V1060	106.0	5V1600	160.0	5V2360	236.0	5V3550	355.0
5V750	75.0	5V1120	112.0	5V1700	170.0	5V2500	250.0		
5V800	80.0	5V1180	118.0	5V1800	180.0	5V2650	265.0		
Part Number	Effective Length (in)								
8V1000	100.0	8V1400	140.0	8V2000	200.0	8V2800	280.0	8V4000	400.0
8V1060	106.0	8V1500	150.0	8V2120	212.0	8V3000	300.0	8V4250	425.0
8V1120	112.0	8V1600	160.0	8V2240	224.0	8V3150	315.0	8V4500	450.0
8V1180	118.0	8V1700	170.0	8V2360	236.0	8V3350	335.0	8V4750	475.0
8V1250	125.0	8V1800	180.0	8V2500	250.0	8V3550	355.0	8V5000	500.0
8V1320	132.0	8V1900	190.0	8V2650	265.0	8V3750	375.0	8V5600	560.0

HY-T* Plus (Classical)

Part No: B75
B $\quad 0.66^{\prime \prime}$ Top Width - Classical Profile
75 Approximate $75^{\prime \prime}$ Inside Length

Less Elongation Is the Key
 to Performance

Whether you're talking about rubber belts or metal chains, most materials will elongate when put to use. The secret to reliable performance isn't to eliminate elongation, but to control it so that it is minimal, predictable, and uniform. To achieve these criteria, we developed the Vytacord tensile member.
Vytacord provides the high-strength, high-horsepower rating capacity needed to effectively transmit today's drive power. It's even tough enough to tolerate slight sheave misalignment that would quickly destroy ordinary belts.
The Vytacord tensile member provides dimensional stability. As a result, each belt of a given size will maintain its length consistency, no matter when or where it was produced.
The exceptional dimensional stability properties of HY-T Plus eliminates matching problems, improves performance, and increases service life.

Improved Materials Are the

KEY TO THE DURABILITY \&

Versatility of HY-T Plus

The vast improvements in all components of HY-T Plus construction complement the quality of the Vytacord tensile member.
Our engineered heat- and oil-resistant rubber compound, is used in both the cushion and insulation sections of HY-T Plus. Belt construction provides the flexibility on small pulleys. As a result the belt is able to serve a dual purpose for both classical and FHP, while offering more versatility than any other classical belt.

Applications

Designed for operating at high speeds over small diameter pulleys and short center distances. Also for use in multiple V-belt drives where high shock load and heavy-duty loads are encountered.

Key Features \& Benefits

- Universal classical profile.
- High-strength Vytacord ${ }^{\circledR}$ tensile members.
- Engineered rubber-impregnated envelope.
- Engineered rubber compound cushion and insulation.
- Dual branded (Classical and FHP part numbers).
- Oil, heat, ozone, and abrasion resistant.
- Matchmaker to eliminate mismatch.
- Static conductive.*

The HY-T Plus' envelope construction assures optimum warp and fill thread angle, providing belt flexibility. In addition, the fabric is treated with Goodyear Engineered Products exclusive engineered rubber compound for long wear and resistance to heat, oil, and other environmental hazards. The envelope also assures that the belt dissipates static electricity, as specified in RMA bulletin IP3-3.
The cushion is also crush-resistant and cool running to maintain its shape, fit, and strength longer. And with the longer service life achieved by HY-T Plus belts, replacement of belts is less frequent. Overall, belt costs are reduced, downtime is minimized, and equipment productivity is maintained.

Less Inventory Required

The HY-T Plus can be used in FHP applications. Conversely, rarely do FHP belts perform in HY-T Plus (classical) applications.
The result is a reduced inventory that equates to dollars taken off the shelves and into your pockets.

[^22]
HY-T ${ }^{\bullet}$ Plus (Classical)

A Section

Part	Number A	Approx. Outside Length (in)	Part Number		Approx. Outside Length (in)	Part Number		Approx. Outside Length (in)	Part Number		Approx. Outside Length (in)	Part Number A		Approx. Outside Length (in)
A20	(4L220)	22	A39	(4L410)	41	A58	(4L600)) 60	A77	(4L790)	79	A96	(4L980)	98
A21	(4L230)	23	A40	(4L420)	42	A59	(4L610)) 61	A78	(4L800)	80	A97	(4L990)	99
A22	(4L240)	24	A41	(4L430)	43	A60	(4L620)) 62	A79	(4L810)	81	A98	(4L1000)) 100
A23	(4L250)	25	A42	(4L440)	44	A61	(4L630)) 63	A80	(4L820)	82	A100	(4L1020)) 102
A24	(4L260)	26	A43	(4L450)	45	A62	(4L640)	64	A81	(4L830)	83	A103		105
A25	(4L270)	27	A44	(4L460)	45	A63	(4L650)) 65	A82	(4L840)	84	A105		107
A26	(4L280)	28	A45	(4L470)	47	A64	(4L660)	66	A83	(4L850)	85	A110		112
A27	(4L290)	29	A46	(4L480)	48	A65	(4L670)) 67	A84	(4L860)	86	A112		114
A28	(4L300)	30	A47	(4L490)	49	A66	(4L680)) 68	A85	(4L870)	87	A120		122
A29	(4L310)	31	A48	(4L500)	50	A67	(4L690)) 69	A86	(4L880)	88	A128		130
A30	(4L320)	32	A49	(4L510)	51	A68	(4L700)	70	A87	(4L890)	89	A133		135
A31	(4L330)	33	A50	(4L520)	52	A69	(4L710)	71	A88	(4L900)	90	A136		138
A32	(4L340)	34	A51	(4L530)	53	A70	(4L720)) 72	A89	(4L910)	91	A144		146
A33	(4L350)	35	A52	(4L540)	54	A71	(4L730)	73	A90	(4L920)	92	A158		160
A34	(4L360)	36	A53	(4L550)	55	A72	(4L740)) 74	A91	(4L930)	93	A173		175
A35	(4L370)	37	A54	(4L560)	56	A73	(4L750)) 75	A92	(4L940)	94	A180		182
A36	(4L380)	38	A55	(4L570)	57	A74	(4L760)) 76	A93	(4L950)	95			
A37	(4L390)	39	A56	(4L580)	58	A75	(4L770)) 77	A94	(4L960)	96			
A38	(4L400)	40	A57	(4L590)	59	A76	(4L780)) 78	A95	(4L970)	97			

B Section

Part	Number A	Approx. Outside Length (in)	Part Number		Approx. Outside Length (in)	Part Number		Approx. Outside Length (in)	Part Number		Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)
B22	(5L250)) 25	B46	(5L490)) 49	B70	(5L730)) 73	B94	(5L970)	97	B144	147
B23	(5L260)) 26	B47	(5L500)) 50	B71	(5L740)) 74	B95	(5L980)	98	B148	151
B24	(5L270)) 27	B48	(5L510)	51	B72	(5L750)) 75	B96	(5L990)	99	B150	153
B25	(5L280)) 28	B49	(5L520)) 52	B73	(5L760)) 76	B97	(5L1000)) 100	B154	157
B26	(5L290)) 29	B50	(5L530)) 53	B74	(5L770)) 77	B98	(5L1010)) 101	B158	161
B27	(5L300)	30	B51	(5L540)) 54	B75	(5L780)) 78	B99	(5L1020)) 102	B162	165
B28	(5L310)	31	B52	(5L550)) 55	B76	(5L790)) 79	B100		103	B173	176
B29	(5L320)) 32	B53	(5L560)) 56	B77	(5L800)) 80	B101		104	B180	183
B30	(5L330)) 33	B54	(5L570)) 57	B78	(5L810)) 81	B103		106	B190	193
B31	(5L340)) 34	B55	(5L580)) 58	B79	(5L820)) 82	B104		107	B195	198
B32	(5L350)	35	B56	(5L590)) 59	B80	(5L830)) 83	B105		108	B205	208
B33	(5L360)) 36	B57	(5L600)) 60	B81	(5L840)) 84	B108		111	B210	213
B34	(5L370)) 37	B58	(5L610)) 61	B82	(5L850)) 85	B111		114	B225	227
B35	(5L380)) 38	B59	(5L620)) 62	B83	(5L860)) 86	B112		115	B240	242
B36	(5L390)	39	B60	(5L630)) 63	B84	(5L870)) 87	B115		118	B255	257
B37	(5L400)) 40	B61	(5L640)) 64	B85	(5L880)) 88	B116		119	B270	272
B38	(5L410)) 41	B62	(5L650)) 65	B86	(5L890)) 89	B118		121	B285	287
B39	(5L420)) 42	B63	(5L660)) 66	B87	(5L900)) 90	B120		123	B300	302
B40	(5L430)) 43	B64	(5L670)) 67	B88	(5L910)) 91	B124		127	B315	317
B41	(5L440)) 44	B65	(5L680)) 68	B89	(5L920)) 92	B126		129	B330	332
B42	(5L450)) 45	B66	(5L690)) 69	B90	(5L930)) 93	B128		131	B360	362
B43	(5L460)	46	B67	(5L700)) 70	B91	(5L940)) 94	B133		136	B394	396
B44	(5L470)	47	B68	(5L710)) 71	B92	(5L950)) 95	B136		139		
B45	(5L480)) 48	B69	(5L720)) 72	B93	(5L960)) 96	B140		143		

HY－T® PluS（Classical）

C Section

Part Number	Approx．Outside Length（in）								
C48	52	C80	84	C108	112	C150	154	C240	242
C50	54	C81	85	C109	113	C156	160	C255	257
C51	55	C85	89	C110	114	C158	162	C270	272
C55	59	C90	94	C112	116	C162	166	C285	287
C60	64	C93	97	C115	119	C165	169	C300	302
C62	66	C94	98	C120	124	C173	177	C315	317
C68	72	C100	104	C124	128	C180	184	C330	332
C71	75	C101	105	C128	132	C190	194	C345	347
C72	76	C103	107	C136	140	C195	199	C360	362
C75	79	C105	109	C144	148	C210	214	C390	392
C78	82	C106	110	C148	152	C225	227	C420	422

D SECTION

Part Number	Approx．Outside Length（in）								
D112	117	D162	167	D225	228	D300	303	D390	393
D120	125	D173	178	D240	243	D315	318	D420	423
D128	133	D180	185	D255	258	D330	333	D450	453
D144	149	D195	200	D270	273	D345	348	D480	483
D158	163	D210	215	D285	388	D360	363	D540	543

E SECTION

Part Number	Approx．Outside Length（in）								
E180	187	E240	244	E330	334	E420	424		
E195	202	E270	274	E360	364	E600	604		
E210	217	E300	304	E390	394	E540	5484		

Call Toll Free：1－866－711－4673

Part No: BX75
B $\quad 0.66^{\prime \prime}$ Top Width - Classical Profile
X Premium Cogged Construction
75 Approximate 75" Inside Length
Cut-Edge, Molded Cog Construction Shown

More Horsepower per Dollar

Your drives can deliver the horsepower you want at a lower component cost-and with lower energy costs-when you include Goodyear Engineered Products Torque-Flex

Applications

Designed for the tough, small sheave, high-tension drives.

Key Features \& Benefits

- Premium classical profile construction.
- $25 \%-30 \%$ higher power ratings than standard V-belts.
- Strong Vytacord ${ }^{\circledR}$ (polyester) tensile members.
- Engineered cushion compound.
- Cut-edge cogged construction on most sizes.
- Heat, ozone, and abrasion resistant.
- Matchmaker ${ }^{\circledR}$ to eliminate mismatch.
- Static conductive.*

More Savings From Fewer Belts

The high-strength and high horsepower capacity of Torque-Flex V-belts means you need fewer belts and fewer sheave grooves to deliver the same amount of horsepower.

Energy-Saving Efficiency

The same design and construction features which lead to high horsepower ratings for Torque-Flex V-Belts also lead to improvements in energy efficiency of up to 4%, depending on sheave diameter.

[^23]
Torque-Flex ${ }^{\circ}$

A X

B X

C X

Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)
AX21	23	AX39	41	AX56	58	AX73	75	AX90	92
AX22	24	AX40	42	AX57	59	AX74	76	AX91	93
AX23	25	AX41	43	AX58	60	AX75	77	AX93	95
AX24	26	AX42	44	AX59	61	AX76	78	AX94	96
AX26	28	AX43	45	AX60	62	AX77	79	AX95	97
AX27	29	AX44	46	AX61	63	AX78	80	AX96	98
AX28	30	AX45	47	AX62	64	AX79	81	AX97	99
AX29	31	AX46	48	AX63	65	AX80	82	AX98	100
AX30	32	AX47	49	AX64	66	AX81	83	AX100	102
AX31	33	AX48	50	AX65	67	AX82	84	AX103	105
AX32	34	AX49	51	AX66	68	AX833	85	AX105	107
AX33	35	AX50	52	AX67	69	AX884	86	AX110	112
AX34	36	AX51	53	AX68	70	AX855	87	AX112	114
AX35	37	AX52	54	AX69	71	AX886	88		
AX36	38	AX53	55	AX70	72	AX87	89		
AX37	39	AX54	56	AX71	73	AX888	90		
AX38	40	AX55	57	AX72	74	AX89	91		

Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)
BX28	31	BX53	56	BX73	76	BX93	96	BX128	131
BX31	34	BX54	57	BX74	77	BX94	97	BX133	136
BX32	35	BX55	58	BX75	78	BX95	98	BX136	139
BX34	37	BX56	59	BX76	79	BX96	99	BX140	143
BX35	38	BX57	60	BX77	80	BX97	100	BX144	147
BX36	39	BX58	61	BX78	81	BX98	101	BX148	151
BX38	41	BX59	62	BX79	82	BX99	102	BX150	153
BX40	43	BX60	63	BX80	83	BX100	103	BX154	157
BX41	44	BX61	64	BX81	84	BX103	106	BX158	161
BX42	45	BX62	65	BX82	85	BX105	108	BX162	165
BX43	46	BX63	66	BX83	86	BX106	109	BX173	176
BX44	47	BX64	67	BX84	87	BX108	111	BX180	183
BX45	48	BX65	68	BX85	88	BX112	115	BX191	194
BX46	49	BX66	69	BX86	89	BX113	116	BX195	198
BX47	50	BX67	70	BX87	90	BX115	118	BX210	213
BX48	51	BX68	71	BX88	91	BX116	119	BX225	228
BX49	52	BX69	72	BX89	92	BX120	123	BX240	243
BX50	53	BX70	73	BX90	93	BX123	126	BX255	258
BX51	54	BX71	74	BX91	94	BX124	127	BX270	273
BX52	55	BX72	75	BX92	95	BX126	129	BX300	303

Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)
CX51	55	CX81	85	CX109	113	CX144	148	CX210	214
CX55	59	CX85	89	CX111	115	CX150	154	CX240	244
CX60	64	CX90	94	CX112	116	CX158	162	CX270	274
CX68	72	CX96	100	CX115	119	CX162	166		
CX72	76	CX100	104	CX120	124	CX173	177		
CX75	79	CX101	105	CX128	132	CX180	184		
CX78	82	CX105	109	CX136	140	CX195	199		

GY Metric ${ }^{*}$ Belts

Part No:	XPA0707
X	Premium Cogged Construction
PA	Metric A Profile
0707	707 mm Datum Length

Applications

Specialty V-belt for a wide variety of heavy-duty, temperature-sensitive applications.

Key Features \& Benefits

- Wedge profile allows for a smaller drive package and lower operating costs.
- Premium fiber loading adds strength and cord support.
- Raw-edge, molded cog and envelope constructions.
- Optimum wedging action provides maximum torque carrying performance.
- Heat, ozone and abrasion resistant.
- Static-conductive ${ }^{* *}$ for specialized applications.
< GY Metric belts operate under one of the widest temperature ranges in the industry, from $-65^{\circ} \mathrm{F}$ to $180^{\circ} \mathrm{F}\left(-54^{\circ} \mathrm{C} \text { to } 82^{\circ} \mathrm{C}\right)^{*}$. It's that versatility and our experience in rubber compounding that can provide superior performance under the toughest conditions.

Versatility

Universal Fit

When equipment calls for metric precision, you need a belt that not only measures up, but one that won't get lost in translation. GY Metric belts are engineered to universal metric profiles, but manufactured by Veyance Technologies in North America, so you don't have to go elsewhere to get them.

Superior Performance Under Tough Conditions

GY Metric belts are strong, flexible and able to work within a wide temperature range, offering superior performance under the toughest conditions. So they do more than measure up. They stand apart.

More Savings From Fewer Belts
The high-strength and high horsepower capacity of Torque-Flex ${ }^{\text {® }}$ V-belts means you need fewer belts and fewer sheave grooves to deliver the same amount of horsepower.

[^24]
GY Metric Belts

[^25]
GY Metric* Belts

XPB*/SPB

Part Number	Eff. Length (in)								
XPB1250	0.432	XPB1900	0.645	XPB2410	0.815	XPB3150	1.060	SPB4560	2.155
XPB1320	0.455	XPB1950	0.662	XPB2430	0.821	XPB3170	1.064	SPB4620	2.183
XPB1340	0.461	XPB2000	0.679	XPB2500	0.844	XPB3320	1.116	SPB4750	2.244
XPB1400	0.482	XPB2020	0.685	XPB2530	0.855	XPB3340	1.123	SPB4820	2.276
XPB1410	0.484	XPB2060	0.700	XPB2580	0.871	XPB3350	1.125	SPB5000	2.360
XPB1450	0.499	XPB2120	0.718	XPB2600	0.878	XPB3450	1.158	SPB5300	2.500
XPB1500	0.513	XPB2150	0.729	XPB2650	0.894	XPB35550	1.192	SPB5600	2.640
XPB1550	0.530	XPB2180	0.739	XPB2680	0.903	SPB3650	1.730	SPB6000	2.827
XPB1600	0.547	XPB2240	0.758	XPB2720	0.917	SPB3750	1.777	SPB8000	3.760
XPB1650	0.563	XPB2264	0.767	XPB2800	0.943	SPB3800	1.800	SPB9000	4.227
XPB1700	0.580	XPB2280	0.771	XPB2820	0.949	SPB3870	1.833		
XPB1778	0.605	XPB2300	0.777	XPB2840	0.957	SPB4000	1.894		
XPB1800	0.614	XPB2310	0.781	XPB2900	0.976	SPB4250	2.010		
XPB1850	0.631	XPB2360	0.798	XPB3000	1.010	SPB4500	2.127		

Part Number	Eff. Length (in)								
XPC1047	0.765	XPC2650	1.840	XPC3550	2.440	SPC4750	4.374	SPC6700	6.147
XPC2120	1.483	XPC2800	1.938	SPC3750	3.466	SPC5000	4.600	SPC7100	6.510
XPC2240	1.564	XPC3000	2.074	SPC4000	3.694	SPC5300	4.874	SPC7500	6.874
XPC2360	1.645	XPC3150	2.176	SPC4250	3.919	SPC5600	5.146	SPC8000	7.329
XPC2500	1.738	XPC3350	2.308	SPC4500	4.147	SPC6000	5.510		

*Denotes cog construction.

Hex

Part No: BB75
BB B Section Double
Classical Profile $0.66^{\prime \prime}$ Center Width
75 Approximate $75^{\prime \prime}$ Inside Length

Dependable Power From Both Sides

Hex belts, also known as double V-belts, are designed for use on drives with one or more reverse bends. They usually transmit power from both sides of the belt.
To meet the multiple-bend and dual-power requirements, we build Hex belts with rugged Vytacord tension members. They deliver maximum strength with minimum elongation. They also work with all the other quality materials that are a part of our Hex belts to deliver maximum performance over a long, trouble-free life.
Hex belts are available in AA, BB, and CC cross sections. A special Dry Can Hex construction is available with a special deep CC cross section designated CCP.

Applications

Used on drives having one or more reverse bends and usually where power must be transmitted to or from the belt in both the usual and reverse positions.

- Lawn and Garden Equipment • Mixers
- Agitators
- Mule Drives
- Conveyors
- Crushers

KEy FEATURES \& BENEFITS

- Dual-sided classical profile.
- High-strength Vytacord ${ }^{\circledR}$ tensile members.
- Engineered rubber compound-impregnated envelope.
- Engineered rubber cushion and insulation.
- Oil, heat, ozone, and abrasion resistant.
- Static conductive.*

[^26]To learn more visit www.goodyearep.com/ptp.
Call Toll Free: 1-866-711-4673
WebSales@GoodyearRubberProducts.com

Hex

A A	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	$\begin{gathered} \text { Part } \\ \text { Number } \end{gathered}$	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)
	AA51	54.4	AA68	71.4	AA90	93.4	AA120	123.4
	AA55	58.4	AA70	73.4	AA92	95.4	AA128	131.4
	AA60	63.4	AA75	78.4	AA96	99.4		
	AA64	67.4	AA80	83.4	AA105	108.4		
	AA66	69.4	AA85	88.4	AA112	115.4		

Part Number	Approx. Outside Length (in)						
CC75	81.4	CC120	126.4	CC173	179.4	CC270	274.4
CC81	87.4	CC128	134.4	CC180	186.4	CC300	304.4
CC85	91.4	CC136	142.4	CC195	201.4	CC330	334.4
CC90	96.4	CC144	150.4	CC210	216.4	CC360	364.4
CC96	102.4	CC148	154.4	CC225	229.4	CC390	394.4
CC105	111.4	CC158	164.4	CC240	244.4	CC420	424.4
CC112	118.4	CC162	168.4	CC255	259.4		

$\begin{aligned} & \text { C CP } \\ & -0.86^{\prime \prime} \longrightarrow \end{aligned}$	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)
	CCP240	244.9	CCP408	412.9	CCP550	554.9	CCP700	704.9
	CCP255	259.9	CCP420	424.9	CCP578	582.9	CCP720	724.9
0.86" ${ }_{\text {exswx********* }}$	CCP270	274.9	CCP440	444.9	CCP600	604.9	CCP750	754.9
	CCP300	304.9	CCP450	454.9	CCP640	644.9	CCP780	784.9
	CCP330	334.9	CCP470	474.9	CCP660	664.9	CCP800	804.9
	CCP360	364.9	CCP480	484.9	CCP670	674.9	CCP840	844.9
	CCP390	394.9	CCP540	544.9	CCP680	684.9	CCP900	904.9

InSTA-Power ${ }^{\oplus}$ (Flexten ${ }^{\oplus}$ Classical)

Part No: 84310

$$
\begin{array}{ll}
84 & \text { Top Width Designation: } 84 \text { denotes } 4 / 8^{\prime \prime} \text { top width } \\
31 & \text { Length in Inches } \\
0 & \text { Tenths of an Inch } \\
& \text { A29F - Equivalent Classical Size }
\end{array}
$$

Built for Strength \& Endurance

Every element of the Insta-Power belt is designed to deliver premium, long-life performance in demanding outdoor power equipment service. Insta-Power belts are engineered to take the abuse of repeated sudden shock loads, tolerate high ambient temperatures, and resist the damaging effects of oil and dust.
The fabric cover on Insta-Power belts is impregnated with our exclusive engineered rubber compound for high-wear, abrasion, and oil resistance. It also resists drying and cracking, even at high temperatures. The compression section is specially compounded to provided the excellent flexibility required for a wide variety of high-stress drives. The load carrying tensile members are highstrength Flexten cable cord with proven reliability in lawn and garden applications.

Applications

Delivers high performance consistently in lawn and garden drives up to 20 horsepower. Also ideal for other power equipment where reverse bend idlers, misalignment, and quarter-turn drives cause ordinary belts to fail.

Key Features \& Benefits

- Flexten classical profile construction.
- High-strength Flexten tensile members.
- Engineered rubber cushion compound.
- Premium envelope construction.
- Triple part number branding (Insta-Power, Classical, and Fraction horsepower).
- Oil, heat, ozone, and abrasion resistant.
- Static conductive.**

83 3L SECTION

| Instapower |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 83160^{*} | 83220^{*} | 83250 | 83295 | 83340 | 83390 | 83440 | 83500 |
| 83170 | 83225^{*} | 83255 | 83300 | 83350 | 83400 | 83450 | 83510 |
| 83180 | 83230^{*} | 83260^{*} | 83310 | 83360 | 83410 | 83460 | 83560 |
| 83190 | 83235^{*} | 83270 | 83315 | 83370^{*} | 83415 | 83470 | 83570 |
| 83200 | 83240 | 83280 | 83320 | 83375 | 83420 | 83610 | |
| 83210 | 83245^{*} | 83290^{*} | 83330 | 83380 | 83430 | 83490 | |

[^27]For sizes not listed, contact Veyance customer service for construction.

Insta-Power ${ }^{\text {® }}$ (Flexten ${ }^{\text {Classical) }}$

84 A SECTION OR 4 L SECTION

Instapower	Flexten Classical										
84170	A15F	84300	A28F	84385		84500	A48F	84670	A65F	84840	A82F
84180	A16F	84305		84390	A37F	84510	A49F	84680	A66F	84850	A83F
84190	A17F	84310	A29F	84400	A38F	84520	A50F	84690	A67F	84860	A84F
84200	A18F	84315		84405		84530	A51F	84700	A68F	84870	A85F
84210	A19F	84320	A30F	84410	A39F	84540	A52F	84710	A69F	84880	A86F
84220	A20F	84325		84415		84550	A53F	84720	A70F	84890	A87F
84230	A21F	84330	A31F	84420	A40F	84560	A54F	84730	A71F	84900	A88F
84240	A22F	84335		84425		84570	A55F	84740	A72F	84910	A89F
84250	A23F	84340	A32F	84430	A41F	84580	A56F	84750	A73F	84920	A90F
84255		84345		84440	A42F	84590	A57F	84760	A74F	84930	A91F
84260	A24F	84350	A33F	84450	A43F	84600	A58F	84770	A75F	84940	A92F
84270	A25F	84355		84460	A44F	84610	A59F	84780	A76F	84950	A93F
84275		84360	A34F	84470	A45F	84620	A60F	84790	A77F	84960	A94F
84280	A26F	84365		84475		84630	A61F	84800	A78F	84970	A95F
84285		84370	A35F	84480	A46F	84640	A62F	84810	A79F	84980	A96F
84290	A27F	84375		84485		84650	A63F	84820	A80F	84990	A97F
84295		84380	A36F	84490	A47F	84660	A64F	84830	A81F	84999	A98F

85 B SECTION OR 5 L SECTION

Instapower	Flexten Classical	Instapower								
85240	B21F	85360	B33F	85490	B46F	85620	B59F	85750	B72F	85880
85250	B22F	85370	B34F	85500	B47F	85630	B60F	85760	B73F	85890
85260	B23F	85380	B35F	85510	B48F	85640	B61F	85770	B74F	85900
85270	B24F	85390	B36F	85520	B49F	85650	B62F	85780	B75F	85910
85280	B25F	85400	B37F	85530	B50F	85660	B63F	85790	B76F	85920
85290	B26F	85410	B38F	85540	B51F	85670	B64F	58800	B77F	85930
85300	B27F	85420	B39F	85550	B52F	85680	B65F	85810	B78F	85940
85310	B28F	85430	B40F	85560	B53F	85690	B66F	85820	B79F	85950
85320	B29F	85440	B41F	85570	B54F	85700	B67F	85830	B80F	85960
85330	B30F	85450	B42F	85580	B55F	85710	B68F	85540	B81F	85970
85335		85460	B43F	85590	B56F	85720	B69F	85850	B82F	85980
85340	B31F	85470	B44F	85600	B57F	85730	B70F	85860	B83F	85990
85350	B32F	85480	B45F	85610	B58F	85740	B71F	85870	B84F	85999

87 C SECTION

Instapower	Flexten Classical										
87720	C68F	87850	C81F	87940	C90F	871040	C100F	871160	C112F	871320	C128F
87790	C75F	87890	C85F	871000	C96F	871090	C105F	871240	C120F		

89

| Instapower |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89002^{*} | 89105^{*} | 89207 | 89215 | 89223 | 89231 | 89239^{*} | 89247 |
| 89003 | 89106^{*} | 89208^{*} | 89216^{*} | 89224 | 89232 | 89240 | 89248 |
| 89007 | 89201^{*} | 89209^{*} | 89217^{*} | 89225 | 89233^{*} | 89241 | 89249 |
| 89009 | 89202^{*} | 89210^{*} | 89218 | 89226 | 89234^{*} | 89242^{*} | 89250 |
| 89101^{*} | 89203^{*} | 89211^{*} | 89219 | 89227 | 89235^{*} | 89243^{*} | 89251 |
| 89102^{*} | 89204 | 89212^{*} | 89220 | 89228 | 89236 | 89244^{*} | 89253 |
| 89103^{*} | 89205 | 89213 | 89221^{*} | 89229 | 89237^{*} | 89245^{*} | |
| 89104^{*} | 89206 | 89214 | 89222 | 89230 | 89238 | 89246^{*} | |

[^28]For sizes not listed, contact Veyance customer service for construction.

FHP

Part No: 4L560
4L $\quad 0.50^{\prime \prime}$ Top Width
$560 \quad 56.0^{\prime \prime}$ Nominal Outside Length
Cut-Edge, Molded Cog Construction Shown

Quiet, Smooth-Running,

Exceptionally Energy Efficient

You no longer have to accept the lower energy efficiency associated with envelope belts on fractional horsepower lightduty drives. Advanced V-belt technology has resulted in the development of a cut-edge, molded cog construction which exceeds conventional envelope belts in every performance category except oil resistance. This has been confirmed in extensive testing which proves that our FHP V-belts run smoother and quieter, last longer, and substantially improve energy efficiency compared to noncogged belts.

Cogged for Cooler Running

The cogged design of our FHP V-belts (standard on 4L and 5 L sizes) provides a greater surface area for heat dissipation and allows increased air flow around the belt during operation. These factors help to reduce internal belt temperatures and greatly improve belt life. Of course, the cogged design also improves flexibility, an especially important consideration where minimum or substandard sheave diameters are involved.

Low Vibration for Low Noise

Low cross section vibration in rubber-edged, cogged belts reduces noise generation. This allows you to take advantage of the longer life and high efficiency of FHP V-belts in noise-sensitive equipment. But even in typical factory settings, our FHP V-belts contribute to a quieter operating environment.

Superior Efficiency
 for Improved Performance

The historic inefficiency of FHP drives can be traced directly to the inability of a relatively large envelope belt to transmit a low-power force efficiently. Transmission loss is especially significant in factories using large numbers of drives and where small diameter sheaves are involved. The aggregate loss can be significant enough to have an adverse effect on equipment performance.

Applications

For light-duty fractional horsepower motors. Molded cogs allow for use in applications where the belt is expected to perform around smaller sheave diameters.

- Shop Equipment
- Home Appliances
- Light-Duty Machinery
- Blowers

Key Features \& Benefits

- Universal classical profile.
- Engineered rubber cushion and insulation.
- Cut-edge, molded cogged construction.
- Heat, ozone, and abrasion resistant.

These FHP V-belts efficiency begins at 93% when used with smaller sheaves and increases dramatically as the sheave diameter increases (Figure 1). Since more of the rated power of the drive is delivered, actual performance nearly matches design performance.
In addition, the efficiency of our FHP V-belts offers you the opportunity to achieve full operating power requirements with a lower horsepower drive, reduced energy requirements, or both. These considerations can provide highly desirable economic advantages whether you're a drive manufacturer or a drive user.

Figure 1 - Efficiency comparison of cogged vs.
noncogged FHP V-belts (4L section).

$\begin{gathered} 2 \mathrm{~L} \\ \left\|0.25^{\prime \prime}\right\| \longleftarrow \end{gathered}$	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)
	2L120	12	2L180	18	2L240	24	2L320	32
0.16"	2L140	14	2L190	19	2L260	26		
4	2L150	15	2L200	20	2L300	30		
T	2L160	16	2L220	22	2L310	31		

3 L	Part Number	Approx. Outside Length (in)						
\dagger	3 L 120	12	3L270	27	3L430	43	3L580	58
0.22"	3 L 130	13	3L280	28	3L440	44	3L590	59
0.22	3L140	14	3 L 290	29	3 L 450	45	3L600	60
4	3L150	15	3L300	30	3L460	46	$3 \mathrm{L610}$	61
	3 L 160	16	3L310	31	3 L 470	47	$3 \mathrm{L620}$	62
	3 L 170	17	3 L 320	32	3 L 480	48	3 L 630	63
	3L180	18	3 L 330	33	3 L 490	49	3L640	64
	3 L 190	19	3L340	34	3L500	50	3L650	65
	3L200	20	3L350	35	3L510	51	3 L 660	66
	3L210	21	3L360	36	3L520	52	3 L 670	67
	3 L 220	22	3L370	37	3L530	53	3L690	69
	3L230	23	3L380	38	3L540	54	3 L 730	73
	3L240	24	3 L 390	39	3L550	55	3 L 740	74
	3L250	25	3L400	40	3L560	56	3 L 760	76
	3L260	26	3L420	42	3L570	57		

$4 \mathrm{~L}$	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)
	4L150	15	4L270	27	4L400	40	4L520	52
0.31"	4 L 160	16	4L280	28	4 L 410	41	4L530	53
0.31	4 L 170	17	4L290	29	4 L 420	42	4L540	54
	4 L 180	18	4 L 300	30	4 L 430	43	4L550	55
4	4L190	19	4L320	32	4 L 440	44	4L560	56
	4 L 200	20	4 L 330	33	4 L 450	45	4L570	57
	4 L 210	21	4L340	34	4 L 460	46	4L580	58
	4 L 220	22	4L350	35	4 L 470	47	4L590	59
	4 L 230	23	4L360	36	4 L 480	48	4L600	60
	4L240	24	4L370	37	4 L 490	49		
	4L250	25	4L380	38	4 L 500	50		
	4L260	26	4L390	39	4L510	51		

$5 \mathrm{~L}$	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)	Part Number	Approx. Outside Length (in)
$\downarrow 1-0.66 \rightarrow 1$	5L230	23	5L330	33	5L430	43	5L530	53
0.38' $* * * * * * * *$	5L240	24	5L340	34	5L440	44	5L540	54
0.38"	5L250	25	5L350	35	5L450	45	5L550	55
	5L260	26	5L360	36	5L460	46	5L560	56
4	5L270	27	5L370	37	5 L 470	47	5L570	57
	5L280	28	5L380	38	5L480	48	5L580	58
	5L290	29	5L390	39	5 L 490	49	5L590	59
	5L300	30	5L400	40	5L500	50	5L600	60
	5L310	31	5 L 410	41	5L510	51		
	5L320	32	5 L 420	42	5L520	52		

Metal Sheaves／Pulleys

Part No：3V3．0－2－JA
3 V Cross Section
3.0 3＂Pulley Diameter

22 Grooves／Teeth
JA Bushing

3V Narrow（Ultra－V）Sheaves

Part No．	SAP No．	Wt．＊	Part No．	SAP No．	Wt．＊	Part No．	SAP No．	Wt．＊
3V2．2－1－JA	20180540	0.6	3V4．5－2－SH	20180589	2.8	3V6．0－2－SH	20180626	4.5
3V2．2－2－JA	20180541	0.7	3V4．5－3－SDS	20180590	3.1	3V6．0－3－SDS	20180627	6.1
3V2．35－1－JA	20180542	0.8	3V4．5－4－SDS	20180591	3.5	3V6．0－4－SK	20180628	7.8
3V2．35－2－JA	20180543	1.0	3V4．75－1－SH	20180593	2.6	3V6．0－5－SK	20180629	8.5
3V2．5－1－JA	20180544	0.9	3V4．75－2－SH	20180594	3.2	3V6．0－6－SK	20180630	9.2
3V2．5－2－JA	20180545	1.1	3V4．75－3－SDS	20180595	3.6	3V6．0－8－SK	20180631	10.8
3V2．5－3－JA	20180546	1.4	3V4．75－4－SDS	20180596	4.1	3V6．0－10－SK	20180624	12.4
3V2．65－1－JA	20180547	0.6	3V4．75－5－SDS	20180597	4.7	3V6．5－1－SH	20180633	4.0
3V2．65－2－JA	20180548	0.8	3V4．75－6－SK	20180598	5.2	3V6．5－2－SDS	20180634	4.8
3V2．65－3－JA	20180549	1.1	3V4．75－8－SK	20180599	6.4	3V6．5－3－SDS	20180635	5.8
3V2．65－4－JA	20180550	1.4	3V4．75－10－SK	20180592	7.6	3V6．5－4－SK	20180636	9.3
3V2．8－1－JA	20180551	0.7	3V5．0－1－SH	20180601	2.9	3V6．5－5－SK	20180637	10.1
3V2．8－2－JA	20180552	1.0	3V5．0－2－SH	20180602	3.6	3V6．5－6－SK	20180638	10.9
3V2．8－3－JA	20180553	1.3	3V5．0－3－SDS	20180603	4.1	3V6．5－8－SK	20180639	12.6
3V2．8－4－JA	20180554	1.6	3V5．0－4－SDS	20180604	4.6	3V6．5－10－SK	20180632	14.2
3V3．0－1－JA	20180562	0.8	3V5．0－5－SDS	20180605	5.2	3V6．9－1－SH	20180641	3.3
3V3．0－2－JA	20180563	1.2	3V5．0－6－SK	20180606	6.0	3V6．9－2－SDS	20180642	5.5
3V3．0－3－SH	20180564	1.6	3V5．0－8－SK	20180607	7.3	3V6．9－3－SDS	20180643	6.4
3V3．0－4－SH	20180565	1.9	3V5．0－10－SK	20180600	8.5	3V6．9－4－SK	20180644	10.9
3V3．15－1－JA	20180566	0.9	3V5．3－1－SH	20180609	3.1	3V6．9－5－SK	20180645	11.6
3V3．15－2－JA	20180567	1.4	3V5．3－2－SH	20180610	4.1	3V6．9－6－SK	20180646	12.5
3V3．15－3－SH	20180568	2.0	3V5．3－3－SDS	20180611	4.6	3V6．9－8－SK	20180647	14.3
3V3．15－4－SH	20180569	2.3	3V5．3－4－SDS	20180612	5.1	3V6．9－10－SK	20180640	16.1
3V3．35－1－JA	20180570	1.1	3V5．3－5－SK	20180613	6.2	3V8．0－1－SDS	20180649	4.4
3V3．35－2－SH	20180571	1.3	3V5．3－6－SK	20180614	6.9	3V8．0－2－SDS	20180650	5.4
3V3．35－3－SH	20180572	1.7	3V5．3－8－SK	20180615	8.3	3V8．0－3－SK	20180651	8.6
3V3．35－4－SH	20180573	2.2	3V5．3－10－SK	20180608	9.6	3V8．0－4－SK	20180652	10.1
3V3．65－1－SH	20180574	1.4	3V5．6－1－SH	20180617	3.5	3V8．0－5－SK	20180653	11.6
3V3．65－2－SH	20180575	1.7	3V5．6－2－SH	20180618	4.6	3V8．0－6－SK	20180655	12.7
3V3．65－3－SH	20180576	2.3	3V5．6－3－SDS	20180619	5.2	3V8．0－8－SF	20180656	19.0
3V3．65－4－SH	20180577	2.9	3V5．6－4－SDS	20180620	5.7	3V8．0－10－SF	20180648	21.2
3V4．12－1－SH	20180584	1.9	3V5．6－5－SK	20180621	7.1	3V10．6－1－SDS	20180517	7.1
3V4．12－2－SH	20180585	2.2	3V5．6－6－SK	20180622	7.8	3V10．6－2－SK	20180518	11.1
3V4．12－3－SH	20180586	2.7	3V5．6－8－SK	20180623	9.3	3V10．6－3－SK	20180519	12.7
3V4．12－4－SH	20180587	3.2	3V5．6－10－SK	20180616	10.7	3V10．6－4－SK	20180520	15.3
3V4．5－1－SH	20180588	2.3	3V6．0－1－SH	20180625	3.5	3V10．6－5－SK	20180521	16.9

3V Narrow (Ultra-V) Sheaves

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt. ${ }^{*}$	Part No.	SAP No.	Wt. ${ }^{\text {* }}$
3V10.6-6-SF	20180522	19.1	3V19.0-1-SK	20180533	18.6	3V25.0-5-E	20180559	66.1
3V10.6-8-SF	20180523	22.2	3V19.0-2-SK	20180534	22.2	3V25.0-6-E	20180560	77.7
3V10.6-10-E	20180516	33.2	3V19.0-3-SF	20180535	33.3	3V25.0-8-E	20180561	92.5
3V14.0-1-SK	20180525	12.4	3V19.0-4-SF	20180536	36.3	3V25.0-10-F	20180555	115.8
3V14.0-2-SK	20180526	15.4	3V19.0-5-SF	20180537	43.1	3V33.5-3-SF	20180579	70.8
3V14.0-3-SK	20180527	19.1	3V19.0-6-E	20180538	49.6	3V33.5-4-E	20180580	99.4
3V14.0-4-SK	20180528	22.1	3V19.0-8-E	20180539	61.6	3V33.5-5-E	20180581	105.8
3V14.0-5-SF	20180529	26.7	3V19.0-10-E	20180532	70.7	3V33.5-6-E	20180582	122.0
3V14.0-6-SF	20180530	28.9	3V25.0-2-SF	20180556	37.7	3V33.5-8-F	20180583	144.4
3V14.0-8-E	20180531	43.4	3V25.0-3-SF	20180557	42.0	$3 \mathrm{~V} 33.5-10-\mathrm{F}$	20180578	178.1
3V14.0-10-E	20180524	47.8	$3 \mathrm{~V} 25.0-4-\mathrm{SF}$	20180558	55.3			

5V Narrow (Ultra-V) Sheaves

Part No.	SAP No.	Wt. ${ }^{\text {* }}$	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt. ${ }^{\text {* }}$
5V4.4-2-SH	20180815	3.3	5V6.3-5-SK	20180857	12.3	5V8.5-5-E	20180891	23.9
5V4.4-3-SDS	20180816	4.2	5V6.3-6-SK	20180858	13.8	5V8.5-6-E	20180892	26.4
5V4.4-4-SD	20180817	5.2	5V6.7-2-SK	20180859	9.0	5V8.5-7-E	20180893	28.8
5V4.4-5-SD	20180818	6.2	5V6.7-3-SK	20180860	10.7	5V8.5-8-E	20180894	31.2
5V4.4-6-SD	20180819	7.1	5V6.7-4-SK	20180861	12.3	5V8.5-9-E	20180895	33.7
5V4.65-2-SDS	20180820	3.4	5V6.7-5-SF	20180862	13.6	5V8.5-10-E	20180887	36.1
5V4.65-3-SDS	20180821	4.8	5V6.7-6-SF	20180863	15.2	5V9.0-2-SK	20180897	13.4
5V4.65-4-SD	20180822	6.0	5V7.1-2-SK	20180864	10.4	5V9.0-3-SF	20180898	20.3
5V4.65-5-SD	20180823	7.0	5V7.1-3-SF	20180865	11.8	5V9.0-4-E	20180899	24.6
5V4.65-6-SD	20180824	8.0	5V7.1-4-SF	20180866	13.6	5V9.0-5-E	20180900	27.2
5V4.9-2-SDS	20180825	3.8	5V7.1-5-SF	20180867	15.4	5V9.0-6-E	20180901	29.8
5V4.9-3-SDS	20180826	4.9	5V7.1-6-SF	20180868	17.3	5V9.0-7-E	20180902	32.4
5V4.9-4-SD	20180827	6.6	5V7.1-7-SF	20180869	19.1	5V9.0-8-E	20180903	35.0
5V4.9-5-SD	20180828	7.6	5V7.1-8-SF	20180870	21.0	5V9.0-9-E	20180904	37.6
5V4.9-6-SD	20180829	8.6	5V7.5-2-SK	20180871	12.0	5V9.0-10-F	20180896	44.5
5V5.2-2-SDS	20180830	4.4	5V7.5-3-SF	20180872	13.6	5V9.25-2-SK	20180906	13.7
5V5.2-3-SDS	20180831	5.6	5V7.5-4-SF	20180873	15.7	5V9.25-3-SF	20180907	17.4
5V5.2-4-SD	20180832	7.6	5V7.5-5-SF	20180874	17.8	5V9.25-4-E	20180908	25.9
5V5.2-5-SD	20180833	8.8	5V7.5-6-SF	20180875	19.9	5V9.25-5-E	20180909	28.5
5V5.2-6-SD	20180834	9.9	5V7.5-7-SF	20180876	22.0	5V9.25-6-E	20180910	31.0
5V5.5-2-SDS	20180835	5.1	5V7.5-8-SF	20180877	24.1	5V9.25-7-E	20180911	33.5
5V5.5-3-SDS	20180836	6.4	5V8.0-2-SK	20180879	13.9	5V9.25-8-F	20180912	41.3
5V5.5-4-SD	20180837	8.7	5V8.0-3-SF	20180880	15.7	5V9.25-9-F	20180913	43.8
5V5.5-5-SD	20180838	10.0	5V8.0-4-E	20180881	18.6	5V9.25-10-F	20180905	46.4
5V5.5-6-SD	20180839	11.3	5V8.0-5-E	20180882	20.9	5V9.75-2-SK	20180915	12.6
5V5.9-2-SDS	20180840	5.8	5V8.0-6-E	20180883	23.1	5V9.75-3-SF	20180916	19.7
5V5.9-3-SDS	20180841	7.3	5V8.0-7-E	20180884	25.4	5V9.75-4-E	20180917	29.2
5V5.9-4-SD	20180842	10.0	5V8.0-8-E	20180885	27.7	5V9.75-5-E	20180918	31.9
5V5.9-5-SK	20180843	10.6	5V8.0-9-E	20180886	30.0	5V9.75-6-E	20180919	34.6
5V5.9-6-SK	20180844	12.0	5V8.0-10-E	20180878	32.2	5V9.75-7-E	20180920	37.2
5V6.3-2-SK	20180854	7.6	5V8.5-2-SK	20180888	12.2	5V9.75-8-F	20180921	46.6
5V6.3-3-SK	20180855	9.2	5V8.5-3-SF	20180889	17.9	5V9.75-9-F	20180922	49.3
5V6.3-4-SK	20180856	10.7	5V8.5-4-E	20180890	21.5	5V9.75-10-F	20180914	52.0

5 V Narrow (Ultra-V) Sheaves

Part No.	SAP No.	Wt. ${ }^{\text {* }}$	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
5V10.3-2-SK	20180658	13.7	5V13.2-4-E	20180715	35.8	5V21.2-6-F	20180771	96.2
5V10.3-3-SF	20180659	20.7	5V13.2-5-E	20180716	39.9	5V21.2-7-J	20180773	115.3
5V10.3-4-E	20180660	27.1	5V13.2-6-F	20180717	59.2	5V21.2-8-J	20180774	122.9
5V10.3-5-E	20180661	30.4	5V13.2-7-F	20180719	63.5	5V21.2-9-J	20180775	130.0
5V10.3-6-E	20180662	33.7	5V13.2-8-F	20180720	67.5	5V21.2-10-J	20180766	143.5
5V10.3-7-F	20180664	50.1	5V13.2-9-F	20180722	73.6	5V23.6-2-E	20180778	54.8
5V10.3-8-F	20180665	53.0	5V13.2-10-J	20180711	83.0	5V23.6-3-E	20180779	69.1
5V10.3-9-F	20180666	55.9	5V14.0-2-SF	20180724	22.9	5V23.6-4-F	20180780	87.9
5V10.3-10-F	20180657	58.9	5V14.0-3-E	20180725	31.6	5V23.6-5-F	20180781	101.6
5V10.9-2-SK	20180668	14.5	5V14.0-4-E	20180726	37.9	5V23.6-6-J	20180782	117.5
5V10.9-3-SF	20180669	19.4	5V14.0-5-E	20180727	42.3	5V23.6-7-J	20180784	125.8
5V10.9-4-E	20180670	29.1	5V14.0-6-F	20180728	64.2	5V23.6-8-J	20180785	138.7
5V10.9-5-E	20180671	32.7	5V14.0-7-F	20180730	68.7	5V23.6-9-J	20180786	149.2
5V10.9-6-E	20180672	36.2	5V14.0-8-F	20180731	72.9	5V23.6-10-M	20180776	211.1
5V10.9-7-F	20180674	56.7	5V14.0-9-F	20180732	79.8	5V28.0-2-E	20180788	71.1
5V10.9-8-F	20180675	59.8	5V14.0-10-J	20180723	89.4	5V28.0-3-E	20180789	94.4
5V10.9-9-F	20180676	62.9	5V15.0-2-SF	20180735	24.8	5V28.0-4-F	20180790	115.2
5V10.9-10-F	20180667	65.9	5V15.0-3-E	20180736	35.7	5V28.0-5-F	20180791	132.7
5V11.3-2-SK	20180679	16.3	5V15.0-4-E	20180737	40.8	5V28.0-6-J	20180792	153.1
5V11.3-3-SF	20180680	21.2	5V15.0-5-E	20180738	47.0	5V28.0-7-J	20180794	165.1
5V11.3-4-E	20180681	33.1	5V15.0-6-F	20180739	61.7	5V28.0-8-J	20180795	175.1
5V11.3-5-E	20180682	36.7	5V15.0-7-F	20180741	66.6	5V28.0-9-M	20180796	239.1
5V11.3-6-E	20180683	40.9	5V15.0-8-F	20180742	71.1	5V28.0-10-M	20180787	249.3
5V11.3-7-F	20180685	62.9	5V15.0-9-J	20180744	93.6	5V31.5-3-F	20180798	118.1
5V11.3-8-F	20180686	66.5	5V15.0-10-J	20180733	93.2	5V31.5-4-F	20180799	131.3
5V11.3-9-F	20180687	70.1	5V16.0-2-SF	20180747	27.1	5V31.5-5-J	20180800	158.7
5V11.3-10-F	20180677	73.6	5V16.0-3-E	20180748	38.2	5V31.5-6-J	20180801	182.1
5V11.8-2-SK	20180690	17.1	5V16.0-4-E	20180749	44.1	5V31.5-7-J	20180803	196.2
5V11.8-3-SF	20180691	23.7	5V16.0-5-E	20180750	50.5	5V31.5-8-M	20180804	261.1
5V11.8-4-E	20180692	34.9	5V16.0-6-F	20180751	66.0	5V31.5-9-M	20180805	277.1
5V11.8-5-E	20180693	38.5	5V16.0-7-F	20180753	72.2	5V31.5-10-M	20180797	294.5
5V11.8-6-E	20180694	43.5	5V16.0-8-F	20180754	77.0	5V37.5-3-F	20180807	151.5
5V11.8-7-F	20180696	53.9	5V16.0-9-J	20180755	93.1	5V37.5-4-F	20180808	181.9
5V11.8-8-F	20180697	57.5	5V16.0-10-J	20180745	98.1	5V37.5-5-J	20180809	221.6
5V11.8-9-F	20180699	61.1	5V18.7-2-SF	20180757	36.3	5V37.5-6-J	20180810	237.8
5V11.8-10-F	20180688	64.6	5V18.7-3-E	20180758	47.5	5V37.5-7-M	20180812	315.0
5V12.5-2-SF	20180702	18.9	5V18.7-4-E	20180759	57.3	5V37.5-8-M	20180813	331.6
5V12.5-3-E	20180703	28.3	5V18.7-5-F	20180760	76.5	5V37.5-9-M	20180814	363.9
5V12.5-4-E	20180704	33.7	5V18.7-6-F	20180761	83.0	5V37.5-10-M	20180806	386.4
5V12.5-5-E	20180705	37.5	5V18.7-7-F	20180763	89.3	5V50.0-3-F	20180846	222.5
5V12.5-6-F	20180706	54.7	5V18.7-8-J	20180764	106.3	5V50.0-4-J	20180847	240.8
5V12.5-7-F	20180708	58.7	5V18.7-9-J	20180765	112.7	5V50.0-5-J	20180848	296.8
5V12.5-8-F	20180709	62.4	5V18.7-10-J	20180756	120.4	5V50.0-6-M	20180849	367.5
5V12.5-9-F	20180710	66.4	5V21.2-2-SF	20180767	42.1	5V50.0-7-M	20180851	422.1
5V12.5-10-J	20180700	77.0	5V21.2-3-E	20180768	54.2	5V50.0-8-M	20180852	472.7
5V13.2-2-SF	20180713	20.1	5V21.2-4-E	20180769	66.5	5V50.0-9-M	20180853	494.6
5V13.2-3-E	20180714	30.2	5V21.2-5-F	20180770	87.0	5V50.0-10-M	20180845	548.3

*Weight does not include bushing and is approximate.

Call Toll free: 1-866-711-4673

8V Narrow (Ultra-V) Sheaves

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
8V12.5-4-F	20180925	75.0	8V18.0-5-J	20180962	131.5	8V30.0-6-M	20180999	319.8
8V12.5-5-F	20180926	82.8	8V18.0-6-J	20180963	143.6	8V30.0-8-N	20181000	410.9
8V12.5-6-F	20180927	90.6	8V18.0-8-M	20180964	213.4	$8 \mathrm{~V} 30.0-10-\mathrm{N}$	20180995	505.8
8V12.5-8-J	20180928	113.0	8V18.0-10-M	20180959	248.1	8V30.0-12-P	20180996	584.5
8V12.5-10-J	20180923	132.8	8V18.0-12-M	20180960	303.2	8V35.5-4-M	20181003	294.6
8V12.5-12-M	20180924	163.1	8V19.0-4-F	20180967	116.7	8V35.5-5-M	20181004	356.9
8V13.2-4-F	20180931	68.0	8V19.0-5-J	20180968	142.2	8V35.5-6-N	20181005	415.8
8V13.2-5-F	20180932	77.7	8V19.0-6-J	20180969	155.1	8V35.5-8-N	20181006	523.9
8V13.2-6-F	20180933	86.1	8V19.0-8-M	20180970	228.7	8V35.5-10-P	20181001	618.4
8V13.2-8-J	20180934	109.1	8V19.0-10-M	20180965	266.1	8V35.5-12-P	20181002	711.2
8V13.2-10-J	20180929	132.5	$8 \mathrm{~V} 19.0-12-\mathrm{N}$	20180966	329.2	8V40.0-4-M	20181009	373.0
8V13.2-12-M	20180930	185.2	8V20.0-4-J	20180973	112.3	8V40.0-5-M	20181010	406.3
8V14.0-4-F	20180937	74.0	8V20.0-5-J	20180974	151.5	8V40.0-6-N	20181011	498.1
8V14.0-5-F	20180938	84.7	8V20.0-6-M	20180975	208.1	8V40.0-8-N	20181012	599.7
8V14.0-6-F	20180939	93.6	8V20.0-8-M	20180976	250.6	8V40.0-10-P	20181007	730.3
8V14.0-8-J	20180940	118.1	8V20.0-10-M	20180971	283.9	8V40.0-12-P	20181008	821.9
8V14.0-10-J	20180935	144.9	8V20.0-12-N	20180972	350.4	8V44.5-4-M	20181015	400.2
8V14.0-12-M	20180936	210.9	8V21.2-4-J	20180979	126.8	8V44.5-5-N	20181016	486.2
8V15.0-4-F	20180943	82.2	8V21.2-5-J	20180980	167.8	8V44.5-6-N	20181017	521.6
8V15.0-5-F	20180944	94.3	8V21.2-6-M	20180981	228.6	8V44.5-8-P	20181018	696.2
8V15.0-6-J	20180945	111.1	8V21.2-8-M	20180982	269.8	8V44.5-10-P	20181013	766.9
8V15.0-8-J	20180946	130.4	8V21.2-10-M	20180977	306.0	8V44.5-12-P	20181014	895.4
8V15.0-10-M	20180941	224.5	8V21.2-12-N	20180978	369.3	8V53.0-4-M	20181021	509.6
8V15.0-12-M	20180942	245.5	8V22.4-4-J	20180985	138.2	8V53.0-5-N	20181022	624.8
8V16.0-4-F	20180949	88.4	8V22.4-5-M	20180986	241.6	8V53.0-6-N	20181023	705.7
8V16.0-5-F	20180950	101.7	8V22.4-6-M	20180987	246.2	8V53.0-8-P	20181024	886.0
8V16.0-6-J	20180951	121.5	8V22.4-8-M	20180988	303.7	8V53.0-10-P	20181019	1024.0
8V16.0-8-J	20180952	142.7	8V22.4-10-N	20180983	359.3	8V53.0-12-W	20181020	1305.2
8V16.0-10-M	20180947	262.0	8V22.4-12-N	20180984	406.5	8V63.0-6-P	20181027	890.4
8V16.0-12-M	20180948	285.1	8V24.8-4-M	20180991	212.8	8V63.0-8-P	20181028	1116.9
8V17.0-4-F	20180955	99.0	8V24.8-5-M	20180992	231.9	8V63.0-10-W	20181025	1412.0
8V17.0-5-J	20180956	117.3	8V24.8-6-M	20180993	250.9	8V63.0-12-W	20181026	1540.5
8V17.0-6-J	20180957	131.8	8V24.8-8-N	20180994	365.7	8V71.0-6-P	20181031	1045.8
8V17.0-8-M	20180958	202.1	8V24.8-10-N	20180989	411.3	8V71.0-8-W	20181032	1478.6
8V17.0-10-M	20180953	234.4	8V24.8-12-N	20180990	464.8	8V71.0-10-W	20181029	1617.3
8V17.0-12-M	20180954	286.6	8V30.0-4-M	20180997	252.0	8V71.0-12-W	20181030	1757.8
8V18.0-4-F	20180961	107.7	8V30.0-5-M	20180998	293.0			

*Weight does not include bushing and is approximate.

"A" Classical (Conventional) Sheaves

Part No.	SAP No.	Wt. ${ }^{*}$	Part No.	SAP No.	Wt. ${ }^{*}$	Part No.	SAP No.	Wt. ${ }^{*}$
$3.4-2 \mathrm{~A}-\mathrm{SH}$	20179193	1.9	$4.6-2 \mathrm{~A}-\mathrm{SDS}$	20179273	3.0	$18.0-2 \mathrm{~A}-\mathrm{SK}$	20179098	19.8

[^29]
＂A／B＂Classical （Conventional）Sheaves

Part No．	SAP No．	Wt．＊	Part No．	SAP No．	Wt．＊	Part No．	SAP No．	Wt．＊
$3.4-1 \mathrm{~B}-\mathrm{SH}$	20179192	1.2	5．0－2B－SDS	20179307	4.6	6．2－3B－SD	20179381	10.7
3．4－2B－SH	20179194	2.2	5．0－3B－SD	20179308	7.0	6．2－4B－SD	20179382	11.8
3．4－3B－SH	20179195	3.0	5．0－4B－SD	20179310	8.0	6．2－5B－SK	20179383	13.7
3．4－4B－SD	20179196	4.0	5．0－5B－SD	20179312	9.7	6．2－6B－SK	20179384	15.4
3．4－5B－SD	20179197	4.8	5．0－6B－SD	20179313	10.7	6．2－7B－SF	20179385	16.7
3．4－6B－SD	20179198	5.6	5．2－1B－SDS	20179314	3.3	6．2－8B－SF	20179386	18.5
3．6－1B－SH	20179199	1.4	5．2－2B－SDS	20179316	5.2	6．2－10B－SF	20179378	22.0
3．6－2B－SH	20179200	2.5	5．2－3B－SD	20179317	7.7	6．4－1B－SDS	20179388	4.6
3．6－3B－SH	20179201	3.4	5．2－4B－SD	20179318	9.1	6．4－2B－SDS	20179389	7.1
3．6－4B－SD	20179202	4.6	5．2－5B－SD	20179319	10.5	$6.4-3 \mathrm{~B}-\mathrm{SD}$	20179390	9.4
3．6－5B－SD	20179203	5.5	5．2－6B－SD	20179320	11.9	6．4－4B－SD	20179391	12.3
3．6－6B－SD	20179204	6.4	5．4－1B－SDS	20179322	3.6	6．4－5B－SK	20179392	14.3
3．8－1B－SH	20179205	1.6	5．4－2B－SDS	20179323	5.5	6．4－6B－SK	20179393	16.0
3．8－2B－SH	20179206	2.9	5．4－3B－SD	20179324	8.2	6．4－7B－SF	20179394	17.3
3．8－3B－SH	20179207	3.8	5．4－4B－SD	20179325	9.4	6．4－8B－SF	20179395	19.0
3．8－4B－SD	20179208	5.1	5．4－5B－SK	20179326	10.0	6．4－10B－SF	20179387	22.5
3．8－5B－SD	20179209	6.1	5．4－6B－SK	20179327	11.3	6．6－1B－SDS	20179397	5.4
3．8－6B－SD	20179210	7.0	5．4－7B－SK	20179328	12.7	6．6－2B－SDS	20179398	7.2
4．0－1B－SH	20179254	2.1	5．4－8B－SK	20179329	14.0	6．6－3B－SD	20179399	9.4
4．0－2B－SH	20179255	3.1	5．4－10B－SK	20179321	16.7	6．6－4B－SD	20179400	11.0
4．0－3B－SH	20179256	4.1	5．6－1B－SDS	20179331	3.8	6．6－5B－SK	20179401	15.0
4．0－4B－SD	20179257	5.4	5．6－2B－SDS＊	20179332	5.8	6．6－6B－SK	20179402	16.7
4．0－5B－SD	20179258	6.4	5．6－3B－SD＊	20179334	8.9	6．6－7B－SF	20179403	18.4
4．0－6B－SD	20179259	7.4	5．6－4B－SD	20179336	10.2	6．6－8B－SF	20179404	20.2
4．2－1B－SH	20179260	2.3	5．6－5B－SK	20179338	10.9	6．6－10B－SF	20179396	23.8
4．2－2B－SH	20179261	3.8	5．6－6B－SK	20179339	12.6	6．8－1B－SDS	20179406	5.6
4．2－3B－SH	20179262	4.5	5．6－7B－SK	20179340	14.1	6．8－2B－SDS＊	20179407	7.7
4．2－4B－SD	20179263	5.8	5．6－8B－SK	20179341	15.6	6．8－3B－SD＊	20179408	10.4
4．2－5B－SD	20179264	6.8	5．6－10B－SK	20179330	18.6	6．8－4B－SD	20179409	12.3
4．2－6B－SD	20179265	7.9	5．8－1B－SDS	20179343	3.9	6．8－5B－SK	20179410	16.2
4．4－1B－SH	20179266	2.5	5．8－2B－SDS	20179344	6.4	6．8－6B－SK	20179411	18.1
4．4－2B－SH	20179267	3.8	5．8－3B－SD	20179345	9.6	6．8－7B－SF	20179412	19.5
4．4－3B－SH	20179268	4.9	5．8－4B－SD	20179346	11.0	6．8－8B－SF	20179413	21.4
4．4－4B－SD	20179269	6.3	5．8－5B－SK	20179347	11.7	6．8－10B－SF	20179405	25.2
4．4－5B－SD	20179270	7.3	5．8－6B－SK	20179348	13.5	7．0－1B－SDS	20179415	6.1
4．4－6B－SD	20179271	8.4	5．8－7B－SK	20179349	15.1	7．0－2B－SK＊	20179417	11.3
4．6－1B－SDS	20179272	2.5	5．8－8B－SK	20179350	16.7	7．0－3B－SK＊	20179419	13.2
4．6－2B－SDS	20179274	3.8	5．8－10B－SK	20179342	19.8	7．0－4B－SK	20179421	15.2
4．6－3B－SD	20179275	5.7	6．0－1B－SDS	20179366	4.2	7．0－5B－SF	20179423	16.7
4．6－4B－SD	20179276	6.9	6．0－2B－SDS＊	20179367	6.6	7．0－6B－SF	20179425	18.7
4．6－5B－SD	20179277	8.0	6．0－3B－SD＊	20179368	10.1	7．0－7B－SF	20179427	20.7
4．6－6B－SD	20179278	9.1	6．0－4B－SD	20179370	11.7	7．0－8B－SF	20179429	22.7
4．8－1B－SDS	20179279	2.8	6．0－5B－SK	20179372	12.5	7．0－10B－SF	20179414	26.6
4．8－2B－SDS	20179280	4.2	6．0－6B－SK	20179374	14.5	7．4－1B－SDS	20179432	6.5
4．8－3B－SD	20179281	6.4	6．0－7B－SF	20179376	15.2	7．4－2B－SK	20179433	11.7
4．8－4B－SD	20179282	7.7	6．0－8B－SF	20179377	16.7	7．4－3B－SK	20179434	14.9
4．8－5B－SD	20179283	9.0	6．0－10B－SF	20179365	19.9	7．4－4B－SK	20179435	14.2
4．8－6B－SD	20179284	9.9	6．2－1B－SDS	20179379	4.3	7．4－5B－SF	20179436	18.5
5．0－1B－SDS	20179306	3.1	6．2－2B－SDS	20179380	6.9	7．4－6B－SF	20179437	20.6

"A/B" Classical (Conventional) Sheaves

[^30]
＂A／B＂Classical

（Conventional）SHEAVES（large bore）

Part No．	SAP No．	Wt．＊	Part No．	SAP No．	Wt．＊	Part No．	SAP No．	Wt．＊
5．6－2LB－SF	20332969	6.1	$7.0-2$ LB－SF	20333005	10.8	$9.4-2 L B-S F$	20333011	14.7
5．6－3LB－SF	20333000	7.6	$7.0-3$ LB－SF	20333006	12.7	$9.4-3 L B-S F$	20333012	17.7
6．0－2LB－SF	20333001	7.3	$8.0-2$ LB－SF	20333007	14.8	$11.0-2$ LB－SF	20333013	16.1
6．0－3LB－SF	20333002	8.7	$8.0-3$ LB－SF	20333008	17.1	$11.0-3$ LB－SF	20333014	19.9
6．8－2LB－SF	20333003	10.0	$8.6-2$ LB－SF	20333009	13.0	$15.4-2$ LB－SF	20333015	23.4
6．8－3LB－SF	20333004	11.8	$8.6-3$ LB－SF	20333010	15.3	$15.4-3$ LB－SF	20333016	29.1

＂C＂Classical （Conventional）Sheaves

Part No．	SAP No．	Wt．＊	Part No．	SAP No．	Wt．＊	Part No．	SAP No．	Wt．＊
5．0－3C－SD	20179309	8.6	8．5－2C－SF	20179464	16.6	10．0－4C－E	20178914	38.1
$5.0-4 \mathrm{C}-\mathrm{SD}$	20179311	10.2	8．5－3C－E	20179465	23.7	10．0－5C－E	20178915	42.4
5．6－2C－SD	20179333	8.8	8．5－4C－E	20179466	27.3	10．0－6C－F	20178916	54.0
5．6－3C－SD	20179335	11.1	8．5－5C－E	20179467	30.8	10．0－7C－F	20178917	58.3
5．6－4C－SD	20179337	12.8	8．5－6C－E	20179468	34.4	10．0－8C－F	20178918	62.6
6．0－3C－SF	20179369	9.4	8．5－7C－E	20179469	37.9	10．0－9C－J	20178919	69.9
6．0－4C－SF	20179371	10.9	8．5－8C－E	20179470	41.5	10．0－10C－J	20178109	74.1
6．0－5C－SF	20179373	12.5	8．5－9C－E	20179471	45.0	10．0－12C－J	20178910	82.6
6．0－6C－SF	20179375	14.0	8．5－10C－E	20179462	48.6	10．5－1C－SF	20178922	17.4
7．0－1C－SF	20179416	9.7	9．0－1C－SF	20179484	13.7	10．5－2C－SF	20178923	23.2
7．0－2C－SF	20179418	12.4	9．0－2C－SF	20179487	18.2	10．5－3C－E	20178924	31.4
7．0－3C－SF	20179420	15.2	9．0－3C－E	20179489	26.9	10．5－4C－E	20178925	35.9
7．0－4C－SF	20179422	18.0	9．0－4C－E	20179491	30.7	10．5－5C－E	20178926	40.4
7．0－5C－SF	20179424	20.8	9．0－5C－E	20179492	34.5	10．5－6C－F	20178927	60.0
7．0－6C－SF	20179426	23.6	9．0－6C－F	20179493	43.0	10．5－7C－F	20178928	64.5
7．0－7C－SF	20179428	26.4	9．0－7C－F	20179494	46.7	10．5－8C－F	20178929	69.0
7．0－8C－SF	20179430	29.2	9．0－8C－F	20179495	50.5	10．5－9C－J	20178930	77.7
7．5－1C－SF	20179440	11.4	9．0－9C－J	20179496	54.0	10．5－10C－J	20178920	82.2
7．5－2C－SF	20179441	14.4	9．0－10C－J	20179481	59.6	10．5－12C－J	20178921	91.2
7．5－3C－SF	20179442	17.5	9．0－12C－J	20179482	64.8	11．0－1C－SF	20178935	15.4
7．5－4C－SF	20179443	20.5	9．5－1C－SF	20179508	15.1	11．0－2C－SF	20178937	19.5
7．5－5C－SF	20179444	23.6	9．5－2C－SF	20179509	20.1	$11.0-3 \mathrm{C}-\mathrm{E}$	20178939	33.6
7．5－6C－SF	20179445	26.6	9．5－3C－E	20179510	30.6	11．0－4C－E	20178941	38.4
8．0－1C－SF	20179448	13.0	9．5－4C－E	20179511	34.9	11．0－5C－E	20178943	43.1
8．0－2C－SF	20179450	16.3	9．5－5C－E	20179512	39.1	11．0－6C－F	20178945	66.2
8．0－3C－E	20179452	20.7	9．5－6C－F	20179513	49.1	11．0－7C－F	20178947	70.9
8．0－4C－E	20179454	24.0	9．5－7C－F	20179514	53.3	11．0－8C－F	20178949	75.6
8．0－5C－E	20179456	27.3	9．5－8C－F	20179515	57.6	11．0－9C－J	20178950	85.9
8．0－6C－E	20179458	30.6	9．5－9C－J	20179516	63.6	11．0－10C－J	20178932	90.6
8．0－7C－E	20179459	34.0	9．5－10C－J	20179506	67.8	11．0－12C－J	20178933	100.1
8．0－8C－E	20179460	37.3	9．5－12C－J	20179507	76.2	12．0－1C－SF	20178955	16.9
8．0－9C－E	20179461	40.6	10．0－1C－SF	20178911	16.1	12．0－2C－SF	20178956	21.7
8．0－10C－E	20179446	43.9	10．0－2C－SF	20178912	21.4	12．0－3C－E	20178957	38.4
8．5－1C－SF	20179463	12.6	10．0－3C－E	20178913	33.8	12．0－4C－E	20178959	43.6

"C" Classical (Conventional) Sheaves

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
12.0-5C-E	20178961	48.8	18.0-1C-SF	20179097	27.8	27.0-8C-J	20179189	226.3
12.0-6C-F	20178963	62.5	18.0-2C-SF	20179099	42.2	27.0-9C-J	20179191	226.8
12.0-7C-F	20178965	67.7	18.0-3C-E	20179100	58.6	30.0-2C-F	20179216	82.4
12.0-8C-F	20178966	72.9	18.0-4C-E	20179102	68.6	30.0-3C-F	20179218	115.4
12.0-9C-J	20178968	103.1	18.0-5C-E	20179104	79.1	30.0-4C-F	20179220	136.1
12.0-10C-J	20178951	108.4	18.0-6C-F	20179106	98.3	30.0-5C-F	20179222	160.8
12.0-12C-J	20178953	118.8	18.0-7C-F	20179108	113.9	30.0-6C-J	20179224	192.7
13.0-1C-SF	20178982	18.5	18.0-8C-F	20179109	123.3	30.0-7C-J	20179226	220.8
13.0-2C-SF	20178983	23.9	18.0-9C-J	20179111	139.3	30.0-8C-J	20179228	240.0
13.0-3C-E	20178984	42.4	18.0-10C-J	20179093	148.7	30.0-9C-M	20179229	316.8
13.0-4C-E	20178986	49.4	18.0-12C-J	20179095	172.0	30.0-10C-M	20179212	332.1
13.0-5C-E	20178988	55.1	20.0-1C-SF	20179127	31.8	30.0-12C-M	20179213	362.7
13.0-6C-F	20178990	70.0	20.0-2C-SF	20179129	42.1	36.0-3C-F	20179239	161.7
13.0-7C-F	20178992	75.6	20.0-3C-E	20179131	62.6	36.0-4C-F	20179240	194.2
13.0-8C-F	20178993	81.3	20.0-4C-E	20179133	76.9	36.0-5C-J	20179241	220.3
13.0-9C-J	20178995	95.9	20.0-5C-F	20179136	96.5	36.0-6C-J	20179242	254.5
13.0-10C-J	20178978	101.6	20.0-6C-F	20179139	109.8	36.0-7C-J	20179243	273.1
13.0-12C-J	20178980	116.4	20.0-7C-J	20179142	139.3	36.0-8C-M	20179244	355.3
14.0-1C-SF	20179016	20.3	20.0-8C-J	20179144	146.5	36.0-9C-M	20179245	379.0
14.0-2C-SF	20179017	25.9	20.0-9C-J	20179146	159.2	$36.0-10 \mathrm{C}-\mathrm{M}$	20179237	397.5
14.0-3C-E	20179018	41.7	20.0-10C-J	20179122	169.7	36.0-12C-M	20179238	434.5
14.0-4C-E	20179020	50.7	20.0-12C-M	20179124	257.4	44.0-3C-F	20179294	242.8
14.0-5C-E	20179022	57.2	24.0-1C-SF	20333017	41.2	44.0-4C-J	20179295	270.4
14.0-6C-F	20179024	73.0	24.0-2C-SF	20179156	57.6	44.0-5C-J	20179296	293.2
14.0-7C-F	20179026	81.8	24.0-3C-E	20179157	78.7	44.0-6C-J	20179297	315.9
14.0-8C-F	20179027	88.0	24.0-4C-F	20179159	100.4	44.0-7C-M	20179298	429.2
14.0-9C-J	20179029	104.5	24.0-5C-F	20179161	106.7	44.0-8C-M	20179299	452.0
14.0-10C-J	20179012	110.8	24.0-6C-F	20179163	122.1	44.0-9C-M	20179300	474.6
14.0-12C-J	20179014	127.3	24.0-7C-J	20179165	168.5	44.0-10C-M	20179292	531.8
16.0-1C-SF	20179066	23.5	24.0-8C-J	20179166	173.4	44.0-12C-M	20179293	577.3
16.0-2C-SF	20179068	32.2	24.0-9C-J	20179167	191.7	50.0-3C-F	20179353	304.1
16.0-3C-E	20179070	49.8	24.0-10C-M	20179154	263.1	50.0-4C-J	20179354	337.4
16.0-4C-E	20179073	60.2	24.0-12C-M	20179155	286.2	50.0-5C-J	20179355	365.8
16.0-5C-E	20179076	71.2	27.0-2C-F	20179179	79.4	50.0-6C-M	20179356	484.4
16.0-6C-F	20179079	87.7	27.0-3C-F	20179180	103.0	50.0-7C-M	20179357	512.8
16.0-7C-F	20179082	100.7	27.0-4C-F	20179182	116.8	50.0-8C-M	20179358	541.1
16.0-8C-F	20179084	108.6	27.0-5C-F	20179184	129.2	50.0-9C-M	20179359	569.5
16.0-9C-J	20179086	130.2	27.0-6C-J	20179186	158.8	50.0-10C-M	20179351	662.9
16.0-10C-J	20179061	141.3	27.0-7C-J	20179188	195.8	50.0-12C-M	20179352	719.6
16.0-12C-J	20179063	160.3						

[^31]
"D" Classical (Conventional) Sheaves

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
12.0-3D-F	20178958	59.2	15.0-8D-J	20179043	149.7	22.0-6D-M	20179152	250.9
12.0-4D-F	20178960	69.0	15.0-10D-M	20179037	257.2	22.0-8D-M	20179153	318.5
12.0-5D-F	20178962	79.4	15.0-12D-M	20179038	281.2	$22.0-10 \mathrm{D}-\mathrm{M}$	20179147	368.3
$12.0-6 \mathrm{D}-\mathrm{J}$	20178964	105.9	15.5-3D-F	20179055	80.4	$22.0-12 \mathrm{D}-\mathrm{M}$	20179148	412.2
12.0-8D-J	20178967	124.5	15.5-4D-F	20179056	92.8	24.0-3D-J	20179158	140.3
$12.0-10 \mathrm{D}-\mathrm{M}$	20178952	157.5	15.5-5D-F	20179057	108.0	24.0-4D-J	20179160	176.3
$12.0-12 \mathrm{D}-\mathrm{M}$	20178954	176.1	15.5-6D-J	20179058	132.9	24.0-5D-J	20179162	200.2
13.0-3D-F	20178985	63.0	15.5-8D-J	20179059	159.2	24.0-6D-M	20179164	278.4
13.0-4D-F	20178987	74.8	15.5-10D-M	20179053	275.5	27.0-3D-J	20179181	167.5
13.0-5D-F	20178989	85.1	15.5-12D-M	20179054	300.4	27.0-4D-J	20179183	199.5
$13.0-6 \mathrm{D}-\mathrm{J}$	20178991	104.3	16.0-3D-F	20179071	84.3	27.0-5D-M	20179185	290.1
$13.0-8 \mathrm{D}-\mathrm{J}$	20178994	124.2	16.0-4D-F	20179074	97.1	27.0-6D-M	20179187	319.6
13.0-10D-M	20178979	189.2	16.0-5D-F	20179077	113.1	27.0-8D-M	20179190	391.7
13.0-12D-M	20178981	209.7	$16.0-6 \mathrm{D}-\mathrm{J}$	20179080	139.0	27.0-10D-M	20179177	450.8
13.5-3D-F	20178998	66.2	$16.0-8 \mathrm{D}-\mathrm{J}$	20179085	166.3	$27.0-12 \mathrm{D}-\mathrm{N}$	20179178	560.0
13.5-4D-F	20178999	78.7	16.0-10D-M	20179062	253.2	$33.0-3 \mathrm{D}-\mathrm{J}$	20179232	218.9
13.5-5D-F	20179000	89.4	16.0-12D-M	20179064	278.9	33.0-4D-M	20179233	315.0
13.5-6D-J	20179001	109.8	17.0-4D-J	20179089	110.9	$33.0-5 \mathrm{D}-\mathrm{M}$	20179234	352.9
13.5-8D-J	20179002	130.4	17.0-5D-J	20179090	128.1	$33.0-6 \mathrm{D}-\mathrm{M}$	20179235	427.7
13.5-10D-M	20178996	205.4	17.0-6D-J	20179091	145.3	33.0-8D-M	20179236	489.3
13.5-12D-M	20178997	226.8	17.0-8D-J	20179092	176.3	$33.0-10 \mathrm{D}-\mathrm{N}$	20179230	641.7
14.0-3D-F	20179019	69.4	17.0-10D-M	20179087	261.0	$33.0-12 \mathrm{D}-\mathrm{N}$	20179231	729.3
14.0-4D-F	20179021	82.7	17.0-12D-M	20179088	288.6	40.0-3D-J	20179287	267.4
14.0-5D-F	20179023	93.9	18.0-3D-J	20179101	109.0	40.0-4D-M	20179288	380.1
$14.0-6 \mathrm{D}-\mathrm{J}$	20179025	115.4	18.0-4D-J	20179103	129.0	40.0-5D-M	20179289	445.4
14.0-8D-J	20179028	136.7	18.0-5D-J	20179105	144.9	40.0-6D-M	20179290	498.4
14.0-10D-M	20179013	222.1	18.0-6D-J	20179107	165.0	$40.0-8 \mathrm{D}-\mathrm{N}$	20179291	653.3
14.0-12D-M	20179015	244.4	18.0-8D-M	20179110	242.1	40.0-10D-N	20179285	814.0
14.5-3D-F	20179032	72.8	18.0-10D-M	20179094	276.3	40.0-12D-P	20179286	938.3
14.5-4D-F	20179033	86.8	18.0-12D-M	20179096	308.1	48.0-5D-M	20179303	586.8
14.5-5D-F	20179034	100.8	20.0-4D-J	20179134	135.4	48.0-6D-M	20179304	660.6
14.5-6D-J	20179035	121.1	20.0-5D-J	20179137	154.6	$48.0-8 \mathrm{D}-\mathrm{N}$	20179305	820.8
14.5-8D-J	20179036	143.1	20.0-6D-J	20179140	173.7	48.0-10D-P	20179301	987.0
14.5-10D-M	20179030	239.4	20.0-8D-M	20179145	271.4	48.0-12D-P	20179302	1175.4
14.5-12D-M	20179031	262.5	20.0-10D-M	20179123	311.7	58.0-5D-M	20179362	698.2
15.0-3D-F	20179039	78.9	20.0-12D-M	20179125	351.8	$58.0-6 \mathrm{D}-\mathrm{N}$	20179363	862.9
15.0-4D-F	20179040	91.0	22.0-3D-J	20179149	126.7	$58.0-8 \mathrm{D}-\mathrm{N}$	20179364	1063.6
15.0-5D-F	20179041	105.7	$22.0-4 \mathrm{D}-\mathrm{J}$	20179150	159.8	58.0-10D-P	20179360	1253.0
15.0-6D-J	20179042	126.9	22.0-5D-J	20179151	181.4	58.0-12D-P	20179361	1454.8

[^32]
QT Sheaves - Single A Groove

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
AK30-QT	20179574	1.1	AK59-QT	20179585	2.4	AK94-QT	20179595	4.4
AK32-QT	20179575	1.2	AK61-QT	20179586	2.5	AK99-QT	20179596	4.7
AK34-QT	20179576	1.2	AK64-QT	20179587	2.7	AK104-QT	20179566	4.5
AK39-QT	20179577	1.4	AK66-QT	20179588	2.8	AK109-QT	20179567	5.1
AK41-QT	20179578	1.6	AK69-QT	20179589	3.2	AK114-QT	20179568	5.5
AK44-QT	20179579	1.9	AK71-QT	20179590	3.1	AK124-QT	20179569	6.1
AK46-QT	20179580	1.9	AK74-QT	20179591	3.3	AK134-QT	20179570	7.4
AK49-QT	20179581	2.1	AK79-QT	20179592	3.5	AK144-QT	20179571	7.8
AK51-QT	20179582	2.3	AK84-QT	20179593	3.6	AK154-QT	20179572	8.8
AK54-QT	20179583	2.0	AK89-QT	20179594	4.0	AK184-QT	20179573	11.3
AK56-QT	20179584	2.3						

QT Sheaves - Two A Groove

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
2AK30-QT	20179524	1.4	2AK51-QT	20179532	3.2	2AK94-QT	20179540	6.1
2AK32-QT	20179525	1.7	2AK54-QT	20179533	3.4	2AK104-QT	20179517	7.7
2AK34-QT	20179526	1.8	2AK56-QT	20179534	3.6	2AK114-QT	20179518	8.5
2AK39-QT	20179527	1.8	2AK59-QT	20179535	3.4	2AK124-QT	20179519	9.5
2AK41-QT	20179528	1.9	2AK61-QT	20179536	4.4	2AK134-QT	20179520	11.4
2AK44-QT	20179529	2.4	2AK64-QT	20179537	3.9	2AK144-QT	20179521	11.9
2AK46-QT	20179530	2.5	2AK74-QT	20179538	4.9	2AK154-QT	20179522	13.3
2AK49-QT	20179531	3.1	2AK84-QT	20179539	4.8	2AK184-QT	20179523	16.8

QT Sheaves - Single B Groove

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
BK30-QT	20179607	1.2	BK60-QT	20179618	2.5	BK95-QT	20179629	5.0
BK32-QT	20179608	1.4	BK62-QT	20179619	2.6	BK100-QT	20179597	5.2
BK34-QT	20179609	1.6	BK65-QT	20179620	2.8	BK105-QT	20179598	5.5
BK36-QT	20179610	1.2	BK67-QT	20179621	2.9	BK110-QT	20179599	6.0
BK40-QT	20179611	1.4	BK70-QT	20179622	2.8	BK115-QT	20179600	6.4
BK45-QT	20179612	1.8	BK72-QT	20179623	3.1	BK120-QT	20179601	6.9
BK47-QT	20179613	2.2	BK75-QT	20179624	3.3	BK130-QT	20179602	6.9
BK50-QT	20179614	2.0	BK77-QT	20179625	3.6	BK140-QT	20179603	8.5
BK52-QT	20179615	2.1	BK80-QT	20179626	3.4	BK150-QT	20179604	9.5
BK55-QT	20179616	2.7	BK85-QT	20179627	3.6	BK160-QT	20179605	9.8
BK57-QT	20179617	2.7	BK90-QT	20179628	4.3	BK190-QT	20179606	12.8

[^33]
Qt Sheaves－Two B Groove

Part No．	SAP No．	Wt．＊	Part No．	SAP No．	Wt．＊	Part No．	SAP No．	Wt．＊
2BK32－QT	20179548	2.0	2BK57－QT	20179557	4.3	2BK90－QT	20179565	7.6
2BK34－QT	20179549	2.4	2BK60－QT	20179558	4.4	2BK100－QT	20179541	8.4
2BK36－QT	20179550	2.0	2BK62－QT	20179559	4.5	2BK110－QT	20179542	9.3
2BK40－QT	20179551	2.4	2BK65－QT	20179560	4.5	2BK120－QT	20179543	11.0
2BK45－QT	20179552	3.0	2BK67－QT	20179561	5.0	2BK130－QT	20179544	13.1
2BK47－QT	20179553	2.8	2BK70－QT	20179562	5.1	2BK140－QT	20179545	14.8
2BK50－QT	20179554	3.3	2BK72－QT	20179563	5.4	2BK160－QT	20179546	17.5
2BK52－QT	20179555	3.6	2BK80－QT	20179564	6.4	2BK190－QT	20179547	21.5
2BK55－QT	20179556	3.9						

FHP Bored－to－Size Single A Groove Sheaves

Part No．	SAP No．	Wt．＊	Part No．	SAP No．	Wt．＊	Part No．	SAP No．	Wt．＊
AK15－1／2	20179929	0.3	AK25－7／8	20179970	33.3	AK39－5／8	20180008	66.3
AK15－5／8	20179930	1.3	AK26－1／2	20179971	34.3	AK39－3／4	20180007	67.3
AK16－1／2	20179935	2.3	AK26－5／8	20179973	35.3	AK39－7／8	20180009	68.3
AK16－5／8	20179936	3.3	AK26－3／4	20179972	36.3	AK39－15／16	20180011	69.3
AK17－1／2	20179937	4.3	AK27－1／2	20179975	37.3	AK39－1	20180005	70.3
AK17－5／8	20179939	5.3	AK27－5／8	20179977	38.3	AK41－1／2	20180014	71.3
AK17－3／4	20179938	6.3	AK27－3／4	20179976	39.3	AK41－5／8	20180017	72.3
AK18－5／8	20179940	7.3	AK27－1	20179974	40.3	AK41－3／4	20180016	73.3
AK19－1／2	20179945	8.3	AK28－1／2	20179979	41.3	AK41－7／8	20180018	74.3
AK19－5／8	20179947	9.3	AK28－5／8	20179981	42.3	AK41－15／16	20180015	75.3
AK19－3／4	20179946	10.3	AK28－3／4	20179980	43.3	AK41－1	20180012	76.3
AK19－7／8	20179948	11.3	AK28－7／8	20179982	44.3	AK41－1 1／8	20180013	77.3
AK20－1／2	20179949	12.3	AK30－1／2	20179984	45.3	AK44－1／2	20180021	78.3
AK20－5／8	20179951	13.3	AK30－5／8	20179986	46.3	AK44－5／8	20180023	79.3
AK20－3／4	20179950	14.3	AK30－3／4	20179985	47.3	AK44－3／4	20180022	80.3
AK21－1／2	20179952	15.3	AK30－7／8	20179987	48.3	AK44－7／8	20180024	81.3
AK21－5／8	20179954	16.3	AK30－1	20179983	49.3	AK44－15／16	20180025	82.3
AK21－3／4	20179953	17.3	AK32－1／2	20179989	50.3	AK44－1	20180019	83.3
AK22－1／2	20179955	18.3	AK32－5／8	20179991	51.3	AK44－1 1／8	20180020	84.3
AK22－5／8	20179957	19.3	AK32－3／4	20179990	52.3	AK46－1／2	20180028	85.3
AK22－3／4	20179956	20.3	AK32－7／8	20179992	53.3	AK46－5／8	20180030	86.3
AK22－7／8	20179958	21.3	AK32－1	20179988	54.3	AK46－3／4	20180029	87.3
AK23－1／2	20179959	22.3	AK34－1／2	20179996	55.3	AK46－7／8	20180031	88.3
AK23－5／8	20179961	23.3	AK34－5／8	20179998	56.3	AK46－15／16	20180032	89.3
AK23－3／4	20179960	24.3	AK34－3／4	20179997	57.3	AK46－1	20180026	90.3
AK24－1／2	20179963	25.3	AK34－7／8	20179999	58.3	AK46－1 1／8	20180027	91.3
AK24－5／8	20179965	26.3	AK34－1	20179994	59.3	AK49－1／2	20180035	92.3
AK24－3／4	20179964	27.3	AK35－1／2	20180001	60.3	AK49－5／8	20180038	93.3
AK24－7／8	20179966	28.3	AK35－5／8	20180003	61.3	AK49－3／4	20180037	94.3
AK24－1	20179962	29.3	AK35－3／4	20180002	62.3	AK49－7／8	20180039	95.3
AK25－1／2	20179967	30.3	AK35－7／8	20180004	63.3	AK49－15／16	20180036	96.3
AK25－5／8	20179969	31.3	AK35－1	20180000	64.3	AK49－1	20180033	97.3
AK25－3／4	20179968	32.3	AK39－1／2	20180006	65.3	AK49－1 1／8	20180034	98.3

FHP Bored-to-Size Single A Groove Sheaves

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
AK51-1/2	20180042	99.3	AK66-5/8	20180089	145.3	AK94-15/16	20180136	191.3
AK51-5/8	20180044	100.3	AK66-3/4	20180088	146.3	AK94-1	20180129	192.3
AK51-3/4	20180043	101.3	AK66-1	20180086	147.3	AK94-1 3/16	20180131	193.3
AK51-7/ 8	20180045	102.3	AK66-1 1/8	20180087	148.3	AK94-1 1/4	20180130	194.3
AK51-1	20180040	103.3	AK69-3/4	20180092	149.3	AK94-1 7/16	20180132	195.3
AK51-1 1/8	20180041	104.3	AK69-1	20180090	150.3	AK99-3/4	20180139	196.3
AK54-1/2	20180048	105.3	AK69-1 1/8	20180091	151.3	AK99-1	20180137	197.3
AK54-5/8	20180051	106.3	AK71-1/2	20180096	152.3	AK99-1 7/16	20180138	198.3
AK54-3/4	20180050	107.3	AK71-5/8	20180098	153.3	AK104-5/8	20179903	199.3
AK54-7/8	20180052	108.3	AK71-3/4	20180097	154.3	AK104-3/4	20179902	200.3
AK54-15/16	20180049	109.3	AK71-1	20180093	155.3	AK104-1	20179897	201.3
AK54-1	20180046	110.3	AK71-1 1/8	20180094	156.3	AK104-1-3/16	20179899	202.3
AK54-1 1/8	20180053	111.3	AK71-1 7/16	20180095	157.3	AK104-1-1/4	20179898	203.3
AK54-1 3/16	20180047	112.3	AK74-1/2	20180104	158.3	AK104-1-3/8	20179900	204.3
AK56-1/2	20180057	113.3	AK74-5/8	20180106	159.3	AK104-1-7/16	20179901	205.3
AK56-5/8	20180059	114.3	AK74-3/4	20180105	160.3	AK109-3/4	20179906	206.3
AK56-3/4	20180058	115.3	AK74-15/16	20180107	161.3	AK109-1	20179904	207.3
AK56-7/8	20180060	116.3	AK74-1	20180099	162.3	AK109-1 3/8	20179907	208.3
AK56-15/16	20180061	117.3	AK74-1 1/8	20180101	163.3	AK109-1-7/16	20179905	209.3
AK56-1	20180054	118.3	AK74-1 3/16	20180102	164.3	AK114-3/4	20179911	210.3
AK56-1 1/8	20180055	119.3	AK74-1 1/4	20180100	165.3	AK114-1	20179908	211.3
AK56-1 3/16	20180056	120.3	AK74-1 7/16	20180103	166.3	AK114-1-3/16	20179909	212.3
AK59-1/2	20180064	121.3	AK79-3/4	20180110	167.3	AK114-1-7/16	20179910	213.3
AK59-5/8	20180067	122.3	AK79-1	20180108	168.3	AK124-5/8	20179917	214.3
AK59-3/4	20180066	123.3	AK79-1 1/8	20180109	169.3	AK124-3/4	20179916	215.3
AK59-7/8	20180068	124.3	AK79-1 7/16	20180111	170.3	AK124-1	20179912	216.3
AK59-15/16	20180069	125.3	AK81-5/8	20180115	171.3	AK124-1 3/16	20179913	217.3
AK59-1	20180062	126.3	AK81-3/4	20180114	172.3	AK124-1-1/4	20179914	218.3
AK59-1-1/8	20180065	127.3	AK81-1	20180112	173.3	AK124-1-7/16	20179915	219.3
AK59-1 3/16	20180063	128.3	2AK84-1 3/16	20179764	174.3	AK134-3/4	20179922	220.3
AK61-1/2	20180073	129.3	AK84-1/2	20180120	175.3	AK134-1	20179918	221.3
AK61-5/8	20180075	130.3	AK84-5/8	20180122	176.3	AK134-1-3/16	20179919	222.3
AK61-3/4	20180074	131.3	AK84-3/4	20180121	177.3	AK134-1-3/8	20179920	223.3
AK61-7/8	20180076	132.3	AK84-15/16	20180116	178.3	AK134-1-7/16	20179921	224.3
AK61-15/16	20180077	133.3	AK84-1	20180117	179.3	AK144-3/4	20179928	225.3
AK61-1	20180070	134.3	AK84-1 3/16	20180118	180.3	AK144-1	20179925	226.3
AK61-1 1/8	20180071	135.3	AK84-1 7/16	20180119	181.3	AK144-1-3/16	20179926	227.3
AK61-1 3/16	20180072	136.3	AK89-3/4	20180126	182.3	AK144-1-7/16	20179927	228.3
AK64-1/2	20180081	137.3	AK89-1	20180123	183.3	AK154-3/4	20179934	229.3
AK64-5/8	20180083	138.3	AK89-1 1/8	20180124	184.3	AK154-1	20179931	230.3
AK64-3/4	20180082	139.3	AK89-1 7/16	20180125	185.3	AK154-1-7/16	20179933	231.3
AK64-7/8	20180084	140.3	AK91-3/4	20180128	186.3	AK184-3/4	20179944	232.3
AK64-15/16	20180085	141.3	AK91-1	20180127	187.3	AK184-1	20179941	233.3
AK64-1	20180078	142.3	AK94-1/2	20180133	188.3	AK184-1-3/16	20179942	234.3
AK64-1 1/8	20180079	143.3	AK94-5/8	20180135	189.3	AK184-1-7/16	20179943	235.3
AK64-1 3/16	20180080	144.3	AK94-3/4	20180134	190.3			

*Weight does not include bushing and is approximate.

FHP Bored-TO-Size Single B Groove Sheaves

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.**
BK19-5/8	20180181	0.7	BK34-1 1/8	20180241	1.8	BK55-1 3/16	20180290	4.0
BK19-3/4	20180180	0.7	BK36-1/2	20180248	2.0	BK57/HA54 5/8	20180295	4.1
BK22-1/2	20180190	0.9	BK36-5/8	20180250	2.0	BK57-3/4	20180298	4.1
BK22-5/8	20180192	0.9	BK36-3/4	20180249	2.0	BK57-7/8	20180299	4.1
BK22-3/4	20180191	0.9	BK36-7/8	20180251	2.0	BK57-15/16	20180300	4.1
BK22-7/8	20180193	0.9	BK36-1	20180246	2.0	BK57-1	20180296	4.1
BK22-1	20180189	0.9	BK36-1 1/8	20180247	2.0	BK57-1 1/8	20180297	4.1
BK23-5/8	20180194	0.9	BK40-1/2	20180254	2.2	BK60-1/2	20180303	3.8
BK23-1	20180195	0.9	BK40-5/8	20180256	2.2	BK60-5/8	20180306	3.8
BK24-1/2	20180200	0.9	BK40-3/4	20180255	2.2	BK60-3/4	20180305	3.8
BK24-5/8	20180202	0.9	BK40-7/8	20180257	2.2	BK60-7/8	20180307	3.8
BK24-3/4	20180201	0.9	BK40-1	20180252	2.2	BK60-1	20180301	3.8
BK24-7/8	20180203	0.9	BK40-1 1/8	20180253	2.2	BK60-1-1/8	20180304	3.8
BK24-1	20180199	0.9	BK45-1/2	20180260	2.7	BK60-1 3/16	20180302	3.8
BK25-1/2	20180204	1.1	BK45-5/8	20180262	2.7	BK62-1/2	20180311	3.6
BK25-5/8	20180206	1.1	BK45-3/4	20180261	2.7	BK62-5/8	20180313	3.6
BK25-3/4	20180205	1.1	BK45-7/8	20180263	2.7	BK62-3/4	20180312	3.6
BK25-7/8	20180207	1.1	BK45-1	20180258	2.7	BK62-7/8	20180314	3.6
BK26-1/2	20180208	1.2	BK45-1 1/ 8	20180259	2.7	BK62-15/16	20180315	3.6
BK26-5/8	20180210	1.2	BK46-7/8	20180264	2.7	BK62-1	20180308	3.6
BK26-3/4	20180209	1.2	BK47-1/2	20180267	2.9	BK62-1 1/8	20180309	3.6
BK26-7/8	20180211	1.2	BK47-5/8	20180269	2.9	BK62-1 13/16	20333018	3.6
BK27-1/2	20180213	1.1	BK47-3/4	20180268	2.9	BK64-5/8	20180318	3.7
BK27-5/8	20180215	1.1	BK47-7/8	20180270	2.9	BK64-3/4	20333019	3.7
BK27-3/4	20180214	1.1	BK47-1	20180265	2.9	BK64-7/8	20180319	3.7
BK27-7/8	20180216	1.1	BK47-1 1/8	20180266	2.9	BK65-5/8	20180323	3.7
BK27-1 1/8	20180212	1.1	BK48-5/8	20180273	3.0	BK65-3/4	20180322	3.7
BK28-1/2	20180219	1.4	BK48-3/4	20180272	3.0	BK65-1	20180320	3.7
BK28-5/8	20180221	1.4	BK48-7/8	20180274	3.0	BK65-1 1/8	20180321	3.7
BK28-3/4	20180220	1.4	BK48-1 1/8	20180271	3.0	BK67-5/8	20180327	3.7
BK28-7/8	20180222	1.4	BK50-1/2	20180277	3.2	BK67-3/4	20180326	3.7
BK28-1	20180217	1.4	BK50-5/8	20180279	3.2	BK67-1	20180324	3.7
BK28-1 1/8	20180218	1.4	BK50-3/4	20180278	3.2	BK67-1 1/8	20333020	3.7
BK30-1/2	20180225	1.5	BK50-7/8	20180280	3.2	BK70-5/8	20180335	3.7
BK30-5/8	20180227	1.5	BK50-15/16	20180281	3.2	BK70-3/4	20180334	3.7
BK30-3/4	20180226	1.5	BK50-1	20180275	3.2	BK70-15/16	20180336	3.7
BK30-7/8	20180228	1.5	BK50-1 1/8	20180276	3.2	BK70-1	20180330	3.7
BK30-1	20180223	1.5	BK52-1/2	20180284	3.4	BK70-1-1/8	20180332	3.7
BK30-1 1/8	20180224	1.5	BK52-5/8	20180286	3.4	BK70-1 13/16	20333021	3.7
BK32-1/2	20180236	1.5	BK52-3/4	20180285	3.4	BK70-1-7/16	20180333	3.7
BK32-5/8	20180238	1.5	BK52-7/8	20180287	3.4	BK72-3/4	20180341	3.8
BK32-3/4	20180237	1.5	BK52-1	20180282	3.4	BK72-1	20180337	3.8
BK32-7/8	20180239	1.5	BK52-1 1/8	20180283	3.4	BK72-1-1/8	20180339	3.8
BK32-1	20180235	1.5	BK55-1/2	20180291	4.0	BK72-1-3/8	20180340	3.8
BK34-1/2	20180242	1.8	BK55-5/8	20180293	4.0	BK72-1 7/16	20180338	3.8
BK34-5/8	20180244	1.8	BK55-3/4	20180292	4.0	BK75-3/4	20180345	4.3
BK34-3/4	20180243	1.8	BK55-7/8	20180294	4.0	BK75-1	20180342	4.3
BK34-7/8	20180245	1.8	BK55-1	20180288	4.0	BK75-1 1/8	20180343	4.3
BK34-1	20180240	1.8	BK55-1 1/8	20180289	4.0	BK75-1 7/16	20180344	4.3

FHP Bored-to-Size Single B Groove Sheaves

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
BK77-3/4	20180350	4.5	BK90-1 7/16	20180372	6.0	BK115-1	20180157	8.7
BK77-1	20180346	4.5	BK92-3/4	20180379	6.2	BK115-1 3/8	20180158	8.7
BK77-1 1/8	20180347	4.5	BK92-7/8	20180380	6.2	BK115-1 7/16	20180159	8.7
BK77-1 3/8	20180348	4.5	BK92-1 1/8	20180376	6.2	BK120-3/4	20180164	9.2
BK77-1 7/16	20180349	4.5	BK95-3/4	20180385	6.3	BK120-1	20180160	9.2
BK80-5/8	20180358	5.1	BK95-1	20180381	6.3	BK120-1 13/16	20333024	9.2
BK80-3/4	20180357	5.1	BK95-1-1/8	20180383	6.3	BK120-1-3/8	20180163	9.2
BK80-7/8	20180359	5.1	BK95-1-3/8	20180384	6.3	BK120-1 7/16	20180162	9.2
BK80-1	20180351	5.1	BK95-1 7/16	20180382	6.3	BK130-3/4	20180168	9.6
BK80-1 1/8	20180353	5.1	BK100-3/4	20180146	7.2	BK130-1	20180165	9.6
BK85-1 3/16	20180362	5.1	BK100-7/8	20180147	7.2	BK130-1 1/8	20180170	9.6
BK80-1 1/4	20180352	5.1	BK100-1	20180140	7.2	BK130-1 13/16	20333025	9.6
BK80-1 3/8	20180355	5.1	BK100-1 1/8	20180141	7.2	BK130-1-7/16	20180167	9.6
BK80-1 7/16	20180356	5.1	BK100-13/16	20180142	7.2	BK140-3/4	20180174	11.2
BK85-3/4	20180365	5.5	BK100-1-1/4	20180144	7.2	BK140-1	20180171	11.2
BK85-1	20180360	5.5	BK100-1-3/8	20180145	7.2	BK140-1 13/16	20333026	11.2
BK85-1 1/8	20180361	5.5	BK100-1 7/16	20180143	7.2	BK140-1-7/16	20180173	11.2
BK85-1 13/16	20333022	5.5	BK105-1	20180148	7.7	BK160-1	20180175	12.9
BK85-1 3/8	20180363	5.5	BK105-1 3/8	20180149	7.7	BK160-1 1/8	20180177	12.9
BK85-1-7/16	20180364	5.5	BK105-1 7/16	20180150	7.7	BK160-1 13/16	20333027	12.9
BK90-3/4	20180370	6.0	BK110-3/4	20180156	8.2	BK160-1 1/4	20180176	12.9
BK90-7/8	20180371	6.0	BK110-1	20180151	8.2	BK160-1 7/16	20180179	12.9
BK90-15/16	20180373	6.0	BK110-1 1/8	20180152	8.2	BK190-1	20180182	14.5
BK90-1	20180366	6.0	BK110-113/16	20333023	8.2	BK190-113/16	20333028	14.5
BK90-1-1/8	20180367	6.0	BK110-1-3/8	20180154	8.2	BK190-1 1/4	20180183	14.5
BK90-1-3/16	20180368	6.0	BK110-1-7/16	20180155	8.2	BK190-1-7/16	20180184	14.5
BK90-1-3/8	20180369	6.0						

FHP Bored-TO-SizE Two A Groove Sheaves

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
2AK20-1/2	20179650	0.9	2AK23-3/4	20179663	1.3	2AK27-7/8	20179677	1.8
2AK20-5/8	20179652	0.9	2AK23-7/8	20179665	1.3	2AK27-1	20179674	1.8
2AK20-3/4	20179651	0.9	2AK23-1	20179662	1.3	2 AK28-5/8	20179681	2.0
2AK21-1/2	20179654	1.1	2AK25-5/8	20179668	1.5	2 AK28-3/4	20179680	2.0
2AK21-5/8	20179656	1.1	2AK25-3/4	20179667	1.5	2 AK28-7/8	20179682	2.0
2AK21-3/4	20179655	1.1	2AK25-7/8	20179669	1.5	2 AK28-1	20179679	2.0
2AK22-1/2	20179657	1.2	2AK25-1	20179666	1.5	2AK30-1/2	20179685	2.2
2AK22-5/8	20179659	1.2	2AK26-5/8	20179672	1.5	2AK30-5/8	20179687	2.2
2AK22-3/4	20179658	1.2	2AK26-3/4	20179671	1.5	2AK30-3/4	20179686	2.2
2AK22-7/8	20179660	1.2	2AK26-7/8	20179673	1.5	2AK30-7/8	20179688	2.2
2AK22-1	20179661	1.2	2AK27-5/8	20179676	1.8	2AK30-1	20179683	2.2
2AK23-5/8	20179664	1.3	2AK27-3/4	20179675	1.8	2AK30-1 1/8	20179684	2.2

*Weight does not include bushing and is approximate.

FHP Bored-TO-Size Two A Groove Sheaves

Part No.	SAP No.	Wt.**	Part No.	SAP No.	Wt.**	Part No.	SAP No.	Wt.**
2AK32-5/8	20179692	2.4	2AK51-3/4	20179726	2.9	2AK74-1-3/8	20179756	5.8
2AK32-3/4	20179691	2.4	2AK51-7/8	20179727	2.9	2AK74-1-7/16	20179757	5.8
2AK32-7/8	20179693	2.4	2AK51-1	20179723	2.9	2AK84-3/4	20179763	6.9
2AK32-1	20179689	2.4	2AK51-1 1/8	20179724	2.9	2AK84-15/16	20179765	6.9
2AK32-1 1/8	20179690	2.4	2AK51-1-3/8	20179725	2.9	2AK84-1	20179759	6.9
2AK34-5/8	20179697	2.7	2AK54-5/8	20179731	3.2	2AK84-1-1/8	20179760	6.9
2AK34-3/4	20179696	2.7	2AK54-3/4	20179730	3.2	2AK84-1-3/8	20179761	6.9
2AK34-7/8	20179698	2.7	2AK54-7/8	20179732	3.2	2AK84-1-7/16	20179762	6.9
2AK34-1	20179694	2.7	2AK54-1	20179728	3.2	2AK94-3/4	20179771	7.7
2AK34-1 1/8	20179695	2.7	2AK54-1 1/8	20179729	3.2	2AK94-1	20179766	7.7
2AK39-5/8	20179702	3.2	2AK54-1 3/8	20179733	3.2	2AK94-1-1/8	20179767	7.7
2AK39-3/4	20179701	3.2	2AK56-5/8	20179738	3.3	2AK94-1-3/16	20179768	7.7
2AK39-7/8	20179703	3.2	2AK56-3/4	20179737	3.3	2AK94-1-3/8	20179769	7.7
2AK39-1	20179699	3.2	2AK56-1	20179734	3.3	2AK94-1-7/16	20179770	7.7
2AK39-1 1/8	20179700	3.2	2AK56-1 1/8	20179735	3.3	2AK104-3/4	20179633	9.7
2AK41-5/8	20179707	3.5	2AK56-1-3/8	20179736	3.3	2AK104-15/16	20179634	9.7
2AK41-3/4	20179706	3.5	2AK59-1	20179739	3.4	2AK104-1	20179630	9.7
2AK41-7/8	20179708	3.5	2AK59-1 1/8	20179740	3.4	2AK104-1 3/16	20179631	9.7
2AK41-1	20179704	3.5	2AK59-1-3/8	20179741	3.4	2AK104-1-7/16	20179632	9.7
2AK41-1 1/8	20179705	3.5	2AK61-3/4	20179745	3.6	2AK114-1	20179635	10.2
2AK44-5/8	20179712	4.1	2AK61-7/8	20179746	3.6	2AK114-1-3/16	20179636	10.2
2AK44-3/4	20179711	4.1	2AK61-1	20179742	3.6	2AK114-1-3/8	20179637	10.2
2AK44-7/8	20179713	4.1	2AK61-1 1/8	20179743	3.6	2AK114-1-7/16	20179638	10.2
2AK44-1	20179709	4.1	2AK61-1-3/8	20179744	3.6	2AK124-1	20179639	11.3
2AK44-1 1/8	20179710	4.1	2AK64-3/4	20179752	4.5	2AK124-1-3/16	20179640	11.3
2AK46-5/8	20179716	4.6	2AK64-1	20179747	4.5	2AK124-1-7/16	20179641	11.3
2AK46-7/8	20179717	4.6	2AK64-1 1/8	20179748	4.5	2AK134-1-3/16	20179642	12.4
2AK46-1	20179714	4.6	2AK64-1-3/16	20179749	4.5	2AK134-1-7/16	20179643	12.4
2AK46-1 1/8	20179715	4.6	2AK64-1-3/8	20179750	4.5	2AK144-1	20179644	13.2
2AK49-3/4	20179720	2.7	2AK64-1-7/16	20179751	4.5	2AK144-1 7/16	20179645	13.2
2AK49-7/8	20179721	2.7	2AK74-3/4	20179758	5.8	2AK154-1 3/16	20179646	13.7
2AK49-1	20179718	2.7	2AK74-1	20179753	5.8	2AK154-1 7/16	20179647	13.7
2AK49-1 1/8	20179719	2.7	2AK74-1-1/8	20179754	5.8	2AK184-1-3/16	20179648	15.8
2AK49-1 3/8	20179722	2.7	2AK74-1-3/16	20179755	5.8	2AK184-1-7/16	20179649	15.8

FHP Bored-TO-Size Two B Groove Sheaves

Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*	Part No.	SAP No.	Wt.*
2BK23-5/8	20179794	1.3	2BK25-7/8	20179799	1.4	2BK27-5/8	20179806	1.8
2BK23-7/8	20179795	1.3	2BK26-5/8	20179802	1.6	2BK27-3/4	20179805	1.8
2BK25-1/2	20179796	1.4	2BK26-7/8	20179803	1.6	2BK27-7/8	20179808	1.8
2BK25-5/8	20179798	1.4	2BK26-11/8	20179801	1.6	2BK27-1	20179807	1.8
2BK25-3/4	20179797	1.4	2BK27-1/2	20179804	1.8	2BK28-1/2	20179811	1.9

Call Toll Free: 1-866-711-4673
WebSales@GoodyearRubberProducts.com

FHP Bored-To-Size Two B Groove Sheaves

Part No.	SAP No.	Wt. ${ }^{*}$	Part No.	SAP No.	Wt.**	Part No.	SAP No.	Wt. ${ }^{*}$
2BK28-5/8	20179813	1.9	2BK47-1 1/8	20179848	5.1	2BK80-3/4	20179890	6.9
2BK28-3/4	20179812	1.9	2BK50-3/4	20179853	5.4	2BK80-1	20179885	6.9
2BK28-7/8	20179814	1.9	2BK50-1	20179850	5.4	2BK80-1 1/8	20179886	6.9
2BK28-1	20179809	1.9	2BK50-1 1/8	20179851	5.4	2BK80-1 3/16	20179887	6.9
2BK28-1 1/8	20179810	1.9	2BK50-1 3/8	20179852	5.4	2BK80-1 3/8	20179888	6.9
2BK30-1/2	20179817	1.9	2BK52-7/8	20179857	5.7	2BK80-1 7/16	20179889	6.9
2BK30-5/8	20179819	1.9	2BK52-1	20179854	5.7	2BK90-3/4	20179896	8.0
2BK30-3/4	20179818	1.9	2BK52-1 1/8	20179855	5.7	2BK90-1	20179891	8.0
2BK30-7/8	20179820	1.9	2BK52-1 3/8	20179856	5.7	2BK90-1 1/8	20179892	8.0
2BK30-1	20179815	1.9	2BK55-1 1/8	20179860	6.5	2BK90-1 3/16	20333029	8.0
2BK30-1 1/8	20179816	1.9	2BK55-1 3/8	20179861	6.5	2BK90-1 3/8	20333030	8.0
2BK32-5/8	20179824	2.2	2BK57-1	20179862	6.0	2BK90-1 7/16	20333031	8.0
2BK32-7/8	20179825	2.2	2BK57-1 1/8	20179863	6.0	2BK100-3/4	20179776	9.5
2BK32-1	20179821	2.2	2BK57-1 3/8	20179864	6.0	2BK100-1	20179772	9.5
2BK32-1 1/8	20179822	2.2	2BK60-3/4	20179868	6.3	2BK100-1 3/16	20179773	9.5
2BK34-5/8	20179829	2.4	2BK60-7/8	20179869	6.3	2BK100-1 3/8	20333032	9.5
2BK34-3/4	20179828	2.4	2BK60-1	20179865	6.3	2BK100-1 7/16	20179774	9.5
2BK34-7/8	20179830	2.4	2BK60-1 1/8	20179866	6.3	2BK110-1	20179777	11.4
2BK34-1	20179826	2.4	2BK60-1 3/8	20179867	6.3	2BK110-1 3/16	20179778	11.4
2BK34-1 1/8	20179827	2.4	2BK62-1	20179870	7.6	2BK110-1 7/16	20179779	11.4
2BK36-3/4	20179834	3.0	2BK62-1 1/8	20179871	7.6	2BK120-1	20179780	13.2
2BK36-7/8	20179835	3.0	2BK62-1 3/8	20179872	7.6	2BK120-1 3/16	20179781	13.2
2BK36-1	20179831	3.0	2BK65-1	20179873	5.2	2BK120-1 7/16	20179782	13.2
2BK36-1 1/8	20179832	3.0	2BK65-1 1/8	20179874	5.2	2BK130-1	20179783	14.8
2BK36-1 3/8	20179833	3.0	2BK65-1 3/8	20179875	5.2	2BK130-1 3/16	20179784	14.8
2BK40-5/8	20179840	4.0	2BK67-1	20179876	5.8	2BK130-1 7/16	20179785	14.8
2BK40-3/4	20179839	4.0	2BK67-1 1/8	20179877	5.8	2BK140-1	20179786	15.6
2BK40-7/8	20179841	4.0	2BK67-1 3/8	20179878	5.8	2BK140-1 3/16	20179787	15.6
2BK40-1	20179837	4.0	2BK70-3/4	20179882	5.6	2BK140-1 7/16	20179788	15.6
2BK40-1 1/8	20179838	4.0	2BK70-1	20179879	5.6	2BK160-1	20179789	18.5
2BK45-1	20179843	4.5	2BK70-1 1/8	20179880	5.6	2BK160-1 3/16	20179790	18.5
2BK45-1 1/8	20179844	4.5	2BK70-1 3/16	20179883	5.6	2BK160-1 7/16	20179791	18.5
2BK45-1 3/8	20179845	4.5	2BK70-1 3/8	20179881	5.6	2BK190-1 3/16	20179792	21.5
2BK47-7/8	20179849	5.1	2BK70-1 7/16	20179884	5.6	2BK190-1 7/16	20179793	21.5
2BK47-1	20179847	5.1						

Light-Duty (FHP) Adjustable VP Series Sheaves

Part No.	SAP No.	Wt. ${ }^{*}$	Part No.	SAP No.	Wt. ${ }^{*}$	Part No.	SAP No.	Wt. ${ }^{*}$
1VP25-1/2	20180386	0.7	1VP30-3/4	20180390	1.1	1 VP34-1	20180392	1.4
1VP25-5/8	20180388	0.7	1VP34-1/2	20180394	1.4	1 VP34-1 $1 / 8$	20180393	1.4
1VP25-3/4	20180387	0.7	1VP34-5/8	20180396	1.4	1 VP40-1/2	20180400	1.9
1VP30-1/2	20180389	1.1	1VP34-3/4	20180395	1.4	1 VP40-5/8	20180402	1.9
1VP30-5/8	20180391	1.1	1VP34-7/8	20180397	1.4	1 VP40-3/4	20180401	1.9

Call Toll Free: 1-866-711-4673
WebSales@GoodyearRubberProducts.com

Light－Duty（FHP）Adjustable VP Series Sheaves

Part No．	SAP No．	Wt．＊＊	Part No．	SAP No．	Wt．＊	Part No．	SAP No．	Wt．${ }^{*}$
1VP40－7／8	20180403	1.9	1VP68－5／8	20180446	7.3	2VP56－1 1／8	20180475	7.8
1VP40－1	20180398	1.9	1VP68－3／4	20180445	7.3	2VP56－13／8	20180476	7.8
1VP40－1 1／8	20180399	1.9	1VP68－7／8	20180447	7.3	2VP56－15／8	20180477	7.8
1VP44－1／2	20180406	2.4	1VP68－1	20180441	7.3	2VP60－3／4	20180485	10.6
1VP44－5／8	20180408	2.4	1VP68－1 1／8	20180443	7.3	2VP60－7／8	20180486	10.6
1VP44－3／4	20180407	2.4	1VP68－1 1／4	20180442	7.3	2VP60－1	20180481	10.6
1VP44－7／8	20180409	2.4	1VP68－1 3／8	20180444	7.3	2VP60－1 1／8	20180482	10.6
1VP44－1	20180404	2.4	1VP71－3／4	20180451	8.5	2VP60－13／8	20180483	10.6
1VP44－1 1／8	20180405	2.4	1VP71－7／8	20180452	8.5	2VP60－15／8	20180484	10.6
1VP50－1／2	20180412	3.6	1VP71－1 1／8	20180448	8.5	2VP62－3／4	20180491	10.0
1VP50－5／8	20180414	3.6	1VP71－1 3／8	20180449	8.5	2VP62－7／8	20180492	10.0
1VP50－3／4	20180413	3.6	1VP71－1 5／8	20180450	8.5	2VP62－1	20180487	10.0
1VP50－7／8	20180415	3.6	1VP75－3／4	20180457	9.2	2VP62－1 1／8	20180489	10.0
1VP50－1	20180410	3.6	1VP75－7／8	20180458	9.2	2VP62－13／8	20180490	10.0
1VP50－1 1／8	20180411	3.6	1VP75－1	20180453	9.2	2VP62－1 5／8	20333034	10.0
1VP56－1／2	20180418	4.4	1VP75－1 1／8	20180454	9.2	2VP65－3／4	20180496	12.3
1VP56－5／8	20180420	4.4	1VP75－1 3／8	20180455	9.2	2VP65－7／8	20180497	12.3
1VP56－3／4	20180419	4.4	1VP75－1 5／8	20180456	9.2	2VP65－1 1／8	20180493	12.3
1VP56－7／8	20180421	4.4	2VP36－1／2	20333033	3.4	2VP65－1 3／8	20180494	12.3
1VP56－1	20180416	4.4	2VP36－5／8	20180462	3.4	2VP65－1 5／8	20180495	12.3
1VP56－1 1／8	20180417	4.4	2VP36－3／4	20180461	3.4	2VP68－3／4	20180503	11.7
1VP60－5／8	20180427	6.5	2VP36－7／8	20180463	3.4	2VP68－7／8	20180504	11.7
1VP60－3／4	20180426	6.5	2VP36－1	20180459	3.4	2VP68－1	20180498	11.7
1VP60－7／8	20180428	6.5	2VP36－1 1／8	20180460	3.4	2VP68－1 1／4	20180499	11.7
1VP60－1	20180422	6.5	2VP42－5／8	20180467	4.4	2VP68－1 1／8	20180500	11.7
1VP60－1 1／8	20180423	6.5	2VP42－3／4	20180466	4.4	2VP68－1 3／8	20180501	11.7
1VP60－1 3／8	20180424	6.5	2VP42－7／8	20180468	4.4	2VP68－1 5／8	20180502	11.7
1VP62－5／8	20180434	6.1	2VP42－1	20180464	4.4	2VP71－3／4	20180508	14.6
1VP62－3／4	20180433	6.1	2VP42－1 1／8	20180465	4.4	2VP71－7／8	20180509	14.6
1VP62－7／8	20180435	6.1	2VP50－5／8	20180472	6.3	2VP71－1 1／8	20180505	14.6
1VP62－1	20180429	6.1	2VP50－3／4	20180471	6.3	2VP71－13／8	20180506	14.6
1VP62－1 1／8	20180431	6.1	2VP50－7／8	20180473	6.3	2VP71－15／8	20180507	14.6
1VP62－1 1／4	20180430	6.1	2VP50－1	20180469	6.3	2VP75－3／4	20180514	16.5
1VP62－1 3／8	20180432	6.1	2VP50－1 1／8	20180470	6.3	2VP75－7／8	20180515	16.5
1VP65－3／4	20180439	6.8	2VP56－5／8	20180479	7.8	2VP75－1	20180510	16.5
1VP65－7／8	20180440	6.8	2VP56－3／4	20180478	7.8	2VP75－1 1／8	20180511	16.5
1VP65－1 1／8	20180436	6.8	2VP56－7／8	20180480	7.8	2VP75－13／8	20180512	16.5
1VP65－1 3／8	20180437	6.8	2VP56－1	20180474	7.8	2VP75－1 5／8	20180513	16.5
1VP65－1 5／8	20180438	6.8						

[^34]
Bushings

Sure-Grip ${ }^{\circledR}$ "Quick Detachable" bushings are easy to install and remove. They are split through flange and taper to provide a true clamp on the shaft that is the equivalent of a shrink fit. All sizes except JA and QT have a setscrew over the key to help maintain the bushing's position on the shaft until the cap screws are securely tightened. Sure-Grip bushings have a very gradual taper ($3 / 4$-inch taper per ft . on the diameter) which is about half the inclined angle of many other bushings. The result is that the Sure-Grip securely clamps the shaft, with twice the force of those competitive bushings, to provide extreme holding power.

Versatile Sure-Grip bushings permit the mounting of the same mating part on shafts of different diameters, and the mounting of different sheaves on the same shaft using the same bushing. Their interchange ability extends through sheaves, pulleys, timing pulleys, sprockets, flexible and rigid couplings, made-to-order items by Veyance Technologies, and to product lines of several other mechanical power transmission manufacturers.

Sure-Grip bushings are manufactured with the drilled and tapped holes located at a precise distance from the keyseat; thus, a wide mating part having a bushing in each end can be mounted on a common shaft with the two keyways in line. This feature not only facilitates installation but also permits both bushings to carry an equal share of the load.

6-hole drilling (most sizes) makes installation and removal quick and easy.

Keyseat 180° from split.

Precise taper ($3 / 4 \mathrm{in}$. per ft . on diameter) provides proper wedging action.

Saw cut through flange and taper (and sometimes cut down into keyway also) to provide a true clamp fit.

Cap screws used to secure bushings to sheave and to remove bushing from sheave.

General Product Info

Sure－Grip ${ }^{\text {©＊}}$ Bushings

－Sure－Grip bushings conform to the specifications set forth by the Mechanical Power Transmission Association（MPTA）in their CO－1 Guideline of October 1992.
－An＂MPB＂or＂Minimum Plain Bore＂bushing is available in most bushing sizes．These bushings are unsplit and have no keyway．These bushings are intended for reboring and other alterations．
－Sure－Grip bushings for inch shafts conform to ANSI B17．1－1967，R1989 for key size versus shaft diameter and keyway
dimensions．Square keys are used where possible．For larger bores where a square key is not possible，the required rectangular key is furnished with the bushing．
－Sure－Grip bushings for metric shafts conform to British Standard HS 4235：Part 1：1972 for key size versus shaft diameter and keyway dimensions．For larger bores where it is not possible to maintain the standard keyway depth，a more shallow keyway may be used．Special metric keys are not furnished with the bushing．

V－Belt Sheaves，Synchronous Belt Sprockets， Flat Belt Pulleys，etc．

Materials

－The standard material is class 30 or higher cast iron．Products made from cast iron have a maximum speed limitation of 6,500 foot／minute at the outside diameter．Higher speed requirements dictate the use of higher strength materials．
－For speeds up to 16,000 foot／minute or high shock application requiring greater toughness，special ductile iron products can be made．

Balance

－The standard balance is a one－plane tolerance to a G26 quality grade based on 3，500 RPM or the maximum rated speed．A two－ plane balance to a G6．3 quality grade is available at an added cost．Sure－Grip bushed products which are one－plane balanced are marked so the bushing can be reinstalled at the application the same way it was installed for balancing．See MPTA SPB－95 for standard balancing practices．

Standards

－The following products meet or exceed the noted ANSI／RMA design standards．

Classical V－Belt Sheaves	IP－20－2007
Narrow V－Belt Sheaves	IP－22－2007
Synchronous Belt Pulleys	IP－24－2001
Curvlinear Boil Sprockets	IP－27－2009
FHP Belts and Sheaves	IP－23－2009
Hex Belts and Sheaves	IP－21－2009

Special Constructions Available

－We have the capability to assist in your design and quote any specially designed power transmission drive．We are able to offer consistently competitive prices and fast delivery on the following specials plus much more．

V－Belt Sheaves

－Nonstandard diameter requirements．
－Nonstandard number of grooves．
－Unusual hub configurations．
－Deep grooves．
－Metric grooves．
－Added inertia or flywheel effect．
Synchronous Sprockets
－Nonstandard number of teeth．
－Nonstandard face widths．
－Unusual hub configurations．
－Special tooth profiles．
－Added inertia of flywheel effect．

Flat Belt Pulleys

－Nonstandard diameter requirements．
－Nonstandard face widths．
－Unusual hub configurations．
－Split through rim or arm designs．
－All types of special crowns．
－Added inertia or flywheel effect．
－Taper cone arrangements．

Flywheels

－Flywheels per customer design．

[^35]
Taper-Lock Bushings

Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.
TL1008	20181861	0.20	TL1610	20181866	0.70	TL3020	20181871	5.00
TL1108	20181862	0.20	TL1615	20181867	0.80	TL3535	20181872	10.00
TL1210	20181863	0.55	TL2012	20181868	1.40	TL4040	20181873	17.00
TL1215	20181864	0.70	TL2517	20181869	2.50	TL4545	20181874	25.00
TL1310	20181865	0.70	TL2525	20181870	3.50			

Sure-Grip ${ }^{\text {© }}$ Bushings

Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.
QT-7/16 MPB	20181485	0.6	SH-15/16	20181727	1.0	SD-7/16 MPB	20181543	2.1
QT-1/2	20181479	0.6	SH-1	20181712	0.9	SD-1/2	20181536	2.1
QT-9/16	20181487	0.6	SH-1 1/16	20181713	0.9	SD-9/16	20181545	2.1
QT-5/8	20181484	0.6	SH-1 1/8	20181716	0.9	SD-5/8	20181542	2.1
QT-11/16	20181480	0.6	SH-1 3/16	20181718	0.8	SD-11/16	20181537	2.0
QT-3/4	20181483	0.6	SH-1 1/4	20181715	0.8	SD-3/4	20181541	2.0
QT-13/16	20181481	0.6	SH-1 5/16	20181720	0.7	SD-13/16	20181538	2.0
QT-7/8	20181486	0.6	SH-1 3/8	20181719	0.7	SD-7/8	20181544	1.9
QT-15/16	20181482	0.6	SH-1 7/16	20181722	0.7	SD-15/16	20181539	1.9
QT-1	20181470	0.6	SH-1 1/2	20181714	0.6	SD-1	20181519	1.8
QT-1 1/16	20181471	0.6	SH-1 9/16	20181723	0.6	SD-1 1/16	20181520	1.8
QT-1 1/8	20181474	0.6	SH-1 5/8	20181721	0.5	SD-1 1/8	20181523	1.7
QT-1 3/16	20181475	0.6	SH-1 11/16	20181717	0.5	SD-1 3/16	20181527	1.7
QT-1 1/4	20181473	0.6	SDS-7/16 MPB	20181583	1.7	SD-1 1/4	20181522	1.6
QT-1 5/16	20181477	0.6	SDS-1/2	20181576	1.7	SD-1 5/16	20181531	1.6
QT-1 3/8	20181476	0.6	SDS-9/16	20181585	1.7	SD-1 3/8	20181529	1.5
QT-1 7/16	20181478	0.6	SDS-5/8	20181582	1.6	SD-1 3/8 3/8 KS	20181530	1.5
QT-1 1/2	20181472	0.6	SDS-11/16	20181577	1.6	SD-1 7/16	20181533	1.4
JA-1/2	20181291	0.8	SDS-3/4	20181581	1.6	SD-1 1/2	20181521	1.4
JA-1/2	20181291	0.8	SDS-13/16	20181578	1.6	SD-1 9/16	20181535	1.3
JA-9/16	20181299	0.8	SDS-7/8	20181584	1.5	SD-1 5/8	20181532	1.2
JA-5/8	20181297	0.8	SDS-15/16	20181579	1.5	SD-1 11/16	20181524	1.2
JA-11/16	20181293	0.8	SDS-1	20181559	1.5	SD-1 3/4	20181528	1.1
JA-3/4	20181296	0.8	SDS-1 1/16	20181560	1.4	SD-1 13/16	20181525	1.1
JA-13/16	20181294	0.8	SDS-1 1/8	20181563	1.4	SD-1 7/8	20181534	1.0
JA-7/8	20181298	0.8	SDS-1 3/16	20181567	1.4	SD-1 15/16	20181526	0.9
JA-15/16	20181295	0.8	SDS-1 1/4	20181562	1.3	SD-2	20181540	0.8
JA-1	20181286	0.8	SDS-1 5/16	20181571	1.3	SK-7/16 MPB	20181790	3.6
JA-1 1/16	20181287	0.8	SDS-1 3/8	20181569	1.2	SK-1/2	20181772	3.6
JA-1 1/8	20181289	0.8	SDS-1 3/8 3/8 KS	20181570	1.2	SK-9/16	20181792	3.6
JA-1 3/16	20181290	0.8	SDS-1 7/16	20181573	1.2	SK-5/8	20181789	3.6
JA-1 1/4	20181288	0.8	SDS-1 1/2	20181561	1.1	SK-11/16	20181773	3.5
SH-7/16 MPB	20181730	1.1	SDS-1 9/16	20181575	1.1	SK-3/4	20181788	3.5
SH-1/2	20181724	1.1	SDS-1 5/8	20181572	1.0	SK-13/16	20181774	3.5
SH-9/16	20181732	1.1	SDS-1 11/16	20181564	1.0	SK-7/8	20181791	3.4
SH-5/8	20181729	1.1	SDS-1 3/4	20181568	1.0	SK-15/16	20181775	3.4
SH-11/16	20181725	1.0	SDS-1 13/16	20181565	0.9	SK-1	20181753	3.3
SH-3/4	20181728	1.0	SDS-1 7/8	20181574	0.9	SK-1 1/16	20181754	3.3
SH-13/16	20181726	1.0	SDS-1 15/16	20181566	0.8	SK-1 1/8	20181757	3.2
SH-7/8	20181731	1.0	SDS-2	20181580	0.7	SK-1 3/16	20181761	3.2

[^36]
Sure - Grip ${ }^{\text {® }}$ BUSHINGS

Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.
SK-1 1/4	20181756	3.1	SF-2 1/8	20181643	3.3	E-3 3/16 DI	20181083	6.0
SK-1 5/16	20181766	3.1	SF-2 3/16 DI	20181646	3.2	E-3 1/4 DI	20181081	5.8
SK-1 5/16 3/8 KS	20181767	3.1	SF-2 1/4 DI	20181642	3.1	E-3 5/16 DI	20181085	5.7
SK-1 3/8	20181764	3.0	SF-2 1/4 5/8 KS D	20181641	3.1	E-3 3/8 DI	20181084	5.5
SK-1 3/8 3/8 KS	20181765	3.0	SF-2 5/16 DI	20181649	3.1	E-3 7/16 DI	20181086	5.2
SK-1 7/16	20181769	2.9	SF-2 3/8 DI	20181648	3.0	E-3 1/2 DI	20181080	4.7
SK-1 1/2	20181755	2.9	SF-2 7/16 DI	20181651	2.9	F-1	20181147	17.9
SK-1 9/16	20181771	2.8	SF-2 1/2 DI	20181640	2.8	F-1	20181147	17.9
SK-1 5/8	20181768	2.7	SF-2 9/16 DI	20181653	2.6	F-1 1/8	20181150	17.7
SK-1 11/16	20181758	2.6	SF-2 5/8 DI	20181650	2.5	F-1 3/16	20181153	17.6
SK-1 3/4	20181762	2.5	SF-2 11/16 DI	20181644	2.4	F-1 1/4	20181149	17.5
SK-1 3/4 1/2 KS	20181763	2.5	SF-2 3/4 DI	20181647	2.2	F-1 3/8	20181155	17.2
SK-1 13/16	20181759	2.4	SF-2 7/8 DI	20181652	1.8	F-1 7/16	20181157	17.1
SK-1 7/8	20181770	2.4	SF-2 15/16 DI	20181645	1.7	F-1 1/2	20181148	16.9
SK-1 15/16	20181760	2.3	E-7/8PB	20181089	10.8	F-1 9/16	20181159	16.8
SK-2	20181776	2.2	E-7/8	20181088	10.8	F-1 5/8	20181156	16.7
SK-2 1/16	20181777	2.1	E-15/16	20181062	10.8	F-1 11/16	20181151	16.5
SK-2 1/8	20181781	2.0	E-1	20181046	10.7	F-1 3/4	20181154	16.3
SK-2 3/16	20181782	2.0	E-1 1/8	20181049	10.6	F-1 7/8	20181158	16.0
SK-2 1/4	20181779	1.9	E-1 3/16	20181053	10.5	F-1 15/16	20181152	15.8
SK-2 1/4 5/8 KW	20181780	1.9	E-1 1/4	20181048	10.4	F-2	20181161	15.6
SK-2 5/16	20181784	1.8	E-1 5/16	20181057	10.3	F-2 1/16	20181162	15.4
SK-2 3/8	20181783	1.7	E-1 3/8	20181055	10.2	F-2 1/8	20181166	15.2
SK-2 7/16	20181786	1.6	E-1 3/8 3/8 KS	20181056	10.2	F-2 3/16	20181170	15.0
SK-2 1/2	20181778	1.5	E-1 7/16	20181059	10.1	F-2 1/4	20181164	14.8
SK-2 9/16 NO KW	20181787	1.3	E-1 1/2	20181047	10.0	F-2 1/4 5/8 KS	20181165	14.8
SK-2 5/8 NO KW	20181785	1.1	E-1 9/16	20181061	9.9	F-2 5/16	20181173	14.5
SF-1/2 MPB	20181636	5.1	E-1 5/8	20181058	9.8	F-2 3/8	20181172	14.3
SF-1/2	20181635	5.1	E-1 11/16	20181050	9.7	F-2 7/16	20181175	14.1
SF-5/8	20181655	5.0	E-1 3/4	20181054	9.6	F-2 1/2	20181163	13.9
SF-3/4	20181654	5.0	E-1 13/16	20181051	9.4	F-2 9/16	20181177	13.7
SF-7/8	20181656	4.9	E-1 7/8	20181060	9.3	F-2 5/8	20181174	13.4
SF-15/16	20181637	4.8	E-1 15/16	20181052	9.2	F-2 11/16	20181167	13.2
SF-1	20181618	4.8	E-2	20181063	9.0	F-2 3/4	20181171	12.9
SF-1 1/16	20181619	4.7	E-2 1/16	20181064	8.9	F-2 13/16	20181168	12.6
SF-1 1/8	20181622	4.7	E-2 1/8	20181068	8.8	F-2 7/8	20181176	12.3
SF-1 3/16	20181626	4.6	E-2 3/16	20181072	8.6	F-2 15/16	20181169	12.1
SF-1 1/4	20181621	4.5	E-2 1/4	20181066	8.5	F-3	20181178	11.8
SF-1 5/16	20181630	4.5	E-2 1/4 5/8 KS	20181067	8.5	F-3 1/8	20181181	11.2
SF-1 3/8	20181628	4.4	E-2 5/16	20181075	8.3	F-3 3/16 DI	20181184	10.9
SF-1 3/8 3/8 KS	20181629	4.4	E-2 3/8	20181074	8.1	F-3 1/4 DI	20181180	10.6
SF-1 7/16	20181632	4.3	E-2 7/16	20181077	8.0	F-3 5/16 DI	20181187	11.0
SF-1 1/2	20181620	4.2	E-2 1/2	20181065	7.8	F-3 3/8 DI	20181186	10.6
SF-1 9/16	20181634	4.2	E-2 9/16	20181079	7.6	F-3 7/16 DI	20181189	10.3
SF-1 5/8	20181631	4.1	E-2 5/8	20181076	7.5	F-3 1/2 DI	20181179	10.0
SF-1 11/16	20181623	4.0	E-2 11/16 DI	20181069	7.3	F-3 5/8 DI	20181188	9.4
SF-1 3/4	20181627	3.9	E-2 3/4 DI	20181073	7.1	F-3 11/16 DI	20181182	9.0
SF-1 13/16	20181624	3.8	E-2 13/16 DI	20181070	7.2	F-3 3/4 DI	20181185	8.7
SF-1 7/8	20181633	3.7	E-2 7/8 DI	20181078	7.1	F-3 7/8 DI	20181190	8.1
SF-1 5/16	20181630	3.6	E-2 15/16 DI	20181071	6.9	F-3 15/16 DI	20181183	7.7
SF-2	20181638	3.5	E-3 DI	20181087	6.7	F-4 NO KW DI	20181191	6.9
SF-2 1/16	20181639	3.4	E-3 1/8 DI	20181082	6.3			

Call Toll Free: 1-866-711-4673
WebSales@GoodyearRubberProducts.com

Sure-Grip ${ }^{*}$ Bushings

Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.
J-1 7/16 MPB	20181250	28.1	M-2 3/4	20181343	58.3	N-4 15/16	20181405	57.0
J-1 7/16	20181249	28.1	M-2 7/8	20181348	57.2	N-5	20181412	56.0
J-1 1/2	20181245	28.0	M-2 15/16	20181341	56.7	N-5 3/16	20181415	56.1
J-1 11/16	20181246	27.4	M-3	20181349	56.2	N-5 7/16	20181416	51.7
J-1 3/4	20181248	27.2	M-3 1/8	20181352	55.2	N-5 1/2	20181413	50.6
J-1 7/8	20181251	26.7	M-3 3/16	20181356	54.6	N-5 7/8	20181417	44.3
J-1 15/16	20181247	26.5	M-3 1/4	20181351	54.1	N-5 15/16	20181414	43.9
J-2	20181252	26.3	M-3 3/8	20181358	52.8	P-2 15/16	20181425	141.2
J-2 1/8	20181255	25.8	M-3 7/16	20181360	52.2	P-3 1/4	20181427	137.6
J-2 3/16	20181258	25.6	M-3 1/2	20181350	51.6	P-3 7/16	20181431	134.9
J-2 1/4	20181254	25.3	M-3 5/8	20181359	50.4	P-3 1/2	20181426	134.1
J-2 1/4-5/8KS	20332967	25.3	M-3 11/16	20181353	49.7	P-3 5/8	20181430	132.4
J-2 5/16	20181261	25.0	M-3 3/4	20181357	49.1	P-3 3/4	20181429	130.6
J-2 3/8	20181260	24.7	M-3 1316	20181354	48.4	P-3 7/8	20181432	128.5
J-2 7/16	20181263	24.5	M-3 7/8	20181361	47.6	P-3 15/16	20181428	127.6
J-2 1/2	20181253	24.2	M-3 15/16	20181355	46.9	P-4	20181433	126.7
J-2 5/8	20181262	23.6	M-4	20181362	46.2	P-4 1/4	20181435	122.7
J-2 11/16	20181256	23.3	M-4 1/8	20181365	44.8	P-4 3/8	20181439	120.7
J-2 3/4	20181259	23.0	M-4 3/16	20181368	44.1	P-4 7/16	20181441	119.6
J-2 7/8	20181264	22.2	M-4 1/4	20181364	43.4	P-4 1/2	20181434	118.6
J-2 15/16	20181257	21.9	M-4 3/8	20181370	41.9	P-4 5/8	20181440	115.7
J-3	20181265	21.6	M-4 7/16	20181372	41.2	P-4 11/16	20181436	114.6
J-3 1/8	20181268	20.9	M-4 1/2	20181363	40.4	P-4 3/4	20181438	113.5
J-3 3/16	20181272	20.5	M-4 5/8	20181371	38.5	P-4 7/8	20181442	111.2
J-3 1/4	20181267	20.1	M-4 11/16	20181366	37.5	P-4 15/16	20181437	110.0
J-3 5/16	20181275	19.6	M-4 3/4	20181369	36.7	P-5	20181443	108.8
J-3 3/8	20181274	19.3	M-4 7/8	20181373	37.8	P-5 3/16	20181447	105.2
J-3 7/16	20181277	18.9	M-4 15/16	20181367	37.0	P-5 1/4	20181445	103.9
J-3 1/2	20181266	18.5	M-5	20181374	36.1	P-5 5/16	20181450	102.7
J-3 5/8	20181276	17.7	M-5 3/16	20181377	33.5	P-5 3/8	20181449	101.4
J-3 11/16 DI	20181269	17.2	M-5 1/4	20181376	32.6	P-5 7/16	20181451	100.1
J-3 3/4 DI	20181273	16.8	M-5 3/8	20181378	31.0	P-5 1/2	20181444	98.8
J-3 13/16 DI	20181270	17.4	M-5 7/16	20181379	29.9	P-5 3/4	20181448	98.1
J-3 7/8 DI	20181278	17.0	M-5 1/2	20181375	28.9	P-5 7/8	20181452	95.3
J-3 15/16 DI	20181271	16.5	N-2 15/16	20181393	84.1	P-5 15/16	20181446	93.9
J-4 DI	20181285	16.1	N-3	20181394	83.5	P-6	20181453	92.5
J-4 1/8 DI	20181281	15.2	N-3 3/8	20181398	79.3	P-6 1/16	20181454	91.0
J-4 3/16 DI	20181282	14.7	N-3 7/16	20181400	78.6	P-6 1/4	20181456	86.5
J-4 1/4 DI	20181280	14.2	N-3 1/2	20181395	77.9	P-6 7/16	20181458	82.0
J-4 3/8 DI	20181283	13.2	N-3 5/8	20181399	76.4	P-6 1/2	20181455	80.5
J-4 7/16 DI	20181284	12.7	N-3 3/4	20181397	74.9	P-6 3/4	20181457	74.7
J-4 1/2 DI	20181279	12.2	N-3 7/8	20181401	73.1	P-7	20181459	68.1
M-1 15/16 MPB	20181336	63.7	N-3 15/16	20181396	72.3	W-4 1/4 MPB	20181843	249.0
M-1 15/16	20181335	63.7	N-4	20181402	71.5	W-4 7/8 MPB	20181844	235.0
M-2	20181337	63.3	N-4 3/16	20181406	68.9	W-5 1/4 MPB	20181845	227.0
M-2 3/16	20181342	62.3	N-4 1/4	20181404	68.1	W-5 7/8 MPB	20181846	210.0
M-2 1/4	20181339	61.9	N-4 3/8	20181408	66.3	W-6 1/2 MPB	20181847	193.0
M-2 3/8	20181344	61.0	N-4 7/16	20181410	65.4	W-7 1/4 MPB	20181848	169.0
M-2 7/16	20181347	60.6	N-4 1/2	20181403	64.5	S-6 MPB	20181516	471.0
M-2 1/2	20181338	60.1	N-4 5/8	20181409	62.0	S-8 MPB	20181517	381.0
M-2 5/8	20181346	59.3	N-4 3/4	20181407	60.0	S-9 MPB	20181518	326.0
M-2 11/16	20181340	58.8	N-4 7/8	20181411	58.1			

[^37]
Sure-Grip ${ }^{*}$ Bushings

(Millimeter Bores-Inch Bolts)

Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.
QTX14MM	20181502	0.6	SDX28MM	20181611	1.7	EX48MM	20181139	9.3
QTX15MM	20181503	0.6	SDX30MM	20181612	1.7	EX50MM	20181140	9.2
QTX16MM	20181504	0.6	SDX32MM	20181613	1.6	EX55MM	20181141	8.6
QTX18MM	20181505	0.6	SDX35MM	20181614	1.5	EX60MM	20181142	8.1
QTX19MM	20181506	0.6	SDX38MM	20181615	1.4	EX65MM	20181143	7.6
QTX20MM	20181507	0.6	SDX40MM	20181616	1.3	EX70MM	20181144	7.1
QTX22MM	20181508	0.6	SDX42MM	20181617	1.2	EX75MM DI	20181145	6.9
QTX24MM	20181509	0.6	SKX24MM	20181830	3.3	EX80MM DI	20181146	6.7
QTX25MM	20181510	0.6	SKX25MM	20181831	3.3	FX45MM	20181234	16.2
QTX28MM	20181511	0.6	SKX28MM	20181832	3.2	FX48MM	20181235	16.0
QTX30MM	20181512	0.6	SKX30MM	20181833	3.2	FX50MM	20181236	15.8
QTX32MM	20181513	0.6	SKX32MM	20181834	3.1	FX55MM	20181237	15.0
QTX35MM	20181514	0.6	SKX35MM	20181835	3.0	FX60MM	20181238	14.3
QTX38MM	20181515	0.6	SKX38MM	20181836	2.9	FX65MM	20181239	13.7
JAX15MM	20181310	0.8	SKX40MM	20181837	3.6	FX70MM	20181240	12.9
JAX16MM	20181311	0.8	SKX42MM	20181838	2.7	FX75MM	20181241	12.1
JAX19MM	20181312	0.8	SKX45MM	20181839	2.6	FX80MM	20181242	11.2
JAX20MM	20181313	0.8	SKX48MM	20181840	2.4	FX85MM	20181243	10.6
JAX24MM	20181314	0.8	SKX50MM	20181841	2.3	FX90MM DI	20181244	9.7
JAX25MM	20181315	0.8	SKX55MM	20181842	2.0	JX50MM	20181325	26.5
JAX28MM	20181316	0.8	SFX28MM	20181699	4.7	JX55MM	20181326	25.6
SHX24MM	20181747	0.9	SFX30MM	20181700	4.6	JX60MM	20181327	24.7
SHX25MM	20181748	0.9	SFX32MM	20181701	4.5	JX65MM	20181328	23.9
SHX28MM	20181749	0.9	SFX35MM	20181702	4.4	JX70MM	20181329	23.0
SHX30MM	20181750	0.8	SFX38MM	20181703	4.2	JX75MM	20181330	21.9
SHX32MM	20181751	0.8	SFX40MM	20181704	4.2	JX80MM	20181331	20.9
SHX35MM	20181752	0.7	SFX42MM	20181705	4.1	JX85MM	20181332	19.3
SDSX24MM	20181600	1.5	SFX45MM	20181706	3.9	JX90MM	20181333	18.1
SDSX25MM	20181601	1.5	SFX48MM	20181707	3.7	JX95MM	20181334	16.8
SDSX28MM	20181602	1.4	SFX50MM	20181708	3.6	JX100MM	20181324	16.5
SDSX30MM	20181603	1.4	SFX55MM	20181709	3.2	MX80MM	20181389	55.0
SDSX32MM	20181604	1.3	SFX60MM DI	20181710	3.0	MX90MM	20181390	51.2
SDSX35MM	20181605	1.2	SFX65MM DI	20181711	2.8	MX100MM	20181387	46.9
SDSX38MM	20181606	1.1	EX35MM	20181134	10.2	MX120MM	20181388	37.0
SDSX40MM	20181607	1.1	EX38MM	20181135	10.0	N-100MM	20181391	72.3
SDSX42MM	20181608	1.0	EX40MM	20181136	9.9	N-120MM	20181392	60.2
SDX24MM	20181609	1.8	EX42MM	20181137	9.8	PX150MM	20181469	95.8
SDX25MM	20181610	1.8	EX45MM	20181138	9.6			

*Trademark of TB Wood's Incorporated.

＂L＂Series Flangeless Bushings

Part No．	SAP No．	Wt．	Part No．	SAP No．	Wt．			
SKL－1／2	20181808	1.7	SFL－1 11／16	20181662	1.4	EL－2 9／16	20181119	2.3
SKL－1／2	20181808	1.7	SFL－1 $3 / 4$	20181666	1.4	EL－2 5／8	20181116	2.2
SKL－5／8	20181812	1.7	SFL－1 13／16	20181663	1.4	EL－2 11／16	20181110	2.1
SKL－3／4	20181811	1.6	SFL－1 $7 / 8$	20181671	1.3	EL－2 3／4	20181113	2.0
SKL－7／8	20181813	1.6	SFL－1 15／16	20181664	1.3	EL－2 13／16	20181111	1.9
SKL－15／16	20181810	1.6	SFL－2	20181676	1.2	EL－2 7／8	20181118	1.8
SKL－1	20181793	1.6	SFL－2 1／8	20181678	1.1	FL－1	20181192	8.5
SKL－1 1／8	20181796	1.5	SFL－2 3／16	20181679	1.0	FL－1	20181192	8.5
SKL－1 3／16	20181800	1.4	SFL－2 1／4	20181677	1.0	FL－1 1／8	20181195	8.3
SKL－1 1／4	20181795	1.4	SFL－2 5／16	20181681	0.9	FL－1 3／16	20181198	8.2
SKL－1 5／16	20181803	1.3	SFL－2 3／8	20181680	0.9	FL－1 1／4	20181194	8.1
SKL－1 3／8	20181802	1.3	EL－78 MPB	20181121	4.1	FL－1 3／8	20181200	8.0
SKL－1 7／16	20181805	1.2	EL－78	20181120	4.1	FL－1 7／16	20181202	7.9
SKL－1 1／2	20181794	1.2	EL－15／16	20181105	4.0	FL－1 1／2	20181193	7.8
SKL－1 9／16	20181807	1.2	EL－1	20181090	3.9	FL－1 9／16	20181204	7.6
SKL－1 5／8	20181804	1.1	EL－1 1／8	20181093	3.8	FL－1 5／8	20181201	7.5
SKL－1 11／16	20181797	1.1	EL－1 3／16	20181097	3.8	FL－1 11／16	20181196	7.4
SKL－1 3／4	20181801	1.0	EL－1 1／4	20181092	3.7	FL－1 3／4	20181199	7.3
SKL－1 13／16	20181798	1.0	EL－1 5／16	20181100	3.6	FL－1 7／8	20181203	7.1
SKL－1 7／8	20181806	0.9	EL－1 3／8	20181099	3.6	FL－1 15／16	20181197	7.0
SKL－1 15／16	20181799	0.8	EL－1 7／16	20181102	3.5	FL－2	20181206	6.7
SFL－1／2	20181673	2.1	EL－1 1／2	20181091	3.5	FL－2 1／8	20181209	6.6
SFL－1／2	20181673	2.1	EL－1 9／16	20181104	3.4	FL－2 3／16	20181213	6.5
SFL－5／8	20181683	2.1	EL－1 5／8	20181101	3.4	FL－2 1／4	20181208	6.4
SFL－3／4	20181682	2.0	EL－1 11／16	20181094	3.3	FL－2 5／16	20181216	6.3
SFL－7／8	20181684	2.0	EL－1 3／4	20181098	3.2	FL－2 3／8	20181215	6.2
SFL－15／16	20181675	2.0	EL－1 13／16	20181095	3.2	FL－2 7／16	20181218	6.1
SFL－1	20181658	2.0	EL－1 7／8	20181103	3.1	FL－2 1／2	20181207	5.9
SFL－1 1／8	20181661	1.9	EL－1 15／16	20181096	3.0	FL－2 9／16	20181220	5.7
SFL－1 3／16	20181665	1.8	EL－2	20181106	3.0	FL－2 5／8	20181217	5.6
SFL－1 1／4	20181660	1.8	EL－2 1／8	20181109	2.9	FL－2 11／16	20181210	5.4
SFL－1 5／16	20181668	1.7	EL－2 3／16	20181112	2.8	FL－2 3／4	20181214	5.3
SFL－1 3／8	20181667	1.7	EL－2 1／4	20181108	2.7	FL－2 13／16	20181211	5.1
SFL－1 7／16	20181670	1.6	EL－2 5／16	20181115	2.6	FL－2 7／8	20181219	4.9
SFL－1 1／2	20181659	1.6	EL－2 3／8	20181114	2.5	FL－2 15／16	20181212	4.8
SFL－1 9／16	20181672	1.5	EL－2 7／16	20181117	2.4	FL－3	20181221	4.6
SFL－1 5／8	20181669	1.5	EL－2 1／2	20181107	2.3	FL－3 1／8	20181222	4.5

Sure－Grip ${ }^{\text {® }}$ IDLER BUSHINGS \＆REPLACEMENT BEARINGS

Part No．	SAP No．	Wt．		Part No．	SAP No．	Wt．
SH－BB	20221732	1.5	Use bearing G275	G275	20221737	1.0
SD－BB	20221733	2.5	Use bearing G275	G276	20221738	1.0
SK－BB	20221734	4.5	Use bearing G276	G277	20221739	0.8
SF－BB	20221735	8.0	Use bearing G276			
E－BB	20221736	12.0	Use bearing G277			

[^38]
Metric Sure－Grip＊＊Bushings

Part No．	SAP No．	Wt．	Part No．	SAP No．	Wt．	Part No．	SAP No．	Wt．
QTMX10MM	20181489	0.6	SDSMX10MM MPB	20181586	1.7	SKMX50MM	20181827	2.3
QTMX10MM	20181489	0.6	SDSMX15MM	20181587	1.6	SKMX55MM	20181828	2.0
QTMX11MM	20181491	0.6	SDSMX19MM	20181588	1.6	SKMX60MM	20181829	1.7
QTMX14MM	20181492	0.6	SDSMX20MM	20181589	1.6	SFMX15MM MPB	20181686	5.1
QTMX15MM	20181493	0.6	SDSMX24MM	20181590	1.5	SFMX20MM	20181687	5.0
QTMX16MM	20181494	0.6	SDSMX25MM	20181591	1.5	SFMX24MM	20181688	4.8
QTM19MM	20181488	0.6	SDSMX28MM	20181592	1.4	SFMX28MM	20181689	4.7
QTMX20MM	20181495	0.6	SDSMX30MM	20181593	1.4	SFMX30MM	20181690	4.6
QTMX24MM	20181496	0.6	SDSMX32MM	20181594	1.3	SFMX35MM	20181691	4.0
QTMX25MM	20181497	0.6	SDSMX35MM	20181595	1.2	SFMX38MM	20181692	4.2
QTMX28MM	20181498	0.6	SDSMX38MM	20181596	1.1	SFMX40MM	20181693	4.2
QTMX30MM	20181499	0.6	SDSMX40MM	20181597	1.0	SFMX42MM	20181694	4.1
QTMX32MM	20181500	0.6	SDSMX42MM	20181598	1.0	SFMX48MM	20181695	3.7
QTMX38MM	20181501	0.6	SDSMX48MM	20181599	0.9	SFMX50MM	20181696	3.5
JAMX10MM	20181300	0.8	SDMX15MM	20181546	2.0	SFMX55MM	20181697	3.2
JAMX10MM	20181300	0.8	SDMX15MM	20181546	2.0	SFMX60MM	20181698	3.0
JAMX11MM	20181302	0.8	SDMX19MM	20181548	1.9	EMX20MM MPB	20181123	10.8
JAMX14MM	20181303	0.8	SDMX20MM	20181549	1.9	EMX28MM	20181124	10.6
JAMX15MM	20181304	0.8	SDMX24MM	20181550	1.9	EMX30MM	20181125	10.5
JAMX19MM	20181305	0.8	SDMX28MM	20181552	1.7	EMX38MM	20181126	10.0
JAMX20MM	20181306	0.8	SDMX30MM	20181553	1.7	EMX40MM	20181127	9.9
JAMX24MM	20181307	0.8	SDMX35MM	20181554	1.5	EMX42MM	20181128	9.8
JAMX25MM	20181308	0.8	SDMX38MM	20181555	1.4	EMX48MM	20181129	9.3
JAMX28MM	20181309	0.8	SDMX40MM	20181556	1.3	EMX50MM	20181130	9.2
SHMX10MM	20181733	1.1	SDMX42MM	20181557	1.2	EMX55MM	20181131	8.6
SHMX10MM	20181733	1.1	SDMX48MM	20181558	1.0	EMX60MM	20181132	8.1
SHMX11MM	20181735	1.1	SKMX15MM MPB	20181815	3.6	EMX70MM	20181133	7.1
SHMX14MM	20181736	1.1	SKMX19MM	20181816	3.5	FMX20MM MPB	20181224	18.0
SHMX15MM	20181737	1.1	SKMX20MM	20181817	3.5	FMX30MM MPB	20181225	17.6
SHMX19MM	20181738	1.0	SKMX24MM	20181818	3.4	FMX38MM MPB	20181226	16.9
SHMX20MM	20181739	1.0	SKMX28MM	20181819	3.2	FMX40MM MPB	20181227	16.8
SHMX24MM	20181740	1.0	SKMX30MM	20181820	3.2	FMX42MM MPB	20181228	16.7
SHMX25MM	20181741	1.0	SKMX32MM	20181821	3.1	FMX48MM MPB	20181229	18.0
SHMX28MM	20181742	0.9	SKMX35MM	20181822	3.0	FMX50MM MPB	20181230	15.7
SHMX30MM	20181743	0.8	SKMX38MM	20181823	2.9	FMX55MM MPB	20181231	15.0
SHMX35MM	20181744	0.8	SKMX40MM	20181824	2.8	FMX60MM MPB	20181232	14.3
SHMX38MM	20181745	0.7	SKMX42MM	20181825	2.7	FMX70MM MPB	20181233	12.9
SHMX40MM	20181746	0.6	SKMX48MM	20181826	2.4			

＊Trademark of TB Wood＇s Incorporated．

Metric＂L＂Series Flangeless Bushings

Part No．	SAP No．	Wt．	Part No．	SAP No．	Wt．
SKLMX15MM MPB	20181814	1.7	ELMX20MM MPB	20181122	4.1
SFLMX15MM MPB	20181685	2.1			

Sure－Grip＊${ }^{*}$ HORT BUSHINGS

Part No．	SAP No．	Wt．	Part No．	SAP No．	Wt．	Part No．	SAP No．	Wt．
JS－2 7／16	20181318	20.0	NS－3 15／16	20181419	66.3	WS－5 7／16	20181850	172.3
JS－2 15／16	20181317	18.1	NS－4 7／16	20181421	52.5	WS－5 15／16	20181849	161.1
JS－3 7／16	20181322	15.9	NS－4 15／16	20181420	46.5	WS－6	20181851	160.0
JS－3 1／2	20181320	15.6	NS－5 7／16	20181423	43.9	WS－6 7／16	20181854	155.0
JS－3 15／16	20181321	14.3	NS－5 1／2	20332968	43.1	WS－6 1／2	20181852	153.0
JS－4 7／16	20181323	11.5	NS－5 15／16	20181422	39.0	WS－6 15／16	20181853	140.0
MS－3 7／16	20181382	41.2	NS－6	20181424	38.8	WS－7	20181855	139.0
MS－3 1／2	20181380	40.7	PS－4 15／16	20181460	88.3	WS－7 1／2	20181856	137.0
MS－3 15／16	20181381	37.3	PS－5 7／16	20181463	81.3	WS－7 15／16	20181857	126.9
MS－4 7／16	20181385	33.3	PS－5 15／16	20181462	78.4	WS－8	20181858	124.0
MS－4 15／16	20181384	30.9	PS－6	20181464	77.4	WS－8 7／16	20181860	107.3
MS－5 7／16	20181386	25.9	PS－6 7／16	20181467	70.0	WS－8 1／2	20181859	105.0
MS－5 1／2	20332977	25.9	PS－6 1／2	20181465	69.0			
			PS－6 15／16	20181466	61.3			
			PS－7	20181468	60.4			

[^39]Call Toll Free：1－866－711－4673

NEOTHANE ${ }^{\circ}$

Part No: 5M 710

5 M	$5 \mathrm{~mm}\left(3 / 16^{\prime \prime}\right)$ Top Width
710	$710 \mathrm{~mm}\left(27.95^{\prime \prime}\right)$ Outside Length

A Different Approach to V-Belts

Neothane V-belts can provide a different approach to V-belt power transmission for appliances and light-duty machinery. The features of the belt will make it possible to gain competitive advantages in many areas of application.

Applications

Specialty belt for specific types of machines and equipment.

- Machine Tools
- Appliances
- Computer Industry
- Blowers
- Woodworking Machines • Medical Industry

Key Features \& Benefits

- Ribbed top for transverse rigidity, flexibility, and cool running conditions.
- Narrow top width for use on narrow, small diameter sheaves and exceptional flexibility on short centers.
- Cords are resistant to elongation or shrinkage, provide great strength and long flex life.
- Polyurethane compounding for firmer grip, greater strength, and high resistance to oil, heat, abrasion, ozone, and fatigue.
- Smooth machined sides for quiet running, vibration-free operation, and uniform grip.
- Sixty-degree angle cross section for uniform support that keeps the load carrying cord in the same plane pulling together.

Smooth Operator

Smaller sheave diameters, higher speed ratios, shorter center distances, and higher speeds in belt power transmission applications are possible. Elimination of double reduction drives, made possible by the higher speed ratios permitted, result in decreased space requirements for many applications. The precision characteristics of this belt give a smoothness of operation that reduces noise to a minimum in the appurtenances of a drive.

The Low-Maintenance V-Belt Alternative

This belt is ideal for machines with long warranty periods. The outstanding characteristics make it virtually maintenance-free and therefore reduce service costs. Greater horsepower can be utilized by the designer with reasonable belt life. Or, for a given amount of power to be transmitted, belt life can be greater than ever before.

3 M Nominal Top Width $1 / 8^{\prime \prime}$

Part Number	Eff. Length (in)								
*3M180	7.09	*3M243	9.57	*3M335	13.19	*3M462	18.19	*3M630	24.80
*3M185	7.28	*3M250	9.84	*3M345	13.58	*3M475	18.70	*3M650	25.59
*3M190	7.48	*3M258	10.16	*3M355	13.98	*3M487	19.17	*3M670	26.38
*3M195	7.68	*3M265	10.43	*3M365	14.37	*3M500	19.69	*3M690	27.17
*3M200	7.87	*3M272	10.71	*3M375	14.76	*3M515	20.28	*3M710	27.95
*3M206	8.11	*3M280	11.02	*3M387	15.24	*3M530	20.87	*3M730	28.74
*3M212	8.35	*3M290	11.42	*3M400	15.75	*3M545	21.46	*3M750	29.53
*3M218	8.58	*3M300	11.81	*3M412	16.22	*3M560	22.05		
*3M224	8.82	*3M307	12.09	*3M425	16.73	*3M580	22.83		
*3M230	9.06	*3M315	12.40	*3M437	17.20	*3M600	23.62		
*3M236	9.29	*3M325	12.80	*3M450	17.72	*3M615	24.21		

*Nonstock: Please check factory for availability.

Call Toll Free:

5 M Nominal Top Width $3 / 16$ "

Part Number	Eff. Length (in)								
5M280	11.02	5M412	16.22	5M600	23.62	5M875	34.45	*5M1250	49.21
5M290	11.42	5M425	16.73	5M615	24.21	5M900	35.43	*5M1280	50.39
5M300	11.81	5M437	17.2	5M630	24.80	5M925	36.42	*5M1320	51.97
5M307	12.09	5M450	17.72	5M650	25.59	5M950	37.40	*5M1360	53.54
5M315	12.40	5M462	18.19	5M670	26.38	5M975	38.39	*5M1400	55.12
5M325	12.80	5M475	18.70	5M690	27.17	5M1000	39.37	*5M1450	57.09
5M335	13.19	5M487	19.17	5M710	27.95	5M1030	40.55	*5M1500	59.06
5M345	13.58	5M500	19.69	5M730	28.74	5M1060	41.73	*5M1600	62.99
5M355	13.98	5M515	20.28	5M750	29.53	*5M1090	42.91	*5M1650	64.96
5M365	14.37	5M530	20.87	5M775	30.51	5M1120	44.09	*5M1850	72.83
5M375	14.76	5M545	21.46	5M800	31.50	5M1150	45.28		
5M387	15.24	5M560	22.05	5M825	32.48	5M1180	46.46		
5M400	15.75	5M580	22.83	5M850	33.46	5M1220	48.03		

7 M Nominal Top Width $5 / 16$ "

| Part Number | Eff. Length (in) | Part Number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Eff. Length (in) 1

11 M Nominal Top Width 7/16"

Part Number	Eff. Length (in)	Part Number Eff. Length (in)							
11 M 710	27.95	11 M 925	36.42	11 M 1180	46.46	11 M 1550	61.02	11 M 2000	78.74
${ }^{*} 11 \mathrm{M} 730$	28.74	11 M 950	37.40	11 M 1220	48.03	11 M 1600	62.99	11 M 2060	81.10
${ }^{*} 11 \mathrm{M} 750$	29.53	11 M 975	38.39	11 M 1250	49.21	11 M 1650	64.96	11 M 2120	83.46
${ }^{*} 11 \mathrm{M} 775$	30.51	11 M 1000	39.37	11 M 1280	50.39	11 M 1700	66.93	11 M 2180	85.83
11M800	31.50	11 M 1030	40.55	11 M 1320	51.97	${ }^{*} 11 \mathrm{M} 1750$	68.90	11 M 2240	88.19
11M825	32.48	11M1060	41.73	11 M 1360	53.54	11 M 1800	70.87	11 M 2300	90.55
11M850	33.46	${ }^{*} 11 \mathrm{M} 1090$	42.91	11 M 1400	55.12	${ }^{*} 11 \mathrm{M} 1850$	72.83		
11M875	34.45	11M120	44.09	11 M 1450	57.09	11 M 1900	74.80		
11M900	35.43	11M150	45.28	11 M 1500	59.06	11 M 1950	76.77		

[^40]
Variable Speed

Part No: 3226V585
32 3/4" Top Width
26 Angle of Sheave Groove
V Variable Speed Profile - With Flexten ${ }^{\circledR}$ Tensile Member
585 58.5" Pitch Length
Cut-Edge, Molded Cog Construction Shown

Top Performance at Every Speed

Goodyear Engineered Products Variable Speed belts deliver the speed and horsepower the drives on your equipment were designed to achieve. Excellent transverse rigidity and exceptional flexibility prevent buckling at minimum diameter settings where belt stresses are greatest. Firm gripping action in the contact area provides positive traction for precise, immediate response. Together, they assure reliable, predictable transmission of maximum power over the drive's full operating range.
And top performance also means that you get longer life from Goodyear Engineered Products Variable Speed belts. That translates to less downtime for belt maintenance and more productivity from your equipment, which leads to greater operating economy by any measure.

Uniform Cross Section Means Less Drive Wear

The precision forming that goes into every one of our Variable Speed belt assures a completely uniform cross section. This allows even tracking and smooth running without any vibration problems. As a result, the life of the belt-as well as bearings, sheaves, and other drive components-is significantly extended. Longer wear is a great way to save money and increase productivity.

```
Applications
For use on variable speed sheave drives requiring exact speed control and maximum range of speed changes. Ideal for recreational equipment, agricultural applications, and machine tools.
```

- Exercise Equipment
- Medical Equipment
- Automobiles
- Power Equipment
- Machine Tools

Key Features \& Benefits

```
- Durable variable speed profile.
- Super strong Flexten \({ }^{\circledR}\) tensile members.
- Fiber-reinforced, latest compounded technology compression section.
- High-horsepower capacity.
- Milled edge construction for superior dimensional stability.
- Oil, heat, ozone, and abrasion resistant.
- Static conductive.*
```


Exceptional LengThwise Flexibility Allows For Small Pulleys

We build these belts thin with precise, uniform cogs on the underside for maximum lengthwise flexibility. They can be used on small pulley drives without any sacrifice of gripping action or cross rigidity. Cogging also minimizes bottom cracking, a major cause of premature failure.

True Dimensional Stability \& Higher Horsepower Capability for Long Belt Life

Our Flexten tension cords get their muscle from a special tempering for maximum strength and resilience. This gives Goodyear Engineered Products Variable Speed belts the dimensional stability they need to carry more horsepower and to experience less elongation over the life of the belt. In short, these Variable Speed belts provide you with longer life on the toughest drives.

[^41]
Variable Speed

Cut-Edge Construction

Variable Speed Stock Part Numbers							
1228 V 255	1922V256	2026 V 422	2530 V 335	2926 V 606	3230 V 1120	4430V530	4830 V 850
	1922 V 277	2026V445	2530 V 490	2926 V 616	3230 V 1180	4430 V 548	4830V970
1422 V 235	1922 V 282	2026 V 607	2530 V 500	2926 V 636		4430 V 555	4830 V 1070
1422 V 240	1922 V 298		2530 V 530	2926 V 646	3230HV528	4430 V 560	
1422 V 270	1922 V 302	2126 V 309	2530V550	2926 V 666	3230HV546	4430 V 570	4836 V 618
1422 V 290	1922 V 321	2126 V 365	2530V575	2926V686	3230HV553	4430 V 578	4836V655
1422 V 300	1922 V 332	2226 V 307	2530 V 595	2926 V 706	3230 HV 570	4430 V 600	4836V670
1422 V 330	1922 V 338	2226 V 307	2530 V 600	2926 V 726	3230 HV 585	4430 V 610	4836V710
1422 V 340	1922 V 363	2230 V 266	2530 V 610	2926 V 776	3230HV603	4430 V 630	4836 V 800
1422 V 360	1922 V 381	2230 V 273	2530V630	2926 V 786	3230HV613	4430 V 652	4836 V 850
1422 V 400	1922 V 386	2230 V 275	2530 V 660	2926 V 834	3230HV620	4430 V 660	4836V900
1422 V 420	1922 V 403	2230 V 285	2530 V 670	2926 V 856	3230HV626	4430 V 670	4836 V 950
1422 V 440	1922 V 417	2230 V 326	2530V690	2926 V 891	3230HV644	4430 V 690	4836 V 1000
1422 V 460	1922 V 426	2230V375	2530V700	2926 V 906	3230HV685	4430 V 700	4836 V 1060
1422 V 466	1922 V 443		2530V730	2926 V 921	3230 HV 702	4430 V 710	4836 V 1120
1422V470	1922V454	2322V329	2530V750	2926 V 966	3230 HV 723	4430 V 718	4836 V 1180
1422 V 480	1922 V 460	2322 V 347	2530V790	2926V1006	3230 HV 821	4430 V 730	4836V1250
1422 V 540	1922V484	2322V364	2530 V 840	2926 V 1026	3230HV856	4430V740	$5130 \mathrm{~V} 732$
1422V600	1922 V 526	2322V384	2530 V 850	2926V1086	3230 HV 931	4430 V 750	$5130 \mathrm{~V} 787$
1422V660	1922V544	2322V396	2530 V 890	2926V1106	3230 HV 960	4430 V 760	
1422V720	1922V604	2322V434	2530V934	2926V1146	30HV1060	4430 V 780	5228V930
22V780	1922 V 630	2322V441	2530 V 990	2930V348	3236 V 369	4430 V 790	
1430 V 215	1922 V 646	2322V461	2530 V 1090	2930 V 420	3236 V 389	4430 V 800	$\begin{aligned} & 5230 \vee 662 \\ & 5230 \mathrm{~V} 734 \end{aligned}$
1430 V 315	1922V666	2322V481	2626 V 369		3236 V 432	4430 V 850	5230 V 867
1430 V 450	1922V706	2322V521	2626 V 388	3226 V 392	3430 V 424	4430 V 910	
1430 V 50	1922 V 721	2322 V 541	2630 V 345	3226 V 395 3226 V 400	3430 V 476	4430 V 930	636V7
1622 V 270	1922 V 726	2322 V 601	2630V395	3226 V 433	3430 V 493	4430 V 950	5830V756
1622 V 336	1922 V 751	2322V621		3226 V 439		4430 V 970	
1626 V 262	1922 V 756	2322V681	2636V332	3226 V 450	$\begin{aligned} & 3432 \mathrm{~V} 450 \\ & 3432 \mathrm{~V} 456 \end{aligned}$	4430 V 1000	5836 V 737
1626 V 290	1922V806	2322V701	2822V778	3226 V 465	3432 V 480	4430 V 1030	6236 V 607
1626 V 293	1922V891	2322V721		3226 V 505	3432V484	4430 V 1060	6236 V 725
1626 V 304	1922V966	2322 V 801	2826 V 452	3226 V 514	3432V528	4430 V 1090	6236 V 762
1626 V 330	1922V1146	2322 V 826	2830V337	3226 V 545	3432V534	4430 V 1150	
1626 V 339	1	2322 V 846	2830V363	3226 V 585		4430 V 1180	
1626 V 380	1926 V 250	2322 V 886	2830V366	3226 V 603	3630 V 455	4430 V 1250	
1626 V 384	1926 V 275	2322 V 921	2830V367	3226 V 650	3726 V 558	4430 V 1320	
1626 V 395	1926 V 407	2322V1001	2830 V 393	3226 V 663 3226 V 723		4430 V 1410	
1626 V 411	1926 V 427	2322V1061	2830V396	$\begin{aligned} & 3226 \vee 723 \\ & 322 G V 782 \end{aligned}$	3826 V 465	4430 V 1460	
1626 V 428		2322 V 1271	2830 V 422	3226 V 843	3830 V 510	4430 V 1610	
1626 V 440	1930 V 366 1930 V 400	2326 V 310	2830V428	3226 V 843 3226 V 93	$3830 V 510$ 3830 V 17		
1626 V 455	1930V425	2326 V 359	2836 V 343	3226 V 963	3830 V 580	4436V525	
1626 V 517	1930V431	2330 V 273	2836 V 350	3226 V 1023	3830 V 587	4436 V 646	
1626 V 597	1930 V 450	2330 V 338	2836V380	3226 V 1083	3836 V 418		
1626 V 604	1930V491	2426 V 343	2926 V 366	3230 V 419	3836 V 426	4630 V 650	
1626 V 658	1930 V 500	2426 V 343	2926 V 400	$3230 \mathrm{~V} 481$	3836 V 654	4630V663	
1626 V 700	1930V541	2430 V 297	2926 V 426	3230 V 600	3836 V 794	4630 V 733	
1628 V 210	1930V560	2430 V 302	2926 V 471	3230 V 621	030	4636 V 613	
1628V315	1930 V 600	2430 V 319	2926 V 477	3230 V 630	促		
	1930V641	2430 V 345	2926 V 486	3230 V 670	4036V541		
1632 V 210	1930V691	2430 V 379	2926V491	3230 V 710	4036V574		
1822 V 328	1930V750	2436V331	2926 V 534	3230 V 750	4230 V 556		
1822V328	1930V991		2926 V 546	3230 V 771	4230 V 605	4830 V 699	
1828V368	1930V1091	2526 V 314	2926 V 574	3230 V 800	4230 V 653	4830V730	
		2530 V 300	2926 V 586	3230 V 8500	4430 V 510	4830V750	

[^42]Call Toll Free: 1-866-711-4673
WebSales@GoodyearRubberProducts.com

Flat Belting (Truly Endless)

Part No: Compass "L" Flat Belt

Truly Endless Compass ${ }^{\circledR}$ Synthetic Cord Belts

These belts are extremely flexible and exceptionally long-lasting, even when operating over small pulleys. They are made in four different weights to meet any service requirement.
Goodyear Engineered Products Compass Cord transmission belts are made with a single-layer, reinforcing section for a cross section which is thinner by 25% or more compared to plied belts of equal horsepower capacity. The high-tensile strength, multistrand synthetic cords used in Compass Cord belts provide maximum strength and minimum elongation.

Compass belts are furnished in an abrasion-resistant rubber construction. They can be made with oil-resisting synthetic rubber compounds on special order in widths from $1^{\prime \prime}$ to $36^{\prime \prime}$ and lengths from $25^{\prime \prime}$ to 135^{\prime}.

Truly Endless Compass
 250 \& 450 Steel Cable Belts

These Compass Belts are constructed with steel cable for heavy-duty drives. These belts include the features of Compass Cord belts with the added advantage that the load-carrying members are very finely stranded steel cables instead of synthetic rope cords. All Compass 250 and 450 belts are made with oil-resisting compounds throughout, which gives them greatly increased life under operating conditions where oil is present.
They generally handle much higher horsepower loads than any conventional fabric or cord construction belt, are extremely flexible, and readily conform to small pulleys.

Applications

Handles a wide range of horsepower and speeds in both industrial and agricultural drives.

- Harvesting Equipment - Soil Handling
- Textiles and Forestry - Food Processing
- Hay Equipment - Chain Replacement
- Industrial Equipment - Health and Fitness
- Direct Gear Drive Replacement - Material Handling

KEy FEATURES \& BENEFITS

- Smooth, quiet operation and long belt life.
- Uniform belt surface with no splicing.
- High-tensile strength.
- High coefficient of friction.
- Lightweight.
- No lubrication necessary.
- Transverse rigidity.

We manufacture a complete line of flat belting from Truly Endless Compass and Multiple Ply belts to Regulator Power Strap flat belts for the health and fitness industry.

Truly Endless Multiple Ply Belts

The Multiple Ply belt is another product in the Truly Endless line. The round-and-round fabric construction can be split into multiple belts from one slab, representing great cost savings.
Various carcass materials are available for Multiple Ply belts, depending on the application. The most highly recommended are polyester/nylon, cotton, nylon, polyester, etc. These belts can be supplied with rubber covers, friction surface, or bareback. We can supply V-guides, banner edges, cleats, drive lugs, and rough top surfaces.

Flat Belting (Truly Endless)

Per Foot	Weight P.I.W. Inches	Thickness	Cord
Compas ${ }^{\otimes}$ L (Drum Cured)	0.0614	$9 / 64$	Rayon
Compass L (Press Cured)	0.0940	Rayon	
Compass M (2" to $9^{\prime \prime}$ wide incl) $(1 \times 2$ env)	0.0990	$15 / 64$	Rayon
Compass M (10" to $28^{\prime \prime}$ wide incl) $(2 \times 3$ env)	0.1470	$21 / 64$	Rayon
Compass C	0.1640	Polyester	
Compass H	0.1820	Polyester	
Compass 250 ($4^{\prime \prime}$ to $\left.36^{\prime \prime}\right)$	0.1460	$3 / 84$	Steel
Compass 250 (4" to 36")	0.1740	$11 / 64$	Steel
Compass 250 (10" \& over)	0.2000	$15 / 64$	Steel
Compass 450 (to $\left.10^{\prime \prime}\right)$	0.2110	$19 / 64$	Steel
Compass 450 Steel $\left(10^{\prime \prime} \&\right.$ over)	0.2470	$17 / 64$	Steel

For figuring belt weights on all Compass Belting with Rubber Covers, add the following:

COVERS — PIW	$\mathrm{I} / 32^{\prime \prime} \mathrm{Ga} . \mathrm{Lbs} / \mathrm{Ft}$
Wingprene ${ }^{\circledR}$ — ORS	Rubber — ABR
.0196 lb.	.0160 lb.

Other Useful Compass Endless Belt Information:

Drum Cured	Min. Width	Max. Width	Min. Length	Max. Length
Compass L	$1^{\prime \prime}$	$10^{\prime \prime}$	$24^{\prime \prime} 2^{\prime \prime}$	$120^{\prime \prime}$
Compass M	$2^{\prime \prime}$	$28^{\prime \prime}$	$21^{\prime \prime} 2^{\prime \prime}$	$1695 / 8^{\prime \prime}$

Press Cured	Min. Width	Max. Width	Min. Length	Max. Length
Compass M	$2^{\prime \prime}$	$36^{\prime \prime}$	$120^{\prime \prime}$	135^{\prime}
Compass C	$4^{\prime \prime}$	$36^{\prime \prime}$	$120^{\prime \prime}$	135^{\prime}
Compass H	$4^{\prime \prime}$	$36^{\prime \prime}$	$120^{\prime \prime}$	135^{\prime}
*Compass 250 Steel	$4^{\prime \prime}$	$36^{\prime \prime}$	$120^{\prime \prime}$	135^{\prime}
Compass 450 Steel	$10^{\prime \prime}$	$120^{\prime \prime}$	135^{\prime}	

Press Cured belts $30^{\prime \prime}$ to $34^{\prime \prime}$ wide require a minimum length of $14^{\prime}\left(168^{\prime \prime}\right)$.
Press Cured belts above $36^{\prime \prime}$ wide require a minimum length of 17^{\prime} (204").

* Compass 250 Steel belts under $120^{\prime \prime}$ maximum width of $18^{\prime \prime}$, over $120^{\prime \prime}$ limitations do not apply (up to $38^{\prime \prime}$).

NOTE: Belting made by continuous build endless method has a length tolerance of plus or minus 1%.

Truly Endless Belts Available Drum Sizes

Drum Built Belts are made only in raw-edge construction in lengths shown below.
Lengths other than shown below are available with procurement of tooling. Contact Customer Service for availability.

DRUM SIZES			
103/8	433/4	68	991/4
12	441/8	681/2	101
137/8	461/4	685/8	101 1 12
153/4	461/2	69	1021/2
241/2	473/16	695/8	103
251/2	473/8	70	$1031 / 2$
261/2	475/8	71	1041/2
273/8	481/4	$711 / 2$	105
277/8	483/8	72	1081/2
2811/16	491/4	74	1093/4
291/8	495/8	743/4	1113/16
303/16	4911/16	761/2	1121/2
3013/16	50	78	1131212
$31^{1 / 2}$	503/16	79	1141/4
$321 / 8$	511/8	791/2	115
$321 / 4$	515/8	80	1151/4
325/8	52	801/4	1161/2
33	525/16	81	1173/4
$33^{11 / 16}$	521/2	821/4	120
341/4	$533 / 8$	823/4	1211/2
349/16	54	84	125
351/8	541/8	85	126
$351 / 2$	55	86	128
3513/16	56	861/2	13011/16
36	563/8	88	1353/4
361/2	58	89	1387/8
37	581/2	891/2	141
375/8	585/8	901/8	1433/4
373/4	59	91	145
38	60	92	1473/4
385/8	$61^{1 / 2}$	921/2	1511/4
40	62	923/4	154
401/2	63	931/2	156
403/4	$63^{1 / 2}$	94	157
411/4	641/8	941/4	1591/2
415/8	65	95	162
417/8	66	96	1621/2
425/8	661/8	961/2	163
$431 / 2$	67	98	1685/8

Bowling Machine

AMF Part Number	Goodyear Engineered Products Part Number	AMF Part Number	Goodyear Engineered Products Part Number	AMF Part Number	Goodyear Engineered Products Part Number
$000-022-099$	A112	$030-005-453$	8520	$146-004-775$	5 M925
$000-025-731$	8350	$030-008-671$	A133	$208-111-174$	3L450
$000-026-753$	CARPET	$030-008-792$	A133	$070-011-064$	3L450
$000-027-710$	$2 L 360$	$070-001-424$	2 L360	$070-011-147$	3L380
$000-028-864$	8690	$070-002-005$	B190	$070-011-148$	3L400
$000-028-865$	8695	$82-70-2013$	8685	$234-001-147$	8595
$000-029-600$	8640	$000-029-433$	$3 L 360$	$702-504-012$	A68
$030-003-912$	A133	$057-001-003$	$4 L 410$	$702-504-013$	A34
$030-005-197$	B128	$146-004-772$	5 M1850		

Brunswick Part Number	Goodyear Engineered Products Part Number	Brunswick Part Number	Goodyear Engineered Products Part Number	Brunswick Part Number	Goodyear Engineered Products Part Number
$10-635112$	8555	$12-300082-3$	8625	$12-400329$	A77
$10-635126$	8505	$12-400034-2$	A75	$12-200947$	8560
$10-635303$	A90	$12-400034-3$	A105	$116-31-290$	$3 L 310$
$10-635304$	A64	$12-400034-4$	A120	$10-635317$	AX90
$10-635308$	4L335	$12-400034-5$	B195	$53-530230-2$	8420
$10-635309$	A80	$12-400223$	8615	$53-520148-2$	8430
$10-635314$	4L350	$12-400227$	B205		
$12-150113$	8620	$12-400314$	AX112		

Cotton Cleaner

Part No: 64 CCB
64 64" Pitch Length
CCB 1" Pitch

APPlications

Synchronous belts specially designed for driving the cylinders on Cotton Gin Incline cleaner machines.

Key Features \& Benefits

- Steel tensile cords.
- Long service life in harsh environments.

Size	Pitch Length	No. of Teeth
61CCB142	$61.0^{\prime \prime}$	61
63CCB165	$63.0^{\prime \prime}$	63
64CCB170	$64.0^{\prime \prime}$	64
65CCB175	$65.0^{\prime \prime}$	65

Axial Fan Pabls

Part No: 3150 14M 55\FFAN
3150 3150mm Pitch Length
14 14mm Pitch
55 55mm Wide
\FFAN Special Fin Fan ${ }^{\circledR}$ Construction

Applications

Specific application power transmission synchronous belts used primarily in the chemical, petroleum, and refining industries.
Key Features \& Benefits

- Special Fin Fan construction.
- Universal tooth profile drops into existing HTD sprockets.
- Quiet tooth engagement.
- High-grade engineered rubber compound.
- Fiberglass tension cords for excellent resistance to shrinkage/elongation.
- Oil, heat, ozone, and abrasion resistance.
- Low-maintenance/high-efficiency rating.

Part Number	SAP No.	No. of Teeth	Part Number	SAP No.	No. of Teeth
$315014 \mathrm{M} 55 \backslash$ FFAN	20081711	225	350014 M 85\FFAN	20081964	250
315014 M 85\FFAN	20081712	225	$385014 \mathrm{M} 55 \backslash$ FFAN	20082161	275
3360 14M 55\FFAN	20081835	240	385014 M 85\FFAN	20082162	275
3360 14M 85\FFAN	20081836	240			
3500 14M 55\FFAN	20081963	250			

Specific application power transmission synchronous belts used primarily in the chemical, petroleum and refining industries. Fin Fan is a registered trademark of the Hudson Products Company.

Axial Fan Sprockets

Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.	Part No.	SAP No.	Wt.
F168-14M-40-E	20182173	88.0	F192-14M-40-E	20182176	102.0	F216-14M-40-E	20182179	136.0
F168-14M-55-E	20182174	94.0	F192-14M-55-E	20182177	110.0	F216-14M-55-E	20182180	145.0
F168-14M-85-E	20182175	108.0	F192-14M-85-E	20182178	130.0	F216-14M-85-E	20182181	161.0

[^43]To learn more visit www.goodyearep.com/ptp.

Gatorback ${ }^{\circ}$ Poly-V• Belt

Part No: 4061025
4 K Section Poly-V
06 Ribs
1025 1025/10 Length

Applications

For passenger cars and light- and heavy-duty trucks.

Key Features \& Benefits

- Specially treated tension members to maintain tension and resist elongation on both locked center drives and spring tension systems.
- Fiber-reinforced rubber helical cogged ribs offer maximum cord support and wear resistance for unsurpassed performance in high horsepower applications.
- The backing is tough, coated fabric material impregnated with premium rubber for heat and oil resistance to provide high coefficient of friction needed to drive flat pulleys.
- Unique helical cog design runs quieter than standard cogged belts.

Gatorback V-Belt

APPlications

For passenger cars and light- and heavy-duty trucks.

KEy FEATURES \& BENEFITS

- High-strength Vytacord ${ }^{\circledR}$ tension members resist shockload failure. Low-elongation properties assure uniform performance over the long life of the belt.
- Fiber-reinforced rubber helical cogs offer greater flexibility which reduces cracking and fatigue in the cushion member.
- Tension fabric impregnated with engineered oil-resistant rubber reduces surface fatigue and resists cracking.
- Rubber edges maintain positive, no-slip contact with pulley grooves for reliable energy transfer.

To learn more visit www.goodyearep.com/ptp.

Timing Belt

Part No: 40138
40 Automotive Timing Belt 138 Industry Standard Description

APPlications

Goodyear Engineered Products Timing belts are designed to deliver precise timing over a long service life in demanding automotive cam applications.

Key Features \& Benefits

- Precision-molded teeth made of synthetic polymers provide high strength, shear resistance, and environmental resistance to assure long, dependable life.
- Specially woven and chemically treated fabric is impregnated with our high-grade rubber polymers to reduce pulley friction and provide outstanding resistance to abrasion, oil, and ozone.
- Special fiberglass tension members are dimensionally stable and high in strength, starting out precise and dependable and staying that way.
- Durable polymer backing protects the loadcarrying cords from oil, abrasion, and ozone. It also keeps the cords in place so they pull together smoothly and evenly.

Truck Refrigeration Belt

Part No: 41047

APPlications

Main drive belts for truck refrigeration units, especially designed for long life on mule drives and backside idler drives. Accessory drives are also found in the refrigeration units and are driven by Hex belts, Torque-Flex ${ }^{\circledR}$ belts, and Insta-Power ${ }^{\circledR}$ belts.

KEY FEATURES \& BENEFITS

- Premium rubber-impregnated fabric resists oil, heat, and wear.
- High-strength Vytacord ${ }^{\circledR}$ tension members improve flex life, eliminate excess elongation, and increase resistance to shock loads.
- Cushion section is made of premium rubber to resist heat and wear.

Note: For an application guide and available sizes of Gatorback ${ }^{\circledR}$ V-belts, Poly- V^{\circledR} belts, Truck Refrigeration belts, Special Truck belts, and Timing belts, ask your distributor for the following catalogs:

Catalog Description	Part Number	Catalog Description	Part Number
Car \& Light Truck Application Guide (Current to 1994)	20035740	Medium to Heavy Duty Truck Application Guide (Current to 1990)	20049138
Car \& Light Truck Application Guide (1993 \& Prior)	20049146	Medium to Heavy Duty Truck Application Guide (1989 \& Prior)	20108695

Belt Size Information

HY-T ${ }^{\circledR}$ Classical V-Belts/Torque-Flex ${ }^{\circledR}$

Section	Nominal Top Width		How to Obtain Effective Outside Length Up To $210^{\prime \prime}$	How to Obtain Effective Outside Length Over 210"
A, AX	$1 / 2^{\prime \prime}$	(.500)	Add 2.1" to Part Number Ex: A20 = 22.1"	Add 2.1" to Part Number Ex: $\mathrm{A} 220=22.1^{\prime \prime}$
B, BX	21/32"	(.656)	Add 2.9" to Part Number Ex: $\mathrm{B} 100=102.9{ }^{\prime \prime}$	Add $1.4^{\prime \prime}$ to Part Number Ex: $\mathrm{B} 240=241.4^{\prime \prime}$
C, CX	7/8"	(.875)	Add 4.2" to Part Number Ex: $\mathrm{C} 100=104.2^{\prime \prime}$	Add 2.2" to Part Number Ex: $\mathrm{C} 240=242.7^{\prime \prime}$
D, DX	$11 / 4^{\prime \prime}$	(1.250)	Add 5.2" to Part Number Ex: $\mathrm{D} 180=185.2^{\prime \prime}$	Add 2.7" to Part Number Ex: D240 = 242.7"
E	$11 / 2^{\prime \prime}$	(1.500)	Add $7.0^{\prime \prime}$ to Part Number Ex: E180 = 187.0"	Add 3.5" to Part Number Ex: E360 = 363.5"

HY-T ${ }^{\circledR}$ WEDGE

Section	Nominal Top Width		Lengths
3V, 3VX	$3 / 8^{\prime \prime}$	$(.375)$	Belt Number indicates nominal
$5 \mathrm{~V}, 5 \mathrm{VX}$	$5 / 8^{\prime \prime}$	$(.625)$	Outside Length
8 V	$1^{\prime \prime}$	(1.000)	Example: 3VX475 $=47.5^{\prime \prime}$

FHP

Section	Nominal Top Width		Lengths
2L	$1 / 4^{\prime \prime}$	$(.250)$	Belt Number indicates nominal
3L	$3 / 8^{\prime \prime}$	$(.375)$	Outside Length
4L	$1 / 2^{\prime \prime}$	$(.500)$	
5L	$21 / 32^{\prime \prime}$	$(.656)$	Example: 4L400 $=40.0^{\prime \prime}$

Positive Drive

Pitch	Distance from center of one tooth to center of next $\mathrm{MXL}=.080^{\prime \prime} \quad \mathrm{XL}=.200^{\prime \prime} \quad \mathrm{L}=.375^{\prime \prime} \quad \mathrm{H}=.500^{\prime \prime} \quad \mathrm{XH}=.875^{\prime \prime} \quad \mathrm{XXH}=1.250^{\prime \prime}$
	Last digits of belt number are the width in inches and tenths Example: $240 \mathrm{XL} 025=1 / 4^{\prime \prime}$ width
Length	First digits of belt number are the pitch length in inches and tenths Example: $240 \mathrm{XL} 025=24.0^{\prime \prime}$ Pitch length

Poly-V ${ }^{\circledR}$

Section	Width per Rib	Thickness	Length
J	.092	.16	First digits are pitch length in inches and tenths
L	.185	.38	Example: 180J4 $=18.0^{\prime \prime} \quad 4$ number of ribs
M	.370	.66	J = Poly-V cross section $\quad 4=$ numb

Variable Speed

Top Width	First two digits of belt number indicate belt top width in sixteenths of an inch Example: $3226 \mathrm{~V} 585=32 / 16^{\prime \prime}$ or $2^{\prime \prime}$ top width
Angle	Second two digits of belt number indicate the pulley angle Example: 3226 V 585 fits a 26°-angle pulley
Length	Last digits of belt number are the pitch length Example: $3226 \mathrm{~V} 585=58.5^{\prime \prime}$ pitch length

Technical Information

Sprocket Installation

Follow all safety policies and requirements of federal，state，and local authorities，as well as the regulation of the employer，when working on power equipment．Always lock out the power source to the machinery before performing any work．

Preparation

OBJECTIVE：Verify that all necessary tools and parts are avail－ able and ready for installation．
1．Eagle $\mathrm{NRG}^{\mathrm{TM}}$ belts and sprockets are identified with a unique Color Spectrum System．The seven colors used for identification are Yellow，White，Purple，Blue，Green， Orange，and Red．Each color represents a different size so that Blue belts are made to operate with Blue sprockets．Make sure the same color belt and sprockets have been obtained．When installing Falcon HTC ${ }^{\circledR}$ ，Hawk Pd^{\circledR} and Blackhawk Pd^{\circledR} ，it is also important that the correct sprocket width is used．
2．The following tools are recommended for proper belt and sprocket installation．
－Straightedge－Tape measure
－Socket and open－end wrenches
－Torque wrench
－Belt tension gauge
－Laser Alignment
－File and sandpaper
－Clean cloth
－Deflection force values for tensioning the belt
3．Make sure the components are ready for installation．Clean all shafts，removing any nicks or burrs．Clean all mating surfaces of the sprocket，bushing，and shaft．No lubrication or anti－sieze solution should be used on any of these surfaces， including threaded holes．Use of lubrication can create higher torque，which will cause premature failure．
4．Make sure the shafts are true and parallel by accurately measuring the distance between the shafts at three points along the shaft．The distance between the shafts should be the same at all three points as shown．Also make sure the shafts are rigidly mounted．Shafts should not deflect when the belt is tensioned．

Sprocket \＆Bushing Installation

OBJECTIVE：Align the sprockets and secure them to the shafts．
1．For conventional mounting，insert bushing into the sprocket， aligning the tapped holes in the bushing flange with the drilled holes in the sprocket hub．
2．Insert capscrews through the drilled holes and into the tapped holes．
3．Insert the key into the keyseat of the shaft．

See pages 129－130 for tools offered and how to order．

Technical Information

4. With capscrews to the outside, place the sprocket and bushing assembly on the shaft, positioning the assembly with the bushing flange towards the shaft bearings. Reverse mounting the "Quick Detachable" (QD) bushing can be advantageous for some applications.
5. Repeat Steps 1-4 for the other sprocket.
6. Check that the teeth of both sprockets are pointing in the same direction when installing Eagle NRG ${ }^{\mathrm{TM}}$ sprockets.
7. Snug the capscrews so that the sprocket/bushing assembly can still move on the shaft.
8. Align the sprockets using a straightedge. Check for contact in four places as shown. Do not use bearings or drive shafts as reference points for sprocket alignment. Goodyear Engineered Products Laser Alignment Tool provides an alternative method for checking alignment.
9. Using a torque wrench, tighten the capscrews to the torque values listed below. If there is not a gap of $1 / 8$ " to $1 / 4^{\prime \prime}$ between the bushing flange and the sprocket hub then disassemble the parts and determine the reason for the faulty assembly.
10. The sprocket will draw onto the bushing during tightening. Always recheck alignment after tightening the capscrews. If alignment has changed, return to Step 7.
11. Tighten the setscrews over the keyway to the torque values listed in the table to the right.
12. If the sprockets are straight bore, use the above alignment procedure and then tighten the setscrews to the correct torque for the setscrew size listed in the Torque Specifications table.

QD bushings can be installed with the capscrews on either side, excluding H, M, and N sizes. Drives with opposing shafts require one of the sprockets be mounted with the capscrews on the flange side and one with the capscrews on the hub side.

Torque Specifications

Bushing	Capscrew Torque		Setscrew Torque	Setscrew Size
	(in-lb)	$(\mathrm{ft}-\mathrm{lb})$	(in-lb)	(in)
H	108	9	-	-
SH	108	9	87	$1 / 4$
SDS	108	9	87	$1 / 4$
SK	180	15	87	$1 / 4$
SF	360	30	166	$5 / 16$
E	720	60	290	$3 / 8$
F	900	75	290	$3 / 8$
J	1620	135	290	$3 / 8$
M	2700	225	290	$3 / 8$
N	3600	300	620	$1 / 2$

TECHNICAL Information

Belt Installation \＆Tensioning

OBJECTIVE：

Goodyear Engineered Products Synchronous timing belts must be installed and tensioned properly to ensure optimum performance．Sprocket alignment must be preserved while tensioning the drive．

Before beginning，inspect the belt for damage and verify that the sprockets are properly mounted．Refer to sprocket and bush－ ing manufacturer installation procedure．Belts should never be crimped or bent to a diameter less than the minimum sprocket diameter，approximately 2.5 inches for 8 mm belts and 5 inches for 14 mm belts．

1．Shorten the center distance or release the tensioning idler to install the belt．Do not pry the belt onto the sprocket．Refer to the following Center Distance Allowance tables for required center distance adjustment．

Apply the following center distance allowances for the Hawk Pd^{\circledR} and Falcon HTC ${ }^{\oplus}$ ．A center distance adjust－ ment，or decrease in center distance，is necessary to install a belt．In addition，an increase in center distance will be necessary for proper tensioning．If you install a belt together with sprockets，allow the following decrease in center distance for installation and an increase in center distance for tensioning．

Pitch Length Range（mm）	Allowance（Decrease） for Installation 8M，I4M Belts $(\mathrm{mm} / \mathrm{in})$	Allowance（Increase） for Take－Up $8 \mathrm{M}, \mathrm{I} 4 \mathrm{M}$ Belts $(\mathrm{mm} / \mathrm{in})$
Less than 1525	$2.5 / 0.1$	$2.5 / 0.1$
$1525-3050$	$5.0 / 0.2$	$5.0 / 0.2$
Greater than 3050	$7.5 / 0.3$	$7.5 / 0.3$

If you install a belt over one flanged sprocket and one unflanged sprocket with the sprockets already installed on the drive，allow the following decrease in center distance for installation and increase in center distance for tensioning．

Pitch Length Range（mm）	Allowance（Decrease） for Installation		Allowance（Increase） for Take－Up 8M Belts I4M Belts （mm／in）
2M，I4M Belts			
（mm／in）			

If you install the belt over two flanged sprockets that are already installed on the drive，allow the following decrease in center distance for installation and increase in center distance for tensioning．

Pitch Length Range（mm）	Allowance（Decrease） for Installation 8M Belts 14M Belts （mm／in）		Allowance（Increase） for Take－Up 8M，I4M Belts $(\mathrm{mm} / \mathrm{in})$
Less than 1525	$34.5 / 1.4$	$59.2 / 2.3$	$2.5 / 0.1$
1525－3050	$37.0 / 1.5$	$62.0 / 2.4$	$5.0 / 0.2$
Greater than 3050	$39.5 / 1.6$	$64.5 / 2.5$	$7.5 / 0.3$

Consider the following center distance allowances when installing Eagle $\mathrm{NRG}^{\mathrm{TM}}$ sprockets．Since flanges are not necessary on Eagle NRG drives，only one table of center distance allowances is provided．

Pitch Length Range（mm）	Allowance（Decrease） for Installation 8M Belts I4M Belts $(\mathrm{mm} / \mathrm{in})$	Allowance（Increase） for Take－Up 8M，I4M Belts $(\mathrm{mm} / \mathrm{in})$	
Less than 1525	$10.1 / 0.4$	$15.2 / 0.6$	$2.5 / 0.1$
Greater than 1525	$15.2 / 0.6$	$17.8 / 0.7$	$5.0 / 0.2$

2．Place the belt on each sprocket and ensure proper engagement between the sprocket and belt teeth．
3．Lengthen the center distance or adjust the tensioning idler to remove any belt slack．
4．Using a tape measure，measure the span length of the drive． Refer to dimension＂ P ＂in the diagram below．The span length can be calculated using the below formula．

Technical Information

5．Place a straightedge or reference line across the top of the belt．
6．Determine the proper deflection force to tension the belt． Deflection forces are given in the following tables．Deflection forces are also given on the output of the MaximizerPro ${ }^{\text {TM }}$ computer drive analysis．
a）If using a tension gauge，the deflection scale is calibrated in inches of span length．Check the force required to deflect the belt the proper amount．There is an O－ring to help record the force．If the measured force is less than the required deflection force，lengthen the center distance．If the measured force is greater than the required deflection force，shorten the center distance．See chart on page 119 for deflection values and tension gauges available．
b）If using other means to apply force to the belt，adjust the center distance so that the belt is deflected $1 / 64$ per inch of span length when the proper force is applied．See chart on page 119 regarding TensionRite ${ }^{\circledR}$ Belt Frequency Meter which calculates belt tension by measuring span vibrations．

7．After the belt is properly tensioned，lock down the center distance adjustments and recheck the sprocket alignment．
8．If possible，run the drive for approximately 5 minutes with or without load．Stop the drive and lock out the power source and examine alignment，capscrew torque and belt tension． Adjust the center distance to increase the belt tension to the ＂New＂value in the Table on page 86．Lock down the drive adjustments and recheck tension．
9．Recheck the belt tension，alignment，and capscrew torque after eight hours of operation to ensure the drive has not shifted．

F＝Deflection Force
$\mathrm{q}=$ Deflection， $1 / 64^{\prime \prime}$ per inch of span length
C＝Center Distance
D＝Large Sprocket Pitch Diameter
$\mathrm{d}=$ Small Sprocket Pitch Diameter
P＝Span Length

Technical Information

Deflection Forces for Belt Tensioning（lbs）

Deflection Forces for Belt Tensioning（lbs．）							
Belt Type		0－100 RPM		101－1000 RPM		1000－up RPM	
		$\begin{aligned} & \hline \text { NEW } \\ & \text { BELT } \end{aligned}$	$\begin{aligned} & \text { USED } \\ & \text { BELT } \end{aligned}$	$\begin{aligned} & \hline \text { NEW } \\ & \text { BELT } \end{aligned}$	$\begin{aligned} & \hline \text { USED } \\ & \text { BELT } \end{aligned}$	$\begin{aligned} & \hline \text { NEW } \\ & \text { BELT } \end{aligned}$	$\begin{aligned} & \hline \text { USED } \\ & \text { BELT } \end{aligned}$
	Yellow	15	11	12	8	9	7
	White	30	21	24	17	19	13
	Purple	60	43	47	34	38	27
	Blue	54	38	44	31	38	27
	Green	80	57	66	47	57	41
	Orange	107	76	88	63	76	55
	Red	161	115	131	94	115	82
	8GTR 12	24	17	14	10	9	7
	8GTR 21	42	30	25	18	16	12
	8GTR 36	72	51	42	30	27	21
	8GTR 62	124	88	72	52	47	36
	14GTR 20	38	29	31	23	28	21
	14GTR 37	70	54	57	43	52	39
	14GTR 68	129	99	105	78	95	71
	14GTR 90	171	131	140	104	126	95
	14GTR 125	238	181	194	144	175	131
	8MBH 12	12	9	9	7	7	5
	8 MBH 22	23	17	16	12	13	10
	8MBH 35	36	26	26	19	21	16
	8MBH 60	62	45	45	33	36	27
	14MBH 20	36	26	27	20	23	17
	14MBH 42	76	55	57	42	49	36
	14MBH 65	117	85	89	65	76	55
	14MBH 90	162	118	123	90	105	77
	14MBH 120	217	157	164	119	139	102
	8M 20	15	11	13	10	12	9
	8M 30	23	17	20	15	19	14
	8M 50	39	29	35	26	32	24
	8M 85	69	50	61	45	56	41
	14M 40	47	34	38	28	32	24
	14M 55	70	51	56	41	48	35
	14M 85	116	84	93	68	79	58
	14M 115	162	118	130	95	110	80
	14M 170	249	181	201	146	171	125

Part Number
TensionRite ${ }^{\circledR}$ Eagle NRG Tension Tester （PN 20039446）or TensionRite Small Tension Tester（PN 20044882）

Application

$\leq 30 \mathrm{lbs}$ Deflection Force

Part Number
TensionRite Eagle NRG Tension Tester（PN 20039447） or TensionRite Small Tension Tester（PN 20083773）

Application
z 30 lbs Deflection Force

Belt Strand Tension（LBS）

Belt Strand Tension（lbs．）								
elt Typ		0－100 RPM		101－1000 RPM		1000－up RPM		$\begin{gathered} \text { Beit } \\ \text { Weight } \\ (\mathrm{kg} \mathrm{~m}) \\ \hline \end{gathered}$
		¢NEW BELT	UsED	（inco	UsED	$\substack{\text { NEN } \\ \text { BELT }}$	${ }_{\text {USELT }}^{\text {USED }}$	
		${ }^{2} 8$	${ }_{\substack{160 \\ 305}}$		${ }_{241}^{112}$	${ }^{128}{ }^{127}$	$\xrightarrow{96}$	
	Purple		${ }_{6}^{625}$	${ }_{689} 68$	481			
	${ }_{\substack{\text { Blue } \\ \text { creen }}}$	${ }_{\substack{817 \\ 1210}}$	${ }_{842}^{561}$	${ }_{986}^{685}$	${ }_{682}^{449}$	－${ }_{842}^{561}$	385 586 8	
	Orange	1618 2486	${ }_{1}^{1122} 1$	（1346	${ }_{1934} 196$	－ $\begin{aligned} & 1122 \\ & 1700\end{aligned}$	¢ 7172	
道								0.064
	8GTR 21 8GTR 36 8GTR 62	648 1111	$\begin{aligned} & 206 \\ & \hline 756 \\ & 775 \end{aligned}$	${ }_{\substack{376 \\ 631}}$	$\begin{gathered} 2669 \\ 439 \\ 499 \end{gathered}$	$\begin{aligned} & 232 \\ & 392 \\ & 392 \end{aligned}$	295	
	${ }_{8 \text { 8GTR } 62}$							
	${ }_{146 \text { TR }}$				${ }_{\substack{331 \\ 620}}$			
	14 Tr	1939	1459	${ }_{1} 1555$	${ }^{1123}$	1395	1011	
	14GTR 90	${ }_{\substack{2570 \\ 3578}}$	${ }^{1930}$	${ }_{\text {2074 }}^{2074}$	${ }^{14988}$	（1850	$\begin{array}{r}1354 \\ 1866 \\ \hline 1\end{array}$	\％38
		${ }_{539}$	379	－	267	－${ }_{\text {299 }}^{185}$	219	
					${ }_{464}$			
		${ }_{\text {1167 }}^{593}$		${ }_{863}^{409}$				
	14 MBH	1796	1284	1348 1388	964	${ }^{1140}$	${ }_{804}$	
	${ }_{\text {14MEH }}^{14 \mathrm{M}} 120$	${ }_{332}^{2487}$	${ }_{2372}^{1783}$	（1884	1335 1784		${ }_{142}^{1127}$	
	${ }_{88}^{80}$	${ }^{37}$	${ }_{231}^{251}$	${ }_{\substack{296 \\ 596}}^{\text {20，}}$	${ }_{2}^{292}$	${ }^{283}$	${ }_{203}^{200}$	
	${ }_{\substack{80 \\ 80 \\ 80 \\ 85}}$	¢				${ }_{838}^{488}$		
			507	571	411	475	47	
		${ }_{1069}^{1078}$	${ }_{\substack{765 \\ 126 \\ 1}}$	${ }_{\substack{845 \\ 1410}}$	年005	${ }_{\substack{717 \\ 1185}}$	${ }_{\text {cos }}^{509}$	
	${ }_{14 \mathrm{M} 170}$	－${ }_{3827}^{2489}$	1789 2789	1909 3059	1414 2199	${ }^{1654}$	${ }_{1843}$	183

Part Number
TensionRite Belt Frequency Meter （PN 20278454）

[^44]
Technical Information

Drive Alignment

Synchronous belts are very sensitive to misalignment. The tension carrying member has a high tensile strength and resistance to elongation, resulting in a very stable belt product. Any misalignment will lead to inconsistent belt wear, uneven load distribution, and premature tensile failure. In general, synchronous drives should not be used where misalignment is a problem. Misalignment should be limited to $1 / 4$ degree or $1 / 16$ inch per foot of center distance.

Figure A

Any degree of misalignment will reduce belt life and cause edge wear. Therefore, a straightedge should be used to check proper alignment verifying that sprockets and shafts are parallel, as in Figure C.

Misalignment, at times, may cause tracking problems. Although some tracking is normal and will not affect belt performance, it may be caused by poorly aligned sprockets. Flanges may control a tracking problem. Considering a two-sprocket drive, belt contact on a single flange is acceptable. Belt contact with the opposite flanges of two sprockets should be avoided.

With parallel shafts, misalignment occurs when there is an offset between the sprocket faces as in Figure A. Misalignment also occurs when the shafts are not parallel as in Figure B.

Figure B

Correct Alignment

A straightedge should touch the sprocket at the four points indicated. Both front and back alignments should be checked.

Laser Alignment Tool

Goodyear Engineered Products Laser Alignment Tool provides an alternative to checking alignment with a straightedge. Each laser alignment tool comes with a rugged carrying case and detailed instructions to get you started with the quickest, easiest, and most versatile alignment tool on the market today.

Misalignment can also be attributed to the improper installation of a bushing or loose drive framework. Refer to sprocket manufacture guidelines for proper bushing installation. Secure motor and framework to eliminate vibration on center-to-center fluctuations.

Technical Information

Goodyear Engineered Products V－Belt
Causes of Premature Failure

																																															（sheg peuior）dol uo niul tio	
																																															uo！toualı ө＾\｜sseox］	
																																															｜penbs Heg	
																																															дөлО unis sHeg	
																																															s＋1eg ueyorg	
																																															H．Ids epis	
																																															uoububdes 1 ld	
																																															10өм өdo｜өли引	
																																															uing uids	
																																															seถิnoง	
																																															$\\|$｜өMS pui lenoう өsool	
$\begin{array}{\|c\|} \hline \vec{D} \\ \frac{0}{0} \\ \frac{0}{0} \\ 0 \\ \frac{0}{2} \\ \frac{\stackrel{\rightharpoonup}{0}}{\omega} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{9}{0} \\ 0 \\ \frac{0}{X} \\ 7 \\ 7 \end{array}$									$\begin{array}{\|l\|} \hline \frac{7}{\overline{0}} \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$							$\begin{array}{\|l\|} \hline \overrightarrow{0} \\ \frac{0}{0} \\ \frac{0}{0} \\ 0 \\ 0 \\ \frac{0}{c} \\ \hline \end{array}$	 0 								$\overline{3}$ 0						$\begin{array}{\|l\|} \hline \sum_{0} \\ \hline \\ \vdots \\ \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline} \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \left.\begin{array}{l} \text { N } \\ 0 \\ 0 \\ 0 . \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array} \right\rvert\, \end{array}$				$\begin{array}{\|c\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{0}{0} \\ 0 \\ c \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	2 0					ㄲ․ $\stackrel{\rightharpoonup}{3}$ 0			W319O8d	
NOIIつV ヨヘIIつヨy४Oつ																																																

Call Toll free：1－866－711－4673
WebSales＠GoodyearRubberProducts．com

Technical Information

Goodyear Engineered
Products Synchronous
Causes of Premature Failure

Call Toll Free:

Mandrel Quantity Requirements

For Special Length Or Made－to－Order Belts．＊

The following quantities are for approximate reference only；mandrel tool sizes and availability at time of order may not be available．Please contact factory for verification．

HY－T® Belts		Under 123＂	$\begin{gathered} 124^{\prime \prime}- \\ 300^{\prime \prime} \end{gathered}$	$\begin{aligned} & 30 I^{\prime \prime} \\ & \& \text { Up } \end{aligned}$
$\begin{aligned} & >\mathrm{B} 38=>50 \text { Pcs } \\ & <\mathrm{B} 38=>53 \text { Pcs } \end{aligned}$	A	68	135	－－－
	B＊	50	100	50
	C	42	64	32
	D	25	46	24
	E	－－－	42	21
HY－${ }^{\bullet}$ Wedge Belts Envelope			124＂－	301＂
		$124^{\prime \prime}$	$300{ }^{\prime \prime}$	\＆Up
	3 V	88	176	－－－
	5 V	50	100	50
	8V	34	64	32
HY－T ${ }^{\bullet}$ Wedge Belts Cut－Edge	Up to	$120^{\prime \prime}-$	$\left.14\right\|^{\prime \prime}-$	300
	$120^{\prime \prime}$	$140^{\prime \prime}$	300＂	\＆UP
3VX	98	98	176	－－－
5VX	63	63	100	50

Torque Team ${ }^{\oplus}$ Belting	Cut－Edge			Envelope		
	$\begin{gathered} 25^{\prime \prime} \\ 118^{\prime \prime} \end{gathered}$			$116^{\prime \prime}-$	124 ＂	301＂－
				$123^{\prime \prime}$	300 ＂	\＆Up
	3 VX	95	3 V	88	176	－－－
	5VX	54	5 V	50	100	50
（Including	8 V	－－－	8 V	32	64	32
Torque－	AX	60	A	68	135	－－－
Team	BX	50	B	50	100	50
Plus and	CX	36	C	42	64	32
Laminated）	DX	29	D	25	46	24

FHP Envelope	12＂－112＂ Length	Under 28＂	28＂\＆ Over		
	＊2L	---	4 L	75	75
				Under $38^{\prime \prime}$	$38^{\prime \prime} \&$ Over
3L	3L unavailable in Envelope Construction．				

FHP Cut－Edge	$12^{\prime \prime}-116^{\prime \prime}$ Length	
	2L	152
	3L	98
	4L	79
5L	63	

Torque Flex ${ }^{\oplus}$ Belts	Under $116^{\prime \prime}$	$116^{\prime \prime}$ $123^{\prime \prime}$	$124^{\prime \prime}$ $300^{\prime \prime}$	$301^{\prime \prime}$ \＆Up
AX	73	73	135	---
BX	57	57	100	50
CX	42	42	64	32
DX	---	24	48	24

Positive Drive Belting＊＊	Under 120＂	Profile	$\begin{aligned} & 120^{\prime \prime} \\ & \& U P \end{aligned}$
Standard Positive Drive	$26^{\prime \prime}$	MXL	n／a
	$26^{\prime \prime}$	XL	n／a
	$26^{\prime \prime}$	L	n／a
	$26^{\prime \prime}$	H	13＂
	$26^{\prime \prime}$	XH	$13^{\prime \prime}$
	$26^{\prime \prime}$	XXH	13＂
Dual Positive Drive	$26^{\prime \prime}$	XL	－－－
	$26^{\prime \prime}$	L	13＂
	$26^{\prime \prime}$	H	13＂
	$26^{\prime \prime}$	XH	13＂
Hawk Pd ${ }^{\text {® }}$ and Blackhawk Pd ${ }^{\text {® }}$	$26^{\prime \prime}$	5M	－－－
	$26^{\prime \prime}$	8M	13＂
	$26^{\prime \prime}$	14M	13＂
	$26^{\prime \prime}$	20M	13＂
Super Torque Positive Drive （STPD）	$28^{\prime \prime}$	3M	－－－
	28 ＂	4.5 M	－－－
	$28^{\prime \prime}$	5M	－－－
	$27^{\prime \prime}$	8M	$14^{\prime \prime}$
	$26^{\prime \prime}$	14M	$13^{\prime \prime}$

Eagle $\mathrm{NRG}^{\mathrm{mm}}$ and Falcon HTC^{\star} ：Contact Customer Service for correct quantities．

		$38^{\prime \prime}$ Any Length		
		$0-124^{\prime \prime}-$	Over	
Variable Speed Belts				

Poly－V® Belt（Cut－Edge Only）

＂J＂Section	$10 "-120 "=400$ ribs
＂L＂Section	$25 "-120 "=200$ ribs
＂M＂Section	$50 "-118 "=100$ ribs
＂K＂Section	$12 "-118 "=265$ ribs

＊Nonstock Belts：Orders for nonstock or made－to－order belts are available in multiple mandrel size quantities．Please check factory for availability of equipment and／or availability for the desired construction．
${ }^{* *}$ Inches indicate the total top width mandrel yield（e．g．，divide belt top width into yield for total number of belts per mandrel）．
Call Toll Free：1－866－711－4673
WebSales＠GoodyearRubberProducts．com

Belt Storage

General Guidelines

The storage of power transmission belts is of interest to users and distributors as well as manufacturers. Under favorable storage conditions, good quality belts retain their initial serviceability and dimensions. Conversely, unfavorable conditions can adversely affect performance and cause dimensional change. Good storage facilities and practices will allow the user to achieve the most value from belt products.

Power transmission belts should be stored in a cool and dry environment with no direct sunlight. When stacked on shelves, the stacks should be small enough to avoid excess weight on the bottom belts which may cause distortion. When stored in containers, the container size and contents should be sufficiently limited to avoid distortion, particularly to those belts at the bottom of the container.

Some Things to Avoid

Do not store belts on floors unless a suitable container is provided. They may be susceptible to water leaks or moisture or otherwise damaged due to traffic.

Do not store belts near windows which may permit exposure to sunlight or moisture. Do not store belts near radiators or heaters or in the airflow from heating devices.
Do not store belts in the vicinity of transformers, electric motors, or other electrical devices that may generate ozone. Also avoid
areas where evaporating solvents or other chemicals are present in the atmosphere.

Do not store belts in a configuration that would result in bend diameters less than the minimum recommended sheave or pulley diameter for normal bends and not less than 1.3 times the minimum recommended diameters for reverse bends. (Refer to appropriate RMA-MPTA-RAC Standards for minimum recommended diameters.)

Methods of Storage

V-belts

A common method of storing belts is to hang them on pegs or pin racks. Very long belts stored this way should use sufficiently large pins or crescent-shaped "saddles" to prevent their weight
from causing distortion. Long V-belts may be "coiled" in loops for easy distortion-free storage. The following is a guide to the maximum number of coils for extended storage time.

Belt Cross Section	Belt Length (in)	Belt Length (mm)	No. of *Coils	No. of Loops
3L, 4L, A, AX, AA	Under 60	Under 1,500	0	1
5L, B, BX, 3V	60 up to 120	1,500 up to 3,000	1	3
9R, 13R, 13C, 13CX, 13D	120 up to 180	3,000 up to 4,600	2	5
16R, 16C, 16CX, 9N	180 and over	4,600 and over	3	7
BB, C, CX	Under 75	Under 1,900	0	1
5V	75 up to 144	1,900 up to 3,700	1	3
16D, 22C, 22CX	144 up to 240	3,700 up to 6,000	2	5
15N	240 and over	6,000 and over	3	7
	Under 120	Under 3,000	0	1
CC, D	120 up to 240	3,000 up to 6,100	1	3
$22 D, 32 C$	240 up to 330	6,100 up to 8,400	2	5
	330 up to 420	8,400 up to 10,600	3	7
	420 and over	10,600 and over	4	9
8V (25N)	Under 180	Under 4,600	0	1
	80 up to 270	4,600 up to 6,900	1	3
	270 up to 390	6,900 up to 9,900	2	5
	390 up to 480	9,900 up to 12,200	3	7

[^45]
Belt Storage

Methods of Storage（Cont．）

Joined V－belts， Synchronous Belts，
 V－Ribbed Belts

Like V－belts，these belts may be stored on pins or saddles with precautions taken to avoid distortion．However，belts of these types，up to approximately 120 inches（ 3000 mm ），are normally shipped in＂nested＂configuration and it is recommended that the belts be stored in this manner as well．Nests are formed by laying a belt on its side on a flat surface and placing as many belts inside the first belt as possible without undue force．When the nests are tight and are stacked with each rotated 180° from the one below，they may be stacked without damage．

Belts of these types over approximately 120 inches（ 3000 mm ）， may be＂rolled up＂and tied for shipment．These rolls may be stacked for easy storage．Care should be taken to avoid small radii，which could damage the belts．

Variable Speed Belts

Variable Speed belts are more sensitive to distortion than most other belts and it is not recommended that these belts be hung from pins or racks．They should be stored on shelves． A common method for packaging for shipment is the use of a＂sleeve＂slipped over the belt．Variable Speed belts should be stored in these sleeves and may conveniently be stacked on shelves with the aid of the sleeves．

EFFECTS OF STORAGE

The quality of belts has not been found to change significantly within seven years of proper storage at temperatures less than $85^{\circ} \mathrm{F}\left(30^{\circ} \mathrm{C}\right)$ and relative humidity below 70 percent．Also there must be no exposure to direct sunlight．
If the storage temperature is increased beyond $85^{\circ} \mathrm{F}\left(30^{\circ} \mathrm{C}\right)$ ，then the storage limit for normal service expectancy should be reduced． From a base of seven years at $85^{\circ} \mathrm{F}\left(30^{\circ} \mathrm{C}\right)$ ，the storage limit should be reduced by one－half for each $15^{\circ} \mathrm{F}\left(8^{\circ} \mathrm{C}\right)$ increase in temperature．Under no circumstances should belts be exposed to storage temperatures above $115^{\circ} \mathrm{F}\left(46^{\circ} \mathrm{C}\right)$ ．

With a significant increase in humidity，it is possible for fungus or mildew to form on stored belts．This does not appear to cause serious belt damage，but should be avoided if possible．

Equipment using belts is sometimes stored for prolonged periods （six months or more）before it is put in service or during other periods when it is idle．It is recommended that the tension of the belts be relaxed during such period and that equipment stor－ age conditions should be consistent with the guidelines for belt storage．If this is not possible，the belts should be removed and stored separately．

[^46]
Goodyear Engineered Products Matchmaker ${ }^{\circ}$ System

The RMA Engineering Standards IP-20 \& IP-22 sets up limits for matching Classical and Wedge V-belts having polyester cord based on their lengths and cross-sections. These standards have been
developed to ensure that belts that meet the RMA tolerances will run together on multiple-belt drives and effectively share the load that is being transmitted.
\(\left.\begin{array}{|ll|}\hline V-Belt Permissible Deviation From Nominal Length - Envelope Narrow Profile

Industry Standard\end{array}\right]\) Range | Product Length | $15 \mathrm{~mm}\left(.5905^{\prime \prime}\right)$ |
| :---: | :---: |
| $0^{\prime \prime}$ to $50^{\prime \prime}-63 / 64^{\prime \prime}$ | $20 \mathrm{~mm}\left(.7874^{\prime \prime}\right)$ |
| $51^{\prime \prime}$ to $80^{\prime \prime}-6364^{\prime \prime}$ | $25 \mathrm{~mm}\left(.9842^{\prime \prime}\right)$ |
| $81^{\prime \prime}$ t $100^{\prime \prime}-63 / 64^{\prime \prime}$ | $30 \mathrm{~mm}\left(1.1 .81^{\prime \prime}\right)$ |
| $101^{\prime \prime}$ to $140^{\prime \prime}-63 / 64^{\prime \prime}$ | $40 \mathrm{~mm}\left(1.575^{\prime \prime}\right)$ |
| $141^{\prime \prime}$ to $300^{\prime \prime}-63 / 64^{\prime \prime}$ | $50 \mathrm{~mm}\left(1.968^{\prime \prime}\right)$ |
| $301^{\prime \prime}$ to $400^{\prime \prime}-63 / 64^{\prime \prime}$ | $61 \mathrm{~mm}\left(2.400^{\prime \prime}\right)$ |
| $401^{\prime \prime}$ to $500^{\prime \prime}$ | |

Source: RMA 1P-22, 2007
Engineering Standard "Envelope Narrow V-Belts and Sheaves"

Many Goodyear Engineered Products branded V-belts are produced to meet these standards under the Matchmaker Matching System. Multiple V-belts will still have different lengths under this system; however, the elongation of the polyester reinforced V-belts will allow the belt lengths to normalize once the belts are tensioned. The Matchmaker System only applies to V-belts with polyester cord; V-belts with Flexten ${ }^{\circledR}$ cord do not fall into this program. Sets of multiple Flexten reinforced V-belts have to be specially ordered to ensure they are within an acceptable length range to each other, or
they can be ordered as one banded HY-T ${ }^{\circledR}$ Torque Team Plus ${ }^{\circledR}$ belt. As an example, a 5 V 710 belt has a Matchmaker matching limit of $0.30^{\prime \prime}$. This means a 5 V 710 that measures $71.150^{\prime \prime}$ is considered matched to one that measures $70.850^{\prime \prime}$ because the difference in belt length between the two is $71.150^{\prime \prime}-70.850^{\prime \prime}=0.30^{\prime \prime}$, which is within the $0.30^{\prime \prime}$ matching limit that is called out for in the Matchmaker System.

MATCHMAKER Belts	Classical Lengths	Wedge Lengths
- HY- T Wedge (3VX, 3V, 5VX, 5V, \& 8V)	0"-60"................. 0.15"	0"-63"................. 0.15"
- HY-T Plus (A, B, C, \& D)	61"-144"............... 0.30"	64"-150"............... 0.30"
- Torque Flex ${ }^{\circledR}$ (AX, BX, \& CX)	145"-240" 0.45"	151"-250".............. 0.45"
- HY-T Torque Team ${ }^{\circledR}$ (HY-T \& HY-T Wedge)	241"-360" 0.60"	251"-375" 0.60"
- Torque Team Laminated	361"-480" 0.75"	376" \& longer 0.75"
	481" \& longer 0.90"	

Meets RMA Engineering Standards IP-22 for Narrow V-Belts, 2007

As a final note, the best way to optimize the Matchmaker program is to utilize the "first in-first out" method of inventory control. Every V-belt manufacturer that produces polyester-corded belts bases their matching principles on the assumption that their inventory is constantly turning over. This is because an inherent property of polyester is that it will shrink over time. Thus, a belt built two years ago will not measure the same as it did when it was originally
produced. How much and how fast the polyester shrinks is largely dependent on the environmental conditions that the belt is exposed to during storage. As it is difficult to easily monitor the environment of certain storage spaces, it becomes apparent why it is important to make certain that the oldest inventory is the first to be used. With these procedures in place, the Matchmaker System will continue to serve your multiple-belt drive needs.

Oil \＆Chemical Resistance of Power Transmission Belts

In general，the presence of oil or chemicals in contact with any belt drive system can materially affect the life span and operational characteristics of the system．The concentration of the chemical or oil involved，length and type of exposure，choice of belt type used，and environmental conditions，such as heat and humidity，all contribute to the rate and degree of effect on the performance and deterioration．
Two effects may be noted when belts are exposed to oil and／or chemicals．The most obvious is a swelling or increase in dimen－ sions of the cross section so that they no longer fit the pulley or sheave groove properly．Less apparent at casual observation， is the deterioration of the original physical properties，which includes adhesion between the belt components．If the degree of swelling and／or loss of physical properties is significant，the life of the belt will be substantially shortened．

The above effects may be brought about by a large variety of chemicals，notably oils，acids，and solvents．

No one synthetic rubber is resistant to all of these．Some compounds may be excellent for one chemical，but poor for another，and only adequate for still another．

Because of this，all Goodyear Engineered Products stock belts are constructed to be reasonably oil and chemical resistant． The nature of the compounds and／or belt construction may minimize swelling and deterioration．Occasional splattering by oils and greases does not usually adversely affect standard belts． The automotive fan belt is a typical example．

In addition，there are a great number of chemicals，such as gasoline，which swell rubber or extract ingredients from the belt＇s rubber compounds．These may cause embrittlement， cracking，or swelling of the belt，which results in deterioration of performance．

If the drive is subjected to the accumulation of a considerable amount of oil and grease on the belt，it may preclude the use of a V－belt or a V－ribbed belt．Synchronous belts are not sub－ stantially affected by the loss of friction coefficient and may be capable of limited operation under these conditions．

As can be seen from the above，there are many variables．However， the following general guidelines might be of use in selecting a belt drive system subjected to a chemical environment．

1．Prevent the accumulation of contaminants．
2．If the belts are to be subjected to only an occasional contamination contact，a standard construction V－or synchronous belt can be used．

3．If the belts are expected to give long，trouble－free operation on an industrial drive，and they are in contact with oil or exposed to an atmosphere laden with chemicals or solvents，consult the manufacturer for recommendations．

Static Conductive Belts

There is always a demand for belts and other rubber products to be used in the presence of explosive gases, liquids, powders, dusts, etc., where the possibility of static sparks must be kept to a minimum.
Below, we hope to outline, in nontechnical terms, a basic overview of static conductivity.

The ordinary manifestations of static electricity are present in everyone's daily life: in combing one's hair, walking across a dry carpet, separating two sheets of paper, etc.
The differences between a static spark and the current from a lighting or power circuit are differences in duration, voltage, and amperage. Usually the sparks are very short in duration since there is no continuous source of current. The voltage of a static spark is very high. About 20,000 volts are required to produce a spark which will jump a one-inch gap in dry air. The amperage and the energy, however, are usually very small.
There are many ways in which static may be generated: by friction between two unlike materials, by the breaking up of a liquid into a spray or mist, etc.
Any material can be electrified to some extent. If the material is a conductor, however, it may be discharged by connecting any point with the ground. If it is a nonconductor, the charge must be removed at the point where it is generated.

In distinguishing between conductors and insulators for static charges, they must not be confused with the actions of similar materials when used with ordinary electric current. The conductivity required to dissipate a static charge is so small that materials which are satisfactory "insulators" for ordinary electric current may act as "conductors" for static charges.

The term "resistivity" applies to the specific resistance of the substance of which the conductor is made. It is numerically equal to the resistance between the opposite faces of a cube of the substance whose edge is one centimeter. The unit of resistivity is the Ohm-Centimeter.

The specific resistivity of most rubber compounds is approximately 10^{15} (10 followed by 14 zeros) ohm-cm. For all practical purposes, it is sufficient to know that the resistivity of rubber is very, very high and that it is a good insulator. It is possible, however, to make a rubber compound having a resistivity of $100 \mathrm{ohm}-\mathrm{cm}$ or less. Thus compared to ordinary rubber compounds, these stocks may be classed as conductors. However, when compared to copper, which has a resistivity of $0.0000017 \mathrm{ohm}-\mathrm{cm}$, the very best of conducting rubber compounds, would still be classed as insulators.
Six mega-ohms is the maximum limit is accepted by RMA and industry for all Static Conductive Belts. Belts produced and designated by Veyance Technologies as static conductive meet this RMA standard. If special customers insist on tighter static conductive limits than required by RMA, such limits should be carefully noted and emphasized on the order so that these belt orders can be specially processed through the plant.
However, merely using a conductive belt does not eliminate the static problem entirely. The entire system must be grounded since, if no ground is provided, the belt or other parts of the system may by charged either by conduction or induction from some outside source.
It is, of course, necessary to see that belt and pulley surfaces are kept free of foreign substances, such as dirt, dust, belt dressing, etc., which are not themselves conductors. The pulleys, of course, must be a conductive material which rules out most nonmetallic materials unless they are specially designed and treated.
Where the explosion hazards are severe, we strongly recommend that the user periodically check, not only the belts, but all other possible sources of static sparks. Often the material itself, as in the case of smokeless powder, may be a source of static charges. Likewise, the clothes of the operators will generate static. It is essential that all, and not just part, of the static sources be eliminated if the danger of static discharge is to be averted.

Drive Maintenance Materials Items：

\qquad TensionRite ${ }^{\circledR}$ Belt Frequency Meter
Laser Alignment Tool
Laser Alignment Tool Replacement Magnet
TensionRite Eagle Tension Tester（200 capacity with instructions）
TensionRite Eagle Tension Tester（Pencil－type with instructions）
TensionRite Large Tension Tester（Instructions included）
TensionRite Small Tension Tester（Instructions included）
TensionRite Gauges－Blue／ 50 per pack for Banded Belts
TensionRite Gauges－Yellow／ 25 per pack for single V－Belts

General Sales Materials

 Product Specific：\qquad PTP Full Line Product Catalog
Falcon HTC ${ }^{\circledR}$ Brochure
Synchronous Belt Flyer（Falcon HTC，Eagle NRG ${ }^{\mathrm{TM}}$ \＆Hawk Pd^{\circledR} ）
Eagle NRG Brochure
Eagle Pd ${ }^{\circledR}$ Acculiner ${ }^{\circledR}$ Brochure
TensionRite Brochure
TensionRite Counter／Wall Display（Holds 50 Gauges）
ELATECH ${ }^{\circledR}$ Polyurethane Belt Catalog
ELATECH ${ }^{\circledR}$ Sales Flyer
GY Metric ${ }^{\circledR}$ Sales Flyer
Laser Alignment Tool Flyer
TensionRite Belt Frequency Meter Flyer
Full Size TensionRite Belt Frequency Meter User＇s Manual
TensionRite Belt Frequency Meter Tensioning Tables
MaximizerPro ${ }^{\text {TM }}$ Flyer

Market Specific：

＿ACHE（Air Cooled Heat Exchanger）Brochure

Application Engineering Manuals：

\qquad Industrial V－Belts
Eagle NRG Synchronous Drive Products Manual
ACHE Axial Fan Drive Systems
\qquad

Product Code

62420000050000
52290800800000

62499000300000
62499000200000
52290800500000
52290800300000
70082194715000
70082194715700

SAP\＃
20287454＊ 20245089＊ 20304774＊ 20039447＊ 20039446＊ 20083777＊ 20044882＊ 20140098＊＊ 20157153＊＊

Availability

GBS
GBS

70082194705000

70082194750300
70082194707100^{*} $70082194753100^{* *}$ $70082194737700^{* *}$ $70082194706700^{* *}$ 20039436

20118189
20132347
$70082194714900^{* *}$ $70082194747400^{* *}$
$70082194747900^{* *}$
$70082194748300^{* *}$
$70082194748400^{* *}$
$70082194748500^{* *}$
$70082194753600^{* *}$
$70082194747500^{* *}$
20044904 $70082194717700^{* *}$
$70082194714800^{* *}$

goodyearep．com／ptp or GBS goodyearep．com／ptp goodyearep．com／ptp or GBS goodyearep．com／ptp or GBS
goodyearep．com／ptp or GBS
goodyearep．com／ptp or GBS goodyearep．com／ptp or GBS goodyearep．com／ptp or GBS goodyearep．com／ptp or GBS

GBS
goodyearep．com／ptp or GBS
GBS

BS
S

N／C
goodyearep．com／ptp goodyearep．com／ptp

[^47][^48]
\qquad Application/Cross Reference Materials:
Industrial Belt Wall Chart Product Reference- $81 / 2^{\prime \prime} \times 11^{\prime \prime}$
Industrial Belt Wall Chart Product Reference - $11^{3 / 4^{\prime \prime}} \times 14^{\prime \prime}$
Industrial Belt Wall Chart Product Reference - Poster size
Lawn \& Garden Application Guide
Car \& Light Truck Application Guide (Current to 1994)
Car \& Light Truck Application Guide (1993 and prior)
Medium to Heavy Duty Truck Application Guide (Current to 1990)
Medium to Heavy Duty Truck Application Guide (1989 and prior)
Sports Vehicles (Snowmobile) Application Guide

Software:

\qquad MaximizerPro ${ }^{\mathrm{TM}}$ Drive Analysis Software Program
MaximizerPro Drive Data Gathering Form

Training Product Specific:

V-Belt Install \& Maintenance Video	$70082194729100^{* *}$
Installation, Maintenance \& Troubleshooting Guide	$70082194750600^{* *}$
Installation, Maintenance \& Troubleshooting Pre-packaged Seminar Kit	$70082194746900^{* *}$

20044937
20044945

Miscellaneous Sales Supplies \& Tools

\qquad Power Transmission Products Store Front Banner - 5' x 3'
$70082194739400^{* *}$
Power Transmission Products Store Front Banner - 10' x 3^{\prime}
Eagle NRG ${ }^{\text {TM }}$ Demo Kit
Straight Edge Pulley/Sprocket Alignment Tool
Synchronous Belt Profile Gauge
"V" Profile Sheave Gauge
Automotive \& FHP Belt Measuring Gauge
9209C Blank Sleeves 300 / CTN Small
9210C Blank Sleeves 500 / CTN Large
3' Wood Wall Racks (20 boards/box)
$6^{\prime \prime}$ Metal Hooks (250 hooks/box)
12" Metal Hooks (250 hooks/box)

$70082194739400^{* *}$		GBS
$70082194739400^{* *}$		GBS
6249900080000	20039454^{*}	
62499000500000	20039449^{*}	
62499000100000	20039445^{*}	
52290800400000	20044915^{*}	
52090800000000	20035727^{*}	
52035980400037	20069243^{*}	
52035980500037	20069265^{*}	
52098981800000	20073299^{*}	
52098920200000	20073283^{*}	
52098920300000	20073284^{*}	

* Contact your local Goodyear Engineered Products industrial distributor.
** EPIX users can order through GBS otherwise contact your local Veyance Technologies representative.

Product Code

$70082194746100^{* *}$ 70082194701000
52098980800000
52098980600000
52098984300000
52098980700000
52098930000000
52098980900000

Availability

goodyearep.com/ptp or GBS
GBS
20044883**
GBS
20073298
20035740
20049146
20049138
20108695
20035750
goodyearep.com/ptp or GBS
GBS
www.goodyearep.com/ptp www.goodyearep.com/ptp
GBS

GBS
GBS

WARNING

DO NOT USE THE PRODUCTS IN THIS GUIDE IN AIRCRAFT APPLICATIONS． THE PRODUCTS IN THIS GUIDE ARE NOT INTENDED FOR USE IN AIRCRAFT APPLICATIONS．

DO NOT USE THE PRODUCTS IN THIS GUIDE IN LIFT OR BRAKE SYSTEMS WHICH DO NOT HAVE AN INDEPENDENT SAFETY BACKUP SYSTEM． THE PRODUCTS IN THIS GUIDE ARE NOT INTENDED FOR USE IN LIFT OR BRAKE SYSTEMS WHICH DO NOT HAVE AN INDEPENDENT SAFETY BACKUP SYSTEM．

FAILURE TO FOLLOW THESE WARNINGS AND THE PROPER PROCEDURES FOR SELECTION，INSTALLATION，CARE，MAINTENANCE，AND STORAGE OF BELTS MAY RESULT IN THE BELT＇S FAILURE TO PERFORM PROPERLY AND MAY RESULT IN DAMAGE TO PROPERTY AND／OR SERIOUS INJURY OR DEATH．

The products in the Guide have been tested under controlled laboratory conditions to meet specific test criteria．These tests are not intended to reflect performance of the product or any other material in any specific application，but are intended to provide the user with application guidelines．The products are intended for use by knowledgeable persons having the technical skills necessary to evaluate their suitability for specific applications． Goodyear assumes no responsibility for the accuracy of this information under varied conditions found in field use．The user has responsibility for exercising care in the use of these products．

Call Toll Free：1－866－711－4673

Notes

U.S.A
 1-800-235-4632
 FAX 1-800-762-4017

GOODYEAREP.COM/PTP

fonvernment Heavy Dutv Home_and Garrien Hydraulias Inductrial Hose

[^0]: *" H " is a Split Taper Bushing. " QT " is a QD^{\circledR} Bushing and is interchangeable with an " H " bushing. FSB = Finish Stock Bore
 See page 15 for sizing information.

[^1]: X = Stock Size

[^2]: * Gates, Poly Chain and GT are trademarks of the Gates Corporation.

[^3]: *Trademarks of the Gates Corporation, Carlisle, and TB Wood's Incorporated respectively.

[^4]: *Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

[^5]: *W/eioht dnes not include hushino

[^6]: *Weight does not include bushing.

[^7]: *Weight does not include bushing.

[^8]: *Weight does not include bushing.

[^9]: *Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

[^10]: Stock Widths* $3 / 4$ inch $=075$
 1 inch $=100$
 $1^{1} 2$ inch $=150$
 2 inches $=200$
 3 inches $=300$

[^11]: *Weight does not include bushing.
 ** MPB

[^12]: *Weight does not include bushing.

[^13]: *Weight does not include bushing.

[^14]: All Super Torque Pd belts are nonstock. Standard factory lead times will apply.
 Minimums apply. Contact your local Goodyear Engineered Products PTP
 industrial distributor.

[^15]: *Stock Widths: Use the three-digit size number as a suffix to the belt number when ordering. For nonstock sizes, contact your local Goodyear PTP industrial distributor.
 Note: Other sizes available upon request.

[^16]: * ELATECH is a trademark of ELATECH S.r.l.

[^17]: *Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

[^18]: *Cut edoe non-cooged

[^19]: *Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

[^20]: *Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

[^21]: *Check customer service for availablitity. Size not produced at time of catalog printing.

[^22]: *Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

[^23]: *Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

[^24]: *Temperature range is based upon test data obtained on select belt sizes manufactured from our latest rubber compounds, consistent with standard MIL-B-11040-E, section 3.8.
 ${ }^{* *}$ Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

[^25]: *Denotes cog construction.

[^26]: *Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

[^27]: *Cut-edge construction.
 ${ }^{* *}$ Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

[^28]: *Cut edge construction.

[^29]: *Weight does not include bushing and is approximate.

[^30]: *Weight does not include bushing and is approximate.

[^31]: *Weight does not include bushing and is approximate.

[^32]: *Weight does not include bushing and is approximate.

[^33]: *Weight does not include bushing and is approximate.

[^34]: ＊Weight does not include bushing and is approximate．

[^35]: ＊Trademark of TB Wood＇s Incorporated．

[^36]: *Trademark of TB Wood's Incorporated.

[^37]: *Trademark of TB Wood's Incorporated.

[^38]: ＊Trademark of TB Wood＇s Incorporated．

[^39]: ＊Trademark of TB Wood＇s Incorporated．

[^40]: *Nonstock: Please check factory for availability.
 Note: Rubber equivalents for $5 \mathrm{M}, 7 \mathrm{M}$, and 11 M sizes are available in mandrel minimums.

[^41]: *Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement.

[^42]: Metric and asymmetric sizes available in minimum quantities.

[^43]: *Weight does not include bushing.

[^44]: 1．The table values are typically larger than necessary to cover the broad RPM range．
 2．For drives where hub loads are critical and high speed drives or other drives with special circumstances，the table values（deflection force，installation tension）should be calculated．
 3．Consult the Web site for detailed information on using the frequency－based tension gauges．
 4．Veyance Technologies offers three different tension gauges for properly tensioning Eagle NRG，Hawk Pd or Blackhawk Pd belts．See your Goodyear Engineered Products sales representative or your local PTP industrial distributor for more information on the tension gauges listed on this page．

[^45]: *One coil results in three loops, two coils result in five loops, etc.

[^46]: Source：RMA IP－3－4， 2007

[^47]: ＊Contact your local Goodyear Engineered Products industrial distributor．
 ＊＊EPIX users can order through GBS，otherwise，contact your local Veyance Technologies representative．

[^48]:

