

PROPOSED EXPANSION OF THE SAND MINE AREA ON PORTION4 OF THE FARM ZANDBERG FONTEIN 97, SOUTH OF ROBERTSON, WESTERN CAPE PROVINCE

Report Title: Botanical Study and Assessment

Authors: Mr. Gerhard Botha and Dr. Jan-Hendrik Keet

Project Name: Proposed expansion of the sand mine area on Portion 4 of the far

Zandberg Fontein 97 south of Robertson, Western Cape Province

Status of report: Version 1.0

Date: 6th April 2020

Prepared for: Greenmined Environmental

Postnet Suite 62, Private Bag X15

Somerset West

7129

Cell: 082 734 5113

Email: christine.f@greenmined.co.za

Prepared by Nkurenkuru Ecology and Biodiversity

3 Jock Meiring Street

Park West

Bloemfontein

9301

Cell: 083 412 1705

Email: gabotha11@gmail com

Suggested report citation

Nkurenkuru Ecology and Biodiversity, 2020. Section 102 Application (Expansion of mining footprint) and Final Basic Assessment & Environmental Management Plan for the proposed expansion of the sand mine on Portion 4 of the Farm Zandberg Fontein 97, Western Cape Province. *Botanical Study and Assessment Report*. Unpublished report prepared by Nkurenkuru Ecology and Biodiversity for GreenMined Environmental. Version 1.0, 6 April 2020.

I. DECLARATION OF CONSULTANTS INDEPENDENCE

- » act/ed as the independent specialist in this application;
- » regard the information contained in this report as it relates to my specialist input/study to be true and correct, and
- » do not have and will not have any financial interest in the undertaking of the activity, other than remuneration for work performed in terms of the NEMA, the Environmental Impact Assessment Regulations, 2014 and any specific environmental management Act;
- » have and will not have any vested interest in the proposed activity proceeding;
- » have disclosed, to the applicant, EAP and competent authority, any material information that have or may have the potential to influence the decision of the competent authority or the objectivity of any report, plan or document required in terms of the NEMA, the Environmental Impact Assessment Regulations, 2014 and any specific environmental management Act;
- » am fully aware of and meet the responsibilities in terms of NEMA, the Environmental Impact Assessment Regulations, 2014 (specifically in terms of regulation 13 of GN No. R. 326) and any specific environmental management Act, and that failure to comply with these requirements may constitute and result in disqualification;
- » have provided the competent authority with access to all information at my disposal regarding the application, whether such information is favourable to the applicant or not; and
- » am aware that a false declaration is an offense in terms of regulation 48 of GN No. R. 326.

REPORT AUTHORS

Gerhard Botha *Pr.Sci.Nat* 400502/14 (Botanical and Ecological Science)

Field of expertise: Fauna & flora, terrestrial biodiversity, wetland ecology, aquatic and wetland, aquatic biomonitoring, and wetland habitat evaluations. BSc (Hons) Zoology and Botany, MSc Botany (Phytosociology) from 2011 to present.

Jan-Hendrik Keet

Field of expertise: Fauna & flora, terrestrial biodiversity, invasive alien plant management and monitoring. BSc (Hons) Botany, MSc Botany, PhD Botany.

April 2020

II. REQUIREMENTS REGARDING A SPECIALIST ASSESSMENT

Requirements of Append	Sections where this is addressed in the Specialist						
	2017						
1 (1) A	and in house of these Develotions much contain	Dana I. II and Annandia 2.0					
a) details of- i. the specialis	ared in terms of these Regulations must contain- st who prepared the report; and se of that specialist to compile a specialist report	Page I, II and Appendix 3 &					
	curriculum vitae;	Dage I II					
specified by the comp		Page I, II					
prepared;	cope of, and the purpose for which, the report was	Section 1 (1.4, 1.5)					
(cA) an indication of the quareport;	lity and age of base data used for the specialist	Section 2 (2.1, 2.2)					
(cB) a description of existing	impacts on the site, cumulative impacts of the	Section 6					
proposed development and le	vels of acceptable change;						
	d season of the site investigation and the relevance outcome of the assessment;	Section 2.3 and 2.8					
e) a description of the	methodology adopted in preparing the report or alised process inclusive of equipment and modelling	Section 2					
related to the propos	ent of the specifically identified sensitivity of the site ed activity or activities and its associated structures clusive of a site plan identifying site alternatives;	Section 5.1					
g) an identification of ar	ny areas to be avoided, including buffers;	Section 5.1					
	the activity including the associated structures and e environmental sensitivities of the site including including buffers;	Section 5.1					
	assumptions made and any uncertainties or gaps in	Section 2.8					
	ndings and potential implications of such findings on oposed activity, including identified alternatives on ctivities:	Section 5 and 6					
	res for inclusion in the EMPr;	Section 6 and 7					
l) any conditions for inc	lusion in the environmental authorisation;	Section 6 and 7					
m) any monitoring requi authorisation;	rements for inclusion in the EMPr or environmental	Section 6 and 7					
n) a reasoned opinion- i. as to whet thereof show	her the proposed activity, activities or portions ald be authorised;	Section 7					
(iA) regarding the acceptability ii. if the opinio thereof show mitigation in where applie	of the proposed activity or activities; and is that the proposed activity, activities or portions ald be authorised, any avoidance, management and neasures that should be included in the EMPr, and cable, the closure plan;						
o) a description of any c course of preparing t	onsultation process that was undertaken during the he specialist report;	N/A					
	s of any comments received during any consultation oplicable all responses thereto; and	N/A					

q) any other information requested by the competent authority.	N/A
2) Where a government notice gazetted by the Minister provides for any protocol or minimum information requirement to be applied to a specialist report, the requirements as indicated in such notice will apply.	N/A

III. LIST OF ABBREVIATIONS:

CARA: Conservation of Agricultural Resources Act 43 of 1983

CBA: Critical Biodiversity Area

CITES: Convention on International Trade in Endangered Species of Wild Fauna and

Flora

CR: Critically Endangered (threat status)

DAFF: Department of Agriculture, Forestry and Fisheries

DEA: Department of Environmental Affairs

DEADP:WC: Department of Environmental Affairs and Development Planning: Western Cape

Province.

WCNCO: Western Cape Nature Conservation Ordinance (No. 19 of 1974) **WCBB:** Draft Western Cape Biodiversity Bill, 2019 (No. 8094 of 2019)

DDD: Data Deficient – Insufficient Information (threat status)DDT: Data Deficient – Taxonomically Problematic (threat status)

NFA: National Forest Act 1998; No 84 of 1998

DEA: Department of Environmental Affairs

EA: Environmental Authorisation **ECO:** Environmental Control Officer

EIA: Environmental Impact Assessment: EIA regulations promulgated under section

24(5) of NEMA and published in Government Notice R. 543 in Government

Gazette 33306 of 18 June 2010

EMPr: Environmental Management Programme

EN: Endangered (threat status)ESA: Ecological Support AreasEX: Extinct (threat status)EW: Extinct in the Wild

FEPA: Freshwater Ecosystem Priority Area

CIS: Conservation Important Species (species listed within IUCN and South African

Red Data Lists or that are protected within relevant international, national and

provincial legislation

IAPs: Invasive Alien Plants

IP: Invasive Plant (indigenous or alien)

LC: Least Concern

LC: Least threatened

NFA: National Forest Act 84 of 1998
NE: Not Evaluated (threat status)

NEMA: National Environmental Management Act 107 of 1998

NEM:BA National Environmental: Biodiversity Act (Act No. 10 of 2004)

NFEPA: National Freshwater Ecosystem Priority Areas, identified to meet national

freshwater conservation targets (CSIR, 2011)

NT: Near Threatened (threat status)

PES: Present Ecological State, referring to the current state or condition of an

environmental resource in terms of its characteristics and reflecting a change

from its reference condition

RE: Regionally Extinct

SANBI: South African National Biodiversity Institute

TOPS: Threatened and Protected Species in terms of section 56 of the National

Environment: Biodiversity Act (NEM:BA) of 2004 (Species list as published

within Gazette No. 30568, 14 December 2007)

VU: Vulnerable (threat status)

IV. LIST OF DEFINITIONS:

Accelerated soil erosion: Soil erosion induced by human activities.

Acceptable cover: An acceptable cover shall mean that not less than 40% (in regions receiving less than 400 mm rain per annum), of the area rehabilitated and/or planted, shall be covered with grass and other species and that there shall be no bare patches of more than 500 cm in maximum dimension.

Asteraceous: Pertaining to vegetation dominated by members of the daisy family (Asteraceae or Compositae) e.g. asteraceous fynbos.

Alien: originating from another country or continent and originally different environment, commonly used to describe plants that are not indigenous to South Africa and have become problematic (spreading rapidly, threatening existing biodiversity).

Bare soil: Un-vegetated soil surface, unaltered by humans.

Biodiversity: The diversity (richness and abundance) of plant and animal species occurring in their natural environment (habitats). The term encompasses different ecosystems, landscapes, communities, populations, and genes as well as the ecological and evolutionary processes that allow these elements of biodiversity to persist over time.

Biome: A broad ecological spatial unit representing major life zones of large natural areas, and defined mainly by vegetation structure, climate as well as major large-scale disturbance factors (such as fire) (Mucina and Rutherford, 2006).

Cape Floristic Region (CFR): One of 37 global floristic regions (phytochoria) as defined by Takhtajan (1986), often referred to as the Cape Floristic Kingdom (CFK) which is one

- of six global floristic kingdoms. Please take not that there have been some changes in the classification of this area as a Floristic Region. The CFR is now referred to as the Core Cape Subregion (CCR) which forms part of the Greater Cape Floristic Region (GCFR) which now includes parts of the succulent karroo.
- **Cupressoid:** Pertaining to plants with small, awl-shaped leaves which clasp the stem, resembling those of a cypress.
- **Climax:** That vegetation type or plant community structure that occurs at the end of the seral cycle. The climax communities may not be the final endpoint of the succession: frequent or even rare events, such as fire, frost, harvesting, or hurricanes, may hold the communities in a stable subclimax indefinitely (Low & Rebelo, 1998).
- **Compacted soil surface:** A soil surface that has been hardened by an outside source, causing the soil to be more compacted than the surrounding area.
- **Conservation:** The safeguarding of biodiversity and its processes (often referred to as Biodiversity Conservation).
- **Conservation Important Plant:** Any plant species that is protected within relevant international, national and/or provincial legislation and any species that is listed within the Red List of South African plants (version 2017.1).
- **Desirable end state:** the future condition or target on which the rehabilitation is designed and that will serve later as a basis for rehabilitation success evaluation. This can be based on a reference site or modelled according to available information on historic vegetation.
- **Ecotone:** A zone in which two or more vegetation types or ecosystems merge. These areas may be rich in species from both systems or may occur as species-poor fringes.
- **Ecosystem Goods and Services:** The goods and benefits people obtain from natural ecosystems. Various different types of ecosystems provide a range of ecosystem goods and services. Aquatic ecosystems such as rivers and wetlands provide goods such as forage for livestock grazing or sedges for craft production and services such as pollutant trapping and flood attenuation. They also provide habitat for a range of aquatic biota.
- **Ecological rehabilitation:** The process of assisting the recovery of a degraded or damaged ecosystem in a trajectory that renders the ecosystem fully functional, stable, and able to develop further, but not necessarily returning to the original historic state.
- **Ecological restoration:** The process of assisting the recovery of an ecosystem that has been degraded damaged or destroyed, in a trajectory that ultimately returns the ecosystem to its natural successional stage.
- **Ecosystem:** The combination of biota within a given area, together with a suitable environment that sustains the biota and the interactions between biota. It can have a spatial unit of any size but shows some degree homogeneity as far as structure, function and species composition is concerned. Small-scale ecosystems typically link

- up to larger-scale ecosystems and all contribute to the ecosystem function and services at the landscape-scale.
- **Endemic:** Refers to a plant, animal species or a specific vegetation type that is naturally restricted to a particular defined region (not to be confused with indigenous). A species of animal may, for example, be endemic to South Africa in which case it occurs naturally anywhere in the country, or endemic only to a specific geographical area within the country, which means it is restricted to this area and grows naturally nowhere else in the country.
- **Ephemeroid:** Referring to the life-form of a perennial plant that makes occasional appearances above-ground and maintains perennating organs underground (e.g. bulbous plants).
- **Establishment of grass:** All procedures necessary to produce an acceptable cover of grass on an area.
- **Floristic Classification:** Referring to the use of plant species composition (flora) as a criterion for characterising or classifying vegetation.
- **Forb**: A plant without secondary thickening (i.e. non-woody or herbaceous), usually living for only one or two seasons.
- **Function/functional:** Used here to describe natural systems working or operating in a healthy way, as opposed to dysfunctional, which means working poorly or in an unhealthy way.
- **Fynbos:** The fynbos biome takes its name from the dominant vegetation of the region, namely fynbos, which is characterised by small-leaved, evergreen shrubs whose regeneration is intimately linked to fire. The word Fynbos is derived from the Dutch 'fijn-bosch' and roughly translates to 'fine bush'. Fynbos is characterised by the presence of the following three elements; a restoid-, ericoid or (heath), or proteoid component.
- **Geophyte/-ic:** Pertaining to a plant with underground storage organs such as bulbs, corms, tubers or rhizomes, and that resprouts during the growing season while dying back completely during unfavourable seasons.
- **Geoxylic Suffrutex:** A plant with annual or short-lived woody above-ground shoots sprouting from a massive or extensive, perennial, underground stem.
- **Graminoid:** Pertaining to an herbaceous growth form characterised by a 'grass-like' appearance (tufted growth, usually long and narrow leaves, secondary root system) and including plants such as grasses, restios, sedges, and rushes.
- **Habitat:** The general features of an area inhabited by animal or plant which are essential to its survival (i.e. the natural "home" of a plant or animal species).
- **Indigenous:** Refers to a plant or animal that occurs naturally in the place in which it is currently found.

- **Invasive plant:** A plant which has been declared as invasive under NEM:BA, and includes all propagules of the plant (seeds and any vegetative parts capable of reproducing asexually, i.e. clonally).
- **Intact:** Used here to describe a natural environment that is not badly damaged, and is still operating healthily.
- **Landscape:** Consists of a mosaic of two or more ecosystems that exchange organisms, energy, water, and nutrients.
- **Land Type:** Map unit denoting land, mappable at 1:250 000 scale, over which there is a marked uniformity of climate, terrain form and soil pattern.
- **Mitigate/Mitigation:** Mitigating impacts refers to reactive practical actions that minimize or reduce in situ impacts. Examples of mitigation include "changes to the scale, design, location, siting, process, sequencing, phasing, and management and/or monitoring of the proposed activity, as well as restoration or rehabilitation of sites". Mitigation actions can take place anywhere, as long as it reduces the effect on the site where a change in ecological character is likely, or the values of the site are affected by those changes (Ramsar Convention, 2012).
- **Period of Maintaining:** The Period of Maintaining is defined as the period following directly after the Establishment Period until the end of the Period of Maintenance for the whole Contract as defined in the General Conditions of Contract unless otherwise specified.
- **Regic Soils:** Pertaining to a blanket of soil, usually sand, which has been deposited over another soil or rock, and which has not yet had time to develop profiles or layers.
- **Proteoid:** Vegetation-structural term used to designate fynbos shrublands dominated by the members of the family Proteaceae (such as the genera *Protea, Leucadendron* and *Leucospermum*).
- **Revegetation:** The process of establishing a vegetative cover on exposed soils, regardless of species composition or structure, as long as the species are non-invasive and their presence will not impede the gradual process of ecological rehabilitation or -restoration.
- **Renosterveld:** Renosterveld or renosterbosveld, literally translates as 'rhinoceros vegetation'. There is confusion as to whether this refers to the historical presence of the hook-lipped rhinoceros (*Diceros bicornis*) in this veld type or, more likely, whether it is derived from 'renosterbos-veld'. Renosterbos refers to the shrub *Elytropappus rhinocerotis*, the dominant plant in the vegetation. Renosterveld is an evergreen, fire-prone shrubland or grassland dominated by small, cupressoid-leaved, evergreen asteraceous shrubs (principally renosterbos) with an understorey of grasses and a high biomass and diversity of geophytes. Renosterveld is characterised by fertile soils, in contrast to the nutrient poor soils of fynbos, which has led to its large scale transformation as a result of agriculture.
- **Risk:** A prediction of the likelihood and impact of an outcome; usually referring to the likelihood of a variation from the intended outcome.

- **Soil Erosion:** is a natural process whereby the ground level is lowered by wind or water action and may occur as a result of inter alia chemical processes and or physical transport on the land surface.
- **Succession:** A series of stages in which different plants and animals colonise an area following some kind of disturbance. The final stage of the succession is called the 'climax', but various disturbances may prevent the vegetation from attaining its potential climax.
- **Threatened Ecosystem:** In the context of this document, refers to Critically Endangered, Endangered and Vulnerable ecosystems.
- **Threat Status:** Threat status (of a species or community type) is a simple but highly integrated indicator of vulnerability. It contains information about past loss (of numbers and/or habitat), the number and intensity of threats, and current prospects as indicated by recent population growth or decline. Anyone of these metrics could be used to measure vulnerability. One much-used example of a threat status classification system is the IUCN Red List of Threatened Species (BBOP, 2009).
- **Vegetation structure:** The horizontal, vertical and temporal arrangement of vegetation, i.e. spatially explicit, e.g. layers, patches, etc.
- **Vegetation texture:** The composition of the vegetation in terms of species, growth forms, life forms, leaf morphological types, etc.
- **Watercourse:** Means a river or spring; a natural channel in which water flows regularly or intermittently: a wetland, lake or dam into which, or from which, water flows: und any collection of water which the Minister may, by notice in the Gazette, declare to be a watercourse, and a reference to a watercourse includes, where relevant, its bed and banks (National Water Act, 1998).
- **Wetland:** Refers to land which is transitional between terrestrial and aquatic systems where the water table is usually at or near the surface, or the land is periodically covered with shallow water, and which land in normal circumstances supports or would support vegetation typically adapted to life in water saturated soil (National Water Act, 1998).
- **Transformation:** The conversion of an ecosystem to a different ecosystem or land use type.
- **Topsoil:** uppermost layer of soil, in natural vegetation maximally 30 cm deep, in cultivated landscapes the total depth of cultivation, containing the layer with humus, seeds, and nutrients. Topsoils that are applied to landscapes to be rehabilitated must be free of refuse, large roots and branches, stones, alien weeds and/or any other agents that would adversely affect the topsoils suitability for re-vegetation.
- **Weed:** a plant that grows where it is not wanted, and can, therefore, be an indigenous or alien species. An unwanted plant growing in a garden is just called a weed, but the 315 listed IPs are called "declared weeds and invaders".

(Coetzee 2005, Clewell et al. 2005, SER 2004)

TABLE OF CONTENTS

SAND	MINE	NEAR ROBERTSON, WESTERN CAPE PROVINCE
I.	DECL	ARATION OF CONSULTANTS INDEPENDENCE
II.	REQU	JIREMENTS REGARDING A SPECIALIST ASSESSMENTIII
III.	LIST	OF ABBREVIATIONS:IV
IV.	LIST	OF DEFINITIONS:V
1.	INTR	ODUCTION 1
	1.1	Applicant1
	1.2	Project1
	1.3	Proposed Activity1
	1.4	Terms of reference
	1.5	Conditions of this report2
	1.6	Relevant legislation5
2.	METH	1ODOLOGY 6
	2.1	Assessment Approach and Philosophy6
	2.2	Data scouring and review
	2.3	BOTANY: Methods to be followed during Field Sampling and Assessment 10
	2.4	Assessing species of conservation concern:
	2.5	Ecological Mapping13
	2.6	Sensitivity Analysis and Criteria
	2.7	Impact Assessment Methodology15
	2.8	Assumptions and Limitations
3.	THE	IMPORTANCE OF BIODIVERSITY AND CONSERVATION 17

XII | PAGE

4.	DESC	RIPTION OF THE AFFECTED ENVIRONMENT - BASELINE	. 18
	4.1	Broad-Scale Vegetation Patterns	18
	4.2	Species of Conservation Concern	23
	4.3	Conservation Planning / Context	25
	4.3.1	National Protected Areas Expansion Strategy	25
	4.3.2	National Level of Conservation Priorities (Threatened Ecosystems)	26
	4.3.3	Critical Biodiversity Areas and Broad Scale Ecological Processes	30
5.	FIND	INGS OF THE BOTANICAL ASSESSMENT	. 33
	5.1	Site Specific Vegetation Description – Fine Scale Vegetation Patterns	33
	5.2	Species of Conservation Concern	50
	5.2.1	Flora of conservation significance	50
6.	ASSES	SSMENT OF PROPOSED IMPACTS	. 51
	6.1	Assumptions	51
	6.2	Localised vs. cumulative impacts: some explanatory notes	51
	6.3	Identification of Potential Impacts and Associated Activities	53
	6.3.1	Site-establishment and Operational Phase	53
	6.3.2	Cumulative Impacts	54
	6.4	Assessment of Impacts	54
	6.4.1 Phases	Assessment of impacts associated with Site-establishment and Operation 54	ona
	6.4.2	Assessment of Cumulative Impacts	59
	6.5	Impact Mitigation and Management	61
7.	CONC	LUSION	. 65
8.	REFE	RENCES	. 72
9.	APPE	NDICES	. 75

Appendix 1: Plant Species List of confirmed within the proposed mining footpring 75
Appendix 2: Plant Species List of the region (POSA Generated List)76
Appendix 3. Specialist CV89
Appendix 4. Specialist's Work Experience and References94
LIST OF FIGURES
Figure 1: Location map of the proposed Zandberg S102 Mining Extension Area illustrating the location of the footprint between the towns of Roberson and McGregor within the Western Cape Province
Figure 2: Location map 2 of the proposed Zandberg S102 Mining Extension Area within Portion 4 of the Farm Zanberg Fontein 97
Figure 3: Extracted areas from POSA and site locality. Extracted data was used to compile a list of plant species that may potentially occur within the project site and provide an indication of potential species of conservation concern that may be found within the area.
Figure 4: Map illustrating the different vegetation units found within the region
Figure 6: Map illustrating the various provincial conservation priority areas found within the project area as well as the surrounding landscape
Figure 7 (A-F): Representative photos of the proposed mining site. A) and B) vegetation of semi-mobile dunes showing prominent Leucadendron salignum (light green in A), as well as moderate to sparse vegetation cover, C) dense vegetation cover of stabilised sands/dunes with dominant Aspalathus and Thamnochortus, D) patch of Protea laurifolia growing together with Leucadendron salignum and Willdenowia incurvata on the lower foot slopes of the site near the south-eastern border, E) view upstream of a drainage showing exposed sandstone lithology, and F) north-east facing slope of North Sonderend Sandstone Fynbos bordering a drainage line in the south-western part of the site.
Figure 8: Map illustrating the habitat units identified within the survey site
Figure 10: Map illustrating the ecological sensitivity of the project site49

LIST OF TABLES

Table 1: Information and data coverages used to inform the ecological assessment9
Table 2: Summary of the different aspects of biodiversity considered in the assessment of the
study site
Table 3: South African Red List Categories for species of conservation significance (adapted
from SANBI, on-line at http://redlist.sanbi.org/redcat.php)
Table 4: Key species associated with the Breede Sand Fynbos according to Mucina and Rutherford (2006)
Table 5: Red List Flora species that have been listed within the SANBI database and have been recorded within the region surrounding the study site
Table 6: Determining ecosystem status (from Driver et al. 2005). *BT = biodiversity target (the minimum conservation requirement
Table 7: Conservation status of the vegetation type occurring in and around the study area.
Table 8: Relationship between Critical Biodiversity Areas categories (CBAs) and land management objectives
Table 9: Summary of results for the fynbos habitat occupying the stabilised dune plume 36
Table 10: Summary of results for the fynbos habitat occupying the semi-mobile and mobile sections of the dune plume
Table 11: Summary of results for the fynbos habitat occupying sandstone slopes and outcrops
Table 12: Summary of results for the drainage lines43
Table 13: Conservation Important Flora Species recorded within the surveyed site50

Proposed expansion of the sand mine area on Portion 4 of the far Zandberg Fontein 97 south of Robertson, Western Cape Province

BOTANICAL STUDY AND ASSESSMENT

1. INTRODUCTION

1.1 Applicant

Greenmined Environmental (Pty) Ltd. on behalf of Zandberg Sandput (Pty)

1.2 Project

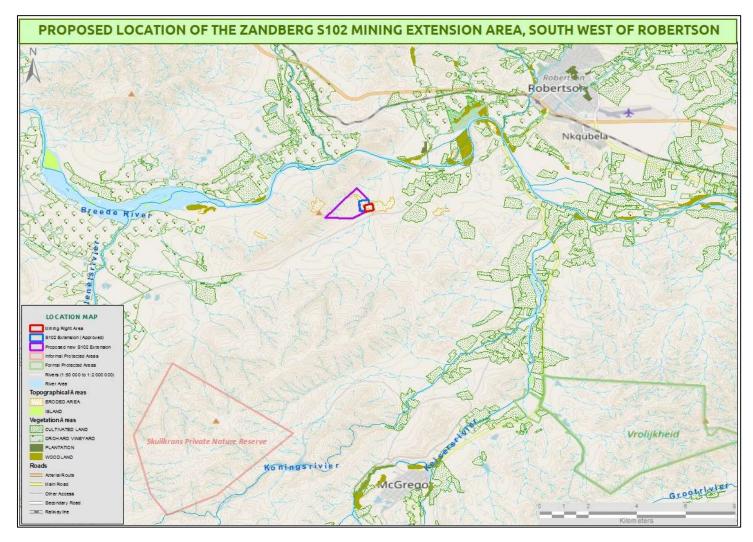
The project will be known as Zandberg sand mine.

1.3 Proposed Activity

Zandberg Sandput (Pty) currently holds a Mine Right for an approved area of 17.6826 ha within Portion 4 of the Farm Zandberg Fontein No 97, south of Robertson (Langeberg Local Municipality) within the Western Cape Province (Figures 1 and 2).

The Zandberg mining method entails strip mining that is representative of the small-scale mining industry where the sand is loaded with one front-end-loader (FEL) directly onto the trucks of clients that transports if from site. Little to no stockpiling is required and no washing of sand is needed. The Mining Right (MR) holder removes the topsoil of a strip of \pm 1 ha within which the sand is mined in blocks of approximately 50 x 50 m. Topsoil is replaced over every mined-out strip prior to the opening of the consecutive strip.

The MR holder intends on extending the mining footprint with \pm 108.39 ha and are in the process of applying for an extension of the mining right in terms of Section 102 of the MPRDA, 2002. Should the S102 application be approved mining will progress into the expansion area as the current mining footprint is mined-out. The mining method will remain the same as the method currently implemented by the MR holder. No infrastructure will be established in the extension area.


The proposed mining extension area will be reached via the existing access road from the Nuwehoogte Road to the existing mining area.

1.4 Terms of reference

To conduct a botanical study for a basic assessment of the proposed target area that will be set aside for mining purposes and provide a professional opinion on botanical issues pertaining to the target area to aid in future decisions regarding the proposed project.

1.5 Conditions of this report

Findings, recommendations, and conclusions provided in this report are based on the authors best scientific and professional knowledge and information available at the time of compilation. No form of this report may be amended or extended without the prior written consent of the author. Any recommendations, statements or conclusions drawn from or based on this report must clearly cite or make reference to this report. Whenever such recommendations, statements or conclusions form part of the main report relating to the current investigation, this report must be included in its entirety.

Figure 1: Location map 1 of the proposed Zandberg S102 Mining Extension Area illustrating the location of the footprint between the towns of Roberson and McGregor within the Western Cape Province.

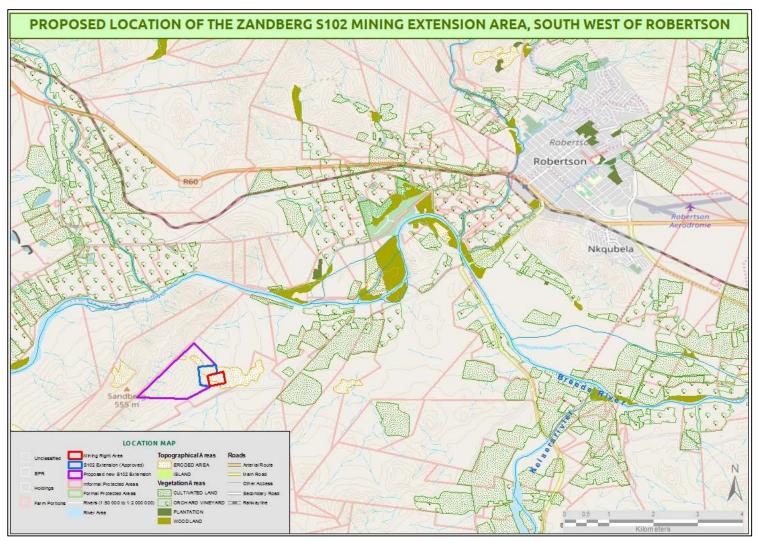


Figure 2: Location map 2 of the proposed Zandberg S102 Mining Extension Area within Portion 4 of the Farm Zandberg Fontein 97.

1.6 Relevant legislation

The following legislation was taken into account whilst compiling this report:

Provincial

- » Western Cape Nature Conservation Ordinance (No. 19 of 1974) in its entirety, with special reference to:
 - Schedule 1: Endangered Wild Animals
 - Schedule 2: Protected Wild Animals
 - Schedule 3: Endangered Flora
 - Schedule 4: Protected Flora

The above-mentioned Nature Conservation Ordinance accompanied by all amendments is regarded by the Department of Environmental Affairs and Development Planning – Western Cape Province (DEADP) as the legally binding, provincial documents, providing regulations, guidelines and procedures with the aim of protecting game and fish, the conservation of flora and fauna and the destruction of problematic (vermin and invasive) species.

National

- » National Environmental Management Act / NEMA (Act No 107 of 1998), and all amendments and supplementary listings and/or regulations
- » Environment Conservation Act (ECA) (No 73 of 1989) and amendments
- » National Environmental Management Act: Biodiversity Act / NEMA:BA (Act No. 10 of 2004) and amendments
- » National Forest Act 1998 / NFA (No 84 of 1998)
- » National Veld and Forest Fire Act (Act No. 101 of 1998)
- » Conservation of Agricultural Resources Act / CARA (Act No. 43 of 1983) and amendments

International

- » Convention on International Trade in Endangered Species of Fauna and Flora (CITES)
- » The Convention on Biological Diversity
- » The Convention on the Conservation of Migratory Species of Wild Animals

2. METHODOLOGY

2.1 Assessment Approach and Philosophy

The assessment was conducted according to the 2014 EIA Regulations, as amended 7 April 2017, as well as within the best-practice guidelines and principles for biodiversity assessment as outlined by Brownlie (2005) and De Villiers et al. (2005).

This includes adherence to the following broad principles:

- That a precautionary and risk-averse approach be adopted towards projects which may result in substantial detrimental impacts on biodiversity and ecosystems, especially the irreversible loss of habitat and ecological functioning in threatened ecosystems or designated sensitive areas: i.e. Critical Biodiversity Areas (as identified by systematic conservation plans, Biodiversity Sector Plans or Bioregional Plans) and Freshwater Ecosystem Priority Areas.
- » Demonstrate how the proponent intends complying with the principles contained in section 2 of the National Environmental Management Act, 1998 (Act No. 107 of 1998), as amended (NEMA), which, amongst other things, indicates that environmental management should, in order of priority aim to:
 - Avoid, minimise or remedy disturbance of ecosystems and loss of biodiversity;
 - Avoid degradation of the environment;
 - Avoid jeopardising ecosystem integrity;
 - Pursue the best practicable environmental option by means of integrated environmental management;
 - Protect the environment as the people's common heritage;
 - Control and minimise environmental damage; and
 - Pay specific attention to management and planning procedures pertaining to sensitive, vulnerable, highly dynamic or stressed ecosystems.

These principles serve as guidelines for all decision-making concerning matters that may affect the environment. As such, it is incumbent upon the proponent to show how proposed activities would comply with these principles and thereby contribute towards the achievement of sustainable development as defined by the NEMA.

In order to adhere to the above principles and best-practice guidelines, the following forms the basis for the study approach and assessment philosophy:

The study included data searches, desktop studies, site walkovers/field survey of the property and baseline data collection, describing:

» A description of the broad botanical characteristics of the site and its surrounds in terms of any mapped spatial components of ecological processes and/or patchiness, patch size, relative isolation of patches, connectivity, corridors, disturbance regimes, ecotones, buffering, viability, etc.

<u>In terms of pattern, the following was identified or described:</u>

Community and ecosystem level

- The main vegetation type, its aerial extent, and interaction with neighbouring types, soils or topography;
- » Threatened or vulnerable ecosystems (cf. new SA vegetation map/National Spatial Biodiversity Assessment1, fine-scale systematic conservation plans, etc).

Species-level

- » Red Data Book (RDB) species (giving location if possible, using GPS)
- The viability of an estimated population size of the RDB species that are present (including the degree of confidence in prediction based on availability of information and specialist knowledge, i.e. High=70-100% confident, Medium 40-70% confident, Low 0-40% confident). The likelihood of other RDB species, or species of conservation concern, occurring in the vicinity (include degree of confidence).

Other pattern issues

- » Any significant landscape features or rare or important vegetation associations such as seasonal wetlands, alluvium, seeps, sandstone outcroppings, steep southern aspects, drainage lines etc. in the vicinity.
- The extent of alien plant cover of the site, and whether the infestation is the result of prior soil disturbance such as ploughing or quarrying (alien cover resulting from disturbance is generally more difficult to restore than an infestation of undisturbed sites).
- » The condition of the site in terms of current or previous land uses.

In terms of process, the following was identified or described:

- » The key ecological "drivers" of ecosystems on the site and in the vicinity, such as fire.
- » Any mapped spatial component of an ecological process that may occur at the site or in its vicinity (i.e. corridors such as watercourses, upland-lowland gradients, migration routes, coastal linkages or inland-trending dunes, and

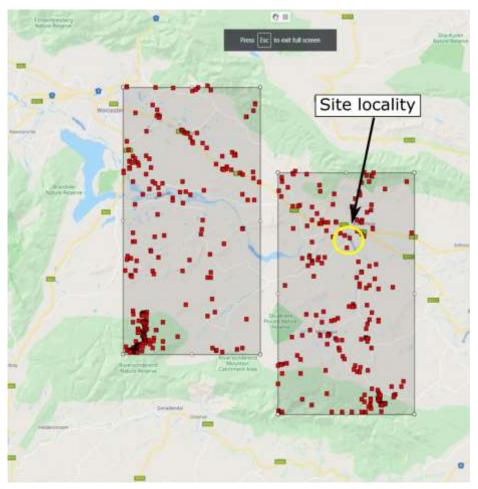
- vegetation boundaries such as edaphic interfaces, upland-lowland interfaces or biome boundaries)
- » Any possible changes in key processes e.g. increased fire frequency or drainage/artificial recharge of aquatic systems.
- » Furthermore, any further studies that may be required during or after the EIA process will be outlined.
- » All relevant legislation, permits, and standards that would apply to the development will be identified.
- » The opportunities and constraints for development will be described and shown graphically on an aerial photograph, satellite image or map delineated at an appropriate level of spatial accuracy.

2.2 Data scouring and review

Data sources from the literature and GIS spatial information was consulted and used where necessary in the study and include the following (also refer to Table 1):

Vegetation:

- » Vegetation types and their conservation status were extracted from the South African National Vegetation Map (Mucina and Rutherford 2006 and 2012) as well as the National List of Threatened Ecosystems (2011), where relevant.
- » The IUCN conservation status of the species in the list was also extracted from the database and is based on the Threatened Species Programme, Red List of South African Plants (Version 2017.1).


Ecosystem:

- » Freshwater and wetland information was extracted from the National Freshwater Ecosystem Priority Areas assessment, NFEPA (Nel et al. 2011). This includes rivers, wetlands, and catchments defined under the study.
- » Important catchments and protected areas expansion areas were extracted from the National Protected Areas Expansion Strategy 2008 (NPAES).
- » Critical Biodiversity Areas were extracted from the Western Cape Biodiversity Spatial Plan (Cape Nature, 2017), available from the SANBI BGIS web portal.

Table 1: Information and data coverages used to inform the ecological assessment.

	Data/Coverage Type	Relevance	Source	
	Colour Aerial Photography	Desktop mapping of	National Geo-Spatial	
	Colour Aeriai Pilotography	habitat/ecological features	Information (NGI)	
	Latest Google Earth™	To supplement available aerial	Google Earth™ On-	
	imagery	photography	line	
Biophysical Context	1:50 000 River Line (GIS	Highlight potential on-site and	CSIR (2011)	
Ĭ	Coverage)	local rivers and wetlands and		
2		map local drainage network.		
ica	National Land-Cover	Shows the land-use and	DEA (2015)	
ıysı		disturbances/transformations		
ф		within and around the impacted		
Ä		zone.		
	South African Vegetation Map	Classify vegetation types and	Mucina & Rutherford	
	(GIS Coverage)	determination of reference	(2012)	
		primary vegetation		
	NFEPA: river and wetland	Highlight potential on-site and	CSIR (2011)	
	inventories (GIS Coverage)	local rivers and wetlands		
	National Biodiversity	Determination of national	SANBI (2011)	
<u> </u>	Assessment – Threatened	threat status of local vegetation		
臣	Ecosystems (GIS Coverage)	types		
Ë	Western Cape Biodiversity	Determination of provincial	SANBI (2017)	
isi	Spatial Plan (GIS Coverage)	terrestrial/freshwater		
ext		conservation priorities and		
on and C		biodiversity buffers		
Conservation and Distribution Context	SANBI'S PRECIS (National	Determination of plant species	http://posa.sanbi.org	
vat	Herbarium Pretoria	composition within the region	2020-01-	
Ser	Computerized Information	as well as potential	20_181608464-	
ons	System) electronic database	conservation important plants.	BRAHMSOnlineData	
Ö	Red Data Books (Red Data	Determination of endangered	Red List of South	
	Lists of Plants)	and threatened plants,	African Plants (2011)	

Figure 3: Site locality and areas (rectangles) indicating the extent of data extraction from POSA (red squares represent individual records). Extracted data was used to compile a list of plant species that may potentially occur within the project site and provide an indication of potential species of conservation concern that may be found within the area.

2.3 BOTANY: Methods to be followed during Field Sampling and Assessment

As part of the BA process, a detailed field survey of the vegetation of the proposed mining footprint was undertaken (on 31 January 2020) with the main purpose of:

- » Inspecting the various habitat, vegetation and landscape units that are present at the mining site and to correlate such observations with the results of the desktop study.
- » Identifying all observed species that were recorded within the development footprint.
- » Providing a list of protected and redlist species.
- » Noting the presence of sensitive habitats, for example drainage lines and unique edaphic environments.

These features were mapped onto satellite imagery of the site.

Aspects of biodiversity that were used to guide the interpretation and assessment of the study area are summarized below (Table 2).

Table 2: Summary of the different aspects of biodiversity considered in the assessment of the study site

Intrinsic / Ecological Values

Species-level aspects of biodiversity

- » Protected species of flora;
- » Threatened Species (Red Data List);
- » Keystone species performing a key ecological role;
- » Large or congregatory species population;
- » Endemic species or species with restricted ranges;
- » Previously unknown species.

Community & ecosystem-level aspects of biodiversity

- » Distinct or diverse communities or ecosystems;
- » Unique ecosystems;
- » Locally adapted communities or assemblages;
- » Species-rich or diverse ecosystems;
- » Communities with a high proportion of endemic species or species with restricted ranges;
- » Communities with a high proportion of threatened and/or declining species;
- The main uses and users of the area and its ecosystem goods and services: important ecosystem services, valued ecosystem goods, valued cultural areas.

Community & ecosystem-level aspects of biodiversity

- » Key ecological processes (e.g. seed dispersal, pollination, primary production, carbon sequestration);
- » Areas with large congregations or species and/or breeding grounds;
- » Migration routes/corridors;
- » Importance as a link or corridor to other fragments of the same habitat, to protected or threatened or valued biodiversity areas;
- » Importance and role in the landscape with regard to arrange of 'spatial components of ecological processes', comprising processes tied to fixed physical features (e.g. soil or vegetation interfaces, river or sand movement corridors, upland-lowland interfaces) and flexible processes (e.g. upland-lowland gradients and macro-climatic gradients), as well as important movement or migration corridor for species.

2.4 Assessing species of conservation concern:

Species of conservation concern are species that have high conservation importance in terms of preserving South Africa's biodiversity. A description of the different SANBI categories of species of conservation concern is provided in Table 3, below.

Table 3: South African Red List Categories for species of conservation significance (adapted from SANBI, on-line at http://redlist.sanbi.org/redcat.php).

			Present State
		Extinct (EX)	A species is Extinct when there is no reasonable doubt that the last individual has died. Species should be classified as Extinct only once exhaustive surveys throughout the species' known range have failed to record an individual.
		Extinct in the Wild (EW)	A species is Extinct in the Wild when it is known to survive only in cultivation or as a naturalized population (or populations) well outside the past range.
		Regionally Extinct (RE)	A species is Regionally Extinct when it is extinct within the region assessed (in this case South Africa), but wild populations can still be found in areas outside the region.
	cies	Critically Endangered, Possibly Extinct (CR PE)	Possibly Extinct is a special tag associated with the category Critically Endangered, indicating species that are highly likely to be extinct, but the exhaustive surveys required for classifying the species as Extinct has not yet been completed. A small chance remains that such species may still be rediscovered.
oncern	aned Species	Critically Endangered (CR)	A species is Critically Endangered when the best available evidence indicates that it meets at least one of the five IUCN criteria for Critically Endangered, indicating that the species is facing an extremely high risk of extinction.
Species of Conservation Concern	Threatened	Endangered (EN)	A species is Endangered when the best available evidence indicates that it meets at least one of the five IUCN criteria for Endangered, indicating that the species is facing a very high risk of extinction.
f Conser		Vulnerable (VU)	A species is Vulnerable when the best available evidence indicates that it meets at least one of the five IUCN criteria for Vulnerable, indicating that the species is facing a high risk of extinction.
pecies o		Near Threatened (NT)	A species is Near Threatened when available evidence indicates that it nearly meets any of the IUCN criteria for Vulnerable, and is, therefore, likely to become at risk of extinction in the near future.
S		Critically Rare	A species is Critically Rare when it is known to occur at a single site, but is not exposed to any direct or plausible potential threat and does not otherwise qualify for a category of threat according to one of the five IUCN criteria.
		Rare	A species is Rare when it meets at least one of four South African criteria for rarity, but is not exposed to any direct or plausible potential threat and does not qualify for a category of threat according to one of the five IUCN criteria.
		Declining	A species is Declining when it does not meet or nearly meet any of the five IUCN criteria and does not qualify for Critically Endangered, Endangered, Vulnerable or Near Threatened, but there are threatening processes causing a continuing decline of the species.
		Data Deficient – Insufficient Information (DDD)	A species is DDD when there is inadequate information to make an assessment of its risk of extinction, but the species is well defined. Listing of species in this category indicates that more information is required and that future research could show that a threatened classification is appropriate.
Jer		Data Deficient – Taxonomically Problematic (DDT)	A species is DDT when taxonomic problems hinder the distribution range and habitat from being well defined so that an assessment of risk of extinction is not possible. A species is Least Concern when it has been evaluated against the TLICN criteria.
Other		Least Concern (LC)	A species is Least Concern when it has been evaluated against the IUCN criteria and does not qualify for any of the above categories. Species classified as Least Concern are considered at low risk of extinction. Widespread and abundant species are typically classified in this category.

	Not	Evaluated	A species is Not Evaluated when it has not been evaluated against the criteria.
	(NE)		The national Red List of South African plants is a comprehensive assessment of
			all South African indigenous plants, and therefore all species are assessed and
			given a national Red List status. However, some species included in Plants of
			southern Africa: an online checklist are species that do not qualify for national
			listing because they are naturalized exotics, hybrids (natural or cultivated), or
			synonyms. These species are given the status Not Evaluated and the reasons
			why they have not been assessed are included in the assessment justification.

As mentioned, flora of conservation significance (including threatened, protected and rare species) likely to occur in the various habitats of the study area were assessed at a desktop level using the outputs of SANBI's PRECIS (National Herbarium Pretoria Computerized Information System) electronic database. This information was used to identify potential habitats in the project area that could support these species. Special attention was given to the identification of any Red Data species as well as the identification of suitable habitat for Red Data species observed during field investigations.

2.5 Ecological Mapping

Mapping has been done by comparing georeferenced ground survey data to the visual inspection of available Google-Earth Imagery (which is a generalised colour composite image without any actual reflectance data attached to it) and in that way extrapolating survey reference points to the entire study area. Delineations are therefore approximate, and due to the intricate mosaics and often gradual mergers of vegetation units, generalisations had to be made. Mapped units will thus show where a certain vegetation unit is predominant, but smaller inclusions of another vegetation type in this area do exist but have not been mapped separately. The latter would require a supervised classification of georeferenced raw SPOT or similar satellite imagery (with all reflectance data), which has not been available to this project due to the high cost of such imagery. Maps were created with QGIS (version 3.4.13).

2.6 Sensitivity Analysis and Criteria

The determination of specific ecosystem services and the sensitivity of ecosystem components, both biotic and abiotic, is rather complex and no single overarching criterion will apply to all habitats studied. The main aspects of an ecosystem that need to be incorporated in a sensitivity analysis, however, include the following:

» Describing the nature and number of species present, taking into consideration their conservation value as well as the probability of such species to survive or

- re-establish itself following disturbances, and alterations to their specific habitats, of various magnitudes
- » Identifying the species or habitat features that are 'key ecosystem providers' and characterising their functional relationships (Kremen 2005)
- » Determining the aspects of community structure that influence function, especially aspects influencing stability or rapid decline of communities (Kremen 2005)
- » Assessing key environmental factors that influence the provision of services (Kremen 2005)
- » Gaining knowledge about the spatial-temporal scales over which these aspects operate (Kremen 2005).

This implies that in the sensitivity analysis not only aspects that currently prevail on the area should be taken into consideration, but also if there is a possibility of a full restoration of the original environment and its biota, or at least the rehabilitation of ecosystem services resembling the original state after an area has been significantly disturbed.

According to the above, sensitivity classes have been summarised as follows:

- » Very High Sensitivity: Areas that contain critical and/or unique habitats have a very high sensitivity; such areas usually serve as habitats for rare/endangered species or perform critical and irreplaceable ecological roles. Very high sensitivity areas are no-go areas and developments in such areas should be avoided at all costs.
- » High Sensitivity: High sensitivity areas are those that usually have a high biodiversity value or important ecological roles, and it is expected that impacts on such areas will likely be high; these areas include natural or transformed land. It might be difficult to mitigate all impacts appropriately in high sensitivity areas, and thus development within these areas is undesirable and should proceed with caution.
- » Medium Sensitivity: The impacts on medium sensitivity areas are likely to be mostly local with the risk of secondary impacts (such as erosion) being low; these areas include natural or previously transformed land. On the condition that appropriate mitigation measures are implemented, development within medium sensitivity areas will have relatively little ecological impact.
- » Low Sensitivity: The impact on ecological processes and plant diversity in a low sensitivity area is likely to be negligible. Areas of low sensitivity are those areas where natural vegetation has already been transformed, for example as a result of intensive agricultural practices such as crop production. The majority of developments would have little ecological impact in low sensitivity areas.

2.7 Impact Assessment Methodology

The assessment methodology is in accordance with the recently revised 2014 EIA regulations. The significance of environmental impacts is a function of the environmental aspects that are present and to be impacted on, the probability of an impact occurring and the consequence of such an impact occurring before and after implementation of proposed mitigation measures.

The significance of environmental impacts is to be assessed by means of the criteria of extent (scale), duration, magnitude (severity), probability (certainty) and direction (negative, neutral or positive).

- The nature, which includes a description of what causes the effect, what will be affected and how it will be affected.
- The extent, wherein it is indicated whether the impact will be local (limited to the immediate area or site of development) or regional, and a value between 1 and 5 is assigned as appropriate (with 1 being low and 5 being high).
- » The duration, wherein it was indicated whether:
 - the lifetime of the impact will be of a very short duration (0 1 year) assigned a score of 1;
 - the lifetime of the impact will be of short duration (2 5 years) assigned a score of 2;
 - medium-term (5 -15 years) assigned a score of 3;
 - long term (> 15 years) assigned a score of 4; or
 - permanent assigned a score of 5.
- » The magnitude, quantified on a scale from 0 10, where 0 is small and will have no effect on the environment, 2 is minor and will not result in an impact on processes, 4 is low and will cause a slight impact on processes, 6 is moderate and will result in processes continuing but in a modified way, 8 is high (processes are altered to the extent that they temporarily cease), and 10 is very high and results in complete destruction of patterns and permanent cessation of processes.
- » The **probability** of occurrence, which describes the likelihood of the impact actually occurring. Probability is estimated on a scale of 1 5, where 1 is very improbable (probably will not happen), 2 is improbable (some possibility, but low likelihood), 3 is probable (distinct possibility), 4 is highly probable (most likely) and 5 is definite (impact will occur regardless of any prevention measures).
- » The **significance** is determined through a synthesis of the characteristics described above and can be assessed as **LOW**, **MEDIUM** or **HIGH**; and
- » the **status**, which was described as either positive, negative or neutral;

- » the degree of which the impact can be reversed;
- » the degree to which the impact may cause irreplaceable loss of resources; and
- » the degree to which the impact can be mitigated.

The significance is calculated by combining the criteria in the following formula:

S=(E+D+M)P where;

- » S = Significance weighting
- » E = Extent
- » D = Duration
- » M = Magnitude
- » P = Probability

The significance weightings for each potential impact are as follows;

- > < 30 points: LOW (i.e. where the impact would not have a direct influence on the decision to develop in the area),
- » 30 60 points: MEDIUM (i.e. where the impact could influence the decision to develop in the area unless it is effectively mitigated),
- » > 60 points: HIGH (i.e. where the impact must have an influence on the decision process to develop in the area).

2.8 Assumptions and Limitations

This report deals exclusively with a defined area and the impacts upon flora biodiversity and natural ecosystems in that area.

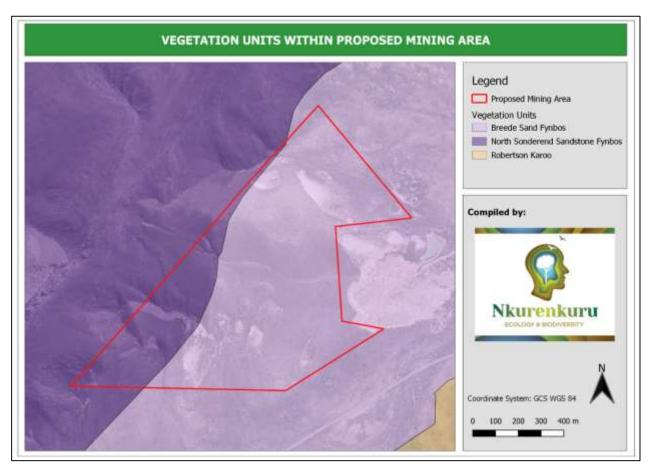
- » All relevant project information provided by the applicant and engineering design team to the ecological specialist was correct and valid at the time that it was provided.
- » Probably the most significant potential limitation associated with such a sampling approach is the narrow temporal window of sampling.
 - Temporal variation plays an important role in the structure and patterns of plant biodiversity, plant communities, and plant species occurrences. As such, a single site visit may therefore not fully catalogue all plant species diversity in an area, for example due to seasonal variation of vegetation, since the temporal window of sampling is narrow. Thus, the ideal situation would be to visit a site several times during different seasons, which would ensure that most, if not all, plant species present are observed and recorded. However, time and cost constraints make multiple site visits nearly impossible, and the species observed and recorded at the time of the

site visit should therefore be critically evaluated as they might not fully represent the complete plant community.

Indeed, the site was surveyed during one of the driest months of the year, namely January. This, together with the fact that the area has experienced a prolonged drought with below average rainfall for the past seven years, means that some annual, short-lived, ephemeral (plants surviving unfavourable conditions as seeds), geophytic (species with underground storage organs), or other cryptic species may not have been observed/detected, especially those that completely die back during dormancy. Furthermore, flowers and fruits are crucial for the complete and accurate identification of plant species and any absence of such flowers and fruits might therefore prevent the complete and accurate identification of such plant species (for example species of the family Aizoaceae). Flowering and fruiting times are both species specific and conditional on certain environmental cues being met (for example adequate rainfall), and there were thus invariably some plant species that were not flowering and/or fruiting during the period in which the site visit was conducted. Due to the aforementioned potential limitations, a list of protected or endangered species known to occur in the area was used to supplement the list of species observed and recorded during the site visit. This combined list is sufficiently conservative and cautious to account for the study limitations.

3. THE IMPORTANCE OF BIODIVERSITY AND CONSERVATION

The term 'Biodiversity' is used to describe the wide variety (richness and abundance) of plant and animal species occurring in their natural environment or 'habitat'. Biodiversity encompasses not only all living things but also the series of interactions that sustain them, which are termed 'ecological processes. South Africa's biodiversity provides an important basis for economic growth and development; and keeping our biodiversity intact is vital for ensuring the on-going provision of ecosystem services, such as the production of clean water through good catchment management. The role of biodiversity in combating climate change is also well recognised and further emphasises the key role that biodiversity management plays on a global scale (Driver et al., 2012). Typical pressures that natural ecosystems face from human activities include the loss and degradation of natural habitat, invasive alien species, pollution and waste and climate change (Driver et al., 2012). High levels of infrastructural and agricultural development typically restrict the connectivity of natural ecosystems, and maintaining



connectivity is considered critical for the long-term persistence both ecosystems and species, in the face of human development and global climatic change. Loss of biodiversity puts aspects of our economy and quality of life at risk and reduces socioeconomic options for future generations as well. In essence, then, sustainable development is not possible without biodiversity.

4. DESCRIPTION OF THE AFFECTED ENVIRONMENT - BASELINE

4.1 Broad-Scale Vegetation Patterns

The majority of the site is mapped as Breede Sand Fynbos (FFd 8), with a smaller section of North Sonderend Sandstone Fynbos (FFs 13) towards the western- and south-western boundary (Mucina & Rutherford, 2006) (Figure 4). Units are described separately below.

Figure 4: Map illustrating the different vegetation units found within the region.

Breede Sand Fynbos (FFd 8):

The unit overall is very fragmented and occurs as dune plumes and dune seas in the valley bottoms primarily south of the Breede River, and extends up the sides of adjacent hills. The vegetation characteristic of this consists of open proteoid tall shrubland combined with an open to medium dense restioid herbland in undergrowth. The dominant components are proteoid and restioid fynbos. Soils are of recent aeolian sand accumulations of riverine origin (Breede River).

The unit comprises only about 97 km² of land area and is classified as Vulnerable, since its conservation target is 30%, but none of the unit is conserved in statutory conservation areas, while only 2% is protected in the Hawequas and Quaggas Berg Private Nature Reserves. Furthermore, some 45% of the area has been transformed, mainly for agriculture and by building of the Brandviei and Kwaggaskloof Dams. In fact, the largest patch of this unit is now almost entirely under water of these reservoirs. Low levels of infestation by alien *Eucalyptus*, *Acacia saligna* and *Hakea sericea* have been recorded.

Breede Sand Fynbos is a poorly studied vegetation unit. This, together with high levels of fragmentation, the non-existence of statutory conserved areas of the unit, and the moderate level of transformation of the unit, makes it a conservation priority.

Table 4: Key species associated with the Breede Sand Fynbos according to Mucina and Rutherford (2006).

DOMINANT SPECIES						
Growth Form	Key Species					
Tall shrubs	Leucospermum rodolentum (dominant), Metalasia densa, Protea laurifolia					
Low shrubs	Afrolimon longifolium, Aspalathus heterophylla, Euchaetis pungens, Lachnospermum fasciculatum, Leucadendron brunioides var. brunioides, L. salignum, Wiborgia fusca					
Succulent shrub	Ruschia caroli					
Herbs	Pelargonium senecioides					
Geophytic Herb	Romulea setifolia					
Graminoids	Cynodon dactylon, Ehrharta villosa var. villosa, Ficinia lateralis, Willdenowia incurvata					
	ENDEMIC SPECIES					
Growth Form	Key Species					

Geophytic herb	Ixia pumilio

North Sonderend Sandstone Fynbos (FFs 13):

This unit is distributed from the northern slopes of the Riviersonderend Mountains from Villiersdorp to Bromberg and Luiperdsberg east of Stormsvlei, including Klipberg and Sandberg towards Robertson. Its altitudinal range is from 150 m to peaks exceeding 1 600 m (Jonaskop, Pilaarkop and an unnamed peak).

The unit consists of gentle to steep north-facing slopes, highly dissected in a few places, with a midslope sandy plateau and extensive gentle lower slopes. The vegetation is an open, tall, proteoid-leaved evergreen shrubland with a dense moderately tall, ericoid-leaved shrubland as understorey. While extensive proteoid and restioid fynbos dominate the middle slopes, the unit is mainly comprised of asteraceous fynbos on the western and lower slopes. Ericaceous fynbos is restricted to the highest peaks. The deep sand habitat of the northern plateau is a distinctive feature associated with many endemic species. Lithosol soils in this unit are derived from Ordovician sandstones of the Table Mountain Group (Cape Supergroup).

The unit comprises only about 531 km² of land area and is classified Least Threatened. The conservation target is 30%, and 21% of the unit is statutorily conserved in the Riviersonderend Nature Reserve, with an additional 51% mainly in a private conservation area of the same name. The unit thus enjoys a high level of conservation. Furthermore, about 2% has been transformed by cultivation for protea nurseries and fruit orchards, specifically occurring on the deep sand habitat of the northern plateau which supports many threatened taxa. Alien *Pinus pinaster* and *Hakea sericea* occasionally occur over about half of the area.

The northern slopes of the Riviersonderend Mountains are a poorly explored area. Data suggest that this unit, together with South Sonderend Sandstone Fynbos (FFs 14), form the centre of specific diversity in Proteaceae, especially for the genus *Serruria*, which may also be the case for other genera and families after further exploration. The genus *Endonema* (Penaeaceae) is endemic to the Riviersonderend.

Key species associated with the North Sonderend Sandstone Fynbos according to Mucina and Rutherford (2006).

DOMINANT SPECIES							
Growth Form	Key Species						
Small trees	Acacia nitida	karroo,	Cunonia	capensis,	Metrosideros	angustifolia,	Protea

Tall shrubs	Protea neriifolia, P. repens, Polygala fruticosa, Protea laurifolia, Searsia pyroides
Low shrubs	Agathosma leptospermoides, Athanasia oocephala, Cliffortia ruscifolia, Elytropappus glandulosus, Erica denticulata, E. globiceps subsp. zeyheri, E. jonasiana, E. lateralis, E. modesta, E. plukenetii subsp. plukenetii, E. serrata, E. taxifolia, E. vestita, Leucadendron laureolum, L. microcephalum, L. salignum, Leucospermum calligerum, Muraltia ferox, Paranomus adiantifolius, P. capitatus, Passerina burchelii, Phaenocoma prolifera, Prismatocarpus lycioides, Protea amplexicaulis, P. cynaroides, P. humiflora, P lorifolia, P. scabra, P. subulifolia, Serurria gremialis, S. viridifolia, Stoebe spiralis
Succulent shrubs	Drosanthemum leptum, Ruschia acutangula
Herbs	Edmondia sesamoides, Ursinia oreogena
Geophytic herb	Gladiolus atropictus
Graminoids	Ehrharta ramosa subsp. aphylla, Hypodiscus squamosus, H. striatus, Ischyrolepis capensis, I. distracta, I. gaudichaudiana, Pentaschistis eriostoma, Restio filiformis, Thamnochortus cinereus
	ENDEMIC SPECIES
Growth Form	Key Species
Low shrubs	Leucadendron burchellii, L. immoderatum, L. nervosum, Leucospermum harpagonatum, Serruria stellata, S. williamsii, Spatalla argentea

BODATSA species observations

A species list from the SANBI database (POSA) containing the species that have been recorded to date within the surroundings of the study area was compiled. POSA generated species lists also contain updated Red Data species status according to the Red List of South African Plants published by SANBI in Strelitzia 25 (Raimondo *et al.* 2009, updated 2013). Only protected and red data species that may potentially occur in the study area have been listed within the baseline study section of this report. The actual field survey confirmed which of the species recorded in the region actually occurs within the study area, and also indicates the presence of additional species that may not yet have been recorded in official databases.

A total of 1866 species have been recorded within the broader area based on the online plant search. Due to the fact that the impacted habitat type (sand dune) occurs as relatively small, scattered geographical patches within the region, plant species from two similar locations were extracted.

Ground truthing of the site confirmed a total of 63 plant species present.

From online data, the shrub and dwarf shrub layers were well represented with a high species diversity (dwarf shrubs = 426 species; shrubs = 504 species), similarly the lower herb/forb layer was also high in diversity with 397 species recorded in the broad region. As would be expected for this type of fynbos the graminoid layer was lower in species diversity and is primarily represented by restioids (it is expected that even though restioids are lower in species diversity, these species would be relatively high in cover abundance). Geophytic and succulent growth forms are also a prominent feature within the broader areas (geophytes = 246 species recorded; succulents = 213 species recorded).

Prominent families, in terms of species diversity, recorded within the extracted areas includes:

Asteraceae: 252 species;
Ericaceae: 162 species;
Fabaceae: 141 species;
Iridaceae: 111 species;
Proteaceae: 90 species;
Aizoaceae: 89 species;

» Scrophulariaceae: 62 species; and

» Restionaceae: 54 species

Another unique feature of these areas is the high number of South African endemics with a total of 1365 (73%) SA endemics recorded. High numbers of endemics were observed with the plant families Aizoaceae, Asphodelaceae, Asteraceae, Ericaceae, Iridaceae, Gerinaceae, Restionaceae and Proteaceae.

Furthermore, only 39 non-indigenous plant species were recorded within the extracted areas with 19 species being invasive. Of these 19 species, 10 species are listed within NEM:BA Act No. 10 of 2004 (Alien and Invasive Species List, 2016) namely;

- » Acacia saligna (Fabaceae): Category 1b
- » Echium plantagineum (Borainaceae): Category 1b;
- » Eucalyptus camaldulensis (Myrtaceae): Category 1b within fynbos;
- » Leptospermum laevigatum (Myrtaceae): Category 1b;
- » Orobanche ramosa (Orobanchaceae): Category 1b;
- » Ricinus communis (Euphorbiaceae): Category 2;
- » Salsola kali (Amaranthaceae): Category 1b
- » Schinus molle (Anacardiaceae): Category 3;
- » Sesbania punicea (Fabaceae): Category 1b;
- » Xanthium strumarium (Asteraceae): Category 1b

4.2 Species of Conservation Concern

A total of 173 red data plant species are known to occur in the broad area surrounding the site, as obtained from the SANBI SIBIS database and Threatened Species Programme, Red List of South African Plants (2011). These species of conservation concern are listed below in Table 5.

The majority of these species are from the families Proteaceae (protea family; 29 species) and Fabaceae (pea family; 21 species). Furthermore, it includes 104 Threatened Species (8 Critically Endangered, 31 Endangered species, 65 Vulnerable).

The online list includes a much broader area than the actual site, and as a result, the actual number of species of conservation concern which might occur within the site should be significantly less. However, this precautionary measure of including a larger area allows for adequate information to be extracted and evaluated.

A total of 521 species have been recorded within the extracted areas which are Protected (Schedule 4) within the Nature Conservation Ordinance No. 19 of 1974. The high number of protected flora is mainly due to the fact that all species within the families Amaryllidaceae, Bruniaceae, Ericacea, Iridaceae, Orchidaceae, Proteaceae and Rutaceae are protected and are families which are well represented within this region.

Only one national protected tree (under the National Forests Act, 1998 – Act No. 84 of 1998) has been recorded, namely *Podocarpus elongatus*.

Table 5: Red List Flora species that have been listed within the SANBI database and that have been recorded within the broad region surrounding the study site.

Family	Species	IUCN	Family	Species	IUCN
Asteraceae	Zyrphelis nervosa	CR	Proteaceae	Protea longifolia	VU
Fabaceae	Wiborgiella bowieana	CR	Proteaceae	Protea restionifolia	VU
Oxalidaceae	Oxalis pseudohirta	CR	Proteaceae	Serruria stellata	VU
Proteaceae	Leucadendron globosum	CR	Proteaceae	Serruria viridifolia	VU
Proteaceae	Leucadendron thymifolium	CR	Rosaceae	Cliffortia cruciata	VU
Proteaceae	Leucospermum harpagonatum	CR	Rosaceae	Cliffortia integerrima	VU
Proteaceae	Protea caespitosa	CR	Ruscaceae	Eriospermum bowieanum	VU
Proteaceae	Serruria aemula	CR	Rutaceae	Agathosma leptospermoides	VU
Aizoaceae	Acrodon purpureostylus	EN	Rutaceae	Agathosma microcarpa	VU
Asphodelaceae	Gasteria disticha	EN	Rutaceae	Agathosma pulchella	VU
Asteraceae	Lidbeckia pinnata	EN	Rutaceae	Agathosma serratifolia	VU

Asteraceae	Stoebe rugulosa	EN	Rutaceae	Agathosma trichocarpa	VU
Bruniaceae	Brunia esterhuyseniae	EN	Rutaceae	Diosma passerinoides	VU
Campanulaceae	Merciera brevifolia	EN	Rutaceae	Diosma pilosa	VU
Ericaceae	Erica modesta	EN	Rutaceae	Euchaetis pungens	VU
Ericaceae	Erica oakesiorum	EN	Stilbaceae	Stilbe serrulata	VU
Fabaceae	Aspalathus candicans	EN	Thymelaeaceae	Lachnaea grandiflora	VU
Fabaceae	Aspalathus wurmbeana	EN	Aizoaceae	Brianhuntleya intrusa	NT
Geraniaceae	Pelargonium violiflorum	EN	Aizoaceae	Drosanthemum calycinum	NT
Hyacinthaceae	Lachenalia physocaulos	EN	Asphodelaceae	Trachyandra filiformis	NT
Hyacinthaceae	Lachenalia stayneri	EN	Asteraceae	Lachnospermum neglectum	NT
Iridaceae	Freesia marginata	EN	Asteraceae	Metalasia adunca	NT
Iridaceae	Geissorhiza geminata	EN	Boraginaceae	Lobostemon gracilis	NT
Iridaceae	Ixia atrandra	EN	Euphorbiaceae	Euphorbia nesemannii	NT
Iridaceae	Ixia collina	EN	Fabaceae	Aspalathus lactea	NT
Iridaceae	Ixia pumilio	EN	Fabaceae	Cyclopia genistoides	NT
Iridaceae	Moraea radians	EN	Fabaceae	Lotononis prostrata	NT
Orchidaceae	Disa hallackii	EN	Fabaceae	Wiborgia tenuifolia	NT
Penaeaceae	Endonema lateriflora	EN	Geraniaceae	Pelargonium divisifolium	NT
Plumbaginaceae	Limonium purpuratum	EN	Hyacinthaceae	Lachenalia contaminata	NT
Polygalaceae	Muraltia gillettiae	EN	Iridaceae	Babiana fragrans	NT
Proteaceae	Leucospermum formosum	EN	Iridaceae	Babiana stricta	NT
Proteaceae	Mimetes argenteus	EN	Iridaceae	Freesia caryophyllacea	NT
Proteaceae	Protea lacticolor	EN	Iridaceae	Watsonia aletroides	NT
Proteaceae	Serruria incrassata	EN	Polygalaceae	Muraltia concava	NT
Proteaceae	Serruria williamsii	EN	Polygalaceae	Muraltia trinervia	NT
Proteaceae	Spatalla argentea	EN	Proteaceae	Aulax pallasia	NT
Ruscaceae	Eriospermum vermiforme	EN	Proteaceae	Aulax umbellata	NT
Rutaceae	Diosma parvula	EN	Proteaceae	Leucadendron burchellii	NT
Aizoaceae	Antimima leipoldtii	VU	Proteaceae	Leucadendron nervosum	NT
Aizoaceae	Drosanthemum giffenii	VU	Proteaceae	Leucadendron teretifolium	NT
Aizoaceae	Drosanthemum striatum	VU	Proteaceae	Protea coronata	NT
Aizoaceae	Erepsia oxysepala	VU	Proteaceae	Protea cryophila	NT
Aizoaceae	Stayneria neilii	VU	Proteaceae	Protea effusa	NT
Apiaceae	Centella thesioides	VU	Proteaceae	Protea scabra	NT
Apocynaceae	Duvalia elegans	VU	Proteaceae	Serruria elongata	NT
Apocynaceae	Stapelia paniculata	VU	Proteaceae	Serruria fasciflora	NT
Apocynaceae	Stapeliopsis breviloba	VU	Proteaceae	Spatalla curvifolia	NT
Asphodelaceae	Astroloba rubriflora	VU	Rhamnaceae	Phylica nigrita	NT
Asteraceae	Anaxeton brevipes	VU	Rutaceae	Agathosma foetidissima	NT
Asteraceae	Anaxeton hirsutum	VU	Rutaceae	Diosma pedicellata	NT
Asteraceae	Berkheya angusta	VU	Thymelaeaceae	Lachnaea filicaulis	NT
Asteraceae	Metalasia tenuis	VU	Aizoaceae	Antimima microphylla	DD
Bruniaceae	Brunia latebracteata	VU	Aizoaceae	Drosanthemum albiflorum	DD
Colchicaceae	Colchicum hughocymbion	VU	Aizoaceae	Drosanthemum collinum	DD

Ericaceae	Erica alfredii	VU	Aizoaceae	Drosanthemum globosum	DD
Ericaceae	Erica caledonica	VU	Aizoaceae	Drosanthemum papillatum	DD
Ericaceae	Erica colorans	VU	Aizoaceae	Lampranthus falcatus	DD
Ericaceae	Erica floccifera	VU	Aizoaceae	Lampranthus leipoldtii	DD
Ericaceae	Erica ignita	VU	Aizoaceae	Lampranthus occultans	DD
Ericaceae	Erica insolitanthera	VU	Apocynaceae	Ceropegia fimbriata	DD
Ericaceae	Erica pilosiflora	VU	Apocynaceae	Tavaresia meintjesii	DD
Ericaceae	Erica sicifolia	VU	Asphodelaceae	Haworthia herbacea	DD
Ericaceae	Erica viscidiflora	VU	Asteraceae	Curio crassulifolius	DD
Fabaceae	Amphithalea pageae	VU	Asteraceae	Senecio coleophyllus	DD
Fabaceae	Aspalathus acanthoclada	VU	Asteraceae	Senecio erysimoides	DD
Fabaceae	Aspalathus angustifolia	VU	Asteraceae	Senecio glutinarius	DD
Fabaceae	Aspalathus araneosa	VU	Ericaceae	Erica greyi	DD
Fabaceae	Aspalathus chrysantha	VU	Ericaceae	Erica haemastoma	DD
Fabaceae	Aspalathus excelsa	VU	Ericaceae	Erica involvens	DD
Fabaceae	Aspalathus florulenta	VU	Ericaceae	Erica longistyla	DD
Fabaceae	Aspalathus lactea	VU	Ericaceae	Erica ostiaria	DD
Fabaceae	Aspalathus macrocarpa	VU	Ericaceae	Erica ovina	DD
Fabaceae	Aspalathus pinguis	VU	Hyacinthaceae	Ornithogalum niveum	DD
Fabaceae	Aspalathus recurva	VU	Malvaceae	Anisodontea gracilis	DD
Fabaceae	Aspalathus steudeliana	VU	Oxalidaceae	Oxalis leptocalyx	DD
Fabaceae	Lotononis involucrata	VU	Oxalidaceae	Oxalis lindaviana	DD
Fabaceae	Lotononis rigida	VU	Oxalidaceae	Oxalis pardalis	DD
Iridaceae	Chasmanthe bicolor	VU	Polygalaceae	Muraltia schlechteri	DD
Iridaceae	Geissorhiza brehmii	VU	Rhamnaceae	Phylica lucens	DD
Iridaceae	Gladiolus atropictus	VU	Rosaceae	Cliffortia varians	DD
Iridaceae	Ixia dolichosiphon	VU	Santalaceae	Thesium brachygyne	DD
Iridaceae	lxia vanzijliae	VU	Santalaceae	Thesium frisea	DD
Oxalidaceae	Oxalis meisneri	VU	Santalaceae	Thesium microcarpum	DD
Penaeaceae	Endonema retzioides	VU	Santalaceae	Thesium repandum	DD
Proteaceae	Leucadendron galpinii	VU	Scrophulariaceae	Pseudoselago burmannii	DD
Proteaceae	Protea burchellii	VU			

4.3 Conservation Planning / Context

4.3.1 National Protected Areas Expansion Strategy

Focus areas for land-based protected area expansion are large, intact and unfragmented areas of high importance for biodiversity representation and ecological persistence, suitable for the creation or expansion of large protected areas. The focus areas were identified through a systematic biodiversity planning process undertaken as part of the development of the National Protected Area

Expansion Strategy 2008 (NPAES). They present the best opportunities for meeting the ecosystem-specific protected area targets set in the NPAES and were designed with a strong emphasis on climate change resilience and requirements for protecting freshwater ecosystems. These areas should not be seen as future boundaries of protected areas, since in many cases only a portion of a particular focus area would be required to meet the protected area targets set in the NPAES. They are also not a replacement for fine-scale planning which may identify a range of different priority sites based on local requirements, constraints, and opportunities.

The proposed expansion is located outside of any NPAES Areas (Figure 5) as well as any Formal Protected, and Informal Protected Areas. The nearest NPAES Area is located approximately $1.03~\rm km$ south-east (Vrolijkheid), whilst the nearest Informal Protected Area is located $\pm 7.8~\rm km$ south-west (Skuilkrans Private Nature Reserve). The nearest Formal Protected Area, the Langeberg-Wes Mountain Catchment Area, is located $7.6~\rm km$ north of the project site.

Subsequently this development will not have an impact on the national ecosystemspecific protected area targets.

4.3.2 National Level of Conservation Priorities (Threatened Ecosystems)

The vegetation types of South Africa have been categorized according to their conservation status which is, in turn, assessed according to the degree of transformation and rates of conservation. The status of a habitat or vegetation type is based on how much of its original area still remains intact relative to various thresholds. On a national scale, these thresholds are as depicted in the table below, as determined by the best available scientific approaches (Driver et al. 2005). The level at which an ecosystem becomes Critically Endangered differs from one ecosystem to another and varies from 16% to 36% (Driver et al. 2005).

Table 6: Determining ecosystem status (from Driver et al. 2005). *BT = biodiversity target (the minimum conservation requirement).

t Jg	80-100	least threatened	LT
in ita	60-80	vulnerable	VU
del er (o)	*BT-60	endangered	EN
Ξē	0-*BT	critically endangered	CR

A national process has been undertaken to identify and list threatened ecosystems that are currently under threat of being transformed by other land uses. The first national list of threatened terrestrial ecosystems for South Africa was gazetted on 9 December 2011 (National Environmental Management: Biodiversity Act or

NEMBA: National list of ecosystems that are threatened and in need of protection, G 34809, GoN 1002, 9 December 2011). The purpose of listing threatened ecosystems is primarily to reduce the rate of ecosystem and species extinction by preventing further degradation and loss of structure, function, and composition of threatened ecosystems (SANBI, 2011). The NEMBA provides for listing of threatened or protected ecosystems, in one of four categories: critically endangered (CR), endangered (EN), vulnerable (VU) or protected. There are four main types of implications of listing ecosystems:

- » Planning related implications which are linked to the requirement in the Biodiversity Act (Act 10 of 2004) for listed ecosystems to be taken into account in municipal IDPs and SDFs;
- » Environmental authorisation implications in terms of NEMA and the EIA regulations;
- » Proactive management implications in terms of the National Biodiversity Act;
- » Monitoring and reporting implications in terms of the Biodiversity Act.

The proposed mining site is located within two vegetation units according to Mucina and Rutherford (2006), namely Breede Sand Fynbos and North Sonderend Sandstone Fynbos. Currently, the first unit, namely Breede Sand Fynbos, is classified as Vulnerable (Figure 5), since only 2% is protected in the Hawequas and Quaggas Berg Private Nature Reserves, while none of the unit is conserved in statutory conservation areas, and some 45% of the area has been transformed. Thus, the conservation target of 30% is likely attainable, but will probably not be realized since only 2% is currently protected. The second unit, namely North Sonderend Sandstone Fynbos, is classified as Least Threatened, since 21% of the 30% conservation target is statutorily conserved in the Riviersonderend Nature Reserve, with an additional 51% mainly in a private conservation area of the same name, while only low levels of transformation has occurred.

Furthermore, this site falls within a broader area which is also listed (Figures 5) within the Threatened Ecosystem List, 2012 (NEMA:BA) as a Vulnerable Ecosystem (Breede Sand Fynbos Ecosystem) and correlates with the Breede Sand Fynbos Vegetation Type as classified by Mucina and Rutherford, 2012. This ecosystem is very fragmented, occurring as dune plumes and dune seas in the valley bottoms primarily south of the Breed River and cover a total combined area of approximately 9 000 ha.

The project site is located on a dune plume (Breede Sand Fynbos) that covers an area of approximately 597ha. Due to the low agricultural and developmental potential of this dune plume most of this ecosystem is largely intact with minimal disturbance and transformation (mostly associated with the foot of the dune in the

form of roads, small farm dams and the existing mining area), mostly containing a stable climatic vegetation cover providing stability to the highly dispersive sand plume. Small isolated patches of this sand plume / dune contain unstable areas with a sparse vegetation cover.

Due to the high impact nature of the proposed mining activities, which essentially removes all vegetation as well as the majority of topsoil, leaving an area with minimal rehabilitation potential (in terms of rehabilitation of a vegetation cover that resembles the original natural vegetation cover that was removed), this development will result in the local loss of some functions and services. However, the area that will be transformed will only cover 2.92% of total area of this sand plume. Furthermore, when taking into account the total combined size of all such dune plumes and dune seas that are covered by the Breede Sand Fynbos Vegetation Type / Ecosystem an area of less than 1% (0.19% of 9277 ha) of this vegetation type / ecosystem will be impacted. Subsequently it is unlikely that this development will influence the status of this vegetation type / ecosystem.

Table 7: Conservation status of the vegetation type occurring in and around the study area.

			Conserved	Conservation Status		
Vegetation Type	Target (%)	Transformed (%)	(Statutorily & other reserves)	Driver <i>et al.</i> , 2005; Mucina & Rutherford, 2006	National Ecosystem List (NEMA:BA)	
Breede Sand Fynbos	30%	45%	2%	Vulnerable	Vulnerable	
North Sonderend Sandstone Fynbos	30%	2%	72%	Least Threatened	Not Listed	

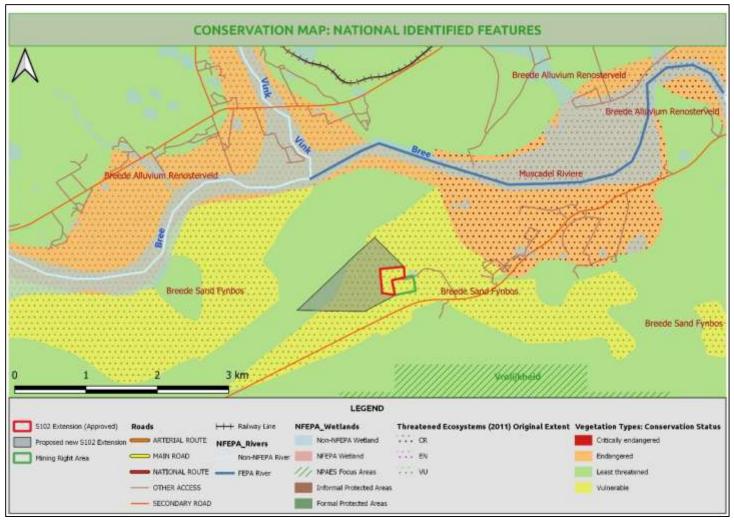


Figure 5: Map illustrating the various conservation priority areas found within the greater surroundings of the proposed mining site.

4.3.3 Critical Biodiversity Areas and Broad Scale Ecological Processes

Critical Biodiversity Areas have been identified for all municipal areas of the Western Cape Province (CapeNature, 2017) and are published on the SANBI website (bgis.sanbi.org). This biodiversity assessment identifies CBAs which represent biodiversity priority areas that should be maintained in a natural to nearnatural state. The CBA maps indicate the most efficient selection and classification of land portions requiring safeguarding in order to maintain ecosystem functioning and meet national biodiversity objectives (refer to Table 8 for the different land management objectives set out for each CBA category). According to these maps, large tracks of land within the region falls either within Critical Biodiversity Areas 2 (CBA2) or Ecological Support Areas (ESA).

The entire mining footprint is located almost entirely within a CBA1, together with some randomly scattered pixels of CBA2, and a small unclassified portion (Figure 6). The insignificant and random nature of the CBA2 pixels are likely a side-effect of the algorithm used to generate the CBA spatial layers, and ground-truthing confirmed the entire site to conform to CBA1 criteria, including the portion not originally classified. Areas classified as CBA1 are regarded as "areas in a natural condition that are required to meet biodiversity targets, for species, ecosystems or ecological processes and infrastructure" (WCSBP 2017). Thus, CBA1 areas are in a natural condition (or nearly so), with little to no transformation and no secondary vegetation. The desired outcome for such areas is to maintain them "in a natural or near natural state, with no further loss of habitat", and only "low-impact, biodiversity-sensitive land uses" are appropriate.

Table 8: Relationship between Critical Biodiversity Areas categories (CBAs) and land management objectives

CBA category	Land Management Objective					
Protected	Natural landscapes:					
Areas (PA)	» Ecosystems and species are <u>fully intact</u> and <u>undisturbed</u> .					
& CBA 1	» These are areas with <u>high irreplaceability</u> or <u>low flexibility</u> in terms of meeting					
	biodiversity pattern targets. If the biodiversity features targeted in these areas					
	are lost then targets will not be met.					
	» These are landscapes that are <u>at or past</u> their limits of acceptable change.					
CBA 2	Near-natural landscapes:					
	» Ecosystems and species <u>largely intact</u> and <u>undisturbed</u> .					
	» Areas with intermediate irreplaceability or some flexibility in terms of the area					
	required to meet biodiversity targets. There are options for loss of some					
	components of biodiversity in these landscapes without compromising the					
	ability to achieve targets.					
	» These are landscapes that are <u>approaching but have not passed</u> their limits of					
	acceptable change.					

ESA	Functional landscapes:
	» Ecosystem moderately to significantly disturbed but still able to maintain basic
	functionality.
	» Individual species or other biodiversity indicators may be severely disturbed or
	<u>reduced</u> .
	» These are areas with <u>low irreplaceability</u> with respect to biodiversity pattern
	targets only.
ONA (Other	Production landscapes:
Natural	Manage land to optimise sustainable utilisation of natural resources.
Areas) and	
Transformed	

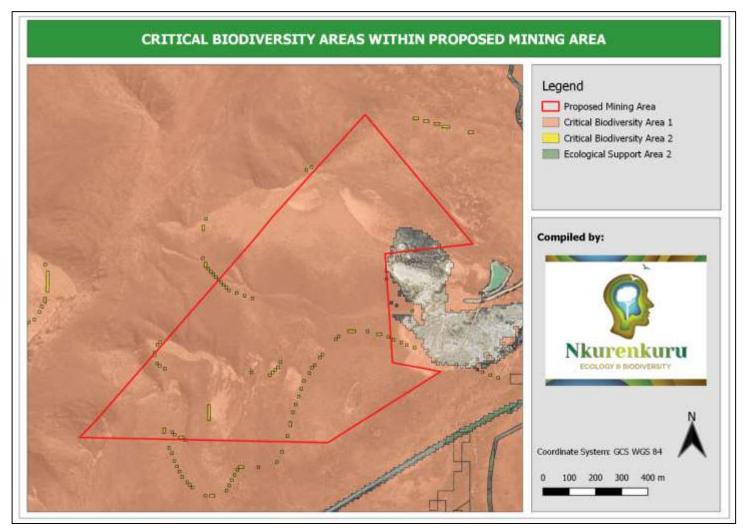


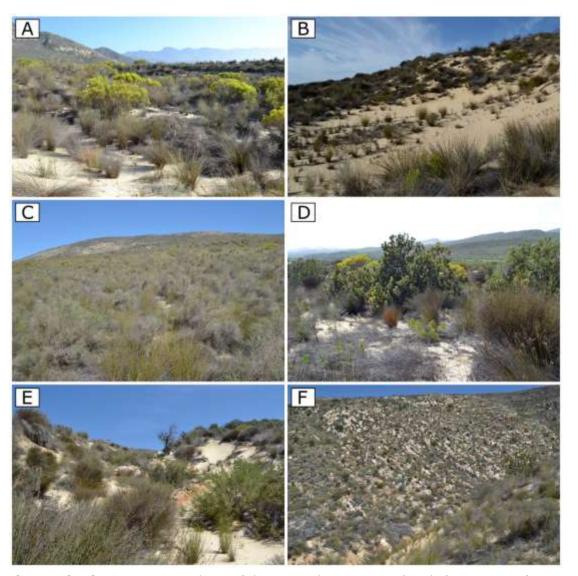
Figure 6: Map illustrating the various provincial conservation priority areas found within the project area as well as the surrounding landscape.

FINDINGS OF THE BOTANICAL ASSESSMENT

5.1 Site Specific Vegetation Description - Fine Scale Vegetation Patterns

In this section, the different habitats and vegetation patterns observed within the study site are described. As these are field-based observations taken directly from the site, they are of greater reliability and pertinence than the results of the National Vegetation Map which represents a coarse scale and does not represent the detail of the site adequately. The habitat map derived for the study site is provided in Figure 8 and their sensitivity ratings are provided in Figure 10.

The vegetation of the study site resembles pristine forms of Breede Sand Fynbos throughout the majority of the site, together with pristine North Sonderend Sandstone Fynbos in the Western and southwestern corner, adjacent to drainage lines (Figure 9).


In terms of Breede Sand Fynbos, there was some variability in habitat types (Figure 8), mostly related to vegetation cover, for example the existence of mobile dunes with sparse vegetation cover, progressing towards semi-mobile dunes with moderate cover, to stabilised sands/dunes with high vegetation cover.

The majority of the vegetation was relatively uniform. The tall shrub layer had Proteaceae species alternating in dominance, such as *Protea laurifolia*, *Leucospermum calligerum*, and *Leucadendron salignum*, together with scattered individuals of *Wiborgia obcordata*. The medium to small shrub layer was dominated by *Aspalathus lactea*, *A. quinquefolia*, and *Euchaetis pungens*. Although the site was relatively absent of forb species, smaller shrubs and plants that were abundant included *Aristea dichotoma*, *Prismatocarpus brevilobus*, *Wahlenbergia nodosa*, and *Polpoda capensis*. Finally, the graminoid layer was dominated by *Thamnochortus lucens* and *Willdenowia incurvata*, with less dominant *Pentameris pallida* and *Stipagrostis zeyheri*. The vegetation unit in its entirety was pristine, with no signs of previous transformation or secondary vegetation. Also, no invasive alien plant species were observed.

In terms of North Sonderend Sandstone Fynbos, the extent of the vegetation unit was less than what has been mapped according to the Vegetation Map of South Africa (Mucina & Rutherford 2006). This is to be expected, since the latter represents mapping conducted at coarse spatial scales. The true extent of the North Sonderend Sandstone Fynbos vegetation unit was limited to a southwestern slope adjacent to a drainage line in the western part of the site, together with the slopes

of the southwestern corner of the site, which is characterised by an increased elevation. The vegetation type is thus confined to the steep mountainous slopes bordering the proposed mining area, and that intrudes partly into the site in the western and southwestern sections. The tall shrub layer again included species from the Proteaceae, such as *Protea laurifolium* and *Leucadendron salignum*, together with *Serruria gremialis*, and the rock-loving species *Maytenus oleoides* was observed growing in between many of the exposed sandstone crevices. A few scattered individuals of *P. nitida* were observed, although they were not within the boundaries of the site. The medium height shrub layer was dominated by *Aspalathus burchelliana* and *A. hirta*. The graminoid layer was dominated by the grass *Capeochloa cincta*. The vegetation bordering the drainage lines was mostly similar to that of the North Sonderend Sandstone Fynbos vegetation, i.e. being mostly characterised by *A. burchelliana* and *A. hirta*, *S. gremialis*, *Maytenus oleoides*, and *C. cincta*, but also included *Podalyria rotundifolia* and *Cliffortia ruscifolia* as semi co-dominants.

Figure 7 (A-F): Representative photos of the proposed mining site. A) and B) vegetation of semi-mobile dunes showing prominent *Leucadendron salignum* (light green in A), as well as moderate to sparse vegetation cover, C) dense vegetation cover of stabilised sands/dunes with dominant *Aspalathus* and *Thamnochortus*, D) patch of *Protea laurifolia* growing together with *Leucadendron salignum* and *Willdenowia incurvata* on the lower foot slopes of the site near the south-eastern border, E) view upstream of a drainage showing exposed sandstone lithology, and F) north-east facing slope of North Sonderend Sandstone Fynbos bordering a drainage line in the south-western part of the site.

Table 9: Summary of results for the fynbos habitat occupying the stabilised dune plume.

Fynbos of the stabilised portions	Habitat Sensitivity	High	Photographs:		
	No-Go Areas	All areas south of the drainage line dissecting the project site into roughly two halves.			
	Present Ecological Status (PES)	A: Unmodified, natural			
Substrate	aeolain sand vevidence of pe from some ve of the surface accumulation	Recently deposited with very minimal edogenesis apart by slight coloration due to the of organic material. The textured with a consistency.			
Species richness		genous Species		Dominant and diagnostic species:	Aspalathus lactea, Leucadendron salignum, Thamnochortus lucens, Willdenowia incurvata
Alien Invasive Plants	None record	lone recorded		Conservation Important Flora:	Red Data (ICUN Listed): Aspalathus lactea, Euchaetis pungens, Lachnaea uniflora, Metalasia adunca; Provincially Protected: Aristea dichotoma, Erica similis, E. sonderiana, Leucadendron salignum, Leucospermum callgerum, Protea laurifolia
Slope & Geomorphological Setting	» Dune plume that have settled along the south-eastern slope of the Sandberg Mountain Range (narrow mountain range running in south-west to north-east direction.		Naturalness:	High	

Disturbance	Steep slopes are associated with incised drainage valleys running parallel to the mountain range. Moderate-steep to steep slopes Minimal to no disturbance	Anthropogenic importance and potential	Mostly natural and undisturbed area covered by a well developed, dense, climax fynbos type providing stability to the dune plume. Agricultural Potential: Low ** Game Farming: Some grazing potential for scarce game / wildlife such as Cape Mountain Zebra (Equus zebra zebra), Grey Rhebok (Pelea capreolus), Bontebok (Damaliscus pygargus dorcas) and Cape Grysbok (Raphicerus melanotis)
Habitat & Biotic Integrity:	 Very-High The majority of the mountain range and associated dune plumes are in a natural to near-natural condition with minimal disturbance. Sand plumes can be regarded as unique complex habitats inhabited by habitat specialists, subsequently these habitats contribute to habitat and niche diversity within the region. Dense fynbos vegetation helps slow down surface runoff and stabilise sand plumes. Potential/suitable habitat for rare / conservation important faunal species such as Cape Mountain Zebra (Equus zebra zebra), Grey Rhebok (Pelea capreolus), Bontebok (Damaliscus pygargus dorcas), Cape Grysbok (Raphicerus melanotis), Cape Golden Mole (Chrysochloris asiatica), White-tailed Mouse (Mystromys albicaudatus), Cape Spiny Mouse (Acomys subspinosus) A permanent vegetation cover is necessary to maintain the functionality and stability of this ecosystem 	Conservation value	High » Listed as Vulnerable within the National Threatened Ecosystem List (2011) » Listed as a Vulnerable Vegetation Type by Mucina & Rutherford (2012) » Located within a CBA1 area which is vital for meeting provincial conservation targets. » Recorded Red Data flora species » Recorded Provincially Protected (Schedule 4) flora » Natural to near natural habitat. » Potential / suitable habitat for conservation important faunal species.

Conclusion and Mitigation Requirements

- » This area is of a high ecological sensitivity and high conservation value.
- » It is recommended that this habitat located south of the drainage system, dissecting the project site into two halves, should be excluded from the development and should henceforth be regarded as a No-Go Area.
- » The portion north of the drainage line, which is approximately 33 ha in size, is regarded as acceptable loss, furthermore, due to the small extent, and the location adjacent to the existing mining area, is highly unlikely to have an impact on the status of the vegetation type / ecosystem as well as meeting the conservation targets set out by the province.
- » Development activities within this allowed area are unlikely to have a significant impact on regional ecological functionality if strict mitigation measures are implemented, especially in terms of the establishment of a stable vegetation cover post-mining and the management and eradication of potential Invasive Alien Plants (IAPs).
- » Operational activities should only be restricted to the development footprint as indicated within this study.
- » Pre-construction/operation Botanical walk-through should occur in order to GPS tag all conservation important species that may be at risk of being disturbed / destroyed by the mining activities.
- » No conservation important species may be re-located / disturbed or destroyed without the necessary Permits in place (obtained from the relevant nature conservation authorities)
- » A vegetation rehabilitation and management plan is also vital for the stabilisation of soils and the prevention of potential erosion from occurring or becoming exacerbated.
- » An invasive alien plant management plan should be compiled and address the mitigation and management of such species throughout the operational phase as well as post-operational phase.
- » Phased development / mining should occur were small strips are mined at a time and as a strip becomes exhausted (in terms of the mined resource), immediate rehabilitation should be initiated, whilst mining of a new strip commence.
- » Rehabilitation progress, erosion and IAP monitoring can occur simultaneously post-operational phase and should occur bi-annually for a minimum of two years.

Table 10: Summary of results for the fynbos habitat occupying the semi-mobile and mobile sections of the dune plume.

Fynbos of the mobile and semi-mobile dune plumes	Habitat Sensitivity	Moderate-High	Photographs:		
	No-Go Areas	All areas south of the drainage line dissecting the project site into roughly two halves.			
	Present Ecological Status (PES)	A: Unmodified, natural			
Substrate	with sparse to vegetation come been aeolain sand we evidence of pe	ver sand Recently deposited with almost no			
Species richness	Low: 40 Indig	genous Species		Dominant and diagnostic species:	Aspalathus lactea, Aspalathus quinquefolia, Leucadendron salignum, Metalasia adunca, Polpoda capensis, Willdenowia incurvata, Willdenowia sulcata
Alien Invasive Plants	None record	ed		Conservation Important Flora:	Red Data (ICUN Listed): Aspalathus lactea, Euchaetis pungens, Metalasia adunca; Provincially Protected: Aristea dichotoma, Erica similis, E. sonderiana, Euchaetis pungens, Leucadendron salignum
Slope & Geomorphological Setting	» Typically these mobile to semi-mobile portions of the dune plume (that have settled along the southeastern slope of the Sandberg Mountain Range) are		Naturalness:	High These are natural active portions of the dune plume and even though vegetation cover may be sparse or even absent, the	

Disturbance	associated with the lower- and footslope sections of the north-facing aspect of this dune plume. » Moderate slopes » No anthropogenic or artificial disturbances » This is a dynamic, active portion of the dune exposed to natural disturbances such as sand deposition and removal.	Anthropogenic importance and potential	vegetation that is present is completely natural and characteristic of such areas. Agricultural Potential: Very Low				
Habitat & Biotic Integrity:	Moderate-Low » Natural to near-natural condition with minimal	Conservation value	Moderate-High » Listed as Vulnerable within the National Threatened				
	disturbance. » Low floral diversity. » Unique, dynamic and complex habitat, inhabited by habitat specialists (however diversity is expected to be low), subsequently this habitat type contributes to somewhat to habitat and niche diversity within the region. » Fynbos vegetation within semi-mobile areas provide some stabilisation to these areas, preventing the mobile areas from encroaching into the natural dense vegetated portions surrounding these areas. » Ecosystem functions and services are minimal.		Ecosystem List (2011) » Listed as a Vulnerable Vegetation Type by Mucina & Rutherford (2012) » Located within a CBA1 area which is vital for meeting provincial conservation targets. » Recorded Red Data flora species » Recorded Provincially Protected (Schedule 4) flora » Natural to near natural habitat. » Natural vegetation within semi-mobile areas provide some stabilisation to these areas and provide a valuable function / service in preventing the mobile areas from encroaching into the natural dense vegetated portions surrounding these areas which have a high conservation value.				
Conclusion and	» This area is of a Moderate-High ecological sensitivity an	» This area is of a Moderate-High ecological sensitivity and a Moderate-High conservation value.					
Mitigation			nobile areas is extremely important in preventing the potential				
Requirements	encroachment of the mobile areas into the densely vegetated, stable areas, resulting in the destabilisation of these areas. » It is recommended that these habitats located south of the drainage system, dissecting the project site into two halves, should be excluded from the development and should henceforth be regarded as a No-Go Area. » These habitats located north of the drainage line, are regarded as acceptable loss, and furthermore, due to the small extent, and the location adjacent to the existing mining area, is highly unlikely to have an impact on the status of the vegetation type / ecosystem as well as meeting the conservation targets set out by the province. » Development activities within this allowed area are unlikely to have a significant impact on regional ecological functionality if strict mitigation measures are implemented, especially in terms of the establishment of a stable vegetation cover post-mining and the management and eradication of potential Invasive Alien Plants (IAPs). » Operational activities should only be restricted to the development footprint as indicated within this study. » Pre-construction/operation Botanical walk-through should occur in order to GPS tag all conservation important species that may be at risk of being disturbed / destroyed by the mining activities. » No conservation important species may be re-located / disturbed or destroyed without the necessary Permits in place (obtained from the relevant nature conservation authorities)						

- » A vegetation rehabilitation and management plan are also vital for the stabilisation of soils and the prevention of potential erosion from occurring or becoming exacerbated. » An invasive alien plant management plan should be compiled and address the mitigation and management of such species throughout the
- operational phase as well as post-operational phase.
- Phased development / mining should occur were small strips are mined at a time and as a strip becomes exhausted (in terms of the mined resource), immediate rehabilitation should be initiated, whilst mining of a new strip commence.

Rehabilitation progress, erosion and IAP monitoring can occur simultaneously post-operational phase and should occur bi-annually for a minimum of two years.

Table 11: Summary of results for the fynbos habitat occupying sandstone slopes and outcrops.

Fynbos occurring on	Habitat	Moderate-High	Photographs:
sandstone		Moderate-mgn	Filotographis.
sanustone	Sensitivity		
	No-Go Areas	As the resource that will be mined (sand) is absent from these habitats it is recommended that these habitats are regarded as No-Go Areas	
	Present Ecological Status (PES)	A: Unmodified, natural	
Substrate	» Exposed bedro	ped soils, shallow to absent. ock, boulders and larger stones. ockets exist between rock crevices	Wa Wa
Slope & Geomorphological Setting	Sandberg Mou outcrops fring » These sandsto as outcrops, o or have been	of the crest and upper slopes of the intain Range as well as exposed ing some of the drainage lines. In the interest are as mentioned, either exposed in occur where the regic sand thins out the interest and water erosion along the interest and the mountain range.	

Species richness	Low: 25 Indigenous Species in the small section that was surveyed	Dominant and diagnostic species:	Aspalathus burchelliana, Aspalathus hirta, Capeochloa cincta, Maytenus oleoides, Protea laurifolia, Serruria gremialis, Stayneria neilii
Alien Invasive Plants	None recorded	Conservation Important Flora:	Red Data (ICUN Listed): Aspalathus burchelliana, Stayneria neilii; Provincially Protected: Agathosma stipitata, Erica imbricata, Leucadendron salignum, Paranomus dispersus, Protea laruifolia, Serruria gremialis
Disturbance	» Minimal to no disturbance	Naturalness:	High Mostly natural and undisturbed area covered by a well-developed, dense, climax fynbos type typical of this vegetation type.
Habitat & Biotic Integrity:	High The majority of the mountain range is in a natural condition with minimal disturbance. This area is characterised by unique complex microhabitats inhabited by habitat specialists, subsequently these microhabitats contribute to habitat and niche diversity within the region. Such microhabitats include: Rocky outcrops, steep crests and slopes as well as cool south facing slopes, deeper soil pockets that have filled up in rock crevices etc. The shade effect created by some of the larger boulders and outcrops result in higher moisture retention and usually provide protection against fire and high levels of solar radiation. Subsequently these areas usually comprise of unique vegetation, including larger shrubs, trees and geophytes that are not present within the surrounding habitats. Steep south-facing slopes and kloofs are known to be important sites for biodiversity and provide refuges in the face of potential climate change. Micro habitats created by deep sandy pockets Dense fynbos vegetation helps slow down surface runoff and moisture retention and contribute to the stability of the downslope sand plumes. Potential/suitable habitat for rare / conservation important faunal species such as Cape Mountain	Anthropogenic importance and potential Conservation value	Agricultural Potential: Low Same Farming: Some habitat potential for scarce game / wildlife such as Cape Mountain Zebra (Equus zebra zebra), Grey Rhebok (Pelea capreolus), Bontebok (Damaliscus pygargus dorcas), Cape Grysbok (Raphicerus melanotis) and Klipspringer (Oreotragus oreotragus) High Located within a CBA1 area which is vital for meeting provincial conservation targets. Recorded Red Data flora species Recorded Provincially Protected (Schedule 4) flora Natural habitat. Steep south-facing slopes and kloofs are known to be important sites for biodiversity and provide refuges in the face of potential climate change. Contribution to species diversity within the region. Potential / suitable habitat for conservation important faunal species.

	Zebra (Equus zebra zebra), Grey Rhebok (Pelea capreolus), Bontebok (Damaliscus pygargus dorcas), Cape Grysbok (Raphicerus melanotis), Klipspringer (Oreotragus oreotragus)White-tailed Mouse (Mystromys albicaudatus), Cape Spiny Mouse (Acomys subspinosus), Cape Rock Sengi (Elephantulus edwardii), Hewitt's Red Rock Rabbit (Pronolagus saundersiae) and Namaqua and Grant's Rock Mouse (Micaelamys namaquensis & M. granti). **The presence and maintenance of the population of smaller mammals including Rock Hyrax (Procavia capensis), which have been confirmed on site, are vital for sustaining the local carnivores and raptors of the area which may include, Cape leopard (Panthera pardus pardus) and Verreaux's eagle (Aquila verreauxii) **A permanent vegetation cover is necessary to maintain the functionality and stability of this ecosystem		
Conclusion and Mitigation Requirements	 This area is of a high ecological sensitivity and high conse Due to the fact that the resource proposed to be mined from the mining footprint and are regarded as No-Go Are 	(sand) is largely abser	nt from this area it is proposed that these habitats are excluded

Table 12: Summary of results for the drainage lines.

Fynbos occurring on	Habitat	High	Photographs:
sandstone bordering	Sensitivity		
drainage lines			
	No-Go Areas	All drainage lines should be regarded	
		as No-Go Areas	
	Present	A: Unmodified, natural	
	Ecological		
	Status (PES)		

Slope & Geomorphological Setting	 Upper slopes: Soils mostly absent (eroded by water runoff) Exposed bedrock, and large boulders. Lower slopes: Variable soil depth. Soils removed in some areas due to erosion exposing bedrock and boulders Some areas containing moderately deep fine textured alluvial and aeolain soils (areas where surface flow have sufficiently slowed down for deposition to occur). Moderate to steep slopes Mostly parallel to the south-west to north-east running, narrow mountain range. Typically relatively short ephemeral drainage systems containing surface flow only for a short period of time following rainfall events. Some of the drainage lines drain into a larger semiseasonal to ephemeral watercourse that feed into the Breëde River. The other drainage lines disappear into the dune plume. The upper portions of these drainage systems form moderately deep, narrow incised valleys within the dune plume and mountain slopes. 		
Species richness	Low: 25 Indigenous Species	Dominant and diagnostic species:	Aspalathus burchelliana, Aspalathus hirta, Capeochloa cincta Cliffortia ruscifolia, Colpoon compressum, Maytenus oleoides Podalyria rotundifolia, Serruria gremialis
Alien Invasive Plants	None recorded	Conservation Important Flora:	Red Data (ICUN Listed): Aspalathus burchelliana; Provincially Protected: Serruria gremialis
Disturbance	» Minimal to no disturbance	Naturalness:	High Mostly natural and undisturbed area covered by a well-developed vegetation layer including larger shrubs and graminoids.

Habitat & Biotic Integrity:	High Most of the drainage lines are natural and undisturbed within the surveyed area. The prominent drainage line traversing the central portion of the project study have been intercepted by the sand mine. This habitat is characterised by unique complex microhabitats which contribute to habitat and niche diversity within the region. The shade effect created by some of the larger boulders stones result in higher moisture retention. Vegetation helps slow down surface runoff and moisture retention. A permanent vegetation cover is necessary to maintain the functionality and stability of this ecosystem. Ecosystem functions and services includes: Absorption and reduction of occasional flash floods. Important corridor for abiotic and biotic material transfer, as well as for wildlife. Keystone species maintain habitat and create specific microhabitats for a multitude of organisms. Dense herbaceous vegetation helps slow down floods, 'catch' sediments, and retain nutrients. Vegetation filters out possible pollutants to prevent	Anthropogenic importance and potential Conservation value	**Agricultural Potential: Low **Due to the sporadic nature of these drainage lines none of them contain farm dams for storing surface runoff. **Most of the surface runoff within these drainage lines simply dissipate into the sand plume feeding the aquifers which are an important source of water for livestock. **High** **Located within a CBA1 area which is vital for meeting provincial conservation targets. **Recorded Red Data flora species** **Recorded Provincially Protected (Schedule 4) flora** **Natural habitat. **Biotic and abiotic corridor for material and wildlife movement. **Absorption and retention of runoff and source of water input for aquifers. **Niche habitats,** **Some species restricted to these areas**
	 Vegetation filters out possible pollutants to prevent their discharge into the lower lying freshwater resources. 		
Conclusion and Mitigation Requirements	 This area is of a high ecological sensitivity and high conservation value. Due to the fact that the resource proposed to be mined (sand) is largely absent from this area it is proposed that these habitats are excluded from the mining footprint and are regarded as No-Go Areas. It is expected that the obliteration of these upper tributaries may gradually lead to a die-off of larger trees and shrubs and other species depending on higher soil moisture levels in downstream drainage lines beyond the development due to the reduction of occasional floods as upper tributaries are obliterated. 		

In terms of ecological sensitivity and conservation value / importance, the pristine nature of the vegetation (no invasive aliens, no transformation, no secondary vegetation), the numerous unique micro-habitats present, and the various important functions and services provided by these habitats and their vegetation cover, as well as the fact that the majority of the area is located within a CBA1, regarded as important for meeting the provincial conservation targets, means that the entire site can be classified as highly sensitive (Figure 10). However, the northern section of the site can be regarded as acceptable loss to the development as this area (north of the prominent drainage line) covers a very small portion of the dune plume with no exposed sandstone outcrops or drainage lines and is furthermore located adjacent to the existing mining area. Subsequently this area is largely a uniform habitat type, and development within this section will not impact the status of the vegetation / ecosystem type, red data species or influence the conservation targets set out for this CBA1 area. Furthermore, by restricting mining activities to this area adjacent to the existing mining area, potential impacts are "compressed" in a confined area avoiding further habitat fracturing as well as influencing important biological corridors.

Due to high habitat (micro-habitat), fine scale vegetation pattern and plant species turnover associated with the southern half of the project site as well as the functions and services associated with some of these habitat type, it is recommended that this southern portion is excluded from the proposed mining footprint. Also, this area is regarded as an important portion of the CBA1. All drainage lines are regarded as high sensitivity, No-Go features.

The northern portion of the dune plume regarded as acceptable for the proposed activity covers approximately 30% of the original extent that is being proposed. The remaining area should be set aside to function as a biodiversity offset area.

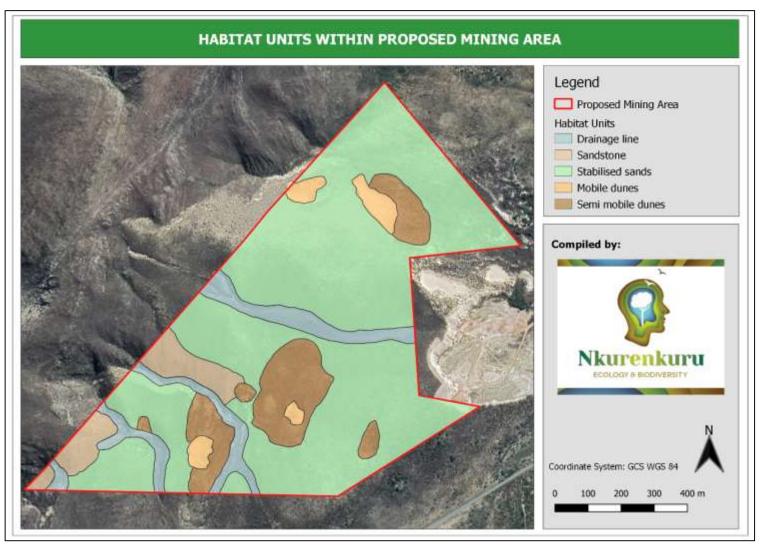


Figure 8: Map illustrating the habitat units identified within the survey site.

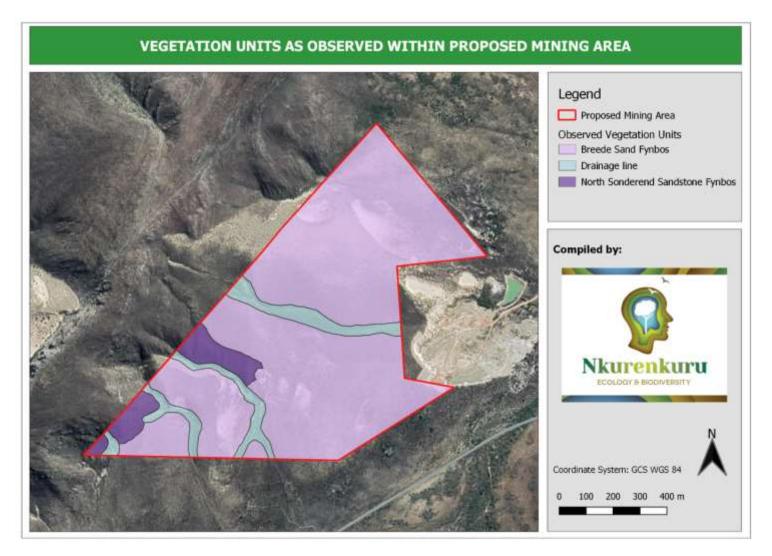


Figure 9: Map illustrating the ground truth (actual) extent of the vegetation types within the proposed mining area.

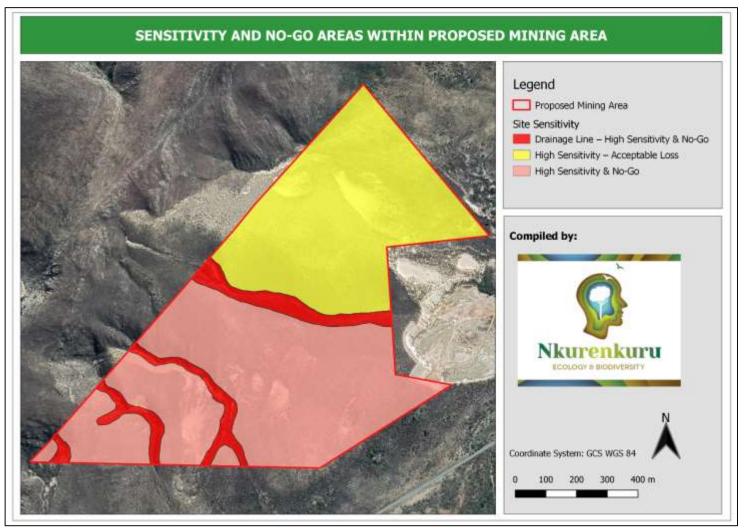


Figure 10: Map illustrating the ecological sensitivity of the project site.

5.2 Species of Conservation Concern

Species of conservation concern are species of flora (plants) and fauna (animals) that have a high conservation importance in terms of preserving South Africa's high biological diversity and include not only threatened species that have been classified as 'at high risk of extinction in the wild' (i.e. Critically Endangered CR, Endangered EN, Vulnerable VU), but also those classified in the categories Near Threatened (NT), Critically Rare, Rare, Declining and Data Deficient. Protected species are listed in international conventions, national acts and provincial ordinances that regulate activities such as the hunting, collection, and trade of species. If a subpopulation of a species of conservation concern is found to occur on a proposed development site, it would be one indicator that development activities could result in significant loss of biodiversity, bearing in mind that loss of subpopulations of these species will either increase their extinction risk or may, in fact, contribute to their extinction

5.2.1 Flora of conservation significance

As previously mentioned, a species list was obtained from the SANBI database (POSA) for the study area and surrounding environment. According to this list a total of about 104 plant Species of Conservation Concern is known to occur in the broad area surrounding the site.

Ground truthing confirmed a total of 7 Species of Conservation Concern to be present on site, 5 of which are Threated Species (listed below). Furthermore, two of these species, namely *Aspalathus burchelliana* (EN) and *Lachnaea uniflora* (VU), were not present in the list obtained online (POSA) during the desktop phase, which proves the value of ground-truthing sites to validate such online species lists.

Furthermore, a total of 12 provincially protected (Schedule 4) floral species have been recorded within the project site.

Table 13: Conservation Important Flora Species recorded within the surveyed site.

		Conser	vation Status
Family	Species	IUCN Red List	WCNCO (Schedule 4)
Fabaceae	Aspalathus burchelliana	EN EN	(Schedule 4)
гарасеае	Aspaiatrius burcheiliana	EIN	
Aizoaceae	Stayneria neilii	VU	
Fabaceae	Aspalathus lactea	VU	
Rutaceae	Euchaetis pungens	VU	Protected
Thymelaeaceae	Lachnaea uniflora	VU	

Asteraceae	Metalasia adunca	NT	
Aizoaceae	Ruschia pungens	DD	
Asphodelaceae	Aloe perfoliata	LC	Protected
Ericaceae	Erica imbricata	LC	Protected
Ericaceae	Erica similis	LC	Protected
Ericaceae	Erica sonderiana	LC	Protected
Iridaceae	Aristea dichotoma	LC	Protected
Proteaceae	Leucadendron salignum	LC	Protected
Proteaceae	Leucospermum calligerum	LC	Protected
Proteaceae	Paranomus dispersus	LC	Protected
Proteaceae	Protea laurifolia	LC	Protected
Proteaceae	Serruria gremialis	LC	Protected
Rutaceae	Agathosma stipitata	LC	Protected

6. ASSESSMENT OF PROPOSED IMPACTS

6.1 Assumptions

The following is assumed and/or known:

- » A thorough botanical walkthrough of all footprint areas will be conducted to detect and relocate, where possible, all plant species of conservation concern by a suitably qualified botanist prior to commencement of activities.
- » Throughout the duration of the mining activities, the footprint will be routinely cleared of all alien invasive plants if detected.
- The site establishment itself will be associated with clearing of vegetation within the footprint only.
- » After decommissioning, a continuous vegetation layer will be the most important aspect of ecosystem functionality within and beyond the project site.
- A weakened or absent vegetation layer not only exposes the soil surface but also lacks the binding and absorption capacity that creates the buffering functionality of vegetation to prevent or lessen erosion as a result of floods.

6.2 Localised vs. cumulative impacts: some explanatory notes

Ecosystems consist of a mosaic of many different patches. The size of natural patches affects the number, type, and abundance of species they contain. At the periphery of patches, influences of neighbouring patches become apparent, known

as the 'edge effect'. Patch edges may be subjected to increased levels of heat, dust, desiccation, disturbance, invasion of exotic species and other factors. Edges seldom contain species that are rare, habitat specialists or species that require larger tracts of undisturbed core habitat. Fragmentation due to development reduces core habitat and greatly extends edge habitat, which causes a shift in the species composition, which in turn puts great pressure on the dynamics and functionality of ecosystems (Perlman & Milder 2005).

Cumulative impacts of developments on population viability of species can be reduced significantly if new developments are kept as close as possible to existing developed and/or transformed areas or, where such is not possible, different sections of development be kept as close together as possible.

If the entire proposed footprint of 108.3851ha is approved it is highly likely that this development will contribute to the cumulative impacts of the area:

- » Affecting the conservation targets set out by the province for this region;
- » Impact the conservation targets set out for the vegetation type and ecosystem (at national level).
- » Compromise the ecological functioning of the larger "natural" environment; and
- » Disrupt the connectivity of the landscape for fauna and flora and impair their ability to respond to environmental fluctuations.

However, a loss of only the 30% (of the proposed footprint) located to the north will not contribute to the cumulative impacts as described above and as such this area is regarded as acceptable for the development.

Excessive clearing of vegetation can and will influence runoff and stormwater flow patterns and dynamics, which could cause excessive accelerated erosion of plains and intermittent drainage lines, and this could also have detrimental effects on the lower-lying areas.

- All drainage lines are regarded as No-Go Areas
- Rehabilitation and revegetation of all surfaces disturbed or altered during the operational phase is desirable.

Disturbance of indigenous vegetation creates a major opportunity for the establishment of invasive species and their uncontrolled spread into adjacent natural habitats.

» A regular monitoring and eradication protocol must be part of all the developments' long-term management plans.

After decommissioning, a continuous vegetation layer will be the most important aspect of ecosystem functionality within and beyond the project site.

 A weakened or absent vegetation layer not only exposes the soil surface but also lacks the binding and absorption capacity that creates the buffering functionality of vegetation to prevent or lessen erosion and the destabilization of the dune plume as a result of floods and wind.

6.3 Identification of Potential Impacts and Associated Activities

Potential impacts resulting from the proposed project would stem from a variety of different activities and risk factors associated with the site-establishment and operation phases of the project including the following:

6.3.1 Site-establishment and Operational Phase

- » Human presence and uncontrolled access to the site may result in negative impacts on fauna and flora through poaching of fauna and uncontrolled collection of plants for traditional medicine or other purposes.
- » Site clearing and exploration activities for site establishment.
- » Vegetation clearing could impact locally listed plant species. Vegetation clearing would also lead to the loss of vegetation communities and habitats for fauna and potentially the loss of faunal species, habitats, and ecosystems. On a larger and cumulative scale (if numerous and uncontrolled developments are allowed to occur in the future) the loss of these vegetation communities and habitats may potentially lead to a change in the conservation status of the affected vegetation type as well as the ability of this vegetation type and associated features to fulfil its ecological responsibilities (functions).
- » Soil compaction and increased erosion risk would occur due to the loss of plant cover and soil disturbance created during the construction phase. This may potentially impact the downstream watercourses and aquatic habitats. These potential impacts may result in a reduction in the buffering capacities of the landscape during extreme weather events.
- » Invasion by alien plants may be attributed to excessive disturbance to vegetation, creating a window of opportunity for the establishment of these alien invasive species. In addition, regenerative material of alien invasive species may be introduced to the project site by machinery

- traversing through areas with such plants or materials that may contain regenerative materials of such species.
- » Presence and operation of mining vehicles and machinery on the project site. This will create a physical impact as well as generate noise, potential pollution and other forms of disturbances at the site.
- The facility will require management and if this is not done effectively, it could impact adjacent intact areas through impacts such as erosion and the invasion of alien plant species.

6.3.2 Cumulative Impacts

- The loss of unprotected vegetation types on a cumulative basis from the broad area may impact the country's ability to meet its conservation targets.
- Transformation of intact habitat would contribute to the fragmentation of the landscape and would potentially disrupt the connectivity of the landscape for fauna, avifauna, and flora and impair their ability to respond to environmental fluctuations.

6.4 Assessment of Impacts

The impacts identified above are assessed below, during the site-establishment and operation phases of the facility as well as before and after mitigation.

6.4.1 Assessment of impacts associated with Site-establishment and Operational Phases

Impact 1: Potential Impacts on vegetation and listed and protected plant species

Impact Nature: Vegetation clearing will lead to the loss of current habitat within the proposed mining footprint and is an inevitable consequence of this type of activity.

This will lead to localised or more extensive reduction in the overall extent of vegetation. There are factors that may aggravate this potential impact. For example, where this vegetation has already been stressed due to degradation and transformation at a regional level, or has a very restricted distribution, the loss may lead to increased vulnerability (susceptibility to future damage) of the habitat and a change in the conservation status (current conservation situation). Consequences of the potential impact of loss of indigenous natural vegetation occurring may include:

- » negative change in conservation status of habitat (Driver et al. 2005);
- » increased vulnerability of remaining portions to future disturbance;
- » general loss of habitat for sensitive species;
- » loss in variation within sensitive habitats due to loss of portions of it;
- » general reduction in biodiversity;
- » increased fragmentation (depending on location of impact);

- » disturbance to processes maintaining biodiversity and ecosystem goods and services; and
- » loss of ecosystem goods and services.

Plant species are especially vulnerable to mining development due to the fact that they cannot move out of the path of the construction activities, but are also affected by overall loss of habitat.

Threatened species include those classified as critically endangered, endangered or vulnerable. For any other species a loss of individuals or localised populations is unlikely to lead to a change in the conservation status of the species. However, in the case of threatened plant species, loss of a population or individuals could lead to a direct change in the conservation status of the species, possibly extinction. This may arise if the proposed infrastructure is located where it will impact on such individuals or populations. Consequences may include:

- » fragmentation of populations of affected species;
- » reduction in area of occupancy of affected species; and
- » loss of genetic variation within affected species.

These may all lead to a negative change in conservation status of the affected species, which implies a reduction in the chance of survival of the species.

	Without Mitigation	With Mitigation	
Extent	Local (2)	Local (1)	
Duration	Permanent (5)	Permanent (5)	
Magnitude	High (7)	Moderate (5)	
Probability	Definite (5)	Highly Probable (4)	
Significance	High (70)	Medium (44)	
Status	Negative	Negative	
Reversibility	Low	Low	
Irreplaceable loss of resources	Some loss of resources	Very limited loss of resources	
Can impacts be mitigated?	allow for some functionality to re fynbos cover representative of such the most appropriate mitig the extent of the footprint to a le as acceptable without impacting	o a limited extent. Even though a stable vegetation cover will llow for some functionality to return, an establishment of a natural public cover representative of the region is near impossible. As such the most appropriate mitigation measure will be to minimize the extent of the footprint to a level where the loss can be regarded as acceptable without impacting the status of the vegetation type is well as potential individual listed plant species	
Residual Impacts	» A permanent altered vegeta	tion cover.	

Impact 2: Potential impacts on local fauna especially threatened animals due to disturbance and a loss of available habitat and migration routes

Impact Nature: Threatened animal species are indirectly affected primarily by the overall loss of habitat, since direct construction impacts can often be avoided due to movement of individuals from the path of construction. Animals are generally mobile and, in most cases, can move away from a potential threat.

Threatened species include those classified as critically endangered, endangered or vulnerable. For any other species a loss of individuals or localised populations is unlikely to lead to a change in the conservation status of the species. However, in the case of threatened animal species, loss of a population or individuals could lead to a direct change in the conservation status of the species. This may arise if the proposed infrastructure is located where it will impact on such individuals or populations or the habitat that they depend on. Consequences may include:

- » fragmentation of populations of affected species;
- » reduction in area of occupancy of affected species; and
- » loss of genetic variation within affected species.

These may all lead to a negative change in conservation status of the affected species, which implies a reduction in the chances of the species overall survival chances.

	Without Mitigation	With Mitigation	
Extent	Local (2)	Local (1)	
Duration	Long-term (4)	Long-term (4)	
Magnitude	High (7)	Low (4)	
Probability	Highly Probable (4)	Probable (3)	
Significance	Medium (52)	Low (27)	
Status	Negative	Negative	
Reversibility	Limited extent with effective rehabilitation	Relative high reversibility with effective rehabilitation	
Irreplaceable loss of resources	Some loss of resources	Very limited loss of resources	
Can impacts be mitigated?	To a limited extent. Even though, with effective rehabilitation of a stable vegetation cover will allow for some faunal species to return to the area, most of these species will be generalists and opportunistic species. Habitat (fynbos) specialists will likely not return to the area. As such the most appropriate mitigation measure will be to minimize the extent of the footprint to a level where the loss of habitat will not impact the local faunal community structure, allowing for most of the species to persist outside of the mining area.		
Residual Impacts	· ·	that will be inhabited by some of eralist species, with a likelihood of s not returning to the area.	

Impact 3: Impact on drainage areas.

Impact Nature: There are no wetlands within the proposed mining footprint, but there are a number of ephemeral drainage lines. At their headwater/upper portions these drainage lines tend to be steep-sided mini valleys. Mining will lead to direct, local loss of or damage to these areas and their catchments and may impact the replenishment of downslope aquifers as most of these drainage lines dissipate into the sand dune with runoff seeping down into aquifers. These drainage lines are an

important habitat for a number of species in the study area, including those with a restricted distribution or species with an elevated conservation status. Without Mitigation With Mitigation Extent Local and downstream habitats Local (1) including downslope aquifers (3) **Duration** Permanent (5) Long-term (4) Magnitude High (7) Low (4) **Probability** Definite (5) Improbable (2) Significance High (75) Low (18) Status Negative Negative Reversibility Low Low Irreplaceable loss Some loss of resources Avoid loss of resources resources Can impacts be mitigated? The only possible mitigation measure will be avoidance of these habitat types. » Without mitigation these drainage systems will be lost resulting **Residual Impacts** in an altered surface hydrology as well as the contribution the area made to the replenishment of downslope aquifers. With mitigation measures implemented (avoidance of these features), there will be no residual impact on these drainage lines.

Impact 4: Potential increased erosion risk and destabilisation of the dune plume during and post-operational phase

Impact Nature: During the operational phase, there will be a lot of disturbed and loose soil at the site which will render the area vulnerable to erosion. It is critically important that proper erosion control measures and structures are put in place and maintained over the lifespan of the project.

	Without Mitigation	With Mitigation
Extent	Local and immediate surroundings (3)	Local (1)
Duration	Long-term (4)	Short-term (1)
Magnitude	High (8)	Minor (2)
Probability	Highly Probable (4)	Highly Probable (4)
Significance	High (60)	Low (16)
Status	Negative	Negative
Reversibility	Moderate	High

Irreplaceable loss of	Some loss of resources	Unlikely
resources		
Can impacts be mitigated?	Yes, to a large extent	
Residual Impacts	With appropriate avoidance and mitigation, residual impacts will be	
	very low avoiding any residual impacts outside of the mining footprint.	

Impact 5: Increased alien plant invasion during the operational phase

Impact Nature: Increased alien plant invasion is one of the greatest risk factors associated with this activity. The disturbed and bare ground that is likely to be present at the site during and after the operational phase would leave the site vulnerable to alien plant invasion during the operation phase if not managed. Furthermore, the National Environmental Management Biodiversity Act (Act No. 10 of 2004), as well as the Conservation of Agricultural Resources Act, (Act No. 43 of 1983) requires that listed alien species are controlled in accordance with the Act.

Major factors contributing to invasion by alien invader plants includes inter alia high disturbance (such as clearing for construction activities) and negative grazing practices (Zachariades et al. 2005). Exotic species are often more prominent near infrastructural disturbances than further away (Gelbard & Belnap 2003, Watkins et al. 2003). Consequences of this may include:

- » loss of indigenous vegetation;
- » change in vegetation structure leading to change in various habitat characteristics;
- » change in plant species composition;
- » change in soil chemical properties;
- » loss of sensitive habitats;
- » loss or disturbance to individuals of rare, endangered, endemic and/or protected species;
- » fragmentation of sensitive habitats;
- » change in flammability of vegetation, depending on alien species;
- » hydrological impacts due to increased transpiration and runoff; and
- » impairment of watercourse function.

	Without Mitigation	Mith Mitigation
	Without Mitigation	With Mitigation
Extent	Local and immediate	Local (1)
	surroundings (3)	
Duration	Permanent (5)	Short-term (1)
Magnitude	Moderate (6)	Minor (2)
Probability	Highly Probable (4)	Probable (3)
Significance	Medium (56)	Low (12)
Status	Negative	Negative
Reversibility	Moderate	High
Irreplaceable loss of	Potential loss of resources	Unlikely
resources		
Can impacts be mitigated?	Yes, to a large extent	

Residual Impacts	With appropriate mitigation such as regular monitoring and		
	eradication residual impacts will be very low and will likely		
	comprise of few alien plants establishing for short periods of time		
	between monitoring and eradication phases.		

6.4.2 Assessment of Cumulative Impacts

Cumulative Impact 1: Reduced ability to meet conservation obligations and targets

Impact Nature : The loss of unprotected vegetation types on a cumulative basis from the broader area impacts the Province's ability to meet its conservation targets.					
	Overall impact of the proposed project considered in isolation		Cumulative impact of the project and other projects within the area		
	If the entire proposed footprint is to be mined	If the recommended ±30% of the original footprint area is approved to be mined	If the entire proposed footprint is to be mined	If the recommended ±30% of the original footprint area is approved to be mined	
Extent	Regional (2)	Local (1)	Regional (5)	Regional (3)	
Duration	Permanent (5)	Permanent (5)	Permanent (5)	Permanent (5)	
Magnitude	Moderate (6) Mind		inor (3) High (8)		
Probability	Highly Probable (4)	Improbable (2)	Highly Probable (4)	Probable (3)	
Significance	Medium (52)	Low (18)	High (72)	Medium (42)	
Status	Negative	Negative	Negative	Negative	
Reversibility	Low	Low	Low	Low	
Irreplaceable loss of resources	Some loss of Unlikely Loss of local Limited loss resources resources				
Can impacts be mitigated?	To a limited extent. Even though a stable vegetation cover will allow for some functionality to return, an establishment of a natural fynbos cover representative of the region is near impossible. As such the most appropriate mitigation measure will be to minimize the extent of the footprint to a level where the loss can be regarded as acceptable without impacting the status of the vegetation type as well as potential individual listed plant species				

Cumulative Impact 2: Impacts on Broad-Scale Ecological Processes

Impact Nature: Transformation of intact habitat could potentially compromise ecological processes as well as ecological functioning of important habitats and would contribute to the fragmentation of

the landscape and would potentially disrupt the connectivity of the landscape for fauna and flora and impair their ability to respond to environmental fluctuations. Overall impact of the proposed Cumulative impact of the project project considered in isolation and other projects within the area If the If the *If the entire* recommended recommended If the entire ±30% of the proposed ±30% of the proposed footprint footprint is to be original footprint original footprint is to be mined area is approved mined area is approved to to be mined be mined Extent Regional (2) Local (1) Regional (3) Regional (2) Duration Permanent (5) Permanent (5) Permanent (5) Permanent (5) Magnitude Moderate (5) Small (1) High (7) Moderate (5) Probable Improbable (2) Highly Probable **Probability** Highly Probable (3) (4) (4) Significance Low (18) Medium (48) Medium (36) High (60) Status Negative Negative Negative Negative Reversibility Low Low Low Low Irreplaceable Some Unlikely Loss Limited loss of of local loss of loss resources resources resources resources Can impacts To a limited extent. Even though a stable vegetation cover will allow for some be mitigated? functionality to return, an establishment of a natural fynbos cover representative of the region is near impossible. As such the most appropriate mitigation measure will be to minimize the extent of the footprint to a level where the loss can be regarded as acceptable without impacting the status of the vegetation type as well as potential individual listed plant species

6.5 Impact Mitigation and Management

IMPACT	MITIGATION			
Site-Establishment and Ope	eration Phase			
Impact 1: Potential Impacts on vegetation and listed and protected plant species	 The southern portion of the proposed mining footprint should be excluded from the final layout and should be regarded as a No-Go area (as indicated in the sensitivity map) and treated as a Biodiversity Offset Area. A pre-construction walk-through of the final mining footprint, by a suitably qualified botanist, for species of conservation concern that would be affected (also to comply with the Western Cape Nature Conservation Ordinance and DEADP permit conditions). Permits must be kept on-site and in the possession of the flora search and rescue team at all times. Pre-construction environmental induction for all staff on site must be provided to ensure that basic environmental principles are adhered to. This includes awareness of no littering, appropriate handling of pollution and chemical spills, avoiding fire hazards, minimising wildlife interactions, remaining within demarcated construction areas, etc. Contractor's EO must provide supervision and oversight of vegetation clearing activities and other activities which may cause damage to the environment, especially at the initiation of the project, when the majority of vegetation clearing is taking place. Blanket clearing of vegetation must be limited to the proposed mining footprint and associated infrastructure. No clearing outside of the minimum required footprint to take place. Phased mining and vegetation clearance should be done, wherein small strips are mined at a time. All vegetation outside of the active strips should not be disturbed until it is time for that specific area to be mined. Furthermore, upon finishing a strip, immediate rehabilitation should occur wherein a stable vegetation cover is established with a grass cover. Topsoil must be stripped and stockpiled separately during site preparation and replaced over disturbed areas on completion All vehicles to remain on demarcated roads and no unnecessary driving in the veld outside			
	» No fires must be allowed on-site.			

Impact 2: Potential impacts on	» The southern portion of the proposed mining footprint should be excluded from the final layout and should be regarded as
local fauna especially threatened	a No-Go area (as indicated in the sensitivity map) and treated as a Biodiversity Offset Area.
animals due to disturbance and a	» Any fauna directly threatened by the operational activities should be removed to a safe location by the ECO or other suitably
loss of available habitat and	qualified person, e.g. the Contractor's EO.
migration routes	» All personnel should undergo environmental induction with regards to fauna and in particular awareness about not harming
	or collecting species such as snakes, tortoises and owls which are often persecuted out of superstition.
	» All hazardous materials used should be stored in the appropriate manner to prevent contamination of the site. Any
	accidental chemical, fuel and oil spills that occur at the site should be cleaned up in the appropriate manner as related to
	the nature of the spill.
	» All vehicles should adhere to a low speed limit (30km/h is recommended) to avoid collisions with susceptible species such
	as snakes and tortoises.
	» When possible, no activity should be undertaken at the site between sunset and sunrise, except for security personnel
	guarding the development.
	» No litter, food or other foreign material should be thrown or left around the site and should be placed in demarcated and
	fenced rubbish and litter areas that are animal proof.
Impact 3: Impact on drainage	» The southern portion of the proposed mining footprint, including all drainage areas, should be excluded from the final layout
areas.	and should be regarded as a No-Go area (as indicated in the sensitivity map) and treated as a Biodiversity Offset Area.
Impact 4: Potential increased	» Any erosion problems within the mining area as a result of the mining activities observed should be rectified immediately
erosion risk and destabilisation of	and monitored thereafter to ensure that they do not re-occur.
the dune plume during and post-	» Mining within steep slopes will need to ensure that adequate slope protection is provided.
operational phase	Timing Within Steep Slopes will need to choure that adequate slope protection is provided.
	» Blanket clearing of vegetation must be limited to the proposed mining footprint and associated infrastructure. No clearing
	outside of the minimum required footprint to take place.
	Dhasad mining and pagetation eleganors about the dans, who will string any mined at a time. All pagetation outside
	» Phased mining and vegetation clearance should be done, wherein small strips are mined at a time. All vegetation outside
	of the active strips should not be disturbed until it is time for that specific area to be mined. Furthermore, upon finishing
	a strip , immediate rehabilitation should occur wherein a stable vegetation cover is established with a grass cover.
	» Roads and other disturbed areas within the project area should be regularly monitored for erosion problems and problem
	areas should receive follow-up monitoring to assess the success of the remediation.

	» Silt/sediment traps/barriers should be used where there is a danger of topsoil or material stockpiles eroding and entering downstream drainage lines and other sensitive areas.
	» These sediment/silt barriers should be regularly maintained and cleared so as to ensure effective drainage of the areas
	» Topsoil should be removed and stored separately from subsoil. Topsoil should be reapplied where appropriate as soon as possible in order to encourage and facilitate rapid regeneration of the natural vegetation on cleared areas.
	» Stockpiles must be protected from erosion, stored on flat areas where possible, and be surrounded by appropriate berms.
	» Any erosion points created during construction should be filled and stabilized immediately.
	» Practical phased development and vegetation clearing should be practiced so that cleared areas are not left un-vegetated and vulnerable to erosion for extended periods of time.
	» Construction of gabions and other stabilisation features must be undertaken to prevent erosion, where deemed necessary.
Impact 5: Increased alien plant	» Alien species must be removed from the site as per NEMBA requirements.
invasion during the operational phase	» A suitable weed management strategy to be implemented in the construction and operation phases.
	» Regular monitoring for alien plants at the site should occur and could be conducted simultaneously with erosion monitoring.
	» When alien plants are detected, these should be controlled and cleared using the recommended control measures for each species to ensure that the problem is not exacerbated or does not re-occur and increase to problematic levels.
	» Clearing methods should aim to keep disturbance to a minimum and must be undertaken in accordance with relevant guidelines.
	» No planting or importing of any alien species to the site for landscaping, rehabilitation or any other purpose should be allowed.
Cumulative Impacts	

Cumulative Impact 1: Reduced	» The southern portion of the proposed mining footprint should be excluded from the final layout and should be regarded as
ability to meet conservation	a No-Go area (as indicated in the sensitivity map) and treated as a Biodiversity Offset Area.
obligations and targets	» The activity footprints of various proposed mining locations and other development proposals in the area must be kept to a minimum and a stable vegetation should be encouraged to return during the post-operational phase.
	» Reduce the footprint of mining areas within sensitive habitat types as much as possible.
Cumulative Impact 2: Impacts	» The southern portion of the proposed mining footprint should be excluded from the final layout and should be regarded as
on Broad-Scale Ecological	a No-Go area (as indicated in the sensitivity map) and treated as a Biodiversity Offset Area.
Processes	 The activity footprints of various proposed mining locations and other development proposals in the area must be kept to a minimum and a stable vegetation should be encouraged to return during the post-operational phase. Reduce the footprint of mining areas within sensitive habitat types as much as possible.

7. CONCLUSION

The existing Zandberg Sand Mine is located within Portion 4 of the Farm Zandberg Fontein 97 located approximately 7 km south-west of the town of Robertson. The Mining Right Holder (Zandberg Sandput (Pty) Ltd) intends on expanding the MR footprint with an additional 108.3251ha. Subsequently a Section 102 is being applied for.

Nkurenkuru Ecology and Biodiversity (Pty) Ltd has been appointed by the GreenMined Environmental (Pty) Ltd to conduct a botanical assessment of the proposed target area for the expansion in order to provide a professional opinion on botanical issues pertaining to the target area to aid in future decisions regarding the proposed project. This report sets out the findings of the botanical study and assessment.

From a botanical and ecological perspective, it was found that the entire project site is located within a near-natural to natural area with minimal disturbance. The bulk of the proposed footprint is located within a Vegetation Type listed as Vulnerable. Furthermore, the entire site is located within a CBA1, with the area being confirmed, during the site visit, to comply with the criteria classifying this area as a CBA1. A development of this nature and to this proposed extent would not be acceptable within a CBA1 and furthermore do not comply with the land use practices allowed for within such CBAs.

However, during this assessment an area of approximately ±30% of the original proposed footprint was identified as acceptable for this development, as this area (north of the prominent drainage line) covers a very small portion of the dune plume which is covered by a relative uniform vegetation cover. Subsequently this area is largely a uniform habitat type, and development within this section will not impact the status of the vegetation / ecosystem type, red data species or influence the conservation targets set out for this CBA1 area. Furthermore, by restricting mining activities to this area adjacent to the existing mining area, potential impacts are "compressed" in a confined area avoiding further habitat fracturing as well as avoiding any important biological corridors.

Subsequently from an ecological perspective no objective or motives were identified which would hinder the establishment of the mine within this recommended northern section of the original proposed mining footprint.

The southern portion (including all drainage lines and sandstone outcrops) should be regarded as a No-Go area (excluded from the footprint) and should furthermore be treated as a Biodiversity Offset Area.

Therefore, it is the opinion of the specialist that the development may be authorised within the specified area, subject to the implementation of the recommended mitigation measures.

As part of this Assessment a detailed field survey of the vegetation was undertaken on the 31st of January 2020.

Specific outcomes required from this report include the following:

- » To define the Present Ecological State (PES) of the terrestrial ecological resources in the vicinity of the study site;
- » To conduct a floral Species of Conservation Concern (SCC) assessment;
- » To identify and consider all sensitive landscape and ecologically important features;
- » To determine the environmental impacts that the proposed mine might have on the terrestrial ecology associated with the footprint area; and
- » To develop mitigation and management measures for all phases of the development.

General Results

- The project site is located on a dune plume that covers an area of approximately 597ha. This dune plume has settled along the south-eastern slope of the Sandberg Mountain Range, which is a narrow range running in a south-west to north-east direction.
- » This dune plume is dissected (mostly within the southern portion of the dune) by short, narrow ephemeral drainage lines running perpendicular to the mountain range and either draining into the large drainage system to the east, or merely dissipate into the sand plume to eventually seep into the underlying aquifers.
- » Where the dune plume thins out along the upper slopes of the Sandberg Mountain sandstone outcrops become exposed. Sandstone outcrops also occur lower down as isolated features where erosion has exposed them, especially along the steeper slopes associated with some of the drainage lines.
- » Five habitat types have been identified namely;
 - Dense, well developed fynbos occurring on the stabilised portions of the dune plume;
 - Sparse Fynbos occurring on the semi-mobile portions of the dune plume;

- Active, mobile portions of the dune plume largely devoid of vegetation;
- Drainage lines; and
- Fynbos associated with sandstone

National and regional conservation context:

- The vegetation of the study site resembles pristine forms of Breede Sand Fynbos throughout the majority of the site, together with pristine North Sonderend Sandstone Fynbos in the Western and southwestern corner, adjacent to drainage lines. Breede Sand Fynbos has been classified as Vulnerable by Mucina and Rutherford (2006) with 45% being already transformed and a conservation target of 30%. Furthermore, this area is also listed as Vulnerable within the Threatened Ecosystem List (NEMA:BA).
- From a provincial conservation perspective, the entire mining footprint is located almost entirely within a CBA1, with randomly scattered pixels of CBA2, and a small portion not having been classified. The insignificant and random nature of the CBA2 pixels are likely a side-effect of the algorithm used to generate the CBA spatial layers, and ground-truthing confirmed the entire site to conform to CBA1 criteria, including the portion not originally classified. Areas classified as CBA1 are regarded as "areas in a natural condition that are required to meet biodiversity targets, for species, ecosystems or ecological processes and infrastructure" (WCSBP 2017).

Flora specific results

- » Ground truthing of the site confirmed a total of 63 species present.
- » Of the 63 species recorded 7 species where listed as Red Data Species (4 species as vulnerable, whilst the remaining 3 species were listed as Endangered, Near Threatened and Data Deficient).
- » Furthermore, a total of 12 species were recorded which are provincially protected.
- » In terms of ecological sensitivity and conservation value / importance, the pristine nature of the vegetation (no invasive aliens, no transformation, no secondary vegetation), the numerous unique micro-habitats present, and the various important functions and services provided by these habitats and their vegetation cover, means that the entire site can be classified as highly sensitive.
- The conservation value and associated functions and services of the identified habitat units can be summarized as follow:
 - Dense, well developed fynbos occurring on the stabilised portions of the dune plume;
 - Listed as Vulnerable within the National Threatened Ecosystem List
 (2011)

- Listed as a Vulnerable Vegetation Type by Mucina & Rutherford (2012)
- Located within a CBA1 area which is vital for meeting provincial conservation targets.
- Recorded Red Data flora species
- Recorded Provincially Protected (Schedule 4) flora
- Natural to near natural habitat.
- Potential / suitable habitat for conservation important faunal species.
- Semi-mobile and mobile portions of the dune plume;
 - Listed as Vulnerable within the National Threatened Ecosystem List (2011)
 - Listed as a Vulnerable Vegetation Type by Mucina & Rutherford (2012)
 - Located within a CBA1 area which is vital for meeting provincial conservation targets.
 - Recorded Red Data flora species
 - Recorded Provincially Protected (Schedule 4) flora
 - Natural to near natural habitat.
 - Unique, dynamic and complex habitat, inhabited by habitat specialists (however diversity is expected to be low), subsequently this habitat type contributes to somewhat to habitat and niche diversity within the region.
 - Natural vegetation within semi-mobile areas provide some stabilization to these areas and provide a valuable function / service in preventing the mobile areas from encroaching into the natural dense vegetated portions surrounding these areas which have a high conservation value.
- Fynbos associated with sandstone
 - Located within a CBA1 area which is vital for meeting provincial conservation targets.
 - Recorded Red Data flora species
 - Recorded Provincially Protected (Schedule 4) flora
 - Natural habitat.
 - Steep south-facing slopes and kloofs are known to be important sites for biodiversity and provide refuges in the face of potential climate change.
 - Contribution to species diversity within the region.
 - Potential / suitable habitat for conservation important faunal species.

 Dense fynbos vegetation helps slow down surface runoff and moisture retention and contribute to the stability of the downslope sand plumes.

Drainage lines;

- Located within a CBA1 area which is vital for meeting provincial conservation targets.
- Listed as Vulnerable within the National Threatened Ecosystem List
 (2011)
- Listed as a Vulnerable Vegetation Type by Mucina & Rutherford (2012)
- Natural habitat.
- Biotic and abiotic corridor for material and wildlife movement.
- Absorption and retention of runoff and source of water input for aquifers.

Sensitivity and associated development recommendations

- » As already described the entire project area is regarded as highly sensitive.
- The northern section of the site can be regarded as acceptable for the development as this area (north of the prominent drainage line) covers a very small portion of the dune plume with no exposed sandstone outcrops or drainage lines and is furthermore located adjacent to the existing mining area. Subsequently this area is largely a uniform habitat type, and development within this section will not impact the status of the vegetation / ecosystem type, red data species or influence the conservation targets set out for this CBA1 area.
- » Furthermore, by restricting mining activities to this area adjacent to the existing mining area, potential impacts are "compressed" in a confined area avoiding further habitat fracturing as well as influencing important biological corridors.
- » Due to high habitat (micro-habitat), fine scale vegetation pattern and plant species turnover associated with the southern half of the project site as well as the functions and services associated with some of these habitat type, it is recommended that this southern portion is excluded from the proposed mining footprint. Also, this area is regarded as an important portion of the CBA1. All drainage lines are regarded as high sensitivity, No-Go features.
- The northern portion of the dune plume regarded as acceptable for the proposed activity covers approximately 30% of the original extent that is being proposed. The remaining area should be treated as a biodiversity offset area.

Cumulative Impacts

- » If the entire proposed footprint of 108.3851ha is approved it is highly likely that this development will contribute to the cumulative impacts of the area:
 - Affecting the conservation targets set out by the province for this region;
 - Impact the conservation targets set out for the vegetation type and ecosystem (at national level).
 - Compromise the ecological functioning of the larger "natural" environment; and
 - Disrupt the connectivity of the landscape for fauna and flora and impair their ability to respond to environmental fluctuations.
- » However, loss of only the 30% (of the proposed footprint) located to the north will not contribute significantly to the cumulative impacts as described above and as such this area is regarded as acceptable for the development.

Terrestrial Impact Assessment

- The most significant impacts associated with the development will be vegetation destruction and disturbance, some local habitat loss and potential temporary faunal disturbance. Furthermore, these disturbed areas may become potentially prone to erosion and invasion with invasive alien plants.
- » A summary of pre- and post-mitigation impact significance ratings for the different impacts and risks factors identified for the proposed development are provided below.

Phase	Impact	Significance Without Mitigation	Significance With Mitigation
త	Potential Impacts on vegetation and listed and protected plant species	High (70)	Medium (44)
	Potential impacts on local fauna especially threatened animals due to disturbance and a loss of available habitat and migration routes	Medium (52)	Low (27)
ıbli era	Impact on drainage areas	High (75)	Low (18)
Site Establishment Operation	Potential increased erosion risk and destabilisation of the dune plume during and post-operational phase	High (60)	Low (16)
	Increased alien plant invasion	Medium (56)	Low (12)

		Overall impact of the proposed project considered in isolation		Cumulative impact of the project and other projects within the area	
Cumulative		If the entire proposed footprint is to be mined	If the recommended ±30% of the original footprint area is approved to be mined	If the entire proposed footprint is to be mined	If the recommended ±30% of the original footprint area is approved to be mined
	Reduced ability to meet conservation obligations and targets	Medium (52)	Low (18)	High (72)	Medium (42)
	Impacts on Ecological Support Areas and Broad-Scale Ecological Processes	Medium (48)	Low (18)	High (60)	Medium (36)

Important recommendations and mitigation measures

- The southern portion of the proposed mining footprint should be excluded from the final layout and should be regarded as a No-Go area (as indicated in the sensitivity map) and treated as a Biodiversity Offset Area.
- However, the northern section of the site can be regarded as acceptable loss to the development as this area (north of the prominent drainage line) covers a very small portion of the dune plume with no exposed sandstone outcrops or drainage lines and is furthermore located adjacent to the existing mining area. Subsequently this area is largely a uniform habitat type, and development within this section will not impact the status of the vegetation / ecosystem type, red data species or influence the conservation targets set out for this CBA1 area. Furthermore, by restricting mining activities to this area adjacent to the existing mining area, potential impacts are "compressed" in a confined area avoiding further habitat fracturing as well as influencing important biological corridors
- » Phased mining and vegetation clearance should be done, wherein small strips are mined at a time. All vegetation outside of the active strips should not be disturbed until it is time for that specific area to be mined. Furthermore, upon finishing a strip, immediate rehabilitation should occur wherein a stable vegetation cover is established with a grass cover.
- Even though a stable vegetation cover will allow for some functionality to return, an establishment of a natural fynbos cover representative of the region is near impossible.
- » The following aspects should be noted regarding the rehabilitation of sand fynbos:
 - Sand Fynbos occurs on acidic, deep, loose, sandy soils which are easily destabilized and prone to wind erosion.

- Wind-blown sand damages vegetation and makes it difficult to establish vegetation cover, therefore anti-soil erosion measures may be required.
- Disturbed areas are slow to self-repair, therefore active restoration (e.g. sowing and planting) will be required.
- Ecological restoration does not substitute for sustainably managing and protecting intact native ecosystems.
- Fynbos ecosystems are prone to invasion by alien species and alien plant invasion is the second biggest cause of biodiversity loss after direct habitat loss. The management and eradication of Invasive Alien Plants (IAPs) are therefore a critical portion of the rehabilitation process and a detailed IAP Management Plan is should be in place.
- It is recommended to use a mix of commercial seed and native seed, including both annuals and perennials to diversify rooting depths. For dryland areas, the commercial seed mix should be less than half the standard sowing rate and include annuals (e.g. wheat or rye) and perennials e.g. Kweek (Cynodon dactylon). Add commonly available fynbos seeds (collected from as near to the site as possible), including annuals (e.g. Arctotis arctotoides, Dimorphotheca chrysanthemifolia, D. nudiaulis, Helichrysum cymosum, Osteospermum oppositifolium), grasses (Ehrharta villosa, E. calycina, Festuca scabra and Stipagrostis zeyheri,), succulents (Carpobrotus edulus, Ruschia pungens) and shrubs (e.g. Athanasia quinquedentata, Chrysocoma ciliata, Elytropappus rhinocerotis, Metalasia Stoebe nervigera, Eriocephalus africanus, adunca, Helichrysum odoratissimum and Agatoshma stipitata). The collection of local fynbos seed, if possible, is preferable for establishing fynbos species in favour of introducing Kweek, as Kweek may supress fynbos establishment, particularly in wetter areas.

8. REFERENCES

Apps, P. (ed.). 2012. *Smither's Mammals of Southern Africa*. A field guide. Random House Struik, Cape Town, RSA

Alexander, G. & Marais, J. 2007. *A Guide to the Reptiles of Southern Africa*. Struik Nature, Cape Town.

Bates, M.F., Branch, W.R., Bauer, A.M., Burger, M., Marais, J., Alexander, G.J. & de Villiers, M. S. 2014. Atlas and Red List of the Reptiles of South Africa, Lesotho, and Swaziland. Strelitzia 32. SANBI, Pretoria.

Branch W.R. 1998. Field guide to snakes and other reptiles of southern Africa. Struik, Cape Town.

CapeNature. 2017 WCBSP Langeberg [Vector] 2017. Available from the Biodiversity GIS website, downloaded on 07 April 2020

CapeNature. 2016 WCBSP Ecosystem Threat Status [Vector] 2016. Available from the Biodiversity GIS <u>website</u>, downloaded on 07 April 2020

CRITICAL BIODIVERSITY AREAS MAPS (PER MUNICIPALITY) AND GIS DATA AVAILABLE FROM: Biodiversity GIS (BGIS), South African National Biodiversity Institute, Tel. +27 21 799 8739 or CapeNature, Tel. +27 21 866 8000. Or on the web at: http://bgis.sanbi.org/fsp/project.asp

Department of Environmental Affairs and Tourism, 2007. National Environmental Management: Biodiversity Act, 2004 (Act 10 of 2004): Publication of lists of Critically Endangered, Endangered, Vulnerable and Protected Species. Government Gazette, Republic of South Africa

Department of Water and Sanitation. 2014. A Desktop Assessment of the Present Ecological State, Ecological Importance and Ecological Sensitivity per Sub Quaternary Reaches for Secondary Catchments in South Africa. Secondary: [W5 (for example)]. Compiled by RQIS DM:

https://www.dwa.gov.za/iwqs/rhp/eco/peseismodel.aspx accessed on 7/10/2018.

Du Preez, L. & Carruthers, V. 2009. *A Complete Guide to the Frogs of Southern Africa*. Struik Nature., Cape Town.

Friedmann, Y. & Daly, B. 2004. Red data book of the mammals of South Africa, a conservation assessment. Johannesburg, Endangered Wildlife Trust.

Manning, J. and P. Goldblatt. 2012. Plants of the Greater Cape Floristic Region 1: The Core Cape flora. Strelitzia 29. South African National Biodiversity Institute, Pretoria.

Marais, J. 2004. *Complete Guide to the Snakes of Southern Africa.* Struik Nature, Cape Town.

Mucina L. & Rutherford M.C. (eds) 2006. *The Vegetation of South Africa, Lesotho and Swaziland*. Strelitzia 19. South African National Biodiversity Institute, Pretoria

Mucina, L. and M. Rutherford. Eds. 2012 Update. Vegetation map of South Africa, Lesotho, and Swaziland. *Strelitzia* 19. South African National Biodiversity Institute, Pretoria.

Minter LR, Burger M, Harrison JA, Braack HH, Bishop PJ & Kloepfer D (eds). 2004. *Atlas and Red Data book of the frogs of South Africa, Lesotho and Swaziland.* SI/MAB Series no. 9. Smithsonian Institution, Washington, D.C.

Pence, Genevieve Q.K. 2017. Western Cape Spatial Biodiversity Plan. Unpublished CapeNature project report. Cape Town, South Africa.

Raimondo, D., Von Staden, L., Foden, W., Victor, J.E., Helme, N.A., Turner, R.C. Kamundi, D.A. & Manyama, P.A. (Eds.). 2009. *Red list of South African plants* 2009. Strelitzia 25:1-668

Rouget, M., Reyers, B., Jonas, Z., Desmet, P., Driver, A., Maze, K., Egoh, B. & Cowling, R.M. 2004. *South African National Spatial Biodiversity Assessment 2004: Technical Report. Volume 1: Terrestrial Component. Pretoria*: South African National Biodiversity Institute.

Skinner, J.D. & Chimimba, C.T. 2005. The mammals of the Southern African Subregion. Cambridge University Press, Cambridge.

Websites:

AGIS, 2007. Agricultural Geo-Referenced Information System, accessed from www.agis.agric.za

ADU, 2012. Animal Demography Unit, Department of Zoology, University of Cape Town. http://www.adu.org.za

BGIS: http://bgis.sanbi.org/website.asp

SANBI databases:

South African National Biodiversity Institute. 2016. Botanical Database of Southern Africa (BODATSA) [2018-07-13_235408064-BRAHMSOnlineData].

9. APPENDICES

Appendix 1: Plant Species List of confirmed within the proposed mining footpring

Family	Species	Family	Species
Aizoaceae	Carpobrotus edulis	Fabaceae	Lebeckia sepiaria
Aizoaceae	Ruschia pungens	Fabaceae	Podalyria rotundifolia
Aizoaceae	Stayneria neilii	Fabaceae	Rafnia capensis
Anacardiaceae	Searsia dissecta	Fabaceae	Wiborgia obcordata
Apiaceae	Anginon difforme	Geraniaceae	Pelargonium hermanniifolium
Asphodelaceae	Aloe perfoliata	Geraniaceae	Pelargonium ovale
Asphodelaceae	Trachyandra revoluta	Iridaceae	Aristea dichotoma
Asteraceae	Athanasia quinquedentata	Molluginaceae	Polpoda capensis
Asteraceae	Chrysocoma ciliata	Poaceae	Capeochloa cincta
Asteraceae	Disparago ericoides	Poaceae	Ehrharta villosa
Asteraceae	Elytropappus rhinocerotis	Poaceae	Pentameris pallida
Asteraceae	Lachnospermum fasciculatum	Poaceae	Stipagrostis zeyheri
Asteraceae	Metalasia acuta	Proteaceae	Leucadendron salignum
Asteraceae	Metalasia adunca	Proteaceae	Leucospermum calligerum
Asteraceae	Oedera squarrosa	Proteaceae	Paranomus dispersus
Asteraceae	Osteospermum junceum	Proteaceae	Protea laurifolia
Asteraceae	Pteronia incana	Proteaceae	Serruria gremialis
Asteraceae	Stoebe nervigera	Restionaceae	Elegia filacea
Campanulaceae	Prismatocarpus brevilobus	Restionaceae	Restio sieberi
Campanulaceae	Wahlenbergia nodosa	Restionaceae	Thamnochortus lucens
Celastraceae	Maytenus oleoides	Restionaceae	Willdenowia incurvata
Cyperaceae	Ficinia deusta	Restionaceae	Willdenowia sulcata
Cyperaceae	Scirpoides thunbergii	Rosaceae	Cliffortia ruscifolia
Ebenaceae	Diospyros glabra	Rubiaceae	Anthospermum galioides
Ericaceae	Erica imbricata	Rutaceae	Agathosma stipitata
Ericaceae	Erica similis	Rutaceae	Euchaetis pungens
Ericaceae	Erica sonderiana	Santalaceae	Colpoon compressum
Fabaceae	Aspalathus burchelliana	Santalaceae	Thesium euphrasioides
Fabaceae	Aspalathus hirta	Sapindaceae	Dodonaea viscosa
Fabaceae	Aspalathus juniperina	Scrophulariaceae	Selago fruticosa
Fabaceae	Aspalathus lactea	Thymelaeaceae	Lachnaea uniflora
Fabaceae	Aspalathus quinquefolia		

Appendix 2: Plant Species List of the region (POSA Generated List)

Family	Species	Family	Species	Family	Species
Achariaceae	Kiggelaria africana	Crassulaceae	Crassula tetragona	Malvaceae	Hermannia holosericea
Aizoaceae	Acrodon purpureostylus	Crassulaceae	Crassula vaillantii	Malvaceae	Hermannia hyssopifolia
Aizoaceae	Acrosanthes humifusa	Crassulaceae	Tylecodon paniculatus	Malvaceae	Hermannia incana
Aizoaceae	Aizoon karooicum	Crassulaceae	Tylecodon sp.	Malvaceae	Hermannia linearifolia
Aizoaceae	Antimima leipoldtii	Crassulaceae	Tylecodon ventricosus	Malvaceae	Hermannia pinnata
Aizoaceae	Antimima microphylla	Cucurbitaceae	Citrullus lanatus	Malvaceae	Hermannia pulverata
Aizoaceae	Antimima sp.	Cucurbitaceae	Cucumis myriocarpus	Malvaceae	Hermannia rigida
Aizoaceae	Antimima stokoei	Cucurbitaceae	Kedrostis capensis	Malvaceae	Hermannia sp.
Aizoaceae	Antimima turneriana	Cucurbitaceae	Kedrostis nana	Malvaceae	Malva arborea
Aizoaceae	Arenifera sp.	Cyperaceae	Carex spartea	Menispermaceae	Cissampelos capensis
Aizoaceae	Brianhuntleya intrusa	Cyperaceae	Chrysitrix capensis	Molluginaceae	Pharnaceum aurantium
Aizoaceae	Carpobrotus mellei Cephalophyllum	Cyperaceae	Chrysitrix capensis	Molluginaceae	Psammotropha anguina Psammotropha
Aizoaceae	purpureo-album	Cyperaceae	Chrysitrix junciformis	Molluginaceae	quadrangularis
Aizoaceae	Cephalophyllum sp. Cephalophyllum	Cyperaceae	Cyperus longus	Montiniaceae	Montinia caryophyllacea
Aizoaceae	subulatoides	Cyperaceae	Cyperus marginatus	Moraceae	Ficus cordata
Aizoaceae	Conophytum ficiforme	Cyperaceae	Epischoenus sp.	Myricaceae	Morella integra
Aizoaceae	Conophytum truncatum	Cyperaceae	Ficinia deusta	Myrsinaceae	Myrsine africana Eucalyptus
Aizoaceae	Delosperma pageanum	Cyperaceae	Ficinia dunensis	Myrtaceae	camaldulensis
Aizoaceae	Delosperma sp.	Cyperaceae	Ficinia ecklonea	Myrtaceae	Eucalyptus longifolia Leptospermum
Aizoaceae	Delosperma subincanum	Cyperaceae	Ficinia levynsiae	Myrtaceae	laevigatum Metrosideros
Aizoaceae	Drosanthemum albiflorum Drosanthemum	Cyperaceae	Ficinia nigrescens	Myrtaceae	angustifolia
Aizoaceae	ambiguum Drosanthemum	Cyperaceae	Ficinia oligantha	Oleaceae	Olea europaea
Aizoaceae	asperulum Drosanthemum	Cyperaceae	Ficinia polystachya	Onagraceae	Epilobium hirsutum
Aizoaceae	brevifolium	Cyperaceae	Ficinia ramosissima	Orchidaceae	Acrolophia capensis
Aizoaceae	Drosanthemum calycinum	Cyperaceae	Ficinia sp.	Orchidaceae	Bartholina burmanniana
Aizoaceae	Drosanthemum collinum	Cyperaceae	Ficinia stolonifera	Orchidaceae	Ceratandra atrata
Aizoaceae	Drosanthemum giffenii	Cyperaceae	Ficinia zeyheri	Orchidaceae	Ceratandra bicolor
Aizoaceae	Drosanthemum globosum	Cyperaceae	Fuirena hirsuta	Orchidaceae	Ceratandra globosa
Aizoaceae	Drosanthemum hispidum	Cyperaceae	Isolepis hystrix	Orchidaceae	Disa bifida
Aizoaceae	Drosanthemum lique Drosanthemum	Cyperaceae	Isolepis trachysperma	Orchidaceae	Disa bivalvata
Aizoaceae	papillatum Drosanthemum	Cyperaceae	Neesenbeckia punctoria	Orchidaceae	Disa comosa
Aizoaceae	parvifolium Drosanthemum	Cyperaceae	Schoenoxiphium sp.	Orchidaceae	Disa cornuta
Aizoaceae	praecultum	Cyperaceae	Schoenus compar	Orchidaceae	Disa ferruginea
Aizoaceae	Drosanthemum sp. Drosanthemum	Cyperaceae	Schoenus complanatus	Orchidaceae	Disa filicornis
Aizoaceae	speciosum	Cyperaceae	Schoenus exilis	Orchidaceae	Disa hallackii
Aizoaceae	Drosanthemum striatum	Cyperaceae	Schoenus gracillimus	Orchidaceae	Disa inflexa
Aizoaceae	Erepsia anceps	Cyperaceae	Schoenus pictus	Orchidaceae	Disa maculata
Aizoaceae	Erepsia gracilis	Cyperaceae	Schoenus pseudoloreus Schoenus	Orchidaceae	Disa micropetala
Aizoaceae	Erepsia oxysepala	Cyperaceae	quadrangularis	Orchidaceae	Disa obliqua
Aizoaceae	Galenia africana	Cyperaceae	Tetraria bromoides	Orchidaceae	Disa ocellata
Aizoaceae	Galenia cymosa	Cyperaceae	Tetraria capillacea	Orchidaceae	Disa racemosa
Aizoaceae	Galenia filiformis	Cyperaceae	Tetraria fimbriolata	Orchidaceae	Disa rosea
Aizoaceae	Galenia fruticosa	Cyperaceae	Tetraria fourcadei	Orchidaceae	Disa tenuicornis

Family	Species	Family	Species	Family	Species
Aizoaceae	Galenia pubescens	Cyperaceae	Tetraria involucrata	Orchidaceae	Disa tenuifolia
Aizoaceae	Galenia secunda	Cyperaceae	Tetraria sp.	Orchidaceae	Disa tripetaloides
Aizoaceae	Glottiphyllum difforme	Cyperaceae	Tetraria triangularis	Orchidaceae	Disa uncinata
Aizoaceae	Lampranthus coralliflorus	Cyperaceae	Tetraria ustulata	Orchidaceae	Disperis bolusiana
Aizoaceae	Lampranthus emarginatus	Cytinaceae	Cytinus sanguineus	Orchidaceae	Disperis bolusiana
Aizoaceae	Lampranthus falcatus	Ditrichaceae	Ceratodon purpureus	Orchidaceae	Disperis capensis
Aizoaceae	Lampranthus haworthii	Ditrichaceae	Ditrichum difficile	Orchidaceae	Disperis circumflexa
Aizoaceae	Lampranthus leipoldtii	Ditrichaceae	Pleuridium ecklonii	Orchidaceae	Disperis paludosa
Aizoaceae	Lampranthus occultans	Droseraceae	Drosera ramentacea Diospyros austro-	Orchidaceae	Holothrix secunda
Aizoaceae	Lampranthus sp.	Ebenaceae	africana	Orchidaceae	Holothrix villosa
Aizoaceae	Leipoldtia schultzei	Ebenaceae	Diospyros glabra	Orchidaceae	Pterygodium catholicum Pterygodium
Aizoaceae	Leipoldtia sp.	Ebenaceae	Euclea undulata	Orchidaceae	orobanchoides Pterygodium
Aizoaceae	Malephora crocea	Ericaceae	Erica abietina	Orchidaceae	platypetalum
Aizoaceae	Malephora thunbergii Mesembryanthemum	Ericaceae	Erica accommodata	Orchidaceae	Pterygodium volucris
Aizoaceae	articulatum Mesembryanthemum	Ericaceae	Erica accommodata	Orchidaceae	Satyrium bicallosum
Aizoaceae	bicorne Mesembryanthemum	Ericaceae	Erica adnata	Orchidaceae	Satyrium bicorne
Aizoaceae	coriarium Mesembryanthemum	Ericaceae	Erica alfredii	Orchidaceae	Satyrium coriifolium
Aizoaceae	englishiae Mesembryanthemum	Ericaceae	Erica alopecurus	Orchidaceae	Satyrium erectum
Aizoaceae	grossum Mesembryanthemum	Ericaceae	Erica altevivens	Orchidaceae	Satyrium humile
Aizoaceae	junceum Mesembryanthemum	Ericaceae	Erica altiphila	Orobanchaceae	Harveya bodkinii
Aizoaceae	longistylum Mesembryanthemum	Ericaceae	Erica anemodes	Orobanchaceae	Harveya purpurea
Aizoaceae	nitidum Mesembryanthemum	Ericaceae	Erica anguliger	Orobanchaceae	Harveya squamosa
Aizoaceae	nodiflorum Mesembryanthemum	Ericaceae	Erica arachnocalyx	Orobanchaceae	Hyobanche rubra
Aizoaceae	pallens	Ericaceae	Erica arcuata	Orobanchaceae	Hyobanche sanguinea
Aizoaceae	Mesembryanthemum sp. Mesembryanthemum	Ericaceae	Erica articularis	Orobanchaceae	Melasma scabrum
Aizoaceae	tetragonum Mesembryanthemum	Ericaceae	Erica axillaris	Orobanchaceae	Orobanche ramosa
Aizoaceae	varians	Ericaceae	Erica benthamiana	Orthodontiaceae	Leptotheca gaudichaudii
Aizoaceae	Roosia grahambeckii	Ericaceae	Erica bergiana	Oxalidaceae	Oxalis eckloniana
Aizoaceae	Ruschia caroli	Ericaceae	Erica bicolor	Oxalidaceae	Oxalis eckloniana
Aizoaceae	Ruschia extensa	Ericaceae	Erica binaria	Oxalidaceae	Oxalis leptocalyx
Aizoaceae	Ruschia lineolata	Ericaceae	Erica borboniifolia	Oxalidaceae	Oxalis lindaviana
Aizoaceae	Ruschia multiflora	Ericaceae	Erica boucheri	Oxalidaceae	Oxalis livida
Aizoaceae	Ruschia orientalis	Ericaceae	Erica brevifolia	Oxalidaceae	Oxalis meisneri
Aizoaceae	Ruschia sp.	Ericaceae	Erica bruniades	Oxalidaceae	Oxalis obtusa
Aizoaceae	Ruschia subpaniculata	Ericaceae	Erica caffra	Oxalidaceae	Oxalis pardalis
Aizoaceae	Scopelogena verruculata	Ericaceae	Erica caffra	Oxalidaceae	Oxalis pes-caprae
Aizoaceae	Stayneria neilii	Ericaceae	Erica caledonica	Oxalidaceae	Oxalis polyphylla
Aizoaceae	Tetragonia fruticosa	Ericaceae	Erica calycina	Oxalidaceae	Oxalis pseudohirta
Aizoaceae	Tetragonia nigrescens	Ericaceae	Erica calycina	Oxalidaceae	Oxalis sp.
Aizoaceae	Tetragonia robusta	Ericaceae	Erica calycina	Oxalidaceae	Oxalis zeyheri
Aizoaceae	Tetragonia saligna	Ericaceae	Erica calycina	Penaeaceae	Endonema lateriflora
Aizoaceae	Tetragonia sarcophylla	Ericaceae	Erica carduifolia	Penaeaceae	Endonema retzioides
Aizoaceae	Tetragonia spicata	Ericaceae	Erica cerinthoides	Peraceae	Clutia alaternoides
Aizoaceae	Tetragonia verrucosa	Ericaceae	Erica cerinthoides	Peraceae	Clutia laxa
Aizoaceae	Trichodiadema calvatum	Ericaceae	Erica cernua	Peraceae	Clutia marginata

Family	Species	Family	Species	Family	Species
Aizoaceae	Trichodiadema densum	Ericaceae	Erica coarctata	Peraceae	Clutia polifolia
Aizoaceae	Vlokia montana	Ericaceae	Erica coccinea	Peraceae	Clutia pubescens
Alliaceae	Tulbaghia capensis	Ericaceae	Erica colorans	Peraceae	Clutia rubricaulis
Amaranthaceae	Amaranthus muricatus	Ericaceae	Erica conspicua	Peraceae	Clutia sp.
Amaranthaceae	Amaranthus thunbergii	Ericaceae	Erica corifolia	Plantaginaceae	Plantago afra
Amaranthaceae	Atriplex lindleyi	Ericaceae	Erica cristata	Plumbaginaceae	Limonium longifolium
Amaranthaceae	Atriplex semibaccata	Ericaceae	Erica cristiflora	Plumbaginaceae	
Amaranthaceae	Atriplex vestita	Ericaceae	Erica cristiflora	Plumbaginaceae	Limonium purpuratum Limonium sp.
Amaranthaceae	Chenopodium album	Ericaceae	Erica curvifolia	Poaceae	Agrostis avenacea
Amaranthaceae	Chenopodium	Elicaceae	Erica carvijolia	roaceae	Andropogon
Amaranthaceae	mucronatum	Ericaceae	Erica cymosa	Poaceae	appendiculatus
, unaramenaceae	ac.c.aca	2.1000000	21104 07111004	· ouccuc	Anthoxanthum
Amaranthaceae	Chenopodium murale	Ericaceae	Erica daphniflora	Poaceae	dregeanum
Amaranthaceae	Manochlamys albicans	Ericaceae	Erica daphniflora	Poaceae	Anthoxanthum ecklonii
Amaranthaceae	Salsola adversariifolia	Ericaceae	Erica denticulata	Poaceae	Aristida junciformis
	Ţ				Brachypodium
Amaranthaceae	Salsola aphylla	Ericaceae	Erica denticulata	Poaceae	distachyon
Amaranthaceae	Salsola kali	Ericaceae	Erica distorta	Poaceae	Bromus pectinatus
Amaranthaceae	Salsola sp.	Ericaceae	Erica dodii	Poaceae	Capeochloa arundinacea
Amaranthaceae	Sarcocornia natalensis	Ericaceae	Erica embothriifolia	Poaceae	Capeochloa cincta
Amaranthaceae	Sarcocornia pillansii	Ericaceae	Erica embothriifolia	Poaceae	Cenchrus ciliaris
Amaranthaceae	Sarcocornia sp.	Ericaceae	Erica embothriifolia	Poaceae	Chloris truncata
					Cymbopogon
Amaryllidaceae	Boophone disticha	Ericaceae	Erica equisetifolia	Poaceae	marginatus
Amaryllidaceae	Brunsvigia orientalis	Ericaceae	Erica erasmia	Poaceae	Cynodon dactylon
Amaryllidaceae	Brunsvigia striata	Ericaceae	Erica eremioides	Poaceae	Cynodon incompletus
Amaryllidaceae	Crossyne guttata	Ericaceae	Erica eriocephala	Poaceae	Digitaria eriantha
Amaryllidaceae	Gethyllis spiralis	Ericaceae	Erica esteriana	Poaceae	Ehrharta calycina
Amaryllidaceae	Gethyllis transkarooica	Ericaceae	Erica exleeana	Poaceae	Ehrharta capensis
Amaryllidaceae	Gethyllis villosa	Ericaceae	Erica floccifera	Poaceae	Ehrharta delicatula
Amaryllidaceae	Haemanthus coccineus	Ericaceae	Erica glauca	Poaceae	Ehrharta erecta
Amaryllidaceae	Haemanthus sanguineus	Ericaceae	Erica globiceps	Poaceae	Ehrharta longiflora
Amaryllidaceae	Hessea breviflora	Ericaceae	Erica globiceps	Poaceae	Ehrharta ramosa
Amaryllidaceae	Hessea stellaris	Ericaceae	Erica glutinosa	Poaceae	Ehrharta rupestris
Amaryllidaceae	Nerine humilis	Ericaceae	Erica goatcheriana	Poaceae	Ehrharta rupestris
Amaryllidaceae	Nerine sarniensis	Ericaceae	Erica greyi	Poaceae	Ehrharta thunbergii
Amaryllidaceae	Nerine sp.	Ericaceae	Erica haemastoma	Poaceae	Ehrharta triandra
	Anacampseros				
Anacampserotaceae	telephiastrum	Ericaceae	Erica hispidula	Poaceae	Ehrharta villosa
Anacardiaceae	Schinus molle	Ericaceae	Erica hispiduloides	Poaceae	Eragrostis curvula
Anacardiaceae	Searsia burchellii	Ericaceae	Erica humifusa	Poaceae	Eragrostis obtusa
Anacardiaceae	Searsia dissecta	Ericaceae	Erica ignita	Poaceae	Eragrostis rotifer
Anacardiaceae	Searsia glauca	Ericaceae	Erica imbricata	Poaceae	Eustachys paspaloides
Anacardiaceae	Searsia laevigata	Ericaceae	Erica inaequalis	Poaceae	Festuca arundinacea
Anacardiaceae	Searsia lancea	Ericaceae	Erica inflata	Poaceae	Festuca scabra
Anacardiaceae	Searsia lucida	Ericaceae	Erica insolitanthera	Poaceae	Geochloa rufa
Anacardiaceae	Searsia pallens	Ericaceae	Erica intervallaris	Poaceae	Hemarthria altissima
Anacardiaceae	Searsia rehmanniana	Ericaceae	Erica involvens	Poaceae	Hordeum murinum
Anacardiaceae	Searsia rosmarinifolia	Ericaceae	Erica jonasiana	Poaceae	Hordeum murinum
Anacardiaceae	Searsia scytophylla	Ericaceae	Erica karooica	Poaceae	Hyparrhenia hirta
Anacardiaceae	Searsia tomentosa	Ericaceae	Erica labialis	Poaceae	Koeleria capensis
Anacardiaceae	Searsia undulata	Ericaceae	Erica lachnaeifolia	Poaceae	Lamarckia aurea
Andreaeaceae	Andreaea subulata	Ericaceae	Erica lateralis	Poaceae	Leptochloa fusca
Anemiaceae	Mohria caffrorum	Ericaceae	Erica lawsonii	Poaceae	Melinis repens
Apiaceae	Anginon difforme	Ericaceae	Erica leptopus	Poaceae	Parapholis incurva
Apiaceae	Anginon fruticosum	Ericaceae	Erica leucantha	Poaceae	Pentameris acinosa
Apiaceae	Anginon swellendamensis	Ericaceae	Erica leucanthera	Poaceae	Pentameris airoides
Apiaceae	Annesorhiza macrocarpa	Ericaceae	Erica leucodesmia	Poaceae	Pentameris aristidoides
-p					

Family	Species	Family	Species	Family	Species
Apiaceae	Annesorhiza triternata	Ericaceae	Erica longistyla	Poaceae	Pentameris colorata
Apiaceae	Centella dolichocarpa	Ericaceae	Erica longistyla	Poaceae	Pentameris curvifolia
Apiaceae	Centella glabrata	Ericaceae	Erica lucida	Poaceae	Pentameris densifolia
•	3				Pentameris
Apiaceae	Centella linifolia	Ericaceae	Erica lutea	Poaceae	distichophylla
Apiaceae	Centella macrocarpa	Ericaceae	Erica melanthera	Poaceae	Pentameris ellisii
Apiaceae	Centella restioides	Ericaceae	Erica mitchellensis	Poaceae	Pentameris eriostoma
					Pentameris
Apiaceae	Centella sp.	Ericaceae	Erica modesta	Poaceae	macrocalycina
					Pentameris
Apiaceae	Centella thesioides	Ericaceae	Erica monsoniana	Poaceae	malouinensis
Apiaceae	Chamarea sp.	Ericaceae	Erica multumbellifera	Poaceae	Pentameris obtusifolia
Apiaceae	Lichtensteinia obscura	Ericaceae	Erica nudiflora	Poaceae	Pentameris oreophila
Apiaceae	Lichtensteinia trifida	Ericaceae	Erica oakesiorum	Poaceae	Pentameris pallida
Apiaceae	Notobubon ferulaceum	Ericaceae	Erica obtusata	Poaceae	Pentameris patula
Apiaceae	Torilis arvensis	Ericaceae	Erica odorata	Poaceae	Pentameris pusilla
Apocynaceae	Astephanus triflorus	Ericaceae	Erica orculiflora	Poaceae	Pentameris pyrophila
Apocynaceae	Carissa bispinosa	Ericaceae	Erica ostiaria	Poaceae	Pentameris reflexa
Apocynaceae	Ceropegia fimbriata	Ericaceae	Erica ovina	Poaceae	Pentameris rigidissima
Apocynaceae	Duvalia elegans	Ericaceae	Erica ovina	Poaceae	Pentameris rosea
	Gomphocarpus				
Apocynaceae	cancellatus	Ericaceae	Erica paniculata	Poaceae	Pentameris veneta
Apocynaceae	Gomphocarpus fruticosus	Ericaceae	Erica pannosa	Poaceae	Pentaschistis sp.
Apocynaceae	Microloma sagittatum	Ericaceae	Erica parilis	Poaceae	Phalaris minor
Apocynaceae	Secamone alpini	Ericaceae	Erica perlata	Poaceae	Phragmites australis
Apocynaceae	Stapelia hirsuta	Ericaceae	Erica petricola	Poaceae	Poa bulbosa
					Polypogon
Apocynaceae	Stapelia hirsuta	Ericaceae	Erica petrophila	Poaceae	monspeliensis
Apocynaceae	Stapelia paniculata	Ericaceae	Erica peziza	Poaceae	Puccinellia angusta
Apocynaceae	Stapeliopsis breviloba	Ericaceae	Erica phacelanthera	Poaceae	Schismus barbatus
Apocynaceae	Tavaresia meintjesii	Ericaceae	Erica phillipsii	Poaceae	Setaria verticillata
Aquifoliaceae	Ilex mitis	Ericaceae	Erica pilosiflora	Poaceae	Stipagrostis obtusa
Araceae	Zantedeschia aethiopica	Ericaceae	Erica pinea	Poaceae	Stipagrostis zeyheri
Araliaceae	Cussonia paniculata	Ericaceae	Erica plukenetii	Poaceae	Tenaxia disticha
Archidiaceae	Archidium capense	Ericaceae	Erica plukenetii	Poaceae	Tenaxia stricta
Arnelliaceae	Gongylanthus renifolius	Ericaceae	Erica plukenetii	Poaceae	Themeda triandra
					Tribolium
Asparagaceae	Asparagus aethiopicus	Ericaceae	Erica plumosa	Poaceae	brachystachyum
Asparagaceae	Asparagus burchellii	Ericaceae	Erica polifolia	Poaceae	Tribolium curvum
Asparagaceae	Asparagus capensis	Ericaceae	Erica pumila	Poaceae	Tribolium echinatum
Asparagaceae	Asparagus confertus	Ericaceae	Erica quadrangularis	Poaceae	Tribolium hispidum
Asparagaceae	Asparagus declinatus	Ericaceae	Erica racemosa	Poaceae	Tribolium obtusifolium
Asparagaceae	Asparagus exuvialis	Ericaceae	Erica rigidula	Poaceae	Tribolium sp.
Asparagaceae	Asparagus kraussianus	Ericaceae	Erica rosacea	Poaceae	Vulpia bromoides
Asparagaceae	Asparagus mucronatus	Ericaceae	Erica rubens	Podocarpaceae	Afrocarpus falcatus
Asparagaceae	Asparagus retrofractus	Ericaceae	Erica rufescens	Podocarpaceae	Podocarpus elongatus
Asparagaceae	Asparagus sp.	Ericaceae	Erica savilea	Polygalaceae	Muraltia alopecuroides
Asparagaceae	Asparagus undulatus	Ericaceae	Erica selaginifolia	Polygalaceae	Muraltia concava
Asphodelaceae	Astroloba rubriflora	Ericaceae	Erica senilis	Polygalaceae	Muraltia dumosa
Asphodelaceae	Bulbine alooides	Ericaceae	Erica serrata	Polygalaceae	Muraltia ericaefolia
Asphodelaceae	Bulbine asphodeloides	Ericaceae	Erica sessiliflora	Polygalaceae	Muraltia gillettiae
Asphodelaceae	Bulbine cepacea	Ericaceae	Erica setacea	Polygalaceae	Muraltia heisteria
	•		Erica setacea Erica setociliata		Muraltia horrida
Asphodelaceae	Bulbine favosa	Ericaceae		Polygalaceae	
Asphodelaceae	Bulbine foleyi	Ericaceae	Erica setosa	Polygalaceae	Muraltia macrocarpa
Asphodelaceae	Bulbine frutescens	Ericaceae	Erica sicifolia	Polygalaceae	Muraltia muraltioides
Asphodelaceae	Bulbine lagopus	Ericaceae	Erica similis	Polygalaceae	Muraltia ononidifolia
Asphodelaceae	Bulbine mesembryanthoides	Fricaceae	Erica sonderiana	Polygalaceae	Muraltia rhamnoides
Aspilouelaceae	mesembiyuntholaes	Ericaceae	ETICU SUTUETIUTU	ruiygaidtede	warana mammolaes

Family	Species	Family	Species	Family	Species
	Bulbine		- просто		- poolio
Asphodelaceae	mesembryanthoides	Ericaceae	Erica sp.	Polygalaceae	Muraltia schlechteri
Asphodelaceae	Bulbine praemorsa	Ericaceae	Erica sphaerocephala	Polygalaceae	Muraltia sp.
Asphodelaceae	Bulbinella chartacea	Ericaceae	Erica spumosa	Polygalaceae	Muraltia spinosa
Asphodelaceae	Bulbinella nutans	Ericaceae	Erica steinbergiana	Polygalaceae	Muraltia trinervia
Asphodelaceae	Bulbinella nutans	Ericaceae	Erica strigosa	Polygalaceae	Polygala bracteolata
Asphodelaceae	Bulbinella trinervis	Ericaceae	Erica subulata	Polygalaceae	Polygala erioptera
Asphodelaceae	Bulbinella triquetra	Ericaceae	Erica taxifolia	Polygalaceae	Polygala fruticosa
Asphodelaceae	Gasteria carinata	Ericaceae	Erica tenuifolia	Polygalaceae	Polygala scabra
Asphodelaceae	Gasteria carinata	Ericaceae	Erica tenuis	Polygalaceae	Polygala umbellata
Asphodelaceae	Gasteria disticha	Ericaceae	Erica terniflora	Polygalaceae	Polygala wittebergensis
Asphodelaceae	Gasteria disticha	Ericaceae	Erica tomentosa	Polygonaceae	Oxygonum alatum Persicaria
Asphodelaceae	Gasteria pillansii	Ericaceae	Erica totta	Polygonaceae	madagascariensis
Asphodelaceae	Gasteria retusa	Ericaceae	Erica transparens	Polygonaceae	Rumex cordatus
Asphodelaceae	Gasteria sp.	Ericaceae	Erica trichadenia	Polygonaceae	Rumex sagittatus
Asphodelaceae	Haworthia arachnoidea	Ericaceae	Erica tumida	Polytrichaceae	Polytrichum commune
Asphodelaceae	Haworthia arachnoidea	Ericaceae	Erica urceolata	Polytrichaceae	Polytrichum juniperinum
Asphodelaceae	Haworthia cooperi	Ericaceae	Erica vallis-gratiae	Polytrichaceae	Polytrichum piliferum
Asphodelaceae	Haworthia herbacea	Ericaceae	Erica vanheurckii	Potamogetonaceae	Potamogeton pectinatus
Asphodelaceae	Haworthia herbacea	Ericaceae	Erica verecunda	Pottiaceae	Acaulon recurvatum Didymodon
Asphodelaceae	Haworthia maculata	Ericaceae	Erica versicolor	Pottiaceae	xanthocarpus Pseudocrossidium
Asphodelaceae	Haworthia maculata	Ericaceae	Erica vestita	Pottiaceae	crinitum
Asphodelaceae	Haworthia mirabilis	Ericaceae	Erica villosa	Pottiaceae	Syntrichia antarctica
Asphodelaceae	Haworthia mirabilis	Ericaceae	Erica viscaria	Pottiaceae	Syntrichia ruralis
Asphodelaceae	Haworthia mirabilis	Ericaceae	Erica viscidiflora	Pottiaceae	Tortella xanthocarpa
Asphodelaceae	Haworthia mirabilis	Ericaceae	Erica walkeria	Pottiaceae	Tortula atrovirens
Asphodelaceae	Haworthia mirabilis	Euphorbiaceae	Euphorbia burmannii	Proteaceae	Aulax cancellata
Asphodelaceae	Haworthia reticulata	Euphorbiaceae	Euphorbia clandestina	Proteaceae	Aulax pallasia
Asphodelaceae	Haworthia reticulata	Euphorbiaceae	Euphorbia inaequilatera	Proteaceae	Aulax umbellata
Asphodelaceae	Haworthia reticulata	Euphorbiaceae	Euphorbia mauritanica	Proteaceae	Leucadendron arcuatum
Asphodelaceae	Haworthia reticulata	Euphorbiaceae	Euphorbia nesemannii	Proteaceae	Leucadendron barkerae Leucadendron
Asphodelaceae	Haworthia sp.	Euphorbiaceae	Euphorbia serpens	Proteaceae	brunioides Leucadendron
Asphodelaceae	Kniphofia uvaria	Euphorbiaceae	Ricinus communis	Proteaceae	brunioides
Asphodelaceae	Trachyandra falcata	Fabaceae	Acacia cultriformis	Proteaceae	Leucadendron burchellii
Asphodelaceae	Trachyandra filiformis	Fabaceae	Acacia saligna	Proteaceae	Leucadendron comosum
Asphodelaceae	Trachyandra flexifolia	Fabaceae	Amphithalea ciliaris	Proteaceae	Leucadendron comosum
Asphodelaceae	Trachyandra hirsutiflora	Fabaceae	Amphithalea ericifolia	Proteaceae	Leucadendron cordatum Leucadendron
Asphodelaceae	Trachyandra montana	Fabaceae	Amphithalea monticola	Proteaceae	eucalyptifolium
Asphodelaceae	Trachyandra revoluta	Fabaceae	Amphithalea ornata	Proteaceae	Leucadendron galpinii Leucadendron
Asphodelaceae	Tulista pumila	Fabaceae	Amphithalea pageae	Proteaceae	glaberrimum
Aspleniaceae	Asplenium cordatum	Fabaceae	Argyrolobium collinum Aspalathus	Proteaceae	Leucadendron globosum Leucadendron
Aspleniaceae	Asplenium trichomanes	Fabaceae	acanthoclada	Proteaceae	laureolum Leucadendron
Asteraceae	Amellus strigosus	Fabaceae	Aspalathus acuminata	Proteaceae	microcephalum
Asteraceae	Amphiglossa tomentosa	Fabaceae	Aspalathus angustifolia	Proteaceae	Leucadendron nervosum Leucadendron
Asteraceae	Anaxeton asperum	Fabaceae	Aspalathus araneosa	Proteaceae	pubescens
Asteraceae	Anaxeton brevipes	Fabaceae	Aspalathus astroites	Proteaceae	Leucadendron rubrum Leucadendron
Asteraceae	Anaxeton hirsutum	Fabaceae	Aspalathus biflora	Proteaceae	salicifolium
Asteraceae	Arctotheca calendula	Fabaceae	Aspalathus bodkinii	Proteaceae	Leucadendron salignum

Family	Species	Family	Species	Family	Species
		5.1		D .	Leucadendron
Asteraceae	Arctotis acuminata	Fabaceae	Aspalathus bracteata	Proteaceae	spissifolium
Actoração	Arctatic arctataidas	Fabaceae	Aspalathus candicans	Drotoscoso	Leucadendron spissifolium
Asteraceae	Arctotis arctotoides	ravaceae	Aspaiathus turiaitaris	Proteaceae	Leucadendron
Asteraceae	Arctotis dregei	Fabaceae	Aspalathus cephalotes	Proteaceae	teretifolium
			.,,		Leucadendron
Asteraceae	Arctotis revoluta	Fabaceae	Aspalathus chrysantha	Proteaceae	thymifolium
					Leucospermum
Asteraceae	Arctotis sp.	Fabaceae	Aspalathus ciliaris	Proteaceae	calligerum
•		- 1	A 1 11 1:00 1:11	5 .	Leucospermum
Asteraceae	Arctotis sulcocarpa	Fabaceae	Aspalathus cliffortioides	Proteaceae	cuneiforme
Asteraceae	Athanasia crithmifolia	Fabaceae	Aspalathus cordata	Proteaceae	Leucospermum formosum
Asteraceae	Activities a critiliting of the	Tabaccac	Aspaiatilus cordata	Trotcaccac	Leucospermum
Asteraceae	Athanasia humilis	Fabaceae	Aspalathus corrudifolia	Proteaceae	harpagonatum
			,		Leucospermum
Asteraceae	Athanasia pachycephala	Fabaceae	Aspalathus crenata	Proteaceae	oleifolium
	Athanasia				Leucospermum
Asteraceae	quinquedentata	Fabaceae	Aspalathus cymbiformis	Proteaceae	royenifolium
A -t	Ath and a six tails and at	F-1	A +	Doctor	Leucospermum
Asteraceae	Athanasia trifurcata	Fabaceae	Aspalathus dianthopora	Proteaceae	utriculosum
Asteraceae	Berkheya angusta	Fabaceae	Aspalathus divaricata	Proteaceae	Leucospermum wittebergense
Asteraceae	Berkheya armata	Fabaceae	Aspalathus excelsa	Proteaceae	Mimetes argenteus
Asteraceae	Berkheya coriacea	Fabaceae	Aspalathus florulenta	Proteaceae	Mimetes cucullatus
Asteraceae	Berkheya heterophylla	Fabaceae	Aspalathus fusca	Proteaceae	Paranomus candicans
Asteraceae	Berkheya heterophylla	Fabaceae	Aspalathus grandiflora	Proteaceae	Paranomus capitatus
Asteraceae	Berkheya onobromoides	Fabaceae	Aspalathus hirta	Proteaceae	Paranomus dispersus
Asteraceae	Berkheya rigida	Fabaceae	Aspalathus hispida	Proteaceae	Paranomus sp.
Asteraceae	Chrysocoma acicularis	Fabaceae	Aspalathus incurva	Proteaceae	Protea acaulos
Asteraceae	Chrysocoma ciliata	Fabaceae	Aspalathus juniperina	Proteaceae	Protea amplexicaulis
	•		Aspalathus		•
Asteraceae	Chrysocoma longifolia	Fabaceae	keeromsbergensis	Proteaceae	Protea aurea
Asteraceae	Chrysocoma valida	Fabaceae	Aspalathus lactea	Proteaceae	Protea aurea
Asteraceae	Cineraria lobata	Fabaceae	Aspalathus lactea	Proteaceae	Protea burchellii
Asteraceae	Cineraria lobata	Fabaceae	Aspalathus laricifolia	Proteaceae	Protea caespitosa
Asteraceae	Cineraria platycarpa	Fabaceae	Aspalathus laricifolia	Proteaceae	Protea canaliculata
Asteraceae	Cineraria sp.	Fabaceae	Aspalathus longipes	Proteaceae	Protea coronata
Asteraceae	Conyza scabrida	Fabaceae	Aspalathus macrocarpa	Proteaceae	Protea cryophila
Asteraceae	Corymbium africanum	Fabaceae	Aspalathus microphylla	Proteaceae	Protea cynaroides
Asteraceae	Corymbium africanum	Fabaceae	Aspalathus nigra	Proteaceae	Protea effusa
Asteraceae	Corymbium cymosum	Fabaceae	Aspalathus pachyloba	Proteaceae	Protea eximia
Asteraceae	Corymbium sp.	Fabaceae	Aspalathus pachyloba	Proteaceae	Protea humiflora
Asteraceae	Corymbium villosum	Fabaceae	Aspalathus pachyloba	Proteaceae	Protea lacticolor
Asteraceae	Cotula australis	Fabaceae	Aspalathus pachyloba	Proteaceae	Protea laevis
Asteraceae	Cotula coronopifolia	Fabaceae	Aspalathus parviflora	Proteaceae	Protea laurifolia
Asteraceae	Crassothonna cacalioides	Fabaceae	Aspalathus pinguis	Proteaceae	Protea longifolia
Asteraceae	Crassothonna cylindrica	Fabaceae	Aspalathus quinquefolia	Proteaceae	Protea Iorifolia
Asteraceae	Crassothonna protecta	Fabaceae	Aspalathus radiata	Proteaceae	Protea magnifica
Asteraceae	Cullumia patula	Fabaceae	Aspalathus recurva	Proteaceae	Protea neriifolia
Asteraceae	Cullumia patula	Fabaceae	Aspalathus rugosa	Proteaceae	Protea nitida
Asteraceae	Cullumia sulcata	Fabaceae	Aspalathus sp.	Proteaceae	Protea punctata
Asteraceae	Cullumia sulcata	Fabaceae	Aspalathus spectabilis	Proteaceae	Protea repens
Asteraceae	Curio crassulifolius	Fabaceae	Aspalathus spicata	Proteaceae	Protea restionifolia
Asteraceae	Curio talinoides	Fabaceae	Aspalathus spinescens	Proteaceae	Protea scabra
Asteraceae	Cymbopappus adenosolen	Fabaceae	Aspalathus spinosa	Proteaceae	Protea scolopendriifolia
Asteraceae	Dicerothamnus adpressus	Fabaceae	Aspalathus spinosa	Proteaceae	Protea speciosa

- "		- "		- "	
Family	Species	Family	Species	Family	Species
A -t	Dicerothamnus	F-1	A +	Ductor	Onetan and alifalia
Asteraceae	rhinocerotis	Fabaceae	Aspalathus spinosa	Proteaceae	Protea subulifolia
Asteraceae	Dicoma fruticosa	Fabaceae	Aspalathus spinosissima	Proteaceae	Protea sulphurea
Astonopoo	Dimorphotheca	Fabraca a	As a slathus stan a phulla	Duatasasas	Drotos witzenbergiene
Asteraceae	chrysanthemifolia	Fabaceae	Aspalathus stenophylla	Proteaceae	Protea witzenbergiana
Asteraceae	Dimorphotheca montana	Fabaceae	Aspalathus steudeliana	Proteaceae	Serruria acrocarpa
Asteraceae	Dimorphotheca nudicaulis	Fabaceae	Aspalathus stokoei	Proteaceae	Serruria aemula
Asteraceae	Dimorphotheca tragus	Fabaceae	Aspalathus submissa	Proteaceae	Serruria dodii
Asteraceae	Dimorphotheca zeyheri	Fabaceae	Aspalathus tridentata	Proteaceae	Serruria elongata
Asteraceae	Disparago ericoides	Fabaceae	Aspalathus triquetra	Proteaceae	Serruria fasciflora
Asteraceae	Dolichothrix ericoides	Fabaceae	Aspalathus tuberculata	Proteaceae	Serruria gremialis
Asteraceae	Edmondia fasciculata	Fabaceae	Aspalathus wurmbeana	Proteaceae	Serruria incrassata
Asteraceae	Edmondia pinifolia	Fabaceae	Calobota cytisoides	Proteaceae	Serruria phylicoides
Asteraceae	Edmondia sesamoides	Fabaceae	Crotalaria excisa	Proteaceae	Serruria sp.
Asteraceae	Erigeron canadensis	Fabaceae	Crotalaria excisa	Proteaceae	Serruria stellata
Asteraceae	Eriocephalus africanus	Fabaceae	Cyamopsis sp.	Proteaceae	Serruria viridifolia
Asteraceae	Eriocephalus ericoides	Fabaceae	Cyclopia genistoides	Proteaceae	Serruria williamsii
Asteraceae	Euryops abrotanifolius	Fabaceae	Cyclopia meyeriana	Proteaceae	Sorocephalus lanatus
Asteraceae	Euryops longipes	Fabaceae	Desmodium repandum	Proteaceae	Spatalla argentea
	_		Hypocalyptus		
Asteraceae	Euryops montanus	Fabaceae	coluteoides	Proteaceae	Spatalla confusa
A -t	Francisco ethernosides	F-1	Hypocalyptus	Ducks	C
Asteraceae	Euryops othonnoides	Fabaceae	sophoroides	Proteaceae	Spatalla curvifolia
Asteraceae	Euryops rehmannii	Fabaceae	Indigofera amoena	Proteaceae	Spatalla incurva
Asteraceae	Euryops sp.	Fabaceae	Indigofera candicans	Proteaceae	Spatalla parilis
Asteraceae	Euryops tenuissimus	Fabaceae	Indigofera depressa	Proteaceae	Spatalla sp.
Asteraceae	Felicia amoena	Fabaceae	Indigofera heterophylla	Proteaceae	Vexatorella obtusata
Asteraceae	Felicia bellidioides	Fabaceae	Indigofera incana	Pteridaceae	Cheilanthes capensis
Asteraceae	Felicia bellidioides	Fabaceae	Indigofera jucunda	Pteridaceae	Cheilanthes contracta
Asteraceae	Felicia cymbalarioides	Fabaceae	Indigofera ovata	Pteridaceae	Cheilanthes hastata
Asteraceae	Felicia denticulata	Fabaceae	Indigofera sp.	Pteridaceae	Cheilanthes induta
Asteraceae	Felicia fascicularis	Fabaceae	Indigofera verrucosa	Pteridaceae	Cheilanthes parviloba
Astonopoo	Foliaia filifalia	Fabraca a	Labadia navsiflara	Dturch and ituic acco	Ptychomitrium
Asteraceae	Felicia filifolia	Fabaceae Fabaceae	Lebeckia pauciflora	Ptychomitriaceae Ranunculaceae	crispatum Anemone knowltonia
Asteraceae	Felicia minima		Lebeckia sepiaria		
Asteraceae	Felicia sp.	Fabaceae	Lessertia frutescens	Ranunculaceae	Clematis brachiata
Asteraceae	Felicia venusta	Fabaceae	Lessertia pauciflora	Restionaceae	Anthochortus crinalis
Asteraceae	Gazania krebsiana	Fabaceae	Lessertia rigida	Restionaceae	Anthochortus ecklonii
Asteraceae	Gerbera crocea	Fabaceae	Liparia capitata	Restionaceae	Askidiosperma paniculatum
Asteraceae	Gnaphalium confine	Fabaceae	Liparia umbellifera	Restionaceae	Cannomois aristata
Asteraceae	Gorteria diffusa	Fabaceae	Lotononis caerulescens	Restionaceae	Cannomois nitida
Asteraceae	Gorteria integrifolia	Fabaceae	Lotononis involucrata	Restionaceae	Cannomois parviflora
Asteraceae	Helichrysum acrophilum	Fabaceae	Lotononis prostrata	Restionaceae	Cannomois robusta
	Helichrysum asperum	Fabaceae	•		
Asteraceae	, ,	Fabaceae	Lotononis rigida Lotononis sp.	Restionaceae Restionaceae	Cannomois scirpoides
Asteraceae	Helichrysum asperum		•		Cannomois sp.
Asteraceae	Helichrysum asperum	Fabaceae	Melolobium exudans Melolobium	Restionaceae	Cannomois spicata
Asteraceae	Helichrysum asperum	Fabaceae	lampolobum	Restionaceae	Cannomois virgata
Asteraceae	Helichrysum cymosum	Fabaceae	Melolobium sp.	Restionaceae	Elegia aggregata
Asteraceae	Helichrysum excisum	Fabaceae	Otholobium candicans	Restionaceae	Elegia ebracteata
Asteraceae	Helichrysum felinum	Fabaceae	Otholobium mundianum	Restionaceae	Elegia esterhuyseniae
Asteraceae	Helichrysum foetidum	Fabaceae	Otholobium nitens	Restionaceae	Elegia fucata
Asteraceae	Helichrysum hamulosum	Fabaceae	Otholobium spicatum	Restionaceae	Elegia galpinii
Asteraceae	Helichrysum hebelepis	Fabaceae	Otholobium striatum	Restionaceae	
	· · · · · · · · · · · · · · · · · · ·				Elegia grandis
Asteraceae	Helichrysum lancifolium Helichrysum leontonyx	Fabaceae Fabaceae	Otholobium virgatum Podalyria biflora	Restionaceae Restionaceae	Elegia hookeriana Elegia juncea
Asteraceae Asteraceae	Helichrysum litorale	Fabaceae Fabaceae	Podalyria bijiora Podalyria burchellii	Restionaceae	Elegia juncea Elegia marlothii
ASICIALEAE	riencin ysum illurule	i abaceae	i Gaaryna barchellii	Restionaceae	Licgia manotini

Family	Species	Family	Species	Family	Species
Asteraceae	Helichrysum marifolium	Fabaceae	Podalyria calyptrata	Restionaceae	Elegia neesii
	Helichrysum				
Asteraceae	moeserianum Helichrysum	Fabaceae	Podalyria leipoldtii	Restionaceae	Elegia persistens
Asteraceae	odoratissimum Helichrysum	Fabaceae	Podalyria myrtillifolia	Restionaceae	Elegia racemosa
Asteraceae	odoratissimum	Fabaceae	Podalyria rotundifolia	Restionaceae	Elegia spathacea
Asteraceae	Helichrysum patulum	Fabaceae	Podalyria variabilis	Restionaceae	Elegia stokoei
Asteraceae	Helichrysum pulchellum	Fabaceae	Psoralea oligophylla	Restionaceae	Hydrophilus rattrayi Hypodiscus albo-
Asteraceae	Helichrysum revolutum	Fabaceae	Psoralea oreophila	Restionaceae	aristatus
Asteraceae	Helichrysum rosum	Fabaceae	Psoralea restioides	Restionaceae	Hypodiscus aristatus
Asteraceae	Helichrysum rotundatum Helichrysum	Fabaceae	Psoralea sp.	Restionaceae	Hypodiscus laevigatus
Asteraceae	rotundifolium	Fabaceae	Psoralea usitata	Restionaceae	Hypodiscus striatus
Asteraceae	Helichrysum rutilans	Fabaceae	Psoralea verrucosa	Restionaceae	Platycaulos major
Asteraceae	Helichrysum sp. Helichrysum	Fabaceae	Rafnia acuminata	Restionaceae	Restio bifurcus
Asteraceae	sphaeroideum	Fabaceae	Rafnia amplexicaulis	Restionaceae	Restio bolusii
Asteraceae	Helichrysum spiralepis	Fabaceae	Rafnia capensis	Restionaceae	Restio brachiatus
Asteraceae	Helichrysum stellatum	Fabaceae	Rafnia capensis	Restionaceae	Restio capensis
Asteraceae	Helichrysum stoloniferum	Fabaceae	Rafnia capensis	Restionaceae	Restio curviramis
Asteraceae	Helichrysum tinctum Helichrysum	Fabaceae	Rafnia elliptica	Restionaceae	Restio debilis
Asteraceae	zwartbergense	Fabaceae	Rafnia rostrata	Restionaceae	Restio distractus
Asteraceae	Heterolepis aliena	Fabaceae	Rhynchosia adenodes	Restionaceae	Restio distylis
Asteraceae	Heterolepis peduncularis	Fabaceae	Rhynchosia capensis	Restionaceae	Restio filiformis
Asteraceae	Hippia pilosa	Fabaceae	Sesbania punicea	Restionaceae	Restio gaudichaudianus
Asteraceae	Hippia sp.	Fabaceae	Trifolium repens	Restionaceae	Restio laniger
Asteraceae	Hymenolepis dentata	Fabaceae	Vachellia karroo	Restionaceae	Restio nanus
Asteraceae	Hymenolepis gnidioides	Fabaceae	Wiborgia fusca	Restionaceae	Restio ocreatus
Asteraceae	Hymenolepis incisa	Fabaceae	Wiborgia mucronata	Restionaceae	Restio paniculatus
Asteraceae	Hypochaeris glabra	Fabaceae	Wiborgia obcordata	Restionaceae	Restio patens
Asteraceae	Ifloga anomala Lachnospermum	Fabaceae	Wiborgia sericea	Restionaceae	Restio pumilis
Asteraceae	fasciculatum Lachnospermum	Fabaceae	Wiborgia tenuifolia	Restionaceae	Restio pygmaeus
Asteraceae	neglectum	Fabaceae	Wiborgiella bowieana	Restionaceae	Restio quadratus
Asteraceae	Lactuca inermis	Fabaceae	Wiborgiella sp.	Restionaceae	Restio rigidus
Asteraceae	Lasiopogon brachypterus Lasiospermum	Fabroniaceae	Ischyrodon lepturus	Restionaceae	Restio rudolfii
Asteraceae	bipinnatum Lasiospermum	Fissidentaceae	Fissidens megalotis	Restionaceae	Restio scaberulus
Asteraceae	pedunculare	Fissidentaceae	Fissidens palmifolius	Restionaceae	Restio sejunctus
Asteraceae	Leysera gnaphalodes	Fissidentaceae	Fissidens pygmaeus	Restionaceae	Restio sieberi
Asteraceae	Lidbeckia pinnata	Fissidentaceae	Fissidens rufescens	Restionaceae	Restio sp.
Asteraceae	Macledium spinosum	Fumariaceae	Cysticapnos vesicaria	Restionaceae	Restio stereocaulis
Asteraceae	Mairia crenata	Funariaceae	Funaria hygrometrica	Restionaceae	Restio stokoei
Asteraceae	Metalasia acuta	Gentianaceae	Chironia baccifera	Restionaceae	Restio strictus
Asteraceae	Metalasia adunca	Gentianaceae	Chironia jasminoides	Restionaceae	Restio strobolifer
Asteraceae	Metalasia brevifolia	Gentianaceae	Chironia linoides	Restionaceae	Restio triticeus
Asteraceae	Metalasia densa	Gentianaceae	Orphium frutescens	Restionaceae	Restio unispicatus
Asteraceae	Metalasia fastigiata	Gentianaceae	Sebaea exacoides Pelargonium	Restionaceae	Restio venustulus
Asteraceae	Metalasia massonii	Geraniaceae	abrotanifolium	Restionaceae	Restio virgeus
Asteraceae	Metalasia montana	Geraniaceae	Pelargonium alternans	Restionaceae	Staberoha aemula
Asteraceae	Metalasia phillipsii	Geraniaceae	Pelargonium alternans	Restionaceae	Staberoha cernua
Asteraceae	Metalasia pulcherrima	Geraniaceae	Pelargonium auritum	Restionaceae	Staberoha vaginata

Family	Species	Family	Species	Family	Species
- uning	Species	· uning	Pelargonium	· uniny	Species
Asteraceae	Metalasia tenuis	Geraniaceae	burgerianum	Restionaceae	Thamnochortus cinereus
Asteraceae	Myrovernix longifolius	Geraniaceae	Pelargonium conradieae	Restionaceae	Thamnochortus lucens
Asteraceae	Myrovernix scaber	Geraniaceae	Pelargonium crispum	Restionaceae	Thamnochortus obtusus
Asteraceae	Oedera genistifolia	Geraniaceae	Pelargonium divisifolium	Restionaceae	Thamnochortus sp.
Asteraceae	Oedera imbricata	Geraniaceae	Pelargonium elegans	Restionaceae	Thamnochortus stokoei
Asteraceae	Oedera relhanioides	Geraniaceae	Pelargonium elongatum	Restionaceae	Willdenowia bolusii
Asteraceae	Oedera sp.	Geraniaceae	Pelargonium glutinosum Pelargonium	Restionaceae	Willdenowia glomerata
Asteraceae	Oedera squarrosa	Geraniaceae	grossularioides Pelargonium	Restionaceae	Willdenowia incurvata Rhacocarpus
Asteraceae	Oldenburgia papionum	Geraniaceae	hermanniifolium	Rhacocarpaceae	purpurascens
Asteraceae	Oncosiphon piluliferus Osteospermum	Geraniaceae	Pelargonium hirtum	Rhamnaceae	Noltea africana
Asteraceae	calendulaceum	Geraniaceae	Pelargonium hispidum	Rhamnaceae	Phylica aemula
Asteraceae	Osteospermum junceum Osteospermum	Geraniaceae	Pelargonium incarnatum	Rhamnaceae	Phylica axillaris
Asteraceae	monstrosum Osteospermum	Geraniaceae	Pelargonium iocastum	Rhamnaceae	Phylica callosa
Asteraceae	oppositifolium Osteospermum	Geraniaceae	Pelargonium karooicum	Rhamnaceae	Phylica constricta
Asteraceae	polygaloides	Geraniaceae	Pelargonium laevigatum Pelargonium	Rhamnaceae	Phylica excelsa
Asteraceae	Osteospermum rigidum	Geraniaceae	lanceolatum	Rhamnaceae	Phylica insignis
Asteraceae	Osteospermum scariosum	Geraniaceae	Pelargonium lobatum	Rhamnaceae	Phylica litoralis
Asteraceae	Osteospermum sp.	Geraniaceae	Pelargonium longifolium	Rhamnaceae	Phylica lucens
Asteraceae	Osteospermum spinosum	Geraniaceae	Pelargonium luteolum Pelargonium	Rhamnaceae	Phylica nigrita
Asteraceae	Othonna arborescens	Geraniaceae	myrrhifolium	Rhamnaceae	Phylica oleifolia
Asteraceae	Othonna auriculifolia	Geraniaceae	Pelargonium ocellatum	Rhamnaceae	Phylica parviflora
Asteraceae	Othonna bulbosa	Geraniaceae	Pelargonium ovale Pelargonium	Rhamnaceae	Phylica plumosa
Asteraceae	Othonna chromochaeta	Geraniaceae	papilionaceum	Rhamnaceae	Phylica rogersii
Asteraceae	Othonna gymnodiscus	Geraniaceae	Pelargonium patulum	Rhamnaceae	Phylica selaginoides
Asteraceae	Othonna lobata	Geraniaceae	Pelargonium peltatum	Rhamnaceae	Phylica sp.
Asteraceae	Othonna parviflora	Geraniaceae	Pelargonium proliferum Pelargonium	Rhamnaceae	Phylica spicata
Asteraceae	Othonna quinquedentata	Geraniaceae	pseudofumarioides	Rhamnaceae	Phylica stenantha
Asteraceae	Othonna ramulosa	Geraniaceae	Pelargonium radiatum	Rhamnaceae	Phylica vulgaris
Asteraceae	Othonna sp.	Geraniaceae	Pelargonium scabrum	Rhamnaceae	Phylica vulgaris
Asteraceae	Pentzia incana	Geraniaceae	Pelargonium senecioides	Rhamnaceae	Trichocephalus stipularis
Asteraceae	Phaenocoma prolifera	Geraniaceae	Pelargonium setulosum	Ricciaceae	Riccia albornata
Asteraceae	Phymaspermum trifidum	Geraniaceae	Pelargonium sp. Pelargonium 	Ricciaceae	Riccia concava
Asteraceae	Plecostachys polifolia	Geraniaceae	tetragonum Pelargonium	Ricciaceae	Riccia limbata
Asteraceae	Polyarrhena imbricata	Geraniaceae	trifoliolatum	Ricciaceae	Riccia purpurascens
Asteraceae	Printzia aromatica	Geraniaceae	Pelargonium triste	Ricciaceae	Riccia sorocarpa
Asteraceae	Printzia polifolia Pseudognaphalium	Geraniaceae	Pelargonium undulatum	Roridulaceae	Roridula dentata
Asteraceae	luteoalbum	Geraniaceae	Pelargonium violiflorum	Rosaceae	Cliffortia atrata
Asteraceae	Pteronia camphorata	Gleicheniaceae	Gleichenia polypodioides	Rosaceae	Cliffortia burchellii
Asteraceae	Pteronia camphorata	Grimmiaceae	Grimmia laevigata	Rosaceae	Cliffortia crenata
Asteraceae	Pteronia camphorata	Grimmiaceae	Grimmia pulvinata Racomitrium	Rosaceae	Cliffortia cruciata
Asteraceae	Pteronia fasciculata	Grimmiaceae	lanuginosum	Rosaceae	Cliffortia dregeana
Asteraceae	Pteronia fastigiata	Grubbiaceae	Grubbia rosmarinifolia	Rosaceae	Cliffortia dregeana
Asteraceae	Pteronia flexicaulis	Grubbiaceae	Grubbia rourkei	Rosaceae	Cliffortia erectisepala
Asteraceae	Pteronia hirsuta	Haemodoraceae	Dilatris corymbosa	Rosaceae	Cliffortia exilifolia
Asteraceae	Pteronia incana	Haemodoraceae	Dilatris ixioides	Rosaceae	Cliffortia integerrima

Family	Consider	Family	Charies	Family	Consine
Family	Species Pteronia oblanceolata	Family	Species Dilatric viscosa	Family Rosaceae	Species Cliffortia obovata
Asteraceae		Haemodoraceae	Dilatris viscosa		**
Asteraceae	Pteronia pallens	Haemodoraceae	Wachendorfia multiflora	Rosaceae	Cliffortia odorata
Asteraceae	Pteronia paniculata	Hemerocallidaceae	Caesia contorta	Rosaceae	Cliffortia pungens
Asteraceae	Pteronia sp.	Hyacinthaceae	Albuca acuminata	Rosaceae	Cliffortia repens
Asteraceae	Pulicaria scabra	Hyacinthaceae	Albuca canadensis	Rosaceae	Cliffortia ruscifolia
Asteraceae	Rhynchopsidium pumilum Rhynchopsidium	Hyacinthaceae	Albuca goswinii	Rosaceae	Cliffortia sericea
Asteraceae	sessiliflorum	Hyacinthaceae	Albuca sp.	Rosaceae	Cliffortia theodori-friesii
Asteraceae	Senecio abbreviatus	Hyacinthaceae	Albuca virens	Rosaceae	Cliffortia tricuspidata
Asteraceae	Senecio agapetes	Hyacinthaceae	Albuca viscosa	Rosaceae	Cliffortia tuberculata
Asteraceae	Senecio aloides	Hyacinthaceae	Drimia exuviata	Rosaceae	Cliffortia varians Anthospermum
Asteraceae	Senecio bipinnatus	Hyacinthaceae	Drimia intricata	Rubiaceae	aethiopicum Anthospermum
Asteraceae	Senecio coleophyllus	Hyacinthaceae	Drimia karooica	Rubiaceae	galioides
Asteraceae	Senecio erosus	Hyacinthaceae	Drimia media	Rubiaceae	Anthospermum sp.
					Anthospermum
Asteraceae	Senecio erysimoides	Hyacinthaceae	Eucomis regia	Rubiaceae	spathulatum Anthospermum
Asteraceae	Senecio glutinarius	Hyacinthaceae	Lachenalia campanulata	Rubiaceae	spathulatum
Asteraceae	Senecio hastatus	Hyacinthaceae	Lachenalia contaminata	Rubiaceae	Carpacoce vaginellata
Asteraceae	Senecio lanceus	Hyacinthaceae	Lachenalia juncifolia	Rubiaceae	Galium capense
Asteraceae	Senecio lineatus	Hyacinthaceae	Lachenalia perryae	Rubiaceae	Galium spurium
Asteraceae	Senecio littoreus	Hyacinthaceae	Lachenalia physocaulos	Rubiaceae	Galium tomentosum
Asteraceae	Senecio paarlensis	Hyacinthaceae	Lachenalia pusilla	Rubiaceae	Nenax sp.
					Eriospermum
Asteraceae	Senecio paniculatus	Hyacinthaceae	Lachenalia sp.	Ruscaceae	bowieanum Eriospermum
Asteraceae	Senecio pinifolius	Hyacinthaceae	Lachenalia stayneri	Ruscaceae	breviscapum
Asteraceae	Senecio purpureus	Hyacinthaceae	Massonia depressa	Ruscaceae	Eriospermum capense
Asteraceae	Senecio rigidus	Hyacinthaceae	Massonia echinata	Ruscaceae	Eriospermum cernuum
Asteraceae	Senecio rosmarinifolius	Hyacinthaceae	Ornithogalum capillare	Ruscaceae	Eriospermum dielsianum Eriospermum
Asteraceae	Senecio sarcoides	Hyacinthaceae	Ornithogalum dubium	Ruscaceae	paradoxum
Asteraceae	Senecio sophioides	Hyacinthaceae	Ornithogalum hispidum Ornithogalum	Ruscaceae	Eriospermum proliferum
Asteraceae	Senecio sp.	Hyacinthaceae	neopatersonia	Ruscaceae	Eriospermum sp. Eriospermum
Asteraceae	Senecio striatifolius	Hyacinthaceae	Ornithogalum niveum	Ruscaceae	vermiforme
Asteraceae	Seriphium plumosum	, Hyacinthaceae	Ornithogalum pilosum	Ruscaceae	Eriospermum zeyheri
Asteraceae	Seriphium spirale	Hyacinthaceae	Ornithogalum sp.	Rutaceae	Acmadenia sp.
Asteraceae	Stoebe aethiopica	Hyacinthaceae	Veltheimia capensis	Rutaceae	Adenandra uniflora
Asteraceae	Stoebe capitata	Hypoxidaceae	Empodium gloriosum	Rutaceae	Adenandra villosa
Asteraceae	Stoebe muricata	Hypoxidaceae	Empodium plicatum	Rutaceae	Agathosma alticola
Asteraceae	Stoebe prostrata	Hypoxidaceae	Pauridia aquatica	Rutaceae	Agathosma bifida
Asteraceae	Stoebe rugulosa	Hypoxidaceae	Pauridia capensis	Rutaceae	Agathosma capensis
Asteraceae	Syncarpha affinis	Hypoxidaceae	Pauridia flaccida	Rutaceae	Agathosma cerefolium
Asteraceae	Syncarpha canescens	Hypoxidaceae	Pauridia serrata	Rutaceae	Agathosma foetidissima
	Syncarpha flava	Iridaceae	Aristea bakeri	Rutaceae	Agathosma leptospermoides
Asteraceae					
Asteraceae	Syncarpha gnaphaloides	Iridaceae	Aristea cuspidata	Rutaceae	Agathosma microcarpa Agathosma
Asteraceae	Syncarpha paniculata	Iridaceae	Aristea juncifolia	Rutaceae	odoratissima
Asteraceae	Syncarpha staehelina	Iridaceae	Aristea racemosa	Rutaceae	Agathosma ovata
Asteraceae	Syncarpha variegata	Iridaceae	Aristea recisa	Rutaceae	Agathosma pulchella
Asteraceae	Syncarpha vestita Tarchonanthus	Iridaceae	Aristea spiralis	Rutaceae	Agathosma serpyllacea
Asteraceae	camphoratus	Iridaceae	Babiana fragrans	Rutaceae	Agathosma serratifolia
Asteraceae	Troglophyton capillaceum	Iridaceae	Babiana patula	Rutaceae	Agathosma sp.

Family	Charles	Family.	Species	Family	Charles
Family	Species	Family	Species	Family	Species
Asteraceae	Ursinia anethoides	Iridaceae	Babiana stricta	Rutaceae	Agathosma stipitata
Asteraceae	Ursinia anthemoides	Iridaceae	Bobartia filiformis	Rutaceae	Agathosma tabularis
Asteraceae	Ursinia cakilefolia	Iridaceae	Bobartia indica	Rutaceae	Agathosma trichocarpa
Asteraceae	Ursinia nana	Iridaceae	Bobartia orientalis	Rutaceae	Agathosma virgata
Asteraceae	Ursinia nudicaulis	Iridaceae	Chasmanthe bicolor	Rutaceae	Coleonema juniperinum
Asteraceae	Ursinia oreogena	Iridaceae	Ferraria variabilis	Rutaceae	Diosma apetala
Asteraceae	Ursinia paleacea	Iridaceae	Freesia caryophyllacea	Rutaceae	Diosma hirsuta
Asteraceae	Ursinia pilifera	Iridaceae	Freesia marginata	Rutaceae	Diosma parvula
Asteraceae	Ursinia punctata	Iridaceae	Freesia refracta	Rutaceae	Diosma passerinoides
Asteraceae	Xanthium strumarium	Iridaceae	Geissorhiza aspera	Rutaceae	Diosma pedicellata
Asteraceae	Zyrphelis lasiocarpa	Iridaceae	Geissorhiza bolusii	Rutaceae	Diosma pilosa
Asteraceae	Zyrphelis microcephala	Iridaceae	Geissorhiza brehmii	Rutaceae	Diosma ramosissima
Asteraceae	Zyrphelis nervosa	Iridaceae	Geissorhiza confusa	Rutaceae	Diosma recurva
Aytoniaceae	Asterella marginata	Iridaceae	Geissorhiza geminata	Rutaceae	Diosma rourkei
Aytoniaceae	Asterella sp.	Iridaceae	Geissorhiza heterostyla	Rutaceae	Diosma sp.
Balanophoraceae	Mystropetalon thomii	Iridaceae	Geissorhiza heterostyla	Rutaceae	Empleurum unicapsulare Euchaetis
Bartramiaceae	Anacolia breutelii	Iridaceae	Geissorhiza longifolia Geissorhiza	Rutaceae	esterhuyseniae
Bartramiaceae	Bartramia capensis	Iridaceae	ornithogaloides	Rutaceae	Euchaetis flexilis
Bartramiaceae	Breutelia substricta	Iridaceae	Geissorhiza ovata	Rutaceae	Euchaetis pungens
Bartramiaceae	Philonotis dregeana	Iridaceae	Geissorhiza pusilla	Rutaceae	Macrostylis sp.
Blechnaceae	Blechnum australe	Iridaceae	Geissorhiza scillaris	Salicaceae	Salix mucronata
Blechnaceae	Blechnum punctulatum	Iridaceae	Geissorhiza similis	Salicaceae	Salix mucronata
Boraginaceae	Echium plantagineum	Iridaceae	Gladiolus alatus	Santalaceae	Thesium brachygyne
Boraginaceae	Heliotropium supinum	Iridaceae	Gladiolus atropictus	Santalaceae	Thesium capitatum
Boraginaceae	Lobostemon echioides	Iridaceae	Gladiolus blommesteinii	Santalaceae	Thesium carinatum
Boraginaceae	Lobostemon gracilis	Iridaceae	Gladiolus brevitubus	Santalaceae	Thesium euphorbioides
Boraginaceae	Lobostemon laevigatus	Iridaceae	Gladiolus carinatus	Santalaceae	Thesium flexuosum
Boraginaceae	Lobostemon sp.	Iridaceae	Gladiolus carneus	Santalaceae	Thesium fragile
Boraginaceae	Lobostemon strigosus	Iridaceae	Gladiolus debilis	Santalaceae	Thesium frisea
Boraginaceae	Lobostemon trigonus	Iridaceae	Gladiolus floribundus	Santalaceae	Thesium imbricatum
Boraginaceae	Trichodesma africanum	Iridaceae	Gladiolus grandiflorus	Santalaceae	Thesium juncifolium
Brassicaceae	Brassica sp.	Iridaceae	Gladiolus guthriei	Santalaceae	Thesium microcarpum
Brassicaceae	Heliophila acuminata	Iridaceae	Gladiolus hirsutus	Santalaceae	Thesium nigromontanum
Brassicaceae	Heliophila africana	Iridaceae	Gladiolus inflatus	Santalaceae	Thesium occidentale
Brassicaceae	Heliophila bulbostyla	Iridaceae	Gladiolus inflexus	Santalaceae	Thesium patulum
	• •		•	Santalaceae	•
Brassicaceae	Heliophila carnosa	Iridaceae Iridaceae	Gladiolus patersoniae Gladiolus permeabilis		Thesium pinifolium
Brassicaceae	Heliophila cornuta	Iridaceae	Gladiolus permeabilis	Santalaceae	Thesium prostratum
Brassicaceae	Heliophila crithmifolia		•	Santalaceae	Thesium repandum
Brassicaceae	Heliophila elata	Iridaceae	Gladiolus rhodanthus	Santalaceae	Thesium scabrum
Brassicaceae	Heliophila meyeri	Iridaceae	Gladiolus uysiae	Santalaceae	Thesium sp.
Brassicaceae	Heliophila meyeri	Iridaceae	Gladiolus venustus	Santalaceae	Thesium strictum
Brassicaceae	Heliophila nubigena	Iridaceae	Hesperantha acuta	Santalaceae	Viscum continuum
Brassicaceae	Heliophila pectinata	Iridaceae	Hesperantha acuta	Santalaceae	Viscum rotundifolium
Brassicaceae	Heliophila pendula	Iridaceae	Hesperantha falcata	Sapindaceae	Dodonaea viscosa
Brassicaceae	Heliophila pinnata	Iridaceae	Hesperantha pilosa	Scrophulariaceae	Buddleja glomerata
Brassicaceae	Heliophila scoparia	Iridaceae	Hesperantha radiata	Scrophulariaceae	Buddleja saligna
Brassicaceae	Heliophila scoparia	Iridaceae	lxia atrandra	Scrophulariaceae	Buddleja salviifolia Chaenostoma
Brassicaceae	Heliophila sp.	Iridaceae	Ixia bellendenii	Scrophulariaceae	aethiopicum Chaenostoma
Brassicaceae	Heliophila suavissima	Iridaceae	Ixia collina	Scrophulariaceae	caeruleum
Brassicaceae	Heliophila subulata	Iridaceae	Ixia confusa	Scrophulariaceae	Chaenostoma decipiens
Brassicaceae	Heliophila thunbergii	Iridaceae	lxia dolichosiphon	Scrophulariaceae	Chaenostoma revolutum Chaenostoma
Brassicaceae	Heliophila tricuspidata	Iridaceae	Ixia flexuosa	Scrophulariaceae	subnudum

Family	Species	Family	Species	Family	Species
					Chaenostoma
Brassicaceae	Heliophila tulbaghensis	Iridaceae	Ixia latifolia	Scrophulariaceae	uncinatum
Brassicaceae	Lepidium africanum	Iridaceae	Ixia pumilio	Scrophulariaceae	Cromidon gracile
Brassicaceae	Lepidium capense	Iridaceae	lxia sp.	Scrophulariaceae	Diascia parviflora
Brassicaceae	Lepidium desertorum	Iridaceae	Ixia stenophylla	Scrophulariaceae	Diascia sacculata
Brassicaceae	Lepidium pinnatum	Iridaceae	lxia vanzijliae	Scrophulariaceae	Freylinia lanceolata
Brassicaceae	Sisymbrium capense	Iridaceae	Lapeirousia jacquinii	Scrophulariaceae	Freylinia undulata
Bruniaceae	Audouinia laxa	Iridaceae	Lapeirousia plicata	Scrophulariaceae	Gosela eckloniana
Bruniaceae	Berzelia lanuginosa	Iridaceae	Lapeirousia pyramidalis	Scrophulariaceae	Hebenstretia sp.
Bruniaceae	Berzelia squarrosa	Iridaceae	Moraea alticola	Scrophulariaceae	Hemimeris gracilis
Bruniaceae	Brunia angulata	Iridaceae	Moraea amabilis	Scrophulariaceae	Hemimeris racemosa Jamesbrittenia
Bruniaceae	Brunia cordata	Iridaceae	Moraea angusta	Scrophulariaceae	atropurpurea
Bruniaceae	Brunia esterhuyseniae	Iridaceae	Moraea bellendenii	Scrophulariaceae	Limosella sp.
Bruniaceae	Brunia latebracteata	Iridaceae	Moraea bipartita	Scrophulariaceae	Lyperia antirrhinoides
Bruniaceae	Brunia macrocephala	Iridaceae	Moraea fugax	Scrophulariaceae	Manulea sp.
Bruniaceae	Brunia microphylla	Iridaceae	Moraea gawleri	Scrophulariaceae	Microdon dubius
Bruniaceae	Brunia monogyna	Iridaceae	Moraea helicoidea	Scrophulariaceae	Microdon parviflorus
Bruniaceae	Brunia monostyla	Iridaceae	Moraea longistyla	Scrophulariaceae	Microdon polygaloides
Bruniaceae	Brunia noduliflora	Iridaceae	Moraea ochroleuca	Scrophulariaceae	Nemesia bodkinii
Bruniaceae	Brunia paleacea	Iridaceae	Moraea polyanthos	Scrophulariaceae	Nemesia brevicalcarata
Bruniaceae	Brunia palustris	Iridaceae	Moraea pyrophila	Scrophulariaceae	Nemesia calcarata
Bruniaceae	Brunia phylicoides	Iridaceae	Moraea radians	Scrophulariaceae	Nemesia pageae
Bruniaceae	Brunia variabilis	Iridaceae	Moraea ramosissima	Scrophulariaceae	Nemesia sp.
Bruniaceae	Brunia villosa	Iridaceae	Moraea setifolia	Scrophulariaceae	Nemesia versicolor
Bruniaceae	Brunia virgata	Iridaceae	Moraea sp.	Scrophulariaceae	Oftia africana
Bruniaceae	Staavia capitella	Iridaceae	Moraea thomasiae	Scrophulariaceae	Phyllopodium alpinum
Bruniaceae	Staavia pinifolia Brachymenium	Iridaceae	Moraea tripetala	Scrophulariaceae	Polycarena rariflora
Bryaceae	acuminatum	Iridaceae	Moraea tripetala	Scrophulariaceae	Pseudoselago ascendens
Campanulaceae	Merciera brevifolia	Iridaceae	Moraea unguiculata	Scrophulariaceae	Pseudoselago bella
Campanulaceae	Merciera eckloniana Prismatocarpus	Iridaceae	Romulea atrandra	Scrophulariaceae	Pseudoselago burmannii
Campanulaceae	campanuloides	Iridaceae	Romulea dichotoma	Scrophulariaceae	Pseudoselago gracilis
Campanulaceae	Prismatocarpus debilis	Iridaceae	Romulea tetragona	Scrophulariaceae	Pseudoselago humilis Pseudoselago
Campanulaceae	Prismatocarpus diffusus	Iridaceae	Romulea tortuosa	Scrophulariaceae	langebergensis
Campanulaceae	Prismatocarpus fruticosus Prismatocarpus	Iridaceae	Sparaxis bulbifera	Scrophulariaceae	Pseudoselago parvifolia Pseudoselago
Campanulaceae	lycopodioides Prismatocarpus	Iridaceae	Sparaxis sp.	Scrophulariaceae	quadrangularis
Campanulaceae	pedunculatus	Iridaceae	Syringodea sp.	Scrophulariaceae	Pseudoselago sp.
Campanulaceae	Prismatocarpus tenellus	Iridaceae	Thereianthus juncifolius	Scrophulariaceae	Pseudoselago spuria
Campanulaceae	Roella ciliata	Iridaceae	Tritonia flabellifolia	Scrophulariaceae	Selago albida
Campanulaceae	Siphocodon spartioides	Iridaceae	Tritonia flabellifolia	Scrophulariaceae	Selago bilacunosa
Campanulaceae	Theilera guthriei	Iridaceae	Tritonia pallida	Scrophulariaceae	Selago brevifolia
Campanulaceae	Wahlenbergia albens	Iridaceae	Tritonia pallida	Scrophulariaceae	Selago canescens
Campanulaceae	Wahlenbergia androsacea	Iridaceae	Tritoniopsis antholyza	Scrophulariaceae	Selago corymbosa
Campanulaceae	Wahlenbergia exilis	Iridaceae	Tritoniopsis lata	Scrophulariaceae	Selago eckloniana
Campanulaceae	Wahlenbergia neorigida	Iridaceae	Tritoniopsis pulchella	Scrophulariaceae	Selago glabrata
Campanulaceae	Wahlenbergia nodosa	Iridaceae	 Watsonia aletroides	Scrophulariaceae	Selago gracilis
Campanulaceae	Wahlenbergia paniculata	Iridaceae	Watsonia angusta	Scrophulariaceae	Selago levynsiae
Campanulaceae	Wahlenbergia parvifolia	Iridaceae	Watsonia marginata	Scrophulariaceae	Selago nigrescens
·	Wahlenbergia		-	·	
Campanulaceae	procumbens	Iridaceae	Watsonia meriana	Scrophulariaceae	Selago seticaulis
Campanulaceae	Wahlenbergia sp. Wahlenbergia	Iridaceae	Watsonia paucifolia	Scrophulariaceae	Selago sp.
Campanulaceae	thunbergiana	Iridaceae	Watsonia schlechteri	Scrophulariaceae	Selago thomii

Family	Species	Family	Species	Family	Species
Caryophyllaceae	Dianthus albens	Iridaceae	Watsonia spectabilis	Scrophulariaceae	Selago triquetra
Caryophyllaceae	Dianthus caespitosus	Iridaceae	Xenoscapa fistulosa	Scrophulariaceae	Teedia lucida
Caryophyllaceae	Dianthus caespitosus	Juncaceae	Juncus bufonius	Scrophulariaceae	Teedia pubescens
Caryophyllaceae	Dianthus micropetalus	Juncaceae	Juncus effusus	Scrophulariaceae	Zaluzianskya isanthera
Caryophyllaceae	Silene undulata	Juncaceae	Juncus kraussii	Scrophulariaceae	Zaluzianskya synaptica
Caryophyllaceae	Silene undulata	Juncaceae	Juncus lomatophyllus	Solanaceae	Lycium ferocissimum
Caryophyllaceae	Spergularia sp.	Lamiaceae	Ballota africana	Solanaceae	Lycium oxycarpum
Celastraceae	Cassine parvifolia	Lamiaceae	Leonotis leonurus	Solanaceae	Physalis viscosa
Celastraceae	Gloveria integrifolia	Lamiaceae	Leonotis ocymifolia	Solanaceae	Solanum guineense
Celastraceae	Gymnosporia buxifolia	Lamiaceae	Mentha longifolia	Solanaceae	Solanum linnaeanum
Celastraceae	Maytenus acuminata	Lamiaceae	Salvia africana	Stilbaceae	Halleria elliptica
Celastraceae	Maytenus oleoides	Lamiaceae	Salvia ayrıcana Salvia aurea	Stilbaceae	Stilbe albiflora
Colchicaceae	Colchicum capense	Lamiaceae	Salvia chamelaeagnea	Stilbaceae	Stilbe serrulata
Colchicaceae	Colchicum hughocymbion	Lamiaceae	Stachys aethiopica	Targioniaceae	Targionia hypophylla
	Ornithoglossum			-	
Colchicaceae	undulatum	Lauraceae	Cassytha filiformis	Tecophilaeaceae	Cyanella lutea
Colchicaceae	Wurmbea marginata	Lentibulariaceae	Utricularia bisquamata	Thymelaeaceae	Gnidia laxa
Colchicaceae	Wurmbea spicata	Lepicoleaceae	Lepicolea ochroleuca	Thymelaeaceae	Gnidia linoides
Colchicaceae	Wurmbea variabilis	Leucobryaceae	Campylopus atroluteus	Thymelaeaceae	Gnidia nitida
Convolvulaceae	Convolvulus sagittatus Adromischus	Leucobryaceae	Campylopus catarractilis	Thymelaeaceae	Gnidia oppositifolia
Crassulaceae	caryophyllaceus	Leucobryaceae	Campylopus introflexus	Thymelaeaceae	Gnidia sericea
Crassulaceae	Adromischus filicaulis	Leucobryaceae	Campylopus pilifer	Thymelaeaceae	Gnidia setosa
Crassulaceae	Adromischus maculatus	Leucobryaceae	Campylopus pyriformis	Thymelaeaceae	Gnidia sp.
Crassulaceae	Adromischus sp.	Limeaceae	Limeum dinteri	Thymelaeaceae	Gnidia tenella
Crassulaceae	Adromischus triflorus	Limeaceae	Limeum telephioides	Thymelaeaceae	Lachnaea filamentosa
Crassulaceae	Cotyledon orbiculata	Lobeliaceae	Lobelia capillifolia	Thymelaeaceae	Lachnaea filicaulis
Crassulaceae	Cotyledon orbiculata	Lobeliaceae	Lobelia coronopifolia	Thymelaeaceae	Lachnaea grandiflora
Crassulaceae	Cotyledon sp.	Lobeliaceae	Lobelia linearis	Thymelaeaceae	Lachnaea macrantha
Crassulaceae	Crassula atropurpurea	Lobeliaceae	Lobelia pinifolia	Thymelaeaceae	Lachnaea pomposa
Crassulaceae	Crassula atropurpurea	Lobeliaceae	Lobelia setacea	Thymelaeaceae	Lachnaea pudens
Crassulaceae	Crassula atropurpurea	Lobeliaceae	Monopsis scabra	Thymelaeaceae	Lachnaea sp.
Crassulaceae	Crassula biplanata	Lobeliaceae	Wimmerella pygmaea Clasmatocolea	Thymelaeaceae	Passerina burchellii
Crassulaceae	Crassula capitella	Lophocoleaceae	vermicularis Lycopodium	Thymelaeaceae	Passerina obtusifolia
Crassulaceae	Crassula decumbens	Lycopodiaceae	zanclophyllum Pseudolycopodiella	Thymelaeaceae	Passerina truncata
Crassulaceae	Crassula dejecta	Lycopodiaceae	caroliniana	Thymelaeaceae	Struthiola argentea
Crassulaceae	Crassula inanis	Malvaceae	Abutilon dinteri	Thymelaeaceae	Struthiola ciliata
Crassulaceae	Crassula multiflora	Malvaceae	Anisodontea fruticosa	Thymelaeaceae	Struthiola eckloniana
Crassulaceae	Crassula muscosa	Malvaceae	Anisodontea gracilis	Thymelaeaceae	Struthiola leptantha
Crassulaceae	Crassula natans	Malvaceae	Anisodontea scabrosa	Thymelaeaceae	Struthiola myrsinites
Crassulaceae	Crassula nemorosa	Malvaceae	Anisodontea sp.	Thymelaeaceae	Struthiola rigida
Crassulaceae	Crassula papillosa	Malvaceae	Anisodontea triloba	Verbenaceae	Chascanum cuneifolium
Crassulaceae	Crassula pellucida	Malvaceae	Hermannia alnifolia	Violaceae	Viola decumbens
Crassulaceae	Crassula pubescens	Malvaceae	Hermannia althaeifolia	Violaceae	Viola sp.
Crassulaceae	Crassula pubescens	Malvaceae	Hermannia burkei	Zygophyllaceae	Roepera divaricata
Crassulaceae	Crassula rupestris	Malvaceae	Hermannia comosa	Zygophyllaceae	Roepera flexuosa
Crassulaceae	Crassula saxifraga	Malvaceae	Hermannia confusa	Zygophyllaceae	Roepera foetida
Crassulaceae	Crassula sp.	Malvaceae	Hermannia cuneifolia	Zygophyllaceae	Roepera fulva
Crassulaceae	Crassula strigosa	Malvaceae	Hermannia filifolia	Zygophyllaceae	Roepera spinosa
Crassulaceae	Crassula subulata	Malvaceae	Hermannia filifolia	Zygophyllaceae	Tribulus terrestris
Crassulaceae	Crassula tetragona	Malvaceae	Hermannia flammula	Zygophyllaceae	Zygophyllum sp.
			•	·= · ·	

Appendix 3. Specialist CV.

Nkurenkuru

CURRICULUM VITAE:

Gerhard Botha

Name: : Gerhardus Alfred Botha

Date of Birth : 11 April 1986

Identity Number : 860411 5136 088

Postal Address : PO Box 12500

Brandhof

9324

Residential Address : 3 Jock Meiring Street

Park West

Bloemfontein

9301

Cell Phone Number : 084 207 3454

Email Address : gabotha11@gmail.com

Profession/Specialisation : Ecological and Biodiversity Consultant

Nationality: : South African

Years Experience: : 8

Bilingualism : Very good – English and Afrikaans

Professional Profile:

Gerhard is a Managing Director of Nkurenkuru Ecology and Biodiversity (Pty) Ltd. He has a BSc Honours degree in Botany from the University of the Free State Province and is currently completing a MSc Degree in Botany. He began working as an environmental specialist in 2010 and has since gained extensive experience in conducting ecological and biodiversity assessments in various development field, especially in the fields of conventional as well as renewable energy generation, mining and infrastructure development. Gerhard is a registered Professional Natural Scientist (Pr. Sci. Nat.)

Key Responsibilities.

Specific responsibilities as an Ecological and Biodiversity Specialist include, inter alia, professional execution of specialist consulting services (including flora, wetland and fauna studies, where required), impact assessment reporting, walk through surveys/ground-truthing to inform final design, compilation of management plans, compliance monitoring and audit reporting, in-house ecological awareness training to on-site personnel, and the development of project proposals for procuring new work/projects.

Skills Base and Core Competencies

- Research Project Management
- Botanical researcher in projects involving the description of terrestrial and coastal ecosystems.
- Broad expertise in the ecology and conservation of grasslands, savannahs, karroid wetland, and aquatic ecosystems.
- Ecological and Biodiversity assessments for developmental purposes (BAR, EIA), with extensive knowledge and experience in the renewable energy field (Refer to Work Experiences and References)
- Over 3 years of avifaunal monitoring and assessment experience.
- Mapping and Infield delineation of wetlands, riparian zones and aquatic habitats (according to methods stipulated by DWA, 2008) within various South African provinces of KwaZulu-Natal, Mpumalanga, Free State, Gauteng and Northern Cape Province for inventory and management purposes.
- Wetland and aquatic buffer allocations according to industry best practice guidelines.
- Working knowledge of environmental planning policies, regulatory frameworks, and legislation
- Identification and assessment of potential environmental impacts and benefits.
- Assessment of various wetland ecosystems to highlight potential impacts, within current and proposed landscape settings, and recommend appropriate mitigation and offsets based on assessing wetland ecosystem service delivery (functions) and ecological health/integrity.
- Development of practical and achievable mitigation measures and management plans and evaluation of risk to execution
- Qualitative and Quantitative Research
- Experienced in field research and monitoring
- Working knowledge of GIS applications and analysis of satellite imagery data
- Completed projects in several Provinces of South Africa and include a number of projects located in sensitive and ecological unique regions.

Education and Professional Status

Degrees:

- 2015: Currently completing a M.Sc. degree in Botany (Vegetation Ecology), University of the Free State, Bloemfontein, RSA.
- 2009: B.Sc. Hons in Botany (Vegetation Ecology), University of the Free State, Bloemfontein, RSA.
- 2008: B.Sc. in Zoology and Botany, University of the Free State, University of the Free State, Bloemfontein,

RSA.

Courses:

- 2013: Wetland Management (ecology, hydrology, biodiversity, and delineation) University of the Free State accredited course.
- 2014: Introduction to GIS and GPS (Code: GISA 1500S) University of the Free State accredited course.

Professional Society Affiliations:

The South African Council of Natural Scientific Professions: Pr. Sci. Nat. Reg. No. 400502/14 (Botany and Ecology).

Employment History

- December 2017 Current: Nkurenkuru Ecology and Biodiversity (Pty) Ltd
- 2016 November 2017: ECO-CARE Consultancy
- 2015 2016: Ecologist, Savannah Environmental (Pty) Ltd
- 2013 2014: Working as ecologist on a freelance basis, involved in part-time and contractual positions for the following companies
 - Enviroworks (Pty) Ltd
 - GreenMined (Pty) Ltd
 - Eco-Care Consultancy (Pty) Ltd
 - Enviro-Niche Consulting (Pty) Ltd
 - Savannah Environmental (Pty) Ltd
 - Esicongweni Environmental Services (EES) cc
- 2010 2012: Enviroworks (Pty) Ltd

Publications

Publications:

Botha, G.A. & Du Preez, P.J. 2015. A description of the wetland and riparian vegetation of the Nxamasere palaeo-river's backflooded section, Okavango Delta, Botswana. S. *Afr. J. Bot.*, **98**: 172-173.

Congress papers/posters/presentations:

- Botha, G.A. 2015. A description of the wetland and riparian vegetation of the Nxamasere palaeo-river's backflooded section, Okavango Delta, Botswana. 41st Annual Congress of South African Association of Botanists (SAAB). Tshipise, 11-15 Jan. 2015.
- Botha, G.A. 2014. A description of the vegetation of the Nxamasere floodplain, Okavango Delta, Botswana. 10st Annual University of Johannesburg (UJ) Postgraduate Botany Symposium. Johannesburg, 28 Oct. 2014.

Other

Guest speaker at IAIAsa Free State Branch Event (29 March 2017)

Guest speaker at the University of the Free State Province: Department of Plant Sciences (3 March 2017):

References:

■ Christine Fouché

Manager: GreenMined (Pty) LTD

Cell: 084 663 2399

Professor J du Preez

Senior lecturer: Department of Plant Sciences

University of the Free State

Cell: 082 376 4404

CURRICULUM VITAE:

Jan-Hendrik Keet, PhD

Address: Unit 29 Avignon, Hillcrest Road

Land en Zeezicht, Somerset West

South Africa 7130

Email: jhkeet@hotmail.com Phone: +27 71 451 4853

Expertise and experience

- Current profession: Post Doctoral Researcher Centre for Invasion Biology (Department of Botany and Zoology), Stellenbosch University
- Specialisation: Botany, ecology, invasive plant species, and invasion biology
- Years of experience: 7 years
- Published in various national and international scientific journals

Skills and competencies

- Invasive species biology
- Plant biogeography and ecology
- Plant identification and taxonomy
- Vegetation surveys and mapping
- Soil microbiomes, function, and chemistry

- Geographic Information Systems
- Data analysis and Statistics in R Statistical Software

Tertiary education

- 2015 2019: Stellenbosch University, Stellenbosch, South Africa. Doctor of Philosophy (Botany)
- 2013 2014: University of the Free State, Bloemfontein, South Africa. Magister Scientiae (Botany)
- 2012: University of the Free State, Bloemfontein, South Africa. Bachelor of Science Honours (Botany) cum
- 2009 2011: University of the Free State, Bloemfontein, South Africa. Bachelor of Science (Chemistry with Physics and Biology) - cum laude

Employment history

- 2011: Part-time demonstrator. Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
- 2010: Part-time lab assistant. Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- 2007 2009: Shop Manager. Christian Tees, Brandwag Centre, Bloemfontein

Certifications

- SAGIC Invasive Species Consultant (Cape Town, South Africa), March 2016
- GIS Intermediate (NQF level 5): Hydrological modelling and terrain analysis using digital elevation models (University of the Free State, South Africa), 2014
- Good Laboratory Practice seminar presented by Merck Millipore South Africa, 2012
- Laboratory Safety seminar presented by Merck Millipore South Africa, 2012

Appendix 4. Specialist's Work Experience and References

WORK EXPERIENCES

&

ECOLOGICAL RELATED STUDIES AND SURVEYS

References

Gerhard Botha

Date Project Description Type of Assessment/Study Client Completed 2019 Sirius Three Solar PV Facility near Upington, Ecological Assessment (Basic Aurora Power Solutions Northern Cape Assessment) 2019 Sirius Four Solar PV Facility near Upington, Northern Ecological Assessment (Basic Aurora Power Solutions Assessment) Lichtenburg 1 100MW Solar PV Facility, Lichtenburg, 2019 Atlantic Renewable **Ecological Assessment Energy Partners** North-West Province (Scoping and EIA Phase Assessments) 2019 Lichtenburg 2 100MW Solar PV Facility, Lichtenburg, Atlantic Renewable **Ecological Assessment** North-West Province (Scoping and EIA Phase **Energy Partners** Assessments)

2019	Lichtenburg 3 100MW Solar PV Facility, Lichtenburg,	Ecological Assessment	Atlantic Renewable
	North-West Province	(Scoping and EIA Phase Assessments)	Energy Partners
2019	Moeding Solar PV Facility near Vryburg, North-West Province	Ecological Assessment (Basic Assessment)	Moeding Solar
2019	Expansion of the Raumix Aliwal North Quarry, Eastern Cape Province	Fauna and Flora Pre- Construction Walk-Through Assessment	GreenMined
2018	Kruisvallei Hydroelectric 22kV Overhead Power Line, Clarens, Free State Province	Faunal and Flora Rescue and Protection Plan	Zevobuzz
2018	Kruisvallei Hydroelectric 22kV Overhead Power Line, Clarens, Free State Province	Fauna and Flora Pre- Construction Walk-Through Assessment	Zevobuzz
2018	Proposed Kruisvallei Hydroelectric Power Generation Scheme in the Ash River, Free State Province	Ecological Assessment (Basic Assessment)	Zevobuzz
2018	Proposed Zonnebloem Switching Station (132/22kV) and 2X Loop-in Loop-out Power Lines (132kV), Mpumalanga Province	Ecological Assessment (Basic Assessment)	Eskom
2018	Clayville Thermal Plant within the Clayville Industrial Area, Gauteng Province	Ecological Comments Letter	Savannah Environmental
2018	Iziduli Emoyeni Wind Farm near Bedford, Eastern Cape Province	Ecological Assessment (Reassessment)	Emoyeni Wid Farm Renewable Energy
2018	Msenge Wind Farm near Bedford, Eastern Cape Province	Ecological Assessment (Reassessment)	Amakhala Emoyeni Renewable Energy
2017	H2 Energy Power Station near Kwamhlanga, Mpumalanga Province	Ecological Assessment (Scoping and EIA phase assessments)	Eskom
2017	Karusa Wind Farm (Phase 1 of the Hidden Valley Wind Energy Facility near Sutherland, Northern Cape Province)	Ecological Assessment (Reassessment)	ACED Renewables Hidden Valley
2017	Soetwater Wind Farm (Phase 2 of the Hidden Valley Wind Energy Facility near Sutherland, Northern Cape Province)	Ecological Assessment (Reassessment)	ACED Renewables Hidden Valley
2017	S24G for the unlawful commencement or continuation of activities within a watercourse, Honeydew, Gauteng Province	Ecological Assessment	Savannah Environmental
2016 - 2017	Noupoort CSP Facility near Noupoort, Northern Cape Province	Ecological Assessment (Scoping and EIA phase assessments)	Cresco
2016	Buffels Solar 2 PV Facility near Orkney, North West Province	Ecological Assessment (Scoping and EIA phase assessments)	Kabi Solar
2016	Buffels Solar 1 PV Facility near Orkney, North West Province	Ecological Assessment (Scoping and EIA phase assessments)	Kabi Solar
2016	132kV Power Line and On-Site Substation for the Authorised Golden Valley II Wind Energy Facility near Bedford, Eastern Cape Province	Ecological Assessment (Basic Assessment)	Terra Wind Energy
2016	Kalahari CSP Facility: 132kV Ferrum–Kalahari–UNTU & 132kV Kathu IPP–Kathu 1 Overhead Power Lines, Kathu, Northern Cape Province	Fauna and Flora Pre- Construction Walk-Through Assessment	Kathu Solar Park
2016	Kalahari CSP Facility: Access Roads, Kathu, Northern Cape Province	Fauna and Flora Pre- Construction Walk-Through Assessment	Kathu Solar Park
2016	Karoshoek Solar Valley Development – Additional CSP Facility including tower infrastructure associated with authorised CSP Site 2 near Upington, Northern Cape Province	Ecological Assessment (Scoping Assessment)	Emvelo

			I = .
2016	Karoshoek Solar Valley Development –Ilanga CSP 7	Ecological Assessment	Emvelo
	and 8 Facilities near Upington, Northern Cape Province	(Scoping Assessment)	
2016	Karoshoek Solar Valley Development –Ilanga CSP 9	Ecological Assessment	Emvelo
	Facility near Upington, Northern Cape Province	(Scoping Assessment)	
2016	Lehae Training Academy and Fire Station, Gauteng Province	Ecological Assessment	Savannah Environmental
2016	Metal Industrial Cluster and Associated	Ecological Assessment	Northern Cape
	Infrastructure near Kuruman, Northern Cape	(Scoping Assessment)	Department of Economic
	Province		Development and
2016	Consider a Wind France Frailite and Consider	Facility in Day Facility Charles	Tourism
2016	Semonkong Wind Energy Facility near Semonkong, Maseru District, Lesotho	Ecological Pre-Feasibility Study	Savannah Environmental
2015 - 2016	Orkney Solar PV Facility near Orkney, North West	Ecological Assessment	Genesis Eco-Energy
2010 2010	Province	(Scoping and EIA phase	Contains Less Entergy
		assessments)	
2015 - 2016	Woodhouse 1 and Woodhouse 2 PV Facilities near	Ecological Assessment	Genesis Eco-Energy
	Vryburg, North West Province	(Scoping and EIA phase	
		assessments)	
2015	CAMCO Clean Energy 100kW PV Solar Facility,	Ecological Assessment (Basic	CAMCO Clean Energy
	Thaba Eco Lodge near Johannesburg, Gauteng	Assessment)	
2015	Province	Foological Assessment	CAMCO Class Francis
2015	CAMCO Clean Energy 100kW PV Solar Facility, Thaba Eco Lodge near Johannesburg, Gauteng	Ecological Assessment (Basic Assessment)	CAMCO Clean Energy
	Province	(Dasic Assessment)	
2015	Sirius 1 Solar PV Project near Upington, Northern	Fauna and Flora Pre-	Aurora Power Solutions
	Cape Province	Construction Walk-Through	
		Assessment	
2015	Sirius 2 Solar PV Project near Upington, Northern	Fauna and Flora Pre-	Aurora Power Solutions
	Cape Province	Construction Walk-Through	
		Assessment	
2015	Sirius 1 Solar PV Project near Upington, Northern Cape Province	Invasive Plant Management Plan	Aurora Power Solutions
2015	Sirius 2 Solar PV Project near Upington, Northern	Invasive Plant Management	Aurora Power Solutions
	Cape Province	Plan	
2015	Sirius 1 Solar PV Project near Upington, Northern	Plant Rehabilitation	Aurora Power Solutions
	Cape Province	Management Plan	
2015	Sirius Phase 2 Solar PV Project near Upington,	Plant Rehabilitation	Aurora Power Solutions
	Northern Cape Province	Management Plan	
2015	Sirius 1 Solar PV Project near Upington, Northern	Plant Rescue and Protection	Aurora Power Solutions
2015	Cape Province	Plant Passus and Protection	Aurora Power Solutions
2015	Sirius Phase 2 Solar PV Project near Upington, Northern Cape Province	Plant Rescue and Protection Plan	Autora Power Solutions
2015	Expansion of the existing Komsberg Main	Ecological Assessment (Basic	ESKOM
2010	Transmission Substation near Sutherland, Northern	Assessment)	
	Cape Province		
2015	Karusa Wind Farm near Sutherland, Northern Cape	Invasive Plant Management	ACED Renewables
	Province)	Plan	Hidden Valley
2015	Proposed Karusa Facility Substation and Ancillaries	Ecological Assessment (Basic	ACED Renewables
	near Sutherland, Northern Cape Province	Assessment)	Hidden Valley
2015	Eskom Karusa Switching Station and 132kV Double	Ecological Assessment (Basic	ESKOM
	Circuit Overhead Power Line near Sutherland, Northern Cape Province	Assessment)	
2015	Karusa Wind Farm near Sutherland, Northern Cape	Plant Search and Rescue and	ACED Renewables
2015	Province)	Rehabilitation Management	Hidden Valley
		Plan	
2015	Karusa Wind Energy Facility near Sutherland,	Fauna and Flora Pre-	ACED Renewables
	Northern Cape Province	Construction Walk-Through	Hidden Valley
		Assessment	

2015	Soetwater Facility Substation, 132kV Overhead	Ecological Assessment (Basic	ACED Renewables
	Power Line and Ancillaries, near Sutherland,	Assessment)	Hidden Valley
	Northern Cape Province		
2015	Soetwater Wind Farm near Sutherland, Northern	Invasive Plant Management	ACED Renewables
	Cape Province)	Plan	Hidden Valley
2015	Soetwater Wind Energy Facility near Sutherland,	Fauna and Flora Pre-	ACED Renewables
	Northern Cape Province	Construction Walk-Through	Hidden Valley
		Assessment	
2015	Soetwater Wind Farm near Sutherland, Northern	Plant Search and Rescue and	ACED Renewables
	Cape Province	Rehabilitation Management	Hidden Valley
		Plan	
2015	Expansion of the existing Scottburgh quarry near	Botanical Assessment (for EIA)	GreenMined
2015	Amandawe, KwaZulu-Natal	Determinal Assessment (for FIA)	Environmental
2015	Expansion of the existing AFRIMAT quarry near Hluhluwe, KwaZulu-Natal	Botanical Assessment (for EIA)	GreenMined Environmental
2014	Tshepong 5MW PV facility within Harmony Gold's	Ecological Assessment (Basic	BBEnergy
	mining rights areas, Odendaalsrus	Assessment)	
2014	Nyala 5MW PV facility within Harmony Gold's mining	Ecological Assessment (Basic	BBEnergy
	rights areas, Odendaalsrus	Assessment)	
2014	Eland 5MW PV facility within Harmony Gold's mining	Ecological Assessment (Basic	BBEnergy
	rights areas, Odendaalsrus	Assessment)	
2014	Transalloys circulating fluidised bed power station	Ecological Assessment (for	Trans-Alloys
2014	near Emalahleni, Mpumalanga Province	EIA)	Falsana
2014	Umbani circulating fluidised bed power station near Kriel, Mpumalanga Province	Ecological Assessment (Scoping and EIA)	Eskom
2014	Gihon 75MW Solar Farm: Bela-Bela, Limpopo	Ecological Assessment (for	NETWORX Renewables
	Province	EIA)	
2014	Steelpoort Integration Project & Steelpoort to Wolwekraal 400kV Power Line	Fauna and Flora Pre-	Eskom
	Wolwekraal 400kV Power Line	Construction Walk-Through	
		Assessment	
2014	Audit of protected <i>Acacia erioloba</i> trees within the Assmang Wrenchville housing development footprint area	Botanical Audit	Eco-Care Consultancy
2014	Rehabilitation of the N1 National Road between	Peer review of the ecological	EKO Environmental
	Sydenham and Glen Lyon	report	
2014	Rehabilitation of the N6 National Road between	Peer review of the ecological	EKO Environmental
	Onze Rust and Bloemfontein	report	
2011	Illegally ploughed land on the Farm Wolwekop	Vegetation Rehabilitation Plan	EnviroWorks
	2353, Bloemfontein		
2011 2011	Rocks Farm chicken broiler houses Botshabelo 132 kV line	Botanical Assessment (for EIA) Ecological Assessment (for	EnviroWorks CENTLEC
2011	Botshabelo 132 kV line	EIA)	CLIVILLE
2011	De Aar Freight Transport Hub	Ecological Scoping and	EnviroWorks
2011	The annual establishment of the Toronto Didge For	Feasibility Study	Facility Mandage
2011	The proposed establishment of the Tugela Ridge Eco Estate on the farm Kruisfontein, Bergville	Ecological Assessment (for EIA)	EnviroWorks
2010 - 2011	National long-haul optic fibre infrastructure network	Vegetation Rehabilitation Plan	NEOTEL
	project, Bloemfontein to Beaufort West	for illegally cleared areas	
2010 - 2011	National long-haul optic fibre infrastructure network project, Bloemfontein to Beaufort West	Invasive Plant Management Plan	NEOTEL
2010 - 2011	National long-haul optic fibre infrastructure network	Protected and Endangered	NEOTEL
	project, Bloemfontein to Beaufort West	Species Walk-Through Survey	
2011	Optic Fibre Infrastructure Network, Swartland	Botanical Assessment (for EIA) - Assisted Dr. Dave	Dark Fibre Africa
	Municipality	McDonald	
2011	Optic Fibre Infrastructure Network, City of Cape	Botanical Assessment (for EIA)	Dark Fibre Africa
	Town Municipality	- Assisted Dr. Dave	
2010	Construction of an icon at the southernmost tip of	McDonald Botanical Assessment (for EIA)	SANPARKS
2010	Africa, Agulhas National Park	Dotament Assessment (101 LIA)	JAN AKKS
2010	New boardwalk from Suiderstrand Gravel Road to	Botanical Assessment (for EIA)	SANPARKS
2010	Rasperpunt, Agulhas National Park	Foological Assessment	Agri Dovelence
2010	Farm development for academic purposes (Maluti FET College) on the Farm Rosedale 107, Harrismith	Ecological Assessment (Screening and Feasibility	Agri Development Solutions
	· · · · · · · · · · · · · · · · · · ·	Study)	
2010	Basic Assessment: Barcelona 88/11kV substation	Botanical Assessment (for EIA)	Eskom Distribution
2011	and 88kV loop-in lines Illegally ploughed land on the Farm Wolwekop	Vegetation Rehabilitation Plan	EnviroWorks
2011	2353, Bloemfontein	vegetation Renabilitation Fidil	LIIVII OVVOI KS

WETLAND DELINEATION AND HYDROLOGICAL ASSESSMENTS

Date	Residul Dansi eli es	Tura of Assaura Michael	Client
Completed	Project Description	Type of Assessment/Study	Cuent
In progress	Steynsrus PV 1 & 2 Solar Energy Facilities near	Wetland Assessment	Cronimet Mining Power
	Steynsrus, Free State Province		Solutions
2019	Lichtenburg 1 100MW Solar PV Facility, Lichtenburg,	Surface Hydrological	Atlantic Renewable
	North-West Province	Assessment (Scoping and EIA Phase)	Energy Partners
2019	Lichtenburg 2 100MW Solar PV Facility, Lichtenburg,	Surface Hydrological	Atlantic Renewable
	North-West Province	Assessment (Scoping and EIA Phase)	Energy Partners
2019	Lichtenburg 3 100MW Solar PV Facility, Lichtenburg,	Surface Hydrological	Atlantic Renewable
	North-West Province	Assessment (Scoping and EIA Phase)	Energy Partners
2019	Moeding Solar PV Facility near Vryburg, North-West	Wetland Assessment (Basic	Moeding Solar
	Province	Assessment)	
2018	Kruisvallei Hydroelectric 22kV Overhead Power Line,	Wetland Assessment	Zevobuzz
	Clarens, Free State Province	(Basic Assessment	
2017	Nyala 5MW PV facility within Harmony Gold's mining	Wetland Assessment	BBEnergy
	rights areas, Odendaalsrus		
2017	Eland 5MW PV facility within Harmony Gold's mining	Wetland Assessment	BBEnergy
	rights areas, Odendaalsrus		
2017	Olifantshoek 10MVA 132/11kV Substation and 31km	Surface Hydrological	Eskom
	Power Line	Assessment (Basic	
		Assessment)	
2017	Expansion of the Elandspruit Quarry near Ladysmith, KwaZulu-Natal Province	Wetland Assessment	Raumix
2017	S24G for the unlawful commencement or	Aquatic Assessment & Flood	Savannah Environmental
2017	continuation of activities within a watercourse,	Plain Delineation	
	Honeydew, Gauteng Province		
2017	Noupoort CSP Facility near Noupoort, Northern Cape	Surface Hydrological	Cresco
	Province	Assessment (EIA phase)	
2016	Wolmaransstad Municipality 75MW PV Solar Energy	Wetland Assessment (Basic	BlueWave Capital
	Facility in the North West Province	Assessment)	
2016	BlueWave 75MW PV Plant near Welkom Free State Province	Wetland Delineation	BlueWave Capital
2016	Harmony Solar Energy Facilities: Amendment of	Wetland Assessment (Basic	BBEnergy
	Pipeline and Overhead Power Line Route	Assessment)	

AVIFAUNAL ASSESSMENTS

Date Completed	Project Description	Type of Assessment/Study	Client
2019	Sirius Three Solar PV Facility near Upington, Northern Cape	Avifauna Assessment (Basic Assessment)	Aurora Power Solutions

2019	Sirius Four Solar PV Facility near Upington, Northern	Avifauna Assessment (Basic	Aurora Power Solutions
	Cape	Assessment)	
2019	Moeding Solar PV Facility near Vryburg, North-West	Avifauna Assessment (Basic	Moeding Solar
	Province	Assessment)	
2018	Proposed Zonnebloem Switching Station (132/22kV)	Avifauna Assessment (Basic	Eskom
	and 2X Loop-in Loop-out Power Lines (132kV),	Assessment)	
	Mpumalanga Province		
2017	Olifantshoek 10MVA 132/11kV Substation and 31km	Avifauna Assessment (Basic	Eskom
	Power Line	Assessment)	
2016	TEWA Solar 1 Facility, east of Upington, Northern	Wetland Assessment	Tewa Isitha Solar 1
	Cape Province	(Basic Assessment	
2016	TEWA Solar 2 Facility, east of Upington, Northern	Wetland Assessment	Tewa Isitha Solar 2
	Cape Province		

ENVIRONMENTAL IMPACT ASSESSMENT

- Barcelona 88/11kV substation and 88kV loop-in lines BA (for Eskom).
- Thabong Bulk 132kV sub-transmission inter-connector line EIA (for Eskom).
- Groenwater 45 000 unit chicken broiler farm BA (for Areemeng Mmogo Cooperative).
- Optic Fibre Infrastructure Network, City of Cape Town Municipality BA (for Dark Fibre Africa (Pty)
 Ltd).
- Optic Fibre Infrastructure Network, Swartland Municipality BA (for Dark Fibre Africa).
- Construction and refurbishment of the existing 66kV network between Ruigtevallei Substation and Reddersburg Substation – EMP (for Eskom).
- Lower Kruisvallei Hydroelectric Power Scheme (Ash river) EIA (for Kruisvallei Hydro (Pty) Ltd).
- Construction of egg hatchery and associated infrastructure BA (For Supreme Poultry).
- Construction of the Klipplaatdrif flow gauging (Vaal river) EMP (DWAF).

ENVIRONMENTAL COMPLIANCE AUDITING AND ECO

- National long haul optic fibre infrastructure network project, Bloemfontein to Laingsburg <u>ECO</u> (for Enviroworks (Pty) Ltd.).
- National long haul optic fibre infrastructure network project, Wolmaransstad to Klerksdorp <u>ECO</u> (for Enviroworks (Pty) Ltd.).
- Construction and refurbishment of the existing 66kV network between Ruigtevallei Substation and Reddersburg Substation – <u>ECO</u> (for Enviroworks (Pty) Ltd.).
- Construction and refurbishment of the Vredefort/Nooitgedacht 11kV power line <u>ECO</u> (for Enviroworks (Pty) Ltd.).
- Mining of Dolerite (Stone Aggregate) by Raumix (Pty) Ltd. on a portion of Portion 0 of the farm Hillside 2830, Bloemfontein – <u>ECO</u> (for GreenMined Environmental (Pty) Ltd.).
- Construction of an Egg Production Facility by Bainsvlei Poultry (Pty) Ltd on Portions 9 & 10 of the farm, Mooivlakte, Bloemfontein – <u>ECO</u> (for Enviro-Niche Consulting (Pty) Ltd.).

Environmental compliance audit and botanical account of Afrisam's premises in Bloemfontein –
 Environmental Compliance Auditing (for Enviroworks (Pty) Ltd.).

OTHER PROJECTS:

- Keeping and breeding of lions (Panthera leo) on the farm Maxico 135, Ficksburg Management and Business Plan (for Enviroworks (Pty) Ltd.)
- Keeping and breeding of lions (Panthera leo) on the farm Mooihoek 292, Theunissen –
 Management and Business Plan (for Enviroworks (Pty) Ltd.)
- Keeping and breeding of wild dogs (*Lycaon pictus*) on the farm Mooihoek 292, Theunissen –
 Management and Business Plan (for Enviroworks (Pty) Ltd.)
- Existing underground and aboveground fuel storage tanks, TWK AGRI: Pongola Environmental Management Plan (for TWK Agricultural Ltd).
- Existing underground fuel storage tanks on Erf 171, TWK AGRI: Amsterdam Environmental Management Plan (for TWK Agricultural Ltd).
- Proposed storage of 14 000 L of fuel (diesel) aboveground on Erf 32, TWK AGRI: Carolina Environmental Management Plan (for TWK Agricultural Ltd).
- Proposed storage of 23 000 L of fuel (diesel) above ground on Portion 10 of the Farm Oude Bosch, Humansdorp Environmental Management Plan (for TWK Agricultural Ltd).
- Proposed storage of 16 000 L of fuel (diesel) aboveground at Panbult Depot Environmental Management Plan (for TWK Agricultural Ltd).
- Existing underground fuel storage tanks, TWK AGRI: Mechanisation and Engineering, Piet Retief –
 Environmental Management Plan (for TWK Agricultural Ltd).
- Existing underground fuel storage tanks on Portion 38 of the Farm Lothair, TWK AGRI: Lothair –
 Environmental Management Plan (for TWK Agricultural Ltd).

WORK EXPERIENCES

&

References

Jan-Hendrik Keet, PhD

Publications

- Hirsch H, Allsopp MH, Canavan S, Cheek M, Geerts S, Geldenhuys CJ, Harding G, Hurley BP, Jones W, Keet J-H, Klein H, Ruwanza S, van Wilgen BW, Wingfield MJ, Richardson DM (2019) Eucalyptus camaldulensis in South Africa past, present, future, Transactions of the Royal Society of South Africa, https://doi.org/10.1080/0035919X.2019.1669732.
- Le Roux JJ, Hui C, Castillo ML, Iriondo, JM, Keet J-H, Khapugin, AA, Médail F, Rejmánek M, Theron G, Yannelli FA, Hirsch H (2019) Recent anthropogenic plant extinctions differ in biodiversity hotspots and coldspots. *Current Biology*, https://doi.org/10.1016/j.cub.2019.07.063.

- **Keet J-H**, Ellis A G, Hui C, Le Roux JJ (**2019**) Strong spatial and temporal turnover of soil bacterial communities in South Africa's hyperdiverse fynbos biome. *Soil Biology and Biochemistry* **136**: 107541, https://doi.org/10.1016/j.soilbio.2019.107541.
- Le Roux JJ, Ellis AG, Van Zyl L-M, Hosking ND, Keet J-H, Yannelli F (2018) Importance of soil legacy effects and successful mutualistic interactions during Australian acacia invasions in nutrient-poor environments. *Journal of Ecology* 105(6): 2071-2081, https://doi.org/10.1111/1365-2745.1296.
- Keet J-H, Ellis A G, Hui C, Le Roux JJ (2017) Legume—rhizobium symbiotic promiscuity and effectiveness do not affect plant invasiveness. *Annals of Botany* 119(8): 1319-1331, https://doi.org/10.1093/aob/mcx028.
- Le Roux JJ, Keet J-H, Mutiti B, Ellis AG (2017) Cultivation may not dramatically alter rhizobial community diversity or structure associated with rooibos tea (*Aspalathus linearis* Burm.f.) in South Africa. South African Journal of Botany 110: 87-96, https://doi.org/10.1016/j.sajb.2017.01.014.
- Le Roux JJ, Hui C, **Keet J-H**, Ellis AG (**2017**) Co-introduction vs ecological fitting as pathways to the establishment of effective mutualisms during biological invasions. *New Phytologist* **215**:1354–1360. https://doi.org/10.1111/nph.14593.
- Nsikani M, Novoa A, Van Wilgen B, Keet J-H, Gaertner M (2017) Acacia saligna's soil legacy effects persist up to ten years after clearing: Implications for ecological restoration. Austral Ecology 42(8): 880-889, https://doi.org/10.1111/aec.12515.
- Keet J-H, Cindi D, Du Preez PJ (2016) Assessing the invasiveness of *Berberis aristata* and *B. julianae* (Berberidaceae) in South Africa: management options and legal recommendations. *South African Journal of Botany* 105: 299-28, https://doi.org/10.1016/j.sajb.2016.04.012.

Conferences

- 46th South African Association of Botanists conference (Qwa-Qwa, South Africa),
 January 2020, Alnus glutinosa (L.) Gaertn. [Black Alder]: an emerging invader in South Africa
- International Association for Food Protection (IAFP; Louisville, Kentucky, USA), July 2019.
- Ecological Society of America Conference, (New Orleans, Louisiana, USA), August 2018 Invasive legumes dramatically impact soil bacterial community structures but not function
- Legumes for Life Workshop (Stellenbosch, South Africa), May 2018 Legumerhizobium symbiotic promiscuity and effectiveness do not affect plant invasiveness
- Fynbos Forum Conference (Swellendam, South Africa), July 2017 Assessing the impacts of invasive legumes on soil conditions and microbial community composition in a biodiversity hotspot
- 43rd South African Association of Botanists Conference (Cape Town, South Africa),
 January 2017, Legume-rhizobium symbiotic promiscuity and effectiveness do not affect plant invasiveness Best PhD presentation

- 43rd Annual Research Symposium on the Management of Biological Invasions Conference (Worscester, South Africa), May 2016, Legume-rhizobium symbiotic promiscuity does not determine plant invasiveness
- Evolutionary dynamics of tree invasions: drivers, dimensions, and implications for management (Stellenbosch, South Africa), November 2015
- Neobiota: 8th International Conference on Biological Invasions (Antalya, Turkey),
 November 2014, Assessing the threat and potential for management of Berberis spp. (Berberidaceae) in South Africa
- 42nd Annual Symposium on the Management of Invasive Alien Plants (Karridene Beach Hotel, Durban, South Africa)
- XXth Association for the Taxonomic Study of the Flora of Tropical Africa International Conference (Stellenbosch, South Africa), January 2014
- 41st Annual Symposium on the Management of Invasive Alien Plants (Cape St. Francis, South Africa), May 2013

EIA and other surveys

- Specialist Invasive Alien Plant Species Report: Prepared for: Mpact Corrugated, Kuils River (Western Cape), July 2019
- Proposed Township development, Country view, Gauteng: Biodiversity Impact
 Assessment (Flora) Specialist Report prepared for Zone Land Solutions (PTY) Ltd,
 July 2015
- Colenso Anthracite Coal Mining and Power Station Project: Biodiversity Impact
 Assessment (Flora) Specialist Report prepared for Zone Land Solutions (PTY) Ltd,
 July 2015

