environmental and biological atlas of the gulf of mexico 2013

gulf states marine fisheries commission number 239 january 2015

SEAMAP ENVIRONMENTAL AND BIOLOGICAL ATLAS OF THE GULF OF MEXICO, 2013

Edited by

Jeffrey K. Rester
Gulf States Marine Fisheries Commission

Manuscript Design and Layout

Ashley P. Lott

Gulf States Marine Fisheries Commission

GULF STATES MARINE FISHERIES COMMISSION
 January 2015
 Number 239

This project was supported in part by the National Oceanic and Atmospheric Administration, National Marine Fisheries Service, under State/Federal Project Number NA11NMF4350028.

GULF STATES MARINE FISHERIES COMMISSION COMMISSIONERS

ALABAMA

N. Gunter Guy, Jr.

Alabama Department of Conservation
and Natural Resources
64 North Union Street
Montgomery, AL 36130-1901
Steve McMillan
P.O. Box 337

Bay Minette, AL 36507
Chris Nelson
Bon Secour Fisheries, Inc.
P.O. Box 60

Bon Secour, AL 36511

FLORIDA

Nick Wiley, Executive Director
FL Fish and Wildlife Conservation Commission 620 South Meridian Street
Tallahassee, FL 32399-1600
Senator Thad Altman
State Senator, District 24
6767 North Wickham Road, Suite 211
Melbourne, FL 32940
Michael Hansen
393 Cooperwood Road
Crawfordville, FL 32327

LOUISIANA

Robert Barham, Secretary
LA Department of Wildlife and Fisheries
P.O. Box 98000

Baton Rouge, LA 70898-9000

Senator R.L. "Bret" Allain, II 600 Main Street, Suite 1
Franklin, LA 70538
Campo "Camp" Matens
4554 Emory Avenue
Baton Rouge, LA 70808
MISSISSIPPI
Jamie Miller, Executive Director
Mississippi Department of Marine Resources
1141 Bayview Avenue
Biloxi, MS 39530
Senator Brice Wiggins
1501 Roswell Street
Pascagoula, MS 39581
Joe Gill, Jr.
Joe Gill Consulting, LLC
910 Desoto Street
Ocean Springs, MS 39566-0535
TEXAS
Carter Smith, Executive Director
Texas Parks and Wildlife Department
4200 Smith School Road
Austin, TX 78744
Troy B. Williamson, II
P.O. Box 967

Corpus Christi, TX 78403
TBA

STAFF

David M. Donaldson
Executive Director

Nancy K. Marcellus
Cheryl R. Noble
Steven J. VanderKooy
Jeffrey K. Rester
Gregory S. Bray
Joseph P. Ferrer, III
Douglas J. Snyder

Deanna L. Valentine
Donna B. Bellais
Ralph E. Hode
James R. Ballard
Alexander L. Miller
Lloyd W. Kirk
Debora K. McIntyre

Alyce A. Ryan
Angela R. Rabideau
Ashley P. Lott

SEAMAP SUBCOMMITTEE

Mr. John Mareska, Chairman
Alabama Department of Conservation and Natural Resource

Ms. Chloé Dean
Louisiana Department of Wildlife and Fisheries

Dr. Read Hendon
USM/Gulf Coast Research Laboratory
Dr. Fernando Martinez-Andrade
Texas Parks and Wildlife Department

Dr. John Froeschke
Gulf of Mexico Fishery Management
Council

Mr. Jeff Rester
SEAMAP Coordinator
Gulf States Marine Fisheries Commission

DATA COORDINATING WORK GROUP

Mr. Lloyd Kirk, Leader
Gulf States Marine Fisheries Commission

Mr. Butch Pellegrin
National Marine Fisheries Service
Pascagoula Laboratory
Dr. Joanne Shultz
National Marine Fisheries Service
Pascagoula Laboratory
Mr. Michael Harden
Louisiana Department of Wildlife and Fisheries

Mr. Michael Murphy
Florida Fish and Wildlife
Conservation Commission Florida Fish and Wildlife Research Institute

INTRODUCTION

The Southeast Area Monitoring and Assessment Program (SEAMAP) is a State/Federal/university program for the collection, management, and dissemination of fishery-independent data (information collected without direct reliance on statistics reported by commercial or recreational fishermen) in United States waters of the Gulf of Mexico (Eldridge 1988). A major SEAMAP objective is to provide a large, standardized database needed by management agencies, industry, and scientists to make sound management decisions and further develop fishery resources in a cost-efficient manner. To accomplish this goal, survey data must be disseminated in a useful format to SEAMAP participants, cooperators, and other interested organizations.

The SEAMAP Program began in March 1981 when the National Marine Fisheries Service (NMFS), Southeast Fisheries Science Center (SEFSC), presented a SEAMAP Strategic Plan (1981) to the Gulf States Marine Fisheries Commission (GSMFC). This strategic plan outlined the proposed program organization (goals, objectives, procedures, resource requirements, etc.). A SEAMAP Subcommittee was then formed within the existing framework of the GSMFC. The Subcommittee consists of one representative from each state fishery management agency [Florida Fish and Wildlife Conservation Commission (FWC); Alabama Department of Conservation and Natural Resources (ADCNR); Mississippi Department of Marine Resources (MDMR) represented by the University of Southern Mississippi, Gulf Coast Research Laboratory (USM/GCRL); Louisiana Department of Wildlife and Fisheries (LDWF); and Texas Parks and Wildlife Department (TPWD)], one from NMFS SEFSC and a non-voting member representing the Gulf of Mexico Fishery Management Council (GMFMC). The Subcommittee has organized and successfully coordinated numerous resource surveys from 1982 through 2013 (Table 1). The resultant data are published in atlases for the surveys in 1982 (Stuntz et al. 1985); 1983 (Thompson and Bane 1986a); 1984 (Thompson and Bane 1986b); 1985 (Thompson et al. 1988); 1986 (Sanders et al. 1990a); 1987 (Sanders et al. 1990b); 1988 (Sanders et al. 1991a); 1989 (Sanders et al. 1991b); 1990 (Sanders et al. 1992); 1991 (Donaldson et al. 1993); 1992 (Donaldson et al. 1994); 1993 (Donaldson et al. 1996); 1994 (Donaldson et al. 1997a); 1995 (Donaldson et al. 1997b); 1996 (Donaldson et al. 1998); 1997 (Rester et al. 1999); 1998 (Rester et al. 2000); 1999 (Rester et al. 2001); 2000 (Rester et al. 2002); 2001 (Rester et al. 2004); 2002 (Rester et al. 2008); 2003 (Rester et al. 2009); 2004 (Rester 2009); 2005 (Rester 2010); 2006 (Rester 2010); 2007 (Rester 2010); 2008 (Rester 2011); 2009 (Rester 2011); 2010 (Rester 2012); 2011 (Rester 2014); and 2012 (Rester 2014). Environmental assessment activities that occurred with each of the surveys can be found in Table 1. All data are available to researchers or interested individuals. Details about how to obtain SEAMAP data can be found in the Data Request section of this document.

In early 2013, the SEAMAP Subcommittee identified and began to plan the year's SEAMAP survey activities for the Gulf of Mexico. In keeping with the program goal of establishing a coordinated long-term resource database, it was decided to continue the same types of survey activities conducted in 1982 through 2012. Overall survey objectives in 1982 to 2013 were to assess the distribution and abundance of recreational and commercial organisms collected by plankton, trap/video, bottom longlines, hook and line, and trawl gears, and document environmental factors that might affect their distribution and abundance. Data from plankton surveys are used for detection and assessment of fishery resources; in the determination of spawning seasons and areas; in investigations of early survival and recruitment mechanisms; and in estimation of the abundance of a stock based on its spawning production (Sherman et al. 1983). Assessment of the Texas Closure (Nichols 1982, 1984; Nichols and Poffenberger 1987) was the rationale for the establishment of the trawl surveys and to
establish a seasonal database to assess the abundance and distribution of the shrimp and groundfish stocks across the northern Gulf of Mexico. The Reef Fish Survey is designed to determine the relative abundance of reef fish populations and habitat using a fish trap/video recording system (Russell, unpublished report).

A major purpose of SEAMAP is to provide resource survey data to State and Federal management agencies and universities participating in SEAMAP activities. This thirty-first in a series of SEAMAP environmental and biological atlases presents such data, in a summarized form, collected during the 2013 SEAMAP surveys.

MATERIALS AND METHODS

Methodology for the 2013 SEAMAP surveys is similar to that of the 1982 through 2012 surveys. Sampling was conducted within the U.S. Exclusive Economic Zone (EEZ) and state territorial waters. The NOAA Ship OREGON II collected plankton and environmental data during the Winter Plankton Survey from February 1-28. The NOAA Ship OREGON II collected plankton and environmental data during the Spring Plankton Survey from May 1-29, while the USM/GCRL vessel TOMMY MUNRO sampled on May 21 and May 22, and the Louisiana vessel BLAZING SEVEN sampled from May 6-9. Vessels that participated in collecting plankton and environmental data during the Fall Plankton Survey included the NOAA Ship GORDON GUNTER (August 21 September 28), the Alabama vessel DISCOVERY (September 6), the Louisiana vessel BLAZING SEVEN (September 13-14), and USM/GCRL vessel TOMMY MUNRO (September 5-6).

Vessels that participated in the Summer Shrimp/Groundfish Survey and concurrently sampled plankton and environmental data included the USM/GCRL vessel TOMMY MUNRO (July 12-14), the Louisiana vessel PELICAN (June 8-12), and the NOAA Ship OREGON II (June 9 - July 18). The Alabama vessel DISCOVERY (June 3 and June 12), Texas vessels SABINE LAKE, SAN JACINTO, NUECES BAY, R.J. KEMP, and SAN ANTONIO BAY (June 3-27), and Florida using the TOMMY MUNRO (June 8-25) did not sample plankton in conjunction with the summer survey.

NOAA Ships participated in the Reef Fish Survey from February 2 - June 4. Florida sampled from August 1 through October 31 aboard the R/V Gulf Mariner.

Vessels that participated in the Fall Shrimp/Groundfish Survey and concurrently sampled plankton and environmental data included the NOAA Ships OREGON II (October 28 - December 6); the USM/GCRL vessel TOMMY MUNRO (November 11-12); and the Louisiana vessel BLAZING SEVEN (October 28-30 and November 18). The Alabama vessel DISCOVERY (November 22), Texas vessels SAN JACINTO, SABINE, MATAGORDA BAY, SAN ANTONIO BAY, and NUECES BAY (November 11-21), and Florida using the TOMMY MUNRO (October 9-19) did not sample plankton in conjunction with the fall survey.

Mississippi conducted bottom longline sampling monthly from March to October as part of the Bottom Longline Survey. Alabama sampled in March, May, June, July, August, and October. Louisiana sampled in March, April, May, June, August, and September. Texas conducted bottom longline sampling from June through September.

Alabama sampled reef fish over artificial and natural reefs during the Vertical Line Survey in May and September. Louisiana sampled reef fish over artificial reefs, oil and gas platforms, and natural habitat in February, March, May, June, July, August, September, and October.

PLANKTON SURVEYS

Since 1982, SEAMAP resource surveys have been conducted by the National Marine Fisheries Service in cooperation with the states of Florida, Alabama, Mississippi, Louisiana, and Texas. Plankton sampling is carried out during these surveys at predetermined SEAMAP stations arranged in a fixed, systematic grid pattern across the entire Gulf of Mexico. Most but not all SEAMAP stations (designated by a unique SEAMAP number) are located at $\sim 56 \mathrm{~km}$ or $1 / 2$-degree intervals along this grid. Some SEAMAP stations are located at $<56 \mathrm{~km}$ intervals especially along the continental shelf edge, while others have been moved to avoid obstructions, navigational hazards, or shallow water. Most SEAMAP plankton samples are taken during either dedicated plankton or shrimp/bottomfish (trawl) surveys, but over the years additional samples were taken using SEAMAP gear and collection methods at locations other than designated SEAMAP stations and/or outside established SEAMAP surveys, e.g. during Louisiana seasonal trawl surveys, SEAMAP Squid/Butterfish survey; and other serendipitous or special projects.

The sampling gear and methodology used to collect SEAMAP plankton samples are similar to those recommended by Kramer et al. (1972), Smith and Richardson (1977) and Posgay and Marak (1980). A 61 cm bongo net fitted with $0.333(0.335)^{1} \mathrm{~mm}$ mesh netting is fished in an oblique tow path from a maximum depth of 200 m or to $2-5 \mathrm{~m}$ off the bottom at depths less than 200 m . A mechanical flowmeter is mounted off-center in the mouth of each bongo net to record the volume of water filtered. Volume filtered ranges from ~ 20 to $600 \mathrm{~m}^{3}$, but is typically 30 to $40 \mathrm{~m}^{3}$ at the shallowest stations and 300 to $400 \mathrm{~m}^{3}$ at the deepest stations. A single or double 2 x 1 m pipe frame neuston net fitted with $0.947(0.950)^{1} \mathrm{~mm}$ mesh netting is towed at the surface with the frame half-submerged for 10 minutes. Samples are taken upon arrival on station regardless of time of day. At each station either a bongo and/or neuston tow are made depending on the specific survey. Samples are routinely preserved in 5 to 10\% formalin and later transferred after 48 hours to 95% ethanol for long-term storage. During some surveys, selected samples are preserved initially in 95\% ethanol and later transferred to fresh ethanol.

Initial processing of one bongo sample and one neuston sample from each SEAMAP station was accomplished at the Sea Fisheries Institute, Plankton Sorting and Identification Center (ZSIOP), in Szczecin, Poland, under a Joint Studies Agreement with NMFS. Wet plankton volumes of bongo net samples were measured by displacement to estimate net-caught zooplankton biomass (Smith and Richardson 1977). Fish eggs and larvae were removed from bongo net samples, and fish larvae only from neuston net samples. Fish eggs were not identified further, but larvae were identified to the lowest possible taxon (to family in most cases). Body length (either notochord or standard length) was measured.

Sorted ichthyoplankton specimens from ZSIOP were sent to the SEAMAP Archiving Center, managed in conjunction with the FWC, for long-term storage under museum conditions. Sorted ichthyoplankton samples from 1982 through 2012 are available for loan to researchers throughout the country. The alternate bongo and neuston samples from each station are retained at USM/GCRL as a

[^0]backup for those samples transshipped to ZSIOP in case of loss or damage during transit. These backup unsorted plankton samples are curated and housed at the SEAMAP Invertebrate Plankton Archiving Center, managed in conjunction with USM/GCRL, and are available for use by researchers.

See the SEAMAP Operations Manual for a more detailed description of sampling methods and protocols. You can also refer to the vessel cruise reports for more specific information on the individual SEAMAP Plankton Surveys conducted during 2013.

ENVIRONMENTAL DATA

Standardized methodology was used although the actual parameters measured varied among vessels participating in each survey. These parameters were measured based on equipment availability. The following parameters were recorded:

Vessel: Vessel code for each vessel.
Station: Station identifiers varied by state and vessel.
Cruise: Cruise numbers varied by state and vessels.
Date: Month/Day/Year.
Time: Local time and time zone, recorded at the start of sampling.
Latitude/longitude: Recorded to seconds.
Barometric pressure: Recorded in millibars.
Wave height: Estimated visually in meters.
Wind speed and direction: Recorded in knots with direction recorded in compass degrees from which the wind was blowing.
Air temperature: Recorded in degrees Celsius.
Cloud cover: Estimated visually in percent cloud cover.
Secchi depth: Secchi depth in meters, estimated at each daylight station. Standard oceanographic $30-\mathrm{cm}$ white discs were lowered until no longer visible, and then raised until visible. If different depths were recorded, an average was used.
Water Color: Forel-Ule data was recorded.

The following parameters were measured at the surface, mid-depth, and bottom; for bottom depths greater than 200 m , samples were taken at surface, 100 m and 200 m :

Water temperature: Temperatures were measured by a hand-held thermometer or by in situ electronic sensors onboard ship. No attempt was made to intercalibrate the various instruments used on individual vessels although several vessels did sample together to calibrate other sampling gear. Some error can be expected.
Salinity: Salinity samples were collected by Niskin bottles and stored for laboratory analysis with a salinometer. Conductivity probes or refractometers were used on some vessels. Salinity samples were also measured with in situ electronic sensors.
Chlorophyll: Chlorophyll samples were collected and frozen for later laboratory analysis. The general procedure for shipboard collection of chlorophyll was to collect more than 9 liters of water from the surface. This was kept stirred by bubbling air through it while filtration was being done. Three samples, to each of which a $1 \mathrm{ml}, 1 \%(\mathrm{~W} / \mathrm{V})$, suspension of MgCO_{3} was added, of up to 3 liters of water from the 9 liter sample were filtered through GF/C filters.

The three filters were placed individually in Petri dishes, wrapped in opaque material and frozen until analysis. Each of the three samples was analyzed separately in the laboratory.

Laboratory analyses for chlorophyll a and phaeophytin a (chlorophyll degradation product) were conducted by fluorometry and spectrophotometry. The general extraction procedures prior to measurement were similar. Samples analyzed by spectrophotometer included other chlorophyllous products, but these have not been included as data in this report. The methodology used is described in Strickland and Parsons (1972) and Jeffrey and Humphrey (1975). Some of the values have been deleted from the database because of analytical errors. In addition, chlorophyll samples data were also collected using a CTD. This method only obtains measures of chlorophyll a and is a measure of fluorescence (FL).
Dissolved oxygen: Dissolved oxygen values were measured by electronic probes or by the Winkler titration method. No attempts were made to intercalibrate the methods. When oxygen was measured in samples collected from a Niskin sampler, the oxygen bottles were allowed to overflow a minimum of 10 seconds to eliminate oxygen contamination. The tubing which delivered the water sample was inserted to the bottom of the bottle and withdrawn while the sample was still flowing. The oxygen bottles were sealed with a ground-glass stopper and analyzed onboard the vessels.
Turbidity: Turbidity values were measured by electronic probes when equipment was available.

TRAWL SURVEYS

Summer Shrimp/Groundfish Survey

In the fall of 2008, NMFS changed their method of selecting sampling sites. The states adopted this change beginning in 2010. Diurnal stratifications were dropped in the selection process, and geographic strata (which were mostly 2 to 3 statistical zone groupings) were changed to single statistical zones (Figure 1). Both station selection methods, the old and the new, are probability based designs. With probability sampling, each unit in the survey population has a known, positive probability of selection. This property of probability sampling avoids selection bias and enables one to use statistical theory to make valid inferences from the sample to the survey population. More specifically, the new method employs probability proportional to size sampling. In this type of sampling, a unit's selection probability is proportional to its size measure which in this case is geographical surface area. For example, if Unit A has twice the surface area of Unit B, then Unit A will have twice the probability of having a sample selected from it than B. The end result is that Unit A will have about twice the number of samples as B. Even though diurnal strata were dropped in the sampling site selection process, this information is not lost since samples can be post-stratified. Following is an example of how sampling sites are now selected.

Bathymetry data were downloaded from the National Geophysical Data Center (NGDC) web site (Divins, D.L., and D. Metzger, NGDC Coastal Relief Model, http://www.ngdc.noaa.gov/mgg/coastal/coastal.html). Because of the magnitude of data, they were downloaded by single NMFS Shrimp Statistical Zones (Figure 1). The download process allows for the definition of a desired data block through user supplied latitude and longitude boundaries. Since the data definition process is controlled by latitude and longitude only, some undesired depths were included in downloads (i.e., for NMFS, depths less than five or greater than sixty fathoms). These records were deleted later through a Statistical Analysis System (SAS) program. Each bathymetric record represents a 3 arc-second element of data (≈ 0.05-by- 0.05 minutes of latitude and longitude);
therefore, the number of data records was used as a measure of size for each respective statistical zone. The bathymetry data were then used as input to a SAS program which performed three functions; defined the sampling universe, determined the sampling proportions according to sizes of statistical zones, and randomly selected the sample sites according to the defined proportions.

Thirty minutes was selected as a tow time standard that was long enough to obtain a good sample, but short enough to maintain the efficiency of the surveys. Therefore all SEAMAP vessels now use a standard tow time of 30 minutes except the Texas vessels. The Texas vessels tow 10 minutes parallel to the depth stratum.

All Litopenaeus setiferus, Farfantepenaeus aztecus, and Farfantepenaeus duorarum were separated from the trawl catch at each station. Total count and weight by species were recorded for each station. A sample of up to 200 shrimp of each species from every trawl was sexed and measured to obtain length-frequency information. Estimated total numbers were derived from the total weights of those processed. Other species of fishes and invertebrates were identified, enumerated, and weighed. Weights and individual measurements on selected species, other than commercial shrimp, were also recorded.

Fall Shrimp/Groundfish Survey

The design of the Fall Survey was similar to the Summer Shrimp/Groundfish Survey. During the Fall Survey trawl stations were made with the standard 40 -ft and 20-ft SEAMAP nets and covered NMFS shrimp statistical zones 2 through 21 (Figure 1). Catch rates on all the vessels sampling were treated in the same manner as the Summer Shrimp/Groundfish Survey, with the exception to shrimp catches, where only 20 shrimp of each species from every trawl were measured, although Louisiana and Texas measure a minimum of 50 shrimp.

REEF FISH SURVEY

The primary purpose of this survey is to assess relative abundance and compute population estimates of reef fish found on natural reef fish habitat in the Gulf of Mexico. Two types of gear are used to deploy video cameras: 1) a single-funnel fish trap (2.13 m long by 0.76 m square) with the camera mounted at a height of 25 cm above the bottom of the trap; or 2) a 4 camera array with 4 cameras mounted orthogonal to each other at a height of 25 cm above the bottom. Both gears are baited with squid before deployment. The resultant video recordings (typically of one-hour duration) are processed back at the laboratory where fish are identified and counted independently by two tape readers. Final counts are entered into the SEAMAP reef fish database along with additional observations on habitat and fish activity.

The hardbottom database from which sampling sites for this survey are chosen was developed in the following manner. Areas of natural reef habitat from Brownsville, Texas to the southern tip of Florida (at $81^{\circ} 00^{\prime} \mathrm{W}$ longitude and $24^{\circ} 02^{\prime} \mathrm{N}$ latitude) and between 9 and 110 m water depth were first inscribed on navigation charts, then divided into 10 by 10 nautical mile blocks (primary sample units). Each block was subdivided into $100-\mathrm{m}^{2}$, secondary sample units that were numbered and initially classified as being "reef" or "nonreef" and then entered into a database. Prior to the survey, blocks are selected from this database in the eastern and western Gulf with probability proportional to the number of "reef" sample units within a block. Within each selected block, 100 sample sites are randomly selected. During the survey each selected block is occupied for one 24-h period, where
night hours are devoted to ship's echo sounder surveys of up to 100 sites and daytime hours to trap/video sampling. Each potential sample site surveyed at night is given a final determination as being either a reef site or not based on echo patterns, vertical relief and other characteristics. Up to 8 actual "reef" sites are then randomly selected for sampling during that day (Russell, unpublished report). Trap/video sampling begins one hour after sunrise and ends one hour before sunset. Trap soak time is one hour.

Associated environmental data collected at each site usually includes profiles of salinity, temperature, and surface chlorophyll; and may include profiles of dissolved oxygen, light transmittance, and fluorescence. Additional environmental and meteorological observations taken on stations follow standard SEAMAP methodology. During the NMFS component of the Reef Fish Survey, fish abundance is also measured with a fisheries acoustic device.

BOTTOM LONGLINE SURVEY

This nearshore survey complements an existing long-term fisheries independent survey currently being conducted by NMFS offshore, by targeting shark and finfish species within the shallow waters of the north central Gulf of Mexico. The objectives of the survey were to collect information on coastal shark and finfish abundances and distribution with a 1-mile longline and to collect environmental data. During the 2013 Bottom Longline Survey, the survey design included several sampling regions off Alabama, Mississippi, Louisiana, and Texas.

Stations were chosen randomly within each area and were stratified by depth ($0-5 \mathrm{~m}, 5-10 \mathrm{~m}$, and $10-$ 20 m). The stations were sampled between the hours of 7:30 a.m. and 7:30 p.m. each month. The sampling protocol follows the procedures established by the NMFS bottom longline survey. All equipment used in this inshore bottom longline survey is identical to the equipment used by NMFS. The longline gear consisted of a 1.6 km (426 kg test monofilament) mainline with 100 gangions ($3.66 \mathrm{~m}, 332 \mathrm{~kg}$ test monofilament) containing \#15/0 circle hooks (0 offset) and baited with Atlantic mackerel, Scomber scomber. The mainline was weighted down with a midpoint and endpoint weight. Radar high-flyers with strobe bullet buoys were used to mark the longline locations. A hydraulic longline reel was used for setting and retrieving the mainline. The longline was fished for 1 -hr and then retrieved.

VERTICAL LINE SURVEY

In 2010, Alabama started a new vertical line survey to sample reef fish over natural and artificial reefs and other areas. The sampling gear used a typical commercial bandit rig that holds approximately 500 feet of clear 300 lb test mainline. A $24-\mathrm{ft}$. backbone (leader) was attached to the terminal end of the mainline. An approximately ten pound weight was attached to the terminal end of the backbone. The backbone was rigged with ten 18-inch long gangions at intervals of two feet. A total of 12 grids were fished per survey. Two structure and two non-structure areas were randomly chosen and equally allocated across three depth strata. Vertical line reels were baited with Atlantic mackerel. Soak time was five minutes. Fish were retained and processed for age and fecundity. All fish were sacrificed for otoliths at stations deeper than 60 m . In water depth less than 60 m , stations were assigned as tag and release or collection sites.

Louisiana started vertical line sampling in 2011. In Louisiana, the sampling frame is subdivided into 3 sampling blocks based on depth between 89 degrees longitude and 91 degrees longitude, with the
water depth ranging from 60 to 360 feet. Each block is sampled quarterly in a rotation. Within these sampling blocks there is a possibility of randomly selecting 40 different corridors within the block. The actual sites are randomly selected within the corridor boundary and sampled at the chief scientist's discretion. The sites roughly consist of artificial reefs, natural bottom, and petroleum production platforms.

RESULTS

PLANKTON SURVEYS

Plankton stations for the Winter Plankton Survey are shown in Figure 2. Plankton stations for the Spring Plankton Survey are shown in Figure 3. Plankton stations for the Fall Plankton Survey are shown in Figure 4.

TRAWL SURVEYS

Summer Shrimp/Groundfish Survey

Shrimp and groundfish sampling was conducted in June and July from south Florida to Brownsville, Texas. Figure 5 shows station locations. The Summer Shrimp/Groundfish Survey consisted primarily of biological trawl data and concomitant environmental and plankton data. A species composition listing from the $40-\mathrm{ft}$ and $20-\mathrm{ft}$ trawls is presented in Table 2, ranked in order of abundance, within the categories of finfish, crustaceans, and other invertebrates.

Fall Shrimp/Groundfish Survey

Shrimp and groundfish sampling was conducted from October through December from south Florida to Brownsville, Texas. Figure 6 shows the station locations. The Fall Shrimp/Groundfish Survey consisted of biological trawl data, concomitant environmental, and plankton data. A species composition listing from the $40-\mathrm{ft}$ and $20-\mathrm{ft}$ trawls is presented in Table 3, ranked in order of abundance, within the categories of finfish, crustaceans, and other invertebrates.

REAL-TIME DATA MANAGEMENT

The SEAMAP Subcommittee agreed it was imperative to the success of the SEAMAP Program to distribute data on a near real-time basis to the fishing industry and others interested in SEAMAP. Summarized data were distributed weekly to approximately 100 individuals during the Summer Shrimp/Groundfish Survey. The summarized data in the form of computer plots and data listings were sent to management agencies and industry members. These plots showed station locations, catches of brown, pink, and white shrimp in $\mathrm{lb} / \mathrm{hr}$ and count/lb, and total finfish catch in $\mathrm{lb} / \mathrm{hr}$.

REEF FISH SURVEY

Primary data collection and sampling for reef fish assessment were conducted during February through June by NMFS personnel and from August by Florida personnel. Station locations are plotted in Figure 7. Video tapes from all sources were analyzed using NMFS standardized protocols.

BOTTOM LONGLINE SURVEY

Station locations for the Bottom Longline Survey are plotted in Figure 8. A species composition list is presented in Table 4. The species list is ranked in order of abundance.

VERTICAL LINE SURVEY

Station locations for the Vertical Line Survey are plotted in Figure 9. A species composition list, ranked in order of abundance, is presented in Table 5.

DISCUSSION

The quasisynoptic SEAMAP sampling program and the intended long-term nature of the sampling programs have been designed to provide the baseline data set needed for fishery management and conservation. In 1985, the SEAMAP long-term baseline data was disrupted by the loss of the Spring Plankton Survey and Fall Plankton Survey. In 1986, the SEAMAP Subcommittee renewed its commitment for the collection of baseline plankton data. These ichthyoplankton samples are and will continue to be used by researchers studying taxonomy, age and growth, bioenergetics, and other life history aspects, as well as spawning biomass and recruitment. Information on species' relative distributions within the Gulf of Mexico can be analyzed with respect to environmental data to assess population abundance as a function of environmental change.

Similar analyses and investigations are being undertaken with Summer and Fall Shrimp/Groundfish Survey data. These data sets are being utilized in resource management decisions, and because of the program's ability to process data quickly, the capability exists to optimize some fisheries on a real-time basis. The long-term data set on all of the species collected, not just those of commercial and recreational importance, offers an opportunity to examine ecological relationships, with the eventual goal of developing management models that take into account the multi-species nature of most Gulf fisheries. The value of the SEAMAP program lies in its use for both immediate and longrange management goals.

Much use has already been made of SEAMAP data. For example, during the past SEAMAP surveys an area of very low dissolved bottom oxygen was found off Louisiana in the summers of 1982, 19852013. The presence of this phenomenon and some of the related conditions and biological effects were reported by Leming and Stuntz (1984) and Hanifen et al. (1995), and during such occurrences, SEAMAP has distributed special environmental bulletins and news releases to management agencies and the shrimp industry. In addition, SEAMAP data were used to assist in the identification of the minimum 1997 reduction in red snapper shrimp trawl bycatch mortality rate that would enable the red snapper fishery to still recover to the 20\% spawning potential ratio (SPR) by the year 2019 (Goodyear 1997). This analysis was requested and supported by the Gulf of Mexico Fishery Management Council to address the issue of red snapper bycatch. SEAMAP data were also used by some coastal states to determine the status of shrimp stocks and their movements just as the shrimping seasons were to be opened and SEAMAP data were used to develop a guide to the grouper species of the western North Atlantic Ocean (Grace et al. 1994). The primary purpose of the guide is for species identification with projects that deploy underwater video camera systems.

Since SEAMAP's inception in 1982, the goal of plankton activities in the Gulf of Mexico has been to collect data on the early life stages of fishes and invertebrates that will complement and enhance the fishery-independent data gathered on the adult life-stage (Lyczkowski-Shultz and Brasher 1996). An annual larval index for the Atlantic bluefin tuna is generated each year from the Spring Plankton Survey and is used by the International Commission for the Conservation of Atlantic Bluefin Tunas to estimate stock size (Scott et al. 1993). Larval indices generated from the Summer Shrimp/Groundfish and Fall Plankton Surveys have now become an integral part of the king mackerel assessment in the Gulf (Gledhill and Lyczkowski-Shultz 2000). Larvae from SEAMAP collections have formed the basis for formal descriptions of larval development for fishes such as the snappers, cobia, tripletail, and dolphin (Drass et al. 2000; Ditty and Shaw 1992; Ditty and Shaw 1993; Ditty et al. 1994). Data on distribution and relative abundance of larvae of all Gulf fishes captured during SEAMAP surveys have been summarized by Richards et al. 1984, Kelley et al. 1985, Kelley et al. 1990, and Kelley et al. 1993.

The SEAMAP data collected during the Summer Shrimp/Groundfish Survey continues to be used extensively for fishery management purposes. In 1981, the Gulf of Mexico Fishery Management Council's plan for shrimp was implemented (Center for Wetland Resources 1980), with one management measure calling for the temporary closure to shrimping in the EEZ off Texas. This closure complements the traditional closure of the Texas territorial sea, normally May 15 through early July of each year. The GMFMC determined that this type of closure would allow small brown shrimp to be protected from harvest, but would still allow the taking of larger brown shrimp by fishermen in deeper waters.

The National Marine Fisheries Service was charged with evaluating the effects of the Texas Closure and submitted a report to the GMFMC in January 2013. This report contained the results and an overview of the effect of the 2011 Texas Closure. After review of these data and other information, the GMFMC voted to continue the Texas Closure for 2013.

Data from all SEAMAP surveys have been used in the SouthEast Data, Assessment, and Review (SEDAR) process. SEDAR is a cooperative Fishery Management Council process initiated in 2002 to improve the quality and reliability of fishery stock assessments. SEDAR seeks improvements in the scientific quality of stock assessments and greater relevance of quantities information available to address existing and emerging fishery management issues. SEAMAP data have been used in stock assessments for king mackerel, red snapper, gray triggerfish, gag grouper, red grouper, mutton snapper, blacknose sharks, and blacktip sharks.

DATA REQUESTS

It is the policy of the SEAMAP Subcommittee that all verified non-confidential SEAMAP data, collected specimens, and samples shall be available to all SEAMAP participants, other fishery researchers, and management organizations. This atlas presents, to those individuals interested in the data or specimens, a chance to review the data in a summary form.

Data and specimen requests from SEAMAP participants, cooperators and others will normally be handled on a first-come, first-served, and time-available basis. Because of personnel and funding limitations, however, certain priorities must be assigned to the data and specimen requests. These priorities are reviewed by the SEAMAP Subcommittee. For further information on SEAMAP data
management, see the Southeast Area Monitoring and Assessment Program (SEAMAP) Management Plan: 2011-2015 (ASMFC 2011).

Data requests and inquiries, as well as requests for plankton samples, can be made by contacting Jeff Rester, the SEAMAP Coordinator, Gulf States Marine Fisheries Commission, 2404 Government Street, Ocean Springs, MS 39564; (228) 875-5912 or via e-mail at jrester@gsmfc.org.

LITERATURE CITED

Atlantic States Marine Fisheries Commission. 2011. SEAMAP Management Plan: 2011-2015. Washington, DC: ASMFC.

Center for Wetland Resources. 1980. Management plan and final environmental impact statement for the shrimp fishery of the Gulf of Mexico, United States waters. Louisiana State Univ., Baton Rouge, Louisiana. 185 p.

Ditty, J.G. and R.F. Shaw. 1992. Larval development, distribution, and ecology of cobia Rachycentron canadum (Family: Rachycentridae), in the northern Gulf of Mexico. Fishery Bulletin. Vol. 90:668-677.

Ditty, J.G. and R.F. Shaw. 1993. Larval development of tripletail, Lobotes surinamensis (Pisces: Lobotidae), and their spatial and temporal distribution in the northern Gulf of Mexico. Fishery Bulletin. Vol. 92:33-45.

Ditty, J.G., R.F. Shaw, C.B. Grimes, and J.S. Cope. 1994. Larval development, distribution, and abundance of common dolphin, Coryphaena hippurus, and pompano dolphin, C. equiselis (Family: Coryphaenidae), in the northern Gulf of Mexico. Fishery Bulletin. Vol. 94:275-291.

Donaldson, D.M., N.J. Sanders, and P.A. Thompson. 1993. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1991. Gulf States Marine Fisheries Commission. No. 29. 321 p .

Donaldson, D.M., N.J. Sanders, and P.A. Thompson. 1994. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1992. Gulf States Marine Fisheries Commission. No. 30. 293 p.

Donaldson, D.M., N.J. Sanders, P.A. Thompson and R. Minkler. 1996. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1993. Gulf States Marine Fisheries Commission. No. 34. 284 p.

Donaldson, D.M., N.J. Sanders, P.A. Thompson and R. Minkler. 1997a. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1994. Gulf States Marine Fisheries Commission. No. 40. 277 p.

Donaldson, D.M., N.J. Sanders, P.A. Thompson and R. Minkler. 1997b. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1995. Gulf States Marine Fisheries Commission. No. 41. 280 p.

Donaldson, D.M., N.J. Sanders, P.A. Thompson and D. Hanisko. 1998. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1996. Gulf States Marine Fisheries Commission. No. 52. 263 p.

Drass, D.M., K.L. Bootes, J. Lyczkowski-Shultz, B.H. Comyns, G.J. Holt, C.M. Riley, and R.P. Phelps. 2000. Larval development of red snapper, Lutjanus campechanus, with comparisons to co-occurring snapper species. Fishery Bulletin. Vol. 98(3):507-527.

Eldridge, P.J. 1988. The Southeast Area Monitoring and Assessment Program (SEAMAP): A state-federal-university program for collection, management and dissemination of fisheryindependent data and information in the southeast United States. Mar. Fish. Rev. 50(2): 29-39.

Gledhill, C.T. and J. Lyczkowski-Shultz. 2000. Indices of larval king mackerel, Scomberomorus cavalla, for use in population assessment in the Gulf of Mexico. Fishery Bulletin. Vol. 98(4):684-691.

Goodyear, C.P. 1997. An evaluation of the minimum reduction in the 1997 red snapper shrimp bycatch mortality rate consistent with the 2019 recovery target. GMFMC. 14 p. + appendix.

Grace, M., K.R. Rademacher and M. Russell. 1994. Pictorial guide to the groupers (Teleostei: Serrenidae) of the western North Atlantic. NOAA Tech. Report. NMFS 118. 46 p.

Hanifen, J.G., W.S. Perret, R.P. Allemand and T.L. Romaire. 1995. Potential impacts of hypoxia on fisheries: Louisiana=s fishery-independent data. In Proceedings of Gulf of Mexico Program=s Hypoxia Conference. November 1995, New Orleans, LA.

Jeffrey, S.W. and G.F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls $\underline{a}, \underline{b}, \underline{\mathrm{c}_{1}}$ and $\underline{\mathrm{c}}_{2}$ in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzer Bpp. 167: 191-194.

Kelley, S., T. Potthoff, W.J. Richards, L. Ejsymont and J.V. Gartner. 1985. SEAMAP 1983 Ichthyoplankton. Larval distribution and abundance of Engraulididae, Carangidae, Clupeidae, Lutjanidae, Serranidae, Sciaenidae, Coryphaenidae, Istiophoridae, Xiphiidae and Scombridae in the Gulf of Mexico. NOAA Tech. Mem., NMFS-SEFC -167.

Kelley, S., J.V. Gartner, Jr., W.J. Richards and L. Ejsymont. 1990. SEAMAP 1984 \& 1985 Ichthyoplankton. Larval distribution and abundance of Carangidae, Clupeidae, Coryphaenidae, Engraulididae, Gobiidae, Istiophoridae, Lutjanidae, Scombridae, Serranidae, and Xiphiidae in the Gulf of Mexico. NOAA Tech. Mem., NMFS-SESC-317.

Kelley, S., J.V. Gartner, Jr., W.J. Richards and L. Ejsymont. 1993. SEAMAP 1986 Ichthyoplankton. Larval distribution and abundance of Engraulididae, Carangidae, Clupeidae, Gobiidae, Lutjanidae, Serranidae, Coryphaenidae, Istiophoridae and Scombridae in the Gulf of Mexico. NOAA Tech. Mem., NMFS-SESC-245.

Kramer, D., M.J. Kalin, E.G. Stevens, J.R. Thrailkill and J.R. Zweifel. 1972. Collecting and processing data on fish eggs and larvae in the California Current region. NOAA Technical Report. NMFS Circular 370. 38 p.

Leming, T.D. and W.E. Stuntz. 1984. Zones of coastal hypoxia revealed by satellite scanning have implications for strategic fishing. Nature. 310 (5973): 131-138.

Lyczkowski-Shultz, J. and R. Brasher. 1996. Ichthyoplankton data summaries from SEAMAP Summer Shrimp/Groundfish Surveys. Pages 27-42 in Uses of Fishery-Independent Data. General Session Proceedings, Gulf States Marine Fisheries Commission. No. 35.

Nichols, S. 1982. Impacts of the 1981 and 1982 Texas closure on brown shrimp yields. NOAA, NMFS-SEFC. 44 p.

Nichols, S. 1984. Impacts of the 1982 and 1983 closure of the Texas FCZ on brown shrimp yields. Report to the Gulf of Mexico Fishery Management Council.

Nichols, S. and J.R. Poffenberger. 1987. Analysis of alternative closures for improving brown shrimp yield in the Gulf of Mexico. Report to the Gulf of Mexico Fishery Management Council.

Posgay, J.A. and R.R. Marak. 1980. The MARMAP bongo zooplankton samplers. J. Northw. Atl. Fish. Sci. 1: 9-99.

Rester, J.K. 2009. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2004. Gulf States Marine Fisheries Commission. No. 173.

Rester, J.K. 2010. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2005. Gulf States Marine Fisheries Commission. No. 175.

Rester, J.K. 2010. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2006. Gulf States Marine Fisheries Commission. No. 179.

Rester, J.K. 2010. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2007. Gulf States Marine Fisheries Commission. No. 180.

Rester, J.K. 2011. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2008. Gulf States Marine Fisheries Commission. No. 191.

Rester, J.K. 2011. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2009. Gulf States Marine Fisheries Commission. No. 198.

Rester, J.K. 2012. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2010. Gulf States Marine Fisheries Commission. No. 206.

Rester, J.K. 2014. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2011. Gulf States Marine Fisheries Commission. No. 229.

Rester, J.K. 2014. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2012. Gulf States Marine Fisheries Commission. No. 237.

Rester, J.K., N.J. Sanders, P.A. Thompson and D. Hanisko. 1999. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1997. Gulf States Marine Fisheries Commission. No. 63. 254 p .

Rester, J.K., N.J. Sanders, G. Pellegrin, Jr. and D. Hanisko. 2000. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1998. Gulf States Marine Fisheries Commission. No. 75. 243 p .

Rester, J.K., N.J. Sanders, G. Pellegrin, Jr. and D. Hanisko. 2001. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1999. Gulf States Marine Fisheries Commission. No. 82. 247 p.

Rester, J.K., N.J. Sanders, G. Pellegrin, Jr. and D. Hanisko. 2002. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2000. Gulf States Marine Fisheries Commission. No. 101. Available on CD-ROM only.

Rester, J.K., N.J. Sanders, G. Pellegrin, Jr., and D. Hanisko. 2004. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2001. Gulf States Marine Fisheries Commission. No. 118. Available on CD-ROM only.

Rester, J.K., N.J. Sanders, and G. Pellegrin, Jr. 2008. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2002. Gulf States Marine Fisheries Commission. No. 156.

Rester, J.K., N.J. Sanders, and G. Pellegrin, Jr. 2009. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2003. Gulf States Marine Fisheries Commission. No. 172.

Richards, W.J., T. Potthoff, S. Kelley, M.F. McGowan, L. Ejsymont, J.H. Power and R.M. Olvera L. 1984. SEAMAP 1982 - Ichthyoplankton. Larval distribution and abundance of Engraulididae, Carangidae, Clupeidae, Lutjanidae, Serranidae, Sciaenidae, Coryphaenidae, Istiophoridae, Xiphiidae and Scombridae in the Gulf of Mexico. NOAA Tech. Mem., NMFS-SEFC-167.

Russell, G.M. Unpublished report. Reef fish assessment methodology for SEAMAP surveys of hardbottom areas. National Marine Fisheries Service. 25 p.

Sanders, N.J., P.A. Thompson and T. Van Devender. 1990a. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1986. Gulf States Marine Fisheries Commission. No. 20. 328 p.

Sanders, N.J., P.A. Thompson and D.M. Donaldson. 1990b. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1987. Gulf States Marine Fisheries Commission. No. 22. 337 p.

Sanders, N.J., D.M. Donaldson and P.A. Thompson. 1991a. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1988. Gulf States Marine Fisheries Commission. No. 23. 320 p .

Sanders, N.J., D.M. Donaldson and P.A. Thompson. 1991b. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1989. Gulf States Marine Fisheries Commission. No. 25. 318 p .

Sanders, N.J., D.M. Donaldson and P.A. Thompson. 1992. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1990. Gulf States Marine Fisheries Commission. No. 27. 311 p.

Scott, G.P., S.C. Turner, C.B. Grimes, W.J. Richards, and E.B. Brothers. 1993. Indices of larval bluefin tuna, Thunnus thynnus, abundance in the Gulf of Mexico: modeling variability in growth, mortality, and gear selectivity. Bulletin of Marine Science. Vol. 53(2):912-929.

Sherman, K., R. Lasker, W. Richards and A.W. Kendall, Jr. 1983. Ichthyoplankton and fish recruitment studies in large marine ecosystems. Mar. Fish. Rev. 45 (10, 11, 12): 1-25.

Smith, P.E. and S.L. Richardson, eds. 1977. Standard techniques for pelagic fish egg and larva surveys. FAO Fish. Tech. Paper 175. 100 p.

Southeast Area Monitoring and Assessment Program (SEAMAP) Strategic Plan. 1981. Report to the Gulf States Marine Fisheries Commission. 50 p.

Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of seawater analysis. Ottawa: Fish. Res. Bd. Can. 310 p.

Stuntz, W.E., C.E. Bryan, K. Savastano, R.S. Waller and P.A. Thompson. 1985. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1982. Gulf States Marine Fisheries Commission. 145 p.

Thompson, P.A. and N. Bane. 1986a. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1983. Gulf States Marine Fisheries Commission. No. 13. 179 p.

Thompson, P.A. and N. Bane. 1986b. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1984. Gulf States Marine Fisheries Commission. No. 15. 171 p.

Thompson, P.A., T. Van Devender and N.J. Sanders, Jr. 1988. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1985. Gulf States Marine Fisheries Commission. No. 17. 338 p .

SEAMAP SURVEY ACTIVITIES						
	WINTER	SPRING	SPRING	SUMMER		FALL
YEAR	SHRIMP/GROUNDFISH	PLANKTON	SHRIMP/GROUNDFISH	SHRIMP/GROUNDFISH	BUTTERFISH	PLANKTON
1982	--	APRIL-MAY	--	JUNE-JULY	--	--
1983	--	APRIL-MAY	--	JUNE-JULY	--	--
1984	--	APRIL-MAY	--	JUNE-JULY	--	AUGUST
1985	--	--	--	JUNE-JULY	JULY-AUGUST	SEPTEMBER
1986	--	APRIL-MAY	--	JUNE-JULY	MAY-JUNE	SEPTEMBER
1987	--	APRIL-MAY	--	JUNE-JULY	--	SEPTEMBER
1988	--	MARCH-MAY	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1989	--	APRIL-MAY	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1990	--	APRIL-MAY	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1991	--	APRIL-MAY	--	JUNE-JULY	--	AUGUST-SEPTEMBER
1992	--	APRIL-MAY	--	JUNE-JULY	--	AUGUST-OCTOBER
1993	--	APRIL-MAY	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1994	--	APRIL-MAY	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1995	--	APRIL-JUNE	--	JUNE-JULY	--	SEPTEMBER
1996	--	APRIL-JUNE	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1997	--	APRIL-JUNE	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1998	--	APRIL-JUNE	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1999	--	APRIL-MAY	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
2000	--	APRIL-MAY	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
2001	--	APRIL-MAY	--	JUNE-JULY	--	AUGUST-OCTOBER
2002	--	APRIL-MAY	--	JUNE-JULY	--	AUGUST-OCTOBER
2003	--	MAY	--	JUNE-JULY	--	AUGUST-OCTOBER
2004	--	APRIL-JUNE	--	JUNE-JULY	--	SEPTEMBER
2005	--	APRIL-MAY	--	JUNE-AUGUST	--	--
2006	--	APRIL-MAY	--	JUNE-JULY	--	AUGUST-SEPTEMBER
2007	--	MARCH-JUNE	--	JUNE-AUGUST	--	AUGUST-SEPTEMBER
2008	--	APRIL-JUNE	APRIL	JUNE-AUGUST	--	SEPTEMBER
2009	JANUARY-FEBRUARY	APRIL-JUNE	MARCH	JUNE-JULY	--	AUGUST-SEPTEMBER
2010	FEBRUARY	APRIL-MAY	APRIL	JUNE-AUGUST	--	AUGUST-SEPTEMBER
2011	FEBRUARY	MAY	--	JUNE-JULY	--	AUGUST-SEPTEMBER
2012	--	APRIL-MAY	--	MAY-JULY	--	AUGUST-SEPTEMBER
2013	--	MAY	--	JUNE-JULY	--	AUGUST-SEPTEMBER

SEAMAP SURVEY ACTIVITIES					
	FALL	WINTER	BOTTOM	VERTICAL	REEF
YEAR	SHRIMP/GROUNDFISH	PLANKTON	LONGLINE	LINE	FISH
1982	--	--	--		--
1983	--	DECEMBER	--		--
1984	--	DECEMBER	--		--
1985	SEPTEMBER-DECEMBER	--	--		--
1986	OCTOBER-DECEMBER	--	--		--
1987	SEPTEMBER-DECEMBER	--	--		--
1988	OCTOBER-DECEMBER	--	--		--
1989	OCTOBER-DECEMBER	--	--		--
1990	OCTOBER-DECEMBER	--	--		--
1991	SEPTEMBER-DECEMBER	--	--		--
1992	OCTOBER-DECEMBER	--	--		MAY-JUNE
1993	OCTOBER-DECEMBER	JAN.-FEB.	--		MAY-JULY, SEPT., NOV.
1994	OCTOBER-NOVEMBER	--	--		MAY-JULY, AUG.-OCT., DEC.
1995	OCTOBER-DECEMBER	--	--		JAN., JUNE-AUG., DEC.
1996	OCTOBER-DECEMBER	DECEMBER	--		JULY, AUGUST, NOVEMBER
1997	OCTOBER-DECEMBER	--	--		JUNE, JULY, AUG., NOV.
1998	OCTOBER-NOVEMBER	--	--		MAY, JULY, AUGUST
1999	OCTOBER-NOVEMBER	--	--		JAN., AUG., OCT., DEC.
2000	OCTOBER-DECEMBER	--	--		OCTOBER, NOVEMBER
2001	OCTOBER-DECEMBER	--	--		MAY, JUNE, OCTOBER
2002	OCTOBER-DECEMBER	--	--		FEBRUARY-MAY, OCTOBER
2003	OCTOBER-DECEMBER	--	--		OCTOBER-NOVEMBER
2004	OCTOBER-DECEMBER	JANUARY	--		FEBRUARY-MARCH
2005	OCTOBER-NOVEMBER	--	--		FEBRUARY-JULY, OCTOBER
2006	OCTOBER-DECEMBER	--	--		FEBRUARY-AUGUST
2007	OCTOBER-DECEMBER	--	--		FEBRUARY-MAY
2008	SEPTEMBER-NOVEMBER	FEB.-MAR.	MARCH-OCTOBER		FEBRUARY-AUGUST
2009	SEPTEMBER-NOVEMBER	FEB.-MAR.	MARCH-OCTOBER		APRIL-AUGUST
2010	SEPTEMBER-NOVEMBER	FEB.-MAR.	MARCH-OCTOBER	APRIL-DECEMBER	MARCH-SEPTEMBER
2011	OCTOBER-NOVEMBER		MARCH-OCTOBER	MAY-DECEMBER	APRIL-JULY
2012	OCTOBER-NOVEMBER	JANUARY-FEBRURY	MARCH-OCTOBER	MARCH-OCTOBER	JANUARY-AUGUST
2013	OCTOBER-DECEMBER	FEBRUARY	MARCH-OCTOBER	FEBRUARY-OCTOBER	FEBRUARY-OCTOBER

Table 2. 2013 Summer Shrimp/Groundfish Survey species composition list, 391 trawl stations, for those vessels that used either a $40-\mathrm{ft}$ or $20-\mathrm{ft}$ trawl. Species with a total weight of less than $0.0227 \mathrm{~kg}(0.05 \mathrm{lb})$ are indicated on the table as 0.0 kg .					
GENUS/SPECIES	COMMON NAME	TOTAL NUMBER CAUGHT	TOTAL WEIGHT CAUGHT (KG)	NUMBER OF TOWS WHERE CAUGHT	\% FREQUENCY OCCURRENCE
Finfishes					
Micropogonias undulatus	Atlantic croaker	54498	1178.6	131	33.5
Chloroscombrus chrysurus	Atlantic bumper	18613	670.9	99	25.3
Stenotomus caprinus	longspine porgy	17786	431.5	133	34
Peprilus burti	gulf butterfish	17478	310.9	143	36.6
Lagodon rhomboides	pinfish	11437	641.2	139	35.5
Syacium papillosum	dusky flounder	6816	314	139	35.5
Trachurus lathami	rough scad	6792	136.9	100	25.6
Saurida brasiliensis	largescale lizardfish	6307	30.7	140	35.8
Anchoa hepsetus	striped anchovy	4801	61.9	48	12.3
Prionotus longispinosus	bigeye searobin	4606	60.4	117	29.9
Serranus atrobranchus	blackear bass	4376	47.2	76	19.4
Trichiurus lepturus	Atlantic cutlassfish	4057	117.3	96	24.6
Upeneus parvus	dwarf goatfish	3751	95	112	28.6
Cynoscion arenarius	sand seatrout	3117	83.2	104	26.6
Synodus foetens	inshore lizardfish	2852	301.1	227	58.1
Lutjanus synagris	lane snapper	2578	299.2	75	19.2
Pristipomoides aquilonaris	wenchman	2479	109	76	19.4
Scorpaena calcarata	smoothhead scorpionfish	2443	47.5	62	15.9
Eucinostomus gula	silver jenny	2327	75.1	29	7.4
Haemulon aurolineatum	tomtate	2175	209.5	71	18.2
Leiostomus xanthurus	spot	2167	144.3	81	20.7
Peprilus paru	harvestfish	2105	19.8	41	10.5
Anchoa lyolepis	dusky anchovy	2030	5.1	17	4.3
Centropristis philadelphica	rock sea bass	1858	49.7	98	25.1
Synodus poeyi	offshore lizardfish	1724	17.3	122	31.2
Peprilus paru	harvestfish	1643	8	17	4.3
Prionotus stearnsi	shortwing searobin	1606	15.6	82	21

Table 2. Species composition list (continued)			

Table 2. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Centropristis ocyurus	bank sea bass	417	20.1	48	12.3
Stellifer lanceolatus	star drum	400	2.8	28	7.2
Bollmannia communis	ragged goby	400	1.2	19	4.9
Pterois volitans	lion fish	391	55	61	15.6
Serranus notospilus	saddle bass	385	2.1	39	10
Mullus auratus	red goatfish	378	17.9	36	9.2
Scorpaena brasiliensis	barbfish	366	32.6	60	15.3
Sphoeroides parvus	least puffer	361	3.1	42	10.7
Haemulon striatum	striped grunt	358	7.3	7	1.8
Ariopsis felis	hardhead catish	354	52.4	32	8.2
Bothus robinsi	twospot flounder	352	11.5	51	13
Sardinella aurita	Spanish sardine	334	8.7	18	4.6
Etropus crossotus	fringed flounder	309	3.6	43	11
Serranus phoebe	tattler	307	11.7	41	10.5
Scomberomorus maculatus	Spanish mackerel	298	10.9	31	7.9
Decapterus punctatus	round scad	292	4.5	27	6.9
Elops saurus	ladyfish	279	1.6	1	0.3
Monacanthus ciliatus	fringed filefish	278	5.8	59	15.1
Prionotus roseus	bluespotted searobin	271	7.9	58	14.8
Synodus intermedius	sand diver	241	21.8	37	9.5
Pagrus pagrus	red porgy	232	13.6	25	6.4
Opisthonema oglinum	Atlantic thread herring	229	19.2	28	7.2
Antennarius radiosus	singlespot frogfish	223	2.1	37	9.5
Lagocephalus laevigatus	smooth puffer	200	3.9	52	13.3
Ophidion holbrookii	bank cusk-eel	188	18	26	6.6
Oligoplites saurus	leatherjack	185	4.6	5	1.3
Etropus		172	1.3	4	1
Citharichthys spilopterus	bay whiff	168	1.4	44	11.3
Steindachneria argentea	luminous hake	163	0.3	4	1
Polydactylus octonemus	Atlantic threadfin	158	4.8	30	7.7
Prionotus rubio	blackwing searobin	156	10.3	33	8.4

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- |

Table 2. Species composition list (continued)					
		NUMBER OF			
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Prionotus martis	barred searobin	66	2.2	17	4.3
Ancylopsetta ommata	ocellated flounder	66	5.6	33	8.4
Epinephelus morio	red grouper	65	62.1	32	8.2
Nicholsina usta	emerald parrotfish	63	5.8	22	5.6
Rhynchoconger flavus	yellow conger	62	4.1	16	4.1
Scomber japonicus	chub mackerel	61	3.7	1	0.3
Ogcocephalus cubifrons	polka-dot battish	60	2.9	20	5.1
Brotula barbata	bearded brotula	60	3.1	21	5.4
Chaetodon sedentarius	reef butterflyfish	58	3	18	4.6
Citharichthys macrops	spotted whiff	53	2.2	24	6.1
Balistes capriscus	gray triggerfish	53	9.2	26	6.6
Centropristis striatus	black sea bass	53	4.4	4	1
Cyclopsetta fimbriata	spotfin flounder	51	7.3	33	8.4
Hoplunnis macrura	freckled pike-conger	51	0.6	10	2.6
Sphoeroides	common puffers	50	0	1	0.3
Hippocampus erectus	lined seahorse	50	0.3	31	7.9
Ancylopsetta dilecta	three-eye flounder	49	2.7	19	4.9
Raja texana	roundel skate	49	15.3	34	8.7
Gastropsetta frontalis	shrimp flounder	46	2.6	23	5.9
Citharichthys gymnorhinus	anglefin whiff	45	0.1	22	5.6
Chilomycterus schoepfii	striped burrfish	45	8.7	28	7.2
Serranus tortugarum	chalk bass	43	0.4	2	0.5
Sphyraena guachancho	guaguanche	43	4.8	14	3.6
Calamus nodosus	knobbed porgy	43	11.2	12	3.1
Hemipteronotus novacula	pearly razorfish	42	2.4	19	4.9
Bothus ocellatus	eyed flounder	41	1	15	3.8
Holacanthus bermudensis	blue angelfish	40	17.6	13	3.3
Eucinostomus harengulus	tidewater mojarra	39	2.7	18	4.6
Prionotus scitulus	leopard searobin	37	1.3	9	2.3
Paralichthys albigutta	gulf flounder	37	12.4	17	4.3
Hemicaranx amblyrhynchus	bluntnose jack	36	0.7	9	2.3

Table 2. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Selene vomer	lookdown	36	0.5	18	4.6
Lachnolaimus maximus	hogfish	35	13.1	9	2.3
Calamus leucosteus	whitebone porgy	32	9.8	9	2.3
Ogcocephalus cubifrons		32	11.5	25	6.4
Ariomma bondi	silver-rag	30	0.6	4	1
Schultzea beta	school bass	29	0.4	2	0.5
Raja eglanteria	clearnose skate	29	17.5	20	5.1
Hoplunnis diomedianus	blacktail pike-conger	28	0.2	12	3.1
Astrapogon alutus	bronze cardinalfish	28	0.1	9	2.3
Menticirrhus americanus	southern kingfish	28	3.8	11	2.8
Caranx crysos	blue runner	28	4.2	11	2.8
Ogcocephalus corniger	longnose batfish	27	0.7	17	4.3
Symphurus plagiusa	blackcheek tonguefish	26	0.6	8	2
Ophidion selenops	mooneye cusk-eel	26	0.1	11	2.8
Priacanthus arenatus	bigeye	26	3.2	19	4.9
Etrumeus teres	round herring	26	0.2	4	1
Otophidium omostigmum	polka-dot cusk-eel	26	0.3	8	2
Neomerinthe hemingwayi	spinycheek scorpionfish	25	0.9	7	1.8
Chromis enchrysura	yellowtail reeffish	24	0.3	14	3.6
Pareques iwamotoi	blackbar drum	24	1.7	8	2
Caulolatilus intermedius	anchor tilefish	24	1.6	13	3.3
Prionotus tribulus	bighead searobin	23	2.6	12	3.1
Symphurus urospilus	spottail tonguefish	23	0.8	5	1.3
Apogon quadrisquamatus	sawcheek cardinalfish	22	0.1	13	3.3
Cryptotomus roseus	bluelip parrotfish	21	0.2	13	3.3
Decodon puellaris	red hogfish	21	0.6	10	2.6
Symphurus civitatium	offshore tonguefish	20	0.4	6	1.5
Lonchopisthus micrognathus	swordtail jawfish	20	0.1	7	1.8
Apogon pseudomaculatus	twospot cardinalfish	19	0.1	12	3.1
Gymnachirus texae	fringed sole	19	0.3	9	2.3
Bathyanthias cubensis		19	0.2	5	1.3

Table 2. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Pomacanthus arcuatus	gray angelfish	19	5.5	12	3.1
Canthigaster rostratus		19	0.1	8	2
Rypticus bistrispinus	freckled soapfish	17	0.2	14	3.6
Antennarius ocellatus	ocellated frogfish	17	1.3	13	3.3
Peristedion gracile	slender searobin	17	0.1	6	1.5
Caulolatilus cyanops	blackline tilefish	17	0.1	5	1.3
Paralichthys squamilentus	broad flounder	16	5.1	10	2.6
Holocentrus bullisi	deepwater squirrelfish	16	0.4	5	1.3
Gymnachirus melas	naked sole	16	0.5	14	3.6
Ophidion grayi	blotched cusk-eel	15	0.9	3	0.8
Ophidion marginatum	striped cusk-eel	15	0.6	6	1.5
Aluterus heudelotii	dotterel filefish	15	4.8	8	2
Paralichthys lethostigma	southern flounder	14	5.7	10	2.6
Conodon nobilis	barred grunt	14	1.7	1	0.3
Echeneis neucratoides	whitefin sharksucker	14	3.4	8	2
Pontinus longispinis	longspine scorpionfish	13	0.5	5	1.3
Seriola zonata	banded rudderfish	13	0.8	12	3.1
Ophidion josephi	crested cusk-eel	13	0.6	6	1.5
Ocyurus chrysurus	yellowtail snapper	13	2.6	4	1
Calamus penna	sheepshead porgy	12	6.7	7	1.8
Antennarius striatus	striated frogfish	12	0.1	6	1.5
Mustelus canis	smooth dogfish	12	11.3	8	2
Bellator egretta	streamer searobin	12	0.2	6	1.5
Sphyrna tiburo	bonnethead	12	32	9	2.3
Bellator brachychir	shortin searobin	11	0	6	1.5
Citharichthys cornutus	horned whiff	11	0	3	0.8
Acanthostracion polygonius	honeycomb cowfish	11	6.7	9	2.3
Seriola dumerili	greater amberjack	11	4.5	4	1
Apogon aurolineatus	bridle cardinalfish	11	0	6	1.5
Calamus bajonado	jolthead porgy	11	24.5	7	1.8
Neobythites gilli	cusk-eel	10	0.1	3	0.8

Table 2. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Umbrina coroides	sand drum	10	1.6	1	0.3
Opsanus pardus	leopard toadfish	10	0.2	6	1.5
Mycteroperca phenax	scamp	10	3.2	8	2
Lepophidium spp.	cusk-eels	10	0.1	1	0.3
Squatina dumeril	Atlantic angel shark	9	15.9	7	1.8
Parablennius marmoreus	seaweed blenny	9	0	8	2
Pomacanthus paru	French angelfish	9	3.9	4	1
Paraconger caudilimbatus	margintail conger	9	0.9	6	1.5
Urophycis earlli	Carolina hake	9	0.3	6	1.5
Echiophis intertinctus	spotted spoon-nose eel	9	2.3	8	2
Rypticus maculatus	whitespotted soapfish	8	0.2	5	1.3
Echeneis naucrates	sharksucker	7	3.2	6	1.5
Serranus annularis	orangeback bass	7	0.1	4	1
Physiculus fulvus	metallic codling	7	0.1	3	0.8
Carcharhinus acronotus	blacknose shark	7	20	5	1.3
Ariosoma balearicum	bandtooth conger	7	0.2	4	1
Epinephelus flavolimbatus	yellowedge grouper	7	0.2	6	1.5
Sphoeroides nephelus	southern puffer	7	0.8	5	1.3
Rhinoptera bonasus	cownose ray	7	49.7	4	1
Rhinobatos lentiginosus	Atlantic guitarfish	7	3.8	4	1
Halichoeres bathyphilus	greenband wrasse	6	0.1	5	1.3
Pomatomus saltatrix	bluefish	6	1	5	1.3
Rachycentron canadum	cobia	6	0.2	2	0.5
Pristigenys alta	short bigeye	6	0.4	5	1.3
Mustelus sinusmexicanus	Gulf smoothhound	6	4.4	6	1.5
Anchoviella perfasciata	Poey's anchovy	6	0	1	0.3
Cynoscion nebulosus	spotted seatrout	6	1.7	1	0.3
Hirundichthys rondeletii	blackwing flyingfish	5	0	3	0.8
Ostichthys trachypomus		5	0.1	2	0.5
Gymnothorax nigromarginatus	blackedge moray	5	0.5	2	0.5
Scorpaena plumieri	spotted scorpionfish	5	1.3	2	0.5

| Table 2 . Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 2. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Cephalopholis cruentata	graysby	1	0	1	0.3
Prognathodes aya	bank butterflyfish	1	0	1	0.3
Lophius americanus	goosefish	1	0.3	1	0.3
Rhynchoconger gracilior		1	0	1	0.3
Citharichthys	lefteye flounders	1	0	1	0.3
Ophidiidae	cusk-eels	1	0	1	0.3
Scorpaena dispar	hunchback scorpionfish	1	0.1	1	0.3
Diodon holocanthus	balloonfish	1	0.3	1	0.3
Gymnothorax moringa	spotted moray	1	0.2	1	0.3
Seriola	amberjacks	1	0	1	0.3
Echiodon dawsoni	chain pearlfish	1	0	1	0.3
Apterichtus		1	0	1	0.3
Antennarius	anglerfishes	1	0	1	0.3
Archosargus probatocephalus	sheepshead	1	1.6	1	0.3
Syngnathus springeri	bull pipefish	1	0	1	0.3
Carcharhinus falciformis	silky shark	1	1.1	1	0.3
Emblemaria piratula	pirate blenny	1	0	1	0.3
Fistularia petimba	red cornetfish	1	0	1	0.3
Saurenchelys cognita		1	0	1	0.3
Gobiidae	gobies	1	0	1	0.3
Emblemaria atlantica	banner blenny	1	0	1	0.3
Astrapogon puncticulatus	blackfin cardinalfish	1	0	1	0.3
Hypoplectrus		1	0	1	0.3
Serraniculus pumilio	pygmy sea bass	1	0	1	0.3
Parexocoetus brachypterus	sailfin flyingfish	1	0	1	0.3
Foetorepus goodenbeani	palefin dragonet	1	0	1	0.3
Caranx bartholomaei	yellow jack	1	0	1	0.3
Syngnathus scovelli	Gulf pipefish	1	0	1	0.3
Sardinella janeiro	orangespot sardine	1	0	1	0.3
Elopidae	bigeyed herrings	1	0	1	0.3
Mycteroperca microlepis	gag	1	0.7	1	0.3

Table 2. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Hypleurochilus		1	0	1	0.3
Lutjanus vivanus	silk snapper	1	0.1	1	0.3
Heteropriacanthus cruentatus	glasseye snapper	1	0	1	0.3
Pomacentrus partitus	bicolor damselfish	1	0	1	0.3
Symphurus spp.	tonguefishes	1	0	1	0.3
Gordiichthys		1	0	1	0.3
Holacanthus ciliaris	queen angelfish	1	0.1	1	0.3
Ginglymostoma cirratum	nurse shark	1	100	1	0.3
Aluterus monoceros	unicorn filefish	1	1	1	0.3
Bollmannia boqueronensis	white-eye goby	1	0	1	0.3
Crustaceans					
Farfantepenaeus aztecus	brown shrimp	24801	334.6	210	53.7
Rimapenaeus constrictus	roughneck shrimp	14489	52.4	39	10
Portunus spinicarpus	longspine swimming crab	10929	40.1	149	38.1
Sicyonia brevirostris	brown rock shrimp	8523	92.8	110	28.1
Squilla empusa	mantis shrimp	6607	41.2	91	23.3
Rimapenaeus similis	roughback shrimp	6147	30.8	67	17.1
Callinectes similis	lesser blue crab	4901	47.3	131	33.5
Squilla chydaea	mantis shrimp	3285	14.3	68	17.4
Solenocera vioscai	humpback shrimp	2756	12.5	39	10
Sicyonia dorsalis	lesser rock shrimp	1701	3.4	47	12
Portunus gibbesii	irridescent swimming crab	1560	6.6	83	21.2
Litopenaeus setiferus	white shrimp	1392	48.9	82	21
Farfantepenaeus duorarum	pink shrimp	1360	37.7	66	16.9
Parapenaeus politus	deepwater rose shrimp	1236	2	23	5.9
Solenocera atlantidis	dwarf humpback shrimp	785	1.2	35	9
Metapenaeopsis goodei	Caribbean velvet shrimp	681	1.3	35	9
Xiphopenaeus kroyeri	seabob	585	2.8	17	4.3
Anasimus latus	stilt spider crab	574	2.6	64	16.4

Table 2. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Scyllarus chacei	chace slipper lobster	371	1.2	54	13.8
Munida pusilla		314	0.1	11	2.8
Mesopenaeus tropicalis	salmon shrimp	303	0.5	12	3.1
Stenorhynchus seticornis	yellowline arrow crab	270	0.6	76	19.4
Portunus spinimanus	blotched swimming crab	206	9.5	55	14.1
Leiolambrus nitidus	white elbow crab	159	0.3	32	8.2
Calappa sulcata	yellow box crab	150	27.7	43	11
Raninoides louisianensis	gulf frog crab	149	1.2	27	6.9
Platylambrus granulata	bladetooth elbow crab	146	0.4	46	11.8
Portunus ordwayii		144	1.6	18	4.6
Callinectes sapidus	blue crab	135	12.5	38	9.7
Palaemonetes		131	0	2	0.5
Stenocionops furcatus furcatus	furcate crab	94	2	50	12.8
Cryptodromiopsis antillensis	hairy sponge crab	86	0.4	46	11.8
Podochela sidneyi	shortfinger neck crab	83	0.1	35	9
Scyllarides nodifer	ridged slipper lobster	79	21.2	32	8.2
Sicyonia burkenroadi	spiny rock shrimp	74	0.1	15	3.8
Pseudorhombila quadridentata	flecked squareback crab	68	0.6	18	4.6
Stenorhynchus		51	0.1	21	5.4
Libinia dubia	longnose spider crab	47	0.2	18	4.6
Calappa flammea	flame box crab	47	11	23	5.9
Squilla rugosa		46	0.4	13	3.3
Mithrax pleuracanthus	shaggy clinging crab	45	0.1	19	4.9
Penaeopsis serrata	megalops shrimp	43	0	3	0.8
lliacantha liodactylus	purse crab	41	0.2	4	1
Mithrax hispidus	coral clinging crab	36	0.1	18	4.6
Persephona crinita	pink purse crab	33	0.1	23	5.9
Parthenope agonus		25	0	16	4.1
Sicyonia typica	kinglet rock shrimp	25	0.1	7	1.8
Squilla deceptrix		25	0.1	2	0.5
Petrochirus diogenes	giant hermit crab	24	1.6	18	4.6

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- |

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | |

| Table 2 . Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Table 2 . Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | ---: | :--- | ---: | :--- |

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Table 3. Species composition list (continued)			

| Table 3. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- |

| Table 3. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- |

| Table 3. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

| Table 3. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Table 3. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Table 3. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 3. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Crustaceans					
Farfantepenaeus aztecus	brown shrimp	6379	160.4	106	38.8
Sicyonia brevirostris	brown rock shrimp	4837	93.8	46	16.8
Portunus spinicarpus	longspine swimming crab	2504	18.7	77	28.2
Litopenaeus setiferus	white shrimp	2332	51.1	86	31.5
Callinectes similis	lesser blue crab	1498	20	74	27.1
Portunus gibbesii	irridescent swimming crab	904	5	61	22.3
Squilla empusa	mantis shrimp	793	8.6	59	21.6
Rimapenaeus constrictus	roughneck shrimp	585	2.5	24	8.8
Farfantepenaeus duorarum	pink shrimp	552	10.5	38	13.9
Xiphopenaeus kroyeri	seabob	520	1.6	22	8.1
Solenocera vioscai	humpback shrimp	452	2.2	30	11
Rimapenaeus similis	roughback shrimp	387	1.2	38	13.9
Squilla chydaea	mantis shrimp	335	2.2	28	10.3
Anasimus latus	stilt spider crab	322	2.7	36	13.2
Portunus spinimanus	blotched swimming crab	313	6.7	29	10.6
Solenocera atlantidis	dwarf humpback shrimp	208	0.2	15	5.5
Sicyonia dorsalis	lesser rock shrimp	199	0.6	10	3.7
Scyllarus chacei	chace slipper lobster	138	0.5	24	8.8
Stenorhynchus seticornis	yellowline arrow crab	127	0.3	37	13.6
Mesopenaeus tropicalis	salmon shrimp	120	0.4	4	1.5
Metapenaeopsis goodei	Caribbean velvet shrimp	97	0.1	15	5.5
Calappa sulcata	yellow box crab	69	15.3	24	8.8
Raninoides louisianensis	gulf frog crab	57	0.6	16	5.9
Scyllarides nodifer	ridged slipper lobster	36	9.9	15	5.5
Pagurus pollicaris	flatclaw hermit crab	31	0.4	18	6.6
Callinectes sapidus	blue crab	21	2.2	6	2.2
Mithrax hispidus	coral clinging crab	20	0.1	6	2.2
Portunus ordwayii		20	0.2	10	3.7

| Table 3. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Table 3. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Table 3. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

GENUS/SPECIES	COMMON NAME	TOTAL NUMBER CAUGHT	TOTAL NUMBER WEIGHED	tOTAL WEIGHT
Finfishes				
Rhizoprionodon terraenovae	Atlantic sharpnose shark	1732	1539	5226.3
Carcharhinus limbatus	blacktip shark	450	307	3696.9
Bagre marinus	gaftopsail catish	308	259	426.6
Sciaenops ocellatus	red drum	153	141	1231.9
Lutjanus campechanus	red snapper	143	135	645.4
Carcharhinus acronotus	blacknose shark	110	107	877.7
Ophichthus rex	king snake eel	90	43	241.3
Carcharhinus leucas	bull shark	82	24	360.6
Mustelus canis	dusky smooth-hound	66	63	276.9
Carcharhinus brevipinna	spinner shark	49	41	601.1
Carcharhinus isodon	finetooth shark	28	24	94.5
Dasyatis americana	southern stingray	25	8	272.0
Sphyrna lewini	scalloped hammerhead	22	11	217.4
Mustelus	smooth hound sharks	19	18	135.0
Arius felis	hardhead catfish	19	15	20.2
Carcharhinus plumbeus	sandbar shark	16	12	295.8
Unid.fish		15	0	
Galeocerdo cuvier	tiger shark	14	6	39.4
Sphyrna mokarran	great hammerhead	12	4	139.6
Caranx hippos	crevalle jack	5	5	53.3
Pogonias cromis	black drum	4	4	37.3
Carcharhinus falciformis	silky shark	4	4	34.3
Dasyatis sabina	Atlantic stingray	4	4	13.8
Brotula barbatum	bearded brotula	3	3	4.8
Rhinoptera bonasus	cownose ray	3	1	6.0
Rachycentron canadum	cobia	2	0	
Negaprion brevirostris	lemon shark	2	1	11.5

| Table 5. 2013 Vertical Line Survey species composition list. Species with no weight recorded were too large to measure. | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | |

Figure 1. Statistical zones for shrimp in the Gulf of Mexico.

Figure 2. Locations of plankton and environmental stations during the 2013 Winter Plankton Survey.

Figure 3. Locations of plankton and environmental stations during the 2013 Spring Plankton Survey.

Figure 4. Locations of stations during the 2013 Fall Plankton Survey.

Figure 5. Locations of stations during the 2013 Summer Shrimp/Groundfish Survey.

Figure 6. Locations of stations during the 2013 Fall Shrimp/Groundfish Survey.

Figure 7. Locations of stations during the 2013 Reef Fish Survey.

Figure 8. Locations of stations during the 2013 Inshore Bottom Longline Survey.

Figure 9. Locations of stations during the 2013 Vertical Line Survey.

[^0]: ${ }^{1}$ Mesh size change in database does not represent an actual change in gear but only a change in the accuracy at which plankton mesh aperture size can be measured by the manufacturer.

