

Environmental Assessment

Specification of Annual Catch Limits and Accountability Measures for Pacific Island Coral Reef Ecosystem Fisheries in Fishing Years 2015 through 2018

(RIN 0648-XD558)

August 12, 2015

Responsible Agency:	National Oceanic and Atmospheric Administration (NOAA) National Marine Fisheries Service (NMFS) Pacific Islands Regional Office (PIRO)
Responsible Official:	Michael D. Tosatto
-	Regional Administrator, PIRO
	1845 Wasp Blvd., Bldg 176
	Honolulu, HI 96818
	Tel (808)725-5000
	Fax (808)725-5215
Responsible Council:	Western Pacific Fishery Management Council
L.	1164 Bishop St. Suite 1400
	Honolulu, HI 96813
	Tel (808)522-8220
	Fax (808)522-8226

Abstract:

The Western Pacific Fishery Management Council (Council) recommended NMFS specify multi-year annual catch limits (ACL) and accountability measures (AM) effective in fishing years 2015-2018, the environmental effects of which are analyzed in this document. NMFS proposes to implement the specifications for fishing year 2015, 2016, 2017, and 2018 separately prior to each fishing year. The specifications pertain to ACLs for coral reef ecosystem fisheries in the Exclusive Economic Zone (EEZ or federal waters; generally 3-200 nautical miles or nm) around American Samoa, the Commonwealth of the Northern Mariana Islands (CNMI), Guam, and Hawaii, and a post-season AM to correct the overage of an ACL if it occurs. Because of the large number of individual coral reef ecosystem management unit species (CREMUS) in each island area, individual species were aggregated into higher taxonomic groups, generally at the family level. As a result, NMFS proposes to specify ACLs for 19 CREMUS groups each in American Samoa, Guam and the CNMI, and for 17 CREMUS groups in Hawaii for a total of 74 ACL specifications. The proposed ACLs are associated with a probability of

overfishing ranging between 30 to 35 percent for Guam CREMUS, 30 to 40 percent for Hawaii CREMUS, and 35 to 40 percent for American Samoa, and CNMI CREMUS. The fishing year for coral reef ecosystem fisheries in all island areas begins January 1 and ends December 31 annually. Unless modified by NMFS, the ACLs and AMs would be applicable in fishing years 2015, 2016, 2017, and 2018. Each fishing year, catches of individual species that comprise each CREMUS group from both local state/territorial waters (generally from the shoreline to three mile offshore), and federal waters of the EEZ would be counted towards the specified ACLs.

Historically, there has been little to no fishing for coral reef species in federal waters around American Samoa, Guam, the CNMI and the Hawaii. This is because the majority of coral reef habitat occurs in nearshore state and territorial waters and it is much easier and safer for fishers to harvest coral reef associated species in close to shore, than offshore in the EEZ. Therefore, catch of coral reef ecosystem species in 2015 through 2018 is expected to continue to come almost exclusively from nearshore state/territorial waters.

Currently, catch data from coral reef ecosystem fisheries in nearshore state/territorial waters are generally not available until at least six months after the end of the fishing year. Therefore, inseason monitoring of catch, and in-season AMs applied in federal waters to prevent an ACL from being exceeded (e.g. fishery closures) are not possible in any island area at this time. For this reasons, only a post-season AM is possible. Specifically, after the end of each fishing year, if NMFS and the Council determines that the average catch from the most recent three-year period exceeds the specified ACL for any taxonomic group, NMFS proposes to reduce the ACL for that taxonomic group in the subsequent fishing years by the amount of the overage. Prior to implementing a reduced ACL, NMFS would conduct additional environmental analyses, if necessary, and the public would have the opportunity to provide input and comment on the reduced ACL specification at that time. If an ACL is exceeded more than once in a four-year period, the Council is required to re-evaluate the ACL process, and adjust the system, as necessary, to improve its performance and effectiveness.

The proposed action is needed to comply with the Magnuson-Stevens Fishery Conservation and Management Act and is consistent with the provisions of the fishery ecosystem plans for American Samoa, the Mariana Archipelago, and Hawaii through which NMFS specifies ACLs and AMs for all federally managed species. The Council recommended the ACLs and AMs and developed its recommendations in accordance with the ACL process approved by NMFS, and in consideration of the best available scientific, commercial, and other information.

NMFS prepared this environmental assessment (EA) to evaluate the potential environmental impact of the proposed ACL specifications and AMs in fishing years 2015 through 2018. The EA includes a description of the information and methods used by the Council to develop the proposed ACLs, and alternatives to the proposed ACL specifications.

The analysis in the EA indicates that the proposed ACL specifications and post-season AMs regardless of which alternative is selected, would not result in large beneficial or adverse effects on target, non-target, or bycatch species, protected species, or on marine habitats. This is because the proposed federal action would not actually limit or constrain catch of coral reef resources in

any island area, or change the conduct of any federal or state/territorial coral reef fisheries in any way. Therefore, impacts of the proposed action would be unchanged from the status quo.

Copies of this EA and final rule can be found by searching on RIN 0648-XD558 at <u>www.regulations.gov</u>, or by contacting the responsible official or Council at the above address.

Environmental Assessment

Specification of Annual Catch Limits and Accountability Measures for Pacific Island Coral Reef Ecosystem Fisheries in Fishing Years 2015 through 2018

		Contents	
1	Back	ground Information	10
	1.1 Ov	erview of the ACL Specification Process	10
	1.2 Put	rpose and Need	13
	1.3 Pro	posed Action	13
	1.4 De	cision to be Made	14
	1.5 Pu	blic Involvement	15
2	Desc	ription of the Alternatives	15
	2.1 De	scription of Ongoing Fishery Data Collection Programs	15
	2.1.1	Overview of Ongoing Data Collection Methods in the U.S. Pacific Islands	15
	2.1.2	Overview of Ongoing Fishery Data Collection Methods by the State of Hawaii	16
	2.1.3	Overview of Ongoing Federal Permit and Reporting Requirements	17
	2.1.4	Data Limitations	18
	2.2 De	velopment of the Alternatives	18
	2.2.1	Determining the Level of Species Aggregations	18
	2.2.2	Estimation of MSY and OFL	22
	2.2.3	SSC's Calculation of ABC	23
	2.2.4	Council ACL and AM Recommendations	24
	2.3 De	scription of the Alternatives Considered	28
	2.3.1	American Samoa CREMUS Alternatives	33
	2.3.2	CNMI CREMUS Alternatives	36
	2.3.3	Guam CREMUS Alternatives	40
	2.3.4	Hawaii CREMUS Alternatives	43
	2.4 Alt	ernatives Not Considered in Detail	47
3	Affec	eted Environment	47
	3.1 An	nerican Samoa	47
	3.1.1	Target and Non-Target Species	47
	3.1.2	Fishery Participants and Fishing Communities	49

Contents

	3.2.1	Target and Non-Target Species	55
	3.2.2	Fishery Participants and Fishing Communities	57
	3.2.3	Fishery Administration and Enforcement	58
	3.2.4	Protected Resources	59
	3.3 Gu	am	63
	3.3.1	Target and Non-Target Species	63
	3.3.2	Fishery Participants and Fishing Communities	66
	3.3.3	Fishery Administration and Enforcement	67
	3.3.4	Protected Resources	68
	3.4 Hav	waii	72
	3.4.1	Target and Non-Target Species	72
	3.4.2	Fishery Participants and Fishing Communities	74
	3.4.3	Fishery Administration and Enforcement	75
	3.4.4	Protected Resources	76
4	Poten	tial Impacts of the Alternatives	81
	4.1 Am	nerican Samoa	81
	4.1.1	Potential Impacts to Target and Non-Target Stocks	81
	4.1.2	Potential Impacts to Fishery Participants and Fishing Communities	
	4.1.3	Potential Impacts to Fishery Administration and Enforcement	86
	4.1.4	Potential Impacts to Protected Resources	87
	4.2 CN	MI	87
	4.2.1	Potential Impacts to Target and Non-Target Stocks	87
	4.2.2	Potential Impacts to Fishery Participants and Fishing Communities	91
	4.2.3	Potential Impacts to Fishery Administration and Enforcement	
	4.2.4	Potential Impacts to Protected Resources	
	4.3 Gu	am	
	4.3.1	Potential Impacts to Target and Non-Target Stocks	
	4.3.2	Potential Impacts to Fishery Participants and Fishing Communities	
	4.3.3	Potential Impacts to Fishery Administration and Enforcement	100
	4.3.4	Potential Impacts to Protected Resources	100
	4.4 Hay	waii	101
	4.4.1	Potential Impacts to Target and Non-Target Stocks	101
	4.4.2	Potential Impacts to Fishery Participants and Fishing Communities	
	4.4.3	Potential Impacts to Fishery Administration and Enforcement	106

	4.4.4	4 P	otential Impacts to Protected Resources	107
4.	.5	Poten	tial Impacts to Essential Fish Habitat	. 107
4.	.6	Poten	tial Impacts to Biodiversity/Ecosystem Function	111
4.	.7	Poten	tial Impacts to Scientific, Historic, Archeological or Cultural Resources	111
4.	.8	Cumu	lative Effects of the Proposed Action	112
	4.8.	1 N	Aulti-year ACLs and AMs for CREMUS Groups	112
	4.8.	2 A	CL and AM specifications for other western Pacific fisheries	112
	4.8.	3 F	oreseeable management actions related to western Pacific fisheries	113
	4.8.	4 C	Other foreseeable NOAA/NMFS management actions in federal waters	113
	4.8.	5 C	Other Foreseeable NOAA Actions	114
	4.8.	6 C	Climate change	115
5	Co	onsiste	ency with Other Applicable Laws	116
5.	.1	Natio	nal Environmental Policy Act	116
5.	.2	Prepa	rers and Reviewers	116
5.	.3	Ageno	cies and Persons Consulted	116
5.	.4	Public	c Coordination	116
5.	.5	Endar	ngered Species Act	117
5.	.6	Marin	e Mammal Protection Act	118
5.	.7	Coast	al Zone Management Act	118
5.	.8	Natio	nal Historic Preservation Act	118
5.	.9	Paper	work Reduction Act	119
5.	.10	Reg	gulatory Flexibility Act	119
5.	.11	Adı	ministrative Procedure Act	120
5.	.12	Exe	ecutive Order 12898 Environmental Justice	120
5.	.13	Exe	ecutive Order 12866 Regulatory Impact Review	121
5.	.14	Info	ormation Quality Act	121
6	Re	eferen	ces	122
App	endiz	ĸА	List of CREMUS Comprising Each Taxonomic Group by FEP Area	125
App	endiz	ĸВ	Results of the Biomass Augmented Catch-MSY Model	193
App	endiz	ĸС	Report of the P* Working Group	197
App	endiz	ĸD	Report of the SEEM Working Group	212

Tables

Table 1. CREMUS grouping for ACL specifications in American Samoa
Table 2. CREMUS grouping for ACL specifications in the CNMI
Table 3. CREMUS grouping for ACL specifications in Guam
Table 4. CREMUS grouping for ACL specifications in the MHI
Table 5. Estimated stock biomass (in lb) of humphead wrasse and bumphead parrotfish inAmerican Samoa, Guam and CNMI and reef sharks in the CNMI
Table 6. MSY, OFL, ABC and ACL values (in pounds) for American Samoa CREMUS
Table 7. MSY, OFL, ABC and ACL values (in pounds) for CNMI CREMUS 25
Table 8. MSY, OFL, ABC and ACL values (in pounds) for Guam CREMUS
Table 9. MSY, OFL, ABC and ACL values (in pounds) for Hawaii CREMUS 27
Table 10. ACL alternatives (lb) and probability of overfishing (P*) for American Samoa CREMUS 2015-2018, including MSY-based reference points and 2011-2013 ave. catch (lb) 29
Table 11. A ACL alternatives (lb) and probability of overfishing (P*) for CNMI CREMUS 2015-2018, including MSY-based reference points and 2011-2013 ave. catch (lb)
Table 12. A ACL alternatives (lb) and probability of overfishing (P*) for Guam CREMUS 2015-2018, including MSY-based reference points and 2011-2013 ave. catch (lb)
Table 13. ACL alternatives (lb) and probability of overfishing (P*) for Hawaii CREMUS 2015-2018, including MSY-based reference points and 2011-2013 ave. catch (lb)
Table 14. Average estimated catch and revenue of American Samoa CREMUS (2011-2013) 48
Table 15. Endangered and threatened marine species and seabirds known to occur or reasonablyexpected to occur in waters around the American Samoa Archipelago.51
Table 16. Non ESA-listed marine mammals known to occur or reasonably expected to occur in waters around American Samoa. 53
Table 17. Seabirds occurring in American Samoa
Table 18. Average estimated catch and revenue of CNMI CREMUS (2011-2013) 56
Table 19. Endangered and threatened marine species and seabirds known to occur or reasonablyexpected to occur in waters around the Mariana Archipelago (CNMI)
Table 20. Non ESA-listed marine mammals known to occur or reasonably expected to occur in waters around the Mariana Archipelago (CNMI). 61
Table 21. Seabirds occurring in the Mariana Archipelago (CNMI)
Table 22. Average estimated catch and revenue of Guam CREMUS (2011-2013) 65
Table 23. Endangered and threatened marine species and seabirds known to occur or reasonably expected to occur in waters around the Mariana Archipelago (Guam)

Table 24. Non ESA-listed marine mammals known to occur or reasonably expected to occur waters around the Mariana Archipelago (Guam)	
Table 25. Seabirds occurring in the Mariana Archipelago (Guam)	72
Table 26. Average estimated catch and revenue of MHI CREMUS (2011-2013)	74
Table 27. Endangered and threatened marine species and seabirds occurring in the waters of MHI.	
Table 28. Non-ESA-listed marine mammals occurring in the MHI.	78
Table 29. Seabirds occurring in the MHI.	80
Table 30. EFH and HAPC for FEP MUS	108
Table 31. ESA section 7 consultations for western Pacific coral reef fisheries	117

Figures

Figure 1. Relation	onship among OFL	, ABC, ACL, AC	T and AMs	
0	1 0	, , ,		

Acronyms and Abbreviations

ABC – Acceptable Biological Catch ACL - Annual Catch Limit ACT – Annual Catch Target AM – Accountability Measure APA – Administrative Procedure Act CFR – Code of Federal Regulations CNMI - Commonwealth of the Northern Mariana Islands Council - Western Pacific Fishery Management Council CPUE – Catch per Unit of Effort CHCRT - Currently Harvested Coral Reef Taxa CREMUS – Coral Reef Ecosystem MUS DAWR - Guam Division of Aquatic and Wildlife Resources DAR - State of Hawaii Division of Aquatic Resources DMWR - American Samoa Department of Marine and Wildlife Resources DFW - Northern Mariana Islands Division of Fish and Wildlife EA – Environmental Assessment EC – Ecosystem Component EFH - Essential Fish Habitat ESA – Endangered Species Act EEZ – Exclusive Economic Zone FEP - Fishery Ecosystem Plan FMP – Fishery Management Plan FR – Federal Register HAPC - Habitat Areas of Particular Concern

HDAR – Hawaii Division of Aquatic Resources

MHI – Main Hawaiian Islands

Magnuson-Stevens Act – Magnuson-Stevens Fishery Conservation and Management Act

MFMT – Maximum Fishing Mortality Threshold

MMPA – Marine Mammal Protection Act

MPA – marine protected area

MRFSS - Marine Recreational Fisheries Statistics Survey

MSST - Minimum Stock Size Threshold

MSY – Maximum Sustainable Yield

MUS - Management Unit Species

NEPA – National Environmental Policy Act

nm – Nautical Miles

NMFS – National Marine Fisheries Service

NOAA – National Oceanic and Atmospheric Administration

OFL – Overfishing Limit

OY – Optimum Yield

P* - Risk of overfishing percentile

PIFSC – NMFS Pacific Islands Fisheries Science Center

PHCRT – Potentially Harvested Coral Reef Taxa

SCREP – special coral reef ecosystem permit

PIRO – Pacific Islands Regional Office

SEEM – Social, Economic, and Ecological factors and Management Uncertainty

SSC - Scientific and Statistical Committee

WPacFIN – Western Pacific Fisheries Information Network

WPFMC - Western Pacific Fishery Management Council

1 Background Information

The National Marine Fisheries Service (NMFS) and the Western Pacific Fishery Management Council (Council) manage fishing for coral reef ecosystem management unit species (CREMUS) in federal waters of the exclusive economic zone (EEZ; generally 3-200 nautical miles or nm) around American Samoa, Guam, the Commonwealth of the Northern Mariana Islands (CNMI) and the main Hawaiian Islands (MHI).¹ In accordance with the provisions of the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act), the Council has developed and NMFS has implemented, five fishery ecosystem plans (FEP). Four of the FEPs are geographically-based and includes the American Samoa Archipelago FEP, the Hawaii Archipelago FEP, and the Mariana Archipelago FEP, which covers federal waters around Guam and the Commonwealth of Northern Mariana Islands or the CNMI), and the Pacific Remote Island Areas FEP, which covers federal waters around Palmyra Atoll, Kingman Reef, Jarvis Island, Baker Island, Howland Island, Johnston Atoll, and Wake Island. The fifth FEP governs pelagic fisheries operating in federal waters around all of the U.S. Pacific Islands and on the high seas.

Federal regulations at 50 CFR §665 defines CREMUS to include all coral reef associated species, families or subfamilies which spend the majority of their non-pelagic (post settlement) life stages within waters less than or equal to 50 fathoms (300 feet) in total depth. CREMUS do not include species defined in other sections of 50 CFR §665 as bottomfish, crustacean, precious coral or pelagic management unit species (MUS). Federal fishing regulations for coral reef ecosystem fisheries of the western Pacific include a prohibition on the use of destructive and non-selective gear methods including the use of toxins, and explosives and includes vessel identification and gear marking requirements. Federal regulations also require a special coral reef ecosystem fishing permit (SCERFP) and logbook reporting for harvesting certain CREMUS defined in federal regulations as Potentially Harvested Coral Reef Taxa, (PHCRT) and for fishing with non-FEP approved gear methods, or fishing in designated low-use marine protected areas (MPA). Federal requirements also direct NMFS to specify an annual catch limit (ACL) and implement accountability measures (AM) for all stocks and stock complexes of MUS included in each FEP, as recommended by the Council, and in consideration of the best available scientific, commercial, and other information about the fishery for that stock or stock complex. Additionally, other regulations implemented by other federal agencies and local state and territorial governments may also apply to fishing for CREMUS in the EEZ waters. Appendix A provides a list of CREMUS in each island area.

1.1 Overview of the ACL Specification Process

Federal regulations at 50 CFR 665.4 (76 FR 37285, June 27, 2011) require NMFS to specify ACLs and AMs for each stock or stock complex of MUS identified in an FEP, as recommended by the Council, and in consideration of the best available scientific, commercial, and other

¹Nearshore waters, generally within three nm of the shoreline around American Samoa, Guam, the Northern Mariana Islands and Hawaii are subject to the respective jurisdiction and management authority of the Territory of American Samoa, the Territory of Guam, the Commonwealth of the Northern Mariana Islands, and the State of Hawaii and are not part of the FEP management area.

information about the fishery for that stock or stock complex. This section provides an overview of the ACL specification process.

In accordance with the Magnuson-Stevens Act and the FEPs, there are three required elements in the development of an ACL specification. The first requires the Council's Scientific and Statistical Committee (SSC) to calculate an acceptable biological catch (ABC) that is set at or below the stock or stock complex's overfishing limit (OFL). The OFL is an estimate of the catch level above which overfishing is occurring. ABC is the level of catch that accounts for the scientific uncertainty in the estimate of OFL and other scientific uncertainty. In determining the appropriate ABC, the SSC follows the ACL mechanism described in the FEPs, which includes a five-tiered system of "ABC control rules" that allows for different levels of scientific information to be considered (WPFMC and NMFS 2011). Tiers 1, 2 and 3 involve data-rich to data-moderate situations and include levels of scientific uncertainty derived from model-based stock assessments. Tiers 4 and 5 involve data-poor situations and include consideration of scientific uncertainty derived from ad-hoc procedures, including simulation models or expert opinion.

When calculating an ABC for a stock or stock complex², the SSC must first evaluate the available information and assign the stock or stock complex into one of the five tiers. The SSC must then apply the control rule assigned to that tier to determine an ABC. For stocks like CREMUS that have an estimate of OFL, maximum sustainable yield (MSY) and other MSYbased reference points (Tier 1-3 quality data), the ABC is calculated by the SSC based on an Tier 1-3 ABC control rule that accounts for scientific uncertainty in the estimate of the OFL, and the acceptable level of risk (as determined by the Council) that catch equal to the ABC would result in overfishing. In plain English, ABC is the maximum value for which the probability or risk of overfishing (P*) is less than 50 percent. In accordance with National Standard 1 guidelines of the Magnuson-Stevens Act the probability of overfishing cannot exceed 50 percent and should be a lower value (74 FR 3178, January 9, 2011). The process described in the FEPs includes a qualitative analysis by which the P* value may be reduced below 50 percent based on consideration of four dimensions of information, including assessment information, uncertainty characterization, stock status, and stock productivity and susceptibility to overfishing. The FEPs also allow the SSC to recommend an ABC that differs from the results of the ABC control rule calculation based on factors such as data uncertainty, recruitment variability, declining trends in population variables, and other factors determined relevant by the SSC. However, the SSC must explain its rationale.

The second step requires the Council to determine an ACL that may not exceed the SSC recommended ABC. The process includes methods by which the ACL may be reduced from the ABC based on social, economic, and ecological considerations, or management uncertainty (SEEM). An ACL set below the ABC further reduces the probability that actual catch will exceed the OFL, and result in overfishing.

² The Magnuson-Stevens Act defines the term "stock of fish" to mean a species, subspecies, geographic grouping, or other category of fish capable of management as a unit. Federal regulations at 50 CFR §660.310(c) defines "stock complex" to mean a group of stocks that are sufficiently similar in geographic distribution, life history, and vulnerability to the fishery such that the impact of management actions on the stock is similar.

The third and final step in the ACL process is the development of AMs. There are two categories of required AMs; in-season AMs, and post-season AMs, which make adjustments to an ACL if it is exceeded. In-season AMs prevent an ACL from being exceeded and may include, but are not limited to, closing the fishery, closing specific areas, changing bag limits, or other methods to reduce catch. An ACT is the management target of the fishery and accounts for management uncertainty in controlling the actual catch at or below the ACL.

If the Council determines an ACL has been exceeded, the Council may recommend, as a postseason AM, that NMFS reduce the ACL in the subsequent fishing year by the amount of the overage. Additionally, if an ACL is exceeded more than once in a four-year period, the Council is required to re-evaluate the ACL process, and adjust the system for setting ACLs, as necessary, to improve its performance and effectiveness.

Figure 1 illustrates the relationship among the OFL, ABC, and ACLs described in this section. For more details on the specific elements of the ACL specification mechanism and process, see Amendment 1 to the PRIA FEP, Amendment 2 to the American Samoa Archipelago FEP, Amendment 2 to the Mariana Archipelago FEP, Amendment 3 to the Hawaii Archipelago FEP (WPFMC and NMFS 2011), and the final implementing regulations at 50 CFR §665.4 (76 FR 37285, June 27, 2011).

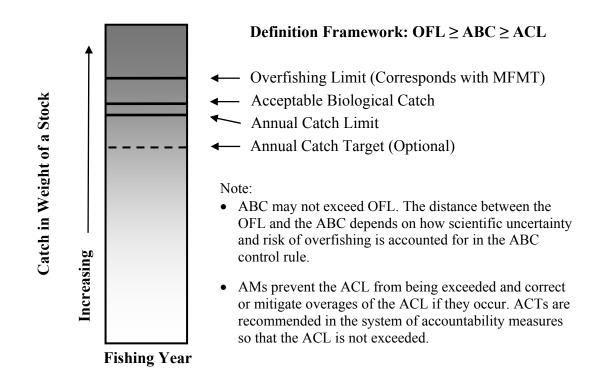


Figure 1. Relationship among OFL, ABC, ACL, ACT and AMs

1.2 Purpose and Need

The purpose of this action is to use the best scientific information available to specify an ACL and AM for coral reef ecosystem fisheries in federal waters around American Samoa, the CNMI, Guam and the MHI. ACLs are needed in order to comply with the Magnuson-Stevens Act and provisions of the FEPs for American Samoa, the Mariana Archipelago, and Hawaii, which require NMFS to specify ACL and AMs for all MUS identified in an FEP. The fishery management objective of this action is to specify an ACL for all CREMUS to prevent overfishing from occurring, and provide for long-term sustainability of the fishery resources while allowing fishery participants to continue to benefit from their utilization. Post-season AMs are intended to correct or mitigate overages of the ACL should they occur.

1.3 Proposed Action

The Western Pacific Fishery Management Council recommended NMFS specify multi-year annual catch limits (ACL) and accountability measures (AM) effective in fishing years 2015-2018, the environmental effects of which are analyzed in this document. NMFS proposes to implement the specifications for fishing year 2015, 2016, 2017, and 2018 separately prior to each fishing year. The specifications pertain to ACLs for coral reef ecosystem fisheries in the Exclusive Economic Zone (EEZ or federal waters; generally 3-200 nautical miles or nm) around American Samoa, the Commonwealth of the Northern Mariana Islands (CNMI), Guam, and Hawaii, and a post-season AM to correct the overage of an ACL if it occurs. Because of the large number of individual CREMUS in each island area, NMFS and the Council aggregated individual species into higher taxonomic groups, generally at the family level. As a result, NMFS proposes to specify ACLs for 19 CREMUS groups each in American Samoa, Guam and the CNMI, and for 17 CREMUS groups in Hawaii for a total of 74 ACL specifications. The proposed ACLs are associated with a probability of overfishing ranging between 30 to 35 percent for Guam CREMUS, 30 to 40 percent for MHI CREMUS and 35 to 40 percent for American Samoa, and CNMI CREMUS. In each island area, the Council removed species of management interest (i.e., bumphead parrotfish, and humphead wrasse) from their respective taxonomic groupings so they can be monitored separately. Therefore, NMFS proposes separate ACL specifications those stocks set at five percent of each stock's estimated biomass. Tables 6-9 summarize the proposed ACL specifications for CREMUS in American Samoa, Guam, the CNMI and the MHI in relation to the probability of overfishing and other reference points.

The fishing year for coral reef ecosystem fisheries in all island areas begins January 1 and ends December 31 annually. Unless modified by NMFS, the ACLs and AMs would be applicable in fishing years 2015, 2016, 2017, and 2018.

Each fishing year, catches of individual species that comprise each taxonomic group from both local state/territorial waters (generally from the shoreline to three mile offshore), and federal waters of the EEZ would be counted towards the specified ACL for each taxonomic group in each island area. Pursuant to federal regulations at 50 CFR 665.4, when an ACL is projected to be reached, based on best available information, NMFS must restrict fishing in federal waters around the applicable island area to prevent the ACL from being exceeded. The restriction may include, but is not limited to closure of the fishery, closure of specific areas, or restriction in

effort (76 FR 37286, June 27, 2011). However, projecting the date when an ACL might be reached is not possible for any western Pacific coral reef ecosystem fishery at this time because catch statistics from local state/territorial fisheries are generally not available until at least six months after the data have been collected (See Section 2.1 for more details on local state/territorial data collection programs). For this reason, the post-season AMs being proposed for CREMUS fisheries in all island areas is a downward adjustment to an ACL in the subsequent fishing year according to the procedures described below, should catches exceed the specified ACL.

Catches of CREMUS from local state/territorial data collection programs appear to be highly variable from year to year, and except for two species in Guam (e.g., bigeye scad and jacks), recent catches have remained below the current long-term estimates of MSY (see Tables 10-13). The reason for this inter-annual variability is unknown, but may be due to changes in local data collection methodologies over time (see Section 2.1). To reduce the influence of inter-annual variability in catch estimates in evaluating fishery performance against the proposed ACLs, NMFS and the Council propose to apply a moving three-year average. Specifically, for each taxonomic group, NMFS and the Council would use the average catch of fishing years 2013, 2014 and 2015 to evaluate fishery performance against the 2015 ACL; the average catch of fishing years 2014, 2015, and 2016 to evaluate performance against the 2016 ACL; and so on. After the end of each fishing year, the Council and NMFS will determine final catches for each taxonomic group in each island area. If the three-year average catch exceeded the specified ACL for a taxonomic group in any fishing year, NMFS would reduce the ACL for that group in the subsequent fishing years by the amount of the overage. Prior to implementing a reduced ACL, NMFS would conduct additional environmental analyses, if necessary, and the public would have the opportunity to provide input and comment on the reduced ACL specification at that time. Additionally, if an ACL is exceeded more than once in a four-year period, National Standard 1 guidelines of the Magnuson-Stevens Act (74 FR 3178, January 9, 2011) require the Council re-evaluate the ACL process, and adjust the system, as necessary, to improve its performance and effectiveness.

The proposed ACL specifications and AMs are based on the recommendations of the Council, and were developed in accordance with the approved ACL mechanism described in the FEPs and implementing federal regulations at 50 CFR §665.4, and in consideration of the best available scientific, commercial, and other information.

1.4 Decision to be Made

After considering public comments on the proposed action and alternatives considered, NMFS will specify ACLs and AMs for the coral reef ecosystem fisheries in federal waters around American Samoa, CNMI, Guam and Hawaii. The ACLs and AMs would be applicable in fishing years 2015 through 2018, which begin on January 1 and end December 31, annually. The Regional Administrator of the NMFS Pacific Islands Regional Office (PIRO) will also use the information in this EA and consider public comments, to make a determination about whether the selected ACL specifications and AMs would be a major federal action with the potential to have a significant environmental impact that would require the preparation of an environmental impact statement.

1.5 Public Involvement

At its 160th meeting, the Council considered and discussed issues relevant to ACL and AM specifications for western Pacific coral reef ecosystem fisheries in American Samoa, the CNMI, Guam, and the MHI, including the ABC recommendations of the 116th SSC. The 116th SSC and the 160nd Council meetings were held June 17-19, 2014, and June 25-27, 2014, respectively. Both meetings were open to the public and advertised through notices in the *Federal Register* (79 FR 31310, June 2, 2014), and on the Council's website. The public had an opportunity to comment at the meetings on the proposed ACL specifications and AMs and no public comment was provided at either meeting.

The proposed action was also discussed at the 117th SSC meeting held October 14-16, 2014, and the 161st Council meeting, held October 21-23, 2014. Both meetings were open to the public and advertised in Hawaii media as well as the *Federal Register* (79 FR 57887, September 26, 2014; 79 FR 59742, October 3, 2014), and on the Council's website. The public had an opportunity to comment at the meetings on the proposed ACL specifications and AMs and no public comment was provided at either meeting. Additionally, on July 21, 2015, NMFS published in the *Federal Register* the proposed specification and solicited public comments on the action and on the draft EA (80 FR 4346). NMFS received one comment from a federal agency regarding ACLs at Wake Island. NMFS responded to this comment in the final rule.

2 Description of the Alternatives

The alternatives considered in this document include a range of possible ACLs for coral reef ecosystem fisheries in federal waters around American Samoa, Guam, CNMI and the MHI. Although the estimate of the OFL and calculation of the ABC are part of the ACL mechanism, the establishment of these reference points is not part of the proposed federal action. However, a summary of their development is described in this section for informational purposes.³

2.1 Description of Ongoing Fishery Data Collection Programs

This section summarizes ongoing fishery data collection programs administered by the state/territorial governments of American Samoa, Guam, the CNMI and Hawaii, and by NMFS that were used to develop the ACLs and will be used to monitor catches in 2015-2018. None of the alternatives considered would change or modify any of these ongoing fishery data collection programs. For a detailed description of the data collection programs summarized here, visit http://www.pifsc.noaa.gov/wpacfin/.

2.1.1 Overview of Ongoing Data Collection Methods in the U.S. Pacific Islands

In American Samoa, Guam and the CNMI, local resource management agencies, with assistance from NMFS Pacific Islands Fisheries Science Center (PIFSC), Western Pacific Fisheries

³ OFL is an estimate of the catch level above which overfishing is occurring, and was estimated by the Council using a Biomass Augmented MSY Model described in Sabater and Kleiber (2014). ABC accounts for scientific uncertainty in the estimate of OFL and was calculated at the 116th meeting of the Council's SSC. OFL and ABC are biologically-based reference points and are not part of the federal action.

Information Network (WPacFIN), collect fisheries information through three primary fisheries monitoring programs. They include: (1) the boat-based creel survey program, (2) the shore-based creel survey program, and (3) the commercial purchase system or trip ticket invoice program.

2.1.1.1 Boat-based Creel Survey Program

The boat-based creel survey program collects catch, effort, and participation data on offshore fishing activities conducted by commercial, recreational, subsistence and charter fishing vessels. Surveys are conducted at boat ports or ramps, and data collection consists of two main components - participation counts (trips) and fisher interviews. Survey days are randomly selected and the number of survey days range from 3-8 per month. Surveys are stratified by week-days, weekend-days and day- and night-time. Data expansion algorithms are applied by NMFS WPacFIN to estimate total boat-based catches, and are based on port, type of day (e.g., weekend/weekday), and fishing method (Impact Assessment, 2008). The boat-based creel surveys capture fishing activities by persons engaged in commercial, recreational, and subsistence fishing.

2.1.1.2 Shore-based Creel Survey Program

The shore-based creel survey program was established to randomly sample inshore fishing trip information and consists of two components: participation counts and fishers interviews. Participation counts are based on a 'bus route' method, with predefined stopping points and time constraints. Survey days are randomly selected, and range from 2-4 times per week. Data expansion algorithms are applied by NMFS WPacFIN to estimate total shore-based catches, and are based on island region, type of day and fishing method (Impact Assessment, 2008). The shore-based creel surveys capture fishing activities by persons engaged in commercial, recreational, and subsistence fishing.

As previously noted the data from both boat-based and shore-based creel survey programs are then expanded using algorithms developed by WPacFIN to generate estimates of total catches from both commercial and non-commercial sectors.

2.1.1.3 Commercial purchase system

The commercial purchase system or "trip ticket invoice" monitors fish sold locally and collects information submitted by vendors (fish dealers, hotels and restaurants) who purchase fish directly from fishers. Each invoice usually compiles daily trip landings. Only American Samoa has mandatory requirements for vendors to submit invoice reports; the other islands have voluntary programs (Impact Assessment, 2008).

2.1.2 Overview of Ongoing Fishery Data Collection Methods by the State of Hawaii

In Hawaii, the majority of fisheries information is collected from the commercial fishing sector through a mandatory license and monthly reporting system administered by the State of Hawaii Division of Aquatic Resources (HDAR). Under State law, anyone who takes marine life for commercial purposes is required to obtain a commercial marine license (CML) and submit a

catch report (popularly known as a "C3" form) on a monthly basis. Required information collected includes day fished, area fished, fishing method used, hours fished per method, and species caught (number/pounds caught and released).

Recreational catch information for finfish are also opportunistically collected by HDAR through the Hawaii Marine Recreational Fishing Survey (HMRFS) and annual catch amounts are reported by HDAR through NMFS Marine Fisheries Statistics Survey (MRFSS) at http://www.st.nmfs.noaa.gov/st1/index.html. A 2006 review of MRFSS by the National Resource Council (NRC) noted that the catch estimation method applied was not correctly matched with the catch sampling survey design, leading to potential bias in the estimates (National Resource Council 2006). In consideration of this finding, the Council in 2006 recommended that MRFSS catch estimates not be used as a basis for management or allocation decisions.

In 2008, NMFS established the National Saltwater Angler Registry Program as part of the Marine Recreational Information Program (MRIP) to improve recreational fisheries information (73 FR 79705, December 30, 2008). This national program requires all recreational anglers fishing in federal waters who are not otherwise permitted to fish under another federal or state/territorial fishing permit or license to register with NMFS. MRIP then collects information from registered recreational anglers about how often they fish and what they're catching using a system of surveys. Data from MRIP are integrated into MRFSS and are accessible from the MRFSS websites listed above.

2.1.3 Overview of Ongoing Federal Permit and Reporting Requirements

In addition to the data collection programs administered by local resource management agencies, regulations implementing the FEPs also establish a federal permit and reporting requirements for coral reef ecosystem fisheries in EEZ waters. Specifically, federal regulations at 50 CFR 665 requires a SCERFP and logbook reporting for harvesting certain CREMUS defined in federal regulations as PHCRT and for fishing with non-FEP approved gear methods, or fishing in designated low-use MPAs.

Historically, there has been little to no fishing for coral reef species in federal waters around American Samoa, Guam, the CNMI and the MHI. This is because the majority of coral reef habitat occurs in nearshore state and territorial waters and it is much easier and safer for fishers to harvest coral reef associated species in close to shore, than offshore in the EEZ.

Since the SCREFP requirement was established in 2004, NMFS has only issued two SCREFP permits. Both permits were issued to a single operator and authorized the cultivation and harvest (i.e., mariculture) of a PHCRT (i.e. *Seriola rivoliana*) within enclosed caged structures in EEZ waters off the west coast of Hawaii Island. The cultivated fish used in the authorized operations were hatchery produced and not caught from the wild populations.

Except for HMRFS and MRIP data, NMFS WPacFIN obtains all available fisheries information in the western Pacific, in accordance with cooperative agreements with the local resource management agencies in American Samoa, CNMI, Guam, and Hawaii, and provide the public

with access to non-confidential data on their website <u>http://www.pifsc.noaa.gov/wpacfin</u>. Generally, complete data for catches during a calendar year are not available until at least 6 months after the year has ended.

2.1.4 Data Limitations

Due to the lack of developed coral reef fisheries in federal waters, catch data for CREMUS comes solely from fishery data collection programs administered by the respective local resource management agencies, and NMFS expects this will continue to be the only data source for monitoring CREMUS catches in 2015 through 2018. However, these agencies presently do not have the personnel or resources to process catch data in near-real time, and so fisheries statistics are generally not available until at least six months after the data has been collected. Significant resources would be required to support the establishment of near-real time in-season monitoring capabilities in American Samoa, the CNMI, Guam and Hawaii. Until resources are made available, it will not be possible to monitor and track CREMUS catches towards the proposed ACL, and only AMs that consist of post-season management measures are possible at this time.

2.2 Development of the Alternatives

The SSC and Council developed their respective CREMUS ABC and ACL recommendations for 2015 through 2018 in accordance with the Magnuson-Stevens Act and Federal regulations at 50 CFR §665.4 that implement the ACL specification mechanism of the FEPs described in Section 1. This section summarizes the data, methods, and procedures the SSC and Council considered in their deliberations. Reports of all SSC and Council meetings cited in this EA can be obtained from the Council.

2.2.1 Determining the Level of Species Aggregations

Federal regulations at 50 CFR §665 define CREMUS in each FEP area to include all coral reef associated species, families or subfamilies which spend the majority of their non-pelagic (post settlement) life stages within waters less than or equal to 50 fathoms in total depth (75 FR 2198, January 14, 2010). However, CREMUS do not include species defined in 50 CFR §665 as a bottomfish management unit species (MUS), crustacean MUS (i.e., lobsters, kona crab and deepwater shrimps), precious coral MUS (i.e., black, pink and bamboo corals) or pelagic MUS (e.g., tunas and billfish). Appendix A provides a full listing of CREMUS in American Samoa, Guam the CNMI and Hawaii.

In the U.S. Pacific Islands, fisheries for CREMUS occur almost exclusively within state and territorial waters. However, the inclusion of all coral reef associated species in the FEPs was intended to be a proactive measure so that data could be collected if coral reef fisheries were to expand into the U.S. EEZ, and so that ecosystem considerations could be integrated into the management regime of the FEPs. Therefore, CREMUS include stocks are currently harvested by fishers in state or federal waters, as well as hundreds of stocks that are not generally harvested or retained in either state or federal waters.

In developing the ACL process for CREMUS, the Council recognized that an annual specification of hundreds of individual ABCs and ACLs would be administratively impossible to implement, monitor and enforce. Thus, at its 151st meeting, the Council, following the advice of its SSC, recommended aggregating individual CREMUS of each island area into higher taxonomic groups. The Council also recommended specifying ACLs for those taxonomic groups, which comprises the top 90% of the total coral reef fish catch over the available catch time series. To accomplish this, individual CREMUS in each island area were combined into their respective taxonomic group, generally at the family level. The taxonomic groupings also include general categories like, "miscellaneous reef fish," "miscellaneous bottomfish," and "miscellaneous shallow bottomfish" which are categories established in the data collection system for species that are not identified to the species or family level. Species that were identifiable, but not associated with any of the major harvested taxonomic families and, individually comprised a small percentage of the catch were included in the categories "other CRE-finfish" or "other invertebrates."

The catch percentage contribution of each taxonomic group was then calculated relative to the total estimated CREMUS landings throughout the available time series, and the results were sorted in order of decreasing value. Cumulative percentages were calculated by adding the respective cumulative percent contribution with the succeeding value until a 90% cut-off was reached. The taxonomic groups comprising the remaining 10% were then grouped into a single multi-species complex termed "All other CREMUS combined" for the purposes of the ACL specification. However, for the purposes of establishing ACLs, bumphead parrotfish *(Bolbometopon muricatum)*, and humphead or Napoleon wrasse *(Cheilinus undulatus)* were removed from the taxonomic level aggregation so that separate ACLs could be specified for these species. These species are generally regarded as a rare occurrence in catch records and NMFS PIFSC underwater fish census surveys, and may be vulnerable to overfishing, and are, therefore, of special management interest to the Council.

In addition, two coral reef associated Hawaii bottomfish MUS – kahala (*Seriola dumerili*), and taape (*Lutjanus kasmira*) – were included in the Hawaii CREMUS groupings Carangidae (jacks) and Lutjanidae (snapper), respectively, because these species are not considered in the NMFS stock assessments used to establish ACLs for Hawaii bottomfish MUS. Therefore, these species are included in the ACL specifications for Carangidae and Lutjanidae as described in this document.

The process of grouping individual CREMUS to their respective taxonomic families is considered by the SSC and Council to be the most optimal level of aggregation to meet the mandate to specify ACLs for coral reef ecosystem fisheries. This process is consistent with National Standard 1 guidelines (50 CFR §660.310(c)) as the family groupings consider similarity in life history strategy, morphological, biological and ecological characteristics. While fishermen can and do target individual species within a family group, assessing the vulnerability of individual stocks within a stock complex to fishing activities is difficult because species-level data are not standardized (expanded) for creel survey effort; hence they are inherently more variable than family-level data. Furthermore, while it is possible to identify species to the lowest taxonomic level, surveyors differ in their fish identification ability, and presumably, less experienced observers have more difficulty detecting the subtle morphological differences that

separate some species. Hence, fish that cannot be identified to the species level are often assigned to a broader taxonomic grouping (Hamm and Tao, 2010), such as a genus or family or even a general category such as "miscellaneous reef fish." In general, the groups that comprise the top 90% of the total catch frequently interact with the fishery and are most likely to be harvested at a higher rate than the remaining groups ("All other CREMUS combined"), which can be considered as incidental or a minor portion of the catch. Because the groupings are considered biologically closely related (e.g., to the family level), the effectiveness of management actions such as ACLs on individual stocks is likely be similar for all species within the group.

For more details on the formation of CREMUS taxonomic groupings, see WPFMC and NMFS (2011). Tables 1-4 summarize the outcome of the CREMUS taxonomic groupings process for American Samoa, Guam, the Commonwealth of the Northern Mariana Islands (CNMI), and Hawaii (See Appendix A for the list of the individual species that comprise each CREMUS grouping by island area as identified through the fishery monitoring programs administered by local resource management agencies.

No.	American Samoa CREMUS Groupings	
1	Selar crumenophthalmus – atule or bigeye scad	
2	Acanthuridae – surgeonfishes	
3	Carangidae – jacks	
4	Carcharhinidae – reef sharks	
5	Crustaceans - crabs	
6	Holocentridae – squirrelfishes	
7	Kyphosidae – rudderfishes	
8	Labridae – wrasses ¹	
9	Lethrinidae – emperors	
10	Lutjanidae – snappers	
11	Mollusks – turbo snail; octopus; giant clam	
12	Mugilidae – mullets	
13	Mullidae – goatfishes	
14	Scaridae – parrotfishes ²	
15	Serranidae – groupers	
16	Siganidae – rabbitfishes	
17	Cheilinus undulatus – humphead (Napoleon) wrasse	
18	Bolbometopon muricatum – bumphead parrotfish	
19	All Other CREMUS Combined	
	- Misc. bottomfish	
	- Misc. reef fish	
	- Misc. shallow bottomfish	
	- Other CRE-finfish	
	- Other invertebrates	

Table 1. CREMUS grouping for ACL specifications in American Samoa

¹Family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse)

² Family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

No.	CNMI CREMUS Groupings
1	Selar crumenophthalmus – atulai or bigeye scad
2	Acanthuridae – surgeonfishes
3	Carangidae – jacks
4	Carcharhinidae – reef sharks
5	Crustaceans - crabs
6	Holocentridae – squirrelfishes
7	Kyphosidae – rudderfishes
8	Labridae – wrasses ¹
9	Lethrinidae – emperors
10	Lutjanidae – snappers
11	Mollusks – turbo snail; octopus; giant clam
12	Mugilidae – mullets
13	Mullidae – goatfishes
14	Scaridae – parrotfishes ²
15	Serranidae – groupers
16	Siganidae – rabbitfishes
17	Cheilinus undulatus – humphead (Napoleon) wrasse
18	Bolbometopon muricatum – bumphead parrotfish
19	All Other CREMUS Combined
	- Misc. bottomfish
	- Misc. reef fish
	- Misc. shallow bottomfish
	- Other CRE-finfish
	- Other invertebrates

Table 2. CREMUS	grouping for ACL	specifications in the CNMI
-----------------	------------------	----------------------------

¹Family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse) ²Family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

Table 3. CREMUS grouping for ACL specifications in Guam

No.	Guam CREMUS Groupings
1	Selar crumenophthalmus – atulai or bigeye scad
2	Acanthuridae – surgeonfishes
3	Carangidae – jacks
4	Carcharhinidae – reef sharks
5	Crustaceans - crabs
6	Holocentridae – squirrelfishes
7	Kyphosidae – rudderfishes
8	Labridae – wrasses ¹
9	Lethrinidae – emperors
10	Lutjanidae – snappers
11	Mollusks – turbo snail; octopus; giant clam
12	Mugilidae – mullets

No.	Guam CREMUS Groupings		
13	Mullidae – goatfishes		
14	Scaridae – parrotfishes ²		
15	Serranidae – groupers		
16	Siganidae – rabbitfishes		
17	Cheilinus undulatus – humphead (Napoleon) wrasse		
18	Bolbometopon muricatum – bumphead parrotfish		
19	All Other CREMUS Combined		
	- Misc. bottomfish		
	- Misc. reef fish		
	- Misc. shallow bottomfish		
	- Other CRE-finfish		
	- Other invertebrates		

¹Family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse)

² Family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

Table 4	. CREMUS	grouping	for ACL	specifications	in the MHI
---------	----------	----------	---------	----------------	------------

No.	MHI CREMUS Groupings
1	Selar crumenophthalmus – akule or bigeye scad
2	Decapterus macarellus – opelu or mackerel scad
3	Acanthuridae – surgeonfishes
4	Carangidae – jacks ¹
5	Carcharhinidae – reef sharks
6	Crustaceans – crabs
7	Holocentridae – squirrelfishes
8	Kyphosidae – rudderfishes
9	Labridae – wrasses
10	Lethrinidae – emperors
11	Lutjanidae – snappers ²
12	Mollusks –octopus
13	Mugilidae – mullets
14	Mullidae – goatfishes
15	Scaridae – parrotfishes
16	Serranidae – groupers
17	All Other CREMUS Combined

Note: Bolbometopon muricatum (bumphead parrotfish) and Cheilinus undulatus (humphead or Napoleon wrasse) do not occur in Hawaii.

¹Carangidae includes the BMUS, kahala (*Seriola dumerili*) since this species is not included in NMFS bottomfish stock assessments, and is a reef associated species.

² Lutjanidae includes the BMUS, taape (*Lutjanus kasmira*) since this species is not included in NMFS bottomfish stock assessments, and is a reef associated species.

2.2.2 Estimation of MSY and OFL

Estimates of MSY and OFL for CREMUS groupings in American Samoa, the CNMI, Guam, and Hawaii are based on a modeling approach that uses catch data from local resource management

agencies as described above; together with a measure of population growth (r), carrying capacity (k), and biomass data from NMFS PIFSC underwater fish census surveys (Williams 2010). This model, termed the "Biomass Augmented Catch-MSY" model is described in detail in Sabater and Kleiber (2014). In summary, the model creates annual biomass projections from a set of r and k combinations that would not result in biomass that would exceed the carrying capacity or the stock being depleted. The assumption behind the biomass can be informed by augmenting the model with an independent source of biomass information.

The Biomass Augmented Catch-MSY model is based on the Catch-MSY model developed by Martell and Froese (2013), but differs in that it incorporates biomass data. Application of the model provides the very first model-based estimate of MSY for CREMUS in each island area. In addition to estimates of MSY, the Biomass Augmented Catch-MSY model also generates a range of catches that if realized, would result in a probability of exceeding MSY ranging from five to 50 percent. See Appendix B for MSY estimates and probability of overfishing projection results from the Biomass Augmented Catch-MSY model.

Because of the large number of possible combinations of r and k values available to estimate MSY using the Biomass Augmented Catch-MSY model, the model explored two methods to define the most meaningful and most likely (most plausible) range of r and k combinations. Method A allows for only a very narrow range of starting r and k values, while method B allows for a broad range of starting r and k values, with each method providing different MSY estimates and associated probability of overfishing projections. In reviewing the two methods, the SSC at its 114th meeting held March 11-13, 2014, determined the resulting MSY estimates from method B be used for management decisions because this method provides a more complete range of most likely r and k combinations compared to method A. The 114th SSC also found that method B also yielded r and k density plots that generally correspond better to the estimates of MSY than the method A approach.

Currently, data for bumphead parrotfish, humphead or Napoleon wrasse in American Samoa, Guam and the CNMI, and reef sharks in the CNMI are insufficient for use in the Biomass Augmented Catch-MSY model. This is because these species occur infrequently in NMFS PIFSC underwater fish census surveys and have low overall catch. Therefore, it is not possible to estimate MSY and OFL for these species using the Biomass Augmented Catch-MSY model. Tables 6-9 provides the MSY and OFL estimates and other reference points for CREMUS groupings in American Samoa, Guam, the CNMI and the MHI. Consistent with National Standard 1 guidelines (74 FR 3178, January 9, 2011), the Council at its 160th meeting, set OFL for each CREMUS grouping equal to the level of catch associated with a 50 percent probability of exceeding MSY.

2.2.3 SSC's Calculation of ABC

Under Tier 3 of the ABC control rule for western Pacific fisheries, the SSC must set ABC at a level of catch associated with no more than a 50 percent probability of overfishing, with the appropriate probability of overfishing percentile (P*) established by the Council. The Council's P* working group met in May, June, and December 2013 to review a draft of Sabater and Kleiber (2014), and to apply the qualitative P* reduction analysis described in the FEPs WPFMC

and NMFS (2011). At its 115th meeting held March 11, 2014, the SSC reviewed the analysis conducted by the P* working group and adopted the final P* scores rounding each value to the nearest 5 or 10 percent. See Appendix C of this document for the precise values from the qualitative P* reduction analysis for each CREMUS group.

The reduction analyses resulted in final P* values ranging between 30 to 35 percent for CREMUS groupings in Guam, 30 to 40 percent for CREMUS groupings in Hawaii and 35 to 40 percent for CREMUS groupings in American Samoa, and CNMI. Based on the P* analysis and findings presented in the P* working group's December 2013 report, the SSC at its 116th meeting held June 17-19, 2014, set ABC for CREMUS grouping in American Samoa, Guam, the CNMI and Hawaii as shown in Tables 6-9.

As described in the previous section above, the available data for CNMI reef sharks, and bumphead parrotfish, and humphead or Napoleon wrasse in American Samoa, Guam and the CNMI are not sufficient for use in the Biomass Augmented Catch-MSY model. Therefore, the SSC recommended the ABCs for these species continue to be set at the same ABC applied in the 2014 fishing year (79 FR 4276, January 27, 2014). In that year, the SSC set the ABCs at 5 percent of each stock's estimated stock biomass. Table 5 provides the estimated biomass and ABC values for CNMI reef sharks and for bumphead parrotfish, and humphead or Napoleon wrasse in American Samoa, Guam and the CNMI. Stock biomass for bumphead parrotfish in the CNMI and Guam were estimated by NNMFS on an archipelagic basis through underwater visual census surveys (NMFS 2011). Therefore, biomass and ABC for this species are shared between the CNMI and Guam. For more details on calculation of ABC for these taxonomic groupings, see NMFS (2011).

Table 5. Estimated stock biomass (in lb) of humphead wrasse and bumphead parrotfish in American Samoa, Guam and CNMI and reef sharks in the CNMI

Island	Humphe	ead wrasse	Bumphead	parrotfish	Reef sharks		
Area	Biomass	5% of Biomass	Biomass	5% of Biomass	Biomass	5% of Biomass	
		(ABC)		(ABC)		Divillass	
CNMI	40,184	2,009	15,931	797	111,997	5,600	
Guam	39,200	1,960	15,951	191			
American Samoa	34,860	1,743	4,699	235			

Source: NMFS (2011); Stock biomass for bumphead parrotfish in the CNMI and Guam were estimated on an archipelagic basis. Therefore, biomass and ABC for this species is shared between the CNMI and Guam.

2.2.4 Council ACL and AM Recommendations

2.2.4.1 ACL Recommendation

At its 160th meeting held June 25-27, 2014, the Council recommended NMFS specify an ACL set at the level of catch that is five percent lower than the SSC's fishing level recommendation in order to account for social, economic, and ecological factors and management uncertainty

(SEEM) See Appendix D of this document for the SEEM analysis. For CNMI reef sharks and bumphead parrotfish, and humphead or Napoleon wrasse in American Samoa, Guam and the CNMI, the Council recommended the ACLs for these species continue to be set at the same ACL applied in the 2014 fishing year (79 FR 4276, January 27, 2014), which is equal ABC described above. Tables 6-9 provides Council's ACL recommendations in relation to other reference points for CREMUS groupings in American Samoa, Guam, the CNMI and Hawaii.

No.	CREMUS Groupings	MSY	OFL	ABC	ACL
1	Selar crumenophthalmus – atule or	43,300	41,100	133,800	37,400
	bigeye scad				
2	Acanthuridae – surgeonfishes	148,600	142,500	133,800	129,400
3	Carangidae – jacks	24,300	23,200	20,800	19,900
4	Carcharhinidae – reef sharks	2,300	2,300	1,700	1,615
5	Crustaceans - crabs	7,800	7,300	4,700	4,300
6	Holocentridae – squirrelfishes	16,800	16,600	15,500	15,100
7	Kyphosidae – rudderfishes	2,600	2,600	2,200	2,000
8	Labridae – wrasses ¹	19,000	18,100	16,600	16,200
9	Lethrinidae – emperors	23,700	23,000	20,400	19,600
10	Lutjanidae – snappers	65,400	66,900	64,400	63,100
11	Mollusks – turbo snail; octopus;	29,600	27,500	20,200	18,400
	giant clam				
12	Mugilidae – mullets	8,200	7,600	5,200	4,600
13	Mullidae – goatfishes	12,700	12,500	12,000	11,900
14	Scaridae – parrotfishes ²	294,600	300,300	280,100	272,000
15	Serranidae – groupers	30,500	29,500	27,300	25,300
16	Siganidae – rabbitfishes	200	200	200	200
17	Cheilinus undulatus – humphead	Unknown	Unknown	1,743	1,743
	(Napoleon) wrasse				
18	Bolbometopon muricatum –	Unknown	Unknown	235	235
	bumphead parrotfish				
19	All Other CREMUS Combined	28,500	27,000	20,300	18,400

Table 6. MSY, OFL, ABC and ACL values (in pounds) for American Samoa CREMUS

¹Family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse)

² Family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

No.	CREMUS Groupings	MSY	OFL	ABC	ACL
1	Selar crumenophthalmus – atulai or	122,500	119,600	89,400	77,400
	bigeye scad				
2	Acanthuridae – surgeonfishes	361,200	370,000	324,600	302,600
3	Carangidae – jacks	55,300	53,00	47,400	44,900
4	Carcharhinidae – reef sharks	Unknown	Unknown	5,600	5,600
5	Crustaceans - crabs	9,100	8,900	5,300	4,400
6	Holocentridae – squirrelfishes	78,500	78,000	69,300	66,100

No.	CREMUS Groupings	MSY	OFL	ABC	ACL
7	Kyphosidae – rudderfishes	29,500	30,500	24,600	22,700
8	Labridae – wrasses ¹	73,500	75,500	59,900	55,100
9	Lethrinidae – emperors	69,700	72,200	58,200	53,700
10	Lutjanidae – snappers	225,800	228,700	202,700	190,400
11	Mollusks – turbo snail; octopus;	16,700	16,300	11,600	9,800
	giant clam				
12	Mugilidae – mullets	7,700	7,500	5,300	4,500
13	Mullidae – goatfishes	31,000	30,500	29,200	28,400
14	Scaridae – parrotfishes ²	189,900	199,000	157,300	144,000
15	Serranidae – groupers	110,300	112,000	92,800	86,900
16	Siganidae – rabbitfishes	12,000	11,000	10,400	10,200
17	Cheilinus undulatus – humphead	Unknown	Unknown	2,009	2,009
	(Napoleon) wrasse				
18	Bolbometopon muricatum –	Unknown	Unknown	797	797
	bumphead parrotfish			CNMI	CNMI and
				and Guam	Guam
				combined	combined
19	All Other CREMUS Combined	14,500	14,200	8,500	7,300

¹ Family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse) ² Family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

Table 8. MSY, OFL, ABC and ACL values (in pounds) for Guam CREMUS

No.	CREMUS Groupings	MSY	OFL	ABC	ACL
1	Selar crumenophthalmus – atulai or	61,300	60,800	52,300	50,200
	bigeye scad				
2	Acanthuridae – surgeonfishes	118,000	114,700	101,700	97,600
3	Carangidae – jacks	31,700	32,200	29,900	29,300
4	Carcharhinidae – reef sharks	2,900	2,900	2,000	1,900
5	Crustaceans - crabs	8,600	8,600	7,600	7,300
6	Holocentridae – squirrelfishes	13,900	13,800	12,000	11,400
7	Kyphosidae – rudderfishes	10,300	10,300	9,800	9,600
8	Labridae – wrasses ¹	28,500	28,200	25,800	25,200
9	Lethrinidae – emperors	78,000	76,600	58,000	53,000
10	Lutjanidae – snappers	21,800	20,700	18,600	18,000
11	Mollusks – turbo snail; octopus;	29,000	28,600	25,000	23,800
	giant clam				
12	Mugilidae – mullets	26,200	24,500	19,400	17,900
13	Mullidae – goatfishes	16,400	16,300	15,600	15,300
14	Scaridae – parrotfishes ²	87,100	86,500	75,000	71,600
15	Serranidae – groupers	28,600	27,400	23,700	22,500
16	Siganidae – rabbitfishes	19,700	19,200	18,800	18,600
17	Cheilinus undulatus – humphead	Unknown	Unknown	1,960	1,960
	(Napoleon) wrasse				

No.	CREMUS Groupings	MSY	OFL	ABC	ACL
18	Bolbometopon muricatum –	Unknown	Unknown	797	797
	bumphead parrotfish			CNMI	CNMI and
				and	Guam
				Guam	combined
				combined	
19	All Other CREMUS Combined	211,300	209,200	191,300	185,000

¹Family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse)

² Family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish)

No.	CREMUS Groupings	MSY	OFL	ABC	ACL
1	Selar crumenophthalmus – akule or	1,150,800	1,138,000	1,025,000	988,000
	bigeye scad				
2	Decapterus macarellus – opelu or	538,000	531,200	459,800	438,000
	mackerel scad				
3	Acanthuridae – surgeonfishes	445,500	452,600	367,900	342,000
4	Carangidae – jacks ¹	185,100	183,700	168,100	161,200
5	Carcharhinidae – reef sharks	12,400	12,500	9,800	9,310
6	Crustaceans – crabs	43,100	42,800	35,400	33,500
7	Holocentridae – squirrelfishes	159,800	158,100	150,000	148,000
8	Kyphosidae – rudderfishes	122,800	119,600	108,600	105,000
9	Labridae – wrasses	229,200	227,400	211,000	205,000
10	Lethrinidae – emperors	39,600	39,400	36,600	35,500
11	Lutjanidae – snappers ²	359,300	356,200	338,200	330,300
12	Mollusks –octopus	50,300	49,500	38,200	35,700
13	Mugilidae – mullets	24,600	24,500	20,100	19,200
14	Mullidae – goatfishes	195,700	197,500	173,100	165,000
15	Scaridae – parrotfishes	271,500	270,600	251,700	239,000
16	Serranidae – groupers	141,300	139,900	132,200	128,400
17	All Other CREMUS Combined	540,800	535,600	496,500	485,000

Note: Bolbometopon muricatum (bumphead parrotfish) and Cheilinus undulatus (humphead or Napoleon wrasse) do not occur in Hawaii.

¹Carangidae includes the BMUS, kahala (*Seriola dumerili*) since this species is not included in NMFS bottomfish stock assessments, and is a reef associated species.

² Lutjanidae includes the BMUS, taape (*Lutjanus kasmira*) since this species is not included in NMFS bottomfish stock assessments, and is a reef associated species.

2.2.4.2 AM Recommendation

Because near real-time monitoring of catches are not possible, the Council recommended at its 161st meeting, held October 21-23, 2014, a post-season AM that utilizes a moving three-year average to evaluate fishery performance against the recommended ACL. Specifically, after the end of each fishing year, the Council and NMFS will determine final catches for each CREMUS group. NMFS and the Council would use the average catch of fishing years 2013, 2014 and 2015 to evaluate fishery performance against the 2015 ACL; the average catch of fishing years 2014,

2015, and 2016 to evaluate performance against the 2016 ACL; and so on. If the average threeyear catch exceeds the recommended ACL, the Council recommended as an AM that NMFS reduce the ACL in the subsequent fishing year by the amount of the overage.

2.3 Description of the Alternatives Considered

This section describes the range of ACL alternatives for CREMUS in American Samoa, Guam, the CNMI and Hawaii as well as the associated probabilities of overfishing values for each CREMUS grouping in 2015-2018 based on the r and k method B risk projections from the Biomass Augmented Catch-MSY model (See Appendix B). Because the available data for CNMI reef sharks, and bumphead parrotfish, and humphead or Napoleon wrasse in American Samoa, Guam and the CNMI are not sufficient for use in the Biomass Augmented Catch-MSY model for the reasons noted in the previous section, MSY, OFL and probability of overfishing (P*) projections are not available for these species.

Tables 10-13 provides a summary of the ACL alternatives considered, the associated risks of overfishing (P*), MSY and OFL estimates and the average catch for most recent fishing years (e.g., 2011-2013). Alternative 3 is the NMFS preferred alternative in each island area as recommended by the Council.

Selar crumenophthalmus-atule or bigeye scad Mollusks- turbo snail; octopus; **Carcharhinidae-**Holocentridae-Acanthuridaesurgeonfishes squirrelfishes Kyphosidae-rudderfishes Crustaceans-Siganidae-rabbitfishes Lethrinidae-**Carangidae**parrotfishes Lutjanidae-Serranidaereef sharks **Mugilidae-**Mullidaegiant clam Scaridae-Labridaegoatfishes CREMUS emperors combined snappers groupers **All other** wrasses mullets crabs jacks MSY 45,300 148,600 24,300 2,300 7,800 16,800 2,600 19,000 23,700 65,400 29,600 8,200 12,700 294,600 30,500 200 28,500 **OFL Proxy** 41,100 2,300 2,600 66,900 27,500 7,600 12,500 300,300 29,500 142,500 23,200 7,300 16,600 18,100 23,000 200 27,000 (P*=50%)133,800 20,800 1,700 4,700 15,500 2,200 16,600 20,400 64,400 20,200 5,200 12,000 280,100 27,300 200 20,300 38,400 ABC P*=35% P*=40% P*=40% P*=35% P*=40% P*=40% P*=30% P*=35% Alternative 1 No ACL (No Action) Alternative 2 8,396 19,516 9,490 1,309 2,248 2,585 7,350 18,839 16,694 2,857 8,145 5,600 18,910 (Status Quo -†No ACL †No ACL †No ACL †No ACL P*<5% P*<5% P*<5% P*<5% P*<5% P*<5% P*<5% P*=25% P*<5% P*<5% P*<25% P*<15% P*<35% 2014 ACL) 4,300 2,000 16,200 19,600 63,100 4,600 25,300 Alternative 3 37,400 129,400 19,900 1,615 15,100 18,400 11,900 272,000 200 18,400 P*=35% P*=30% P*=30% P*=30% P*=30% P*=30% P*=30% P*=30% P*=30% P*=30% P*=35% (Preferred) P*=35% P*=35% P*=30% P*=25% P*=30% P*=30% 35,600 125,000 1,500 1.900 200 P*=25% P*30% P*=30% P*=30% 19,300 P*=30% 14,700 15,700 18,600 62,000 16,800 4,100 11,700 268,000 24,300 16,8,00 35,000 122,000 P*=25% 1,300 P*=25% P*=25% P*=25% P*=25% P*=25% P*=25% P*=25% P*=25% P*=25% 200 P*=25% 3,800 P*=25% P*=25% P*=25% P*25% P*=20% 23,300 34,200 117,000 18,200 1,700 15,200 17,800 60,600 15,200 3,600 11,400 15,200 1,100 14,300 260,000 200 **Alternative 4** P*=20% P*20% P*=20% P*=20% P*=20% P*=20% (Lower than 33.300 3.300 1.600 14,700 22,200 13,700 58,800 13,600 113.000 17.000 900 13.800 16.900 3.200 11.200 249,000 200 Preferred) P*=15% P*15% P*=15% 32,500 14.100 15,800 10,900 108,400 15,800 700 2.800 13.300 1,400 54,000 11,900 2.700 240,800 21,100 200 12.100 P*=10% P*10% P*=10% P*=10% 31,800 103,000 14,000 600 2,300 12,600 1,200 13,400 14,600 46,800 10,000 2,300 10,700 232,000 19,600 200 10,200 P*=5% 2012 Est. 2,222,908 66,973 276,540 78,285 82,489 324,499 559,820 1,134,641 1,832,548 474,837 596 2,609,732 n.a n.a. n.a n.a. n.a Biomass Avg. 2011-2.882 *332 15,804 2,245 5,477 6,460 93 2.295 2,171 *349 8,626 1,770 No data 6,689 2,755 5,139 No data 2013 Catch

Table 10. ACL alternatives (lb) and probability of overfishing (P*) for American Samoa CREMUS 2015-2018, including MSY-based reference points and 2011-2013 ave. catch (lb).

Source: Sabater and Kleiber (2014), provided in Appendix B of this EA.

Family Scaridae does not include Bolbometopon muricatum (bumphead parrotfish); Family Labridae does not include Cheilinus undulatus (humphead or Napoleon wrasse).

*Average includes 2010-2012 catch since there is no data for 2013 for this species.

† This species is included in "All other CREMUS combined."

Selar crumenophthalmus-atulai or bigeye scad Mollusks- turbo snail; octopus; **Carcharhinidae-**Holocentridae-Acanthuridaesurgeonfishes squirrelfishes Kyphosidae-rudderfishes Scaridae-parrotfishes **Crustaceans-**Siganidae-rabbitfishes Lethrinidae-**Carangidae**-Lutjanidae-Serranidaereef sharks **Mugilidae**clam Mullidae-Labridaegoatfishes CREMUS combined emperors snappers groupers All other wrasses mullets crabs giant jacks MSY 122,500 361,200 55,300 9,100 78,500 29,500 73,500 69,700 225,800 16,700 7,700 31,000 189,900 110,300 12,000 14,500 n.a. **OFL Proxy** 119,600 78,000 228,700 16,300 30,500 199,000 112,000 370,000 53,000 8,900 30,500 75,500 72,200 7,500 11,000 14,200 n.a. (P*=50%)324,600 47,400 5,600 5,300 69,300 24,600 59,900 58,200 202,700 11,600 5,300 29,200 157,300 92,800 8,500 89,400 10,400 ABC P*=35% P*=35% P*=40% P*=40% P* n.a P*=35% P*=35% P*=35% P*=35% P*=40% P*=40% P*=35% P*=40% P*=40% P*=40% P*=35% P*=35% Alternative 1 No No ACL (No Action) ACL Alternative 2 7,459 6,884 21,512 5,600 †No †No †No 27,466 3,905 4,446 3,308 3,670 3,784 5,519 2,537 9,820 †No (Status Quo -P*<5% P*<5% P*<5% ACL ACL ACL P*<5% P*<5% P*<15% P*<30% P*<5% P*<5% P*<5% P*<5% P* n.a. ACL P*<40% 2014 ACL 44,900 66,100 22,700 4,500 Alternative 3 77,400 302,600 5,600 4,400 55,100 53,700 190,400 9,800 28,400 144,000 86,900 10,200 7.300 P*=35% P*=30% P*=30% P*=30% P*=35% P*=35% P*=35% P*=35% P*=30% (Preferred) P*=35% P*=35% P* n.a. P*=30% P*=30% P*=30% P*=30% P*=30% 42,300 5,300 27,700 66,900 279,000 177,000 8,200 3,800 P*=30% P*=30% P*=30% P*=30% P*=30% P*=30% P* n.a. 3,700 63,100 20,800 50,200 49,200 P*=30% 129,000 80,400 9,300 6,200 58,200 258,000 39,800 5,000 P*=25% P*=25% P*=25% P*=25% P*=25% 164,000 6,900 3,200 26,800 P*=25% P* n.a. 26,100 234,000 37,300 4,700 3,100 18,900 45,200 44,500 150,000 117,000 5,200 50,400 59,900 5,800 2,700 74,100 8,700 **Alternative 4** P*=20% P* n.a. P*=20% P*=20% P*=20% (Lower than 43,600 39,700 137,000 25,500 67.300 34,800 4,400 211.000 2.600 56,700 17.000 40,400 4.800 2.300 103.000 8,400 4.400 Preferred) P*=15% P* n.a. P*=15% 37.800 15,100 35,200 34,700 88,900 60.200 3.700 184,600 32,100 4,100 2,100 53,300 123,400 3.900 1.900 24,900 8.100 P*=10% P* n.a. 32,800 158,000 28,7000 3,800 1,600 48,900 12,900 29,400 29,700 107,000 1,500 24,400 73,500 51,800 7,800 2,800 3,000 P*=5% P*=5% P*=5% P* n.a. P*=5% 2011 Est. 2,429,120 192,828 309,254 720,455 317,319 517,775 304,310 1,485,716 124,112 1,238,201 719,062 2,525,669 5,116 n.a. n.a. n.a. n.a. Biomass Avg. 2011-18,362 7,191 9,607 *2,568 2,413 2,394 No data *838 *1.325 *792 19,268 704 3,157 5,568 3,620 2.566 10,972 2013 Catch

Table 11. A ACL alternatives (lb) and probability of overfishing (P*) for CNMI CREMUS 2015-2018, including MSY-based reference points and 2011-2013 ave. catch (lb).

Source: Sabater and Kleiber (2014), provided in Appendix B of this EA.

Family Scaridae does not include Bolbometopon muricatum (bumphead parrotfish); Family Labridae does not include Cheilinus undulatus (humphead or Napoleon wrasse).

*Average includes 2009-2011 catch since there is no data for 2012 and 2013 for this species.

† This species is included in "All other CREMUS combined."

	Selar crumenophthalmus- atulai or bigeye scad	Acanthuridae- surgeonfishes	Carangidae- jacks	Carcharhinidae- reef sharks	Crustaceans- crabs	Holocentridae- squirrelfishes	Kyphosidae- rudderfishes	Labridae- wrasses	Lethrinidae- emperors	Lutjanidae- snappers	Mollusks- octopus	Mugilidae- mullets	Mullidae- goatfishes	Scaridae- parrotfishes	Serranidae- groupers	Siganidae- rabbitfishes	All other CREMUS combined
MSY	61,300	118,000	31,700	2,900	8,600	13,900	10,300	28,500	78,000	21,800	29,000	26,200	16,400	87,100	28,600	19,700	211,300
OFL Proxy (<i>P</i> *=50%)	60,800	114,700	32,200	2,900	8,600	13,800	10,300	28,200	76,600	20,700	28,600	24,500	16,300	86,500	27,400	19,200	209,200
ABC	52,300 P*=30%	101,700 P*=35%	29,900 P*=30%	2000 P*=30%	7,600 P*=35%	12,000 P*=35%	9,800 P*=35%	25,800 P*=35%	58,000 P*=35%	18,600 P*=35%	25,000 P*=35%	19,400 P*=35%	15,600 P*=40%	75,000 P*=35%	23,700 P*=35%	18,800 P*=40%	191,300 P*=35%
Alternative 1 (No Action)	No ACL	No ACL	No ACL	No ACL	No ACL	No ACL	No ACL	No ACL	No ACL	No ACL	No ACL	No ACL	No ACL	No ACL	No ACL	No ACL	No ACL
Alternative 2 (Status Quo – 2014 ACL	56,514 P*<45%	70,702 P*<5%	45,377 P*>50%	6,942 P*>50%	5,523 P*<10%	8,300 P*<10%	13,247 P*>50%	5,195 P*<5%	38,720 P*<15%	17,726 P*<30%	21,941 P*<25%	15,032 P*<20%	25,367 P*>50%	28,649 P*<5%	17,958 P*<15%	26,120 P*>50%	83,214 P*<5%
Alternative 3 (Preferred)	50,200 P*=25%	97,600 P*=30%	29,300 P*=25%	1,900 P*<25%	7,300 P*=30%	11,400 P*=30%	9,600 P*=30%	25,200 P*=30%	53,000 P*=30%	18,000 P*=30%	23,800 P*=30%	17,900 P*=30%	15,300 P*=35%	71,600 P*=30%	22,500 P*=30%	18,600 P*=35%	185,000 P*=30%
Alternative 4 (Lower than Preferred)	47,900 P*=20%	93,500 P*=25% 90,100 P*=20%	28,600 P*=20%	1,800 P*=25% 1,600 P*=20%	7,000 P*=25% 6,600 P*=20%	10,800 P*=25% 10,200 P*=20%	9,400 P*=25% 9,100 P*=20%	24,700 P*=25% 24,500 P*=20%	48,000 P*=25% 43,700 P*=20%	17,400 P*=25% 16,800 P*=20%	22,700 P*=25% 21,600 P*=20%	16,600 P*=25% 15,400 P*=20%	15,100 P*=30% 14,800 P*=25% 14,300 P*=20%	68,100 P*=25% 64,600 P*=20%	21,400 P*=25% 20,300 P*=20%	18,400 P*=30% 18,200 P*=25% 18,100 P*=20%	179,000 P*=25% 173,000 P*=20%
	45,500 P*=15%	86,200 P*=15%	27,800 P*=15%	1,400 P*=15%	6,200 P*=15%	9,600 P*=15%	8,900 P*=15%	24,100 P*=15%	39,800 P*=15%	16,100 P*=15%	20,400 P*=15%	14,100 P*=15%	14,000 P*=15%	60,600 P*=15%	19,100 P*=15%	17,800 P*=15%	166,000 P*=15%
	42,800 P*=10%	81,100 P*=10%	26,800 P*=10%	1,200 P*=10%	5,800 P*=10%	9,000 P*=10%	8,500 P*=10%	23,800 P*=10%	36,200 P*=10%	15,400 P*=10%	19,200 P*=10%	12,700 P*=10%	13,600 P*=10%	56,200 P*=10%	17,900 P*=10%	17,400 P*=10%	159,000 P*=10%
	39,300 P*=5%	74,500 P*=5%	25,200 P*=5%	1,000 P*=5%	5,200 P*=5%	8,200 P*=5%	8,100 P*=5%	23,200 P*=5%	31,500 P*=5%	14,400 P*=5%	17,600 P*=5%	11,000 P*=5%	13,200 P*=5%	51,100 P*=5%	16,400 P*=5%	16,800 P*=5%	150,000 P*=5%
2011 Est. Biomass	n.a	1,483,179	65,210	35,178	n.a.	148,512	23,824	472,974	183,065	286,014	n.a.	103,302	n.a.	1,586,650	359,400	26,326	1,685,146
Avg. 2011- 2013 Catch	107,271	35,500	54,050	953	1,845	2,934	1,316	1,378	27,749	8,283	7,914	10,339	12,142	22,172	7,881	12,467	35,860

Table 12. A ACL alternatives (lb) and probability of overfishing (P*) for Guam CREMUS 2015-2018, including MSY-based reference points and 2011-2013 ave. catch (lb).

Source: Sabater and Kleiber (2014), provided in Appendix B of this EA. Family Scaridae does not include *Bolbometopon muricatum* (bumphead parrotfish); Family Labridae does not include *Cheilinus undulatus* (humphead or Napoleon wrasse). † This species is included in "All other CREMUS combined."

opelu or crumenophthalmus-akule or bigeye scad **Carcharhinidae-**Holocentridae-Acanthuridaesurgeonfishes squirrelfishes Carangidae-jacks Kyphosidae-rudderfishes **Crustaceans-**Scaridae-parrotfishes Lethrinidaemacarellus- op mackerel scad Lutjanidaereef sharks Serranidae-Mugilidae-Mullidae-goatfishes Labridae-CREMUS groupers combined Decapterus emperors **Mollusks**snappers All other octopus wrasses mullets crabs Selar MSY 159,800 24,600 141,300 540,800 1,150,800 538,000 445,500 185,100 12,400 43,100 122,800 229,200 39,600 359,300 50,300 195,700 271,500 **OFL Proxy** 1,138,000 531,200 452,600 183,700 12,500 42,800 158,100 119,600 227,400 39,400 356,200 49,500 24,500 197,500 270,600 139,900 535,600 (P*=50%) 459,800 367,900 168,100 9,800 35,400 150,000 108,600 211,000 36,600 338,200 38,200 20,100 173,100 251,700 132,200 1,025,000 496,500 ABC P*=35% P*=30% P*=35% P*=30% P*=35% P*=35% P*=35% P*=40% P*=35% P*=30% P*=35% P*=35% P*=40% P*=30% P*=35% P*=40% P*=35% Alternative 1 No ACL (No Action) Alternative 2 651,292 80,545 193,423 111,566 20,686 41,112 393,536 44,122 65,102 28,765 125,813 142,282 33,326 (Status Quo †No ACL †No ACL †No ACL †No ACL P*<5% P*<5% P*<10% P*<5% P*<5% P*>50% P*>50% P*<5% P*<5% P*>50% P*<10% P*<5% P*<20% 2014 ACL Alternative 3 128,400 988,000 438,000 342,000 161,200 9,310 33,500 148,000 105,000 205,000 35,500 330,300 35,700 19,200 165,000 239,000 485,000 P*=30% P*=35% P*<35% P*=25% P*=25% P*=30% P*=30% P*=30% P*=35% P*=25% P*=25% P*=30% P*=25% (P*=35%) P*=30% P*=30% P*=30% (Preferred) 154,000 321,000 125,000 Alternative 4 8,800 P*=30% P*=30% P*=30% P*=30% 952,000 418,000 313,000 101.000 200,000 34,300 157.000 471.000 (Lower than P*=25% P*=25% P*=25% 146,000 8.000 P*=25% P*=25% P*=25% 312.000 P*=25% 121,000 P*=25% Preferred) 232.000 31,400 146,000 33,400 18,200 P*=25% P*=25% P*=25% P*=25% P*=20% P*=20% P*=20% P*=20% P*=20% 148,000 400,000 288,000 139,000 7,200 98,100 194,000 33,200 303.000 116,000 919.000 457,000 P*=20% 381,000 259,000 29,100 144,000 94,500 188,000 31,300 17,100 223,000 111,000 440,000 886,000 131,000 6,300 32,100 292,000 138,000 P*=15% 850.600 363.300 231.100 123.300 5.400 26.600 140.600 90.500 181.000 31.000 280,500 29.200 15.900 128.300 213,400 106.000 424.200 P*=10% 175,000 29,400 201,000 807.000 346,000 196,000 114,000 4,300 23,900 138,000 86,000 264,000 26,600 14,300 116,000 98,700 405,000 P*=5% 2010 Est. 14,276,986 1,851,171 324.635 1,209,295 2,081,020 4,273,341 735,752 6,505,508 2,550,326 4,845,563 2,325,704 10,033,442 n.a. n.a. n.a. n.a. n.a. **Biomass** Avg. 2011-340,443 131,299 *7.706 *6.599 296,800 44,714 2,842 27,253 64,771 *27,511 39,272 60,255 45.086 9.761 80.568 *5.093 96,635 2013 Catch

Table 13. ACL alternatives (lb) and probability of overfishing (P*) for Hawaii CREMUS 2015-2018, including MSY-based reference points and 2011-2013 ave. catch (lb).

Source: Sabater and Kleiber (2014), provided in Appendix B of this EA.

Bolbometopon muricatum (bumphead parrotfish) and Cheilinus undulatus (humphead or Napoleon wrasse) do not occur in Hawaii and are not included in family Scaridae and Labridae, respectively.

Family Carangidae includes the BMUS, kahala (Seriola dumerili) since this species is a reef-associated species; Family Lutjanidae includes BMUS, taape (Lutjanus kasmira) since this species a reef-associated species.

*Average includes 2010-2012 catch since there is no data for 2013 for this species. † This species is included in "All other CREMUS combined."

2.3.1 American Samoa CREMUS Alternatives

2.3.1.1 Alternative 1: No ACL and AM Management (No Action)

Currently, NMFS has not specified an ACL and AM for American Samoa CREMUS for fishing year 2015. Under this alternative, NMFS would not specify an ACL for any American Samoa CREMUS and AMs would not be necessary. However, this alternative would not be in compliance with the Magnuson-Stevens Act, or the provisions of the American Samoa FEP and implementing federal regulations which require NMFS to specify an ACL for all stocks and stock complexes.

Expected Fishery Outcome

Although the potential for catch is unlimited without an ACL and AMs, the lack of an ACL or AMs is not expected to result in changes in the conduct of coral reef fisheries in American Samoa, including gear types used, areas fished, level of catch or effort. This is because even without ACLs and AMs, catches of CREMUS would remain sustainable based on the best available commercial and scientific information. As shown in Table 10, the recent average catch value for fishing years 2011-2013 for each CREMUS group is well below that group's estimated MSY and OFL proxy. During fishing years 2011 through 2013, the fishery for each CREMUS group remained open year round.

For every American Samoa CREMUS group, catches in 2015-2018 could be increased two to three times above the most recent three-year average catch level without approaching the OFL (See Table 10). The fishery is not expected to change much in the coming years. Therefore, under this alternative, the annual level of catch of each CREMUS group in 2015 through 2018 is expected to be similar to that described under Alternative 2 and is not expected to exceed the associated OFL proxy for that CREMUS group as shown in Table 10.

2.3.1.2 Alternative 2: Specify 2014 ACLs (Status Quo/NEPA Baseline)

Under Alternative 2, NMFS would specify the ACL for each American Samoa CREMUS group in fishing years 2015-2018 at the same level NMFS specified for each CREMUS group in 2014 (79 FR 4276, January 27, 2014). See Table 10 for the specific ACL values for each CREMUS group. Note that under this alternative, there would be no individual ACL for Kyphosidae (rudderfish), Labridae (Wrasses), Mullidae (goatfishes), or Siganidae (rabbitfish). This is because in the prior species level aggregation process described in Section 2.2.1 – Determining the Level of Species Aggregation, these species groups did not comprise the top 90% of the total coral reef fish catch over the long-term catch time series. Therefore, under this alternative, these species would remain in the category "All Other CREMUS" combined as they were in fishing year 2014 and in previous years.

The ACLs under Alternative 2 were developed using a different method than proposed under the preferred alternative (Alternative 3), and are equal to the 75th percentile of the long-term catch history. For detailed information on the how these ACLs were derived, please see the 2011 EA for coral reef ecosystem fisheries (NMFS 2011). Based on risk projections from method B of the

Biomass Augmented Catch-MSY model (Appendix B), no ACL specification under Alternative 2 is associated with greater than a 35% probability of overfishing should the entire ACL be caught (see Table 10). This shows that the proposed ACLs under Alternative 2 are overly conservative. Given the fact that there is no in-season closure associated with this Alternative, there would not be an impact to the fishery, even if the ACL were unduly conservative.

For American Samoa humphead or Napoleon wrasse (*Cheilinus undulatus*), and bumphead parrotfish (*Bolbometopon muricatum*), NMFS specified the 2014 ACLs at 1,743 lb and 235 lb, respectively. This level of catch is equal to 5% of each stock's estimated biomass and identical to the ACL proposed under the preferred alternative (Alternative 3). As previously mentioned above, MSY, OFL and probability of overfishing projections for these species are not available.

Under this alternative, if the Council determines an ACL is exceeded, the Council as an AM would take action in accordance with 50 CFR 600.310(g) to correct the operational issue that caused the ACL overage. This may include a recommendation that NMFS reduce the ACL in the subsequent fishing year by the amount of the overage, or other measures, as appropriate. As the status quo, Alternative 2 is the NEPA baseline to which all other alternatives are compared.

Expected Fishery Outcome

The expected fishery outcome under Alternative 2 would be the same as under Alternative 1 (No action), and Alternative 3 and is not expected to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch or effort. This is because annual catch of each American Samoa CREMUS group in fishing years 2015-2018 is expected to be similar to the average annual catch from the most recent three-year period (2011-2013) shown in Table 10, and remain below the ACLs proposed under this alternative. Regardless of the grouping or species, based on previous years' monitoring of the fishery, no American Samoa CREMUS fishery is expected to exceed the ACL in any of the four years.

Because statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during any fishing year whether the ACL for any CREMUS group might be reached. Therefore, in-season AMs to prevent an ACL from being exceeded are not possible. However, six months after each fishing year, data would become available for NMFS and the Council to determine whether an ACL in the previous year was exceeded.

If NMFS and the Council determine catch exceeded an ACL proposed under this alternative, the Council is not expected to recommend as an AM, NMFS reduce the ACL in the subsequent fishing year by the amount of the overage. This is because the ACLs under this alternative were developed using a different method than is proposed under the preferred alternative (Alternative 3) and without knowledge of the estimate of MSY and OFL. For this reason, these ACLs are now considered overly conservative based on the best available information as described in Section 2.2.2. Based on recent catch data shown in Table 11, the annual level of catch for each CREMUS group in 2015-2018 is not expected to exceed the group's estimated OFL proxy.

2.3.1.3 Alternative 3: Specify Council Recommended ACLs (Preferred)

Under Alternative 3 (the Council's and NMFS' Preferred Alternative), NMFS would specify the ACL for each American Samoa CREMUS group in 2015-2018 as shown in Table 10. This level of catch is five percent lower than each CREMUS group's ABC. Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), no ACL under Alternative 3 is associated with greater than a 35 percent probability of overfishing should the entire ACL be caught (see Table 10). For American Samoa humphead or Napoleon wrasse (*Cheilinus undulatus*), and bumphead parrotfish (*Bolbometopon muricatum*), NMFS proposes to specify the 2015-2018 ACL at 1,743 lb and 235 lb, respectively. This level of catch is identical to the ACL under the status quo/NEPA baseline (Alternative 2).

Under this alternative, if the Council determines the three-year average catch for any CREMUS group exceeded the specified ACL in any fishing year, NMFS would reduce the ACL by the amount of the overage in the subsequent years. See Section 1.3- Proposed Action for detailed information on how this AM would be triggered.

Expected Fishery Outcome

The expected fishery outcome under Alternative 3 would be the same as under Alternative 1 (No action), and Alternative 2 and is not expected to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch or effort. This is because under this alternative, the annual catch of each American Samoa CREMUS group in fishing years 2015-2018 is expected to be similar to the average annual catch from the most recent three-year period (2011-2013) shown in Table 10, and remain below the ACLs proposed under this alternative. Regardless of the grouping or species, based on previous years' monitoring of the fishery, no American Samoa CREMUS fishery is expected to exceed the ACL in any of the four years.

Because statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during any fishing year whether the ACL for any CREMUS group might be reached. Therefore, in-season AMs to prevent an ACL from being exceeded are not possible. However, six months after each fishing year, data would become available for NMFS and the Council to determine whether an ACL in the previous year was exceeded.

2.3.1.4 Alternative 4: Specify ACLs Lower than the Preferred Alternative

Under Alternative 4, NMFS would specify an ACL for each American Samoa CREMUS group that is lower than the preferred alternative (Alternative 3) for fishing years 2015 through 2018 (See Table 10). For each CREMUS group, NMFS included a range of ACLs lower than the ACL that would be established under the preferred alternative in the event that the proposed ACL under Alternative 3 is implemented and exceeded in 2015, 2016 or 2017, and a downward overage adjustment by the amount of the overage is necessary in a subsequent year. Under this alternative, the ACL for each CREMUS group would depend on the amount of the overage in the preceding year, but depending on the exact level of catch, would be associated with a probability of overfishing ranging from 30 percent down to 5 percent (See Table 10).

Expected Fishery Outcome

The expected fishery outcome under Alternative 4 would be the same as under Alternative 1 (No action), and Alternatives 2 (Status Quo) and 3 (Preferred) and the action of specifying ACLs and AMs is not expected to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch or effort. This is because under this alternative, the annual catch of each American Samoa CREMUS group in fishing years 2015-2018 is expected to be similar to the average annual catch from the most recent three-year period (2011-2013) shown in Table 10, and remain below the lowest ACLs proposed under this alternative. Regardless of the grouping or species, based on previous years' monitoring of the fishery, no American Samoa CREMUS fishery is expected to exceed the ACL in any of the four years.

Because statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during any fishing year whether the ACL for any CREMUS group might be reached. Therefore, in-season AMs to prevent an ACL from being exceeded are not possible. However, six months after each fishing year, data would become available for NMFS and the Council to determine whether an ACL in the previous year was exceeded.

2.3.2 CNMI CREMUS Alternatives

2.3.2.1 Alternative 1: No ACL and AM Management (No Action)

Currently, NMFS has not specified an ACL and AM for any CNMI CREMUS for fishing year 2015. Under this alternative, NMFS would not specify an ACL for any CNMI CREMUS and AMs would not be necessary. However, this alternative would not be in compliance with the Magnuson-Stevens Act, or the provisions of the Mariana Archipelago FEP and implementing federal regulations which require NMFS to specify an ACL for all stocks and stock complexes.

Expected Fishery Outcome

Although the potential for catch is unlimited without an ACL and AMs, the lack of an ACL or AMs is not expected to result in changes in the conduct of coral reef fisheries in the CNMI, including gear types used, areas fished, level of catch or effort. This is because even without ACLs and AMs, the catches of CREMUS would remain sustainable based on the best available commercial and scientific information. As shown in Table 11, the recent average catch value for fishing years 2011-2013 for each CREMUS group is well below that group's estimated MSY and OFL proxy. During fishing years 2011 through 2013, the fishery for each CREMUS group remained open year round.

For every CNMI CREMUS group except for "All Other CREMUS" catches in 2015-2018 could be increased two to three times above the most recent three-year average catch level without approaching the OFL (See Table 11). The fishery is not expected to change much in the coming years. Therefore, under this alternative, the annual level of catch of each CREMUS group in 2015 through 2018 is expected to be similar to that described under Alternative 2 and is not expected to exceed the associated OFL proxy for that CREMUS group as shown in Table 11.

2.3.2.2 Alternative 2: Specify 2014 ACLs (Status Quo/NEPA Baseline)

Under Alternative 2, NMFS would specify the ACL for each CNMI CREMUS group in fishing years 2015-2018 at the same level NMFS specified for each CREMUS group in 2014 (79 FR 4276, January 27, 2014). See Table 11 for the specific ACL values for each CREMUS group. Note that under this alternative, there would be no individual ACL for Crustacean (crabs), Holocentidae (squirrelfish), Kyphosidae (rudderfish), or Labridae (Wrasses). This is because in the prior species level aggregation process described in Section 2.2.1 – Determining the Level of Species Aggregation, these species groups did not comprise the top 90% of the total coral reef fish catch over the long-term catch time series. Therefore, under this alternative, these species would remain in the category "All Other CREMUS" combined as they were in fishing year 2014 and in previous years.

The ACLs under Alternative 2 were developed using a different method than proposed under the preferred alternative (Alternative 3), and are equal to the 75th percentile of the long-term catch history. For detailed information on the how these ACLs were derived, please see the 2011 EA for coral reef ecosystem fisheries (NMFS 2011). Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), no ACL specification under Alternative 2 is associated with greater than a 40 percent probability of overfishing should the entire ACL be caught (see Table 11). This shows that the proposed ACLs under Alternative 2 are overly conservative. Given the fact that there is no in-season closure associated with this Alternative, there would not be an impact to the fishery, even if the ACL were unduly conservative.

For the 2014 fishing year, NMFS specified the ACL for CNMI humphead or Napoleon wrasse (*Cheilinus undulatus*), and bumphead parrotfish (*Bolbometopon muricatum*), at 2,009 lb and 797 lb, respectively. For the bumphead wrasse, the 2014 ACL was shared between the CNMI and Guam and would be shared again in 2015-2018 under this alternative. The 2014 ACLs were equal to 5% of each stock's estimated biomass and identical to the ACL proposed under the preferred alternative (Alternative 3). As previously mentioned above, MSY, OFL and probability of overfishing projections for these species are not available.

Under this alternative, if the Council determines an ACL is exceeded, the Council as an AM would take action in accordance with 50 CFR 600.310(g) to correct the operational issue that caused the ACL overage. This may include a recommendation that NMFS reduce the ACL in the subsequent fishing year by the amount of the overage, or other measures, as appropriate. As the status quo, Alternative 2 is the NEPA baseline to which all other alternatives are compared.

Expected Fishery Outcome

The expected fishery outcome under Alternative 2 would be the same as under Alternative 1 (No action), and Alternative 3 and is not expected to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch or effort. This is because annual catch of each CNMI CREMUS group in fishing years 2015-2018 is expected to be similar to the average annual catch from the most recent three-year period (2011-2013) shown in Table 11, and remain below the ACLs proposed under this alternative. Regardless of the grouping or species, based on

previous years' monitoring of the fishery, no CNMI CREMUS fishery is expected to exceed the ACL in any of the four years.

Because statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during any fishing year whether the ACL for any CREMUS group might be reached. Therefore, in-season AMs to prevent an ACL from being exceeded are not possible. However, six months after each fishing year, data would become available for NMFS and the Council to determine whether an ACL in the previous year was exceeded.

If NMFS and the Council determine catch exceeded an ACL proposed under this alternative, the Council is not expected to recommend as an AM, NMFS reduce the ACL in the subsequent fishing year by the amount of the overage. This is because the ACLs under this alternative were developed using a different method than is proposed under the preferred alternative (Alternative 3) and without knowledge of the estimate of MSY and OFL. For this reason, these ACLs are now considered overly conservative based on the best available information as described in Section 2.2.2. Based on recent catch data shown in Table 11, the annual level of catch for each CREMUS group in 2015-2018 is not expected to exceed the group's estimated OFL proxy.

2.3.2.3 Alternative 3: Specify Council Recommended ACLs (Preferred)

Under Alternative 3 (the Council's and NMFS' Preferred Alternative), NMFS would specify the ACL for each CNMI CREMUS group in 2015-2018 as shown in Table 11. This level of catch is five percent lower than each CREMUS group's ABC. Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), no ACL under Alternative 3 is associated with greater than a 35% percent probability of overfishing should the entire ACL be caught (see Table 11).

For CNMI humphead or Napoleon wrasse (*Cheilinus undulatus*), and bumphead parrotfish (*Bolbometopon muricatum*), NMFS would specify the ACL at the same level proposed under Alternative 2, which is 2,009 lb and 797 lb, respectively. Like in Alternative 2, the ACL for bumphead wrasse would be shared between the CNMI and Guam in 2015-2018. As previously mentioned above, MSY, OFL and probability of overfishing projections for these species are not available.

Under this alternative, if the Council determines the three-year average catch for any CREMUS group exceeded the specified ACL in any fishing year, NMFS would reduce the ACL by the amount of the overage in the subsequent years. See Section 1.3- Proposed Action for detailed information on how this AM would be triggered.

Expected Fishery Outcome

The expected fishery outcome under Alternative 3 would be the same as under Alternative 1 (No action), and Alternative 2 and is not expected to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch or effort. This is because under this alternative, the annual catch of each CNMI CREMUS group in fishing years 2015-2018 is

expected to be similar to the average annual catch from the most recent three-year period (2011-2013) shown in Table 11, and remain below the ACLs proposed under this alternative. Regardless of the grouping or species, based on previous years' monitoring of the fishery, no CNMI CREMUS fishery is expected to exceed the ACL in any of the four years. Because statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during any fishing year whether the ACL for any CREMUS group might be reached. Therefore, in-season AMs to prevent an ACL from being exceeded are not possible. However, six months after each fishing year, data would become available for NMFS and the Council to determine whether an ACL in the previous year was exceeded.

2.3.2.4 Alternative 4: Specify ACLs Lower than the Preferred Alternative

Under Alternative 4, NMFS would specify an ACL for each CNMI CREMUS group that is lower than the preferred alternative (Alternative 3) for fishing years 2015 through 2018 (See Table 11). For each CREMUS group, NMFS included a range of ACLs lower than the ACL that would be established under the preferred alternative in the event that the proposed ACL under Alternative 3 is implemented and exceeded in 2015, 2016 or 2017, and a downward overage adjustment by the amount of the overage is necessary in a subsequent year. Under this alternative, the ACL for each CREMUS group would depend on the amount of the overage in the preceding year, but depending on the exact level of catch, would be associated with a probability of overfishing ranging from 30 percent down to 5 percent (See Table 11).

Expected Fishery Outcome

The expected fishery outcome under Alternative 4 would be the same as under Alternative 1 (No action), and Alternatives 2 (Status Quo) and 3 (Preferred) and the action of specifying ACLs and AMs is not expected to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch or effort. This is because under this alternative, the annual catch of each CNMI CREMUS group in fishing years 2015-2018 is expected to be similar to the average annual catch from the most recent three-year period (2011-2013) shown in Table 11, and remain below the lowest ACLs proposed under this alternative. Regardless of the grouping or species, based on previous years' monitoring of the fishery, no CNMI CREMUS fishery is expected to exceed the ACL in any of the four years.

Because statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during any fishing year whether the ACL for any CREMUS group might be reached. Therefore, in-season AMs to prevent an ACL from being exceeded are not possible. However, six months after each fishing year, data would become available for NMFS and the Council to determine whether an ACL in the previous year was exceeded.

2.3.3 Guam CREMUS Alternatives

2.3.3.1 Alternative 1: No ACL and AM Management (No Action)

Currently, NMFS has not specified an ACL and AM for any Guam CREMUS for fishing year 2015. Under this alternative, NMFS would not specify an ACL for any Guam CREMUS and AMs would not be necessary. However, this alternative would not be in compliance with the Magnuson-Stevens Act, or the provisions of the Mariana Archipelago FEP and implementing federal regulations which require NMFS to specify an ACL for all stocks and stock complexes.

Expected Fishery Outcome

Under Alternative 1 (No Action), catches of Guam CREMUS are expected to be similar to the most recent three-year average catch level shown in Table 12. During these years, the fishery remained open year round. Except for *Selar crumenopthalmus* or bigeye scad and Carangidae or jacks, the average 2011-2013 catch of all other Guam CREMUS groups were well below the MSY and OFL reference points and are sustainable.

For Guam bigeye scad and jacks, the average 2011-2013 catch was nearly twice the stocks' MSY and OFL reference points (Table 12). The fishery could become unsustainable if this level of catch is realized again in 2015-2018. If NMFS determines that a stock is subject to overfishing, the Council would be required to take action pursuant to Section 304(e) of the Magnuson-Stevens Act to end overfishing in the fishery.

2.3.3.2 Alternative 2: Specify 2014 ACLs (Status Quo/NEPA Baseline)

Under Alternative 2, NMFS would specify the ACL for each Guam CREMUS group in fishing years 2015-2018 at the same level NMFS specified for each CREMUS group in 2014 (79 FR 4276, January 27, 2014). See Table 12 for the specific ACL values for each CREMUS group. The ACLs under Alternative 2 were developed using a different method than proposed under the preferred alternative (Alternative 3), and are equal to the 75th percentile of the long-term catch history. For detailed information on the how these ACLs were derived, please see the 2011 EA for coral reef ecosystem fisheries (NMFS 2011).

Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), the ACL for several CREMUS groups would be associated with a probability of overfishing greater than 50 percent (Table 12). These are Carangidae (jacks), Carcharhinidae (reef sharks), Kyphosidae (rudderfish), Mullidae (goatfish) and Siganidae (rabbitfish). By law, the probability of overfishing cannot exceed 50 percent (74 FR 3178, January 9, 2011). Therefore, these ACLs would not be in compliance with the Magnuson-Stevens Act. For all other Guam CREMUS groups, the ACL specifications under Alternative 2 are associated with probability of overfishing no greater than 30 percent should the entire ACL be caught (see Table 12).

For the 2014 fishing year, NMFS specified the ACL for Guam humphead or Napoleon wrasse (*Cheilinus undulatus*), and bumphead parrotfish (*Bolbometopon muricatum*), at 1,960 lb and 797

lb, respectively. For the bumphead wrasse, the 2014 ACL was shared between the CNMI and Guam and would be shared again in 2015-2018 under this alternative. The 2014 ACLs were equal to 5% of each stock's estimated biomass and identical to the ACL proposed under the preferred alternative (Alternative 3). As previously mentioned above, MSY, OFL and probability of overfishing projections for these species are not available.

Under this alternative, if the Council determines an ACL is exceeded, the Council as an AM would take action in accordance with 50 CFR 600.310(g) to correct the operational issue that caused the ACL overage. This may include a recommendation that NMFS reduce the ACL in the subsequent fishing year by the amount of the overage, or other measures, as appropriate. As the status quo, Alternative 2 is the NEPA baseline to which all other alternatives are compared.

Expected Fishery Outcome

The expected fishery outcome under Alternative 2 would be the same as under Alternative 1 (No action), and Alternative 3 (Preferred), and is not expected to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch or effort. This is because even if NMFS specifies ACLs, catch statistics are not available until at least six months after the data have been collected, and so NMFS and the Council have no way to determine during any fishing year whether the ACL for any CREMUS group might be reached. Therefore, in-season AMs to prevent an ACL from being exceeded are not possible and the fishery would remain open year round. However, six months after each fishing year, data would become available for NMFS and the Council to determine whether an ACL in the previous year was exceeded.

In fishing years 2015-2018 annual catch of each Guam CREMUS group is expected to be similar to the average annual catch from the most recent three-year period (2011-2013) shown in Table 12. Like in Alternative 1, this level of catch would be sustainable, except for bigeye scad and jacks. For Guam bigeye scad and jacks, the average 2011-2013 catch was nearly twice the stocks' MSY and OFL reference points (Table 12).

If NMFS and the Council determine catch exceeded an ACL proposed under this alternative but not the MSY or OFL reference points, the Council is not expected to recommend as an AM, NMFS reduce the ACL in the subsequent fishing year by the amount of the overage. This is because the ACLs under this alternative were developed using a different method than is proposed under the preferred alternative (Alternative 3) and without knowledge of the estimate of MSY and OFL. Except for Guam bigeye scad and jacks, these ACLs are now considered overly conservative based on the best available information as described in Section 2.2.2.

However, if NMFS and the Council determine catch exceeded an ACL proposed under this alternative and the MSY or OFL reference points as occurred in 2012, Council would likely recommend as an AM, NMFS reduce the ACL in the subsequent fishing year by the amount of the overage. Additionally, if NMFS determines that a stock is subject to overfishing, the Council would be required to take action pursuant to Section 304(e) of the Magnuson-Stevens Act to end overfishing in the fishery.

2.3.3.3 Alternative 3: Specify Council Recommended ACLs (Preferred)

Under Alternative 3 (the Council's and NMFS' Preferred Alternative), NMFS would specify the ACL for each Guam CREMUS group in 2015-2018 as shown in Table 12. This level of catch is five percent lower than each CREMUS group's ABC. Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), no ACL under Alternative 3 is associated with greater than a 35% percent probability of overfishing should the entire ACL be caught (see Table 12).

For Guam humphead or Napoleon wrasse (*Cheilinus undulatus*), and bumphead parrotfish (*Bolbometopon muricatum*), NMFS would specify the ACL at the same level proposed under Alternative 2, which is 1,960 lb and 797 lb, respectively. Like in Alternative 2, the ACL for bumphead wrasse would be shared between the CNMI and Guam in 2015-2018. As previously mentioned above, MSY, OFL and probability of overfishing projections for these species are not available.

Under this alternative, if the Council determines the three-year average catch for any CREMUS group exceeded the specified ACL in any fishing year, NMFS would reduce the ACL by the amount of the overage in the subsequent years. See Section 1.3- Proposed Action for detailed information on how this AM would be triggered.

Expected Fishery Outcome

The expected fishery outcome under Alternative 3 would be the same as under Alternative 1 (No action), and Alternative 2 (Status Quo), and is not expected to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch or effort. This is because even if NMFS specifies ACLs, catch statistics are not available until at least six months after the data have been collected, and so NMFS and the Council have no way to determine during any fishing year whether the ACL for any CREMUS group might be reached. Therefore, in-season AMs to prevent an ACL from being exceeded are not possible and the fishery would remain open year round. However, six months after each fishing year, data would become available for NMFS and the Council to determine whether an ACL in the previous year was exceeded.

In fishing years 2015-2018 annual catch of each Guam CREMUS group is expected to be similar to the average annual catch from the most recent three-year period (2011-2013) shown in Table 12. Like in Alternative 1, this level of catch would be sustainable, except for bigeye scad and jacks. For Guam bigeye scad and jacks, the average 2011-2013 catch was nearly twice the stocks' MSY and OFL reference points. If NMFS and the Council determine the three-year average catch for any CREMUS group exceeded the specified ACL in any fishing year, NMFS would reduce the ACL in the subsequent fishing year by the amount of the overage. Additionally, if NMFS determines that a stock is subject to overfishing, the Council would be required to take action pursuant to Section 304(e) of the Magnuson-Stevens Act to end overfishing in the fishery.

2.3.3.4 Alternative 4: Specify ACLs Lower than the Preferred Alternative

Under Alternative 4, NMFS would specify an ACL for each Guam CREMUS group that is lower than the preferred alternative (Alternative 3) for fishing years 2015 through 2018 (See Table 12). For each CREMUS group, NMFS included a range of ACLs lower than the ACL that would be established under the preferred alternative in the event that the proposed ACL under Alternative 3 is implemented and exceeded in 2015, 2016 or 2017, and a downward overage adjustment by the amount of the overage is necessary in a subsequent year. Under this alternative, the ACL for each CREMUS group would depend on the amount of the overage in the preceding year, , but depending on the exact level of catch, would be associated with a probability of overfishing ranging from 30 percent down to 5 percent (See Table 12).

Expected Fishery Outcome

The expected fishery outcome under Alternative 4 would be the same as under Alternative 1 (No action), and Alternatives 2 (Status Quo) and 3 (Preferred) and the action of specifying ACLs and AMs is not expected to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch or effort. This is because even with a lower ACL, NMFS and the Council have no way to determine during any fishing year whether the ACL for any CREMUS group might be reached as statistics are not available until at least six months after the data have been collected. Therefore, even with a lower ACL, the annual catch of each Guam CREMUS group in fishing years 2015-2018 is expected to be similar to the average annual catch from the most recent three-year period (2011-2013) shown in Table 12. For Guam bigeye scad and jacks, the average 2011-2013 catch was nearly twice the stocks' MSY and OFL reference points (Table 12). If the three-year average catch for any CREMUS group exceeded the specified ACL in any fishing year, that level of catch would be unstainable. Additionally, if NMFS determines that a stock is subject to overfishing, the Council would be required to take action pursuant to Section 304(e) of the Magnuson-Stevens Act to end overfishing in the fishery.

2.3.4 Hawaii CREMUS Alternatives

2.3.4.1 Alternative 1: No ACL and AM Management (No Action)

Currently, NMFS has not specified an ACL and AM for Hawaii CREMUS for fishing year 2015. Under this alternative, NMFS would not specify an ACL for any Hawaii CREMUS and AMs would not be necessary. However, this alternative would not be in compliance with the Magnuson-Stevens Act, or the provisions of the American Samoa FEP and implementing federal regulations which require NMFS to specify an ACL for all stocks and stock complexes.

Expected Fishery Outcome

Although the potential for catch is unlimited without an ACL and AMs, the lack of an ACL or AMs is not expected to result in changes in the conduct of coral reef fisheries in Hawaii, including gear types used, areas fished, level of catch or effort. This is because even without ACLs and AMs, catches of CREMUS would remain sustainable based on the best available commercial and scientific information. As shown in Table 13, the recent average catch value for

fishing years 2011-2013 for each CREMUS group is well below that group's estimated MSY and OFL proxy. During fishing years 2011 through 2013, the fishery for each CREMUS group remained open year round.

Catches of most Hawaii CREMUS group in 2015-2018 could be increased two times above the most recent three-year average catch level without approaching the OFL (See Table 13). The fishery is not expected to change much in the coming years. Therefore, under this alternative, the annual level of catch of each CREMUS group in 2015 through 2018 is expected to be similar to that described under Alternative 2 and is not expected to exceed the associated OFL proxy for that CREMUS group as shown in Table 13.

2.3.4.2 Alternative 2: Specify 2014 ACLs (Status Quo/NEPA Baseline)

Under Alternative 2, NMFS would specify the ACL for each Hawaii CREMUS group in fishing years 2015-2018 at the same level NMFS specified for each CREMUS group in 2014 (79 FR 4276, January 27, 2014). See Table 13 for the specific ACL values for each CREMUS group. Note that under this alternative, there would be no individual ACL for Kyphosidae (rudderfish), Labridae (wrasses), Lethrinidae (emperors), or Serranidae (groupers). This is because in the prior species level aggregation process described in Section 2.2.1 – Determining the Level of Species Aggregation, these species groups did not comprise the top 90% of the total coral reef fish catch over the long-term catch time series. Therefore, under this alternative, these species would remain in the category "All Other CREMUS" combined as they were in fishing year 2014 and in previous years.

The ACLs under Alternative 2 were developed using a different method than proposed under the preferred alternative (Alternative 3), and are equal to the 75th percentile of the long-term catch history. For detailed information on the how these ACLs were derived, please see the 2011 EA for coral reef ecosystem fisheries (NMFS 2011).

Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), the ACL for several CREMUS groups would be associated with a probability of overfishing greater than 50 percent (Table 13). These are Carangidae (jacks), Carcharhinidae (reef sharks), and Mugilidae (mullets). By law, the probability of overfishing cannot exceed 50 percent (74 FR 3178, January 9, 2011). Therefore, these ACLs would not be in compliance with the Magnuson-Stevens Act. For all other Hawaii CREMUS groups, the ACL specifications under Alternative 2 are associated with probability of overfishing no greater than 20 percent should the entire ACL be caught (see Table 13).

Under this alternative, if the Council determines an ACL is exceeded, the Council as an AM would take action in accordance with 50 CFR 600.310(g) to correct the operational issue that caused the ACL overage. This may include a recommendation that NMFS reduce the ACL in the subsequent fishing year by the amount of the overage, or other measures, as appropriate. As the status quo, Alternative 2 is the NEPA baseline to which all other alternatives are compared.

Expected Fishery Outcome

The expected fishery outcome under Alternative 2 would be the same as under Alternative 1 (No action), and Alternative 3 and is not expected to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch or effort. This is because annual catch of each Hawaii CREMUS group in fishing years 2015-2018 is expected to be similar to the average annual catch from the most recent three-year period (2011-2013) shown in Table 13, and remain below the ACLs proposed under this alternative. Regardless of the grouping or species, based on previous years' monitoring of the fishery, no Hawaii CREMUS fishery is expected to exceed the ACL in any of the four years.

Because statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during any fishing year whether the ACL for any CREMUS group might be reached. Therefore, in-season AMs to prevent an ACL from being exceeded are not possible. However, six months after each fishing year, data would become available for NMFS and the Council to determine whether an ACL in the previous year was exceeded.

If NMFS and the Council determine catch exceeded an ACL proposed under this alternative, the Council is not expected to recommend as an AM, NMFS reduce the ACL in the subsequent fishing year by the amount of the overage. This is because the ACLs under this alternative were developed using a different method than is proposed under the preferred alternative (Alternative 3) and without knowledge of the estimate of MSY and OFL. For this reason, these ACLs are now considered overly conservative based on the best available information as described in Section 2.2.2. Based on recent catch data shown in Table 13, the annual level of catch for each CREMUS group in 2015-2018 is not expected to exceed the group's estimated OFL proxy.

2.3.4.3 Alternative 3: Specify Council Recommended ACLs (Preferred)

Under Alternative 3 (the Council's and NMFS' Preferred Alternative), NMFS would specify the ACL for each Hawaii CREMUS group in 2015-2018 as shown in Table 13. This level of catch is five percent lower than each CREMUS group's ABC. Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), no ACL under Alternative 3 is associated with greater than a 35 percent probability of overfishing should the entire ACL be caught (see Table 13).

Under this alternative, if the Council determines the three-year average catch for any CREMUS group exceeded the specified ACL in any fishing year, NMFS would reduce the ACL by the amount of the overage in the subsequent years. See Section 1.3- Proposed Action for detailed information on how this AM would be triggered.

Expected Fishery Outcome

The expected fishery outcome under Alternative 3 would be the same as under Alternative 1 (No action), and Alternative 2 and is not expected to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch or effort. This is because under this

alternative, the annual catch of each Hawaii CREMUS group in fishing years 2015-2018 is expected to be similar to the average annual catch from the most recent three-year period (2011-2013) shown in Table 13, and remain below the ACLs proposed under this alternative. Regardless of the grouping or species, based on previous years' monitoring of the fishery, no Hawaii CREMUS fishery is expected to exceed the ACL in any of the four years.

Because statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during any fishing year whether the ACL for any CREMUS group might be reached. Therefore, in-season AMs to prevent an ACL from being exceeded are not possible. However, six months after each fishing year, data would become available for NMFS and the Council to determine whether an ACL in the previous year was exceeded.

2.3.4.4 Alternative 4: Specify ACLs Lower than the Preferred Alternative

Under Alternative 4, NMFS would specify an ACL for each Hawaii CREMUS group that is lower than the preferred alternative (Alternative 3) for fishing years 2015 through 2018 (See Table 13). For each CREMUS group, NMFS included a range of ACLs lower than the ACL that would be established under the preferred alternative in the event that the proposed ACL under Alternative 3 is implemented and exceeded in 2015, 2016 or 2017, and a downward overage adjustment by the amount of the overage is necessary in a subsequent year. Under this alternative, the ACL for each CREMUS group would depend on the amount of the overage in the preceding year, , but depending on the exact level of catch, would be associated with a probability of overfishing ranging from 30 percent down to 5 percent (See Table 13).

Expected Fishery Outcome

The expected fishery outcome under Alternative 4 would be the same as under Alternative 1 (No action), and Alternatives 2 (Status Quo) and 3 (Preferred) and the action of specifying ACLs and AMs is not expected to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch or effort. This is because under this alternative, the annual catch of each Hawaii CREMUS group in fishing years 2015-2018 is expected to be similar to the average annual catch from the most recent three-year period (2011-2013) shown in Table 13, and remain below the lowest ACLs proposed under this alternative. Regardless of the grouping or species, based on previous years' monitoring of the fishery, no Hawaii CREMUS fishery is expected to exceed the ACL in any of the four years.

Because statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during any fishing year whether the ACL for any CREMUS group might be reached. Therefore, in-season AMs to prevent an ACL from being exceeded are not possible. However, six months after each fishing year, data would become available for NMFS and the Council to determine whether an ACL in the previous year was exceeded.

2.4 Alternatives Not Considered in Detail

Although required by the Pacific Remote Island Areas (PRIA) FEP, the Council did not recommend and NMFS does not propose to specify an ACL for CREMUS in EEZ waters around the PRIA. This is because current federal regulations (78 FR 32996, June 3, 2013) prohibit all fishing, including non-commercial fishing within 12 nautical miles around the seven islands and atolls that comprise the PRIA,

NMFS will not specify an ACL for CREMUS in EEZ waters around the PRIA. This is because current federal regulations implementing the PRIA FEP (78 FR 32996, June 3, 2013) prohibit commercial and non-commercial fishing within 12 nautical miles around each of the seven islands and atolls that comprise the PRIA, unless authorized the U.S. Fish and Wildlife Service under their respective authorities. Additionally, there is no coral reef habitat seaward of the 12 nautical mile prohibited fishing area. Therefore, there continues to be a functional equivalent of an ACL of zero for CREMUS in the PRIA.

3 Affected Environment

This section describes the affected federal coral reef ecosystem fisheries and fishery resources, and other biological and physical resources that could be affected by federal coral reef fisheries in EEZ waters around American Samoa, CNMI, Guam, and the MHI. Fishing communities are described as are protected marine areas and fishery administration and enforcement.

3.1 American Samoa

3.1.1 Target and Non-Target Species

In American Samoa, coral reef fishes and invertebrates are harvested almost exclusively in nearshore territorial waters by subsistence and small-scale commercial fisheries using various gear types including hook and line, spear gun, and gillnets (WPFMC 2012). Due to the lack of a developed coral reef ecosystem fisheries in federal waters, the Council at its 151st, 154th and 157th meeting directed Council staff to conduct analyses to identify coral reef associated species that may meet the criteria for an "ecosystem component species" designation in accordance with National Standard 1 guidelines of the Magnuson Stevens Act (76 FR 37285, June 27, 2011). Ecosystem component species are species that are generally not harvested or retained in the EEZ and do not require the specification of reference points such as an ACL, but should be monitored and actively managed in the EEZ if necessary.

3.1.1.1 Summary of American Samoa CREMUS Catch

It is difficult to determine "target" and "non-target" stocks in American Samoa's territorial coral reef fisheries because resources harvested in these fisheries are highly diverse, with approximately 300 species appearing in catch records (Appendix A). As shown in Table 1, there are 19 major CREMUS groups. Eighteen of those CREMUS groups comprise 90 percent of the total CREMUS catches in American Samoa nearshore waters, with other fish and invertebrates, and miscellaneous fish that cannot be identified to the species level comprising the remaining 10

percent of the overall catch. Therefore, it could be argued that there are no non-targets stocks in coral reef fisheries, except for species that are discarded. In American Samoa, discards levels are unknown but are believed to be limited to fish that are below legal size limits, or taboo due to cultural beliefs. Additionally, people may also avoid certain reef fish that are poisonous or associated with ciguatera (WPFMC 2001).

Based on the average estimated annual CREMUS catch for the most recent three-year period shown in Table 10, catches are dominated by five families/groups: Acanthuridae or surgeonfishes (15,804 lb), Lutjanidae or snappers (8,626 lb), Scaridae or parrotfishes (6,689 lb), mollusks including turbo snail, octopus, and giant clams (6,460 lb), and Lethrinidae or emperors (5,477 lb). Catches of other CREMUS families/groups ranged between 93 lb (Carcharhinidae or reef sharks) to 2,295 (Crustaceans or crabs with catches of miscellaneous species comprising the group "All Other CREMUS Combined" accounting for 5,139 lb.

In 2013, the commercial price for individual coral reef associated species ranged between \$2.63 (bigeye scad) and \$4.83 (octopus)⁴ per pound, with an average CREMUS price of \$3.10/lb over all groupings (<u>http://www.pifsc.noaa.gov/wpacfin/as/Pages/as_data_8.php</u>, accessed on Dec. 3, 2014). Multiplying the average 2011-2013 catch of each CREMUS group shown in Table 14 by the 2013 average price of \$3.10 equally, the average annual estimated commercial value of the coral reef fisheries of American Samoa for this three-year period was approximately \$195,075.

Table 14 provides the estimate average annual American Samoa CREMUS catch and average fleet-wide revenue by CREMUS group for the most recent three-year period where data is available, and the OFL proxy. Based on current estimates of MSY and OFL proxies shown in Table 10, average annual catches of all American Samoa CREMUS groups in 2011-2013 are well below these reference points are at sustainable levels.

No.	CREMUS Groupings	OFL (lb)	Estimated Ave. Catch (2011-2013) ¹ (lb)	Estimated Value of Ave. Catch based on 2013 Price of \$3.10/lb ²
1	<i>Selar crumenophthalmus</i> – atule or bigeye scad	43,300	2,882	\$8,934
2	Acanthuridae – surgeonfishes	148,600	15,804	\$48,982
3	Carangidae – jacks	24,300	2,245	\$6,960
4	Carcharhinidae – reef sharks	2,300	93	\$288
5	Crustaceans - crabs	7,800	2,295	\$7,115
6	Holocentridae – squirrelfishes	16,800	2,171	\$6,730
7	Kyphosidae – rudderfishes	2,600	*349	\$1,082
8	Labridae – wrasses ¹	19,000	*332	\$1,029
9	Lethrinidae – emperors	23,700	5,477	\$16,979

 Table 14. Average estimated catch and revenue of American Samoa CREMUS (2011-2013)

⁴ In 2013, fishermen reported selling 689 lb of bigeye scad and 41 lb of octopus.

No.	CREMUS Groupings	OFL (lb)	Estimated Ave. Catch (2011-2013) ¹ (lb)	Estimated Value of Ave. Catch based on 2013 Price of \$3.10/lb ²	
10	Lutjanidae – snappers	65,400	8,626	\$26,741	
11	Mollusks – turbo snail; octopus; giant clam	29,600	6,460	\$20,026	
12	Mugilidae – mullets	8,200	1,770	\$5,487	
13	Mullidae – goatfishes	12,700	No data	No data	
14	Scaridae – parrotfishes ²	294,600	6,689	\$20,736	
15	Serranidae – groupers	30,500	2,755	\$8,541	
16	Siganidae – rabbitfishes	200	No data	No data	
17	<i>Cheilinus undulatus</i> – humphead (Napoleon) wrasse	Unknown	No data	No data	
18	<i>Bolbometopon muricatum</i> – bumphead parrotfish	Unknown	No data	No data	
19	All Other CREMUS Combined	28,500	5,139	\$15,931	
	TOTAL 62,406 \$195,570				

¹ Source: Appendix 3 in Sabater and Kleiber (2014); Appendix 3 in Sabater and Kleiber (2014) does not include catch data for 2013. Therefore, the source of 2013 information is the 2013 ACL monitoring report presented at the 160th Council meeting in June 2014 (WPFMC 2014). ² Source: Estimated average price across all CREMUS groupings based on total revenue and landings for 2013 (<u>http://www.pifsc.noaa.gov/wpacfin/as/Pages/as_data_8.php</u>, accessed on 12/03/2014).

*Average based on 2010-2012 catch since there is no data for 2013 for these species.

3.1.2 Fishery Participants and Fishing Communities

3.1.2.1 Fishing Participants

Currently, harvest of CREMUS in American Samoa occurs almost exclusively within territorial waters. However, aside from average catch and general estimated revenue data, there is no information available on American Samoa's territorial coral reef fisheries in terms of number of participation or level of fishing effort.

3.1.2.2 Fishing Communities

The Magnuson-Stevens Act defines a fishing community as "...a community that is substantially dependent upon or substantially engaged in the harvest or processing of fishery resources to meet social and economic needs, and includes fishing vessel owners, operators, and crew, and fish processors that are based in such communities" (16 U.S.C. § 1802(16)). NMFS further specifies in the National Standard guidelines that a fishing community is "...a social or economic group whose members reside in a specific location and share a common dependency on commercial, recreational, or subsistence fishing or on directly related fisheries dependent services and industries (for example, boatyards, ice suppliers, tackle shops)". National Standard 8 of the

Magnuson-Stevens Act requires that conservation and management measures shall, consistent with the conservation requirements of this Act (including the prevention of overfishing and the rebuilding of overfished stocks), take into account the importance of fishery resources to fishing communities in order to (a) provide for the sustained participation of such communities and (b) to the extent practicable, minimize adverse economic impacts on such communities. In 1999, the Council identified American Samoa, as a fishing community. The Secretary of Commerce approved this definition on April 19, 2009 (64 FR 19067). Sustainable management of the coral reef fisheries of American Samoa will allow continued harvest of a resource that is important to fishermen, their families, community networks, markets, and visitors for personal consumption (sustenance), supplemental income, and customary exchange.

3.1.3 Fishery Administration and Enforcement

3.1.3.1 Federal Fishery Management Provisions

Federal fishing regulations for coral reef ecosystem fisheries in EEZ waters around American Samoa include a prohibition on the use of destructive and non-selective gear methods, vessel identification and gear marking requirements. A SCERFP and logbook reporting is also required for harvesting certain CREMUS defined in federal regulations as PHCRT. Additionally, all fishing, including non-commercial fishing is prohibited within 12 nautical miles from the shoreline Rose Atoll, which is marine national monument (78 FR 32996, June 3, 2013). Enforcement of federal fishing regulations is conducted by NOAA's Office of Law Enforcement and the U.S. Coast Guard.

In addition to fishing regulations, Federal law also requires the Council-appointed American Samoa FEP plan team to prepare an annual report on the performance of all federal fisheries, including American Samoa coral reef fisheries by July 31 of each year. Federal regulations also require NMFS to specify ACLs and AMs for each stock or stock complex of MUS identified in an FEP, as recommended by the Council, and in consideration of the best available scientific, commercial, and other information about the fishery for that stock or stock complex. Monitoring of catch against a specified ACL and implementation of AMs is conducted by NMFS and the Council.

3.1.3.2 American Samoa Fishery Management Provisions

In local territorial waters, the American Samoa Department of Marine and Wildlife Resources and the American Samoa legislature have establish numerous laws to conserve coral reef fishery resources, including a ban on scuba spear fishing, gear and species restrictions, and other specific management measures. Additionally, American Samoa has established 14 marine protected areas (MPA) where fishing is strictly regulated or prohibited. These include special management areas, national parks, and community-based MPAs (Wushinich-Mendez and Trappe 2007). Fishing is also regulated within territorial waters designated as the American Samoa National Marine Sanctuary (77 FR 43942, July 26, 2012). Together, these measures help to manage and conserve coral reef resources and habitats in local territorial waters.

3.1.4 Protected Resources

3.1.4.1 Species Protected under the Endangered Species Act (ESA)

A number of protected species are known or believed to occur in the waters around American Samoa. Table 15 identifies species listed as endangered or threatened under the ESA that are known to occur or could reasonably be expected to occur in marine waters around American Samoa, which may have the potential to interact with coral reef ecosystem fisheries. They include five whales, five sea turtles, a shark, seven species of shallow reef-building corals, and a seabird. There is no critical habitat designated for ESA-listed marine species around American Samoa.

Table 15. Endangered and threatened marine species and seabirds known to occur or reasonably expected to occur in waters around the American Samoa Archipelago.

Endangered and threatened marine species and seabirds known to occur or reasonably					
expected to occur in waters around the American Samoa Archipelago					
Common name	Scientific Name	ESA listing status in American Samoa	Occurrence in American Samoa		
Listed Sea Turtle	S				
Green sea turtle (laumei enaena and fonu)	Chelonia mydas	Threatened	Frequently seen. Nest at Rose Atoll. Known to migrate to feeding grounds.		
Hawksbill sea turtle (laumei uga)	Eretmochelys imbricata	Endangered	Frequently seen. Nest at Rose Atoll and Swain's Island.		
Leatherback sea turtle	Dermochelys coriacea	Endangered	Very rare in American Samoa. One recovered dead in experimental longline fishing.		
Olive ridley sea turtle	Lepidochelys olivacea	Threatened	Uncommon in American Samoa. Three sightings.		
South Pacific Loggerhead sea turtle distinct population segment (DPS)	Caretta caretta	Endangered	Not known to occur in American Samoa.		
Listed Marine Ma	ammals				
Blue whale	Balaenoptera musculus	Endangered	No known sightings.		
Fin whale	Balaenoptera physalus	Endangered	No known sightings.		
Humpback whale (tafola or i`a manu)	Megaptera novaeangliae	Endangered	Most common during Sept. and October. Southern humpback whales mate and calve from June – Sept.		

Endangered and threatened marine species and seabirds known to occur or reasonably expected to occur in waters around the American Samoa Archipelago			
Common name	Scientific Name	ESA listing status in American Samoa	Occurrence in American Samoa
Sei whale	Balaenoptera borealis	Endangered	No known sightings.
Sperm whale	Physeter macrocephalus	Endangered	Occurs in all months except. Feb. and March.
Listed Sharks			
Scalloped hammerhead shark (Indo-West Pacific DPS)	Sphyrna lewini	Threatened	Known to occur.
Listed Shallow R	eef-building Coral	ls	·
None	Acropora globiceps	Threatened	Depth range is 0 to 8 meters (m).
None	A. jacquelineae	Threatened	Depth range is 10 to 35 m.
None	A. retusa	Threatened	Depth range is 1 to 5 m.
None	A. speciosa	Threatened	Depth range is 12 to 40 m, and may occur in mesophotic habitat (<50 m depth).
None	Euphyllia paradivisa	Threatened	Depth range is two to 25 m.
None	Isopora crateriformis	Threatened	Depth range is 0 to 12 m, and and may occur in mesophotic habitat (<50 m depth).
None	Seriatopora aculeata	Threatened	Depth range is three to 40m.
Listed Sea Birds			
Newell's Shearwater	Puffinus auricularis newelli	Threatened	Uncommon visitor.

Source: http://www.nmfs.noaa.gov/pr/species/esa/listed.htm, accessed October 31, 2014.

Applicable ESA Consultations – American Samoa Coral Reef Fisheries

NMFS has evaluated the potential impact of American Samoa FEP coral reef ecosystem fisheries on ESA listed species under NMFS jurisdiction and has determined that coral reef fisheries that operate in accordance with regulations implementing the American Samoa FEP are not likely to adversely affect ESA-listed species or their habitats. NMFS documented these determinations in letters of concurrence dated March 7, 2002, and April 9, 2015. The basis for this determination is generally due to the rare occurrence of ESA-listed species in EEZ waters where federal coral reef fisheries are authorized to operate, combined with the low level of coral reef fishing occurring in the EEZ, which makes interactions unlikely to occur.

Newell's shearwater (*Puffinus auricularis newelli*) is listed as threatened under the ESA. Generally known with other shearwaters and petrels as ta'i'o in Samoan, this species breeds only in the main Hawaiian Islands, primarily in burrows on steep forested mountain slopes at medium elevation. Newell's shearwater has been sighted once in American Samoa, and is considered an uncommon visitor to the archipelago (Grant et al 1993). Because its presence in American Samoa is rare, and coral reef fishermen do not interact with seabirds, the fishery has no effect on this seabird.

3.1.4.2 Species Protected under the Marine Mammal Protection Act (MMPA)

Several non-ESA listed whales, dolphins and porpoises occur in waters around American Samoa and are protected under the MMPA. Table 16 provides a list of non-ESA listed marine mammals known to occur or reasonably expected to occur in waters around American Samoa that have the potential to interact with with coral reef ecosystem fisheries of American Samoa.

Non ESA-listed marine mammals known to occur or reasonably expected to			
occur in waters around American Samoa			
Common Name	Scientific Name		
Blainville's beaked whale	Mesoplodon densirostris		
Bottlenose dolphin	Tursiops truncatus		
Bryde's whale	Balaenoptera edeni		
Common dolphin	Delphinus delphis		
Cuvier's beaked whale	Ziphius cavirostris		
Dwarf sperm whale	Kogia sima		
False killer whale	Pseudorca crassidens		
Fraser's dolphin	Lagenodelphis hosei		
Killer whale	Orcinus orca		
Melon-headed whale	Peponocephala electra		
Minke whale	Balaenoptera acutorostrata		
Pygmy killer whale	Feresa attenuata		
Pygmy sperm whale	Kogia breviceps		
Risso's dolphin	Grampus griseus		
Rough-toothed dolphin	Steno bredanensis		
Short-finned pilot whale	Globicephala macrorhynchus		
Spinner dolphin	Stenella longirostris		
Spotted dolphin	Stenella attenuata		
(Pantropical spotted dolphin)			
Striped dolphin	Stenella coeruleoalba		
Longman's beaked whale	Indopacetus pacificus		

Table 16. Non ESA-listed marine mammals known to occur or reasonably expected to occur in waters around American Samoa.

Sources: NMFS PIRO and PIFSC unpublished data; Council website: http://www.wpcouncil.org

Applicable MMPA Coordination – American Samoa Coral Reef Fisheries

The MMPA prohibits, with certain exceptions, taking of marine mammals in the U.S., and by persons aboard U.S. flagged vessels (i.e., persons and vessels subject to U.S. jurisdiction). Under section 118 of the MMPA, NMFS must publish, at least annually, a List of Fisheries (LOF) that classifies U.S. commercial fisheries into one of three categories based upon the level of serious injury and mortality of marine mammals that occurs incidental to each fishery. A Category 1 fishery is one with frequent incidental morality and serious injury of marine mammals. A Category 2 fishery is one with occasional incidental morality and serious injury of marine mammals. A Category 3 fishery is one with a remote likelihood or no known incidental morality and serious injury of marine mammals.

On December 29, 2014, (79 FR 77919), NMFS published the final LOF for 2015 which classified all gear types used in Hawaii's coral reef fisheries, including the inshore gillnet, lift net, inshore purse seine net, throw net, cast net, seine net, offshore pen culture, rod and reel, crab trap, fish trap, crab net, inshore handline, bullpen trap, hand pick, and spearfishing as Category 3 fisheries under Section 118 of the MMPA. To date, NMFS has not included any gear type used in American Samoa's coral reef fisheries in the annual LOF. There is no information available regarding marine mammal interactions in coral reef fisheries in American Samoa as no interactions have been reported or observed. However, because the gear types used in American Samoa's coral reef fisheries, it is reasonable to assume that the impacts to marine mammals would be comparable to Hawaii's rod and reel, spearfishing and inshore gillnet fisheries, and would have a remote likelihood of incidental mortality and serious injury of marine mammals. Participants in Category 3 fisheries are not required to register in the Marine Mammal Authorization Program prior to engaging in commercial fishing.

3.1.4.3 Seabirds of American Samoa

Seabirds found on and around American Samoa that could potentially interact with fisheries are listed in Table 17. There have been no reports of interactions between the American Samoa coral reef fisheries and migratory birds and none are expected to occur.

Resident seabirds	s in American Samoa	
Samoan name	Common name	Scientific name
ta'i'o	Wedge-tailed shearwater	Puffinus pacificus
ta'i'o	Audubon's shearwater	Puffinus lherminieri
ta'i'o	Christmas shearwater	Puffinus nativitatis
ta'i'o	Tahiti petrel	Pterodroma rostrata
ta'i'o	Herald petrel	Pterodroma heraldica
ta'i'o	Collared petrel	Pterodroma brevipes
fua'o	Red-footed booby	Sula sula
fua'o	Brown booby	Sula leucogaster
fua'o	Masked booby	Sula dactylatra

Table 17. Seabirds occurring in American Samoa.

tava'esina	White-tailed tropicbird	Phaethon lepturus
tava'e'ula	Red-tailed tropicbird	Phaethon rubricauda
atafa	Great frigatebird	Fregata minor
atafa	Lesser frigatebird	Fregata ariel
gogouli	Sooty tern	Onychoprion fuscatus; previously
		Sterna fuscata
gogo	Brown noddy	Anous stolidus
gogo	Black noddy	Anous minutus
laia	Blue-gray noddy	Procelsterna cerulea
manu sina	White tern / Common fairy-	Gygis alba
	tern	

Note: The ta'i'o, or Newell's shearwater is an uncommon visitor in American Samoa. Source: WPFMC 2009a; and <u>http://www.birdlife.org/datazone/species/factsheet/22694740</u>: retrieved 12/8/14.

3.2 CNMI

3.2.1 Target and Non-Target Species

Fishing for CREMUS in the CNMI is conducted from both the shoreline and from small boats (less than 25 ft in length) predominantly in nearshore territorial waters between 0-3 nautical miles from shoreline (WPMFC 2012). While the CNMI includes 14 islands, fishing is mostly limited to the nearshore waters around three southernmost islands of Saipan, Rota, and Tinian. Cast nets, spearfishing, hook and line, and hand gleaning are some of the common fishing techniques used in the CNMI (WPFMC 2012).

Due to the lack of a developed coral reef ecosystem fisheries in federal waters, the Council at its 151st, 154th and 157th meeting directed Council staff to conduct analyses to identify coral reef associated species that may meet the criteria for an "ecosystem component species" designation in accordance with National Standard 1 guidelines of the Magnuson Stevens Act (76 FR 37285, June 27, 2011). Ecosystem component species are species that are generally not harvested or retained in the EEZ and do not require the specification of reference points such as an ACL, but should be monitored and actively managed in the EEZ if necessary.

3.2.1.1 Summary of CNMI CREMUS Catch

Like in other island areas, it is difficult to determine "target" and "non-target" stocks in CNMI's territorial coral reef fisheries because resources harvested are highly diverse, with over one hundred species appearing in catch records (Appendix A). As shown in Table 2, there are 19 major CREMUS groups. Eighteen of those CREMUS groups comprise 90 percent of the total CREMUS catches in CNMI nearshore waters, with other fish and invertebrates, and miscellaneous fish that cannot be identified to the species level comprising the remaining 10 percent of the overall catch. Therefore, it could be argued that there are no non-targets stocks in coral reef fisheries, except for species that are discarded. In the CNMI, discards levels are unknown but are believed to be limited to fish that are below legal size limits, or taboo due to

cultural beliefs. Additionally, people may also avoid certain reef fish that are poisonous or associated with ciguatera (WPFMC 2001).

Based on the average estimated annual CREMUS catch for the most recent three-year period shown in Table 11, catches are dominated by five families/groups: Lethrinidae or emperors (19,268 lb), *Selar crumenophthalmus* or atule or bigeye scad (18,362 lb), Carangidae or jacks (9,607 lb), Acanthuridae or surgeonfishes (7,191 lb), and Scaridae or parrotfishes (5,568 lb). Catches of other CREMUS families/groups ranged between 704 lb (Mugilidae or mullets) to 3,620 lb (Serranidae or groupers) with catches of miscellaneous species comprising the group "All Other CREMUS Combined" accounting for 10,972 lb.

In 2013, the commercial price for individual coral reef associated species ranged between \$2.43 (rainbow runner) and \$6.90 (invertebrates)⁵ per pound, with an average CREMUS price of \$3.15/lb over all groupings (http://www.pifsc.noaa.gov/wpacfin/cnmi/Pages/cnmi_data_2.php), accessed on Dec. 3, 2014). Multiplying the average 2011-2013 catch of each CREMUS group shown in Table 18 by the 2013 average price of \$3.15 equally, the average annual estimated commercial value of the coral reef fisheries of the CNMI for this three-year period was approximately \$287,737.

Table 18 provides the estimate average annual CNMI CREMUS catch and average fleet-wide revenue by CREMUS group for the most recent three-year period where data is available, and the OFL proxy. Based on current estimates of MSY and OFL proxies shown in Table 11, average annual catches of all CNMI CREMUS groups in 2011-2013 are well below these reference points are at sustainable levels.

No.	CREMUS Groupings	OFL (lb)	Estimated Ave. Catch (2011-2013) ¹ (lb)	Estimated Value of Ave. Catch Based on 2013 Price of \$3.15/lb ²
1	Selar crumenophthalmus – atulai or bigeye scad	119,600	18,362	\$57,840
2	Acanthuridae – surgeonfishes	370,000	7,191	\$22,652
3	Carangidae – jacks	53,00	9,607	\$30,262
4	Carcharhinidae – reef sharks	Unknown	No data	No data
5	Crustaceans - crabs	8,900	*838	\$2,640
6	Holocentridae – squirrelfishes	78,000	*1,325	\$4,174
7	Kyphosidae – rudderfishes	30,500	*2,568	\$8,089
8	Labridae – wrasses ¹	75,500	*792	\$2,495
9	Lethrinidae – emperors	72,200	19,268	\$60,694

Table 18. Average estimated catch and revenue of CNMI CREMUS (2011-2013)

⁵ Rainbow runner is included in the Jack grouping, while invertebrates, comprised primarily of sea cucumbers, are included within the all other CREMUS Combined grouping. In 2013, fishermen reported selling 700 lb of rainbow runner and 3,960 lb of invertebrates.

No.	CREMUS Groupings	OFL (lb)	Estimated Ave. Catch (2011-2013) ¹ (lb)	Estimated Value of Ave. Catch Based on 2013 Price of \$3.15/lb ²
10	Lutjanidae – snappers	228,700	2,413	\$7,601
11	Mollusks – turbo snail; octopus; giant clam	16,300	2,394	\$7,541
12	Mugilidae – mullets	7,500	704	\$2,218
13	Mullidae – goatfishes	30,500	3,157	\$9,945
14	Scaridae – parrotfishes ²	199,000	5,568	\$17,539
15	Serranidae – groupers	112,000	3,620	\$11,403
16	Siganidae – rabbitfishes	11,000	2,566	\$8,083
17	<i>Cheilinus undulatus</i> – humphead (Napoleon) wrasse	Unknown	No data	No data
18	<i>Bolbometopon muricatum</i> – bumphead parrotfish	Unknown	No data	No data
19	All Other CREMUS Combined	14,200	10,972	\$34,562
	TOTAL	85,822	\$287,737	

¹ Source: Appendix 3 in Sabater and Kleiber (2014); Appendix 3 in Sabater and Kleiber (2014) does not include catch data for 2013. Therefore, the source of 2013 information is the 2013 ACL monitoring report presented at the 160th Council meeting in June 2014 (WPFMC 2014). ² Source: Estimated average price across all CREMUS groupings based on total revenue and landings for 2013 (<u>http://www.pifsc.noaa.gov/wpacfin/cnmi/Pages/cnmi_data_2.php</u>, accessed on 12/03/2014).

*Average based on 2009-2011 catch since there is no data for 2012 or 2013 for these species.

3.2.2 Fishery Participants and Fishing Communities

3.2.2.1 Fishery Participants

Currently, harvest of CREMUS in CNMI occurs almost exclusively within territorial waters. However, aside from average catch and revenue data, there is no information available on CNMI's territorial coral reef fisheries in terms of number of participation or level of fishing effort.

3.2.2.2 Fishing Communities

The Magnuson-Stevens Act defines a fishing community as "...a community that is substantially dependent upon or substantially engaged in the harvest or processing of fishery resources to meet social and economic needs, and includes fishing vessel owners, operators, and crew, and fish processors that are based in such communities" (16 U.S.C. § 1802(16)). NMFS further specifies in the National Standard guidelines that a fishing community is "...a social or economic group whose members reside in a specific location and share a common dependency on commercial, recreational, or subsistence fishing or on directly related fisheries dependent services and

industries (for example, boatyards, ice suppliers, tackle shops)". National Standard 8 of the Magnuson-Stevens Act requires that conservation and management measures shall, consistent with the conservation requirements of this Act (including the prevention of overfishing and the rebuilding of overfished stocks), take into account the importance of fishery resources to fishing communities in order to (a) provide for the sustained participation of such communities and (b) to the extent practicable, minimize adverse economic impacts on such communities. In 1999, the Council identified the CNMI as a fishing community. The Secretary of Commerce approved this definition on April 19, 2009 (64 FR 19067). Sustainable management of the CNMI coral reef fisheries will allow continued harvest of a resource that is important to fishermen, their families, community networks, markets, and visitors for personal consumption (sustenance), supplemental income, and customary exchange.

3.2.3 Fishery Administration and Enforcement

3.2.3.1 Federal Fishery Management Provisions

Federal fishing regulations for coral reef ecosystem fisheries in EEZ waters around the CNMI include a prohibition on the use of destructive and non-selective gear methods, vessel identification and gear marking requirements. A SCERFP and logbook reporting is also required for harvesting certain CREMUS defined in federal regulations as PHCRT. Additionally, all commercial fishing is prohibited within the Islands Unit of the Mariana Trench Marine National Monument, while non-commercial fishing and charter boat fishing may be allowed subject to a monument permit and logbook reporting requirements (78 FR 32996, June 3, 2013). Enforcement of federal fishing regulations is conducted by NOAA's Office of Law Enforcement and the U.S. Coast Guard.

In addition to fishing regulations, Federal law also requires the Council-appointed Mariana FEP plan team to prepare an annual report on the performance of all federal fisheries, including CNMI coral reef fisheries by July 31 of each year. Federal regulations also require NMFS to specify ACLs and AMs for each stock or stock complex of MUS identified in an FEP, as recommended by the Council, and in consideration of the best available scientific, commercial, and other information about the fishery for that stock or stock complex. Monitoring of catch against a specified ACL and implementation of AMs is conducted by NMFS and the Council.

3.2.3.2 CNMI Fishery Management Provisions

In local territorial waters, the CNMI Division of Fish and Wildlife and the CNMI legislature have established numerous laws to conserve coral reef fishery resources, including restrictions on certain gear types, harvest seasons and size limits for certain marine species, and an outright ban on scuba spearfishing. In addition, fishing is prohibited in several no-take marine protected areas including Managaha Marine Conservation Area on Saipan, Bird Island and Forbidden Island Sanctuaries on Saipan, and Sasanhaya Bay Fish Reserve on Rota (Wushinich-Mendez and Trappe 2007). Together, these measures help to manage and conserve spiny lobster resources in local territorial waters.

3.2.4 Protected Resources

3.2.4.1 Species Protected under the Endangered Species Act

A number of protected species are reported from the waters around the Mariana Islands. Table 19 identifies species listed as endangered or threatened under the ESA that are known to occur or could reasonably be expected to occur in marine waters around the Mariana Archipelago, including the CNMI, which may have the potential to interact with coral reef fisheries. Listed species include five whales, five sea turtles, a shark, three species of shallow reef-building corals and a seabird. There is no critical habitat designated for ESA-listed marine species around the CNMI.

Table 19. Endangered and threatened marine species and seabirds known to occur or reasonably expected to occur in waters around the Mariana Archipelago (CNMI).

Endangered and threatened marine species and seabirds known to occur or reasonably expected to occur in waters around the Mariana Archipelago (CNMI)				
Common name	Scientific Name	ESA listing status in the CNMI	Occurrence in the CNMI	
Listed Sea Turtles	\$ }			
Green sea turtle	Chelonia mydas	Threatened	Most common turtle in the Mariana Archipelago. Foraging and minor nesting confirmed on Guam, Rota, Tinian and Saipan.	
Hawksbill sea turtle	Eretmochelys imbricata	Endangered	Small population foraging around Guam and suspected low level around southern islands of CNMI. Low level nesting on Guam.	
Leatherback sea turtle	Dermochelys coriacea	Endangered	Occasional sightings around Guam. Not known to what extent they are present around Guam and CNMI	
Olive ridley sea turtle	Lepidochelys olivacea	Threatened	Range across Pacific: not confirmed in the Mariana Archipelago	
North Pacific loggerhead sea turtle DPS	Caretta caretta	Endangered	No known reports of loggerhead turtles in waters around the Mariana Archipelago	
Listed Marine Mammals				
Blue whale	Balaenoptera musculus	Endangered	Extremely rare	
Fin whale	Balaenoptera physalus	Endangered	Infrequent sightings.	

	Endangered and threatened marine species and seabirds known to occur or reasonably expected to occur in waters around the Mariana Archipelago (CNMI)			
Common name	Scientific Name	ESA listing status in the CNMI	Occurrence in the CNMI	
Humpback whale	Megaptera novaeangliae	Endangered	Infrequent sightings. Winter in the CNMI.	
Sei whale	Balaenoptera borealis	Endangered	Infrequent sightings.	
Sperm whale	Physeter macrocephalus	Endangered	Regularly sighted; most abundant large cetaceans in the region.	
Listed Sharks				
Scalloped hammerhead shark (Indo-West Pacific DPS)	Sphyrna lewini	Threatened	Known to occur.	
Listed Shallow Ree	f-building Coral	S		
None	Acropora globiceps	Threatened	Depths range is 0 to 8 m	
None	A. retusa	Threatened	Depth range is one to five meters	
None	Seriatopora aculeata	Threatened	Depth range is three to 40 meters	
Listed Sea Birds				
Newell's Shearwater	Puffinus auricularis newelli	Threatened	Rare visitor	

Source: http://www.nmfs.noaa.gov/pr/species/esa/listed.htm, accessed October 31, 2014.

Applicable ESA Consultations – CNMI Coral Reef Fisheries

NMFS has evaluated the potential impact of Marian FEP coral reef ecosystem fisheries on ESA listed species under NMFS jurisdiction and has determined that coral reef fisheries that operate in accordance with regulations implementing the Mariana FEP are not likely to adversely affect ESA-listed species or their habitats. NMFS documented its determinations in letters of concurrence dated March 7, 2002, and April 29, 2015. The basis for this determination is generally due to the rare occurrence of ESA-listed species in EEZ waters where federal coral reef fisheries are authorized to operate, combined with the low level of coral reef fishing occurring in the EEZ, which makes interactions unlikely to occur.

Newell's shearwater (*Puffinus auricularis newelli*) is listed as threatened under the ESA. This species breeds only in the main Hawaiian Islands, primarily in burrows on steep forested mountain slopes at medium elevation. Newell's shearwater has been sighted in the Marianas, but is considered an uncommon visitor to the archipelago (Drahos 1977; Jouanin 1956). Because its presence in the Mariana Archipelago is rare, and coral reef fishermen do not interact with seabirds, the fishery has no effect on this seabird.

3.2.4.2 Species Protected under the Marine Mammal Protection Act

Several non-ESA listed whales, dolphins, and porpoises occur in waters around the CNMI and are protected under the MMPA. Table 20 provides a list of non-ESA listed marine mammals known to occur or reasonably expected to occur in waters around the Mariana Archipelago that have the potential to interact with the CNMI coral reef fisheries.

Table 20. Non ESA-listed marine mammals known to occur or reasonably expected to occur in waters around the Mariana Archipelago (CNMI).

Non ESA-listed marine mammals known to occur or reasonably expected to occur in waters around the Mariana Archipelago (CNMI)			
Common Name	Scientific Name		
Blainville's beaked whale	Mesoplodon densirostris		
Bottlenose dolphin	Tursiops truncatus		
Bryde's whale	Balaenoptera edeni		
Common dolphin	Delphinus delphis		
Cuvier's beaked whale	Ziphius cavirostris		
Dwarf sperm whale	Kogia sima		
False killer whale	Pseudorca crassidens		
Fraser's dolphin	Lagenodelphis hosei		
Killer whale	Orcinus orca		
Longman's beaked whale	Indopacetus pacificus		
Melon-headed whale	Peponocephala electra		
Minke whale	Balaenoptera acutorostrata		
Northern elephant Seal	Mirounga angustirostris		
Pilot whale	Globicephala malaena		
Pygmy killer whale	Feresa attenuata		
Pygmy sperm whale	Kogia breviceps		
Risso's dolphin	Grampus griseus		
Rough-toothed dolphin	Steno bredanensis		
Short-finned pilot whale	Globicephala macrorhynchus		
Spinner dolphin	Stenella longirostris		
Spotted dolphin	Stenella attenuata		
Striped dolphin	Stenella coeruleoalba		

Source: Eldredge 2003; Randall et al. 1975; Council website: http://www.wpcouncil.org

Applicable MMPA Coordination – CNMI Coral Reef Fisheries

The MMPA prohibits, with certain exceptions, taking of marine mammals in the U.S., and by persons aboard U.S. flagged vessels (i.e., persons and vessels subject to U.S. jurisdiction). Under section 118 of the MMPA, NMFS must publish, at least annually, a List of Fisheries (LOF) that classifies U.S. commercial fisheries into one of three categories based upon the level of serious injury and mortality of marine mammals that occurs incidental to each fishery. A Category 1

fishery is one with frequent incidental morality and serious injury of marine mammals. A Category 2 fishery is one with occasional incidental morality and serious injury of marine mammals. A Category 3 fishery is one with a remote likelihood or no known incidental morality and serious injury of marine mammals.

On December 29, 2014, (79 FR 77919), NMFS published the final LOF for 2015 which classified all gear types used in Hawaii's coral reef fisheries, including the inshore gillnet, lift net, inshore purse seine net, throw net, cast net, seine net, offshore pen culture, rod and reel, crab trap, fish trap, crab net, inshore handline, bullpen trap, hand pick, and spearfishing as Category 3 fisheries under Section 118 of the MMPA. To date, NMFS has not included any gear type used in CNMI's coral reef fisheries in the annual LOF. There is no information available regarding marine mammal interactions in coral reef fisheries in the CNMI as no interactions have been reported or observed. However, because the gear types used in CNMI's coral reef fisheries, such as cast nets, spearfishing, hook and line, and hand gleaning are similar to those used in Hawaii's coral reef fisheries, it is reasonable to assume that the impacts to marine mammals would be comparable to Hawaii's cast net, spearfishing, rod and reel, and hand pick fisheries, and would have a remote likelihood of incidental mortality and serious injury of marine mammals. Participants in Category 3 fisheries are not required to register in the Marine Mammal Authorization Program prior to engaging in commercial fishing.

3.2.4.3 Seabirds of the Mariana Archipelago

The following seabirds in Table 21 are considered residents of Mariana Archipelago: wedgetailed shearwater (*Puffinus pacificus*), white-tailed tropicbird (*Phaethon lepturus*), red-tailed tropicbird (*Phaethon rubricauda*), masked booby (*Sula dactylatra*), brown booby (*Sula leucogaster*), red-footed booby (*Sula sula*), white tern (*Gygis alba*), sooty tern (*Onychoprion fuscatus; previously Sterna fuscata*), brown noddy (*Anous stolidus*), black noddy (*Anous minutus*), and the great frigatebird (*Fregata minor*).

The following seabirds in Table 21 have been sighted and are considered visitors (some more common than others) to the Mariana Archipelago: short-tailed shearwater (*Puffinus tenuirostris* - common visitor), Newell's shearwater (*Puffinus auricularis*- rare visitor), Audubon's shearwater (*Puffinus iherminieri*), Leach's storm-petrel (*Oceanodroma leucorhoa*), and the Matsudaira's storm-petrel (*Oceanodroma matsudairae*). Of these, only the Newell's shearwater is listed (as threatened) under the ESA. There have been no sightings of the endangered short-tailed albatross (*Phoebastria albatrus*) in the CNMI although CNMI is within the range of the species' largest breeding colony at Torishima, Japan (WPFMC 2009b). There are no known interactions between seabirds and any of the Mariana Archipelago coral reef fisheries and none are expected to occur (WPFMC 2009b).

Seabi	irds of the Mariana Archipelag	o (R= Resident/Breeding; V= Visitor; Vr=rare visitor;		
Vc=	Vc= Common visitor)			
	Common name	Scientific name		
Vr	Newell's shearwater	Puffinus auricularis newelli (ESA: Threatened) rare		
		visitor		
R	Wedge-tailed shearwater	Puffinus pacificus		
V	Audubon's shearwater	Puffinus lherminieri		
Vc	Short-tailed shearwater	Puffinus tenuirostris (common visitor)		
V	Leach's storm-petrel	Oceanodroma leucorhoa		
V	Matsudaira's storm-petrel	Oceanodroma matsudairae		
R	Red-footed booby	Sula sula		
R	Brown booby	Sula leucogaster		
R	Masked booby	Sula dactylatra		
R	White-tailed tropicbird	Phaethon lepturus		
R	Red-tailed tropicbird	Phaethon rubricauda		
R	Great frigatebird	Fregata minor		
R	Sooty tern	Onychoprion fuscatus; previously Sterna fuscata		
R	Brown noddy	Anous stolidus		
R	Black noddy	Anous minutus		
R	White tern / Common	Gygis alba		
	fairy-tern			
a				

Table 21. Seabirds occurring in the Mariana Archipelago (CNMI).

Source: WPFMC 2009b.

3.3 Guam

3.3.1 Target and Non-Target Species

In Guam, fishing for CREMUS is conducted from both the shoreline and from small boats (less than 25 ft.) predominantly in nearshore territorial waters between 0-3 nm from shoreline, although shore-based fishing accounts for most of the harvest (WPFMC 2012). Due to the lack of a developed coral reef ecosystem fisheries in federal waters, the Council at its 151st, 154th and 157th meeting directed Council staff to conduct analyses to identify coral reef associated species that may meet the criteria for an "ecosystem component species" designation in accordance with National Standard 1 guidelines of the Magnuson Stevens Act (76 FR 37285, June 27, 2011). Ecosystem component species are species that are generally not harvested or retained in the EEZ and do not require the specification of reference points such as an ACL, but should be monitored and actively managed in the EEZ if necessary.

3.3.1.1 Summary of Guam's CREMUS Catch

Like in other island areas, it is difficult to determine "target" and "non-target" stocks in Guam's territorial coral reef fisheries because resources harvested are highly diverse, with nearly 2,000 species appearing in catch records (Appendix A). As shown in Table 3, there are 19 major CREMUS groups. Eighteen of those CREMUS groups comprise 90 percent of the total

CREMUS catches in Guam nearshore waters, with other fish and invertebrates, and miscellaneous fish that cannot be identified to the species level comprising the remaining 10 percent of the overall catch. Therefore, it could be argued that there are no non-targets stocks in coral reef fisheries, except for species that are discarded. In Guam, discards levels are unknown but are believed to be limited to fish that are below legal size limits, or taboo due to cultural beliefs. Additionally, people may also avoid certain reef fish that are poisonous or associated with ciguatera (WPFMC 2001).

WPFMC (2012) reports that trolling, gillnet, snorkel/scuba spearfishing, and bottomfish fishing methods account for 89 percent of Guam's boat-based CREMUS catch. Of these methods, snorkel and scuba spear account for the majority of the catch. In Guam's shore-based fishery, hook and line, gillnet, snorkel spear, cast net and surround net are the most dominant gear-types, accounting for 87 percent of the shore-based CREMUS catch. Of these methods, hook-and-line and cast net account for nearly all of the catch (WPFMC 2012).

Based on the average estimated annual CREMUS catch for the most recent three-year period shown in Table 12, catches are dominated by eight families/groups: *Selar crumenophthalmus* – atulai (107,271 lb), Carangidae or jacks (54,050 lb), Acanthuridae or surgeonfishes (35,500 lb), Lethrinidae or emperors (27,749 lb), Scaridae or parrotfish (22,172 lb), Siganidae or rabbitfish (12,467 lb), Mullidae or goatfishes (12,142 lb) and Mugilidae or mullets (10,339 lb). Catches of other CREMUS families/groups ranged between 953 lb (Carcharhinidae or reef sharks) to 8,283 lb (Lutjanidae or snappers) with catches of miscellaneous species comprising the group "All Other CREMUS Combined" accounting for 35,860 lb.

In 2013, the commercial price for individual coral reef associated species ranged between \$1.94 (dogtooth tuna) and \$3.60 (rabbitfishes) per pound, with an average CREMUS price of \$3.16/lb over all groupings (<u>http://www.pifsc.noaa.gov/wpacfin/guam/dawr/Pages/gdawr_data_3.php</u>, accessed on Dec. 3, 2014. Multiplying the average 2011-2013 catch of each CREMUS group shown in Table 22 by the 2013 average price of \$3.16 equally, the average annual estimated commercial value of the coral reef fisheries of Guam for this three-year period was approximately \$1,106,171.

Table 22 provides the estimate average annual Guam CREMUS catch and average fleet-wide revenue by CREMUS group for the most recent three-year period where data is available, and the OFL proxy. Except for *Selar crumenopthalmus* or bigeye scad and Carangidae or jacks, annual catches of Guam CREMUS groups in 2011-2013 are well below MSY and OFL reference points shown in Table 12, and are at sustainable levels.

For Guam bigeye scad, the average 2011-2012 catch level was 107,271 lb, which is nearly two times the stock's estimated MSY of 60,300 lb and OFL proxy of 60,800 lb. The Council (WPFMC 2014) reports that in 2012, Guam fishermen caught 120,513 lb of bigeye scad, dropping to 24,326 lb in 2013. FEP Plan Team members reported that increased participation in 2012 shore-based creel surveys by hook and line fishermen fishing for bigeye scad, coupled with a good 2012 fishing season resulted in the unusually large expanded catch number compared to previous years (WPFMC 2013). At the 2014 FEP Plan Team meeting held April 14, 2015, in Honolulu, FEP Plan Team members reported that preliminary 2014 data indicate that Guam

fishermen caught 15,233 lb of bigeye scad (WPFMC in prep). Thus, the unofficial three-year average 2012-2014 catch of bigeye scad in Guam could be 53,357 lb, which is below the stock's MSY and OFL. This data demonstrates the high degree of inter-annual variability in territorial data collection programs (see Section 2.1). Additionally, bigeye scad are coastal pelagic species, which have fast growth rates, short life spans and high natural mortality rates, and are more resilient to fishing pressure than most coral reef fish, which generally have longer life span and lower natural mortality rates.

For Guam jacks, the average 2011-12 catch level was 54,050 lb, which is above the stock's estimated MSY of 31,700 lb and OFL proxy of 32,200 lb. The Council (WPFMC 2014) reports that in Guam fishermen caught 18,122 lb of jacks in 2012, increasing to 60,469 lb in 2013. FEP Plan Team members report that 2013 was a good year for jacks due to a large run of juvenile called 'ie'ie in Chamorro. They also noted that the shore-based creel surveys interviewed more fishermen in 2013 than in previous years. They explain that this is may be due to the recent ban on the use of nets in harbors. In previous years, net fishermen used to utilize the harbor areas, however tend not to cooperate in creel surveys. Since the ban went into effect, areas that used to be occupied by net fishermen were now occupied by rod and reel fishermen which are better captured in the creel survey. Thus, better participation in creel survey by this group resulted in an increase in catch statistics in 2013. At the 2014 FEP Plan Team meeting held April 14, 2015, in Honolulu, FEP Plan Team members report that preliminary 2014 data indicates Guam fishermen caught 24,326 lb of jacks (WPFMC in prep). Thus, the unofficial average 2012-2014 catch of Guam jacks could be 34,306 lb, which is above the stock's MSY and OFL. This data demonstrates the high degree of inter-annual variability in territorial data collection programs (see Section 2.1). Due to the high degree of inter-annual variability in territorial data collection programs (see Section 2.1), Guam fishery scientists and managers do not consider the single year catch as an unsustainable level of fishing pressure.

No.	Guam CREMUS Groupings	OFL (lb)	Estimated Ave. Catch (2011-2013) ¹ (lb)	Estimated Value of Ave. Catch Based on 2013 Price
1	Selar crumenophthalmus – atulai or	60,800	107,271	of \$3.16/lb ² \$33,8976
	bigeye scad	00,000	107,271	ψ55,0770
2	Acanthuridae – surgeonfishes	114,700	35,500	\$112,180
3	Carangidae – jacks	32,200	54,050	\$170,798
4	Carcharhinidae – reef sharks	2,900	953	\$3,011
5	Crustaceans - crabs	8,600	1,845	\$5,830
6	Holocentridae – squirrelfishes	13,800	2,934	\$9,271
7	Kyphosidae – rudderfishes	10,300	1,316	\$4,159
8	Labridae – wrasses ¹	28,200	1,278	\$4,354
9	Lethrinidae – emperors	76,600	27,749	\$87,687
10	Lutjanidae – snappers	20,700	8,283	\$26,174

 Table 22. Average estimated catch and revenue of Guam CREMUS (2011-2013)

No.	Guam CREMUS Groupings	OFL (lb)	Estimated Ave. Catch (2011-2013) ¹ (lb)	Estimated Value of Ave. Catch Based on 2013 Price of \$3.16/lb ²
11	Mollusks – turbo snail; octopus; giant clam	28,600	7,914	\$25,008
12	Mugilidae – mullets	24,500	10,339	\$32,671
13	Mullidae – goatfishes	16,300	12,142	\$38,369
14	Scaridae – parrotfishes ²	86,500	22,172	\$70,064
15	Serranidae – groupers	27,400	7,881	\$24,904
16	Siganidae – rabbitfishes	19,200	12,467	\$39,396
17	<i>Cheilinus undulatus</i> – humphead (Napoleon) wrasse	Unknown	No data	No data
18	<i>Bolbometopon muricatum</i> – bumphead parrotfish	Unknown	No data	No data
19	All Other CREMUS Combined	209,200	35,860	\$113,318
TOTAL			350,054	\$1,106,171

¹ Source: Appendix 3 in Sabater and Kleiber (2014)

² Source: Estimated average price across all CREMUS groupings based on total revenues and landings for 2013

(<u>http://www.pifsc.noaa.gov/wpacfin/guam/dawr/Pages/gdawr_data_3.php</u>, accessed on 12/03/2014).

3.3.2 Fishery Participants and Fishing Communities

3.3.2.1 Fishery Participants

Currently, harvest of CREMUS in Guam occurs almost exclusively within territorial waters. However, aside from average catch and revenue data, there is no information available on Guam's territorial coral reef fisheries in terms of number of participation or level of fishing effort.

3.3.2.2 Fishing Communities

The Magnuson-Stevens Act defines a fishing community as "...a community that is substantially dependent upon or substantially engaged in the harvest or processing of fishery resources to meet social and economic needs, and includes fishing vessel owners, operators, and crew, and fish processors that are based in such communities" (16 U.S.C. § 1802(16)). NMFS further specifies in the National Standard guidelines that a fishing community is "...a social or economic group whose members reside in a specific location and share a common dependency on commercial, recreational, or subsistence fishing or on directly related fisheries dependent services and industries (for example, boatyards, ice suppliers, tackle shops)." National Standard 8 of the Magnuson-Stevens Act requires that conservation and management measures shall, consistent with the conservation requirements of this Act (including the prevention of overfishing and the

rebuilding of overfished stocks), take into account the importance of fishery resources to fishing communities in order to (a) provide for the sustained participation of such communities and (b) to the extent practicable, minimize adverse economic impacts on such communities. In 1999, the Council identified Guam as a fishing community. The Secretary of Commerce approved this definition on April 19, 2009 (64 FR 19067). Sustainable management of the Guam coral reef fisheries will allow continued harvest of a resource that is important to fishermen, their families, community networks, markets, and visitors for personal consumption (sustenance), supplemental income, and customary exchange.

3.3.3 Fishery Administration and Enforcement

3.3.3.1 Federal Fishery Management Provisions

Federal fishing regulations for coral reef ecosystem fisheries in EEZ waters around Guam include a prohibition on the use of destructive and non-selective gear methods, vessel identification and gear marking requirements. A SCERFP and logbook reporting is also required for harvesting certain CREMUS defined in federal regulations as PHCRT. Additionally, all commercial fishing is prohibited within the Islands Unit of the Mariana Trench Marine National Monument, while non-commercial fishing and charter boat fishing may be allowed subject to a monument permit and logbook reporting requirements (78 FR 32996, June 3, 2013). Enforcement of federal fishing regulations is conducted by NOAA's Office of Law Enforcement and the U.S. Coast Guard.

In addition to fishing regulations, Federal law also requires the Council-appointed Mariana FEP plan team to prepare an annual report on the performance of all federal fisheries, including Guam coral reef fisheries by July 31 of each year. Federal regulations also require NMFS to specify ACLs and AMs for each stock or stock complex of MUS identified in an FEP, as recommended by the Council, and in consideration of the best available scientific, commercial, and other information about the fishery for that stock or stock complex. Monitoring of catch against a specified ACL and implementation of AMs is conducted by NMFS and the Council.

3.3.3.2 Guam Fishery Management Provisions

In local territorial waters, the Guam Division of Aquatic and Wildlife Resources and the Guam legislature have established numerous laws to conserve coral reef fishery resources, including outright bans and restrictions on certain gear types, and harvest seasons and size limits for certain marine species. In addition, fishing is prohibited in five no-take marine preserves including the Pati Point Preserve, Tumon Bay Preserve, Sasa Bay Preserve, and the Achang Reef Flat Preserve (Wushinich-Mendez and Trappe 2007). Together, these measures help to manage and conserve spiny lobster resources in local territorial waters.

3.3.4 Protected Resources

3.3.4.1 Species Protected under the Endangered Species Act (ESA)

A number of protected species are reported from the waters around the Guam. Table 23 identifies species listed as endangered or threatened under the ESA that are known to occur or could reasonably be expected to occur in marine waters around the Mariana Archipelago, including Guam, which may have the potential to interact with fisheries. Listed species include five whales, five sea turtles, a shark, several species of shallow reef-building corals and a seabird. There is no critical habitat designated for ESA-listed marine species around Guam.

Table 23. Endangered and threatened marine species and seabirds known to occur or reasonably expected to occur in waters around the Mariana Archipelago (Guam).

Endangered and threatened marine species and seabirds known to occur or				
reasonably expected to occur in waters around the Mariana Archipelago (Guam)				
Common name	Scientific Name	ESA listing	Occurrence in Guam	
		status in		
Linted Contraction		Guam		
Listed Sea Turtles Green sea turtle		Threatened	Most common turtle in the	
Haggan Betde	Chelonia mydas	Inreatened	Mariana Archipelago. Foraging	
naggan bette			and minor nesting confirmed	
			on Guam, Rota, Tinian and	
			Saipan.	
Hawksbill sea	Eretmochelys	Endangered	Small population foraging	
turtle	imbricata	Endungered	around Guam and suspected	
Haggan Karai			low level around southern	
			islands of CNMI. Low level	
			nesting on Guam.	
Leatherback sea	Dermochelys	Endangered	Occasional sightings around	
turtle	coriacea		Guam. Not known to what	
			extent they are present around	
			Guam and CNMI	
Olive ridley	Lepidochelys	Threatened	Range across Pacific: not	
sea turtle	olivacea		confirmed in the Mariana	
			Archipelago	
North Pacific	Caretta caretta	Endangered	No known reports of	
Loggerhead sea turtle DPS			loggerhead turtles in waters around the Mariana	
turtie DPS			Archipelago.	
Listed Marine Mammals				
Blue whale	Balaenoptera	Endangered	Extremely rare	
Dive wildie	musculus	Lindungered		
Fin whale	Balaenoptera	Endangered	Infrequent sightings.	
	physalus			

Endangered and threatened marine species and seabirds known to occur or reasonably expected to occur in waters around the Mariana Archipelago (Guam)			
Common name	Scientific Name	ESA listing status in Guam	Occurrence in Guam
Humpback whale	Megaptera novaeangliae	Endangered	Infrequent sightings. Winter in the CNMI.
Sei whale	Balaenoptera borealis	Endangered	Infrequent sightings.
Sperm whale	Physeter macrocephalus	Endangered	Regularly sighted
Listed Sharks			
Scalloped hammerhead shark (Indo-West Pacific DPS)	Sphyrna lewini	Threatened	Known to occur.
Listed Shallow Ree	f-building Corals		
None	Acropora globiceps	Threatened	Depths range is 0 to 8 m
None	A. retusa	Threatened	Depth range is one to five meters
None	Seriatopora aculeata	Threatened	Depth range is three to 40 meters
Listed Sea Birds			
Newell's Shearwater	Puffinus auricularis newelli	Threatened	Rare visitor

Source: http://www.nmfs.noaa.gov/pr/species/esa/listed.htm, accessed October 31, 2014.

Applicable ESA Consultation – Guam Coral Reef Fisheries

NMFS has evaluated the potential impact of Mariana FEP coral reef ecosystem fisheries on ESA listed species under NMFS jurisdiction and has determined that coral reef fisheries that operate in accordance with regulations implementing the Mariana FEP are not likely to adversely affect ESA-listed species or their habitats. NMFS documented these determinations in letters of concurrence dated March 7, 2002, and April 29, 2015. The basis for this determination is generally due to the rare occurrence of ESA-listed species in EEZ waters where federal coral reef fisheries are authorized to operate, combined with the low level of coral reef fishing occurring in the EEZ, which makes interactions unlikely to occur.

Newell's shearwater (*Puffinus auricularis newelli*) is listed as threatened under the ESA. This species breeds only in the main Hawaiian Islands, primarily in burrows on steep forested mountain slopes at medium elevation. Newell's shearwater has been sighted in the Marianas, but is considered an uncommon visitor to the archipelago (Drahos 1977; Jouanin 1956). Because its

presence in the Mariana Archipelago is rare, and coral reef fishermen do not interact with seabirds, the fishery has no effect on this seabird.

3.3.4.2 Species Protected under the Marine Mammal Protection Act (MMPA)

Several non-ESA listed whales, dolphins and porpoises occur in waters around Guam and are protected under the MMPA. Table 24 provides a list of non-ESA listed marine mammals known to occur or reasonably expected to occur in waters around the Mariana Archipelago that have the potential to interact with the Guam lobster fishery. A single dugong, listed as endangered, was observed in Cocos Lagoon, Guam in 1975 (Randall et al. 1975). Several sightings were reported in 1985 on the southeastern side of Guam (Eldredge 2003). Since that time, however no reports of dugong sightings have been made.

Table 24. Non ESA-listed marine mammals known to occur or reasonably expected to occur in waters around the Mariana Archipelago (Guam).

Marine mammals known to occur or reasonably expected to occur in waters around			
the Mariana Archipelago (Guam)			
Common Name	Scientific Name		
Blainville's beaked whale	Mesoplodon densirostris		
Bottlenose dolphin	Tursiops truncatus		
Bryde's whale	Balaenoptera edeni		
Common dolphin	Delphinus delphis		
Cuvier's beaked whale	Ziphius cavirostris		
Dwarf sperm whale	Kogia sima		
Dugong*	Dugong dugong		
False killer whale	Pseudorca crassidens		
Fraser's dolphin	Lagenodelphis hosei		
Killer whale	Orcinus orca		
Longman's beaked whale	Indopacetus pacificus		
Melon-headed whale	Peponocephala electra		
Minke whale	Balaenoptera acutorostrata		
Pygmy killer whale	Feresa attenuata		
Pygmy sperm whale	Kogia breviceps		
Risso's dolphin	Grampus griseus		
Rough-toothed dolphin	Steno bredanensis		
Short-finned pilot whale	Globicephala macrorhynchus		
Sperm whale	Physeter macrocephalus		
Spinner dolphin	Stenella longirostris		
Spotted dolphin	Stenella attenuata		
Striped dolphin	Stenella coeruleoalba		

Source: Eldredge 2003, Randall et al. 1975, (Guam DAWR 2009), Council website: <u>http://www.wpcouncil.org</u>

Applicable MMPA Coordination – Guam Coral Reef Fisheries

The MMPA prohibits, with certain exceptions, taking of marine mammals in the U.S., and by persons aboard U.S. flagged vessels (i.e., persons and vessels subject to U.S. jurisdiction). Under section 118 of the MMPA, NMFS must publish, at least annually, a List of Fisheries (LOF) that classifies U.S. commercial fisheries into one of three categories based upon the level of serious injury and mortality of marine mammals that occurs incidental to each fishery. A Category 1 fishery is one with frequent incidental morality and serious injury of marine mammals. A Category 2 fishery is one with occasional incidental morality and serious injury of marine mammals. A Category 3 fishery is one with a remote likelihood or no known incidental morality and serious injury of marine mammals.

On December 29, 2014, (79 FR 77919), NMFS published the final LOF for 2015 which classified all gear types used in Hawaii's coral reef fisheries, including the inshore gillnet, lift net, inshore purse seine net, throw net, cast net, seine net, offshore pen culture, rod and reel, crab trap, fish trap, crab net, inshore handline, bullpen trap, hand pick, and spearfishing as Category 3 fisheries under Section 118 of the MMPA. To date, NMFS has not included any gear type used in Guam's coral reef fisheries in the annual LOF. There is no information available regarding marine mammal interactions in coral reef fisheries in Guam as no interactions have been reported or observed. However, because the gear types used in Guam's coral reef fisheries, such as trolling with rod and reel, gillnets, and spearfishing are similar to those used in Hawaii's coral reef fisheries, it is reasonable to assume that the impacts to marine mammals would be comparable to Hawaii's rod and reel, spearfishing, and gillnet fisheries, and would have a remote likelihood of incidental mortality and serious injury of marine mammals. Participants in Category 3 fisheries are not required to register in the Marine Mammal Authorization Program prior to engaging in commercial fishing.

3.3.4.3 Seabirds of the Mariana Archipelago

The following seabirds are considered residents of Mariana Archipelago: wedge-tailed shearwater (*Puffinus pacificus*), white-tailed tropicbird (*Phaethon lepturus*), red-tailed tropicbird (*Phaethon rubricauda*), masked booby (*Sula dactylatra*), brown booby (*Sula leucogaster*), red-footed booby (*Sula sula*), white tern (*Gygis alba*), sooty tern (*Onychoprion fuscatus*; previously *Sterna fuscata*), brown noddy (*Anous stolidus*), black noddy (*Anous minutus*), and the great frigatebird (*Fregata minor*). However, According to Wiles (2003), the only resident seabirds on Guam are the brown noddy and the white tern.

The following seabirds in Table 25 have been sighted and are considered visitors (some more common than others) to the Mariana Archipelago; short-tailed shearwater (*Puffinus tenuirostris;* common visitor), Newell's shearwater (*Puffinus auricularis;* rare visitor), Audubon's shearwater (*Puffinus iherminieri*), Leach's storm-petrel (*Oceanodroma leucorhoa*), and the Matsudaira's storm-petrel(*Oceanodroma matsudairae*). Of these, only the Newell's shearwater is listed as threatened under the ESA. There have been no sightings of the endangered short-tailed albatross (*Phoebastria albatrus*) in Guam although Guam is within the range of the largest breeding colony at Torishima, Japan (WPFMC 2009b). There are no known interactions between seabirds

and any of the Mariana Archipelago coral reef fisheries and none are expected to occur (WPFMC 2009b).

		o (R= Resident/Breeding; V= Visitor; Vr=rare visitor;		
Vc=0	Vc= Common visitor)			
	Common name	Scientific name		
Vr	Newell's shearwater	Puffinus auricularis newelli (ESA: Threatened)		
Vr	Wedge-tailed shearwater	Puffinus pacificus		
V	Audubon's shearwater	Puffinus lherminieri		
Vc	Short-tailed shearwater	Puffinus tenuirostris (common visitor)		
V	Leach's storm-petrel	Oceanodroma leucorhoa		
Vr	Matsudaira's storm-petrel	Oceanodroma matsudairae		
Vr	Red-footed booby	Sula sula		
Vr	Brown booby	Sula leucogaster		
V	Masked booby	Sula dactylatra		
Vr	White-tailed tropicbird	Phaethon lepturus		
Vr	Red-tailed tropicbird	Phaethon rubricauda		
Vr	Great frigatebird	Fregata minor		
Vr	Sooty tern	Onychoprion fuscatus; previously Sterna fuscata		
R	Brown noddy	Anous stolidus		
V	Black noddy	Anous minutus		
R	White tern / Common	Gygis alba		
	fairy-tern			

Table 25. Seabirds occurring in the Mariana Archipelago (Guam).

Source: WPFMC 2009b.

3.4 Hawaii

3.4.1 Target and Non-Target Species

Fishing for CREMUS in the Hawaii is limited to just the main Hawaiian Islands and almost exclusively in nearshore waters 0-3 miles from shore. Here, CREMUS is harvested in both commercial and non-commercial fisheries although reliable catch data is only available for the commercial sector. Under state law, anyone who takes marine life for commercial purposes is required to obtain a State of Hawaii commercial marine license (CML) and submit a catch report (popularly known as a "C3" form) on a monthly basis. Common gear types employed in nearshore coral reef fisheries in the MHI include inshore gillnet, lift net, inshore purse seine net, throw net, cast net, seine net, offshore pen culture, rod and reel, crab trap, fish trap, crab net, inshore handline, bullpen trap, hand pick, and spearfishing. However, catch by CREMUS group by gear type is not available.

Due to the lack of a developed coral reef ecosystem fisheries in federal waters, the Council at its 151st, 154th and 157th meeting directed Council staff to conduct analyses to identify coral reef associated species that may meet the criteria for an "ecosystem component species" designation in accordance with National Standard 1 guidelines of the Magnuson Stevens Act (76 FR 37285,

June 27, 2011). Ecosystem component species are species that are generally not harvested or retained in the EEZ and do not require the specification of reference points such as an ACL, but should be monitored and actively managed in the EEZ if necessary.

3.4.1.1 Summary of MHI CREMUS Catch

Like in other island areas, it is difficult to determine "target" and "non-target" stocks in Hawaii's nearshore coral reef fisheries because resources harvested are highly diverse, with over one hundred species appearing in catch records (Appendix A). As shown in Table 4, there are a total of 17 major CREMUS groups. Sixteen of those CREMUS groups comprise 90 percent of the total CREMUS catches in nearshore waters of the MHI, with other finfish fish, invertebrates, and algae comprising the remaining 10 percent of the overall catch. Therefore, it could be argued that there are no non-targets stocks in coral reef fisheries, except for species that are discarded. In Hawaii, discards levels are unknown but are believed to be limited to fish that are below legal size limits, or taboo due to cultural beliefs. Additionally, people may also avoid certain reef fish that are poisonous or associated with ciguatera (WPFMC 2001).

Based on the average estimated annual CREMUS catch for the most recent three-year period shown in Table 13, catches are dominated by seven families/groups: *Selar crumenophthalmus* or akule or bigeye scad (340,443 lb), Decapterus macarellus or opelu or mackerel scad (296,800 lb), Acanthuridae or surgeonfishes (131,299 lb), Scaridae or parrotfish (80,568 lb), Holocenridae or squirrelfish (64,771 lb), Mullidae or goatfish (60,255 lb), Lutjanidae or snapper (45,086 lb) Catches of other CREMUS families/groups ranged between 2,842 lb (Carcharhinidae or reef sharks) to 27,253 lb (Crustaceans or crabs) with catches of miscellaneous species comprising the group "All Other CREMUS Combined" accounting for 96,635 lb.

In 2013, the commercial price for individual coral reef associated species⁶ ranged between \$1.26 (bonefish) and \$8.70 (algae)⁷ per pound, with an average CREMUS price of \$3.52/lb over all groupings (http://www.pifsc.noaa.gov/wpacfin/hi/dar/Pages/hi_data_3.php, accessed on Dec. 3, 2014). Multiplying the average 2011-2013 catch of each CREMUS group shown in Table 26 by the 2013 average price of \$3.52 equally, the average annual estimated commercial value of the coral reef fisheries of Hawaii for this three-year period was approximately \$4,528,860.

Table 26 provides the estimate average annual Hawaii CREMUS catch and average fleet-wide revenue by CREMUS group for the most recent three-year period where data is available, and OFL proxy. Based on current estimates of MSY and OFL proxies shown in Table 13, average annual catches of Hawaii CREMUS groups in 2011-2013 are well below these reference points are at sustainable levels.

⁶ Price per lb of "Unknown reef fish" was lower, at \$0.97/lb for 39 lb sold.

⁷ Both bonefish and algae are included in the all other CREMUS Combined grouping. In 2013, fishermen reported selling 12,344 lb of bonefish and 3,960 lb of 16,921 lb of algae.

No.	MHI CREMUS Groupings	OFL (lb)	Estimated Ave. Catch in lb (2011- 2013) ¹	Estimated Value of Ave. Catch Based on 2013 Price of \$3.52/lb ²
1	<i>Selar crumenophthalmus</i> – akule or bigeye scad	1,138,000	340,443	\$1,198,359
2	<i>Decapterus macarellus</i> – opelu or mackerel scad	531,200	296,800	\$1,044,736
3	Acanthuridae – surgeonfishes	452,600	131,299	\$462,172
4	Carangidae – jacks ¹	183,700	44,714	\$157,393
5	Carcharhinidae – reef sharks	12,500	2,842	\$10,004
6	Crustaceans – crabs	42,800	27,253	\$95,931
7	Holocentridae – squirrelfishes	158,100	64,771	\$227,994
8	Kyphosidae – rudderfishes	119,600	*27,511	*\$96,839
9	Labridae – wrasses	227,400	*7,706	*\$27,125
10	Lethrinidae – emperors	39,400	*6,599	*\$23,228
11	Lutjanidae – snappers ²	356,200	45,086	\$158,703
12	Mollusks –octopus	49,500	39,272	\$138,237
13	Mugilidae – mullets	24,500	9,761	\$34,359
14	Mullidae – goatfishes	197,500	60,255	\$212,098
15	Scaridae – parrotfishes	270,600	80,568	\$283,599
16	Serranidae – groupers	139,900	*5,093	*\$17,927
17	All Other CREMUS Combined	535,600	96,635	\$340,155
			1,239,699	\$4,528,860

Table 26. Average estimated	catch and revenue of MHI (CREMUS (2011-2013)

¹ Source: Appendix 3 in Sabater and Kleiber (2014); Appendix 3 in Sabater and Kleiber (2014) does not include catch data for 2013. Therefore, the source of 2013 information is the 2013 ACL monitoring report presented at the 160th Council meeting in June 2014 (WPFMC 2014).
 ² Source: Estimated average price across all CREMUS groupings based on total revenue and landings in 2013 <u>http://www.pifsc.noaa.gov/wpacfin/hi/dar/Pages/hi_data_3.php</u>, accessed on 12/03/2014.

*Average based on 2010-2012 catch since there is no data for 2013 for these species.

3.4.2 Fishery Participants and Fishing Communities

3.4.2.1 Fishery Participants

Currently, harvest of CREMUS in the MHI occurs almost exclusively within nearshore state waters. However, aside from average catch and revenue data, there is no information available on nearshore coral reef fisheries in the MHI in terms of number of participation or level of fishing effort.

3.4.2.2 Fishing Communities

The Magnuson-Stevens Act defines a fishing community as "...a community that is substantially dependent upon or substantially engaged in the harvest or processing of fishery resources to meet social and economic needs, and includes fishing vessel owners, operators, and crew, and fish processors that are based in such communities" (16 U.S.C. § 1802(16)). NMFS further specifies in the National Standard guidelines that a fishing community is "...a social or economic group whose members reside in a specific location and share a common dependency on commercial, recreational, or subsistence fishing or on directly related fisheries dependent services and industries (for example, boatyards, ice suppliers, tackle shops)". National Standard 8 of the Magnuson-Stevens Act requires that conservation and management measures shall, consistent with the conservation requirements of this Act (including the prevention of overfishing and the rebuilding of overfished stocks), take into account the importance of fishery resources to fishing communities in order to (a) provide for the sustained participation of such communities and (b) to the extent practicable, minimize adverse economic impacts on such communities.

In 2002, the Council identified each of the islands of Kauai, Niihau, Oahu, Maui, Molokai, Lanai and Hawaii as a fishing community for the purposes of assessing the effects of fishery conservation and management measures on fishing communities, providing for the sustained participation of such communities, minimizing adverse economic impacts on such communities, and for other purposes under the Magnuson-Stevens Act. The Secretary of Commerce subsequently approved these definitions on August 5, 2003 (68 FR 46112). Sustainable management of the Hawaii's coral reef fisheries will allow continued harvest of a resource that is important to fishermen, their families, community networks, markets, and visitors for personal consumption (sustenance), and supplemental income.

3.4.3 Fishery Administration and Enforcement

3.4.3.1 Federal Fishery Management Provisions

Federal fishing regulations for coral reef ecosystem fisheries in EEZ waters around the MHI include a prohibition on the use of destructive and non-selective gear methods, vessel identification and gear marking requirements. A SCERFP and logbook reporting is also required for harvesting certain CREMUS defined in federal regulations as PHCRT. Additionally, all commercial fishing is prohibited within the NWHI in accordance with Presidential Proclamation establishing the Papahanaumokuakea Marine National Monument (71 FR 51134, August 29, 2006). Enforcement of federal fishing regulations is conducted by NOAA's Office of Law Enforcement and the U.S. Coast Guard.

In addition to fishing regulations, Federal law also requires the Council-appointed Hawaii FEP plan team to prepare an annual report on the performance of all federal fisheries by July 31 of each year. Federal regulations also require NMFS to specify ACLs and AMs for each stock or stock complex of MUS identified in an FEP, as recommended by the Council, and in consideration of the best available scientific, commercial, and other information about the fishery for that stock or stock complex. Monitoring of catch against a specified ACL and implementation of AMs is conducted by NMFS and the Council.

3.4.3.2 Hawaii Fishery Management Provisions

In local state waters, The Hawaii Department of Land and Natural Resources, Division of Aqutic Resources have established numerous laws to conserve coral reef fishery resources, including restrictions on certain gear types, harvest seasons and size limits for certain marine species. In addition, fishing is also regulated or prohibited in numerous locations throughout the state, including marine life conservation districts, fish replenishment areas, natural area reserves (Wushinich-Mendez and Trappe 2007). Together, these measures help to manage and conserve spiny lobster resources in local state waters.

3.4.4 Protected Resources

3.4.4.1 Species Protected under the Endangered Species Act (ESA)

A number of protected species are documented as occurring in the waters around the Hawaiian Islands. Table 27 lists endangered or threatened species occurring in the waters around Hawaii. They include five whales, the Hawaiian monk seal, five listed sea turtles, and three seabirds. Although there is currently no critical habitat designated for ESA-listed marine species around the main Hawaiian Islands, NMFS has proposed to revise designated critical habitat for endangered Hawaiian monk seals to include areas in the MHI (76 FR 32026, June 2, 2011). However, NMFS has not yet made a determination on whether to designate critical habitat in the MHI.

Endangered and threatened marine species and seabirds known to occur or reasonably expected to occur in waters of the Hawaiian Archipelago			
Common name	Scientific Name	ESA listing status in Hawaii	Occurrence in Hawaii
Listed Sea Turtles			
Green sea turtle	Chelonia mydas	Threatened	Most common turtle in the Hawaiian Islands. Most nesting occurs in the northwestern Hawaiian Islands. Foraging and haulout in the MHI.
Hawksbill sea turtle	Eretmochelys imbricata	Endangered	Small population foraging around Hawaii and low level nesting on Maui and Hawaii Islands.
Leatherback sea turtle	Dermochelys coriacea	Endangered	Not common in Hawaii.
Olive ridley sea turtle	Lepidochelys olivacea	Threatened	Range across Pacific:

Table 27. Endangered and threatened marine species and seabirds occurring in the waters of the MHI.

Endangered and threatened marine species and seabirds known to occur or reasonably expected to occur in waters of the Hawaiian Archipelago			
Common name	Scientific Name	ESA listing status in Hawaii	Occurrence in Hawaii
North Pacific loggerhead sea turtle DPS	Caretta caretta	Endangered	Not common in Hawaii.
Listed Marine Ma			
Hawaiian Monk seal	Neomonachus schauinslandi	Endangered	Endemic tropical seal. Occurs throughout the archipelago. Overall population in decline; MHI population increasing
Blue whale	Balaenoptera musculus	Endangered	No sightings or strandings reported in Hawaii but acoustically recorded off of Oahu and Midway Atoll.
Fin whale	Balaenoptera physalus	Endangered	Infrequent sightings in Hawaii waters.
Humpback whale	Megaptera novaeangliae	Endangered	Migrate through the archipelago and breed during the winter. Est. 6,000-10,000 individuals.
Sei whale	Balaenoptera borealis	Endangered	Worldwide distribution. Primarily found in cold temperate to subpolar latitudes. Rare in Hawaii.
Sperm whale	Physeter macrocephalus	Endangered	Found in tropical to polar waters worldwide, most abundant cetaceans in the region. Sighted off the NWHI and the MHI.
MHI insular false killer whale DPS	Pseudorca crassidens	Endangered	Found in waters within 140 km (60 nm) of the MHI.
Listed Sea Birds			
Newell's Shearwater	Puffinus auricularis newelli	Threatened	Rare. Breeds only in colonies on the MHI where it is threatened by predators and urban development.
Hawaiian petrel	Pterodroma phaeopygia	Endangered	Rare.
Short-tailed Albatross	Phoebastria albatrus	Endangered	Nest in small numbers on Midway in the NWHI.

Source: http://www.nmfs.noaa.gov/pr/species/esa/listed.htm, accessed October 31, 2014.

Applicable ESA Consultations – Hawaii Coral Reef Fisheries

NMFS has evaluated the potential impact of Hawaii FEP coral reef ecosystem fisheries on ESA listed species under NMFS jurisdiction and has determined that coral reef fisheries that operate in accordance with regulations implementing the Hawaii FEP are not likely to adversely affect ESA-listed species or their habitats. NMFS documented these determinations in letters of concurrence dated March 7, 2002, and December 5, 2013. The basis for this determination is generally due to the rare occurrence of ESA-listed species in EEZ waters where federal coral reef fisheries are authorized to operate, combined with the low level of coral reef fishing occurring in the EEZ, which makes interactions unlikely to occur.

On June 2, 2011 (76 FR 32026), NMFS published a proposed rule to designate areas in the main Hawaiian Islands (MHI) as monk seal critical habitat. Specific areas proposed include terrestrial and marine habitats from 5 m inland from the shoreline extending seaward to the 500 m depth contour around Kaula Island, Niihau, Kauai, Oahu, Maui Nui (including Kahoolawe, Lanai, Maui and Molokai) and Hawaii Island. The final determinations on whether to designate monk seal critical habitat in the MHI have not been made. Should NMFS designate critical habitat for this species, or any other ESA-listed species in the future, NMFS will initiate consultation in accordance with Section 7 of the ESA to ensure that Hawaii FEP fisheries, including the coral reef ecosystem fisheries in the MHI, would not result in the destruction or adverse modification of critical habitat.

3.4.4.2 Species Protected under the Marine Mammal Protection Act (MMPA)

Several non-ESA listed whales, dolphins and porpoises, occur in waters around Hawaii and are protected under the MMPA. Table 28, provides a list of non-ESA marine mammals known to occur or reasonably expected to occur around the Hawaiian Archipelago that have the potential to interact with coral reef fisheries in federal waters around the MHI.

	Non-ESA-listed marine mammals known to occur or reasonably expected to			
occur	occur in waters around the MHI			
Common Name	Scientific Name			
Blainville's beaked whale	Mesoplodon densirostris			
Bottlenose dolphin	Tursiops truncatus			
Bryde's whale	Balaenoptera edeni			
Common dolphin	Delphinus delphis			
Cuvier's beaked whale	Ziphius cavirostris			
Dall's porpoise	Phocoenoides dalli			
Dwarf sperm whale	Kogia sima			
False killer whale	Pseudorca crassidens			
Fraser's dolphin	Lagenodelphis hosei			
Killer whale	Orcinus orca			
Longman's beaked whale	Indopacetus pacificus			
Melon-headed whale	Peponocephala electra			

Table 28. Non-ESA-listed marine mammals occurring in the MHI.

Non-ESA-listed marine mammals known to occur or reasonably expected to occur in waters around the MHI			
Common Name	Scientific Name		
Minke whale	Balaenoptera acutorostrata		
Pantropical spotted dolphin	Stenella attenuata		
Pygmy killer whale	Feresa attenuata		
Pygmy sperm whale	Kogia breviceps		
Risso's dolphin	Grampus griseus		
Rough-toothed dolphin	Steno bredanensis		
Short-finned pilot whale	Globicephala macrorhynchus		
Spinner dolphin	Stenella longirostris		
Spotted dolphin	Stenella attenuata		
Striped dolphin	Stenella coeruleoalba		

Source: Council website: <u>http://www.wpcouncil.org</u>

Applicable MMPA Coordination – Hawaii Coral Reef Ecosystem Fisheries

The MMPA prohibits, with certain exceptions, taking of marine mammals in the U.S., and by persons aboard U.S. flagged vessels (i.e., persons and vessels subject to U.S. jurisdiction). Under section 118 of the MMPA, NMFS must publish, at least annually, a List of Fisheries (LOF) that classifies U.S. commercial fisheries into one of three categories based upon the level of serious injury and mortality of marine mammals that occurs incidental to each fishery. A Category 1 fishery is one with frequent incidental morality and serious injury of marine mammals. A Category 2 fishery is one with occasional incidental morality and serious injury of marine mammals. A Category 3 fishery is one with a remote likelihood or no known incidental morality and serious injury of marine mammals.

On December 29, 2014, (79 FR 77919), NMFS published the final LOF for 2015 which classified all gear types used in Hawaii's coral reef fisheries, including the inshore gillnet, lift net, inshore purse seine net, throw net, cast net, seine net, offshore pen culture, rod and reel, crab trap, fish trap, crab net, inshore handline, bullpen trap, hand pick, and spearfishing as Category 3 fisheries under Section 118 of the MMPA. Participants in Category 3 fisheries are not required to register in the Marine Mammal Authorization Program prior to engaging in commercial fishing. The proposed action does not change the conduct of coral reef fisheries in any way and therefore will not introduce impacts not previously considered in prior MMPA determinations.

3.4.4.3 Seabirds of the Hawaiian Archipelago

Seabirds found on and around Hawaii that could potentially interact with fisheries are listed in Table 29. The short-tailed albatross, which is listed as endangered under the ESA, is a migratory seabird that has nested in the NWHI and could be present in the waters of the Hawaii Archipelago. Other listed seabirds found in the region are the endangered Hawaiian petrel (*Pterodroma phaeopygia*) and the threatened Newell's shearwater (*Puffinus auricularis newelli*). Non-listed seabirds known to be present in Hawaii include the black-footed albatross

(*Phoebastria nigripes*); Laysan albatross (*P. immutabilis*); wedge-tailed (*Puffinus pacificus*), Audubon's (*P. griseus*), short-tailed (*P. tenuirostris*) and Christmas (*P. nativitatis*) shearwaters, as well as the masked (*Sula dactylatra*), brown (*S. leucogaster*), and red-footed (*S. sula*) boobies (or gannets), and a number of petrels and terns, frigate birds, and tropicbirds). Seabirds forage in both State and federal waters, but are not known to and are unlikely to interact with the Hawaii coral reef fisheries. There have been no reports of adverse interactions between the Hawaii coral reef fisheries and migratory seabirds.

Seabin	rds of the Hawaiian Archipela	go (R= Resident/Breeding; V= Visitor; Vr=rare visitor;		
Vc=C	Vc= Common visitor)			
	Common name	Scientific name		
R	Hawaiian petrel	Pterodroma phaeopygia (ESA: Endangered)		
R	Newell's shearwater	Puffinus auricularis newelli (ESA:Threatened)		
R	Short-tailed albatross	Phoebastria albatrus (ESA: Endangered)		
R	Black-footed albatross	Phoebastria nigripes		
R	Laysan albatross	Phoebastria immutabilis		
R	Wedge-tailed shearwater	Puffinus pacificus		
V	Audubon's shearwater	Puffinus lherminieri		
Vc	Short-tailed shearwater	Puffinus tenuirostris (common visitor)		
R	Christmas shearwater	Puffinus nativitatis		
V	Leach's storm-petrel	Oceanodroma leucorhoa		
V	Matsudaira's storm-petrel	Oceanodroma matsudairae		
R	Red-footed booby	Sula sula		
R	Brown booby	Sula leucogaster		
R	Masked booby	Sula dactylatra		
R	White-tailed tropicbird	Phaethon lepturus		
R	Red-tailed tropicbird	Phaethon rubricauda		
R	Great frigatebird	Fregata minor		
R	Sooty tern	Onychoprion fuscatus; previously Sterna fuscata		
R	Brown noddy	Anous stolidus		
R	Black noddy	Anous minutus		
R	White tern / Common	Gygis alba		
	fairy-tern			
7	\cdot WDEMC 2000			

Table 29. Seabirds occurring in the MHI.

Source: WPFMC 2009c

4 Potential Impacts of the Alternatives

This section describes the potential impacts of the proposed ACL and AM specifications on the elements of the affected environment described in Section 3.

4.1 American Samoa

4.1.1 Potential Impacts to Target and Non-Target Stocks

4.1.1.1 Alternative 1: No ACL and AM Management (No Action)

Currently, NMFS has not specified an ACL and AM for any American Samoa CREMUS for fishing year 2015. Under Alternative 1, ACLs would not be specified for CREMUS in American Samoa and AMs would not be necessary. However, NMFS and the Council would continue to monitor catches based on all available sources of information. As shown in Table 10, the average catch 2011-2013 value for each CREMUS group is well below the group's estimated MSY and OFL proxy. During fishing years 2011 through 2013, the fishery for each CREMUS group would remained open year round. Without ACLs and AMs, the annual catch of each CREMUS group in 2015 through 2018 is expected be similar to the average harvest from 2011-2013, and would be sustainable. Therefore, under this alternative, the lack of an ACL or AMs in fishing year 2015 through 2018 is not likely to result in overfishing of any American Samoa CREMUS in any year.

As noted in Section 3.1.1, it is difficult to determine "target" and "non-target" stocks in American Samoa's territorial coral reef fisheries because resources harvested in these fisheries are highly diverse, with approximately 300 species appearing in catch records. While discards levels are unknown, given the low level of catch in American Samoa coral reef fisheries and that most of the resources caught are retained and recorded in catch records, fishery scientists and managers have not identified problems with bycatch or non-target species. Ongoing fisheries monitoring by the Council's FEP plan team will help fishery scientists and managers to detect any problems if they occur, and address them in future management measures, as needed. For these reasons, even without ACL or AM management, the expected impacts to target and nontarget stocks would be that harvests of each American Samoa CREMUS group would remain well the stocks' MSY and OFL reference points, and the fishery would continue to be sustainably managed in the upcoming years.

4.1.1.2 Alternative 2: Specify 2014 ACLs (Status Quo/NEPA Baseline)

Under Alternative 2, NMFS would specify the ACL for each American Samoa CREMUS group in fishing years 2015-2018 at the same level NMFS specified for each CREMUS group in 2014 (79 FR 4276, January 27, 2014). See Table 10 for the specific ACL values for each CREMUS group associated with Alternative 2. Note that under this alternative, there would be no individual ACL for Kyphosidae (rudderfish), Labridae (Wrasses), Mullidae (goatfishes), or Siganidae (rabbitfish). This is because in the prior species level aggregation process described in Section 2.2.1 – Determining the Level of Species Aggregation, these species groups did not comprise the top 90% of the total coral reef fish catch over the long-term catch time series. Therefore, under this alternative, these species would remain in the category "All Other CREMUS" combined as they were in fishing year 2014 and in previous years. Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), no ACL specification under Alternative 2 is associated with greater than a 35% probability of overfishing should the entire ACL be caught (see Table 10).

For American Samoa humphead or Napoleon wrasse (*Cheilinus undulatus*), and bumphead parrotfish (*Bolbometopon muricatum*), NMFS proposes to specify the 2015-2018 ACL at 1,743 lb and 235 lb, respectively. This level of catch is equal to 5% of each stock's estimated biomass (See Table 5) and is identical to the ACLs NMFS specified in 2014 (79 FR 4276, January 27, 2014). As previously mentioned above, MSY, OFL and probability of overfishing projections for these species are not available.

Under this alternative, NMFS and the Council would continue to monitor CREMUS catches based on all available sources of information. However, because catch statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during the fishing year whether the ACL for any CREMUS group might be reached, and cannot prevent any ACL from being exceeded. Therefore, fishers would be able to fish for CREMUS throughout the fishing year in the same manner as under Alternative 1 and as recently occurred in 2011-2013.

Based on recent catch data shown in Table 10, the annual level of catch for each American Samoa CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013, and would not exceed any group's ACL proposed under Alternative 2, or any group's estimated OFL proxy, where known. However, six months after the each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded.

If the Council determines an ACL is exceeded, the Council as an AM would take action in accordance with 50 CFR 600.310(g) to correct the operational issue that caused the ACL overage. This may include a recommendation that NMFS reduce the ACL for that CREMUS group in the subsequent fishing year by the amount of the overage, or other measures, as appropriate. However, the Council would not likely recommend a reduced ACL in the subsequent fishing year. This is because the ACLs under Alternative 2 were developed using a different method than is proposed under the preferred alternative (Alternative 3), and without knowledge of the estimate of MSY and OFL. Therefore, the ACLs under this alternative are not based on the best scientific information available as described in Section 2.2.2 – Estimation of MSY and OFL, and are considered overly conservative but are included in order to evaluate the potential impacts of other alternatives compared with the status quo baseline.

If the Council does recommend a reduced ACL, the reduced ACL is not likely to result in changes in the conduct of the fishery, including gear types used, areas fished, or level of catch. This is because in-season AMs to prevent the ACL from being exceeded are not possible in any fishing year. Therefore, even with a reduced ACL in subsequent fishing years, fishers would still be able to fish for American Samoa CREMUS throughout the fishing year in the same manner as under Alternative 1. Therefore, compared to Alternative 1, Alternative 2 is not likely to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch.

Furthermore, the fishery is expected to continue to fish in much the same manner as it has in recent years and the fishery is not known to be having a, or have large beneficial or adverse effects on target or non-target stocks.

4.1.1.3 Alternative 3: Specify Council Recommended ACLs (Preferred)

Under Alternative 3 (the Council's and NMFS' Preferred Alternative), NMFS would specify the ACL for each American Samoa CREMUS group in 2015-2018 as shown for Alternative 3 in Table 10. This level of catch is five percent lower than each CREMUS group's ABC. Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), no ACL under Alternative 3 is associated with greater than a 35 percent probability of overfishing should the entire ACL be caught (see Table 10).

For American Samoa humphead or Napoleon wrasse (*Cheilinus undulatus*), and bumphead parrotfish (*Bolbometopon muricatum*), NMFS proposes to specify the 2015-2018 ACL identical to the ACL under the status quo/NEPA baseline (Alternative 2). This level of catch is equal to 5% of each stock's estimated biomass (See Table 5) and is identical to the ACLs NMFS specified in 2014 (79 FR 4276, January 27, 2014). As previously mentioned above, MSY, OFL and probability of overfishing projections for these species are not available.

Under this alternative, NMFS and the Council would continue to monitor CREMUS catches based on all available sources of information. However, because catch statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during the fishing year whether the ACL for any CREMUS group might be reached, and cannot prevent any ACL from being exceeded. Therefore, fishers would be able to fish for CREMUS throughout the fishing year in the same manner as under Alternative 2 (status quo) and as recently occurred in 2011-2013.

Based on recent catch data shown in Table 10, the annual level of catch for each American Samoa CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013, and is not expected to exceed any group's ACL proposed under Alternative 2, or any group's estimated OFL proxy, where known. Therefore, because there would not be a closure of the fishery under Alternative 3 in any of the next 4 years, the fishery would not change and impacts to target and non-target stocks would be identical to the impacts under Alternative 2 (status quo), which is identical to the impacts under Alternative 1 (no action).

Six months after the end of each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded. Under this alternative, if the Council determines the most recent three-year average catch for any American Samoa CREMUS Group exceeded the proposed ACL in any fishing year, NMFS would reduce the ACL by the amount of the overage in the subsequent years. See Section 1.3- Proposed Action for detailed information on how this AM would be triggered. The impacts of a reduced ACL to target and non-target stocks are described in Alternative 4 below.

4.1.1.4 Alternative 4: Specify ACLs Lower than the Preferred Alternative

Under Alternative 4, NMFS would specify an ACL for each American Samoa CREMUS group in 2015-2018 that is lower than the preferred alternative (Alternative 3) as shown for Alternative 4 in Table 10. NMFS included a range of ACLs lower than the ACL that would be established under the preferred alternative in the event that the proposed ACL under Alternative 3 is implemented and exceeded in 2015, 2016 or 2017, and a downward overage adjustment in the amount of the overage is necessary in a subsequent year. Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), the ACL for each CREMUS group under Alternative 4 are associated with probabilities of overfishing ranging from 30 percent down to five percent (see Table 10). In other words, the lower the ACL, the lower the associated risk of overfishing.

Under Alternative 4, the American Samoa CREMUS fishery is expected to continue to perform as it has in recent years and catches in 2015-2018 are expected to be similar to the average harvest from 2011-2013. As shown in Table 10, average harvest from 2011-2013 did not exceed the lowest possible ACL for any group or that group's estimated OFL proxy, where known. Therefore, even if an ACL lower that what is proposed in Alternative 3 is selected, fishery would not change and impacts to target and non-target stocks would be the same as the impacts under Alternatives 1-3.

Under all alternatives considered, if an ACL is exceeded more than once in a four-year period, the Council is required to re-evaluate the ACL process, and adjust the system for setting ACLs, as necessary, to improve its performance and effectiveness. Additionally, if NMFS determines overfishing is occurring, NMFS would immediately notify the Council to take action to end overfishing in the fishery.

4.1.2 Potential Impacts to Fishery Participants and Fishing Communities

In 2013, the commercial price for individual coral reef associated species in American Samoa ranged between \$2.63 and \$4.83 per pound, with an average overall CREMUS price of \$3.10/lb. Multiplying the average 2011-2013 catch of each CREMUS group shown in Table 14 by the 2013 average price of \$3.10 equally, the average annual estimated commercial value of the coral reef fisheries of American Samoa for this three-year period was approximately \$195,570. The number of participants in American Samoa coral reef fisheries is unknown.

4.1.2.1 Alternative 1: No ACL and AM Management (No Action)

Currently, NMFS has not specified an ACL and AM for any American Samoa CREMUS for fishing year 2015. Under the no-action alternative, ACLs would not be specified for CREMUS in American Samoa and AMs would not be necessary. Therefore, each year, fishing would continue throughout the entire fishing year. If there were no ACLs and AMs, CREMUS catch in 2015-2018 would be similar to the average catch of all American Samoa CREMUS in 2011-2013, which was 62,406 lb. Using the 2013 average price per pound of \$3.10, the expected annual fleet-wide revenue during 2015-2018 under Alternative 1 would be approximately \$195,570.

Coral reef fisheries in American Samoa provide fresh fish for sustenance, customary exchange and other gifts, and allows some resources to enter local markets. This provides positive social and economic benefits to fishermen, buyers and the American Samoa fishing community.

4.1.2.2 Alternative 2: Specify 2014 ACLs (Status Quo/NEPA Baseline)

Under Alternative 2, NMFS would specify the ACL for each American Samoa CREMUS group in fishing years 2015-2018 at the same level NMFS specified for each CREMUS group in 2014 (79 FR 4276, January 27, 2014). See Table 10 for the specific ACL values for each CREMUS group associated with Alternative 2.

Based on recent catch data shown in Table 10, the annual level of catch for each CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013, and would not exceed the group's ACL proposed under Alternative 2, or the group's estimated OFL proxy where known. During each of these years, the fishery remained opened throughout the year.

Because there would not be in-season closure of the fishery under Alternative 2 in any of the next 4 years, the fishery would not change and fishers would be able to fish for CREMUS throughout each fishing year in the same manner as under Alternative 1, and as recently occurred in 2011-2013. Therefore, in each fishing year, the total annual catch of all CREMUS groups combined is expected be similar to the average catch of all American Samoa CREMUS combined in 2011-2013, which was 62,406 lb. Using the 2013 average price per pound of \$3.10, the expected annual fleet-wide revenue during 2015-2018 would be same as under Alternative 1 or approximately \$195,570.

Six months after the each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded. If the Council determined an ACL was exceeded, it could recommend NMFS reduce the ACL for that CREMUS group in the subsequent fishing years. However, even with a reduced ACL, the expected impacts to fishery participants and the American Samoa fishing community under Alternative 2 would be the same as the impacts described in Alternative 1, because without in-season closures, fishers would be able to fish for American Samoa CREMUS throughout the fishing year, even with a lower ACL.

4.1.2.3 Alternative 3: Specify Council Recommended ACLs (Preferred)

Under Alternative 3 (the Council's and NMFS' Preferred Alternative), NMFS would specify the ACL for each American Samoa CREMUS group in 2015-2018 as shown for Alternative 3 in Table 10, which are higher than the ACLs under Alternatives 2 and 4. Therefore, the potential revenue that fishery participants could earn under this alternative is also higher than the potential revenue under Alternatives 2 and 4.

However, based on recent catch data shown in Table 10, the annual level of catch for each CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013 and would not reach the group's ACL proposed under this alternative, or the group's estimated OFL proxy where known. During each of these years, the fishery remained opened throughout the year.

Because there would not be in-season closure of the fishery under Alternative 3 in any of the next 4 years, the fishery would not change and fishers would be able to fish for CREMUS throughout each fishing year in the same manner as under Alternatives 1 and 2, and as recently occurred in 2011-2013. Therefore, in each fishing year, the total annual catch of all CREMUS groups combined is expected be similar to the average catch of all American Samoa CREMUS combined in 2011-2013, which was 62,406 lb. Using the 2013 average price per pound of \$3.10, the expected annual fleet-wide revenue during 2015-2018 would be same as under Alternatives 1 and 2 or approximately \$195,570.

Six months after the each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded. If the Council determined an ACL was exceeded, NMFS would reduce the ACL for that CREMUS group in the subsequent fishing years by the amount of the overage. However, even with a reduced ACL, the expected impacts to fishery participants and the American Samoa fishing community under Alternative 3 would be the same as the impacts described in Alternatives 1 and 2, because without in-season closures, fishers would be able to fish for CREMUS throughout the fishing year, even with a lower ACL.

4.1.2.4 Alternative 4: Specify ACLs Lower than the Preferred Alternative

Under Alternative 4, NMFS would specify an ACL for each American Samoa CREMUS group in 2015-2018 that is lower than the preferred alternative (Alternative 3) as shown for Alternative 4 in Table 10. NMFS included a range of ACLs lower than the ACL that would be established under the preferred alternative in the event that the proposed ACL under Alternative 3 is implemented and exceeded in 2015, 2016 or 2017, and a downward overage adjustment in the amount of the overage is necessary in a subsequent year.

Because the ACLs under Alternative 4 are lower than the ACLs proposed under Alternative 3, the potential revenue is also lower. However, the ACLs for most CREMUS groups are higher than the ACLs under Alternative 2. Therefore, the potential revenue under Alternative 4 are higher than under Alternative 2. However, based on recent catch data shown in Table 11, the annual level of catch for each American Samoa CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013, and is not expected to reach the lowest possible ACL. Therefore, even if a lower ACL is selected, expected impacts to fishery participants and the American Samoa fishing community under Alternative 4 would be the same as the impacts described in Alternatives 1, 2, and 3.

Because none of the alternatives considered would result in changes in the conduct of the fishery including gear types used, areas fished, species targeted, level of catch or effort, none of the alternatives considered would affect the safety of fishermen at sea.

4.1.3 Potential Impacts to Fishery Administration and Enforcement

Under all alternatives considered, NMFS and the Council would continue to monitor catches of American Samoa CREMUS based on all available sources of information, and federal regulations would continue to require the Council-appointed FEP plan team to prepare an annual report on the performance of coral reef fisheries, including the commercial and non-commercial fishing sector by July 31 of each year. Additionally, all other regulations implemented by other federal agencies and the Territory of American Samoa would continue to apply fishing vessels operating in the U.S. EEZ.

While Alternatives 2, 3 (Preferred), and 4 would implement ACLs and a post-season accounting of the catch relative to the ACL, this would not result in commitment of additional resources or increased need for fishery enforcement as monitoring of catch is required under all alternatives, including the no action alternative. Additional fishery enforcement would not be needed for any alternative because the Council and NMFS are not proposing to implement a fishery closure.

4.1.4 Potential Impacts to Protected Resources

None of the alternatives considered would modify operations of American Samoa coral reef fisheries in any way that would be expected to affect populations of endangered or threatened species or critical habitat in any manner not previously considered in previous ESA or MMPA consultations described in Section 3.1.4.

While Alternatives 2, 3 (Preferred), and 4 would implement ACLs and a possible reduction to the ACL in a subsequent fishing year, if necessary, fishery managers do not have the ability to conduct in-season tracking of catch towards an ACL, and so there is no in-season closure being proposed. Therefore, under Alternatives 2, 3 and 4, participants in American Samoa coral reef fisheries would continue to fish as they would under the Alternative 1, which does not include the specification of ACLs and AMs.

Because no alternative would result in a change to the way in which coral reef ecosystem fishing is conducted in federal waters, none of the alternatives would result in a change to current impacts on protected species, which have been evaluated in accordance with provisions of the ESA and MMPA and other applicable laws. None of the alternatives would result in large beneficial or adverse impacts protected species described in Section 3.1.4.

4.2 CNMI

4.2.1 Potential Impacts to Target and Non-Target Stocks

4.2.1.1 Alternative 1: No ACL and AM Management (No Action)

Currently, NMFS has not specified an ACL and AM for any CNMI CREMUS for fishing year 2015. Under Alternative 1, ACLs would not be specified for CREMUS in the CNMI and AMs would not be necessary. However, NMFS and the Council would continue to monitor catches based on all available sources of information. As shown in Table 11, the average catch 2011-2013 value for each CREMUS group is well below the group's estimated MSY and OFL proxy. During fishing years 2011 through 2013, the fishery for each CREMUS group would remained open year round. Without ACLs and AMs, the annual catch of each CREMUS group in 2015 through 2018 is expected be similar to the average harvest from 2011-2013, and would be

sustainable. Therefore, under this alternative, the lack of an ACL or AMs in fishing year 2015 through 2018 is not likely to result in overfishing of any CNMI CREMUS in any year.

As noted in Section 3.2.1, it is difficult to determine "target" and "non-target" stocks in CNMI's territorial coral reef fisheries because resources harvested in these fisheries are highly diverse, with over a hundred species appearing in catch records. While discards levels are unknown, given the low level of catch in CNMI coral reef fisheries and that most of the resources caught are retained and recorded in catch records, fishery scientists and managers have not identified problems with bycatch or non-target species. Ongoing fisheries monitoring by the Council's FEP plan team will help fishery scientists and managers to detect any problems if they occur, and address them in future management measures, as needed. For these reasons, even without ACL or AM management, the expected impacts to target and non-target stocks would be that harvests of each CNMI CREMUS group would remain well the stocks' MSY and OFL reference points, and the fishery would continue to be sustainably managed in the upcoming years.

4.2.1.2 Alternative 2: Specify 2014 ACLs (Status Quo/NEPA Baseline)

Under Alternative 2, NMFS would specify the ACL for each CNMI CREMUS group in fishing years 2015-2018 at the same level NMFS specified for each CREMUS group in 2014 (79 FR 4276, January 27, 2014). See Table 11 for the specific ACL values for each CREMUS group associated with Alternative 2. Note that under this alternative, there would be no individual ACL for Crustacean (crabs), Holocentidae (squirrelfish), Kyphosidae (rudderfish), or Labridae (Wrasses). This is because in the prior species level aggregation process described in Section 2.2.1 – Determining the Level of Species Aggregation, these species groups did not comprise the top 90% of the total coral reef fish catch over the long-term catch time series. Therefore, under this alternative, these species would remain in the category "All Other CREMUS" combined as they were in fishing year 2014 and in previous years. Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), no ACL specification under Alternative 2 is associated with greater than a 40 percent probability of overfishing should the entire ACL be caught (see Table 11).

For CNMI humphead or Napoleon wrasse (*Cheilinus undulatus*), and bumphead parrotfish (*Bolbometopon muricatum*), NMFS proposes to specify the 2015-2018 ACL at 2,009 lb and 797 lb, respectively. For both species, the ACL is equal to 5% of each stock's estimated biomass (See Table 5) and is identical to the ACLs NMFS specified in 2014 (79 FR 4276, January 27, 2014). For the bumphead wrasse, 2015-2018 ACL would be shared between the CNMI and Guam as was done in 2014. As previously mentioned above, MSY, OFL and probability of overfishing projections for these species are not available.

Under this alternative, NMFS and the Council would continue to monitor CREMUS catches based on all available sources of information. However, because catch statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during the fishing year whether the ACL for any CREMUS group might be reached, and cannot prevent any ACL from being exceeded. Therefore, fishers would be able to fish for CREMUS throughout the fishing year in the same manner as under Alternative 1 and as recently occurred in 2011-2013.

Based on recent catch data shown in Table 11, the annual level of catch for each CNMI CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013, and would not exceed any group's ACL proposed under Alternative 2, or any group's estimated OFL proxy, where known. However, six months after the each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded.

If the Council determines an ACL is exceeded, the Council as an AM would take action in accordance with 50 CFR 600.310(g) to correct the operational issue that caused the ACL overage. This may include a recommendation that NMFS reduce the ACL for that CREMUS group in the subsequent fishing year by the amount of the overage, or other measures, as appropriate. However, the Council would not likely recommend a reduced ACL in the subsequent fishing year. This is because the ACLs under Alternative 2 were developed using a different method than is proposed under the preferred alternative (Alternative 3), and without knowledge of the estimate of MSY and OFL. Therefore, the ACLs under this alternative are not based on the best scientific information available as described in Section 2.2.2 – Estimation of MSY and OFL, and are considered overly conservative but are included in order to evaluate the potential impacts of other alternatives compared with the status quo baseline.

If the Council does recommend a reduced ACL, the reduced ACL is not likely to result in changes in the conduct of the fishery, including gear types used, areas fished, or level of catch. This is because in-season AMs to prevent the ACL from being exceeded are not possible in any fishing year. Therefore, even with a reduced ACL in subsequent fishing years, fishers would still be able to fish for CNMI CREMUS throughout the fishing year in the same manner as under Alternative 1. Therefore, compared to Alternative 1, Alternative 2 is not likely to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch. Furthermore, the fishery is expected to continue to fish in much the same manner as it has in recent years and the fishery is not known to be having a, or have large beneficial or adverse effects on target or non-target stocks.

4.2.1.3 Alternative 3: Specify Council Recommended ACLs (Preferred)

Under Alternative 3 (the Council's and NMFS' Preferred Alternative), NMFS would specify the ACL for each CNMI CREMUS group in 2015-2018 as shown in Table 11. This level of catch is five percent lower than each CREMUS group's ABC. Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), no ACL under Alternative 3 is associated with greater than a 35% percent probability of overfishing should the entire ACL be caught (see Table 11).

For CNMI humphead or Napoleon wrasse (*Cheilinus undulatus*), and bumphead parrotfish (*Bolbometopon muricatum*), NMFS would specify the ACL at the same level proposed under Alternative 2, which is 2,009 lb and 797 lb, respectively. Like in Alternative 2, the ACL for bumphead wrasse would be shared between the CNMI and Guam in 2015-2018. As previously mentioned above, MSY, OFL and probability of overfishing projections for these species are not available.

Under this alternative, NMFS and the Council would continue to monitor CNMI CREMUS catches based on all available sources of information. However, because catch statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during the fishing year whether the ACL for any CREMUS group might be reached, and cannot prevent any ACL from being exceeded. Therefore, fishers would be able to fish for CREMUS throughout the fishing year in the same manner as under Alternative 2 (status quo) and as recently occurred in 2011-2013.

Based on recent catch data shown in Table 11, the annual level of catch for each CNMI CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013, and is not expected to exceed any group's ACL proposed under Alternative 2, or any group's estimated OFL proxy, where known. Therefore, because there would not be a closure of the fishery under Alternative 3 in any of the next 4 years, the fishery would not change and impacts to target and non-target stocks would be identical to the impacts under Alternative 2 (status quo), which is identical to the impacts under Alternative 1 (no action).

Six months after the end of each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded. Under this alternative, if the Council determines the most recent three-year average catch for any CNMI CREMUS Group exceeded the proposed ACL in any fishing year, NMFS would reduce the ACL by the amount of the overage in the subsequent years. See Section 1.3- Proposed Action for detailed information on how this AM would be triggered. The impacts of a reduced ACL to target and non-target stocks are described in Alternative 4 below.

4.2.1.4 Alternative 4: Specify ACLs Lower than the Preferred Alternative

Under Alternative 4, NMFS would specify an ACL for each CNMI CREMUS group in 2015-2018 that is lower than the preferred alternative (Alternative 3) as shown for Alternative 4 in Table 11. NMFS included a range of ACLs lower than the ACL that would be established under the preferred alternative in the event that the proposed ACL under Alternative 3 is implemented and exceeded in 2015, 2016 or 2017, and a downward overage adjustment in the amount of the overage is necessary in a subsequent year. Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), the ACL for each CREMUS group under Alternative 4 are associated with probabilities of overfishing ranging from 30 percent down to five percent (see Table 11). In other words, the lower the ACL, the lower the associated risk of overfishing.

Under Alternative 4, the CNMI CREMUS fishery is expected to continue to perform as it has in recent years and catches in 2015-2018 are expected to be similar to the average harvest from 2011-2013. As shown in Table 11, average harvest from 2011-2013 did not exceed the lowest possible ACL for any group or that group's estimated OFL proxy, where known. Therefore, even if an ACL lower that what is proposed in Alternative 3 is selected, fishery would not change and impacts to target and non-target stocks would be the same as the impacts under Alternatives 1-3.

Under all alternatives considered, if an ACL is exceeded more than once in a four-year period, the Council is required to re-evaluate the ACL process, and adjust the system for setting ACLs,

as necessary, to improve its performance and effectiveness. Additionally, if NMFS determines overfishing is occurring, NMFS would immediately notify the Council to take action to end overfishing in the fishery.

4.2.2 Potential Impacts to Fishery Participants and Fishing Communities

In 2013, the commercial price for individual coral reef associated species in the CNMI ranged between \$2.43 and \$6.90 per pound, with an average CREMUS price of \$3.15/lb. Multiplying the average 2011-2013 catch of each CREMUS group shown in Table 18 by the 2013 average price of \$3.15 equally, the average annual estimated commercial value of the coral reef fisheries of the CNMI for this three-year period was approximately \$287,737. The number of participants in coral reef fisheries in the CNMI is unknown.

4.2.2.1 Alternative 1: No ACL and AM Management (No Action)

Currently, NMFS has not specified an ACL and AM for any CNMI CREMUS for fishing year 2015. Under the no-action alternative, ACLs would not be specified for CREMUS in the CNMI and AMs would not be necessary. Therefore, each year, fishing would continue throughout the entire fishing year. If there were no ACLs and AMs, CREMUS catch in 2015-2018 would be similar to the average catch of all CNMI CREMUS in 2011-2013, which was 85,822 lb. Using the 2013 average price per pound of \$3.15, the expected annual fleet-wide revenue during 2015-2018 under Alternative 1 would be approximately \$287,737.

Coral reef fisheries in the CNMI provide fresh fish for sustenance, customary exchange and other gifts, and allows some resources to enter local markets. This provides positive social and economic benefits to fishermen, buyers and the American Samoa fishing community.

4.2.2.2 Alternative 2: Specify 2014 ACLs (Status Quo/NEPA Baseline)

Under Alternative 2, NMFS would specify the ACL for each CNMI CREMUS group in fishing years 2015-2018 at the same level NMFS specified for each CREMUS group in 2014 (79 FR 4276, January 27, 2014). See Table 11 for the specific ACL values for each CREMUS group associated with Alternative 2.

Based on recent catch data shown in Table 11, the annual level of catch for each CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013, and would not exceed the group's ACL proposed under Alternative 2, or the group's estimated OFL proxy where known. During each of these years, the fishery remained opened throughout the year.

Because there would not be in-season closure of the fishery under Alternative 2 in any of the next 4 years, the fishery would not change and fishers would be able to fish for CREMUS throughout each fishing year in the same manner as under Alternative 1, and as recently occurred in 2011-2013. Therefore, in each fishing year, the total annual catch of all CREMUS groups combined is expected be similar to the average catch of all CNMI CREMUS combined in 2011-2013, which was 85,822 lb. Using the 2013 average price per pound of \$3.15, the expected

annual fleet-wide revenue during 2015-2018 would be same as under Alternative 1 or approximately \$287,737.

Six months after the each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded. If the Council determined an ACL was exceeded, it could recommend NMFS reduce the ACL for that CREMUS group in the subsequent fishing years. However, even with a reduced ACL, the expected impacts to fishery participants and the CNMI fishing community under Alternative 2 would be the same as the impacts described in Alternative 1, because without in-season closures, fishers would be able to fish for CNMI CREMUS throughout the fishing year, even with a lower ACL.

4.2.2.3 Alternative 3: Specify Council Recommended ACLs (Preferred)

Under Alternative 3 (the Council's and NMFS' Preferred Alternative), NMFS would specify the ACL for each CNMI CREMUS group in 2015-2018 as shown for Alternative 3 in Table 11, which are higher than the ACLs under Alternatives 2 and 4. Therefore, the potential revenue that fishery participants could earn under this alternative is also higher than the potential revenue under Alternatives 2 and 4.

However, based on recent catch data shown in Table 11, the annual level of catch for each CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013 and would not reach the group's ACL proposed under this alternative, or the group's estimated OFL proxy where known. During each of these years, the fishery remained opened throughout the year.

Because there would not be in-season closure of the fishery under Alternative 3 in any of the next 4 years, the fishery would not change and fishers would be able to fish for CREMUS throughout each fishing year in the same manner as under Alternatives 1 and 2, and as recently occurred in 2011-2013. Therefore, in each fishing year, the total annual catch of all CREMUS groups combined is expected be similar to the average catch of all CNMI CREMUS combined in 2011-2013, which was 85,822 lb. Using the 2013 average price per pound of \$3.15, the expected annual fleet-wide revenue during 2015-2018 under Alternatives 1 and 2 would be approximately \$287,737.

Six months after the each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded. If the Council determined an ACL was exceeded, NMFS would reduce the ACL for that CREMUS group in the subsequent fishing years by the amount of the overage. However, even with a reduced ACL, the expected impacts to fishery participants and the CNMI fishing community under Alternative 3 would be the same as the impacts described in Alternatives 1 and 2, because without in-season closures, fishers would be able to fish for CREMUS throughout the fishing year, even with a lower ACL.

4.2.2.4 Alternative 4: Specify ACLs Lower than the Preferred Alternative

Under Alternative 4, NMFS would specify an ACL for each CNMI CREMUS group in 2015-2018 that is lower than the preferred alternative (Alternative 3) as shown for Alternative 4 in

Table 11. NMFS included a range of ACLs lower than the ACL that would be established under the preferred alternative in the event that the proposed ACL under Alternative 3 is implemented and exceeded in 2015, 2016 or 2017, and a downward overage adjustment in the amount of the overage is necessary in a subsequent year.

Because the ACLs under Alternative 4 are lower than the ACLs proposed under Alternative 3, the potential revenue is also lower. However, the ACLs for most CREMUS groups are higher than the ACLs under Alternative 2. Therefore, the potential revenue under Alternative 4 are higher than under Alternative 2. However, based on recent catch data shown in Table 11, the annual level of catch for each CNMI CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013, and is not expected to reach the lowest possible ACL. Therefore, even if a lower ACL is selected, expected impacts to fishery participants and the CNMI fishing community under Alternative 4 would be the same as the impacts described in Alternatives 1, 2, and 3.

Because none of the alternatives considered would result in changes in the conduct of the fishery including gear types used, areas fished, species targeted, level of catch or effort, none of the alternatives considered would affect the safety of fishermen at sea.

4.2.3 Potential Impacts to Fishery Administration and Enforcement

Under all alternatives considered, NMFS and the Council would continue to monitor catches of CNMI CREMUS based on all available sources of information, and federal regulations would continue to require the Council-appointed FEP plan team to prepare an annual report on the performance of coral reef fisheries, including the commercial and non-commercial fishing sector by July 31 of each year. Additionally, all other regulations implemented by other federal agencies and the CNMI would continue to apply fishing vessels operating in the U.S. EEZ.

While Alternatives 2, 3 (Preferred), and 4 would implement ACLs and a post-season accounting of the catch relative to the ACL, this would not result in commitment of additional resources or increased need for fishery enforcement as monitoring of catch is required under all alternatives, including the no action alternative. Additional fishery enforcement would not be needed for any alternative because the Council and NMFS are not proposing to implement a fishery closure.

4.2.4 Potential Impacts to Protected Resources

None of the alternatives considered would modify operations of CNMI coral reef fisheries in any way that would be expected to affect populations of endangered or threatened species or critical habitat in any manner not previously considered in previous ESA or MMPA consultations described in Section 3.2.4.

While Alternatives 2, 3 (Preferred), and 4 would implement ACLs and a possible reduction to the ACL in a subsequent fishing year, if necessary, fishery managers do not have the ability to conduct in-season tracking of catch towards an ACL, and so there is no in-season closure being proposed. Therefore, under Alternatives 2, 3 and 4, participants in CNMI coral reef fisheries

would continue to fish as they would under the Alternative 1, which does not include the specification of ACLs and AMs.

Because no alternative would result in a change to the way in which coral reef ecosystem fishing is conducted in federal waters, none of the alternatives would result in a change to current impacts on protected species, which have been evaluated in accordance with provisions of the ESA and MMPA and other applicable laws. None of the alternatives would result in large beneficial or adverse impacts protected species described in Section 3.2.4.

4.3 Guam

4.3.1 Potential Impacts to Target and Non-Target Stocks

4.3.1.1 Alternative 1: No ACL and AM Management (No Action)

Currently, NMFS has not specified an ACL and AM for any Guam CREMUS for fishing year 2015. Under Alternative 1, ACLs would not be specified for CREMUS in Guam and AMs would not be necessary. However, NMFS and the Council would continue to monitor catches based on all available sources of information. Except for *Selar crumenopthalmus* or bigeye scad and Carangidae or jacks, the average catch 2011-2013 value for each CREMUS group is well below the group's estimated MSY and OFL proxy. Without ACLs and AMs, the annual catch of those CREMUS group in 2015 through 2018 is expected be similar to the average harvest from 2011-2013, and would be sustainable. Therefore, under this alternative, the lack of an ACL or AMs in fishing year 2015 through 2018 is not likely to result in overfishing of those CREMUS in any year.

For Guam bigeye scad and jacks, the average 2011-2013 catch was 107,271 lb, and 54,050 lb, nearly twice the stocks' OFL reference points, which are 60,800 lb and 32,200 lb, respectively. Without ACL and AMs, catches in 2015-2018 could exceed these reference points again, and if they occur, would be unstainable. However, if NMFS determines that a stock is subject to overfishing, the Council would be required to take action pursuant to Section 304(e) of the Magnuson-Stevens Act to end overfishing in the fishery.

As noted in Section 3.3.1, it is difficult to determine "target" and "non-target" stocks in Guam's territorial coral reef fisheries because resources harvested in these fisheries are highly diverse, with nearly 2,000 species appearing in catch records. While discards levels are unknown, given the low level of catch in Guam's coral reef fisheries and that most of the resources caught are retained and recorded in catch records, fishery scientists and managers have not identified problems with bycatch or non-target species. Ongoing fisheries monitoring by the Council's FEP plan team will help fishery scientists and managers to detect any problems if they occur, and address them in future management measures, as needed. For these reasons, even without ACL or AM management, the expected impacts to target and non-target stocks, except for Guam bigeye scad and jacks, would be that harvests would remain well the stocks' MSY and OFL reference points, and the fishery would continue to be sustainably managed in the upcoming years.

4.3.1.2 Alternative 2: Specify 2014 ACLs (Status Quo/NEPA Baseline)

Under Alternative 2, NMFS would specify the ACL for each Guam CREMUS group in fishing years 2015-2018 at the same level NMFS specified for each CREMUS group in 2014 (79 FR 4276, January 27, 2014). See Table 12 for the specific ACL values for each CREMUS group associated with Alternative 2.

Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), the ACL for several CREMUS groups would be associated with a probability of overfishing greater than 50 percent (Table 12). These are Carangidae (jacks), Carcharhinidae (reef sharks), Kyphosidae (rudderfish), Mullidae (goatfish) and Siganidae (rabbitfish). By law, the probability of overfishing cannot exceed 50 percent (74 FR 3178, January 9, 2011). Therefore, these ACLs would not be in compliance with the Magnuson-Stevens Act. For all other Guam CREMUS groups, the ACL specifications under Alternative 2 are associated with probability of overfishing no greater than 30 percent should the entire ACL be caught (see Table 12).

For the 2014 fishing year, NMFS specified the ACL for Guam humphead or Napoleon wrasse (*Cheilinus undulatus*), and bumphead parrotfish (*Bolbometopon muricatum*), at 1,960 lb and 797 lb, respectively. For the bumphead wrasse, the 2014 ACL was shared between the CNMI and Guam and would be shared again in 2015-2018 under this alternative. The 2014 ACLs were equal to 5% of each stock's estimated biomass and identical to the ACL proposed under the preferred alternative (Alternative 3). As previously mentioned above, MSY, OFL and probability of overfishing projections for these species are not available.

Under this alternative, NMFS and the Council would continue to monitor Guam CREMUS catches based on all available sources of information. However, because catch statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during the fishing year whether the ACL for any CREMUS group might be reached, and cannot prevent any ACL from being exceeded. Therefore, fishers would be able to fish for CREMUS throughout the fishing year in the same manner as under Alternative 1 and as recently occurred in 2011-2013. Six months after the each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded.

Based on recent catch data shown in Table 12, the annual level of catch for each CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013. Therefore, it is possible that catches of Guam bigeye scad and jacks could exceed the ACL proposed under this alternative as well as the stocks' OFLs, which are 60,800 lb and 32,200 lb, respectively. For all other Guam CREMUS, catches in 2015-2018 are not expected to exceed any group's ACL proposed under Alternative 2, or any group's estimated OFL proxy, where known.

If the Council determines an ACL is exceeded, the Council as an AM would take action in accordance with 50 CFR 600.310(g) to correct the operational issue that caused the ACL overage. This may include a recommendation that NMFS reduce the ACL for that CREMUS group in the subsequent fishing year by the amount of the overage, or other measures, as

appropriate. However, unless catch exceeded the OFL, the Council would not likely recommend a reduced ACL in the subsequent fishing year. This is because the ACLs under Alternative 2 were developed using a different method than is proposed under the preferred alternative (Alternative 3), and without knowledge of the estimate of MSY and OFL. Therefore, the ACLs under this alternative are not based on the best scientific information available as described in Section 2.2.2 – Estimation of MSY and OFL, and are considered overly conservative but are included in order to evaluate the potential impacts of other alternatives compared with the status quo baseline.

If the Council does recommend a reduced ACL, the reduced ACL is not likely to result in changes in the conduct of the fishery, including gear types used, areas fished, or level of catch. This is because in-season AMs to prevent the ACL from being exceeded are not possible in any fishing year. Therefore, even with a reduced ACL in subsequent fishing years, fishers would still be able to fish for CREMUS throughout the fishing year in the same manner as under Alternative 1. Therefore, compared to Alternative 1, Alternative 2 is not likely to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch. Furthermore, the fishery is expected to continue to fish in much the same manner as it has in recent years and the fishery is not known to be having a, or have large beneficial or adverse effects on target or non-target stocks. However, if NMFS determines that a stock is subject to overfishing, the Council would be required to take action pursuant to Section 304(e) of the Magnuson-Stevens Act to end overfishing in the fishery.

4.3.1.3 Alternative 3: Specify Council Recommended ACLs (Preferred)

Under Alternative 3 (the Council's and NMFS' Preferred Alternative), NMFS would specify the ACL for each Guam CREMUS group in 2015-2018 as shown in Table 12. This level of catch is five percent lower than each CREMUS group's ABC. Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), no ACL under Alternative 3 is associated with greater than a 35% percent probability of overfishing should the entire ACL be caught (see Table 13).

For Guam humphead or Napoleon wrasse (*Cheilinus undulatus*), and bumphead parrotfish (*Bolbometopon muricatum*), NMFS would specify the ACL at the same level proposed under Alternative 2, which is 1,960 lb and 797 lb, respectively. Like in Alternative 2, the ACL for bumphead wrasse would be shared between the CNMI and Guam in 2015-2018. As previously mentioned above, MSY, OFL and probability of overfishing projections for these species are not available.

Under this alternative, NMFS and the Council would continue to monitor CREMUS catches based on all available sources of information. However, because catch statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during the fishing year whether the ACL for any CREMUS group might be reached, and cannot prevent any ACL from being exceeded. Therefore, fishers would be able to fish for CREMUS throughout the fishing year in the same manner as under Alternative 2 (status quo) and as recently occurred in 2011-2013.

Based on recent catch data shown in Table 12, the annual level of catch for each Guam CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013. Therefore, it is possible that catches of Guam bigeye scad and jacks could exceed the ACL proposed under this alternative as well as the stocks' OFLs, which are 60,800 lb and 32,200 lb, respectively. For all other Guam CREMUS, catches in 2015-2018 are not expected to exceed any group's ACL proposed under Alternative 3, or any group's estimated OFL proxy, where known.

However, because there would not be a closure of the fishery under Alternative 3 in any of the next 4 years, the fishery would not change and impacts to target and non-target stocks would be identical to the impacts under Alternative 2 (status quo), which is identical to the impacts under Alternative 1 (no action).

Six months after the end of each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded. Under this alternative, if the Council determines the most recent three-year average catch for any Guam CREMUS Group exceeded the proposed ACL in any fishing year, NMFS would reduce the ACL by the amount of the overage in the subsequent years. See Section 1.3- Proposed Action for detailed information on how this AM would be triggered. The impacts of a reduced ACL to target and non-target stocks are described in Alternative 4 below. Additionally, if NMFS determines that a stock is subject to overfishing, the Council would be required to take action pursuant to Section 304(e) of the Magnuson-Stevens Act to end overfishing in the fishery.

4.3.1.4 Alternative 4: Specify ACLs Lower than the Preferred Alternative

Under Alternative 4, NMFS would specify an ACL for each Guam CREMUS group in 2015-2018 that is lower than the preferred alternative (Alternative 3) as shown for Alternative 4 in Table 12. NMFS included a range of ACLs lower than the ACL that would be established under the preferred alternative in the event that the proposed ACL under Alternative 3 is implemented and exceeded in 2015, 2016 or 2017, and a downward overage adjustment in the amount of the overage is necessary in a subsequent year. Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), the ACL for each CREMUS group under Alternative 4 are associated with probabilities of overfishing ranging from 30 percent down to five percent (see Table 12). In other words, the lower the ACL, the lower the associated risk of overfishing.

Under Alternative 4, the Guam CREMUS fishery is expected to continue to perform as it has in recent years and catches in 2015-2018 are expected to be similar to the average harvest from 2011-2013. As shown in Table 12, except for Guam bigeye scad and jacks, average harvest from 2011-2013 did not exceed the lowest possible ACL for any group or that group's estimated OFL proxy, where known. However, because there would not be a closure of any fishery for Guam CREMUS under Alternative 3 in any of the next 4 years, even if an ACL lower than what is proposed in Alternative 3 is selected, Guam CREMUS fisheries would not change and impacts to target and non-target stocks would be the same as the impacts under Alternatives 1-3. As is true for Alternatives 1-3, if NMFS determines that a stock is subject to overfishing, the Council would be required to take action pursuant to Section 304(e) of the Magnuson-Stevens Act to end overfishing in the fishery.

Under all alternatives considered, if an ACL is exceeded more than once in a four-year period, the Council is required to re-evaluate the ACL process, and adjust the system for setting ACLs, as necessary, to improve its performance and effectiveness. Additionally, if NMFS determines overfishing is occurring, NMFS would immediately notify the Council to take action to end overfishing in the fishery.

4.3.2 Potential Impacts to Fishery Participants and Fishing Communities

In 2013, the commercial price for individual coral reef associated species in Guam ranged between \$1.94 and \$3.60 per pound, with an average CREMUS price of \$3.16/lb. Multiplying the average 2011-2013 catch of each CREMUS group shown in Table 22 by the 2013 average price of \$3.16 equally, the average annual estimated commercial value of the coral reef fisheries of Guam for this three-year period was approximately \$1,106,171.

4.3.2.1 Alternative 1: No ACL and AM Management (No Action)

Currently, NMFS has not specified an ACL and AM for any Guam CREMUS for fishing year 2015. Under the no-action alternative, ACLs would not be specified for CREMUS in Guam and AMs would not be necessary. Therefore, each year, fishing would continue throughout the entire fishing year. If there were no ACLs and AMs, CREMUS catch in 2015-2018 would be similar to the average catch of all Guam CREMUS in 2011-2013, which was 350,054 lb. Using the 2013 average price per pound of \$3.16, the expected annual fleet-wide revenue during 2015-2018 under Alternative 1 would be approximately \$1,106,171.

Coral reef fisheries in the CNMI provide fresh fish for sustenance, customary exchange and other gifts, and allows some resources to enter local markets. This provides positive social and economic benefits to fishermen, buyers and the CNMI fishing community.

4.3.2.2 Alternative 2: Specify 2014 ACLs (Status Quo/NEPA Baseline)

Under Alternative 2, NMFS would specify the ACL for each Guam CREMUS group in fishing years 2015-2018 at the same level NMFS specified for each CREMUS group in 2014 (79 FR 4276, January 27, 2014). See Table 12 for the specific ACL values for each CREMUS group associated with Alternative 2.

Because there would not be in-season closure of the fishery under Alternative 2 in any of the next 4 years, the fishery would not change and fishers would be able to fish for CREMUS throughout each fishing year in the same manner as under Alternative 1, and as recently occurred in 2011-2013.

Based on recent catch data shown in Table 12, the annual level of catch for each CREMUS group in 2015-2018 is expected be similar to the average catch of all Guam CREMUS combined in 2011-2013, which was 350,054 lb. Using the 2013 average price per pound of \$3.16, the expected annual fleet-wide revenue during 2015-2018 would be same as under Alternative 1 or approximately \$1,106,171.

Six months after the each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded. If the Council determined an ACL was exceeded, it could recommend NMFS reduce the ACL for that CREMUS group in the subsequent fishing years. However, even with a reduced ACL, the expected impacts to fishery participants and the Guam fishing community under Alternative 2 would be the same as the impacts described in Alternative 1, because without in-season closures, fishers would be able to fish for CREMUS throughout the fishing year, even with a lower ACL.

4.3.2.3 Alternative 3: Specify Council Recommended ACLs (Preferred)

Under Alternative 3 (the Council's and NMFS' Preferred Alternative), NMFS would specify the ACL for each Guam CREMUS group in 2015-2018 as shown for Alternative 3 in Table 12, which are higher than the ACLs under Alternatives 2 and 4. Therefore, the potential revenue that fishery participants could earn under this alternative is also higher than the potential revenue under Alternatives 2 and 4.

Because there would not be in-season closure of the fishery under Alternative 3 in any of the next 4 years, the fishery would not change and fishers would be able to fish for CREMUS throughout each fishing year in the same manner as under Alternatives 1 and 2, and as recently occurred in 2011-2013.

Based on recent catch data shown in Table 12, the annual level of catch for each Guam CREMUS group in 2015-2018 is expected be similar to the average catch of all CNMI CREMUS combined in 2011-2013, which was 350,054 lb. Using the 2013 average price per pound of \$3.16, the expected annual fleet-wide revenue during 2015-2018 would be same as under Alternatives 1 and 2 or approximately \$1,106,171.

Six months after the each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded. If the Council determined an ACL was exceeded, NMFS would reduce the ACL for that Guam CREMUS group in the subsequent fishing years by the amount of the overage. However, even with a reduced ACL, the expected impacts to fishery participants and the Guam fishing community under Alternative 3 would be the same as the impacts described in Alternatives 1 and 2, because without in-season closures, fishers would be able to fish for CREMUS throughout the fishing year, even with a lower ACL.

4.3.2.4 Alternative 4: Specify ACLs Lower than the Preferred Alternative

Under Alternative 4, NMFS would specify an ACL for each Guam CREMUS group in 2015-2018 that is lower than the preferred alternative (Alternative 3) as shown for Alternative 4 in Table 12. NMFS included a range of ACLs lower than the ACL that would be established under the preferred alternative in the event that the proposed ACL under Alternative 3 is implemented and exceeded in 2015, 2016 or 2017, and a downward overage adjustment in the amount of the overage is necessary in a subsequent year.

Because the ACLs under Alternative 4 are lower than the ACLs proposed under Alternative 3, the potential revenue is also lower. However, the ACLs for most CREMUS groups are higher than the ACLs under Alternative 2. Therefore, the potential revenue under Alternative 4 are higher than under Alternative 2. However, based on recent catch data shown in Table 12, the annual level of catch for each Guam CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013, and except for Guam bigeye scad and jacks, is not expected to reach the lowest possible ACL. Therefore, even if a lower ACL is selected, expected impacts to fishery participants and the Guam fishing community under Alternative 4 would be the same as the impacts described in Alternatives 1, 2, and 3.

Because none of the alternatives considered would result in changes in the conduct of the fishery including gear types used, areas fished, species targeted, level of catch or effort, none of the alternatives considered would affect the safety of fishermen at sea.

4.3.3 Potential Impacts to Fishery Administration and Enforcement

Under all alternatives considered, NMFS and the Council would continue to monitor catches of Guam CREMUS based on all available sources of information, and federal regulations would continue to require the Council-appointed FEP plan team to prepare an annual report on the performance of coral reef fisheries, including the commercial and non-commercial fishing sector by July 31 of each year. Additionally, all other regulations implemented by other federal agencies and the Territory of Guam would continue to apply fishing vessels operating in the U.S. EEZ.

While Alternatives 2, 3 (Preferred), and 4 would implement ACLs and a post-season accounting of the catch relative to the ACL, this would not result in commitment of additional resources or increased need for fishery enforcement as monitoring of catch is required under all alternatives, including the no action alternative. Additional fishery enforcement would not be needed for any alternative because the Council and NMFS are not proposing to implement a fishery closure.

4.3.4 Potential Impacts to Protected Resources

None of the alternatives considered would modify operations of Guam coral reef fisheries in any way that would be expected to affect populations of endangered or threatened species or critical habitat in any manner not previously considered in previous ESA or MMPA consultations described in Section 3.3.4.

While Alternatives 2, 3 (Preferred), and 4 would implement ACLs and a possible reduction to the ACL in a subsequent fishing year, if necessary, fishery managers do not have the ability to conduct in-season tracking of catch towards an ACL, and so there is no in-season closure being proposed. Therefore, under Alternatives 2, 3 and 4, participants in Guam coral reef fisheries would continue to fish as they would under the Alternative 1, which does not include the specification of ACLs and AMs.

Because no alternative would result in a change to the way in which coral reef ecosystem fishing is conducted in federal waters, none of the alternatives would result in a change to current

impacts on protected species, which have been evaluated in accordance with provisions of the ESA and MMPA and other applicable laws. None of the alternatives would result in large beneficial or adverse impacts protected species described in Section 3.3.4.

4.4 Hawaii

4.4.1 Potential Impacts to Target and Non-Target Stocks

4.4.1.1 Alternative 1: No ACL and AM Management (No Action)

Currently, NMFS has not specified an ACL and AM for any Hawaii CREMUS for fishing year 2015. Under Alternative 1, ACLs would not be specified for CREMUS in Hawaii and AMs would not be necessary. However, NMFS and the Council would continue to monitor catches based on all available sources of information. As shown in Table 13, the average catch 2011-2013 value for each CREMUS group is well below the group's estimated MSY and OFL proxy. During fishing years 2011 through 2013, the fishery for each CREMUS group would remained open year round. Without ACLs and AMs, the annual catch of each CREMUS group in 2015 through 2018 is expected be similar to the average harvest from 2011-2013, and would be sustainable. Therefore, under this alternative, the lack of an ACL or AMs in fishing year 2015 through 2018 is not likely to result in overfishing of any Hawaii CREMUS in any year.

As noted in Section 3.4.1, it is difficult to determine "target" and "non-target" stocks in Hawaii's State coral reef fisheries because resources harvested in these fisheries are highly diverse, with over 100 species appearing in catch records. While discards levels are unknown, given the low level of catch in Hawaii coral reef fisheries and that most of the resources caught are retained and recorded in catch records, fishery scientists and managers have not identified problems with bycatch or non-target species. Ongoing fisheries monitoring by the Council's FEP plan team will help fishery scientists and managers to detect any problems if they occur, and address them in future management measures, as needed. For these reasons, even without ACL or AM management, the expected impacts to target and non-target stocks would be that harvests of each Hawaii CREMUS group would remain well the stocks' MSY and OFL reference points, and the fishery would continue to be sustainably managed in the upcoming years.

4.4.1.2 Alternative 2: Specify 2014 ACLs (Status Quo/NEPA Baseline)

Under Alternative 2, NMFS would specify the ACL for each Hawaii CREMUS group in fishing years 2015-2018 at the same level NMFS specified for each CREMUS group in 2014 (79 FR 4276, January 27, 2014). See Table 13 for the specific ACL values for each CREMUS group. Note that under this alternative, there would be no individual ACL for Kyphosidae (rudderfish), Labridae (wrasses), Lethrinidae (emperors), or Serranidae (groupers). This is because in the prior species level aggregation process described in Section 2.2.1 – Determining the Level of Species Aggregation, these species groups did not comprise the top 90% of the total coral reef fish catch over the long-term catch time series. Therefore, under this alternative, these species would remain in the category "All Other CREMUS" combined as they were in fishing year 2014 and in previous years.

Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), the ACL for several CREMUS groups would be associated with a probability of overfishing greater than 50 percent (Table 13). These are Carangidae (jacks), Carcharhinidae (reef sharks), and Mullidae (goatfish). By law, the probability of overfishing cannot exceed 50 percent (74 FR 3178, January 9, 2011). Therefore, these ACLs would not be in compliance with the Magnuson-Stevens Act. For all other Hawaii CREMUS groups, the ACL specifications under Alternative 2 are associated with probability of overfishing no greater than 20 percent should the entire ACL be caught (see Table 13).

Under this alternative, NMFS and the Council would continue to monitor Hawaii CREMUS catches based on all available sources of information. However, because catch statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during the fishing year whether the ACL for any CREMUS group might be reached, and cannot prevent any ACL from being exceeded. Therefore, fishers would be able to fish for CREMUS throughout the fishing year in the same manner as under Alternative 1 and as recently occurred in 2011-2013.

Based on recent catch data shown in Table 13, the annual level of catch for each CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013, and would not exceed any group's ACL proposed under Alternative 2, or any group's estimated OFL proxy, where known. However, six months after the each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded.

If the Council determines an ACL is exceeded, the Council as an AM would take action in accordance with 50 CFR 600.310(g) to correct the operational issue that caused the ACL overage. This may include a recommendation that NMFS reduce the ACL for that Hawaii CREMUS group in the subsequent fishing year by the amount of the overage, or other measures, as appropriate. However, the Council would not likely recommend a reduced ACL in the subsequent fishing year. This is because the ACLs under Alternative 2 were developed using a different method than is proposed under the preferred alternative (Alternative 3), and without knowledge of the estimate of MSY and OFL. Therefore, the ACLs under this alternative are not based on the best scientific information available as described in Section 2.2.2 – Estimation of MSY and OFL, and are considered overly conservative but are included in order to evaluate the potential impacts of other alternatives compared with the status quo baseline.

If the Council does recommend a reduced ACL, the reduced ACL is not likely to result in changes in the conduct of the fishery, including gear types used, areas fished, or level of catch. This is because in-season AMs to prevent the ACL from being exceeded are not possible in any fishing year. Therefore, even with a reduced ACL in subsequent fishing years, fishers would still be able to fish for Hawaii CREMUS throughout the fishing year in the same manner as under Alternative 1. Therefore, compared to Alternative 1, Alternative 2 is not likely to result in changes in the conduct of the fishery, including gear types used, areas fished, level of catch. Furthermore, the fishery is expected to continue to fish in much the same manner as it has in recent years and the fishery is not known to be having a, or have large beneficial or adverse effects on target or non-target stocks.

4.4.1.3 Alternative 3: Specify Council Recommended ACLs (Preferred)

Under Alternative 3 (the Council's and NMFS' Preferred Alternative), NMFS would specify the ACL for each Hawaii CREMUS group in 2015-2018 as shown for Alternative 3 in Table 13. This level of catch is five percent lower than each CREMUS group's ABC. Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), no ACL under Alternative 3 is associated with greater than a 35 percent probability of overfishing should the entire ACL be caught (see Table 13).

Under this alternative, NMFS and the Council would continue to monitor CREMUS catches based on all available sources of information. However, because catch statistics are not available until at least six months after the data have been collected, NMFS and the Council have no way to determine during the fishing year whether the ACL for any CREMUS group might be reached, and cannot prevent any ACL from being exceeded. Therefore, fishers would be able to fish for CREMUS throughout the fishing year in the same manner as under Alternative 2 (status quo) and as recently occurred in 2011-2013.

Based on recent catch data shown in Table 13, the annual level of catch for each Hawaii CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013, and is not expected to exceed any group's ACL proposed under Alternative 2, or any group's estimated OFL proxy, where known. Therefore, because there would not be a closure of the fishery under Alternative 3 in any of the next 4 years, the fishery would not change and impacts to target and non-target stocks would be identical to the impacts under Alternative 2 (status quo), which is identical to the impacts under Alternative 1 (no action).

Six months after the end of each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded. Under this alternative, if the Council determines the most recent three-year average catch for any Hawaii CREMUS Group exceeded the proposed ACL in any fishing year, NMFS would reduce the ACL by the amount of the overage in the subsequent years. See Section 1.3- Proposed Action for detailed information on how this AM would be triggered. The impacts of a reduced ACL to target and non-target stocks are described in Alternative 4 below.

4.4.1.4 Alternative 4: Specify ACLs Lower than the Preferred Alternative

Under Alternative 4, NMFS would specify an ACL for each Hawaii CREMUS group in 2015-2018 that is lower than the preferred alternative (Alternative 3) as shown for Alternative 4 in Table 13.

NMFS included a range of ACLs lower than the ACL that would be established under the preferred alternative in the event that the proposed ACL under Alternative 3 is implemented and exceeded in 2015, 2016 or 2017, and a downward overage adjustment in the amount of the overage is necessary in a subsequent year. Based on risk projections from method B of the Biomass Augmented Catch-MSY model (Appendix B), the ACL for each CREMUS group under Alternative 4 are associated with probabilities of overfishing ranging from 35 percent down to

five percent (see Table 13). In other words, the lower the ACL, the lower the associated risk of overfishing.

Under Alternative 4, the Hawaii CREMUS fishery is expected to continue to perform as it has in recent years and catches in 2015-2018 are expected to be similar to the average harvest from 2011-2013. As shown in Table 13, average harvest from 2011-2013 did not exceed the lowest possible ACL for any group or that group's estimated OFL proxy, where known. Therefore, even if an ACL lower that what is proposed in Alternative 3 is selected, fishery would not change and impacts to target and non-target stocks would be the same as the impacts under Alternatives 1-3.

Under all alternatives considered, if an ACL is exceeded more than once in a four-year period, the Council is required to re-evaluate the ACL process, and adjust the system for setting ACLs, as necessary, to improve its performance and effectiveness. Additionally, if NMFS determines overfishing is occurring, NMFS would immediately notify the Council to take action to end overfishing in the fishery.

4.4.2 Potential Impacts to Fishery Participants and Fishing Communities

In 2013, the commercial price for individual coral reef associated species in Hawaii ranged between \$1.26 (bonefish) and \$8.70 (algae)⁸ per pound, with an average CREMUS price of \$3.52/lb. Multiplying the average 2011-2013 catch of each CREMUS group shown in Table 26 by the 2013 average price of \$3.52 equally, the average annual estimated commercial value of the coral reef fisheries of Hawaii for this three-year period was approximately \$4,528,860.

4.4.2.1 Alternative 1: No ACL and AM Management (No Action)

Currently, NMFS has not specified an ACL and AM for any Hawaii CREMUS for fishing year 2015. Under the no-action alternative, ACLs would not be specified for CREMUS in Hawaii and AMs would not be necessary. Therefore, each year, fishing would continue throughout the entire fishing year. If there were no ACLs and AMs, CREMUS catch in 2015-2018 would be similar to the average catch of all Hawaii CREMUS in 2011-2013, which was 1,239,699 lb. Using the 2013 average price per pound of \$3.52, the expected annual fleet-wide revenue during 2015-2018 under Alternative 1 would be approximately \$4,528,860

Coral reef fisheries in Hawaii provide fresh fish for sustenance, gifts, and allows some resources to enter local markets. This provides positive social and economic benefits to fishermen, buyers and the fishing communities of Hawaii.

4.4.2.2 Alternative 2: Specify 2014 ACLs (Status Quo/NEPA Baseline)

Under Alternative 2, NMFS would specify the ACL for each Hawaii CREMUS group in fishing years 2015-2018 at the same level NMFS specified for each CREMUS group in 2014 (79 FR 4276, January 27, 2014). See Table 13 for the specific ACL values for each CREMUS group associated with Alternative 2.

⁸ Both bonefish and algae are included in the all other CREMUS Combined grouping. In 2013, fishermen reported selling 12,344 lb of bonefish and 3,960 lb of 16,921 lb of algae.

Based on recent catch data shown in Table 13, the annual level of catch for each CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013, and would not exceed the group's ACL proposed under Alternative 2, or the group's estimated OFL proxy where known. During each of these years, the fishery remained opened throughout the year.

Because there would not be in-season closure of the fishery under Alternative 2 in any of the next 4 years, the fishery would not change and fishers would be able to fish for CREMUS throughout each fishing year in the same manner as under Alternative 1, and as recently occurred in 2011-2013. Therefore, in each fishing year, the total annual catch of all CREMUS groups combined is expected be similar to the average catch of all Hawaii CREMUS combined in 2011-2013, which was 1,239,699 lb. Using the 2013 average price per pound of \$3.52, the expected annual fleet-wide revenue during 2015-2018 would be same as under Alternative 1 or approximately \$4,528,860

Six months after the each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded. If the Council determined an ACL was exceeded, it could recommend NMFS reduce the ACL for that CREMUS group in the subsequent fishing years. However, even with a reduced ACL, the expected impacts to fishery participants and the fishing communities of Hawaii under Alternative 2 would be the same as the impacts described in Alternative 1, because without in-season closures, fishers would be able to fish for Hawaii CREMUS throughout the fishing year, even with a lower ACL.

4.4.2.3 Alternative 3: Specify Council Recommended ACLs (Preferred)

Under Alternative 3 (the Council's and NMFS' Preferred Alternative), NMFS would specify the ACL for each Hawaii CREMUS group in 2015-2018 as shown for Alternative 3 in Table 13, which are higher than the ACLs under Alternatives 2 and 4. Therefore, the potential revenue that fishery participants could earn under this alternative is also higher than the potential revenue under Alternatives 2 and 4.

However, based on recent catch data shown in Table 13, the annual level of catch for each CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013 and would not reach the group's ACL proposed under this alternative, or the group's estimated OFL proxy where known. During each of these years, the fishery remained opened throughout the year.

Because there would not be in-season closure of the fishery under Alternative 3 in any of the next 4 years, the fishery would not change and fishers would be able to fish for CREMUS throughout each fishing year in the same manner as under Alternatives 1 and 2, and as recently occurred in 2011-2013. Therefore, in each fishing year, the total annual catch of all CREMUS groups combined is expected be similar to the average catch of all Hawaii CREMUS combined in 2011-2013, which was 1,239,699 lb. Using the 2013 average price per pound of \$3.52, the expected annual fleet-wide revenue during 2015-2018 would be same as under Alternatives 1 and 2 or approximately \$4,528,860.

Six months after the each fishing year, data would become available for NMFS and the Council to determine whether any ACL in the previous year was exceeded. If the Council determined an ACL was exceeded, NMFS would reduce the ACL for that CREMUS group in the subsequent fishing years by the amount of the overage. However, even with a reduced ACL, the expected impacts to fishery participants and the fishing communities of Hawaii under Alternative 3 would be the same as the impacts described in Alternatives 1 and 2, because without in-season closures, fishers would be able to fish for Hawaii CREMUS throughout the fishing year, even with a lower ACL.

4.4.2.4 Alternative 4: Specify ACLs Lower than the Preferred Alternative

Under Alternative 4, NMFS would specify an ACL for each Hawaii CREMUS group in 2015-2018 that is lower than the preferred alternative (Alternative 3) as shown for Alternative 4 in Table 13. NMFS included a range of ACLs lower than the ACL that would be established under the preferred alternative in the event that the proposed ACL under Alternative 3 is implemented and exceeded in 2015, 2016 or 2017, and a downward overage adjustment in the amount of the overage is necessary in a subsequent year.

Because the ACLs under Alternative 4 are lower than the ACLs proposed under Alternative 3, the potential revenue is also lower. However, the ACLs for most CREMUS groups are higher than the ACLs under Alternative 2. Therefore, the potential revenue under Alternative 4 are higher than under Alternative 2. However, based on recent catch data shown in Table 13, the annual level of catch for each Hawaii CREMUS group in 2015-2018 is expected be similar to the average harvest from 2011-2013, and is not expected to reach the lowest possible ACL. Therefore, even if a lower ACL is selected, expected impacts to fishery participants and the fishing communities of Hawaii under Alternative 4 would be the same as the impacts described in Alternatives 1, 2, and 3.

Because none of the alternatives considered would result in changes in the conduct of the fishery including gear types used, areas fished, species targeted, level of catch or effort, none of the alternatives considered would affect the safety of fishermen at sea.

4.4.3 Potential Impacts to Fishery Administration and Enforcement

Under all alternatives considered, NMFS and the Council would continue to monitor catches of Hawaii CREMUS based on all available sources of information, and federal regulations would continue to require the Council-appointed FEP plan team to prepare an annual report on the performance of coral reef fisheries, including the commercial and non-commercial fishing sector by July 31 of each year. Additionally, all other regulations implemented by other federal agencies and the State of Hawaii would continue to apply fishing vessels operating in the U.S. EEZ.

While Alternatives 2, 3 (Preferred), and 4 would implement ACLs and a post-season accounting of the catch relative to the ACL, this would not result in commitment of additional resources or increased need for fishery enforcement as monitoring of catch is required under all alternatives,

including the no action alternative. Additional fishery enforcement would not be needed for any alternative because the Council and NMFS are not proposing to implement a fishery closure.

4.4.4 Potential Impacts to Protected Resources

None of the alternatives considered would modify operations of Hawaii coral reef fisheries in any way that would be expected to affect populations of endangered or threatened species or critical habitat in any manner not previously considered in previous ESA or MMPA consultations described in Section 3.4.4.

While Alternatives 2, 3 (Preferred), and 4 would implement ACLs and a possible reduction to the ACL in a subsequent fishing year, if necessary, fishery managers do not have the ability to conduct in-season tracking of catch towards an ACL, and so there is no in-season closure being proposed. Therefore, under Alternatives 2, 3 and 4, participants in Hawaii coral reef fisheries would continue to fish as they would under the Alternative 1, which does not include the specification of ACLs and AMs.

Because no alternative would result in a change to the way in which coral reef ecosystem fishing is conducted in federal waters, none of the alternatives would result in a change to current impacts on protected species, which have been evaluated in accordance with provisions of the ESA and MMPA and other applicable laws. None of the alternatives would result in large beneficial or adverse impacts protected species described in Section 3.4.4.

4.5 Potential Impacts to Essential Fish Habitat

Essential fish habitat (EFH) is defined as those waters and substrate as necessary for fish spawning, breeding, feeding, and growth to maturity. This includes the marine areas and their chemical and biological properties that are utilized by the organism. Substrate includes sediment, hard bottom, and other structural relief underlying the water column along with their associated biological communities. In 1999, the Council developed and NMFS approved EFH definitions for management unit species (MUS) of the Bottomfish and Seamount Groundfish FMP (Amendment 6), Crustacean FMP (Amendment 10), Pelagic FMP (Amendment 8), and Precious Corals FMP (Amendment 4) (74 FR 19067, April 19, 1999). NMFS approved additional EFH definitions for coral reef ecosystem species in 2004 as part of the implementation of the Coral Reef Ecosystem FMP (69 FR8336, February 24, 2004). EFH definitions were also approved for deepwater shrimp through an amendment to the Crustaceans FMP in 2008 (73 FR 70603, November 21, 2008).

Ten years later, in 2009, the Council developed and NMFS approved five new archipelagicbased fishery ecosystem plans (FEP). The FEP incorporated and reorganized elements of the Councils' species-based FMPs into a spatially-oriented management plan (75 FR 2198, January 14, 2010). EFH definitions and related provisions for all FMP fishery resources were subsequently carried forward into the respective FEPs. In addition to and as a subset of EFH, the Council described habitat areas of particular concern (HAPC) based on the following criteria: ecological function of the habitat is important, habitat is sensitive to anthropogenic degradation, development activities are or will stress the habitat, and/or the habitat type is rare. In considering the potential impacts of a proposed fishery management action on EFH, all designated EFH must be considered. Table 30 summarizes the designated areas of EFH and HAPC for all FEP MUS by life stage.

At its 154th meeting held June 2012, the Council recommended amending the Hawaii FEP to refine the EFH descriptions for Hawaii bottomfish and seamount groundfish and modify the extent of HAPC designations for these stocks. However, the recommended revisions would not change the overall designation of EFH shown in Table 30 below. While the Council recommended additional HAPC be added, such designations are a subset of EFH and would do not result in any changes to management or administrative requirements. Until the amendment is transmitted to by the Council for Secretarial review, and approved by the Secretary, the EFH/HAPC designations summarized in Table 30 below remains in effect.

MUS	Species Complex	EFH	НАРС
Bottomfish MUS	American Samoa, Guam and CNMI bottomfish species: lehi (Aphareus rutilans) uku (Aprion virescens), giant trevally (Caranx ignoblis), black trevally (Caranx lugubris), blacktip grouper (Epinephelus fasciatus), Lunartail grouper (Variola louti), ehu (Etelis carbunculus), onaga (Etelis coruscans), ambon emperor (Lethrinus amboinensis), redgill emperor (Lethrinus rubrioperculatus), taape (Lutjanus kasmira), yellowtail kalekale (Pristipomoides auricilla), opakapaka (P. filamentosus), yelloweye snapper (P. flavipinnis), kalekale (P. sieboldii), gindai (P. zonatus), and amberjack (Seriola dumerili).	Eggs and larvae: the water column extending from the shoreline to the outer limit of the EEZ down to a depth of 400 m (200 fm). Juvenile/adults: the water column and all bottom habitat extending from the shoreline to a depth of 400 m (200 fm)	All slopes and escarpments between 40–280 m (20 and 140 fm)

Table 30. EFH and HAPC for FEP MUS

MUS	Species Complex	EFH	НАРС
	Hawaii bottomfish species: uku (Aprion virescens), thicklip trevally (Pseudocaranx dentex), giant trevally (Caranx ignoblis), black trevally (Caranx lugubris), amberjack (Seriola dumerili), taape (Lutjanus kasmira), ehu (Etelis carbunculus), onaga (Etelis coruscans), opakapaka (Pristipomoides filamentosus), yellowtail kalekale (P. auricilla), kalekale (P. sieboldii), gindai (P. zonatus), hapuupuu (Epinephelus	Eggs and larvae: the water column extending from the shoreline to the outer limit of the EEZ down to a depth of 400 m (200 fathoms) Juvenile/adults: the water column and all bottom habitat extending from the shoreline to a depth of 400 meters (200 fm)	All slopes and escarpments between 40–280 m (20 and 140 fm) Three known areas of juvenile opakapaka habitat: two off Oahu and one off Molokai
Seamount Groundfish MUS	quernus), lehi (Aphareus rutilans)Hawaii Seamount groundfishspecies (50–200 fm): armorhead(Pseudopentaceros wheeleri),raftfish/butterfish (Hyperoglyphejaponica), alfonsin (Beryxsplendens)	Eggs and larvae: the (epipelagic zone) water column down to a depth of 200 m (100 fm) of all EEZ waters bounded by latitude 29°–35°	No HAPC designated for seamount groundfish
		Juvenile/adults: all EEZ waters and bottom habitat bounded by latitude 29°–35° N and longitude 171° E–179° W between 200 and 600 m (100 and 300 fm)	
Crustaceans MUS	Spiny and slipper lobster complex (all FEP areas): spiny lobster (<i>Panulirus</i> marginatus), spiny lobster (<i>P.</i> penicillatus, <i>P.</i> sp.), ridgeback slipper lobster (<i>Scyllarides haanii</i>), Chinese slipper lobster (<i>Barribagus antarctigus</i>)	Eggs and larvae: the water column from the shoreline to the outer limit of the EEZ down to a depth of 150 m (75 fm)	All banks in the NWHI with summits less than or equal to 30 m (15 fathoms) from the surface
	(Parribacus antarcticus) Kona crab : Kona crab (Ranina ranina) Deepwater shrimp (all FEP areas): (Heterocarpus spp.)	Juvenile/adults: all of the bottom habitat from the shoreline to a depth of 100 m (50 fm) Eggs and larvae: the water column and associated outer reef slopes between 550 and 700 m	No HAPC designated for deepwater shrimp.
		Juvenile/adults: the outer reef slopes at depths between 300-700 m	

MUS	Species Complex	EFH	НАРС
Precious	Shallow-water precious corals	EFH for Precious Corals	Includes the Makapuu
Corals MUS	(10-50 fm) all FEP areas:	is confined to six known	bed, Wespac bed,
	black coral (Antipathes	precious coral beds	Brooks Banks bed
	dichotoma), black coral	located off Keahole	
	(Antipathis grandis), black coral	Point, Makapuu, Kaena	
	(Antipathes ulex)	Point, Wespac bed,	
		Brooks Bank, and 180	For Black Corals, the
	Deep-water precious corals	Fathom Bank	Auau Channel has
	(150–750 fm) all FEP areas:		been identified as a
	Pink coral (<i>Corallium secundum</i>),	EFH has also been	HAPC
	red coral (<i>C. regale</i>), pink coral	designated for three	
	(C. laauense), midway deepsea	beds known for black	
	coral (<i>C</i> . sp nov.), gold coral	corals in the Main	
	(Gerardia sp.), gold coral	Hawaiian Islands	
	(Callogorgia gilberti), gold coral	between Milolii and	
	(Narella sp.), gold coral	South Point on the Big	
	(<i>Calyptrophora</i> sp.), bamboo coral	Island, the Auau	
	(Lepidisis olapa), bamboo coral	Channel, and the	
	(Acanella sp.)	southern border of	
		Kauai	
Coral Reef	Coral Reef Ecosystem MUS	EFH for the Coral Reef	Includes all no-take
Ecosystem	(all FEP areas)	Ecosystem MUS	MPAs identified in
MUS		includes the water	the CREFMP, all
		column and all benthic	Pacific remote
		substrate to a depth of	islands, as well as
		50 fm from the shoreline	numerous existing
		to the outer limit of the	MPAs, research sites,
		EEZ	and coral reef habitats
			throughout the
			western Pacific

To prevent and minimize adverse coral reef fishing impacts to EFH, which include shallow-reef building corals, the FEPs prohibit the use of destructive and non-selective gear methods, and authorizes a specific list allowable gear methods to be used in coral reef fisheries (WPFMC 2009a; 2009b and 2009c). These gear types include: hand harvest, spear, slurp gun, hand, dip, hoop, throw, and barrier nets, and surround nets that must be attended to at all times, handlines, and crab and fish traps and remotely operated vehicles and submersibles. When properly used these allowable gear types are not known to have large adverse effects on EFH or HAPC for any western Pacific MUS.

None of the alternatives, including the preferred alternative (Alternative 3) are expected to change the way in which fisheries are conducted in terms of species targeted, gear types used, areas fished, level of catch or effort as compared to baseline conditions. For this reason, none of the alternatives considered are expected to lead to substantial physical, chemical, or biological alterations to ocean, corals or coastal habitats, or result in loss of, or injury to managed species, or their prey or adverse impacts to the marine habitat, including areas designated as EFH, HAPC, or unique areas such as marine protected areas, marine sanctuaries or marine monuments.

4.6 Potential Impacts to Biodiversity/Ecosystem Function

The management of coral reef fisheries in EEZ waters around American Samoa, Guam, the CNMI, and Hawaii using ACLs and AMs helps provide for sustainable fisheries management in accordance with the Magnuson-Stevens Act. The proposed ACL and AMs specifications for western Pacific CREMUS were developed using the best available scientific information, in a manner that accords with the fishery regulations and after considering catches, participation trends, and estimates of the status of the fishery resources. When compared against recent fishing harvests, the proposed ACLs are higher than recent harvest (Tables 10-14), but lower than current estimates of MSY and OFL, with the exception of Selar crumenopthalmus or atulai and Carangidae or jacks in Guam. For these species, recent three-year harvest averages are higher than the proposed ACL, MSY and OFL. However, as explained in Section 3.3.1.1, the high level of recent harvest were driven primarily by greater participation by fishermen in the Guam shorebased creel survey program in a single year (2012 for bigeye scad and 2013 for jacks), resulting in an unusually large expanded catch number compared to previous years. Due to the high degree of inter-annual variability in territorial data collection programs (see Section 2.1), Guam fishery scientists and managers do not consider the single year catch as an unsustainable level of fishing pressure. However, NMFS and the Council and local agency partners will continue to make improvements to data collection programs to more accurately determine sustainable fishing levels. If NMFS determines overfishing is occurring, NMFS would immediately notify the Council to take action to end overfishing in the fishery.

Under the action alternatives considered, the specification of an ACL is not accompanied by a fishery closure because the lack of in-season catch monitoring precludes forecasting a date when an ACL might be reached. However, the lack of an in season AM in Federal waters is not expected to result in large adverse impacts to any fish stock or on biodiversity or ecosystem function. This is because coral reef fisheries occur at relatively low levels of intensity, and the methods used, are target specific and non-destructive. Additionally, there have been no identified impacts to marine biodiversity and/or ecosystem function from coral reef fisheries in federal waters of American Samoa, Guam, the CNMI and the MHI and none of the alternatives are expected to result in impacts to these environmental features.

4.7 Potential Impacts to Scientific, Historic, Archeological or Cultural Resources

There are no known districts, sites, highways, structures or objects that are listed in or eligible for listing in the National Register of Historic Places within EEZ waters where coral reef fishing is authorized. Shipwrecks and other objects from the Pacific theatre in World War II could possibly occur in federal waters around the U.S. Pacific Islands. However, coral reef fishing methods and activities are not known to be having an adverse effect on bottom habitat and are not expected to result in the destruction of any objects that might be found.

Most coral reef fishing occurs State or territorial waters in American Samoa, Guam, the CNMI, and Hawaii. Coral reef fishing gears and methods authorized under the FEPs are not known to cause the loss or destruction of scientific, cultural or historical resources because the FEP allows the only gears and methods that are selective and non-destructive. These methods are also not known to cause damage to the ocean, coastal habitats, corals, or marine habitats. Because the

specification of ACLs and AMs would not result in changes to the way any coral reef fishery is conducted including type of gear used, area fished, or level of catch or effort as compared with baseline conditions, none of the alternatives are expected to result in large adverse impacts to resources of scientific, historic, cultural, or ecological importance. Coral reef fishing in marine protected areas would continue to be subject to permits, reporting, and monitoring that help to ensure the marine resources of these special areas are sustainable.

4.8 Cumulative Effects of the Proposed Action

Cumulative effects refer to the impact on the environment, which results from the incremental effects of a proposed action when added to other past, present, or reasonably foreseeable future actions within the geographic area of the proposed action. Cumulative effects can result from individually minor but collectively significant actions taking place over a period of time.

4.8.1 Multi-year ACLs and AMs for CREMUS Groups

The specification of multi-year ACLs and AMs for Pacific Island CREMUS in 2015, 2016, 2017 and again in 2018, is not expected to result in cumulative environmental effects. This is because the proposed action would set the ACL for each CREMUS group in each island area at levels substantially lower than the stock's estimated OFL proxy, and annual catches in fishing years 2015-2018 are expected to remain below the proposed ACLs.

As noted in Section 3.3.1.1, this does not apply to *Selar crumenopthalmus* or atulai and Carangidae or jacks in Guam. For these species, recent harvest are higher than the proposed ACL, MSY and OFL. However, the high level of recent harvests were driven primarily by greater participation in the Guam shore-based creel survey program in recent years, and may not represent an unsustainable level of fishing pressure. Regardless of which alternative is selected, NMFS and the Council and local agency partners will continue to monitor catches, evaluate catches and stock status, make improvements to data collection programs to more accurately determine sustainable fishing levels, and modify ACL specifications as necessary to help ensure fishing for all CREMUS is managed sustainably.

4.8.2 ACL and AM specifications for other western Pacific fisheries

In addition to the ACLs and AMs for CREMUS being considered in this EA, NMFS is proposing to implement the Council's ACL and AM recommendations for all other western Pacific fisheries for 2015-18 including crustacean fisheries (lobsters, Kona crab and deepwater shrimp), precious coral, MHI non-Deep 7 bottomfish. NMFS will also continue to specify annual catch limits for MHI Deep 7 bottomfish on an annual basis. These fisheries have been managed using ACLs and AMs since 2012; and these specifications do not have unknown or uncertain impacts. NMFS developed environmental impact analysis documents on the proposed specifications for these fisheries, which can be obtained from NMFS or the Council by request, or at www.regulations.gov using the regulatory identification number (RIN) 0648-XD558.

The coral reef fisheries in all four areas that are being considered in this EA do not overlap with other demersal fisheries to a large extent such that ACLs and AMs in the coral reef fishery would

result in more fishing in other demersal (or pelagic) fisheries. For this reason, the impacts of the proposed CREMUS ACLs and AMs can be considered separately from the other ACL and AM specifications. ACL specifications and AMs for other fisheries are not expected to result in impacts that would combine with impacts from coral reef fisheries to then have large and adverse impacts.

4.8.3 Foreseeable management actions related to western Pacific fisheries

In the foreseeable future, the Council may re-evaluate the need for conservation and management for federal coral reef fisheries and may recommend NMFS remove coral reef species from the FEPs and/or re-classify species as "ecosystem component" (EC) species. To be considered for possible classification as an EC species, the species should be: 1) a non-target species; 2) a stock that is not determined to be subject to overfishing, approaching overfished, or overfished; 3) not likely to become subject to overfishing or overfished; and 4) generally not retained for sale or personal use. Various methods for categorizing species and EC components have been preliminarily discussed at Council meetings. These include, but are not limited to, species that are caught exclusively or predominately in state/territorial waters, species that occur infrequently in the available time series, species that are non-native to an FEP area, and species associated with ciguatoxin poisoning and are generally discarded.

In accordance with National Standard 1 guidelines found in 50 CFR §600.310(d), EC species are not considered to be "in the fishery" and thus, do not require specification of an ACL. EC species may, but are not required to remain in the FEP for data collection purposes, for ecosystem considerations related to the specification of optimum yield for associated MUS, for consideration in the development of conservation and management measures for a fishery; and/or to address other ecosystem issues (e.g., such as management of bycatch). However, until such time a particular CREMUS is classified as an EC species, it will remain in the fishery and be subject to the ACL requirements.

The specification of ACLs and implementation of AMs for these four archipelagic areas would not foreclose the future designation of any species as an EC species. Continued management of Federal coral reef ecosystem fisheries using ACLs and AMs would not change the status of any CRE MUS in a way that would make it more or less likely to be classified as an EC species.

4.8.4 Other foreseeable NOAA/NMFS management actions in federal waters

On June 2, 2011, NMFS published a proposed rule (76 FR 32026) to designate areas in the main Hawaiian Islands (MHI) as monk seal critical habitat. Specific areas proposed include terrestrial and marine habitats from 5 m inland from the shoreline extending seaward to the 500 m depth contour around Kaula Island, Niihau, Kauai, Oahu, Maui Nui (including Kahoolawe, Lanai, Maui and Molokai) and Hawaii Island. The final determinations on whether designate monk seal critical habitat in the MHI have not been made.

At this point in time there is insufficient information in the proposal to allow NMFS to evaluate the potential impact of a designation of monk seal critical habitat on the MHI coral reef fisheries.

However, a designation of critical habitat for monk seals in the MHI is not expected to affect the efficacy of using ACLs and AMs to promote long-term sustainability of MHI coral reef fisheries.

While recent quantitative fatty acid signature analysis results indicate that monk seals consume a wide range of species including certain CREMUS (Iverson et al. 2011); under current levels of fishing pressure in the MHI, the monk seal population is growing, pupping is increasing, and the pups appear to be foraging successfully. In contrast, the Hawaiian monk seal subpopulation continue to decline in the NWHI where fishing has been minimized in past years and recently terminated completely.

Considering that monk seal foraging success appears to be higher in the MHI than in the NWHI despite higher fishing pressure in the MHI, competition for forage with MHI coral reef fisheries does not appear to be adversely impacting monk seals in the MHI. Therefore, the proposed ACL specifications and AMs is not considered to be affecting monk seals through completion for prey and is not expected to affect the quality of habitat being considered for designation as monk seal critical habitat because no change to the conduct of the existing MHI coral reef fisheries is likely to occur with under the proposed action.

Specifying ACLs will not have an environmental outcome that would affect the agency's decision of whether or not to revise designated critical habitat. The specification would not change the likelihood of interactions, or affect the survival, distribution or behavior of the species in any way. However, if the pending Hawaiian monk seal actions are approved, NMFS will initiate consultation in accordance with Section 7 of the ESA to ensure that Hawaii's fisheries are not likely to jeopardize the continued existence of the species, or result in the destruction or adverse modification of critical habitat.

4.8.5 Other Foreseeable NOAA Actions

On March 26, 2015, NOAA's Office of National Marine Sanctuaries (ONMS) published a proposed rule to expand the boundaries of the Humpback Whale National Marine Sanctuary in the main Hawaiian Islands (80 FR 16224). The purpose of this action is to transition the sanctuary from a single species management approach to an ecosystem-based management approach. The proposal would also change the name of the sanctuary to Na Kai Ewalu National Marine Sanctuary. The phrase means "the eight seas" in Hawaiian language and refers to the channels between the MHI and a poetic reference to the islands themselves.

Because there are no in-season management measures proposed, the ways in which Hawaii's coral reef fisheries are conducted is not expected to change and, therefore, the proposed ACL specification and AMs would not have an environmental effect that would affect future decisions about possible changes to the sanctuary management plan nor would the proposed action affect sanctuary resources to an extent that comprehensive effective management of the Sanctuary would not be possible.

4.8.6 Climate change

Changes in the environment from global climate change have the potential to affect coral reef fisheries. Effects of climate change may include: sea level rise; increased intensity or frequency of coastal storms and storm surges; changes in rainfall (more or less) that can affect salinity nearshore or increase storm runoff and pollutant discharges into the marine environment; increased temperatures resulting in coral bleaching, and hypothermic responses in some marine species (IPCC 2007). Increased carbon dioxide uptake can increase ocean acidity, which can disrupt calcium uptake processes in corals, crustaceans, mollusk, reef-building algae, and plankton, among other organisms (Houghton et al. 2001; The Royal Society 2005; Caldeira and Wickett 2005; Doney 2006; Kleypas et al. 2006). Climate change can also lead to changes in ocean circulation patterns, which can affect the availability of prey, migration, survival, and dispersal (Buddenmeier et al. 2004). Damage to coastal areas due to storm surge or sea level rises as well as changes to catch rates, migratory patterns, or visible changes to habitats are among the most likely changes that would be noted first. Climate change has the potential to adversely affect some organisms, while others could benefit from changes in the environment to ensure that the coral reef catches are sustainable, regardless of environmental conditions.

The impacts to coral reef fisheries from climate change may be difficult to discern from other impacts; however monitoring of physical conditions and biological resources by a number of agencies will continue to occur and will allow fishery managers to continually make adjustments in fishery management regimes in response to changes in the environment for any alternative. Thus, if in the future, climate change impacts were affecting any marine resource in ways that were decreasing the ability of a fishery to maintain sustainable harvest levels, mangers would be able to respond by adjusting ACLs or other fishery management requirements.

The efficacy of the proposed ACL and AM specifications in providing for sustainable levels of fishing for CREMUS is not expected to be adversely affected by climate change. Recent catches relative to MSY and OFL estimates helped to inform the development of the ACLs and AMs. Monitoring would continue, and, if monitoring shows overfishing is occurring, ACLs and other fishery management provisions could be adjusted in the future. The proposed specifications are not expected to result in a change to the manner in which any of the affected fisheries are conducted, so no change in greenhouse gas emissions is expected.

For these reasons, climate change, considered in addition to all other factors affecting CREMUS (including fishing), is not expected to result in a large and adverse a cumulative impact on CREMUS. None of the action alternative is not expected to change the coral reef fisheries and therefore, none of the action alternatives would result in changes in climate change-promoting gas emissions.

5 Consistency with Other Applicable Laws

5.1 National Environmental Policy Act

NOAA Administrative Order (NAO) 216-6, Environmental Review Procedures for Implementing the National Environmental Policy Act, in accordance with NEPA, requires the consideration of effects of proposed agency actions and alternatives on the human environment and allows for involvement of interested and affected members of the public before a decision is made. The NMFS Regional Administrator will use the analysis in this EA and public received on the draft EA to determine whether the proposed action would have a significant environmental impact, which, if so, would require the preparation of an environmental impact statement.

5.2 Preparers and Reviewers

Nikhil Mehta, Fishery Biologist, SERO, SFD (preparer) Jarad Makaiau, Natural Resource Management Specialist, PIRO, SFD (preparer) Phyllis Ha, Resource Management Specialist, PIRO, SFD NEPA (reviewer) Michelle McGregor, Regional Economist, PIRO, SFD (reviewer)

5.3 Agencies and Persons Consulted

The proposed action described in this EA was developed in coordination with various federal and local government agencies that are represented on the Western Pacific Fishery Management Council. Specifically, agencies that participated in the deliberations and development of the proposed management measures include:

- American Samoa Department of Marine and Wildlife Resources
- Coastal Zone Management Program of American Samoa
- Guam Department of Agriculture, Division of Aquatic and Wildlife Resources
- Coastal Zone Management Program of Guam
- Hawaii Department of Land and Natural Resources, Division of Aquatic Resources
- Coastal Zone Management Program of Hawaii
- Commonwealth of the Northern Marina Islands Department of Land and Natural
- Coastal Zone Management Program of the CNMI
- Resources, Division of Fish and Wildlife
- U.S. Coast Guard
- U.S. Fish and Wildlife Service
- U.S. Department of State

5.4 Public Coordination

The development of the proposed ACL and AM specifications for coral reef fisheries of American Samoa, Guam, the CNMI, and MHI took place in public meetings of the SSC and the Council. In addition, the Council advertised the need to focus on federal annual catch limits and accountability measures in media releases, newsletter articles, and on the Council's website, http://www.wpcouncil.org. Additionally, NMFS solicited public comment on the proposed ACL

and AM specifications described in this EA (80 FR 43046, July 21, 2015). The comment period for the proposed specifications ended on August 5, 2015. Additionally, on July 21, 2015, NMFS published in the *Federal Register* the proposed specification and solicited public comments on the action and on the draft EA (80 FR 4346). NMFS received one comment from a federal agency regarding ACLs at Wake Island. NMFS responded to this comment in the final rule.

5.5 Endangered Species Act

The Endangered Species Act (ESA) provides for the protection and conservation of threatened and endangered species. Section 7(a)(2) of the ESA requires federal agencies to ensure that any action authorized, funded, or carried out by such agencies is not likely to jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of the critical habitat of such species.

Pursuant to Section 7 of the ESA, NMFS has evaluated the coral reef fisheries managed under the FEPs, for potential impacts on ESA-listed species under the jurisdiction of NMFS. Table 31 summarizes ESA section 7 consultations for these fisheries managed under the FEPs for American Samoa, the Marianas (including Guam and CNMI) and Hawaii.

FEP Fishery	ESA Consultation	NMFS Determination
American Samoa Coral	March 7, 2002, Letter of	Not likely to adversely affect any
Reef Fisheries	Concurrence	ESA-listed species or critical
	April 9, 2015, Letter of	habitat
	Concurrence	
CNMI Coral Reef	March 7, 2002, Letter of	Not likely to adversely affect any
Fisheries	Concurrence	ESA-listed species or critical
	April 29, 2015, Letter of	habitat
	Concurrence	
Guam Coral Reef	March 7, 2002, Letter of	Not likely to adversely affect any
Fisheries	Concurrence	ESA-listed species or critical
	April 29, 2015, Letter of	habitat
	Concurrence	
Hawaii Coral Reef	March 7, 2002, Letter of	Not likely to adversely affect any
Fisheries	Concurrence	ESA-listed species or critical
		habitat
	December 5, 2013, Letter of	Not likely to adversely affect any
	Concurrence	ESA-listed species or critical
		habitat

Table 31. ESA section 7 consultations for western Pacific coral reef fisheries.

Because the proposed action is not expected to modify vessel operations or other aspects of any coral reef fishery in the four areas, NMFS concludes that coral reef fisheries in American Samoa, Guam, CNMI, and Hawaii under the preferred proposed action alternatives would not have an adverse effect on ESA listed species or any designated critical habitats that was not considered in prior consultations, and that no further consultation is required at this time.

5.6 Marine Mammal Protection Act

The MMPA prohibits, with certain exceptions, taking of marine mammals in the U.S., and by persons aboard U.S. flagged vessels (i.e., persons and vessels subject to U.S. jurisdiction). Under section 118 of the MMPA, NMFS must publish, at least annually, a List of Fisheries (LOF) that classifies U.S. commercial fisheries into one of three categories based upon the level of serious injury and mortality of marine mammals that occurs incidental to each fishery. A Category 1 fishery is one with frequent incidental morality and serious injury of marine mammals. A Category 2 fishery is one with occasional incidental morality and serious injury of marine mammals. A Category 3 fishery is one with a remote likelihood or no known incidental morality and serious injury of marine mammals.

On December 29, 2014, (79 FR 77919), NMFS published the final LOF for 2015 which classified all gear types used in Hawaii's coral reef fisheries, including the inshore gillnet, lift net, inshore purse seine net, throw net, cast net, seine net, offshore pen culture, rod and reel, crab trap, fish trap, crab net, inshore handline, bullpen trap, hand pick, and spearfishing as Category 3 fisheries under Section 118 of the MMPA. Participants in Category 3 fisheries are not required to register in the Marine Mammal Authorization Program prior to engaging in commercial fishing. NMFS has not yet included the commercial coral reef fisheries of American Samoa, Guam, and CNMI in the annual List of Fisheries. However, because coral reef fisheries in these island areas employ similar gears and methods used in Hawaii's coral reef fisheries, it is reasonable to assume that impacts to marine mammals would be comparable, and would have a remote likelihood of incidental mortality and serious injury of marine mammals.

Because the proposed action would not modify vessel operations or other aspects of the coral reef fisheries in American Samoa, Guam, CNMI and the MHI, coral reef fisheries as conducted under the proposed action, are not expected to affect marine mammals in any manner not previously considered or authorized the commercial fishing take exemption under section 118 of the MMPA.

5.7 Coastal Zone Management Act

The Coastal Zone Management Act (CZMA) requires a determination that a recommended management measure has no effect on the land, water uses, or natural resources of the coastal zone or is consistent to the maximum extent practicable with an affected state's enforceable coastal zone management program. NMFS determined that the proposed specifications are consistent to the maximum extent practicable with the enforceable policies of the approved coastal zone management programs of American Samoa, Guam, the Northern Mariana Islands, and Hawaii. NMFS submitted this determination on June 1, 2015, for review by the appropriate agencies under section 307 of the CZMA.

5.8 National Historic Preservation Act

The National Historic Preservation Act (NHPA) requires federal agencies undergo a review process for all federally funded and permitted projects that will impact sites listed on, or eligible for listing on, the National Register of Historic Places. Currently, there are no known sites or

historic properties in EEZ waters 3 to 200 nm offshore of American Samoa, Guam, the CNMI or the MHI that are listed on or eligible for listing on the National Register of Historic Places. Although shipwrecks and other objects from the Pacific theatre in World War II could possibly occur in federal waters around the U.S. Pacific Islands, coral reef fisheries, there is little to no fishing for coral reef species in federal waters around American Samoa, Guam, the CNMI and the MHI. This is because the majority of coral reef habitat occurs in nearshore state and territorial waters and it is much easier and safer for fishers to harvest coral reef associated species in close to shore, than offshore in the EEZ. Additionally, coral reef fisheries are not known to have a damaging impact on the marine environment, because the FEPs allow only selective and non-destructive gears and methods. Because the proposed action would not change the manner in which any coral reef fishery is conducted, the proposed action would have no potential to effect on sites protected by the NHPA.

5.9 Paperwork Reduction Act

The purpose of the Paperwork Reduction Act is to minimize the paperwork burden on the public resulting from the collection of information by or for the Federal government. It is intended to ensure the information collected under the proposed action is needed and is collected in an efficient manner (44 U.S.C. 3501(1)). The proposed action would not establish any new permitting or reporting requirements and therefore it is not subject to the provisions of the Paperwork Reduction Act.

5.10 Regulatory Flexibility Act

The Regulatory Flexibility Act (RFA) (5 U.S.C. 601 *et seq.*) requires government agencies to assess and present the impact of their regulatory actions on small entities including small businesses, small organizations, and small governmental jurisdictions. The assessment is done by preparing an Initial Regulatory Flexibility Analysis and Final Regulatory Flexibility Analysis (FRFA) for each proposed and final rule, respectively. Under the RFA, an agency does not need to conduct an IRFA or FRFA if a certification can be made that the proposed rule, if adopted, will not have a significant adverse economic impact on a substantial number of small entities.

On June 12, 2014, the Small Business Administration issued an interim final rule revising small business size standards, effective July 14, 2014 (79 FR 33647). The rule increased the size standard for finfish fishing from 19.0 to \$20.5 million, shellfish fishing from \$5.0 million to \$5.5 million, and other marine fishing from \$7.0 million to \$7.5 million.

Based on available information presented in this EA, NMFS has determined that all vessels participating in coral reef fisheries in American Samoa, Guam, the CNMI and the MHI are small entities under the Small Business Administration's definition of a small entity. That is, they are engaged in the business of fish harvesting, are independently owned or operated, are not dominant in their field of operation, and have annual gross receipts not in excess of any of the small business size standard for fishing.

Even though this proposed ACL and AM would apply to a substantial number of vessels, i.e., 100 percent of the coral reef fishing vessels, if fishing were to occur in federal waters, NMFS

does not expect the rule will have a significantly adverse economic impact to individual vessels. This is because there is no in-season AM to prevent the fishery from exceeding an ACL, such as a fishery closure. Therefore, fishermen would not be required to alter any aspect of their fishing operations. Additionally, the catch limit does not favor any fisherman or disproportionately adversely affect a certain type of participant. Therefore, there are no disproportionate economic impacts between large and small entities and the proposed action, if implemented, would not have a significant economic impact on small entities. Furthermore, there are no disproportionate economic impacts among the universe of vessels based on gear, home port, or vessel length. NMFS may request that the Department of Commerce Chief Counsel for Regulation certify to the Small Business Administration that the proposed rule and specifications would not have a significant economic impact on a substantial number of small entities.

5.11 Administrative Procedure Act

All federal rulemaking is governed under the provisions of the Administrative Procedure Act (APA) (5 U.S.C. Subchapter II) which establishes a "notice and comment" procedure to enable public participation in the rulemaking process. Under the APA, NMFS is required to publish notification of proposed rules in the *Federal Register* and to solicit, consider and respond to public comment on those rules before they are finalized. The APA also establishes a 30-day waiting period from the time a final rule is published until it becomes effective, with rare exceptions.

The specification of ACLs for CREMUS in American Samoa, Guam, the CNMI and Hawaii complies with the provisions of the APA. In developing the proposed ACL specifications and AM recommendations, the Council and the SSC held public meetings, provided opportunities for the public to give comments on the proposed methods, specifications and recommendations, and the Council considered comments from the public and membership. NMFS will publish in the *Federal Register*, a proposed specification announcing the proposed ACL specifications and AMs described in this document. The proposed specification will include requests for public comments and inform the public of the availability of the EA and request comments on the EA. After considering public comments, NMFS will publish in the *Federal Register* a final specification, which will become effective 30 days after publication, unless there is good cause to waive the 30-day delay of effectiveness period.

5.12 Executive Order 12898 Environmental Justice

NMFS considered the effect of the proposed ACL specifications and AMs on Environmental Justice communities that include members of minority and low-income groups. The ACLs would apply to everyone that catches CREMUS in federal waters, and no new monitoring is required for the ACL specification or the AM to be implemented. The environmental review in this EA establishes that the proposed specifications of ACLs and provisions for post-season harvest reviews as the AMs in western Pacific coral reef fisheries are not expected to result in a change to the way these fisheries are conducted.

The ACLs and AMs are intended to provide for long-term sustainability of CREMUS in American Samoa, Guam, the CNMI and Hawaii. Specification of the ACLs and post-season

reviews are expected to benefit the target resources by providing annual review of the fishery performance and other information related to evaluating status of CREMUS. This in turn, is expected to benefit fishery participants and fishing communities that rely on this resource for food, employment, recreation and enjoyment. The proposed specifications are not likely to result in a large adverse impact to the environment that could have disproportionately large or adverse effects on members of Environmental Justice communities in American Samoa, Guam, the CNMI, or Hawaii.

5.13 Executive Order 12866 Regulatory Impact Review

A "significant regulatory action" means any regulatory action that is likely to result in a rule that may –

- Have an annual effect on the economy of \$100 million or more or adversely affect in a material way the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or State, local, or tribal government or communities;
- 2) Create a serious inconsistency or otherwise interfere with an action taken or planned by another agency;
- 3) Materially alter the budgetary impact of entitlements, grants, user fees, or loan programs or the rights and obligations of recipients thereof; or
- 4) Raise novel legal or policy issues arising out of legal mandates, the President's priorities, or the principles set forth in the Executive Order.

The specification of ACLs and AMs for Pacific Island coral reef fisheries is exempt from the procedures of E.O. 12866 because this action contains no implementing regulations.

5.14 Information Quality Act

The Information Quality Act requires federal agencies to ensure and maximize the quality, objectivity, utility, and integrity of information disseminated by federal agencies. To the extent feasible, the information in this document is current. Much of the information was made available to the public during the deliberative phases of developing the proposed specifications during meetings of the Council and its SSC. The information was also improved based on the guidance and comments from the Council's advisory groups.

NMFS staffs prepared the documents based on information provided to the Council by NMFS Pacific Islands Fisheries Science Center (PIFSC) and NMFS Pacific Islands Regional Office (PIRO) and after providing opportunities for members of the public to comment at Council meetings. Additionally, this EA will be made available to the public during the comment period for the proposed specification. The process of public review of this document provides an opportunity for comments on the information contained in this document, as well as for the provision of additional information regarding the proposed specifications and potential environmental effects.

6 References

- Buddemeier, R.W., J.A. Kleypas, and R.B. Aronson. 2004. Coral Reefs and Global Climate Change: Potential Contributions of Climate Change to Stresses on Coral Reef Ecosystems. Pew Center on Global Climate Change, Arlington, VA. 56 p.
- Caldeira, K. and M.E. Wickett. 2005: Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. *Journal of Geophysical Research*, 110(C09S04).
- Doney, S.C., 2006: The dangers of ocean acidification. Scientific American, 294(3): 58-65.
- Drahos, N. 1977. Additions to the avifauna of Guam. Micronesica 13: 45-48.
- Eldredge, L.G. 2003. The marine reptiles and mammals of Guam. Micronesica, 35-36:653-60.
- Grant, G. S., P.W. Trail, and R.B. Clapp. 1993. First specimens of Sooty Shearwater, Newell's Shearwater, and White-faced Storm Petrel from American Samoa. Notornis 41: 215–217.
- Guam Division of Aquatic and Wildlife Resources (GDAWR). 2005. Guam Comprehensive Wildlife Conservation Strategy.
- Hamm, D. and Tao, P. 2010. Annual species landings and occurrence data for U.S. Pacific island areas. NOAA Pacific Islands Fisheries Science Center Internal Report IR-10-016.
- Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, and D. Xiaosu (Eds.) 2001. *IPCC Third Assessment Report: Climate Change 2001: The Scientific Basis.* Cambridge University Press, Cambridge, UK, 944 p.
 [http://www.grida.no/climate/ipcc_tar/wg1/index.htm] [Also see: Summary for Policymakers and Technical Summary, 98 p.]
- Jouanin, C. 1956. Une capture meconnue de Puffinus puffinus newellii Henshaw. Bull. Mus. Natl. Hist. Nat. (Paris) 28: 273–274.
- Impact Assessment. 2008. Ecosystem-based fisheries management in the western Pacific. Proceedings from a comprehensive series of workshops convened by the Western Pacific Fishery Management Council. Honolulu, Hawaii. May 2008.
- Intergovernmental Panel on Climate Change (IPCC), 2007: Summary for Policymakers. In: *Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change* [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (Eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

- Kleypas, J.A., R.A. Feely, V.J. Fabry, C. Langdon, C.L. Sabine, and L.L. Robbins. 2006. Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: a Guide for Future Research. Workshop Report, National Science Foundation, National Oceanic and Atmospheric Administration, and the U.S. Geological Survey.
- Martell, S. and Froese, R. (2013), A simple method for estimating MSY from catch and resilience. Fish and Fisheries, 14: 504–514. doi: 10.1111/j.1467-2979.2012.00485.x
- National Marine Fisheries Service (NMFS). 2011. Environmental Assessment for Annual Catch Limit Specifications and Accountability Measures for Pacific Islands Coral Reef Fisheries in 2012 and 2013, including a Regulatory Impact Review. National Marine Fisheries Service, Pacific Islands Regional Office. December 13, 2011. 224 p.
- NMFS and Western Pacific Fishery Management Council (NMFS and WPFMC). 2009. Final Programmatic Environmental Impact Statement. Toward an Ecosystem Approach for the Western Pacific Region: From Species-Based Fishery Management Plans to Place-Based Fishery Ecosystem Plans. 464 p.
- National Research Council. 2006. Review of recreational fisheries survey methods. National Academy Press, Washington, D.C.
- Randall, R.H., R.T. Tsuda, R.S. Jones, M.J. Gawel, J.A. Chase, and R. Rechebei. 1975. Marine biological survey of the Cocos barrier reefs and enclosed lagoon. University of Guam Marine Laboratory Technical Report 17. 160 p.
- The Royal Society, 2005: *Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide*. The Royal Society, London. 60 p.
- Sabater M. and P. Kleiber. 2014. Improving specification of acceptable biological catches of data-poor reef fish stocks using a biomass-augmented catch-MSY approach. Western Pacific Fishery Management Council. Honolulu, HI.
- Williams, I. 2010. U.S. Pacific reef fish biomass estimates based on visual survey data. NOAA, National Marine Fishery Service, Pacific Island Fishery Science Center (PIFSC). PIFSC Internal Report: IR-10-024. 18 p.
- Western Pacific Fishery Management Council (WPFMC) and NMFS. 2011. Omnibus amendment for the western Pacific region to establish a process for specifying annual catch limits and accountability measures, including an environmental assessment.
 Amendment 1 to the PRIA FEP, Amendment 2 to the American Samoa Archipelago FEP, Amendment 2 to the Mariana FEP, Amendment 3 to the Hawaii Archipelago FEP. Western Pacific Regional Fishery Management Council and NMFS, Honolulu, HI.

- WPFMC 2014. Evaluation of 2013 catches relative to its respective annual catch limit. Archipelagic Fishery Ecosystem Plan Team members. Western Pacific Fishery Management Council. Honolulu, HI. Presented at the 160th Council Meeting. Agenda Item 7.C(1).
- WPFCM 2013. Evaluation of 2012 catches relative to its respective annual catch limit. Archipelagic Fishery Ecosystem Plan Team members. Western Pacific Fishery Management Council. Honolulu, HI. Presented at the 157th Council Meeting. Agenda Item 10.A.1.a(1).
- WPFMC 2012. Archipelagic Fishery Ecosystem Annual Report, American Samoa and Marianas FEP Plan Team. Western Pacific Regional Fishery Management Council, Honolulu, HI. 199 p.
- WPFMC. 2009(a). Fishery Ecosystem Plan for the American Samoa Archipelago. Western Pacific Regional Fishery Management Council, Honolulu, HI.
- WPFMC. 2009(b). Fishery Ecosystem Plan for the Mariana Archipelago. Western Pacific Regional Fishery Management Council, Honolulu, HI.
- WPFMC. 2009(c). Fishery Ecosystem Plan for the Hawaii Archipelago. Western Pacific Regional Fishery Management Council, Honolulu, HI.
- WPFMC. 2001 Fishery Management Plan for Coral Reef Ecosystem Fisheries of the Western Pacific Region. October 2001. Vol. 1 of 3. Western Pacific Regional Fishery Management Council, Honolulu, HI.
- Wusinich-Mendez, D. and C. Trappe (Eds.). 2007. Report on the status of marine protected areas in coral reef ecosystems of the United States volume 1: Marine protected areas managed by U.S. states, territories and commonwealths: 2007. NOAA Technical memorandum CRCP 2. NOAA Coral Reef Conservation Program. Silver Spring, MD. 129 p. + appendices.

Appendix A List of CREMUS Comprising Each Taxonomic Group by FEP Area

American Samoa CREMUS	Common Name	Scientific Name
Atulai	Bigeye scad	Selar crumenophthalmus
Surgeonfish	Achilles tang	Acanthurus achilles
Surgeonfish	Barred unicornfish	Naso thynnoides
Surgeonfish	Bignose unicornfish	Naso vlamingii
Surgeonfish	Black tongue unicornfish	Naso hexacanthius
Surgeonfish	Blackstreak surgeonfish	Acanthurus nigricauda
Surgeonfish	Blue-banded surgeonfish	Acanthurus lineatus
Surgeonfish	Bluelined surgeonfish	Acanthurus nigroris
Surgeonfish	Bluespine unicornfish	Naso unicornis
Surgeonfish	Brown surgeonfish	Acanthurus nigrofuscus
Surgeonfish	Convict tang	Acanthurus triostegus
Surgeonfish	Elongate surgeonfish	Acanthurus mata
Surgeonfish	Eye-striped surgeonfish	Acanthurus dussumeiri
Surgeonfish	Gray unicornfish	Naso caesius
Surgeonfish	Humpback unicornfish	Naso brachycentron
Surgeonfish	Humpnose unicornish	Naso tuberosus
Surgeonfish	Mimic surgeonfish	Acanthurus pyorferus
Surgeonfish	Naso tang	Naso sp.
Surgeonfish	Orangespine unicornfish	Naso lituratus
Surgeonfish	Orange-spot surgeonfish	Acanthurus olivaceus
Surgeonfish	Pacific sailfin tang	Zebrasoma veliferum
Surgeonfish	Ringtail surgeonfish	Acanthurus blochii
Surgeonfish	Spotted unicornfish	Naso brevirostris
Surgeonfish	Striped bristletooth	Ctenochaetus striatus
Surgeonfish	Surgeonfishes/tangs	Acanthurus sp.
Surgeonfish	Twospot bristletooth	Ctenochaetus binotatus
Surgeonfish	Unicornfishes (misc)	Naso sp.
Surgeonfish	Whitebar surgeonfish	Acanthurus leucopareius
Surgeonfish	Whitecheek surgeonfish	Acanthurus nigricans
Surgeonfish	Whitemargin unicornfish	Naso annulatus
Surgeonfish	Whitespotted surgeonfish	Acanthurus guttatus
Surgeonfish	Yellow-eyed bristletooth	Ctenochaetus strigosus
Surgeonfish	Yellowfin surgeonfish	Acanthurus xanthopterus
Jacks	Blue kingfish trevally	Carangoides caeruleopinnatus
Jacks	Goldspot trevally	Carangoides orthogrammus
Jacks	Trevally (misc)	Carangoides sp.

Table A1. American Samoa CREMUS

American Samoa CREMUS	Common Name	Scientific Name
Jacks	Jacks (misc)	<i>Caranx</i> sp.
Jacks	Black jack	Caranx lugubris
Jacks	Bluefin trevally	Caranx melampygus
Jacks	Brassy trevally	Caranx papuensis
Jacks	Bigeye trevally	Caranx sexfasciatus
Jacks	Rainbow runner	Elagatis bipinnulatus
Jacks	Leatherback	Scomberoides lysan
Jacks	Snubnose pompano	Trachinotus blochii
Jacks	Whitemouth trevally	Uraspis secunda
Carcharhinidae	Reef sharks (misc)	Carcharhinidae
Carcharhinidae	Silvertip shark	Carcharhinus albimarginatus
Carcharhinidae	Grey Reef shark	Carcharhinus amblyrhynchos
Carcharhinidae	Galapagos shark	Carcharhinus galapagenis
Carcharhinidae	Black tip reef shark	Carcharhinus melanopterus
Carcharhinidae	White tip reef shark	Carcharhinus triaenodon
Crustaceans	Crabs	Decapoda
Crustaceans	Grapsid crab	Graspidae
Crustaceans	Pa'a crab	Ocypode ceratopthalma
Crustaceans	Seven-11 crab	Carpilius maculatus
Crustaceans	Small crab	Decapoda
Crustaceans	Mangrove crab	Scylla serrate
Crustaceans	Large red crab	Sesama erythrodactyla
Crustaceans	Hermit crab	Coenobita clypeatus
Squirrelfish	Bigscale soldierfish	Myripristis berndti
Squirrelfish	Blackfin squirrelfish	Neoniphon opercularis
Squirrelfish	Blackspot squirrelfish	Sargocentron melanospilos
Squirrelfish	Blotcheye soldierfish	Myripristis murdjan
Squirrelfish	Bluelined squirrelfish	Sargocentron tiere
Squirrelfish	Brick soldierfish	Myripristis amaena
Squirrelfish	Bronze soldierfish	Myripristis adusta
Squirrelfish	Crown squirrelfish	Sargocentron diadema
Squirrelfish	Double tooth soldierfish	Myripristis hexagona
Squirrelfish	Filelined squirrelfish	Sargocentron microstoma
Squirrelfish	Hawaiian squirrelfish	Sargocentron xantherythrum
Squirrelfish	Pearly soldierfish	Myripristis kuntee
Squirrelfish	Peppered squirrelfish	Sargocentron punctatissimum
Squirrelfish	Pink squirrelfish	Sargocentron tieroides
Squirrelfish	Saber squirrelfish	Sargocentron spiniferum
Squirrelfish	Sammara squirrelfish	Neoniphon sammara
Squirrelfish	Scarlet soldierfish	Myripristis pralinius

American Samoa CREMUS	Common Name	Scientific Name
Squirrelfish	Squirrelfish	Sargocentron sp.
Squirrelfish	Tailspot squirrelfish	Sargocentron caudimaculatum
Squirrelfish	Violet soldierfish	Myripristis violaceus
Squirrelfish	Violet squirrelfish	Sargocentron violaceum
Squirrelfish	Whitetip soldierfish	Myripristis vittata
Squirrelfish	Yellowfin soldierfish	Myripristis chryseres
Squirrelfish	Yellowstriped squirrelfish	Neoniphon aurolineatus
Rudderfish	Rudderfish (bigibus)	Kyphosus bigibus
Rudderfish	Rudderfish (cinerascens)	Kyphosus cinerascens
Rudderfish	Western drummer	Kyphosus cornelii
Rudderfish	Rudderfish	Kyphosus sp.
Rudderfish	Lowfin drummer	Kyphosus vaigiensis
Wrasse	Arenatus wrasse	Oxycheilinus arenatus
Wrasse	Bandcheck wrasse	Oxycheilinus diagrammus
Wrasse	Barred thicklip	Hemigymnus fasciatus
Wrasse	Bird wrasse	Hemigymnus fasciatus
Wrasse	Blackeye thicklip	Hemigymnus melapterus
Wrasse	Checkerboard wrasse	Halichoeres hortulanus
Wrasse	Cheilinus wrasse (misc)	Cheilinus sp.
Wrasse	Christmas wrasse	Thalassoma trilobata
Wrasse	Cigar wrasse	Cheilio inermus
Wrasse	Red ribbon wrasse	Thalassoma quinquevittaitum
Wrasse	Rockmover wrasse	Novaculichthys taeniorus
Wrasse	Sunset wrasse	Thalassoma lutescens
Wrasse	Surge wrasse	Thalassoma purpureum
Wrasse	Triple tail wrasse	Cheilinus trilobatus
Wrasse	Weedy surge wrasse	Halichoeres margaritaceus
Wrasse	Whitepatch wrasse	Xyrichtys aneitensis
Wrasse	Wrasses (misc.)	Labridae
Wrasse	Floral wrasse	Cheilinus chlorourus
Wrasse	Harlequin tuskfish	Cheilinus fasciatus
Emperors	Emperors (misc)	Lethrinidae
Emperors	Goldenline bream	Gnathodentex aureolineatus
Emperors	Yellowspot emperor	Gnathodentex aurolineatus
Emperors	Blueline bream	Gymnocranius grandoculis
Emperors	Orangespot emperor	Lethrinus erythracanthus
Emperors	Longnose emperor	Lethrinus elongatus
Emperors	Bigeye emperor	Monotaxis grandoculis
Emperors	Sweetlip emperor	Lethrinus miniatus
Snappers	Inshore snappers	Lutjanidae

American Samoa CREMUS	Common Name	Scientific Name
Snappers	Brown jobfish	Aphareus furca
Snappers	Scarlet snapper	Etelis radiosus
Snappers	Red snapper	Lutjanus bohar
Snappers	Twinspot/red snapper	Lutjanus bohar
Snappers	Yellow margined snapper	Lutjanus fulvus
Snappers	Humpback snapper	Lutjanus gibbus
Snappers	Onespot snapper	Lutjanus monostigma
Snappers	Rufous snapper	Lutjanus rufolineatus
Snappers	Blood snapper	Lutjanus sanguineus
Snappers	Timor snapper	Lutjanus timorensis
Snappers	Black snapper	Macolor niger
Snappers	Kusakar's snapper	Paracaesio kusakarii
Snappers	Stone's snapper	Paracaesio stonei
Snappers	Multidens snapper	Pristipomoides multidens
Mollusks	Mangrove clam	Anodontia edentula
Mollusks	Pen shell clam	Atrina rigida
Mollusks	Pipi clam	Donax deltoides
Mollusks	Squid	Teuthida
Mollusks	Clams (misc)	Bivalvia
Mollusks	Cone snail	Conus sp.
Mollusks	Octopus (cyanea)	Octopus cyanea
Mollusks	Octopus (ornatus)	Octopus ornatus
Mollusks	Octopus	Octopus sp.
Mollusks	Giant clam	Tridacna sp.
Mollusks	Turban snail	Trochus sp.
Mollusks	Green snails	<i>Turbo</i> sp.
Mullets	Mullets	Mugilidae
Mullets	Fringelip mullet	Crenimugil crenilabis
Mullets	Diamond scale mullet	Ellochelon vaigiensis
Mullets	False mullet	Neomyxus leuciscus
Goatfish	Goatfish (misc)	Mullidae
Goatfish	Yellowstripe goatfish	Mulloidichthys flavolineatus
Goatfish	Orange goatfish	Mulloidichthys pfluegeri
Goatfish	Yellow goatfishes	Mulloidichthys sp.
Goatfish	Yellowfin goatfish	Mulloidichthys vanicolensis
Goatfish	Dash-and-dot goatfish	Parupeneus barberinus
Goatfish	Doublebar goatfish	Parupeneus bifasciatus
Goatfish	White-lined goatfish	Parupeneus ciliatus
Goatfish	Yellowsaddle goatfish	Parupeneus cyclostomus
Goatfish	Redspot goatfish	Parupeneus heptacanthus

American Samoa CREMUS	Common Name	Scientific Name
Goatfish	Indian goatfish	Parupeneus indicus
Goatfish	Parupenus insularis	Parupeneus insularis
Goatfish	Multi-barred goatfish	Parupeneus multifasciatus
Goatfish	Side spot goatfish	Parupeneus pleurostigma
Goatfish	Banded goatfish (misc)	Parupeneus sp.
Parrotfish	Stareye parrotfish	Calotomus carolinus
Parrotfish	Longnose parrotfish	Hipposcarus longiceps
Parrotfish	Yellowband parrotfish	Scarus schlegeli
Parrotfish	Parrotfishes (misc)	Scarus sp.
Groupers	Eightbar grouper	Epinephelus octofasciatus
Groupers	Giant grouper	Epinephelus lanceolatus
Groupers	Golden hind	Cephalopholis aurantia
Groupers	Greasy grouper	Epinephelus tauvina
Groupers	Groupers (misc)	<i>Epinephelus</i> sp.
Groupers	Hexagon grouper	Epinephelus hexagonatus
Groupers	Honeycomb grouper	<i>Epinephelus merra</i>
Groupers	Inshore groupers	Serrandidae
Groupers	Longspine grouper	Epinephelus longispinnis
Groupers	Netfin grouper	<i>Epinephelus miliaris</i>
Groupers	One-bloch grouper	Epinephelus melanostigma
Groupers	Peacock grouper	Cephalopholis argus
Groupers	Pygmy grouper	Cephalopholis spiloparaea
Groupers	Saddleback grouper	Plectropomus laevis
Groupers	Six-banded grouper	Cephalopholis sexmaculatus
Groupers	Slender grouper	Anyperodon leucogrammicus
Groupers	Smalltooth grouper	Epinephelus microdon
Groupers	Spotted grouper	Epinephelus maculatus
Groupers	Squaretail grouper	Plectropomus areolatus
Groupers	Striped grouper	Epinephelus morrhua
Groupers	Tomato grouper	Cephalopholis sennerati
Groupers	Ybanded grouper	Cephalopholis igarashiensis
Groupers	Yellowspot grouper	Epinephelus timorensis
Groupers	Leopard coral trout	Plectropomus leopardus
Groupers	Powell's grouper	Saloptia powelli
Groupers	White-edged lyretail	Variola albimarginata
Rabbitfish	Rabbitfish	Siganidae
Rabbitfish	Forktail rabbitfish	Siganus aregenteus
Rabbitfish	Scribbled rabbitfish	Siganus spinus
Species of Special	Humphead (Napoleon)	Cheilinus undulatus
Management Interest	wrasse	

American Samoa CREMUS	Common Name	Scientific Name
Species of Special	Bumphead parrotfish	Bolbometopon muricatum
Management Interest		
Misc. Bottomfish	Bottomfish (misc)	n/a
Misc. Reef Fish	Reef fish (misc)	n/a
Misc. Shallow bottomfish	Shallow bottomfish (misc)	n/a
Other CRE-Finfish	Flyingfish	Exocoetidae
Other CRE-Finfish	Cornetfish	Fistularia commersonii
Other CRE-Finfish	Mojarras	Gerreidae
Other CRE-Finfish	Gobies	Gobiidae
Other CRE-Finfish	Sweetlips	Plectorhinchus sp.
Other CRE-Finfish	Halfbeaks	Hemiramphidae
Other CRE-Finfish	Flagtails	Kuhliidae
Other CRE-Finfish	Barred flagtail	Kuhlia mugil
Other CRE-Finfish	Mountain bass	Kuhlia sp.
Other CRE-Finfish	Ponyfish	Leiognathidae
Other CRE-Finfish	Tilefishes	Malacanthus sp.
Other CRE-Finfish	Sunfish	Masturus lanceolatus
Other CRE-Finfish	Filefishes	Monacanthidae
Other CRE-Finfish	Silver batfish	Monodactylus argenteus
Other CRE-Finfish	Moray eels	Gymnothorax sp.
Other CRE-Finfish	Dragon eel	Enchelycore pardalis
Other CRE-Finfish	Yellowmargin moray eel	Gymnothorax flavimarginatus
Other CRE-Finfish	Giant moray eel	Gymnothorax javanicus
Other CRE-Finfish	Spotted moray eels	<i>Gymnothorax</i> sp.
Other CRE-Finfish	Undulated moray eel	Gymnothorax undulatus
Other CRE-Finfish	Rays	Batiodea
Other CRE-Finfish	Eagle ray	Aetobatis narinari
Other CRE-Finfish	Monogram monocle bream	Scolopsis monogramma
Other CRE-Finfish	Nurse shark	Pempheris sp.
Other CRE-Finfish	Sweepers	Pempheridae
Other CRE-Finfish	Prettyfins	Cyprinididae
Other CRE-Finfish	Threadfin	Polynemus sp.
Other CRE-Finfish	Angelfishes	Centropyge flavissimus
Other CRE-Finfish	Emperor angelfish	Pomacanthus imperator
Other CRE-Finfish	Banded sergeant	Abudefduf septemfasciatus
Other CRE-Finfish	Sergeant major	Abudefduf sp.
Other CRE-Finfish	Damselfish	Dascyllus trimaculatus
Other CRE-Finfish	Bigeyes	Priacanthidae
Other CRE-Finfish	Glasseye	Heteropriacanthus cruentatus
Other CRE-Finfish	Paeony bulleye	Priacanthus blochii

American Samoa CREMUS	Common Name	Scientific Name
Other CRE-Finfish	Moontail bullseye	Priacanthus hamrur
Other CRE-Finfish	Bigeye squirrelfish	Priacanthus sp.
Other CRE-Finfish	Dottybacks	Pseudochromidae
Other CRE-Finfish	Scorpionfishes	Scorpaenidae
Other CRE-Finfish	Lionfish	Pterois sp.
Other CRE-Finfish	Stonefish	<i>Synaceia</i> sp.
Other CRE-Finfish	Small barracuda	Sphyraenidae
Other CRE-Finfish	Great barracuda	Sphyraena barracuda
Other CRE-Finfish	Bigeye barracuda	Sphyraena forsteri
Other CRE-Finfish	Heller's barracuda	Sphyraena helleri
Other CRE-Finfish	Blackfin barracuda	Sphyraena qenie
Other CRE-Finfish	Barracudas (misc)	Sphyraena sp.
Other CRE-Finfish	Seahorses	Sygnathidae
Other CRE-Finfish	Lizardfish	Synodontidae
Other CRE-Finfish	Terapon perch	Terapon jarbua
Other CRE-Finfish	Moorish Idol	Zanclus cornutus
Other CRE-Finfish	Freshwater eel	Anguilla marmorata
Other CRE-Finfish	Flashlightfishes	Anomalopidae
Other CRE-Finfish	Frogfishes	Antennariidae
Other CRE-Finfish	Cardinalfish	Apogonidae
Other CRE-Finfish	Silversides	Hypoathernia temminckii
Other CRE-Finfish	Trumpetfish	Aulostomus chinensis
Other CRE-Finfish	Triggerfish	Balistidae
Other CRE-Finfish	Orangestripe triggerfish	Balistapus undulatus
Other CRE-Finfish	Clown triggerfish	Balistoides conspicillum
Other CRE-Finfish	Titan triggerfish	Balistoides viridescens
Other CRE-Finfish	Needlefish	Belonidae
Other CRE-Finfish	Blennies	Blennidae
Other CRE-Finfish	Angler flatfish	Asterorhombus fijiensis
Other CRE-Finfish	Gold banded fusilier	Caesio caerulaurea
Other CRE-Finfish	Coral crouchers	Caracanthus maculatus
Other CRE-Finfish	Butterflyfishes (misc)	Chaetodon sp.
Other CRE-Finfish	Butterflyfish (auriga)	Chaetodon auriga
Other CRE-Finfish	Saddleback butterflyfish	Chaetodon ephippium
Other CRE-Finfish	Racoon butterflyfish	Chaetodon lunula
Other CRE-Finfish	Butterflyfish (melanotic)	Chaetodon melannotus
Other CRE-Finfish	Milkfish	Chanos chanos
Other CRE-Finfish	Tilapia	Tilapia zillii
Other CRE-Finfish	Two spotted hawkfish	Amplycirrhitus bimacula
Other CRE-Finfish	Stocky hawkfish	Cirrhitus pinnalatus

American Samoa CREMUS	Common Name	Scientific Name
Other CRE-Finfish	Flame hawkfish	Neocirrhites armatus
Other CRE-Finfish	Herrings	Clupeidae
Other CRE-Finfish	White eel	Conger cinereus
Other CRE-Finfish	Conger eels	Conger sp.
Other CRE-Finfish	Porcupinefish	Diodon (Porcupine) sp.
Other CRE-Finfish	Remoras	Echeneidae
Other CRE-Finfish	Anchovies	Engraulidae
Other CRE-Finfish	Batfishes	Ephippidae
Invertebrates	Invertebrates (misc)	n/a
Invertebrates	Sea urchins (misc)	Diadema
Invertebrates	Black sea urchin	Diadema
Invertebrates	White sea urchin	Salmacis sp.
Invertebrates	Cubed loli	Holothuria atra (cubed)
Invertebrates	Cubed leapord sea cucumber	Bahadschia argus (cubed)
Invertebrates	Surf redfish	Actinopyga maurtiana
Invertebrates	Sea cucumber (misc)	Cucumariidae
Invertebrates	Sea cucumber - gau	Cucumariidae
Invertebrates	Sea cucumber gonads	Cucumariidae
Invertebrates	Leapord sea cucumber	Bahadschia argus
Invertebrates	Loli	Holothuria atra
Algae	Red algae	Red Algae
Algae	Seaweeds	Seaweeds

Mariana CREMUS (CNMI)	Common Name	Scientific Name
Atulai	Bigeye Scad	Selar crumenopthalmus
Surgeonfish	Bluebanded Surgeonfish	Acanthurus lineatus
Surgeonfish	Bluelined Surgeon	Acanthurus nigroris
Surgeonfish	Bluespine Unicornfish	Naso unicornis
Surgeonfish	Convict Tang	Acanthurus triostegus
Surgeonfish	Orangespine Unicornfish	Naso lituratus
Surgeonfish	Surgeonfish (misc.)	Acanthurus sp.
Surgeonfish	Unicornfish (misc.)	Naso sp.
Surgeonfish	Yellowfin Surgeonfish	Acanthurus xanthopterus
Jacks	Bigeye Trevally	Caranx sexfasciatus
Jacks	Bluefin Trevally	Caranx melampygus
Jacks	Brassy Trevally	Caranx papuesis
Jacks	EE: Juvenile Jacks	<i>Canranx</i> sp.
Jacks	Jacks (misc.)	<i>Caranx</i> sp.
Jacks	Leatherback	Scomberoides lysan
Jacks	Mackerel Scad	Decapterus macarellus
Jacks	Rainbow Runner	Elagatis bipinnulatus
Jacks	Small-spotted pompano	Trachinotus bailloni
Jacks	Snubnose pompano	Trachinotus blochii
Jacks	Yellow Spotted Trevally	Carangoides orthogrammus
Species of Special	Reef sharks (misc)	Carcharhinidae
Management Interest		
Crustaceans	Crabs (misc)	n/a
Crustaceans	Coconut Crab	Birgus latro
Squirrelfish	Squirrelfish	Holocentridae
Squirrelfish	Soldierfish (misc.)	Holocentridae
Rudderfish	Rudderfish (guilli)	Kyphosus sp.
Rudderfish	Highfin Rudderfish Silver	Kyphosus cinerascens
Wrasse	Wrasse (misc.)	Labridae
Wrasse	Tripletail Wrasse	Cheilinus trilobatus
Emperors	Bigeye Emperor	Monotaxis grandoculus
Emperors	Blackspot Emperor	Lethrinus harak
Emperors	Emperor (mafute/misc.)	Lethrinus sp.
Emperors	Flametail Emperor	Lutjanus fulvus
Emperors	Longnose Emperor	Lethrinus olivaceus
Emperors	Orangefin Emperor	Lethrinus erythracanthus
Emperors	Ornate Emperor	Lethrinus ornatus
Emperors	Stout Emperor	Gymnocranius sp.
Emperors	Yellowlips Emperor	Lethrinus xanthochilis

Table A2. Mariana CREMUS (CNMI)

Mariana CREMUS (CNMI)	Common Name	Scientific Name
Emperors	Yellowspot emperor	Gnathodentex aurolineatus
Emperors	Yellowstripe Emperor	Lethrinus obsoletus
Emperors	Yellowtail Emperor	Lethrinus atkinsoni
Snappers	Snapper (misc. shallow)	Lutjanidae
Snappers	Humpback Snapper	Lutjanus gibbus
Snappers	Onespot Snapper	Lutjanus monostigmus
Snappers	Red Snapper	Lutjanus bohar
Snappers	Smalltooth Jobfish	Aphareus furca
Mollusks	Octopus	Octopus sp.
Mollusks	Squid	Teuthida
Mollusks	Trochus	Trochus sp.
Mollusks	Clam/bivalve	Bivalvia
Mullet	Mullet	Mugilidae
Goatfish	Dash & Dot Goatfish	Parupeneus barberrinus
Goatfish	Goatfish (juvenile-misc)	Mullidae
Goatfish	Goatfish (misc.)	Mullidae
Goatfish	Sidespot Goatfish	Parupeneus pleurostigma
Goatfish	Two-barred Goatfish	Parupeneus bifasciatus
Goatfish	Yellowstripe Goatfish	Mulloidichthys flavolineatus
Parrotfish	Parrotfish (misc.)	Scarus sp.
Parrotfish	Seagrass Parrotfish	Leptoscarus vaigiensis
Groupers	Coral Grouper	Epinephelus corallicola
Groupers	Flagtail Grouper	Cephalopholis urodeta
Groupers	Grouper (misc.)	Serannidae
Groupers	Highfin Grouper	Epinephelus maculatus
Groupers	Honeycomb Grouper	Epinephelus merra
Groupers	Lyretail Grouper	Variola louti
Groupers	Marbled Grouper	Epinephelus polyphekadion
Groupers	Peacock Grouper	Cephalopholis argus
Groupers	Pink Grouper	Saloptia powelli
Groupers	Saddleback Grouper	Plectropomus laevis
Groupers	Tomato Grouper	Cephanopholis sonnerati
Groupers	White Lyretail Grouper	Variola albimarginata
Groupers	Yellow Banded Grouper	Cephalopholis igarashiensis
Rabbitfish	Rabbitfish (hitting)	Siganus sp.
Rabbitfish	Rabbitfish (h.feda)	Siganus puntatus
Rabbitfish	Rabbitfish (sesjun)	Siganus spinus
Species of Special	Humphead (Napoleon)	<i>Cheilinus undulatus</i>
Management Interest	wrasse	
Species of Special	Bumphead parrotfish	Bolbometopon muricatum
Management Interest		

Mariana CREMUS (CNMI)	Common Name	Scientific Name
Misc. Bottomfish	Bottom Fish	n/a
Misc. Reeffish	Reef Fish	n/a
Misc. Shallow bottomfish	Shallow Bottomfish	n/a
Other CRE-Finfish	Angelfish	Pomacanthidae
Other CRE-Finfish	Butterflyfish	Chaetodontidae
Other CRE-Finfish	Bigeye/glasseye	Heteropriacanthus cruentatus
Other CRE-Finfish	Blue Razorfish	Xyrichtys pavo
Other CRE-Finfish	Bronzespot Razorfish	Xyrichtys celebicus
Other CRE-Finfish	Cardinal Misc.	Apogonidae
Other CRE-Finfish	Cornetfish	Fistularia commersonii
Other CRE-Finfish	Damselfish	Pomacentridae
Other CRE-Finfish	Filefish (misc)	Monacanthidae
Other CRE-Finfish	Flounder (misc)	Bothus sp.
Other CRE-Finfish	Fusilier (misc.)	Caesionidae
Other CRE-Finfish	Goggle-eye	Priacanthus hamrur
Other CRE-Finfish	Lizardfish misc.	Synodontidae
Other CRE-Finfish	Milkfish	Chanos chanos
Other CRE-Finfish	Mojarra	Gerres sp.
Other CRE-Finfish	Moray eel	Muraenidae
Other CRE-Finfish	Needlefish	Belonidae
Other CRE-Finfish	Picasso Trigger	Rhinecanthus aculeatus
Other CRE-Finfish	Pufferfish	Tetraodontidae
Other CRE-Finfish	Razorfish (misc)	Tribe Novaculini
Other CRE-Finfish	Scorpionfishes	Scorpaenidae
Other CRE-Finfish	Sweetlips	Plectorhinchus picus
Other CRE-Finfish	Triggerfish (misc.)	Balistidae
Other CRE-Finfish	Trumpetfish	Aulostomus chinensis
Other CRE-Finfish	Wedge Trigger	Rhinecanthus rectangulus
Other Invertebrates	Invertebrates	n/a
Other Invertebrates	Sea Cucumber	Cucumariidae
Algae	Seaweeds	n/a
Algae	Lemu	n/a

Mariana CREMUS (Guam)	Common Name	Scientific Name
Atulai	Bigeye Scad	Selar crumenopthalmus
Surgeonfish	Surgeon/Unicornfishes	Acanthuridae
Surgeonfish	Achilles Tang	Acanthurus achilles
Surgeonfish	Bariene Surgeonfish	Acanthurus bariene
Surgeonfish	White-Bar Surgeonfish	Acanthurus blochii
Surgeonfish	Chronixis Surgeonfish	Acanthurus chronixis
Surgeonfish	Eye-Stripe Surgeonfish	Acanthurus dussumieri
Surgeonfish	Whitespotted Surgeonfish	Acanthurus guttatus
Surgeonfish	Palelipped Surgeonfish	Acanthurus leucocheilus
Surgeonfish	Whitebar Surgeonfish	Acanthurus leucopareius
Surgeonfish	Bluebanded Surgeonfish	Acanthurus lineatus
Surgeonfish	White-Freckled Surgeonfish	Acanthurus maculiceps
Surgeonfish	Elongate Surgeonfish	Acanthurus mata
Surgeonfish	Whitecheek Surgeonfish	Acanthurus nigricans
Surgeonfish	Epaulette Surgeonfish	Acanthurus nigricauda
Surgeonfish	Brown Surgeonfish	Acanthurus nigrofuscus
Surgeonfish	Bluelined Surgeonfish	Acanthurus nigroris
Surgeonfish	Surgeonfish	Acanthurus nubilus
Surgeonfish	Orangeband Surgeonfish	Acanthurus olivaceus
Surgeonfish	Chocolate Surgeonfish	Acanthurus pyroferus
Surgeonfish	Thompson'S Surgeonfish	Acanthurus thompsoni
Surgeonfish	Convict Tang	Acanthurus triostegus
Surgeonfish	Yellowfin Surgeonfish	Acanthurus xanthopterus
Surgeonfish	2-Spot Bristletooth	Ctenochaetus binotatus
Surgeonfish	Black Surgeonfish	Ctenochaetus hawaiiensis
Surgeonfish	Blue-Spotted Bristletooth	Ctenochaetus marginatus
Surgeonfish	Striped Bristletooth	Ctenochaetus striatus
Surgeonfish	Goldring Surgeonfish	Ctenochaetus strigosus
Surgeonfish	Tomini Surgeonfish	Ctenochaetus tominiensis
Surgeonfish	Whmargin Unicornfish	Naso annulatus
Surgeonfish	Humpback Unicornfish	Naso brachycentron
Surgeonfish	Spotted Unicornfish	Naso brevirostris
Surgeonfish	Whtongue Unicornfish	Naso caesius
Surgeonfish	Bltongue Unicornfish	Naso hexacanthus
Surgeonfish	Orangespine Unicornfish	Naso lituratus
Surgeonfish	Lopez' Unicornfish	Naso lopezi
Surgeonfish	Whtongue Unicornfish	Naso thynnoides
Surgeonfish	Humpnose Unicornfish	Naso tuberosus
Surgeonfish	Bluespine Unicornfish	Naso unicornis
Surgeonfish	Bignose Unicornfish	Naso vlamingii
Surgeonfish	Hepatus Tang	Paracanthurus hepatus
Surgeonfish	Yellow Tang	Zebrasoma flavescens

Table A3. Mariana CREMUS (Guam)

Mariana CREMUS (Guam)	Common Name	Scientific Name
Surgeonfish	Brown Tang	Zebrasoma scopas
Surgeonfish	Sailfin Tang	Zebrasoma veliferum
Jacks	Pennantfish	Alectis ciliaris
Jacks	Malabar Trevally	Alectis indicus
Jacks	Jacks, Trevallys	Carangidae
Jacks	Trevally	Carangoides
Jacks	Shadow Kingfish	Carangoides dinema
Jacks	Bar Jack	Carangoides ferdau
Jacks	Yell-Dotted Trevally	Carangoides fulvoguttatus
Jacks	Headnotch Trevally	Carangoides hedlandensis
Jacks	Yellow Spotted Jack	Carangoides orthogrammus
Jacks	Barcheek Trevally	Carangoides plagiotaenia
Jacks	Trevally	Carangoides talamparoides
Jacks	Longfin Trevally	Carangoides uii
Jacks	Juvenile Caranx	Caranx i'e'
Jacks	Bluefin Trevally	Caranx melampygus
Jacks	Brassy Trevally	Caranx papuensis
Jacks	Bigeye Trevally	Caranx sexfasciatus
Jacks	Mackerel Scad	Decapterus macarellus
Jacks	Mackerel Scad	Decapterus macrosoma
Jacks	Round Scad	Decapterus maruadsi
Jacks	Round Scad	Decapterus nusselli
Jacks	Rainbow Runner	<i>Elagatis bipinnulatus</i>
Jacks	Golden Trevally	Gnathanodon speciosus
Jacks		Megalaspis cordyla
Jacks	Pilotfish	Naucrates ductor
Jacks	Elagatis, Scomberoides,	Naucratini
Jacks	Leatherback	Scomberoides lysan
Jacks	Almaco Jack	Seriola rivoliana
Jacks	Small Spotted Pompano	Trachinotus bailloni
Jacks	Silver Pompano	Trachinotus blochii
Jacks	Mandibular Kingfish	Ulua mandibularis
Jacks	Kingfish	Uraspis helvola
Jacks	Deep Trevally	Uraspis secunda
Jacks	Whitemouth Trevally	Uraspis uraspis
Carcharhinidae	Reef sharks	Carcharhinidae
Carcharhinidae	Blackfin shark White tip reef shark	Carcharhinus limbatus
Carcharhinidae Carcharhinidae	1	Triaenodon obesus
	Blackfin Shark	Carcharhinus limbatus
Carharhinidae	Reef Whitetip Shark	Triaenodon obesus
Other	Nurse Shark	Nebrius ferrugineus
Other	Lemon Shark	Negaprion acutidens
Other	Bramble Shark	Echinorhinidae

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other	Bramble Shark	Echinorhinus brucus
Other	Bramble Shark	Echinorhinus cookei
Other	Tiger Shark	Galeocerdo cuvier
Other	Nurse,Zebra,Carpet Sharks	Orectolobidae
Other	Leopard Shark	Stegastoma varium
Crustaceans	Spider Crab	Achaeus japonicus
Crustaceans	Snapping Shrimp	Alphaeidae
Crustaceans	Snapping Shrimp	Alpheus bellulus
Crustaceans	Snapping Shrimp	Alpheus paracrinitus
Crustaceans	Anchylomerids	Anchylomeridae
Crustaceans	Slipper Lobster	Arctides regalis
Crustaceans	Acorn Barnacle	Balanus sp
Crustaceans	Mantis Shrimp	Bathysquillidae
Crustaceans	Box Crab	Calappa bicornis
Crustaceans	Box Crab	Calappa calappa
Crustaceans	Box Crab	Calappa hepatica
Crustaceans	Box Crabs	Calappidae
Crustaceans	Decorator Crab	Camposcia retusa
Crustaceans	Cancrids	Cancridae
Crustaceans	7-11 Crab	Carpilius convexus
Crustaceans	7-11 Crab	Carpilius maculatus
Crustaceans	Red-Legged Sw Crab	Charybdis erythrodactyla
Crustaceans	Red Sw Crab	Charybdis hawaiiensis
Crustaceans	Box Crab	Cycloes granulosa
Crustaceans	Elbow Crab	Daldorfia horrida
Crustaceans	Marine Hermit Crab	Dardanus gemmatus
Crustaceans	Marine Hermit Crab	Dardanus megistos
Crustaceans	Marine Hermit Crab	Dardanus pendunculatus
Crustaceans	Marine Hermit Crab	Dardanus sp.
Crustaceans	Commensal Shrimp	Dasycaris zanzibarica
Crustaceans	Decapod Crustaceans	Decapoda
Crustaceans	Marine Hermit Crabs	Diogenidae
Crustaceans	Dorippid Crab	Dorippe frascone
Crustaceans	Sponge Crab	Dromia dormia
Crustaceans	Sponge Crabs	Dromiidae
Crustaceans	Mole Crab	Emerita pacifica
Crustaceans	Soft Lobster	Enoplometopus debelius
Crustaceans	Hairy Lobster	Enoplometopus occidentalis
Crustaceans	Redeye Crab	Eriphia sebana
Crustaceans	Red-Reef Crab	Etisus dentatus
Crustaceans	Red-Reef Crab	Etisus splendidus
Crustaceans	Brown-Reef Crab	Etisus utilis
Crustaceans	Mantis Shrimp	Eurysquillidae

Mariana CREMUS (Guam)	Common Name	Scientific Name
Crustaceans	Squat Lobsters	Galatheidae
Crustaceans	Gecarcinids	Gecarcinidae
Crustaceans	Bbee And Harlequin Shrimp	Gnathophyllidae
Crustaceans	Bumblebee Shrimp	Gnathophylloides mineri
Crustaceans	Bumblebee Shrimp	Gnathophyllum americanum
Crustaceans	Mantis Shrimp	Gonodactylaceus mutatus
Crustaceans	Mantis Shrimp	Gonodactylellus affinis
Crustaceans	Mantis Shrimp	Gonodactylidae
Crustaceans	Mantis Shrimp	Gonodactylus chiragra
Crustaceans	Mantis Shrimp	Gonodactylus platysoma
Crustaceans	Mantis Shrimp	Gonodactylus smithii
Crustaceans	Shore Crabs	Grapsidae
Crustaceans	Shore Crab	Grapsus albolineatus
Crustaceans	Shore Crab	Grapsus grapsus tenuicrustat
Crustaceans	Hapalocarcinids	Hapalocarcinidae
Crustaceans	Mantis Shrimp	Harposquillidae
Crustaceans	Mantis Shrimp	Hemisquillidae
Crustaceans	Deepwater Shrimps	Heteropenaeus sp
Crustaceans	Hump-Backed Shrimp	Hippolytidae
Crustaceans	Homolids	Homolidae
Crustaceans	Soft Lobster	Hoplometopus holthuisi
Crustaceans	Harlequin Shrimp	Hymenocera picta
Crustaceans	Hyperid Amphipods	Hyperiidae
Crustaceans	Slipper Lobster	Ibacus sp
Crustaceans	True Crabs	Io Brachyura
Crustaceans	Long-Handed Lobster	Justitia longimanus
Crustaceans	Hump-Backed Shrimp	Koror misticius
Crustaceans	Elbow Crab	Lambrus longispinis
Crustaceans	Palaemonid Shrimp	Leander plumosus
Crustaceans	Lithodids	Lithodidae
Crustaceans	Swimming Crab	Lupocyclus grimquedentatus
Crustaceans	Lycaeids	Lycaeidae
Crustaceans	3-Toothed Frog Crab	Lyreidus tridentatus
Crustaceans	Mantis Shrimp	Lysiosquillidae
Crustaceans	Barnacles	Lythoglyptidae
Crustaceans	Telescope-Eye Crab	Macrophthalmus telescopicus
Crustaceans	Spider Crabs	Majidae
Crustaceans	Penaeid Prawn	Metapenaeopsis sp 1
Crustaceans	Penaeid Prawn	Metapenaeopsis sp 2
Crustaceans	Penaeid Prawn	Metapenaeopsis sp 3
Crustaceans	Box Crab	Mursia spinimanus
Crustaceans	Mantis Shrimp	Nannosquillidae
Crustaceans	Soft Lobsters	Nephropidae

Mariana CREMUS (Guam)	Common Name	Scientific Name
Crustaceans	Large Ghost Crab	Ocypode ceratopthalma
Crustaceans	Ghost Crab	Ocypode cordimana
Crustaceans	Ghost Crab	Ocypode saratum
Crustaceans	Ocypodids	Ocypodidae
Crustaceans	Mantis Shrimp	Odontodactylidae
Crustaceans	Mantis Shrimp	Odontodactylus brevirostris
Crustaceans	Mantis Shrimp	Odontodactylus scyallarus
Crustaceans	Mantis Shrimp	Oratosquilla oratoria
Crustaceans	Mantis Shrimp	Oratosquillidae
Crustaceans	Soldier Hermit Crab	Paguridae
Crustaceans	Coral Hermit Crab	Paguritta gracilipes
Crustaceans	Coral Hermit Crab	Paguritta harmsi
Crustaceans	Palaemonid Shrimp	Palaemonidae
Crustaceans	Mole Lobster	Palinurellus wieneckii
Crustaceans	Painted Crayfish	Panulirus albiflagellum
Crustaceans	Painted Crayfish	Panulirus versicolor
Crustaceans	Elbow Crabs	Parthenopidae
Crustaceans	Panaeid Prawns	Penaeidae
Crustaceans	Penaeid Prawn	Penaeus latisulcatus
Crustaceans	Penaeid Prawn	Penaeus monodon
Crustaceans	Flat Rock Crab	Percnon planissimum
Crustaceans	Commensal Shrimp	Periclimenes amboinensis
Crustaceans	Commensal Shrimp	Periclimenes brevicarpalis
Crustaceans	Commensal Shrimp	Periclimenes cf
Crustaceans	Commensal Shrimp	Periclimenes holthuisi
Crustaceans	Commensal Shrimp	Periclimenes imperator
Crustaceans	Commensal Shrimp	Periclimenes inornatus
Crustaceans	Commensal Shrimp	Periclimenes kororensis
Crustaceans	Commensal Shrimp	Periclimenes ornatus
Crustaceans	Commensal Shrimp	Periclimenes psamathe
Crustaceans	Commensal Shrimp	Periclimenes soror
Crustaceans	Commensal Shrimp	Periclimenes tenuipes
Crustaceans	Commensal Shrimp	Periclimenes venustus
Crustaceans	Porcelain Crab	Petrolisthes lamarkii
Crustaceans	Phronimids	Phronimidae
Crustaceans	Shore Crab	Plagusia depressa tuberculata
Crustaceans	Platyscelids	Platyscelidae
Crustaceans	Commensal Shrimp	Pliopotonia furtiva
Crustaceans	Long-Eyed Swimming Crab	Podophthalmus vigil
Crustaceans	Commensal Shrimp	Pontonides uncigar
Crustaceans	Commensal Shrimp	Pontoniidae
Crustaceans	Porcellanid Crabs	Porcellanidae
Crustaceans	Swimming Crabs	Portunidae

Mariana CREMUS (Guam)	Common Name	Scientific Name
Crustaceans	Blue Swimming Crab	Portunus pelagicus
Crustaceans	Swimming Crab	Portunus sanguinolentus
Crustaceans	Mantis Shrimp	Protosquillidae
Crustaceans	Mantis Shrimp	Pseudosquilla ciliata
Crustaceans	Mantis Shrimp	Pseudosquillidae
Crustaceans	Hingebeak Prawn	Rhinchocinetes hiatti
Crustaceans	Hinge-Beaked Prawns	Rhynchocinetidae
Crustaceans	Mangrove Crab	Scylla serrata
Crustaceans	Solenocerids	Solenoceridae
Crustaceans	Mantis Shrimp	Squillidae
Crustaceans	Commensal Shrimp	Stegopontonia commensalis
Crustaceans	Cleaner Shrimp	Stenopodidae
Crustaceans	Banded Coral Shrimp	Stenopus hispidus
Crustaceans	Mantis Shrimps	Stomatopoda
Crustaceans	Snapping Shrimp	Synalpheus carinatus
Crustaceans	Acorn Barnacle	Tetraclitella divisa
Crustaceans	Swimming Crab	Thalamita crenata
Crustaceans	Ambonian Shrimp	Thor amboinensis
Crustaceans	Xanthid Crab	Unid Megalops
Crustaceans	Portunid Crab	Unid sp 1
Crustaceans	Xanthid Crab	Unid sp 1
Crustaceans	Portunid Crab	Unid sp 2
Crustaceans	Xanthid Crab	Unid sp 2
Crustaceans	Palaemonid Shrimp	Urocaridella antonbruunii
Crustaceans	Dark-Finger Coral Crabs	Xanthidae
Crustaceans	Urchin Crab	Zebrida adamsii
Crustaceans	Shallow Reef Crab	Zosymus aeneus
Squirrelfish	Squirrel,Soldierfishes	Holocentridae
Squirrelfish	Squirrelfishes	Holocentrinae
Squirrelfish	Soldierfishes	Myripristinae
Squirrelfish	Bronze Soldierfish	Myripristis adusta
Squirrelfish	Brick Soilderfish	Myripristis amaena
Squirrelfish	Doubletooth Soldierfish	Myripristis amaena
Squirrelfish	Bigscale Soldierfish	Myripristis berndti
Squirrelfish	Yellowfin Soldierfish	Myripristis chryseres
Squirrelfish	Pearly Soldierfish	Myripristis kuntee
Squirrelfish	Red Soldierfish	Myripristis murdjan
Squirrelfish	Scarlet Soldierfish	Myripristis marajan Myripristis pralinia
Squirrelfish	Violet Soldierfish	Myripristis violacea
Squirrelfish	White-Tipped Soldierfish	Myripristis violacea Myripristis vittata
Squirrelfish	White-Spot Soldierfish	Myripristis woodsi
Squirrelfish	Clearfin Squirrelfish	Neoniphon argenteus
Squirrelfish	Yellowstriped Squirrelfish	Neoniphon aurolineatus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Squirrelfish	Blackfin Squirrlefish	Neoniphon opercularis
Squirrelfish	Bloodspot Squirrelfish	Neoniphon sammara
Squirrelfish	Deepwater Soldierfish	Ostichthys brachygnathus
Squirrelfish	Deepwater Soldierfish	Ostichthys kaianus
Squirrelfish	Cardinal Squirrelfish	Plectrypops lima
Squirrelfish	Tailspot Squirrelfish	Sargocentron
Squirrelfish	3-Spot Squirrelfish	Sargocentron cornutum
Squirrelfish	Crown Squirrelfish	Sargocentron diadema
Squirrelfish	Spotfin Squirrelfish	Sargocentron
Squirrelfish	Furcate Squirrelfish	Sargocentron furcatum
Squirrelfish	Samurai Squirrelfish	Sargocentron ittodai
Squirrelfish	Squirrelfish	Sargocentron lepros
Squirrelfish	Blackspot Squirrelfish	Sargocentron melanospilos
Squirrelfish	Finelined Squirrelfish	Sargocentron microstoma
Squirrelfish	Dark-Striped Squirrelfish	Sargocentron praslin
Squirrelfish	Speckled Squirrelfish	Sargocentron punctatissimum
Squirrelfish	Long-Jawed Squirrelfish	Sargocentron spiniferum
Squirrelfish	Blue-Lined Squirrelfish	Sargocentron tiere
Squirrelfish	Pink Squirrelfish	Sargocentron tieroides
Squirrelfish	Violet Squirrelfish	Sargocentron violaceum
Rudderfish	Rudderfish	Kyphosidae
Rudderfish	Insular Rudderfish	Kyphosus bigibbus
Rudderfish	Highfin Rudderfish	Kyphosus cinerascens
Rudderfish	Lowfin Rudderfish	Kyphosus vaigiensis
Wrasse	Chiseltooth Wrasse	Anampses caeruleopunctatus
Wrasse	Geographic Wrasse	Anampses geographicus
Wrasse	Wrasse	Anampses melanurus
Wrasse	Yellowtail Wrasse	Anampses meleagrides
Wrasse	Yellowbreasted Wrasse	Anampses twisti
Wrasse	Lyretail Hogfish	Bodianus anthioides
Wrasse	Axilspot Hogfish	Bodianus axillaris
Wrasse	2-Spot Slender Hogfish	Bodianus bimaculatus
Wrasse	Diana'S Hogfish	Bodianus diana
Wrasse	Blackfin Hogfish	Bodianus loxozonus
Wrasse	Mesothorax Hogfish	Bodianus nesothorax
Wrasse	Hogfish	Bodianus tanyokidus
Wrasse	Floral Wrasse	Cheilinus chlorourus
Wrasse	Red-Breasted Wrasse	<i>Cheilinus fasciatus</i>
Wrasse	Snooty Wrasse	Cheilinus oxycephalus
Wrasse	Tripletail Wrasse	Cheilinus trilobatus
Wrasse	Cigar Wrasse	Cheilio inermis
Wrasse	Yel-Cheeked Tuskfish	Choerodon anchorago
Wrasse	Harlequin Tuskfish	Choerodon fasciatus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Wrasse	Wrasse	Cirrhilabrus balteatus
Wrasse	Wrasse	Cirrhilabrus cyanopleura
Wrasse	Exquisite Wrasse	Cirrhilabrus exquisitus
Wrasse	Johnson'S Wrasse	Cirrhilabrus johnsoni
Wrasse	Wrasse	Cirrhilabrus katherinae
Wrasse	Yellowband Wrasse	Cirrhilabrus luteovittatus
Wrasse	Rhomboid Wrasse	Cirrhilabrus rhomboidalis
Wrasse	Red-Margined Wrasse	Cirrhilabrus rubrimarginatus
Wrasse	Clown Coris	Coris aygula
Wrasse	Dapple Coris	Coris batuensis
Wrasse	Pale-Barred Coris	Coris dorsomacula
Wrasse	Yellowtailed Coris	Coris gaimardi
Wrasse	Knife Razorfish	Cymolutes praetextatus
Wrasse	Finescale Razorfish	Cymolutes torquatus
Wrasse	Wandering Cleaner Wrasse	Diproctacanthus xanthurus
Wrasse	Sling-Jawed Wrasse	<i>Epibulus insidiator</i>
Wrasse	Sling-Jawed Wrasse	Epibulus n sp
Wrasse	Bird Wrasse	Gomphosus varius
Wrasse	2-Spotted Wrasse	Halichoeres biocellatus
Wrasse	Drab Wrasse	Halichoeres chloropterus
Wrasse	Canary Wrasse	Halichoeres chrysus
Wrasse	Wrasse	Halichoeres dussumieri
Wrasse	Checkerboard Wrasse	Halichoeres hortulanus
Wrasse	Weedy Surge Wrasse	Halichoeres margaritaceus
Wrasse	Dusky Wrasse	Halichoeres marginatus
Wrasse	Pinstriped Wrasse	Halichoeres melanurus
Wrasse	Black-Ear Wrasse	Halichoeres melasmapomus
Wrasse	Ornate Wrasse	Halichoeres ornatissimus
Wrasse	Seagrass Wrasse	Halichoeres papilionaceus
Wrasse	Wrasse	Halichoeres prosopeion
Wrasse	Wrasse	Halichoeres purpurascens
Wrasse	Richmond'S Wrasse	Halichoeres richmondi
Wrasse	Zigzag Wrasse	Halichoeres scapularis
Wrasse	Shwartz Wrasse	Halichoeres shwartzi
Wrasse	Wrasse	Halichoeres sp
Wrasse	3-Spot Wrasse	Halichoeres trimaculatus
Wrasse	Wrasse	Halichoeres zeylonicus
Wrasse	Striped Clown Wrasse	Hemigymnus fasciatus
Wrasse	1/2 &1/2 Wrasse	Hemigymnus melapterus
Wrasse	Wrasse	Hologymnosus annulatus
Wrasse	Ring Wrasse	Hologymnosus doliatus
Wrasse	Tubelip Wrasse	Labrichthys unilineatus
Wrasse	Bicolor Cleaner Wrasse	Labroides bicolor

Mariana CREMUS (Guam)	Common Name	Scientific Name
Wrasse	Bluestreak Cleaner Wrasse	Labroides dimidiatus
Wrasse	Black-Spot Cleaner Wrasse	Labroides pectoralis
Wrasse	Allen'S Wrasse	Labropsis alleni
Wrasse	Micronesian Wrasse	Labropsis micronesica
Wrasse	Wedge-Tailed Wrasse	Labropsis xanthonota
Wrasse	Leopard Wrasse	Macropharyngodon meleagris
Wrasse	Negros Wrasse	Macropharyngodon
Wrasse	Seagrass Razorfish	Novaculichthys
Wrasse	Dragon Wrasse	Novaculichthys taeniourus
Wrasse	Arenatus Wrasse	Oxycheilinus arenatus
Wrasse	2-Spot Wrasse	Oxycheilinus bimaculatus
Wrasse	Celebes Wrasse	Oxycheilinus celebecus
Wrasse	Bandcheek Wrasse	Oxycheilinus digrammus
Wrasse	Oriental Wrasse	Oxycheilinus orientalis
Wrasse	Ringtail Wrasse	Oxycheilinus unifasciatus
Wrasse	Wrasse	Paracheilinus bellae
Wrasse	Wrasse	Paracheilinus sp
Wrasse	Wrasse	Polylepion russelli
Wrasse	Wrasse	Pseudocheilinops ataenia
Wrasse	Striated Wrasse	Pseudocheilinus evanidus
Wrasse	6 Line Wrasse	Pseudocheilinus hexataenia
Wrasse	8 Line Wrasse	Pseudocheilinus octotaenia
Wrasse	Line Wrasse	Pseudocheilinus sp
Wrasse	4 Line Wrasse	Pseudocheilinus tetrataenia
Wrasse	Rust-Banded Wrasse	Pseudocoris aurantiofasciata
Wrasse	Torpedo Wrasse	Pseudocoris heteroptera
Wrasse	Yamashiro'S Wrasse	Pseudocoris yamashiroi
Wrasse	Chiseltooth Wrasse	Pseudodax moluccanus
Wrasse	Polynesian Wrasse	Pseudojuloides atavai
Wrasse	Smalltail Wrasse	Pseudojuloides cerasinus
Wrasse	Wrasse	Pterogogus cryptus
Wrasse	Wrasse	Pterogogus guttatus
Wrasse	Red-Shoulder Wrasse	Stethojulis bandanensis
Wrasse	Wrasse	Stethojulis strigiventor
Wrasse	Wrasse	Stethojulis trilineata
Wrasse	2 Tone Wrasse	Thalassoma amblycephalum
Wrasse	6 Bar Wrasse	Thalassoma hardwickii
Wrasse	Jansen'S Wrasse	Thalassoma janseni
Wrasse	Crescent Wrasse	Thalassoma lunare
Wrasse	Sunset Wrasse	Thalassoma lutescens
Wrasse	Surge Wrasse	Thalassoma purpureum
Wrasse	5-Stripe Surge Wrasse	Thalassoma quinquevittatum
Wrasse	Xmas Wrasse	Thalassoma trilobatum

Mariana CREMUS (Guam)	Common Name	Scientific Name
Wrasse	Wh-Barred Pygmy Wrasse	Wetmorella albofasciata
Wrasse	Bl-Spot Pygmy Wrasse	Wetmorella nigropinnata
Wrasse	Wrasse	Xiphocheilus sp
Wrasse	Yblotch Razorfish	Xyrichtys aneitensis
Wrasse	Celebe'S Razorfish	Xyrichtys celebecus
Wrasse	Razorfish	Xyrichtys geisha
Wrasse	Yellowpatch Razorfish	Xyrichtys melanopus
Wrasse	Blue Razorfish	Xyrichtys pavo
Emperors	Yellow-Spot Emperor	Gnathodentex aurolineatus
Emperors	Japanese Bream	Gymnocranius euanus
Emperors	Blue-Lined Bream	Gymnocranius grandoculus
Emperors	Grey Bream	Gymnocranius griseus
Emperors	Blue-Spotted Bream	Gymnocranius microdon
Emperors	Stout Emperor	Gymnocranius sp
Emperors	Emperors	Lethrinidae
Emperors	Yellowtail Emperor	Lethrinus atkinsoni
Emperors	Orange-Spotted Emperor	Lethrinus erythracanthus
Emperors	Longfin Emperor	Lethrinus erythropterus
Emperors	Longspine Emperor	Lethrinus genivittatus
Emperors	Thumbprint Emperor	Lethrinus harak
Emperors	Pinkear Emperor	Lethrinus lentjan
Emperors	Smtoothed Emperor	Lethrinus microdon
Emperors	Orange-Striped Emperor	Lethrinus obsoletus
Emperors	Longface Emperor	Lethrinus olivaceus
Emperors	Ornate Emperor	Lethrinus ornatus
Emperors	Black-Blotch Emperor	Lethrinus semicinctus
Emperors	Slender Emperor	Lethrinus variegatus
Emperors	Yellowlip Emperor	Lethrinus xanthochilus
Emperors	Bigeye Emperor	Monotaxis grandoculus
Emperors	Large-Eye Bream	Wattsia mossambica
Snappers	Snappers	Lutjanidae
Snappers	River Snapper	Lutjanus argentimaculatus
Snappers	Two-Spot Snapper	Lutjanus biguttatus
Snappers	Red Snapper	Lutjanus bohar
Snappers	Snapper	Lutjanus boutton
Snappers	Checkered Snapper	Lutjanus decussatus
Snappers	Blackspot Snapper	Lutjanus ehrenbergi
Snappers	Snapper	Lutjanus fulviflamma
Snappers	Flametail Snapper	Lutjanus fulvus
Snappers	Humpback Snapper	Lutjanus gibbus
Snappers	Malabar Snapper	Lutjanus malabaricus
Snappers	Onespot Snapper	Lutjanus monostigma
Snappers	Scribbled Snapper	Lutjanus rivulatus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Snappers	Snapper	Lutjanus sebae
Snappers	1/2-Barred Snapper	Lutjanus semicinctus
Snappers	One-Lined Snapper	Lutjanus vitta
Snappers	Bl And Wh Snapper	Macolor macularis
Snappers	Black Snapper	Macolor niger
Snappers	Fusilier	Paracaesio sordidus
Snappers	Yellowtail Fusilier	Paracaesio xanthurus
Snappers	Deepwater Snapper	Randallichthys filamentosus
Snappers	Shallow Snappers	SHALLOW SNAPPERS
Snappers	Sailfin Snapper	Symphorichthys spilurus
Mollusks	Spiney Chiton	Acanthopleura spinosa
Mollusks	Bubble Shells,Sea Hares	Acteonidae
Mollusks	Antique Ark	Anadara antiquata
Mollusks	Indo-Pacific Ark	Arca navicularis
Mollusks	Ventricose Ark	Arca ventricosa
Mollusks	Ark Shells	Arcidae
Mollusks	Common Paper Nautilus	Argonauta argo
Mollusks	Gruner'S Paper Nautilus	Argonauta gruneri
Mollusks	Brown Paper Nautilus	Argonauta hians
Mollusks	Nodose Paper Nautilus	Argonauta nodosa
Mollusks	Noury'S Paper Nautilus	Argonauta nouri
Mollusks	Paper Nautiluses	Argonautidae
Mollusks	Pacific Sand Clam	Asaphis violescens
Mollusks	Gaudy Sand Clam	Aspaphis deflorata
Mollusks	Peron'S Sea Butterfly	Atlanta peroni
Mollusks		Atlantidae
Mollusks	Wh Pacific Atys	Atys naucum
Mollusks	Almond Ark	Babatia amygdalumtostum
Mollusks	Goblets,Dwarf Tritons	Buccinidae
Mollusks	Ampule Bubble	Bulla ampulla
Mollusks	Bubble Shells	Bullidae
Mollusks	Lined Bubble	Bullina lineata
Mollusks	Giant Frog Shell	Bursa bubo
Mollusks	Warty Frog Shell	Bursa bufonia
Mollusks	Blood-Stain Frog Shell	Bursa cruentata
Mollusks	Granulate Frog Shell	Bursa granularis
Mollusks	Lamarck'S Frog Shell	Bursa granataris Bursa lamarcki
Mollusks	Red-Mth Frog Shell	Bursa lissostoma
Mollusks	Udder Frog Shell	Bursa mammata
Mollusks	Ruddy Frog Shell	Bursa rebeta
Mollusks	Wine-Mth Frog Shell	Bursa rhodostoma
Mollusks		Bursidae
	Frog Shells	
Mollusks	Umbilicate Ovula	Calpurnus verrucosus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	File Miter	Cancilla filaris
Mollusks	Smoky Goblet	Cantharus fumosus
Mollusks	Waved Goblet	Cantharus undosus
Mollusks	Varitated Cardita	Cardita variegata
Mollusks	Carditid Clams	Carditidae
Mollusks	Vibex Bonnet	Casmaria erinaceus
Mollusks	Heavy Bonnet	Casmaria ponderosa
Mollusks	Helmet Shells	Cassidae
Mollusks	Horned Helmet	Cassius cornuta
Mollusks	3-Toothed Cavoline	Cavolina tridentata
Mollusks	Unicate Cavoline	Cavolina uncinata
Mollusks	Sea Butterfly	Cavolinia cf globulosa
Mollusks	Sea Butterflies	Cavolinidae
Mollusks	Turret, Worm-Shells	Cerithiidae
Mollusks	Column Certh	Cerithium columna
Mollusks	Giant Knobbed Certh	Cerithium nodulosum
Mollusks	Lazarus Jewel Box	Chama lazarus
Mollusks	Jewel Boxes	Chamidae
Mollusks	Triton Trumpet	Charonia tritonis
Mollusks	Ramose Murex	Chicoreus ramosus
Mollusks	Chitons	Chitonidae
Mollusks	Cook'S Scallop	Chlamys cooki
Mollusks	Squamose Scallop	Chlamys squamosa
Mollusks	Bivalves	Class Bivalvia
Mollusks	Pyramid Clio	Clio cuspidata
Mollusks	Irregular Urchins	Clio pyramidata
Mollusks	Morus Certh	Clypeomorus concisus
Mollusks	Punctate Lucina	Codakia punctata
Mollusks	Maculated Dwarf Triton	Columbraria muricata
Mollusks	Shiny Dwarf Triton	Columbraria nitidula
Mollusks	Twisted Dwarf Triton	Columbraria tortuosa
Mollusks	Cone Shells	Conidae
Mollusks	Sand-Dusted Cone	Conus arenatus
Mollusks	Princely Cone	Conus aulicus
Mollusks	Aureus Cone	Conus aureus
Mollusks	Gold-Leaf Cone	Conus auricomus
Mollusks	Banded Marble-Cone	Conus bandanus
Mollusks	Bubble Cone	Conus bullatus
Mollusks	Captain Cone	Conus capitaneus
Mollusks	Capitalli Cone	^
Mollusks	Chaldean Cone	Conus catus
		Conus chaldeus
Mollusks	Comma Cone	Conus connectens
Mollusks	Crowned Cone	Conus coronatus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Cylindrical Cone	Conus cylandraceus
Mollusks	Distantly-Lined Cone	Conus distans
Mollusks	Hebrew Cone	Conus ebraeus
Mollusks	Ivory Cone	Conus eburneus
Mollusks	Episcopus Cone	Conus episcopus
Mollusks	Pacific Yellow Cone	Conus flavidus
Mollusks	Frigid Cone	Conus frigidus
Mollusks	General Cone	Conus generalis
Mollusks	Geography Cone	Conus geographus
Mollusks	Acorn Cone	Conus glans
Mollusks	Imperial Cone	Conus imperialis
Mollusks	Ambassador Cone	Conus legatus
Mollusks	Leopard Cone	Conus leopardus
Mollusks	Lithography Cone	Conus lithoglyphus
Mollusks	Lettered Cone	<i>Conus litteratus</i>
Mollusks	Livid Cone	Conus lividus
Mollusks	Luteus Cone	Conus luteus
Mollusks	Dignified Cone	Conus magnificus
Mollusks	Soldier Cone	Conus miles
Mollusks	1000-Spot Cone	Conus miliaris
Mollusks	Morelet'S Cone	Conus mitaris Conus moreleti
Mollusks	Muricate Cone	Conus muriculatus
Mollusks	Music Cone	Conus muriculaus Conus musicus
Mollusks	Weasel Cone	Conus mustelinus
Mollusks	Obscure Cone	Conus obscurus
Mollusks	Pertusus Cone	Conus pertusus
Mollusks	Flea-Bite Cone	Conus pulicarius
Mollusks	Rat Cone	<i>Conus puticarius</i> <i>Conus rattus</i>
Mollusks	Netted Cone	Conus retifer
Mollusks	Blood-Stained Cone	
		Conus sanguinolentus
Mollusks	Leaden Cone	Conus scabriusculus
Mollusks	Marriage Cone	Conus sponsalis
Mollusks	Striatellus Cone	Conus striatellus
Mollusks	Striated Cone	Conus striatus
Mollusks	Terebra Cone	Conus terebra
Mollusks	Checkered Cone	Conus tesselatus
Mollusks	Textile Cone	Conus textile
Mollusks	Tulip Cone	Conus tulipa
Mollusks	Varius Cone	Conus varius
Mollusks	Flag Cone	Conus vexillum
Mollusks	Calf Cone	Conus vitulinus
Mollusks	Eroded Coral Shell	Coralliophila erosa
Mollusks	Violet Coral Shell	Coralliophila neritodidea

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Coral Shells	Coralliophilidae
Mollusks	Giant Oyster	Crassostrea gigas
Mollusks	Mangrove Oyster	Crassostrea mordax
Mollusks	Bionic Rock Shell	Cronia biconica
Mollusks	Speciosus Scallop	Cryptopecten speciosum
Mollusks	Cigar Pteropod	Cuvierina columnella
Mollusks	Tritons	Cymatiidae
Mollusks	Clandestine Triton	Cymatium clandestinium
Mollusks	Jeweled Triton	Cymatium gemmatum
Mollusks	Liver Triton	Cymatium hepaticum
Mollusks	Wide-Lipped Triton	Cymatium labiosum
Mollusks	Black-Spotted Triton	Cymatium lotorium
Mollusks	Short-Neck Triton	Cymatium muricinum
Mollusks	Nicobar Hairy Triton	<i>Cymatium nicobaricum</i>
Mollusks	Common Hairy Triton	<i>Cymatium pileare</i>
Mollusks	Aquatile Hairy Triton	Cymatium pilere aquatile
Mollusks	Pear Triton	<i>Cymatium pyrum</i>
Mollusks	Red Triton	Cymatium rubeculum
Mollusks	Dwarf Hairy Triton	Cymatium vespaceum
Mollusks	Gold-Ringer Cowry	Cypraea annulus
Mollusks	Arabian Cowry	<i>Cypraea arabica</i>
Mollusks	Eyed Cowry	Cypraea argus
Mollusks	Golden Cowry	<i>Cypraea aurantium</i>
Mollusks	Beck'S Cowry	<i>Cypraea beckii</i>
Mollusks	Bistro Cowry	Cypraea bistronatata
Mollusks	Snake'S Head Cowry	<i>Cypraea caputserpentis</i>
Mollusks	Carnelian Cowry	<i>Cypraea carneola</i>
Mollusks	Chinese Cowry	Cypraea chinensis
Mollusks	Chick-Pea Cowry	<i>Cypraea cicercula</i>
Mollusks	Clandestine Cowry	<i>Cypraea clandestina</i>
Mollusks	Sieve Cowry	<i>Cypraea cribaria</i>
Mollusks	Sowerby'S Cowry	<i>Cypraea cylindrica</i>
Mollusks	Depressed Cowry	Cypraea depressa
Mollusks	Dillwyn'S Cowry	Cypraea dillywini
Mollusks	Eglantine Cowry	Cypraea eglantina
Mollusks	Eroded Cowry	<i>Cypraea erosa</i>
Mollusks	Globular Cowry	Cypraea globulus
Mollusks	Honey Cowry	<i>Cypraea helvola</i>
Mollusks	Swallow Cowry	<i>Cypraea hirundo</i>
Mollusks	Humphrey'S Cowry	Cypraea humphreysi
Mollusks	Isabelle Cowry	<i>Cypraea isabella</i>
Mollusks	Lined-Lip Cowry	<i>Cypraea labrolineata</i>
Mollusks	Limacina Cowry	<i>Cypraea limicina</i>

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Lynx Cowry	Cypraea lynx
Mollusks	Reticulated Cowry	Cypraea maculifera
Mollusks	Map Cowry	Cypraea mappa
Mollusks	Marie'S Cowry	Cypraea mariae
Mollusks	Humpback Cowry	Cypraea mauritiana
Mollusks	Microdon Cowry	Cypraea microdon
Mollusks	Money Cowry	Cypraea moneta
Mollusks	Nuclear Cowry	Cypraea nucleus
Mollusks	Porus Cowry	<i>Cypraea poraria</i>
Mollusks	Punctata Cowry	Cypraea punctata
Mollusks	Jester Cowry	<i>Cypraea scurra</i>
Mollusks	Grape Cowry	Cypraea staphlea
Mollusks	Stolid Cowry	Cypraea stolida
Mollusks	Mole Cowry	<i>Cypraea talpa</i>
Mollusks	Teres Cowry	<i>Cypraea teres</i>
Mollusks	Tiger Cowry	<i>Cypraea tigris</i>
Mollusks	Ventral Cowry	<i>Cypraea ventriculus</i>
Mollusks	Pacific Deer Cowry	<i>Cypraea vitellus</i>
Mollusks	Undulating Cowry	<i>Cypraea ziczac</i>
Mollusks	Cowrys	Cypraeidae
Mollusks	3-Spined Cavoline	Diacria trispinosa
Mollusks	Anal Triton	Distorso anus
Mollusks	Dorid Nudibranchs	Doridae
Mollusks	Clatherate Drupe	Drupa clathrata
Mollusks	Elegant Pacific Drupe	Drupa elegans
Mollusks	Digitate Pacific Drupe	Drupa grossularia
Mollusks	Purple Pacific Drupe	Drupa morum
Mollusks	Prickley Pacific Drupe	Drupa ricinus
Mollusks	Strawberry Drupe	Drupa rubusidacaeus
Mollusks	Spectacular Scallop	Excellichlamys spectiablis
Mollusks	Spindles	Fasciolariidae
Mollusks	Pac Strawberry Cockle	Fragum fragum
Mollusks	Tumid Venus	Gafrarium tumidum
Mollusks	Rosy Gyre Triton	<i>Gyrineum roseum</i>
Mollusks	Purple Gyre Triton	<i>Gyrinium pusillum</i>
Mollusks	Little Love Harp	Harpa amouretta
Mollusks	True Harp	Harpa harpa
Mollusks	Major Harp	Harpa major
Mollusks	Harp Shells	Harpidae
Mollusks	Lance Auger	Hastula lanceata
Mollusks	Pencil Auger	Hastula penicillata
Mollusks	Spanish Dancer	Hexabranchus sanguineus
Mollusks	Giant Clam	Hippopus hippopus

Anatomical Murex Gr-Lined Paber Bubble Cone-Like Miter Olive-Shaped Miter Bonelike Miter Saddle Tree Oyster Tree Oysters Janthina Snail Pelagic Snails Chiragra Spider Conch Ormouth Spider Conch	Homalocanthia anatomicaHydratina physisImbricaria conularisImbricaria olivaeformisImbricaria punctataIsognomon ephippiumIsognomonidaeJanthina janthinaJanthinidaeLambis chiragraLambis crocota
Cone-Like Miter Olive-Shaped Miter Bonelike Miter Saddle Tree Oyster Tree Oysters Janthina Snail Pelagic Snails Chiragra Spider Conch Ormouth Spider Conch Common Spider Conch	Imbricaria conularisImbricaria olivaeformisImbricaria punctataIsognomon ephippiumIsognomonidaeJanthina janthinaJanthinidaeLambis chiragraLambis crocota
Olive-Shaped Miter Bonelike Miter Saddle Tree Oyster Tree Oysters Janthina Snail Pelagic Snails Chiragra Spider Conch Ormouth Spider Conch Common Spider Conch	Imbricaria olivaeformisImbricaria punctataIsognomon ephippiumIsognomonidaeJanthina janthinaJanthinidaeLambis chiragraLambis crocota
Bonelike Miter Saddle Tree Oyster Tree Oysters Janthina Snail Pelagic Snails Chiragra Spider Conch Ormouth Spider Conch Common Spider Conch	Imbricaria punctataIsognomon ephippiumIsognomonidaeJanthina janthinaJanthinidaeLambis chiragraLambis crocota
Bonelike Miter Saddle Tree Oyster Tree Oysters Janthina Snail Pelagic Snails Chiragra Spider Conch Ormouth Spider Conch Common Spider Conch	Isognomon ephippium Isognomonidae Janthina janthina Janthinidae Lambis chiragra Lambis crocota
Tree Oysters Janthina Snail Pelagic Snails Chiragra Spider Conch Ormouth Spider Conch Common Spider Conch	Isognomonidae Janthina janthina Janthinidae Lambis chiragra Lambis crocota
Tree Oysters Janthina Snail Pelagic Snails Chiragra Spider Conch Ormouth Spider Conch Common Spider Conch	Isognomonidae Janthina janthina Janthinidae Lambis chiragra Lambis crocota
Pelagic Snails Chiragra Spider Conch Ormouth Spider Conch Common Spider Conch	Janthina janthina Janthinidae Lambis chiragra Lambis crocota
Chiragra Spider Conch Ormouth Spider Conch Common Spider Conch	Janthinidae Lambis chiragra Lambis crocota
Ormouth Spider Conch Common Spider Conch	Lambis crocota
Ormouth Spider Conch Common Spider Conch	
Common Spider Conch	
	Lambis lambis
Scorpio Conch	Lambis scorpius scorpius
	Lambis sp.
÷	Lambis truncata
<u> </u>	Latirus nodatus
	Latirus rudis
<u> </u>	Lima fragilis
Indo-Pac Spiny Lima	Lima vulgaris
	Limidae
	Lioconcha castrensis
	Lioconcha hieroglyphica
	Lioconcha ornata
	Littorina scabra
	Littorina undulata
	Littorinidae
	Lucinidae
	Malea pomum
	Marchia bipinnatus
	Marchia martinetana
	Melampidae
	Melampus luteus
1	Metasepia pfefferi
2	Micromelo undatus
	Milda ventricosa
	Mirapecten mirificus
	Miter imperalis
1	Mitra acuminata
	Mitra cardinalis
	Mitra chrysalis
	Mitra chrysostoma
	Mitra coffea Mitra contracta
	Scorpio Conch Spider Conch Giant Spider Conch Nobby Spindle Spindle Fragile Lima Indo-Pac Spiny Lima Limas Camp Pitar Venus Camp Pitar Venus Ornate Pitar Venus Ornate Pitar Venus Scabra Periwinkle Undulate Periwinkle Periwinkles Lucinas Apple Tun Pinnacle Murex Fenestrate Murex Fenestrate Murex Fenestrate Murex Stellow Melampus Flamboyant Cuttlefish Mini Lined-Bubble Ventricose Milda Miraculous Scallop Imperial Miter Acuminate Miter Cardinal Miter Cardinal Miter Contracted Miter

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Kettle Miter	Mitra cucumaria
Mollusks	Rusty Miter	Mitra ferruginea
Mollusks	Strawberry Miter	Mitra fraga
Mollusks	Tesselate Miter	Mitra incompta
Mollusks	Episcopal Miter	Mitra mitra
Mollusks	Papal Miter	Mitra papalis
Mollusks	Red-Painted Miter	Mitra rubitincta
Mollusks	Pontifical Miter	Mitra stictica
Mollusks	Miter Shells	Mitridae
Mollusks	Mollusca	MOLLUSCA
Mollusks	Burnt Murex	Murex burneus
Mollusks	Murex Shells	Muricidae
Mollusks	Mussels	Mytilidae
Mollusks	Tragonula Murex	Naquetia trigonulus
Mollusks	Triquetra Murex	Naquetia triquetra
Mollusks	Francolina Jopas	Nassa francolina
Mollusks	Nassa Mud Snails	Nassariidae
Mollusks	Granulated Nassa	Nassarius graniferus
Mollusks	Margarite Nassa	Nassarius margaritiferus
Mollusks	Pimpled Basket	Nassarius papillosus
Mollusks	Moon Shells	Naticidae
Mollusks	Nautilus	Nautilidae
Mollusks	Chambered Nautilus	Nautilus ponpilius
Mollusks	Clathrus Miter	Neocancilla clathrus
Mollusks	Flecked Miter	Neocancilla granitina
Mollusks	Butterfly Miter	Neocancilla papilio
Mollusks	Ox-Palate Nerite	Nerita albicilla
Mollusks	Plicate Nerite	Nerita plicata
Mollusks	Polished Nerite	Nerita polita
Mollusks	Reticulate Nerite	Nerita signata
Mollusks	Nerites	Neritidae
Mollusks	Diotocardia	O Archaeogastropoda
Mollusks	Octopus	Octopodidae
Mollusks	Common Octopus	Octopus cyanea
Mollusks	Red Octopus	Octopus luteus
Mollusks	Ornate Octopus	Octopus ornatus
Mollusks	Octopus	Octopus sp
Mollusks	Pelagic Octopus	Octopus sp 1
Mollusks	Long-Armed Octopus	Octopus sp 2
Mollusks	Elongate Octopus	Octopus sp 2
Mollusks	Amethyst Olive	Oliva annulata
Mollusks	Carnelian Olive	Oliva carneola
Mollusks	Red-Mth Olive	Oliva miniacea

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Peg Olive	Oliva paxillus
Mollusks	Olive Shells	Olividae
Mollusks	Squids	Order Teuthoidea
Mollusks	True Oysters	Ostreidae
Mollusks	Cat'S Ear Otopleura	Otopleura auriscati
Mollusks	Common Egg Cowry	Ovula ovum
Mollusks	Egg Shells	Ovulidae
Mollusks	Scallops	Pectinidae
Mollusks	Crispate Venus	Periglypta crispata
Mollusks	Youthful Venus	Periglypta puerpera
Mollusks	Reticulate Venus	Periglypta reticulata
Mollusks	Pearl Oyster	Pinctada margaritfera
Mollusks	Bicolor Pen Shell	Pinna bicolor
Mollusks	Pen Shells	Pinnidae
Mollusks	Breast-Shaped Moon	Polinices mamatus
Mollusks	Pear-Shaped Moon	Polinices tumidus
Mollusks	Strawberry Goblet	Pollia fragaria
Mollusks	Beautiful Goblet	Pollia pulchra
Mollusks	Fruit Ovula	Prionovula fruticum
Mollusks	Pearl Oysters	Pteriidae
Mollusks	Crenulate Miter	Pterygia crenulata
Mollusks	Fenestrate Miter	Pterygia fenestrata
Mollusks	Nut Miter	Pterygia nucea
Mollusks	Rough Miter	Pterygia scabricula
Mollusks	Club Murex	Pterynotus elongatus
Mollusks	Fluted Murex	· · · · · · · · · · · · · · · · · · ·
Mollusks		Pterynotus laqueatus
Mollusks	3-Winged Murex	Pterynotus tripterus
Mollusks	Solid Pupa	Pupa solidula
	Perssian Purpura	Purpura persica
Mollusks	Sulcate Pyram	Pyramidella sulcata
Mollusks	Pyram Shells	Pyramidellidae
Mollusks	Quoy'S Coral Shell	Quoyula madreporarum
Mollusks	Rapa Snail	Rapa rapa
Mollusks	Rough Vertigus	Rhinoclavis aspera
Mollusks	Obelisk Vertigus	Rhinoclavis sinensis
Mollusks	Chaste Miter	Sabricola casta
Mollusks	Tiger Scallop	Semipallium tigris
Mollusks	Broadclub Cuttlefish	Sepia latimanus
Mollusks	Cuttlefish	Sepia sp.
Mollusks	Bigfin Reef Squid	Sepioteuthis lessoniana
Mollusks	Box Mussel	Septifer bilocularis
Mollusks	Lacy Murex	Siratus laciniatus
Mollusks	Thorny Oysters	Spondylidae

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Ducal Thorny Oyster	Spondyulus squamosus
Mollusks	Baggy Pen Shell	Streptopinna saccata
Mollusks	True Conchs	Strombidae
Mollusks	Samar Conch	Strombus dentatus
Mollusks	Fragile Conch	Strombus fragilis
Mollusks	Gibbose Conch	Strombus gibberulus
Mollusks	Lavender-Mouth Conch	Strombus haemastoma
Mollusks	Silver-Lip Conch	Strombus lentigninosus
Mollusks	Red-Lip Conch	Strombus luhuanus
Mollusks	Micro Conch	Strombus microurceus
Mollusks	Mutable Conch	Strombus mutabilis
Mollusks	Pretty Conch	Strombus plicatus
Mollusks	Laciniate Conch	Strombus sinuatus
Mollusks	Bull Conch	Strombus taurus
Mollusks	Pyramid Top	Tectus pyramis
Mollusks	Box-Like Tellin	Tellina capsoides
Mollusks	Cat'S Tongue Tellin	Tellina linguafelis
Mollusks	Remie'S Tellin	Tellina remies
Mollusks	Rasp Tellin	Tellina scobinata
Mollusks	Tellin Clams	Tellinidae
Mollusks	Terebellum Conch	Terebellum terebellum
Mollusks	Similar Auger	Terebra affinis
Mollusks	Fly-Spotted Auger	Terebra areolata
Mollusks	Eyed Auger	Terebra argus
Mollusks	Babylonian Auger	Terebra babylonia
Mollusks	Certhlike Auger	Terebra cerithiana
Mollusks	Short Auger	Terebra chlorata
Mollusks	Crenulated Auger	Terebra crenulata
Mollusks	Dimidiate Auger	Terebra dimidiata
Mollusks	Tiger Auger	Terebra felina
Mollusks	Funnel Auger	Terebra funiculata
Mollusks	Spotted Auger	Terebra gutatta
Mollusks	Marlinspike Auger	Terebra maculata
Mollusks	Cloud Auger	Terebra nubulosa
Mollusks	Subulate Auger	Terebra subulata
Mollusks	0	Terebra undulata
	Undulate Auger	
Mollusks	Auger Shells	Terebridae Thais armigena
Mollusks	Belligerent Rock Shell	Thais armigera
Mollusks	Tuberose Rock Shell	Thais tuberosa
Mollusks	Partridge Tun	Tonna perdix
Mollusks	Tun Shells	Tonnidae
Mollusks	Angulate Cockle	Trachycardium angulatum
Mollusks	Giant Clam	Tridacna crocea

Mariana CREMUS (Guam)	Common Name	Scientific Name
Mollusks	Lagoon Giant Clam	Tridacna derasa
Mollusks	Giant Clam	Tridacna gigas
Mollusks	Common Giant Clam	Tridacna maxima
Mollusks	Fluted Giant Clam	Tridacna squamosa
Mollusks	Giant Clams	Tridacnidae
Mollusks	Top Shells	Trochidae
Mollusks	Top Shell	Trochus niloticus
Mollusks	Radiate Top	Trochus radiatus
Mollusks	Vases	Turbinellidae
Mollusks	Turban Shell	Turbinidae
Mollusks	Silver-Mouth Turbin	Turbo argyrostoma
Mollusks	Tapestry Turbin	Turbo petholatus
Mollusks	Rough Turbin	Turbo setosus
Mollusks	Ceramic Vase	Vasum ceramicum
Mollusks	Common Pacific Vase	Vasum turbinellus
Mollusks	Venus Shells	Veneridae
Mollusks	Bernhard'S Miter	Vexillum bernhardiana
Mollusks	Cancellaria Miter	Vexillum cancellarioides
Mollusks	Saffron Miter	Vexillum crocatum
Mollusks	Roughened Miter	Vexillum exasperatum
Mollusks	Patriarchal Miter	Vexillum patriarchalis
Mollusks	Half-Banded Miter	Vexillum semifasciatum
Mollusks	Specious Miter	Vexillum speciosum
Mollusks	Bumpy Miter	Vexillum tuberosum
Mollusks	Turbin Miter	Vexillum turbin
Mollusks	Decorated Miter	Vexillum unifasciatum
Mollusks	Spotted Vitularia	Vitularia miliaris
Mullet	Fringelip Mullet	Crenimugil crenilabis
Mullet	Yellowtail Mullet	<i>Ellochelon vaigiensis</i>
Mullet	Engel'S Mullet	Moolgarda engeli
Mullet	Bluespot Mullet	Moolgarda seheli
Mullet	Gray Mullet	Mugil cephalus
Mullet	Mullets	Mugilidae
Mullet	Acute-Jawed Mullet	Neomyxus leuciscus
Goatfish	Goatfishes	r
		Mullidae
Goatfish	Yellowstriped Goatfish	Mulloidichthys flavolineatus
Goatfish	Orange Goatfish	Mulloidichthys pflugeri
Goatfish	Juvenile Goatfish	Mulloidichthys ti'ao
Goatfish	Yellowfin Goatfish	Mulloidichthys vanicolensis
Goatfish		Parupeneus barberinoides
Goatfish	Dash And Dot Goatfish	Parupeneus barberinus
Goatfish		Parupeneus bifasciatus
Goatfish	White-Lined Goatfish	Parupeneus ciliatus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Goatfish	Yellow Goatfish	Parupeneus cyclostomus
Goatfish	Redspot Goatfish	Parupeneus heptacanthus
Goatfish	Indian Goatfish	Parupeneus indicus
Goatfish	Multibarred Goatfish	Parupeneus multifasciatus
Goatfish	Sidespot Goatfish	Parupeneus pleurostigma
Goatfish	Goatfish	Parupeneus sp.
Goatfish	Goatfish	Upeneus arge
Goatfish	Band-Tailed Goatfish	Upeneus taeniopterus
Goatfish	Blackstriped Goatfish	Upeneus tragula
Goatfish	Yellowbanded Goatfish	Upeneus vittatus
Parrotfish	Bucktooth Parrotfish	Calotomus carolinus
Parrotfish	Spineytooth Parrotfish	Calotomus spinidens
Parrotfish	Bicolor Parrotfish	Cetoscarus bicolor
Parrotfish	Parrotfish	Chlorurus bleekeri
Parrotfish	Parrotfish	Chlorurus bowersi
Parrotfish	Tan-Faced Parrotfish	Chlorurus frontalis
Parrotfish	Steephead Parrotfish	Chlorurus microrhinos
Parrotfish	Parrotfish	Chlorurus pyrrhurus
Parrotfish	Bullethead Parrotfish	Chlorurus sordidus
Parrotfish	Parrotfish	Hipposcarus longiceps
Parrotfish	Seagrass Parrotfish	Leptoscarus vaigiensis
Parrotfish	Parrotfishes	Scaridae
Parrotfish	Fil-Finned Parrotfish	Scarus altipinnis
Parrotfish	Parrotfish	Scarus chameleon
Parrotfish	Parrotfish	Scarus dimidiatus
Parrotfish	Parrotfish	Scarus festivus
Parrotfish	Yellowfin Parrotfish	Scarus flavipectoralis
Parrotfish	Tricolor Parrotfish	Scarus forsteni
Parrotfish	Vermiculate Parrotfish	Scarus frenatus
Parrotfish	Blue-Barred Parrotfish	Scarus ghobban
Parrotfish	Parrotfish	Scarus globiceps
Parrotfish	Java Parrotfish	Scarus hypselosoma
Parrotfish	Parrotfish	Scarus sp.
Parrotfish	Black Parrotfish	Scarus niger
Parrotfish	Parrotfish	Scarus oviceps
Parrotfish	Greenthroat Parrotfish	Scarus prasiognathos
Parrotfish	Pale Nose Parrotfish	Scarus prastognamos
Parrotfish	Parrotfish	Scarus quoyi
Parrotfish	Parrotfish	Scarus quoyi Scarus rivulatus
Parrotfish	Parrotfish	Scarus rubroviolaceus
Parrotfish	Chevron Parrotfish	Scarus rubroviolaceus Scarus schlegeli
Parrotfish	Parrotfish	Scarus schiegen
Parrotfish	Tricolor Parrotfish	Scarus spinus Scarus tricolor

Mariana CREMUS (Guam)	Common Name	Scientific Name
Parrotfish	Parrotfish	Scarus xanthopleura
Groupers	Red-Flushed Grouper	Aethaloperca rogaa
Groupers	Grouper	Anyperodon leucogrammicus
Groupers	Orange Grouper	Cephalopholis analis
Groupers	Peacock Grouper	Cephalopholis argus
Groupers	Brownbarred Grouper	Cephalopholis boenack
Groupers	Ybanded Grouper	Cephalopholis igarashiensis
Groupers	Leopard Grouper	Cephalopholis leopardus
Groupers	Coral Grouper	Cephalopholis miniata
Groupers	Harlequin Grouper	Cephalopholis polleni
Groupers	6-Banded Grouper	Cephalopholis sexmaculata
Groupers	Tomato Grouper	Cephalopholis sonnerati
Groupers	Grouper	Cephalopholis sp
Groupers	Pygmy Grouper	Cephalopholis spiloparaea
Groupers	Flag-Tailed Grouper	Cephalopholis urodeta
Groupers	Grouper	Cromileptes altivelis
Groupers	Orange Grouper	Epinephelus
Groupers	Brown-Spotted Grouper	Epinephelus chlorostigma
Groupers	Grouper	<i>Epinephelus corallicola</i>
Groupers	Grouper	<i>Epinephelus cyanopodus</i>
Groupers	Blotchy Grouper	<i>Epinephelus fuscoguttatus</i>
Groupers	Hexagon Grouper	<i>Epinephelus hexagonatus</i>
Groupers	Grouper	<i>Epinephelus howlandi</i>
Groupers	Giant Grouper	<i>Epinephelus lanceolatus</i>
Groupers	Grouper	<i>Epinephelus macrospilos</i>
Groupers	Highfin Grouper	<i>Epinephelus maculatus</i>
Groupers	Malabar Grouper	<i>Epinephelus malabaricus</i>
Groupers	Bl-Spot Honeycomb Grouper	<i>Epinephelus melanostigma</i>
Groupers	Honeycomb Grouper	<i>Epinephelus merta</i>
Groupers	Grouper	<i>Epinephelus miliaris</i>
Groupers	Grouper	<i>Epinephelus mittaris</i>
Groupers	Wavy-Lined Grouper	<i>Epinephelus morrhad</i>
Groupers	Marbled Grouper	<i>Epinephelus olyphekadion</i>
•		
Groupers	Grouper 7 Danded Crouper	Epinephelus retouti
Groupers	7-Banded Grouper	Epinephelus septemfasciatus
Groupers	Tidepool Grouper	Epinephelus socialis
Groupers	4-Saddle Grouper	Epinephelus spilotoceps
Groupers	Greasy Grouper	Epinephelus tauvina
Groupers	Truncated Grouper	Epinephelus truncatus
Groupers	Wh-Margined Grouper	Gracila albomarginata
Groupers	Squaretail Grouper	Plectropomus areolatus
Groupers	Saddleback Grouper	Plectropomus laevis
Groupers	Leopard Coral Trout	Plectropomus leopardus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Groupers	Blue-Lined Coral Trout	Plectropomus oligacanthus
Groupers	Powell'S Grouper	Saloptia powelli
Groupers	Sea Basses, Groupers	Serranidae
Groupers	Whmargin Lyretail Grouper	Variola albimarginata
Other	Grouper	Cephalopholis cyanostigma
Other	Orange-Spotted Grouper	Epinephelus coioides
Rabbitfish	Manahak (Forktail Rabbitfish)	Siganus aregenteus
Rabbitfish	Manahak	Siganus sp
Rabbitfish	Rabbitfish	Siganidae
Rabbitfish	Fork-Tail Rabbitfish	Siganus argenteus
Rabbitfish	Seagrass Rabbitfish	Siganus canaliculatus
Rabbitfish	Coral Rabbitfish	Siganus corallinus
Rabbitfish	Pencil-Streaked Rabbitfish	Siganus doliatus
Rabbitfish	Fuscescens Rabbitfish	Siganus fuscescens
Rabbitfish	Golden Rabbitfish	Siganus guttatus
Rabbitfish	Lined Rabbitfish	Siganus lineatus
Rabbitfish	White-Spotted Rabbitfish	Siganus oramin
Rabbitfish	Masked Rabbitfish	Siganus puellus
Rabbitfish	Peppered Rabbitfish	Siganus punctatissimus
Rabbitfish	Gold-Spotted Rabbitfish	Siganus punctatus
Rabbitfish	Randal'S Rabbitfish	Siganus randalli
Rabbitfish	Scribbled Rabbitfish	Siganus spinus
Rabbitfish	Vermiculated Rabbitfish	Siganus vermiculatus
Rabbitfish	Rabbitfish	Siganus vulpinus
Species of Special	Humphead (Napoleon) wrasse	Cheilinus undulatus
Species of Special	Bumphead parrotfish	Bolbometopon muricatum
Misc. Reef fish	Reef Fish	Reef Fish
Misc. Shallow bottomfish	Shallow Bottomfish	Shallow Bottomfish
Other CRE-finfish	Starry Triggerfish	Abalistes stellatus
Other CRE-finfish	Barred Needlefish	Ablennes hians
Other CRE-finfish	Blackspot Sergeant	Abudefduf lorenzi
Other CRE-finfish	Yellowtail Sergeant	Abudefduf notatus
Other CRE-finfish	Banded Sergeant	Abudefduf septemfasciatus
Other CRE-finfish	Scis-Tail Sgt Major	Abudefduf sexfasciatus
Other CRE-finfish	Black Spot Sergeant	Abudefduf sordidus
Other CRE-finfish	Sergeant-Major	Abudefduf vaigiensis
	e j	Acanthoclinidae
Other CRE-finfish Other CRE-finfish	Spiney Basslets Hiatt'S Basslet	
		Acathoplesiops hiatti
Other CRE-finfish	Goby Seconda Filefich	Acentrogobius bonti
Other CRE-finfish	Seagrass Filefish	Acreichthys tomentosus
Other CRE-finfish	Shrimpfish	Aeoliscus strigatus
Other CRE-finfish	Spotted Eagle Ray	Aetobatis narinari
Other CRE-finfish	Eagle Ray	Aetomyleaus maculatus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Indo-Pacific Bonefish	Albula glossodonta
Other CRE-finfish	Bonefish	Albula neoguinaica
Other CRE-finfish	Bonefish	Albulidae
Other CRE-finfish	Lancetfishes	Alepisauidae
Other CRE-finfish	Lancetfish	Alepisaurus ferox
Other CRE-finfish	Dorothea'S Wriggler	Allomicrodesmis dorotheae
Other CRE-finfish	Blenny	Alticus arnoldorum
Other CRE-finfish	Unicorn Filefish	Aluterus monoceros
Other CRE-finfish	Filefish	Aluterus scriptus
Other CRE-finfish	Filefish	Amanses scopas
Other CRE-finfish	Glass Perch	Ambassidae
Other CRE-finfish	Glassie	Ambassis buruensis
Other CRE-finfish	Glassie	Ambassis interrupta
Other CRE-finfish	2-Spot Hawkfish	Amblycirrhitus bimacula
Other CRE-finfish	Goby	Amblyeleotris faciata
Other CRE-finfish	Goby	Amblyeleotris fontaseni
Other CRE-finfish	Goby	Amblyeleotris guttata
Other CRE-finfish	Goby	Amblyeleotris randalli
Other CRE-finfish	Brown-Barred Goby	Amblyeleotris steinitzi
Other CRE-finfish	Bluespotted Goby	Amblyeleotris wheeleri
Other CRE-finfish	Blue Pilchard	Amblygaster clupeoides
Other CRE-finfish	Spotted Pilchard	Amblygaster sirm
Other CRE-finfish	Damselfish	Amblygliphidodon aureus
Other CRE-finfish	Staghorn Damsel	Amblygliphidodon curacao
Other CRE-finfish	White-Belly Damsel	Amblygliphidodon
Other CRE-finfish	Ternate Damsel	Amblygliphidodon ternatensis
Other CRE-finfish	Goby	Amblygobius decussatus
Other CRE-finfish	Goby	Amblygobius hectori
Other CRE-finfish		Amblygobius linki
Other CRE-finfish	Goby	Amblygobius nocturnus
Other CRE-finfish	Goby	Amblygobius phalaena
Other CRE-finfish	Goby	Amblygobius rainfordi
Other CRE-finfish	Goby	Amblygobius sp
Other CRE-finfish	Evileye Puffer	Amblyrhinchotus honckenii
Other CRE-finfish	Prawn Goby	Amlbyeleotris periophthalma
Other CRE-finfish	Org-Fin Anemonefish	Amphiprion chrysopterus
Other CRE-finfish	Clark'S Anemonefish	Amphiprion clarkii
Other CRE-finfish	Tomato Anemonefish	Amphiprion frenatus
Other CRE-finfish	Dusky Anemonefish	Amphiprion melanopus
Other CRE-finfish	False Clown Anemonefish	Amphiprion ocellaris
Other CRE-finfish	Pink Anemonfish	Amphiprion peridaeraion
Other CRE-finfish	3-Banded Anemonefish	Amphiprion tricinctus
Other CRE-finfish	Dragonet	Anaora tentaculata

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Allardice'S Moray	Anarchias allardicei
Other CRE-finfish	Canton Island Moray	Anarchias cantonensis
Other CRE-finfish	Seychelles Moray	Anarchias seychellensis
Other CRE-finfish	Freshwater Eel	Anguilla bicolor
Other CRE-finfish	Freshwater Eel	Anguilla marmorata
Other CRE-finfish	Freshwater Eel	Anguillidae
Other CRE-finfish	Flashlightfish	Anomalopidae
Other CRE-finfish	Flashlightfish	Anomalops katoptron
Other CRE-finfish	Anglerfish	Antenariidae
Other CRE-finfish	Pigmy Frogfish	Antennarius analis
Other CRE-finfish	Frogfish	Antennarius biocellatus
Other CRE-finfish	Freckled Frogfish	Antennarius coccineus
Other CRE-finfish	Giant Frogfish	Antennarius commersonii
Other CRE-finfish	Bandtail Frogfish	Antennarius dorehensis
Other CRE-finfish	Sargassumfish	Antennarius maculatus
Other CRE-finfish	Spotfin Frogfish	Antennarius nummifer
Other CRE-finfish	Painted Frogfish	Antennarius pictus
Other CRE-finfish	Randall'S Frogfish	Antennarius randalli
Other CRE-finfish	Spiney-Tufted Frogfish	Antennarius rosaceus
Other CRE-finfish	Bandfin Frogfish	Antennatus tuberosus
Other CRE-finfish	Boarfish	Antigonia malayana
Other CRE-finfish	Velvetfishes	Aploactinidae
Other CRE-finfish	Cardinalfish	Apogon amboinensis
Other CRE-finfish	Broad-Striped Cardinalfish	Apogon angustatus
Other CRE-finfish	Bigeye Cardinalfish	Apogon bandanensis
Other CRE-finfish	Cryptic Cardinalfish	Apogon coccineus
Other CRE-finfish	Ohcre-Striped Cardinalfish	Apogon compressus
Other CRE-finfish	Redspot Cardinalfish	Apogon dispar
Other CRE-finfish	Longspine Cardinalfish	Apogon doryssa
Other CRE-finfish	Elliot'S Cardinalfish	Apogon ellioiti
Other CRE-finfish	Cardinalfish	Apogon eremeia
Other CRE-finfish	Evermann'S Cardinalfish	Apogon evermanni
Other CRE-finfish	Eyeshadow Cardinalfish	Apogon exostigma
Other CRE-finfish	Bridled Cardinalfish	Apogon fraenatus
Other CRE-finfish	Cardinalfish	Apogon fragilis
Other CRE-finfish	Gilbert'S Cardinalfish	Apogon gilberti
Other CRE-finfish	Guam Cardinalfish	Apogon guamensis
Other CRE-finfish		Apogon hartzfeldii
Other CRE-finfish	Iridescent Cardinalfish	Apogon kallopterus
Other CRE-finfish	Inshore Cardinalfish	Apogon lateralis
Other CRE-finfish	Bluestreak Cardinalfish	Apogon leptacanthus
Other CRE-finfish	Black Cardinalfish	Apogon melas
Other CRE-finfish	Cardinalfish	Apogon nigripinnis

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Black-Striped Cardinalfish	Apogon nigrofasciatus
Other CRE-finfish	Cardinalfish	Apogon notatus
Other CRE-finfish	7-Lined Cardinalfish	Apogon novemfasciatus
Other CRE-finfish	Pearly Cardinalfish	Apogon perlitus
Other CRE-finfish	Cardinalfish	Apogon rhodopterus
Other CRE-finfish	Sangi Cardinalfish	Apogon sangiensis
Other CRE-finfish	Gray Cardinalfish	Apogon savayensis
Other CRE-finfish	Seale'S Cardinalfish	Apogon sealei
Other CRE-finfish	Cardinalfish	Apogon sp
Other CRE-finfish	Bandfin Cardinalfish	Apogon taeniophorus
Other CRE-finfish	Bandfin Cardinalfish	Apogon taeniopterus
Other CRE-finfish	3-Spot Cardinalfish	Apogon trimaculatus
Other CRE-finfish	Ocellated Cardinalfish	Apogonichthys ocellatus
Other CRE-finfish	Perdix Cardinalfish	Apogonichthys perdix
Other CRE-finfish	Cardinalfishes	Apogonidae
Other CRE-finfish	Angelfish	Apolemichthys griffisi
Other CRE-finfish	Flagfin Anglefish	Apolemichthys trimaculatus
Other CRE-finfish	Angelfish	Apolemichthys
Other CRE-finfish	2-Lined Soapfish	Aporops bilinearis
Other CRE-finfish	Snake Eel	Apterichtus klazingai
Other CRE-finfish	Twinspot Cardinalfish	Archamia biguttata
Other CRE-finfish	Orange-Lined Cardinalfish	Archamia fucata
Other CRE-finfish	Blackbelted Cardinalfish	Archamia zosterophora
Other CRE-finfish	Scheele'S Conger	Ariosoma scheelei
Other CRE-finfish	Flounder	Arnoglossus intermedius
Other CRE-finfish	Brown Puffer	Arothron hispidus
Other CRE-finfish	Puffer	Arothron manilensis
Other CRE-finfish	Puffer	Arothron mappa
Other CRE-finfish	White-Spot Puffer	Arothron meleagris
Other CRE-finfish	Black-Spotted Puffer	Arothron nigropunctatus
Other CRE-finfish	Star Puffer	Arothron stellatus
Other CRE-finfish	Black Spotted Sole	Aseraggodes melanostictus
Other CRE-finfish	Smith'S Sole	Aseraggodes smithi
Other CRE-finfish	Whitaker'S Sole	Aseraggodes whitakeri
Other CRE-finfish	Lance Blenny	Aspidontus dussumieri
Other CRE-finfish	Cleaner Mimic	Aspidontus taeniatus
Other CRE-finfish		Asteropteryx semipunctatus
Other CRE-finfish	Intermediate Flounder	Asterorhombus intermedius
Other CRE-finfish	Goby	Asterropteryx ensiferus
Other CRE-finfish	Silverside	Atherinidae
Other CRE-finfish	Tropical Silverside	Atherinomorus duodecimalis
Other CRE-finfish	Striped Silverside	Atherinomorus endrachtensis
Other CRE-finfish	Silverside	Atherinomorus lacunosus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Hardyhead Silverside	Atherinomorus lacunosus
Other CRE-finfish	Bearded Silverside	Atherion elymus
Other CRE-finfish	Blenny	Atrosalarius fuscus holomelas
Other CRE-finfish	Trumpetfish	Aulostomidae
Other CRE-finfish	Trumpetfish	Aulostomus chinensis
Other CRE-finfish	Goby	Austrolethops wardi
Other CRE-finfish	Goby	Awaous grammepomus
Other CRE-finfish	Goby	Awaous guamensis
Other CRE-finfish	Undulate Triggerfish	Balistapus undulatus
Other CRE-finfish	Triggerfishes	Balistidae
Other CRE-finfish	Clown Triggerfish	Balistoides conspicillum
Other CRE-finfish	Titan Triggerfish	Balistoides viridescens
Other CRE-finfish	Goby	Bathygobius cocosensis
Other CRE-finfish	Goby	Bathygobius cotticeps
Other CRE-finfish	Goby	Bathygobius fuscus
Other CRE-finfish	Needlefish	Belonidae
Other CRE-finfish	Soapfish	Belonoperca chaubanaudi
Other CRE-finfish	Lantern-Eye Fish	Berycidae
Other CRE-finfish	Flashlightfish	Beryx decadactylus
Other CRE-finfish	Pipefish	Bhanotia nuda
Other CRE-finfish	Conger Eel	Blachea xenobranchialis
Other CRE-finfish	Blenny	Blenniella cyanostigma
Other CRE-finfish	Blenny	Blenniella gibbifrons
Other CRE-finfish	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Blenniella paula
Other CRE-finfish	Blenny	Blenniella periophthalmus
Other CRE-finfish	Blennies	Blenniidae
Other CRE-finfish	Flounders	Bothidae
Other CRE-finfish	Peacock Flounder	Bothus mancus
Other CRE-finfish	Leopard Flounder	Bothus pantherinus
Other CRE-finfish	Taylor'S Inflator Filefish	Brachaluteres taylori
Other CRE-finfish	Snake Eel	Brachysomophis sauropsis
Other CRE-finfish	Codlet	Bregmaceros nectabanus
Other CRE-finfish	Codlets	Bregmacerotidae
Other CRE-finfish	Free-Tailed Brotula	Brosmophyciops pautzkei
Other CRE-finfish	Reef Cusk Eel	Brotula multibarbata
Other CRE-finfish	Townsend'S Cusk Eel	Brotula townsendi
Other CRE-finfish	Goby	Bryaninops amplus
Other CRE-finfish	Goby	Bryaninops erythrops
Other CRE-finfish	Goby	Bryaninops natans
Other CRE-finfish	Goby	Bryaninops ridens
Other CRE-finfish	Goby	Bryaninops youngei
Other CRE-finfish	Pipefish	Bulbonaricus brauni
Other CRE-finfish	Gudgeon	Butis amboinensis

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Livebearing Brotulas	Bythitidae
Other CRE-finfish	Goby	Cabillus tongarevae
Other CRE-finfish	Snake Eel	Caecula polyophthalma
Other CRE-finfish	Scissor-Tailed Fusilier	Caesio caerulaurea
Other CRE-finfish	Fusilier	Caesio cuning
Other CRE-finfish	Lunar Fusilier	Caesio lunaris
Other CRE-finfish	Yellowback Caesio	Caesio teres
Other CRE-finfish	Fusilier	Caesionidae
Other CRE-finfish	Goldies	Callanthiidae
Other CRE-finfish	Snake Eel	Callechelys marmorata
Other CRE-finfish	Snake Eel	Callechelys melanotaenia
Other CRE-finfish	Dragonets	Callionymidae
Other CRE-finfish	Delicate Dragonet	Callionymus delicatulus
Other CRE-finfish	Mangrove Dragonet	Callionymus enneactis
Other CRE-finfish	Simple-Spined Dragonet	Callionymus simplicicornis
Other CRE-finfish	Goby	Callogobious sp
Other CRE-finfish	Goby	Callogobius bauchotae
Other CRE-finfish	Goby	Callogobius centrolepis
Other CRE-finfish	Goby	Callogobius hasselti
Other CRE-finfish	Goby	Callogobius maculipinnis
Other CRE-finfish	Goby	Callogobius okinawae
Other CRE-finfish	Goby	Callogobius plumatus
Other CRE-finfish	Goby	Callogobius sclateri
Other CRE-finfish	Longfin	Calloplesiops altivelis
Other CRE-finfish	Sleeper	Calumia godeffroyi
Other CRE-finfish	Gray Leatherjacket	Cantherhines dumerilii
Other CRE-finfish	Specktacled Filefish	Cantherhines fronticinctus
Other CRE-finfish	Honeycomb Filefish	Cantherhines pardalis
Other CRE-finfish	Rough Triggerfish	Canthidermis maculatus
Other CRE-finfish	Puffer	Canthigaster amboinensis
Other CRE-finfish	Puffer	Canthigaster bennetti
Other CRE-finfish	Puffer	Canthigaster compressa
Other CRE-finfish	Sharp Back Puffer	Canthigaster coronata
Other CRE-finfish	Puffer	Canthigaster epilampra
Other CRE-finfish	Puffer	Canthigaster janthinoptera
Other CRE-finfish	Puffer	Canthigaster leoparda
Other CRE-finfish	Circle-Barred Toby	Canthigaster ocellicincta
Other CRE-finfish	Papuan Toby	Canthigaster papua
Other CRE-finfish	Sharpnose Puffer	Canthigaster solandri
Other CRE-finfish	Saddle Shpns Puffer	Canthigaster valentini
Other CRE-finfish	Boarfishes	Caproidae
Other CRE-finfish	Coral Crouchers	Caracanthidae
Other CRE-finfish	Velvetfish	Caracanthus maculatus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Velvetfish	Caracanthus unipinna
Other CRE-finfish	Pearlfish	Carapodidae
Other CRE-finfish	Pearlfish	Carapus mourlani
Other CRE-finfish	Shrimpfishes	Centriscidae
Other CRE-finfish	Golden Angelfish	Centropyge aurantia
Other CRE-finfish	Bicolor Angelfish	Centropyge bicolor
Other CRE-finfish	Dusky Angelfish	Centropyge bispinosus
Other CRE-finfish	Colin'S Angelfish	Centropyge colini
Other CRE-finfish	White-Tail Angelfish	Centropyge flavicauda
Other CRE-finfish	Lemonpeel Anglefish	Centropyge flavissimus
Other CRE-finfish	Herald'S Anglefish	Centropyge heraldi
Other CRE-finfish	Flame Anglefish	Centropyge loriculus
Other CRE-finfish	Multicolor Angelfish	Centropyge multicolor
Other CRE-finfish	Multibarred Angelfish	Centropyge multifasciatus
Other CRE-finfish	Black-Spot Anglefish	Centropyge nigriocellus
Other CRE-finfish	Midnight Angelfish	Centropyge nox
Other CRE-finfish	Shepard'S Anglefish	Centropyge shepardi
Other CRE-finfish	Keyhole Angelfish	Centropyge tibicen
Other CRE-finfish	Pearlscale Anglefish	Centropyge vrolicki
Other CRE-finfish	Triplefin	Ceratobregma helenae
Other CRE-finfish	Threadfin Butterflyfish	Chaetodon auriga
Other CRE-finfish	E Triangular Butterflyfish	Chaetodon barronessa
Other CRE-finfish	Bennetts Butterflyfish	Chaetodon bernetti
Other CRE-finfish	Burgess' Butterflyfish	Chaetodon burgessi
Other CRE-finfish	Speckled Butterflyfish	Chaetodon citrinellus
Other CRE-finfish	Saddleback Butterflyfish	Chaetodon ephippium
Other CRE-finfish	Ylw-Crn Butterflyfish	Chaetodon flavocoronatus
Other CRE-finfish	Kleins Butterflyfish	Chaetodon kleinii
Other CRE-finfish	Lined Butterflyfish	Chaetodon lineolatus
Other CRE-finfish	Racoon Butterflyfish	Chaetodon lunula
Other CRE-finfish	Redfinned Butterflyfish	Chaetodon lunulatus
Other CRE-finfish	Black-Back Butterflyfish	Chaetodon melannotus
Other CRE-finfish	Mertens Butterflyfish	Chaetodon metannotas Chaetodon mertensii
Other CRE-finfish	Meyer'S Butterflyfish	Chaetodon meyeri
Other CRE-finfish	Butterflyfish	Chaetodon modestus
Other CRE-finfish	Spot-Tail Butterflyfish	Chaetodon ocellicaudus
Other CRE-finfish	8-Banded Butterflyfish	Chaetodon octofasciatus
Other CRE-finfish	Ornate Butterflyfish	Chaetodon octojascialus Chaetodon ornatissimus
Other CRE-finfish	Spot-Nape Butterflyfish	Chaetodon oxycephalus
Other CRE-finfish	Spot-Nape Butterflyfish	Chaetodon punctatofasciatus
Other CRE-finfish	4-Spotted Butterflyfish	Chaetodon quadrimaculatus
Other CRE-finfish	Latticed Butterflyfish	Chaetodon rafflesii
Other CRE-finfish	5	
Other UKE-IINIISh	Retculted Butterflyfish	Chaetodon reticulatus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Dotted Butterflyfish	Chaetodon semeion
Other CRE-finfish	Oval-Spot Butterflyfish	Chaetodon speculum
Other CRE-finfish	Tinker'S Butterflyfish	Chaetodon tinkeri
Other CRE-finfish	Chevron Butterflyfish	Chaetodon trifascialis
Other CRE-finfish	Pac Dblsddl Butterflyfish	Chaetodon ulietensis
Other CRE-finfish	Teardrop Butterflyfish	Chaetodon unimaculatus
Other CRE-finfish	Vagabond Butterflyfish	Chaetodon vagabundus
Other CRE-finfish	Butterflyfish	Chaetodontidae
Other CRE-finfish	Vermiculated Angelfish	Chaetodontoplus mesoleucus
Other CRE-finfish	Saddled Sandburrower	Chalixodytes tauensis
Other CRE-finfish	Gaper	Champsodon vorax
Other CRE-finfish	Gapers	Champsodontidae
Other CRE-finfish	Milkfish	Chanidae
Other CRE-finfish	Long-Jawed Moray	Channomuraena vittata
Other CRE-finfish	Milkfish	Chanos chanos
Other CRE-finfish	Lined Cardinalfish	Cheilodipterus artus
Other CRE-finfish	Intermediate Cardinalfish	Cheilodipterus intermedius
Other CRE-finfish	Cardinalfish	Cheilodipterus isostigma
Other CRE-finfish	Lg-Toothed Cardinalfish	Cheilodipterus macrodon
Other CRE-finfish	5-Lined Cardinalfish	Cheilodipterus quinquelineata
Other CRE-finfish	Truncate Cardinalfish	Cheilodipterus singapurensis
Other CRE-finfish	Flying Fish	Cheilopogon spilonopterus
Other CRE-finfish	Flying Fish	Cheilopogon spilopterus
Other CRE-finfish	Flying Fish	Cheilopogon unicolor
Other CRE-finfish	Minstrel Fish	Cheiloprion labiatus
Other CRE-finfish	Ceram Mullet	Chelon macrolepis
Other CRE-finfish	False Moray Eel	Chlopsidae
Other CRE-finfish	Pipefish	Choeroichthys brachysoma
Other CRE-finfish	Pipefish	Choeroichthys sculptus
Other CRE-finfish	Duckbill	Chrionema squamiceps
Other CRE-finfish	Midget Chromis	Chromis acares
Other CRE-finfish	Bronze Reef Chromis	Chromis agilis
Other CRE-finfish	Yel-Speckled Chromis	Chromis alpha
Other CRE-finfish	Ambon Chromis	Chromis amboinensis
Other CRE-finfish	Yellow Chromis	Chromis analis
Other CRE-finfish	Black-Axil Chromis	Chromis atripectoralis
Other CRE-finfish	Dark-Fin Chromis	Chromis atripes
Other CRE-finfish	Blue-Axil Chromis	Chromis caudalis
Other CRE-finfish	Deep Reef Chromis	Chromis delta
Other CRE-finfish	Twin-Spot Chromis	Chromis elerae
Other CRE-finfish	Scaly Chromis	Chromis lepidolepis
Other CRE-finfish	Lined Chromis	Chromis lineata
Other CRE-finfish	Bicolor Chromis	Chromis margaritifer

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Black-Bar Chromis	Chromis retrofasciata
Other CRE-finfish	Ternate Chromis	Chromis ternatensis
Other CRE-finfish	Vanderbilt'S Chromis	Chromis vanderbilti
Other CRE-finfish	Blue-Green Chromis	Chromis viridis
Other CRE-finfish	Weber'S Chromis	Chromis weberi
Other CRE-finfish	Yel-Axil Chromis	Chromis xanthochir
Other CRE-finfish	Black Chromis	Chromis xanthura
Other CRE-finfish	2-Spot Demoiselle	Chrysiptera biocellata
Other CRE-finfish	Surge Demoiselle	Chrysiptera brownriggii
Other CRE-finfish	Blue-Line Demoiselle	Chrysiptera caeruleolineata
Other CRE-finfish	Blue Devil	Chrysiptera cyanea
Other CRE-finfish	Gray Demoiselle	Chrysiptera glauca
Other CRE-finfish	Blue-Spot Demoiselle	Chrysiptera oxycephala
Other CRE-finfish	King Demoiselle	<i>Chrysiptera rex</i>
Other CRE-finfish	Talbot'S Demoiselle	Chrysiptera talboti
Other CRE-finfish	Tracey'S Demoiselle	Chrysiptera traceyi
Other CRE-finfish	1-Spot Demoiselle	<i>Chrysiptera unimaculata</i>
Other CRE-finfish	Peacock Bass	Cichla ocellaris
Other CRE-finfish	Cichlids	Cichlidae
Other CRE-finfish	Threadfin Hawkfish	<i>Cirrhitichthys aprinus</i>
Other CRE-finfish	Falco'S Hawkfish	<i>Cirrhitichthys falco</i>
Other CRE-finfish	Pixy Hawkfish	<i>Cirrhitichthys oxycephalus</i>
Other CRE-finfish	Hawkfish	Cirrhitidae
Other CRE-finfish	Stocky Hawkfish	<i>Cirrhitus pinnulatus</i>
Other CRE-finfish	Fringelip Snake Eel	Cirricaecula johnsoni
Other CRE-finfish	Chestnut Blenny	Cirripectes castaneus
Other CRE-finfish	Spotted Blenny	<i>Cirripectes fuscoguttatus</i>
Other CRE-finfish	Blenny	<i>Cirripectes perustus</i>
Other CRE-finfish	Barred Blenny	<i>Cirripectes polyzona</i>
Other CRE-finfish	Squiggly Blenny	Cirripectes quagga
Other CRE-finfish	Red-Streaked Blenny	Cirripectes stigmaticus
Other CRE-finfish	Red-Speckled Blenny	<i>Cirripectes variolosus</i>
Other CRE-finfish	Air-Breath Catfish	<i>Clarias batrachus</i>
Other CRE-finfish	Air-Breath Catfish	Clarias macrocephalus
Other CRE-finfish	Air-Breath Catfish	Clariidae
Other CRE-finfish	Herring,Sprat,Sardines	Clupeidae
Other CRE-finfish	Velvetfish	<i>Cocotropis larvatus</i>
Other CRE-finfish	White Eel	Conger cinereus cinereus
Other CRE-finfish	Conger Eel	Conger cinereus cinereus Conger oligoporus
Other CRE-finfish	5	
Other CRE-finfish	Conger Eel	Conger sp
	White,Conger,Garden Eel	Congridae
Other CRE-finfish	Deepwater Glasseye	Cookeolus boops
Other CRE-finfish	Bulleye	Cookeolus japonicus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Orangebanded Coralfish	Coradion chrysozonus
Other CRE-finfish	Goby	Coryphopterus signipinnis
Other CRE-finfish	Network Pipefish	Corythoichthys flavofasciatus
Other CRE-finfish	Pipefish	Corythoichthys
Other CRE-finfish	Reef Pipefish	Corythoichthys intestinalis
Other CRE-finfish	Bl-Breasted Pipefish	Corythoichthys nigripectus
Other CRE-finfish	Ocellated Pipefish	Corythoichthys ocellatus
Other CRE-finfish	Many-Spotted Pipefish	Corythoichthys polynotatus
Other CRE-finfish	Guilded Pipefish	Corythoichthys schultzi
Other CRE-finfish	Roughridge Pipefish	Cosmocampus banneri
Other CRE-finfish	D'Arros Pipefish	Cosmocampus darrosanus
Other CRE-finfish	Maxweber'S Pipefish	Cosmocampus maxweberi
Other CRE-finfish	Sand Burrowers	Creedidae
Other CRE-finfish	Mullet	Crenimugil heterochilos
Other CRE-finfish	Goby	Cristagobius sp
Other CRE-finfish	Goby	Cryptocentroides insignis
Other CRE-finfish	Goby	Cryptocentrus
Other CRE-finfish	Goby	Cryptocentrus cinctus
Other CRE-finfish	Goby	Cryptocentrus koumansi
Other CRE-finfish	Goby	Cryptocentrus leptocephalus
Other CRE-finfish	Goby	Cryptocentrus sp A
Other CRE-finfish	Goby	Cryptocentrus strigilliceps
Other CRE-finfish	Goby	Ctenogobiops aurocingulus
Other CRE-finfish	Goby	Ctenogobiops feroculus
Other CRE-finfish	Goby	Ctenogobiops pomastictus
Other CRE-finfish	Long-Finned Prwn Goby	Ctenogobiops tangarorai
Other CRE-finfish	Flathead	Cymbacephalus beauforti
Other CRE-finfish	Swallowtail Hawkfish	Cyprinocirrhites polyactis
Other CRE-finfish	Flying Fish	Cypselurus angusticeps
Other CRE-finfish	Flying Fish	Cypselurus poecilopterus
Other CRE-finfish	Flying Fish	Cypselurus speculiger
Other CRE-finfish	Flying Gurnard	Dactyloptena orientalis
Other CRE-finfish	Flying Gurnard	Dactyloptena petersoni
Other CRE-finfish	Flying Gurnard	Dactylopteridae
Other CRE-finfish	Humbug Dascyllus	Dascyllus aruanus
Other CRE-finfish	Black-Tail Dascyllus	Dascyllus melanurus
Other CRE-finfish	Reticulated Dascyllus	Dascyllus reticulatus
Other CRE-finfish	3-Spot Dascyllus	Dascyllus trimaculatus
Other CRE-finfish	Stingray	Dasyatididae
Other CRE-finfish	Blue-Spotted Sting Ray	Dasyatis kuhlii
Other CRE-finfish	Scorpionfish	Dendrochirus biocellatus
Other CRE-finfish	Scorpionfish	Dendrochirus brachypterus
Other CRE-finfish	Zebra Lionfish	Dendrochirus zebra

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Slatey Sweetlips	Diagramma pictum
Other CRE-finfish	Lanternfish	Diaphus schmidti
Other CRE-finfish	Bythitid	Dinematichthys
Other CRE-finfish	Porcupinefish	Diodon eydouxi
Other CRE-finfish	Porcupinefish	Diodon hystrix
Other CRE-finfish	Porcupinefish	Diodon liturosus
Other CRE-finfish	Porcupinefish	Diodontidae
Other CRE-finfish	Dragonet	Diplogrammus goramensis
Other CRE-finfish	Bristlemouth	Diplophos sp
Other CRE-finfish	White-Spot Damsel	Dischistodus chrysopoecilus
Other CRE-finfish	Black-Vent Damsel	Dischistodus melanotus
Other CRE-finfish	White Damsel	Dischistodus perspicillatus
Other CRE-finfish	Banded Pipefish	Doryramphus dactyliophorus
Other CRE-finfish	Bluestripe Pipefish	Doryramphus excisus
Other CRE-finfish	Janss' Pipefish	Doryramphus janssi
Other CRE-finfish	Negros Pipefish	Doryramphus negrosensis
Other CRE-finfish	Sprat	Dussumieria elopsoides
Other CRE-finfish	Sprats	Dussumieria sp B
Other CRE-finfish	Diskfishes	Echeneidae
Other CRE-finfish	Remora	Echeneis naucrates
Other CRE-finfish	Whiteface Moray	Echidna leucotaenia
Other CRE-finfish	Snowflake Moray	Echidna nebulosa
Other CRE-finfish	Girdled Moray Eel	Echidna polyzona
Other CRE-finfish	Unicolor Moray	Echidna unicolor
Other CRE-finfish	Banda Clown Blenny	Ecsenius bandanus
Other CRE-finfish	Blenny	Ecsenius bicolor
Other CRE-finfish	Blenny	Ecsenius opsifrontalis
Other CRE-finfish	Blenny	Ecsenius sellifer
Other CRE-finfish	Blenny	Ecsenius yaeyamaensis
Other CRE-finfish	Snake Eel	Elapsopsis versicolor
Other CRE-finfish	Sleepers	Eleotrididae
Other CRE-finfish	Gudgeon	Eleotris fusca
Other CRE-finfish	Bonnetmouth	Emmelichthys karnellai
Other CRE-finfish	Bonnet Mouths	Emmelichtyidae
Other CRE-finfish	Pearlfish	Encheliophis boraboraensis
Other CRE-finfish	Pearlfish	Encheliophis gracilis
Other CRE-finfish	Pearlfish	Encheliophis homei
Other CRE-finfish	Pearlfish	Encheliophis vermicularis
Other CRE-finfish	Bayer'S Moray	Enchelycore bayeri
Other CRE-finfish	Bikini Atoll Moray	Enchelycore bikiniensis
Other CRE-finfish	Dark-Spotted Moray	Enchelycore kamara
Other CRE-finfish	White-Margined Moray	Enchelycore
Other CRE-finfish	Viper Moray	Enchelynassa canina

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Blenny	Enchelyurus kraussi
Other CRE-finfish	Gold Anchovy	Enchrasicholina devisi
Other CRE-finfish	Blue Anchovy	Enchrasicholina heterolobus
Other CRE-finfish	Oceanic Anchovy	Enchrasicholina punctifer
Other CRE-finfish	Anchovies	Engraulidae
Other CRE-finfish	Flounder	Engyprosopon sp
Other CRE-finfish	Triplefin	Enneapterygius hemimelas
Other CRE-finfish	Triplefin	Enneapterygius minutus
Other CRE-finfish	Triplefin	Enneapterygius nanus
Other CRE-finfish	Blenny	Entomacrodus caudofasciatus
Other CRE-finfish	Blenny	Entomacrodus cymatobiotus
Other CRE-finfish	Blenny	Entomacrodus decussatus
Other CRE-finfish	Blenny	Entomacrodus niuafooensis
Other CRE-finfish	Blenny	Entomacrodus sealei
Other CRE-finfish	Blenny	Entomacrodus stellifer
Other CRE-finfish	Blenny	Entomacrodus striatus
Other CRE-finfish	Blenny	Entomacrodus thalassinus
Other CRE-finfish	Batfish	Ephippidae
Other CRE-finfish	Hagfish	Eptaptretus carlhubbsi
Other CRE-finfish	Bonnetmouth	<i>Erythrocles scintillans</i>
Other CRE-finfish	Spiny Dogfish	Etmopterus pusillus
Other CRE-finfish	Ribbon Halfbeak	Euleptorhamphus viridis
Other CRE-finfish	Dragon Fish	Eurypegasus draconis
Other CRE-finfish	Mantis Shrimp	Eutremus teres
Other CRE-finfish	Kawakawa	Eviota afelei
Other CRE-finfish	Herring	Eviota albolineata
Other CRE-finfish	Goby	Eviota bifasciata
Other CRE-finfish	Goby	Eviota cometa
Other CRE-finfish	Goby	Eviota distigma
Other CRE-finfish	Goby	Eviota fasciola
Other CRE-finfish	Goby	Eviota herrei
Other CRE-finfish	Goby	Eviota infulata
Other CRE-finfish	Goby	Eviota lachdebrerei
Other CRE-finfish	Goby	Eviota latifasciata
Other CRE-finfish	Goby	Eviota melasma
Other CRE-finfish	Goby	Eviota nebulosa
Other CRE-finfish	Goby	Eviota pellucida
Other CRE-finfish	Goby	Eviota prasina
Other CRE-finfish	Goby	Eviota prasites
Other CRE-finfish	Goby	Eviota punctulata
Other CRE-finfish	Goby	Eviota queenslandica
Other CRE-finfish	Goby	<i>Eviota saipanensis</i>
Other CRE-finfish	Goby	Eviota sebreei

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Goby	Eviota sigillata
Other CRE-finfish	Goby	Eviota smaragdus
Other CRE-finfish	Goby	Eviota sp
Other CRE-finfish	Goby	Eviota sparsa
Other CRE-finfish	Goby	Eviota storthynx
Other CRE-finfish	Goby	Eviota zonura
Other CRE-finfish	Snake Eel	Evipes percinctus
Other CRE-finfish	Blenny	Exalias brevis
Other CRE-finfish	Flying Fish	Exocoetidae
Other CRE-finfish	Flying Fish	Exocoetus volitans
Other CRE-finfish	Goby	Exyrias belissimus
Other CRE-finfish	Goby	Exyrias puntang
Other CRE-finfish	Cornetfish	Fistularia commersoni
Other CRE-finfish	Cornetfish	Fistulariidae
Other CRE-finfish	Bay Cardinalfish	<i>Foa brachygramma</i>
Other CRE-finfish	Cardinalfish	Foa sp
Other CRE-finfish	Longnosed Butterflyfish	Forcipiger flavissimus
Other CRE-finfish	Big Longnose Butterflyfish	Forcipiger longirostris
Other CRE-finfish	Cardinalfish	<i>Fowleria abocellata</i>
Other CRE-finfish	Marbled Cardinalfish	Fowleria marmorata
Other CRE-finfish	Spotcheek Cardinalfish	Fowleria punctulata
Other CRE-finfish	Variegated Cardinalfish	Fowleria variegatus
Other CRE-finfish	Goby	Fusigobius longispinus
Other CRE-finfish	Goby	Fusigobius neophytus
Other CRE-finfish	Lg-Toothed Ponyfish	Gazza achlamys
Other CRE-finfish	Toothed Ponyfish	Gazza minuta
Other CRE-finfish	Ornate Angelfish	Genicanthus bellus
Other CRE-finfish	Black-Spot Angelfish	Genicanthus melanospilos
Other CRE-finfish	Watanabe'S Angelfish	Genicanthus watanabei
Other CRE-finfish	Mojarras	Gerreidae
Other CRE-finfish	Deep-Bodied Mojarra	Gerres abbreviatus
Other CRE-finfish	Common Mojarra	Gerres acinaces
Other CRE-finfish	Filamentous Mojarra	Gerres filamentosus
Other CRE-finfish	Oblong Mojarra	Gerres oblongus
Other CRE-finfish	Oyena Mojarra	Gerres oyena
Other CRE-finfish	Mojarra	Gerres punctatus
Other CRE-finfish	Telescopefish	Giganturidae
Other CRE-finfish	Goby	Gladigobius ensifera
Other CRE-finfish	Goby	Glossogobius biocellatus
Other CRE-finfish	Goby	Glossogobius celebius
Other CRE-finfish	Goby	Glossogobius guirus
Other CRE-finfish	Blenny	<i>Glyptoparus delicatulus</i>
Other CRE-finfish	Goby	Gnatholepis anjerensis

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish		Gnatholepis caurensis
Other CRE-finfish	Goby	Gnatholepis scapulostigma
Other CRE-finfish	Goby	Gnatholepis sp A
Other CRE-finfish	Clingfish	Gobiesocidae
Other CRE-finfish	Goby	Gobiidae
Other CRE-finfish	Goby	Gobiodon albofasciatus
Other CRE-finfish	Goby	Gobiodon citrinus
Other CRE-finfish	Goby	Gobiodon okinawae
Other CRE-finfish	Goby	Gobiodon quinquestrigatus
Other CRE-finfish	Goby	Gobiodon rivulatus
Other CRE-finfish	Goby	Gobiopsis bravoi
Other CRE-finfish	Bristlemouth	Gonostoma atlanticum
Other CRE-finfish	Bristlemouth	Gonostoma ebelingi
Other CRE-finfish	Bristlemouths	Gonostomatidae
Other CRE-finfish	Orange-Barred Garden Eel	Gorgasia preclara
Other CRE-finfish	Conger Eel	Gorgasia sp
Other CRE-finfish	Goldies	Grammatonotus sp 1
Other CRE-finfish	Goldies	Grammatonotus sp 2
Other CRE-finfish	2-Lined Mackerel	Grammatorcynos bilineatus
Other CRE-finfish	Yellowstripe Soapfish	Grammistes sexlineatus
Other CRE-finfish	Soapfish	Grammistidae
Other CRE-finfish	Ocellate Soapfish	Grammistops ocellatus
Other CRE-finfish	Wormfish	Gunnellichthys monostigma
Other CRE-finfish	Onestripe Wormfish	Gunnellichthys pleurotaenia
Other CRE-finfish	Wormfish	Gunnellichthys viridescens
Other CRE-finfish	Philippine Cardinalfish	Gymnapogon philippinus
Other CRE-finfish	Cardinalfish	<i>Gymnapogon urospilotus</i>
Other CRE-finfish	Fusilier	<i>Gymnocaesio gymnopterus</i>
Other CRE-finfish	Zebra Moray	Gymnomuraena zebra
Other CRE-finfish	Moray Eel	Gymnothorax berndti
Other CRE-finfish	Buro Moray	Gymnothorax buroensis
Other CRE-finfish	Moray Eel	<i>Gymnothorax elegans</i>
Other CRE-finfish	Enigmatic Moray	<i>Gymnothorax enigmaticus</i>
Other CRE-finfish	Fimbriated Moray	Gymnothorax fimbriatus
Other CRE-finfish	Yellow-Margined Moray	Gymnothorax flavimarginatus
Other CRE-finfish	Brown Spotted Moray	<i>Gymnothorax fuscomaculatus</i>
Other CRE-finfish	Graceful-Tailed Moray	<i>Gymnothorax gracilicaudus</i>
Other CRE-finfish	Moray Eel	<i>Gymnothorax hepaticus</i>
Other CRE-finfish	Giant Moray	Gymnothorax javanicus
Other CRE-finfish	Blotch-Necked Moray	Gymnothorax
Other CRE-finfish	Marshall Isles Moray	Gymnothorax marshallensis
Other CRE-finfish	Dirty Yellow Moray	<i>Gymnothorax melatremus</i>
Other CRE-finfish	Whitemouth Moray	Gymnothorax meleagris

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Monochrome Moray	Gymnothorax monochrous
Other CRE-finfish	1-Spot Moray	Gymnothorax monostigmus
Other CRE-finfish	Moray Eel	Gymnothorax neglectus
Other CRE-finfish	Yellowmouth Moray	Gymnothorax nudivomer
Other CRE-finfish	Pinda Moray	<i>Gymnothorax pindae</i>
Other CRE-finfish	Moray Eel	Gymnothorax polyuranodon
Other CRE-finfish	Richardson'S Moray	Gymnothorax richardsoni
Other CRE-finfish	Yellow-Headed Moray	Gymnothorax rueppelliae
Other CRE-finfish	Moray Eel	Gymnothorax sp cf
Other CRE-finfish	Undulated Moray	Gymnothorax undulatus
Other CRE-finfish	Zonipectis Moray	Gymnothorax zonipectus
Other CRE-finfish	Dogtooth tuna	Gymnosarda unicolor
Other CRE-finfish	Sweetlips	Haemulidae
Other CRE-finfish	Brock'S Pipefish	Halicampus brocki
Other CRE-finfish	Duncker'S Pipefish	Halicampus dunckeri
Other CRE-finfish	Samoan Pipefish	Halicampus mataafae
Other CRE-finfish	Glittering Pipefish	Halicampus nitidus
Other CRE-finfish	Spikefish	Halimochirurgus alcocki
Other CRE-finfish	Triplefin	Helcogramma capidata
Other CRE-finfish	Triplefin	Helcogramma chica
Other CRE-finfish	Triplefin	Helcogramma hudsoni
Other CRE-finfish	Damselfish	Hemiglyphidodon
Other CRE-finfish	Halfbeak	Hemiramphus archipelagicus
Other CRE-finfish	Halfbeak	Hemiramphus far
Other CRE-finfish	Halfbeak	Hemiramphus lutkei
Other CRE-finfish	Halfbeak	Hemirhamphidae
Other CRE-finfish	Pyrimid Butterflyfish	Hemitaurichthys polylepis
Other CRE-finfish	Butterflyfish	Hemitaurichthys thompsoni
Other CRE-finfish	Longfinned Bannerfish	Heniochus acuminatus
Other CRE-finfish	Pennant Bannerfish	Heniochus chrysostomus
Other CRE-finfish	Bannerfish	Heniochus diphreutes
Other CRE-finfish	Masked Bannerfish	Heniochus monoceros
Other CRE-finfish	Singular Butterflyfish	Heniochus singularis
Other CRE-finfish	Humphead Bannerfish	Heniochus varius
Other CRE-finfish	Gold Spot Herring	Herklotsichthys
Other CRE-finfish	Conger Eel	Heteroconger hassi
Other CRE-finfish	Goby	Heteroeleotris sp
Other CRE-finfish	Glasseye	Heteropriacanthus cruentatus
Other CRE-finfish	Whipray	Himantura fai
Other CRE-finfish	Wh Tail Whipray	Himantura granulata
Other CRE-finfish	Leopard Ray	Himantura uarnak
Other CRE-finfish	Pipefish	Hippichthys cyanospilos
Other CRE-finfish	Pipefish	Hippichthys spicifer

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Pipefish	Hippocampus histrix
Other CRE-finfish	Pipefish	Hippocampus kuda
Other CRE-finfish	Sargassum Fish	Histrio histrio
Other CRE-finfish	Fairy Basslet	Holanthias borbonius
Other CRE-finfish	Fairy Basslet	Holanthias katayamai
Other CRE-finfish	Tilefish	Hoplolatilus cuniculus
Other CRE-finfish	Tilefish	Hoplolatilus fronticinctus
Other CRE-finfish	Tilefish	Hoplolatilus starcki
Other CRE-finfish	Silverside	Hypoatherina barnesi
Other CRE-finfish	Silverside	<i>Hypoatherina cylindrica</i>
Other CRE-finfish	Silverside	Hypoatherina ovalaua
Other CRE-finfish	Halfbeak	Hyporhamphus acutus acutus
Other CRE-finfish	Halfbeak	Hyporhamphus affinis
Other CRE-finfish	Halfbeak	Hyporhamphus dussumieri
Other CRE-finfish	Snake Eel	Ichthyapus vulturus
Other CRE-finfish	Spiny Devilfish	Inimicus didactylus
Other CRE-finfish	Keeled Silverside	Iso hawaiiensis
Other CRE-finfish	6-Band Hawkfish	Isocirrhitus sexfasciatus
Other CRE-finfish	Keeled Silversides	Isonidae
Other CRE-finfish	Beautiful Rockskipper	Istiblennius bellus
Other CRE-finfish	Blenny	Istiblennius chrysospilos
Other CRE-finfish	Streaky Rockskipper	Istiblennius dussumieri
Other CRE-finfish	Blenny	Istiblennius edentulus
Other CRE-finfish	Interrupted Rockskipper	Istiblennius interruptus
Other CRE-finfish	Blenny	Istiblennius lineatus
Other CRE-finfish	Goby	Istigobius decoratus
Other CRE-finfish	Goby	Istigobius ornatus
Other CRE-finfish	Goby	Istigobius rigilius
Other CRE-finfish	Goby	Istigobius spence
Other CRE-finfish	Billfishes	Istiophoridae
Other CRE-finfish	Bl-Nostril False Moray	Kaupichthys atronasus
Other CRE-finfish	Shortfin False Moray	Kaupichthys brachychirus
Other CRE-finfish	Common False Moray	Kaupichthys hyoproroides
Other CRE-finfish	Goby	Kellogella quindecimfasciata
Other CRE-finfish	Goby	Kelloggella cardinalis
Other CRE-finfish	Sand Dart	Kraemeria bryani
Other CRE-finfish	Sand Dart	Kraemeria cunicularia
Other CRE-finfish	Sand Dart	Kraemeria samoensis
Other CRE-finfish	Sand Darts	Kraemeriidae
Other CRE-finfish	Dark-Margined Flagtail	Kuhlia marginata
Other CRE-finfish	Barred Flagtail	Kuhlia mugil
Other CRE-finfish	River Flagtail	Kuhlia rupestris
Other CRE-finfish	Flagtails	Kuhliidae

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Longhorn Cowfish	Lactoria cornuta
Other CRE-finfish	Spiny Cowfish	Lactoria diaphana
Other CRE-finfish	Thornback Cowfish	Lactoria fornasini
Other CRE-finfish	Oceanic Blaasop	Lagocephalus lagocephalus
Other CRE-finfish	Silverstripe Blaasop	Lagocephalus sceleratus
Other CRE-finfish	Oriental Snake Eel	Lamnostoma orientalis
Other CRE-finfish	Ponyfishes	Leiognathidae
Other CRE-finfish	Slipmouth	Leiognathus bindus
Other CRE-finfish	Slipmouth	Leiognathus elongatus
Other CRE-finfish	Common Slipmouth	Leiognathus equulus
Other CRE-finfish	Slipmouth	Leiognathus smithursti
Other CRE-finfish	Oblong Slipmouth	Leiognathus stercorarius
Other CRE-finfish	Saddled Snake Eel	Leiuranus semicinctus
Other CRE-finfish	Clingfish	Lepadichthys caritus
Other CRE-finfish	Clingfish	Lepadichthys minor
Other CRE-finfish	Fusilier Damsel	Lepidozygus tapienosoma
Other CRE-finfish	Barracudina	Lestidium nudun
Other CRE-finfish	Sand Burrower	Limnichthys donaldsoni
Other CRE-finfish	Clingfish	Liobranchia stria
Other CRE-finfish	Swissguard Basslet	Liopropoma lunulatum
Other CRE-finfish	Swissguard Basslet	Liopropoma maculatum
Other CRE-finfish	Swissguard Basslet	Liopropoma mitratum
Other CRE-finfish	Swissguard Basslet	Liopropoma multilineatum
Other CRE-finfish	Pallid Basslet	Liopropoma pallidum
Other CRE-finfish	Pinstripe Basslet	Liopropoma susumi
Other CRE-finfish	Redstripe Basslet	Liopropoma tonstrinum
Other CRE-finfish	Blenny	Litobranchus fowleri
Other CRE-finfish	Giantscale Mullet	Liza melinoptera
Other CRE-finfish	Triplefin	Lobotes surinamensis
Other CRE-finfish	Tripletails	Lobotidae
Other CRE-finfish	Goby	Lotilia graciliosa
Other CRE-finfish	Magenta Slender Basslet	Luzonichthys waitei
Other CRE-finfish	Whitley'S Slender Basslet	Luzonichthys whitleyi
Other CRE-finfish	Goby	Macrodontogobius wilburi
Other CRE-finfish	Goby	Mahidolia mystacina
Other CRE-finfish	Tilefishes	Malacanthidae
Other CRE-finfish	Quakerfish	Malacanthus brevirostris
Other CRE-finfish	Striped Blanquillo	Malacanthus latovittatus
Other CRE-finfish	Manta Ray	Manta birostris
Other CRE-finfish	Sharptail Sunfish	Masturus lanceolatus
Other CRE-finfish	Tarpons	Megalopidae
Other CRE-finfish	Indo-Pacific Tarpon	Megalops cyprinoides
Other CRE-finfish	Poison-Fang Blenny	Meiacanthus anema

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Poison-Fang Blenny	Meiacanthus atrodorsalis
Other CRE-finfish	1-Stripe Poison-Fang Blenny	Meiacanthus ditrema
Other CRE-finfish	Striped Poison-Fang Blenny	Meiacanthus grammistes
Other CRE-finfish	Black Triggerfish	Melichthys niger
Other CRE-finfish	Pinktail Triggerfish	Melichthys vidua
Other CRE-finfish	Brotula	Microbrotula sp
Other CRE-finfish	Wormfish	Microdesmidae
Other CRE-finfish	Anderson'S Shrt-Nosed	Micrognathus andersonii
Other CRE-finfish	Pygmy Short-Nosed Pipefish	Micrognathus brevirostris
Other CRE-finfish	Pipefish	Microphis brachyurus
Other CRE-finfish	Pipefish	Microphis brevidorsalis
Other CRE-finfish	Pipefish	Microphis leiaspis
Other CRE-finfish	Pipefish	Microphis manadensis
Other CRE-finfish	Pipefish	Microphis retzii
Other CRE-finfish	Ventricose Milda	Minyichthys myersi
Other CRE-finfish	Myer'S Pipefish	Mobulidae
Other CRE-finfish	Ocean Sunfishes	Molidae
Other CRE-finfish	Filefishes	Monacanthidae
Other CRE-finfish	Monos	Monodactylidae
Other CRE-finfish	Mono	Monodactylus argenteus
Other CRE-finfish	Codlings	Moridae
Other CRE-finfish	Rusty Spaghetti Eel	Moringua ferruginea
Other CRE-finfish	Java Spaghetti Eel	Moringua javanica
Other CRE-finfish	Spaghetti Eel	Moringua microchir
Other CRE-finfish	Worm Eel	Moringuidae
Other CRE-finfish	Goby	Mugilogobius tagala
Other CRE-finfish	Goby	Mugilogobius villa
Other CRE-finfish	Pike Eels	Muraenesocidae
Other CRE-finfish	Pike Conger	Muraenesox cinereus
Other CRE-finfish	Snake Eel	Muraenichthys gymnotus
Other CRE-finfish	Snake Eel	Muraenichthys laticaudata
Other CRE-finfish	Snake Eel	Muraenichthys macropterus
Other CRE-finfish	Snake Eel	Muraenichthys schultzi
Other CRE-finfish	Snake Eel	Muraenichthys sibogae
Other CRE-finfish	Morays	Muraenidae
Other CRE-finfish	Lanternfishes	Myctophidae
Other CRE-finfish	Laternfish	Myctophum brachygnathos
Other CRE-finfish	Eagle Ray	Myliobatidae
Other CRE-finfish	Snake Eel	Myrichthys bleekeri
Other CRE-finfish	Banded Snake Eel	Myrichthys colubrinus
Other CRE-finfish	Spotted Snake Eel	Myrichthys maculosus
Other CRE-finfish	Snake Eel	Myrophis uropterus
Other CRE-finfish	Hagfish	Myxinidae

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Combtooth Blenny	Nannosalarius nativitatus
Other CRE-finfish	Decorated Dartfish	Nemateleotris decora
Other CRE-finfish	Helfrichs' Dartfish	Nemateleotris helfrichi
Other CRE-finfish	Fire Dartfish	Nemateleotris magnifica
Other CRE-finfish	Threadfin Breams	Nemipteridae
Other CRE-finfish	Breams	Nemipteridae
Other CRE-finfish	Forktail Bream	Nemipterus furcosus
Other CRE-finfish	Butterfly Bream	Nemipterus hexadon
Other CRE-finfish	Notched Butterfly Bream	Nemipterus peronii
Other CRE-finfish	Butterfly Bream	Nemipterus tolu
Other CRE-finfish	Flame Hawkfish	Neocirrhitus armatus
Other CRE-finfish	Royal Damsel	Neoglyphidodon melas
Other CRE-finfish	Yellowfin Damsel	Neoglyphidodon nigroris
Other CRE-finfish	Coral Demoiselle	Neopomacentrus nemurus
Other CRE-finfish	Freshwater Demoiselle	Neopomacentrus taeniurus
Other CRE-finfish	Violet Demoiselle	Neopomacentrus violascens
Other CRE-finfish	Man-Of-War Fish	Nomeidae
Other CRE-finfish	Triplefin	Norfolkia brachylepis
Other CRE-finfish	Redtooth Triggerfish	Odonus niger
Other CRE-finfish	Foldlip Mullet	Oedalechilus labiosus
Other CRE-finfish	Mangrove Blenny	Omobranchus obliquus
Other CRE-finfish	Blenny	Omobranchus rotundiceps
Other CRE-finfish	Blenny	Omox biporos
Other CRE-finfish	Bivalve Pearlfish	Onuxodon fowleri
Other CRE-finfish	Snake Eel	Ophichthidae
Other CRE-finfish	Dark-Shouldered Snake Eel	Ophichthus cephalozona
Other CRE-finfish	Cusk Eel	Ophidiidae
Other CRE-finfish	Sleeper	Ophieleotris aporos
Other CRE-finfish	Sleeper	Ophiocara porocephala
Other CRE-finfish	Jawfishes	Opisthognathidae
Other CRE-finfish	Variable Jawfish	Opisthognathus sp A
Other CRE-finfish	Wass' Jawfish	Opisthognathus sp B
Other CRE-finfish	Knifejaws	Oplegnathidae
Other CRE-finfish	Spotted Knifejaw	Oplegnathus punctatus
Other CRE-finfish	Goby	<i>Oplopomops diacanthus</i>
Other CRE-finfish	Goby	Oplopomus oplopomus
Other CRE-finfish	Goby	Opua nephodes
Other CRE-finfish	Tilapia	Oreochromis mossambicus
Other CRE-finfish	Boxfish, Cowfish	Ostraciidae
Other CRE-finfish	Cube Trunkfish	Ostracion cubicus
Other CRE-finfish	Spotted Trunkfish	Ostracion meleagris
Other CRE-finfish	Reticulate Boxfish	Ostracion solorensis
Other CRE-finfish	Longnose Hawkfish	Oxycirrhitus typus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Sleeper	Oxyleotris lineolatus
Other CRE-finfish	Longnose Filefish	Oxymonacanthus longirostris
Other CRE-finfish	Smallwing Flying Fish	Oxyporhamphus micropterus
Other CRE-finfish	Goby	Oxyurichthys guibei
Other CRE-finfish	Goby	Oxyurichthys microlepis
Other CRE-finfish	Goby	Oxyurichthys ophthalmonema
Other CRE-finfish	Goby	Oxyurichthys papuensis
Other CRE-finfish	Goby	Oxyurichthys tentacularis
Other CRE-finfish	Goby	Padanka sp
Other CRE-finfish	Goby	Palutris pruinosa
Other CRE-finfish	Goby	Palutris reticularis
Other CRE-finfish	Arc-Eyed Hawkfish	Paracirrhitus arcatus
Other CRE-finfish	Freckeled Hawkfish	Paracirrhitus forsteri
Other CRE-finfish	Whitespot Hawkfish	Paracirrhitus hemistictus
Other CRE-finfish	Goby	Paragobiodon echinocephalus
Other CRE-finfish	Goby	Paragobiodon lacunicolus
Other CRE-finfish	Goby	Paragobiodon melanosoma
Other CRE-finfish	Goby	Paragobiodon modestus
Other CRE-finfish	Goby	Paragobiodon xanthosoma
Other CRE-finfish	Seychelle'S Wormfish	Paragunnellichthy
Other CRE-finfish	Barracudinas	Paralepididae
Other CRE-finfish	Blacksaddle Mimic	Paraluteres prionurus
Other CRE-finfish	Filefish	Paramonacanthus cryptodon
Other CRE-finfish	Filefish	Paramonacanthus japonicus
Other CRE-finfish	Latticed Sandperch	Parapercis clathrata
Other CRE-finfish	Cylindrical Sandperch	Parapercis cylindrica
Other CRE-finfish	Blk-Dotted Sandperch	Parapercis millipunctata
Other CRE-finfish	Red-Barred Sandperch	Parapercis multiplicata
Other CRE-finfish	Black-Banded Sandperch	Parapercis tetracantha
Other CRE-finfish	Blotchlip Sandperch	Parapercis xanthozona
Other CRE-finfish	Sandperch	Parapriacanthus ransonneti
Other CRE-finfish	Mcadam'S Scorpionfish	Parascorpaena mcadamsi
Other CRE-finfish	Mozambique Scorpionfish	Parascorpaena mossambica
Other CRE-finfish	Peacock Sole	Pardachirus pavoninus
Other CRE-finfish	Blenny	Parenchelyurus hepburni
Other CRE-finfish	Flying Fish	Parexocoetus brachypterus
Other CRE-finfish	Flying Fish	Parexocoetus mento
Other CRE-finfish	Beautiful Hover Goby	Parioglossus formosus
Other CRE-finfish	Lined Hover Goby	Parioglossus lineatus
Other CRE-finfish	Naked Hover Goby	Parioglossus nudus
Other CRE-finfish	Palustris Hover Goby	Parioglossus palustris
Other CRE-finfish	Rainford'S Hover Goby	Parioglossus rainfordi
Other CRE-finfish	Rao'S Hover Goby	Parioglossus raoi

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Taeniatus Hover Goby	Parioglossus taeniatus
Other CRE-finfish	Vertical Hover Goby	Parioglossus verticalis
Other CRE-finfish	Shortsnouted Ray	Pasinachus sephen
Other CRE-finfish	Dragonfish	Pegasidae
Other CRE-finfish	Sweepers	Pempherididae
Other CRE-finfish	Bronze Sweeper	Pempheris oualensis
Other CRE-finfish	Armourheads	Pentacerotidae
Other CRE-finfish	Smalltooth Whiptail	Pentapodus caninus
Other CRE-finfish	3-Striped Whiptail	Pentapodus trivittatus
Other CRE-finfish	Duckbills	Percophidae
Other CRE-finfish	Goby	Periophthalmus
Other CRE-finfish	Goby	Periophthalmus kalolo
Other CRE-finfish	Yelloweye Filefish	Pervagor alternans
Other CRE-finfish	Orangetail Filefish	Pervagor aspricaudatus
Other CRE-finfish	Blackbar Filefish	Pervagor janthinosoma
Other CRE-finfish	Blackheaded Filefish	Pervagor melanocephalus
Other CRE-finfish	Blacklined Filefish	Pervagor nigrolineatus
Other CRE-finfish	Blenny	Petroscirtes breviceps
Other CRE-finfish	Blenny	Petroscirtes mitratus
Other CRE-finfish	Blenny	Petroscirtes thepassi
Other CRE-finfish	Blenny	Petroscirtes variabilis
Other CRE-finfish	Blenny	Petroscirtes xestus
Other CRE-finfish	Snake Eel	Phenamonas cooperi
Other CRE-finfish	Flashlightfish	Photoblepheron palpebratus
Other CRE-finfish	Pipefish	Phoxocampus diacanthus
Other CRE-finfish	Snake Eel	Phyllophichthus xenodontus
Other CRE-finfish	Codling	Physiculus sp
Other CRE-finfish	Sand Perch	Pinguipedidae
Other CRE-finfish	Blenny	Plagiotremus laudandus
Other CRE-finfish	Red Sabbertooth Blenny	Plagiotremus rhynorhynchus
Other CRE-finfish	Blenny	Plagiotremus tapienosoma
Other CRE-finfish	Batfish	Platax orbicularis
Other CRE-finfish	Pinnate Spadefish	Platax pinnatus
Other CRE-finfish	Longfin Spadefish	Platax teira
Other CRE-finfish	Keeled Needlefish	Platybelone argalus platyura
Other CRE-finfish	Flathead	Platycephalidae
Other CRE-finfish	2-Lined Sweetlips	Plectorhinchus albovittatus
Other CRE-finfish	Celebes Sweetlips	Plectorhinchus celebecus
Other CRE-finfish	Harlequin Sweetlips	Plectorhinchus
Other CRE-finfish	Śweetlip	Plectorhinchus
Other CRE-finfish	Gibbus Sweetlips	Plectorhinchus gibbosus
Other CRE-finfish	Lined Sweetlips	Plectorhinchus lessonii
Other CRE-finfish	Goldman'S Sweetlips	Plectorhinchus lineatus

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Giant Sweetlips	Plectorhinchus obscurus
Other CRE-finfish	Spotted Sweetlips	Plectorhinchus picus
Other CRE-finfish	Sweetlip	Plectorhinchus sp
Other CRE-finfish	Oriental Sweetlips	Plectorhinchus vittatus
Other CRE-finfish	Fourmanoir'S Basslet	Plectranthias fourmanoiri
Other CRE-finfish	Basslet	Plectranthias kamii
Other CRE-finfish	Long-Finned Basslet	Plectranthias longimanus
Other CRE-finfish	Pygmy Basslet	Plectranthias nanus
Other CRE-finfish	Basslet	Plectranthias rubrifasciatus
Other CRE-finfish	Basslet	Plectranthias winniensis
Other CRE-finfish	Dick'S Damsel	Plectroglyphidodo dickii
Other CRE-finfish	Bright-Eye Damsel	Plectroglyphidodo
Other CRE-finfish	Johnston Isle Damsel	Plectroglyphidodo
Other CRE-finfish	Jewel Damsel	Plectroglyphidodo lacrymatus
Other CRE-finfish	White-Band Damsel	Plectroglyphidodo leucozonus
Other CRE-finfish	Phoenix Isle Damsel	Plectroglyphidodo
Other CRE-finfish	Longfins	Plesiopidae
Other CRE-finfish	Red-Tipped Longfin	Plesiops caeruleolineatus
Other CRE-finfish	Bluegill Longfin	Plesiops corallicola
Other CRE-finfish	Sharp-Nosed Longfin	Plesiops oxycephalus
Other CRE-finfish	Goby	Pleurosicya bilobatus
Other CRE-finfish	Caroline Ghost Goby	Pleurosicya carolinensis
Other CRE-finfish	Blue Coral Ghost Goby	Pleurosicya coerulea
Other CRE-finfish	Fringed Ghost Goby	Pleurosicya fringella
Other CRE-finfish	Michael'S Ghost Goby	Pleurosicya micheli
Other CRE-finfish	Common Ghost Goby	Pleurosicya mossambica
Other CRE-finfish	Goby	Pleurosicya muscarum
Other CRE-finfish	Plicata Ghost Goby	Pleurosicya plicata
Other CRE-finfish	Eel Catfishes	Plotosidae
Other CRE-finfish	Striped Eel Catfish	Plotosus lineatus
Other CRE-finfish	Barred Sand Conger	Poeciloconger fasciatus
Other CRE-finfish	Spotted Soapfish	Pogonoperca punctata
Other CRE-finfish	6 Feeler Threadfin	Polydactylus sexfilis
Other CRE-finfish	Beardfish	Polymixia japonica
Other CRE-finfish	Beardfish	Polymixiidae
Other CRE-finfish	Threadfins	Polynemidae
Other CRE-finfish	Angelfishes	Pomacanthidae
Other CRE-finfish	Emperor Anglefish	Pomacanthus imperator
Other CRE-finfish	Blue-Girdled Angelfish	Pomacanthus navarchus
Other CRE-finfish	Semicircle Angelfish	Pomacanthus semicirculatus
Other CRE-finfish	6-Banded Angelfish	Pomacanthus sexstriatus
Other CRE-finfish	Blue-Faced Angelfish	Pomacanthus xanthometopon
Other CRE-finfish	Damselfishes	Pomacentridae

Common Name	Scientific Name
Damselfish	Pomacentrus adelus
Ambon Damsel	Pomacentrus amboinensis
Goldbelly Damsel	Pomacentrus auriventris
Speckled Damsel	Pomacentrus bankanensis
Charcoal Damsel	Pomacentrus brachialis
Burrough'S Damsel	Pomacentrus burroughi
White-Tail Damsel	Pomacentrus chrysurus
Neon Damsel	Pomacentrus coelestis
Outer Reef Damsel	Pomacentrus emarginatus
Blue-Spot Damsel	Pomacentrus
Lemon Damsel	Pomacentrus moluccensis
Nagasaki Damsel	Pomacentrus nagasakiensis
	Pomacentrus nigromanus
	Pomacentrus pavo
	Pomacentrus philippinus
	Pomacentrus reidi
	Pomacentrus simsiang
	Pomacentrus vaiuli
	Pomachromis exilis
	Pomachromis guamensis
	Pomadasyus kaakan
	Pontinus macrocephalus
	Pontinus sp
<u>+</u>	Pontinus tentacularis
-	Prealticus amboinensis
	Prealticus natalis
•	Priacanthidae
	Priacanthus alalaua
	Priacanthus hamrur
	Priolepis cincta
	Priolepis farcimen
J	Priolepis inhaca
2	Priolepis semidoliatus
5	Pristigenys meyeri
<u> </u>	Prognichthys albimaculatus
	Prognichthys sealei
	Psenes cyanophrys
	Pseudalutarias nasicornis
2	Pseudamia amblyuroptera
	Pseudamia gelatinosa
	Pseudamia hayashii
	Pseudamia zonata
Carumanish	
	Damselfish Ambon Damsel Goldbelly Damsel Speckled Damsel Charcoal Damsel Burrough'S Damsel White-Tail Damsel Neon Damsel Outer Reef Damsel Blue-Spot Damsel

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Bartlet'S Fairy Basslet	Pseudanthias bartlettorum
Other CRE-finfish	Bicolor Fairy Basslet	Pseudanthias bicolor
Other CRE-finfish	Red-Bar Fairy Basslet	Pseudanthias cooperi
Other CRE-finfish	Peach Fairy Basslet	Pseudanthias dispar
Other CRE-finfish	Fairy Basslet	Pseudanthias huchtii
Other CRE-finfish	Lori'S Anthias	Pseudanthias lori
Other CRE-finfish	Purple Queen	Pseudanthias pascalus
Other CRE-finfish	Sq-Spot Fairy Basslet	Pseudanthias pleurotaenia
Other CRE-finfish	Randall'S Fairy Basslet	Pseudanthias randalli
Other CRE-finfish	Smithvaniz' Fairy Basslet	Pseudanthias smithvanizi
Other CRE-finfish	Fairy Basslet	Pseudanthias sp
Other CRE-finfish	Fairy Basslet	Pseudanthias squammipinnis
Other CRE-finfish	Y Striped Fairy Basslet	Pseudanthias tuka
Other CRE-finfish	L-Finned Fairy Basslet	Pseudanthias ventralis
Other CRE-finfish	White Ribbon Eel	Pseudechidna brummeri
Other CRE-finfish	Ymargin Triggerfish	Pseudobalistes
Other CRE-finfish	Blue Triggerfish	Pseudobalistes fuscus
Other CRE-finfish	Dottybacks	Pseudochromidae
Other CRE-finfish	Surge Dottyback	Pseudochromis cyanotaenia
Other CRE-finfish	Dusky Dottyback	Pseudochromis fuscus
Other CRE-finfish	Marshall Is Dottyback	Pseudochromis marshallensis
Other CRE-finfish	Dottyback	Pseudochromis melanotaenia
Other CRE-finfish	Long-Finned Dottyback	Pseudochromis polynemus
Other CRE-finfish	Magenta Dottyback	Pseudochromis porphyreus
Other CRE-finfish	Goby	Pseudogobius javanicus
Other CRE-finfish	Soapfish	Pseudogramma polyacantha
Other CRE-finfish	Soapfish	Pseudogramma sp
Other CRE-finfish	Soapfishes	Pseudogrammidae
Other CRE-finfish	Amourhead	Pseudopentaceros pectoralis
Other CRE-finfish	Robust Dottyback	Pseudoplesiops
Other CRE-finfish	Revelle'S Basslet	Pseudoplesiops revellei
Other CRE-finfish	Rose Island Basslet	Pseudoplesiops rosae
Other CRE-finfish	Basslet	Pseudoplesiops sp
Other CRE-finfish	Hidden Basslet	Pseudoplesiops typus
Other CRE-finfish	Blackfin Dartfish	Ptereleotris evides
Other CRE-finfish	Filament Dartfish	Ptereleotris hanae
Other CRE-finfish	Spot-Tail Dartfish	Ptereleotris heteroptera
Other CRE-finfish	Dartfish	Ptereleotris lineopinnis
Other CRE-finfish	Pearly Dartfish	Ptereleotris microlepis
Other CRE-finfish	Zebra Dartfish	Ptereleotris zebra
Other CRE-finfish	Yellowstreak Fusilier	Pterocaesio lativittata
Other CRE-finfish	Twinstripe Fusilier	Pterocaesio marri
Other CRE-finfish	Ruddy Fusilier	Pterocaesio pisang

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Mosaic Fusilier	Pterocaesio tesselatata
Other CRE-finfish	Bluestreak Fusilier	Pterocaesio tile
Other CRE-finfish	3-Striped Fusilier	Pterocaesio trilineata
Other CRE-finfish	Spotfin Lionfish	Pterois antennata
Other CRE-finfish	Clearfin Lionfish	Pterois radiata
Other CRE-finfish	Turkeyfish	Pterois volitans
Other CRE-finfish	Ocellated Gurnard	Pterygiotrigla multiocellata
Other CRE-finfish	Gurnard	Pterygiotrigla sp
Other CRE-finfish	Slender Suckerfish	Ptheirichthys lineatus
Other CRE-finfish	Regal Anglefish	Pygoplites diacanthus
Other CRE-finfish	Fairy Basslet	Rabaulichthys sp
Other CRE-finfish	Trunkfish	Ranzania laevis
Other CRE-finfish	Mackerel	Rastrelliger brachysoma
Other CRE-finfish	Striped Mackerel	Rastrelliger kanagurta
Other CRE-finfish	Goby	Redigobius bikolanus
Other CRE-finfish	Goby	Redigobius horiae
Other CRE-finfish	Goby	Redigobius sapangus
Other CRE-finfish	Remora	Remora remora
Other CRE-finfish	Cardinalfish	Rhabdamia cypselurus
Other CRE-finfish	Cardinalfish	Rhabdamia gracilis
Other CRE-finfish	Blenny	Rhabdoblenius
Other CRE-finfish		Rhabdoblennius ellipes
Other CRE-finfish	Blenny	Rhabdoblennius snowi
Other CRE-finfish	Guitarfish	Rhinchobatus djiddensis
Other CRE-finfish	Picassofish	Rhinecanthus aculeatus
Other CRE-finfish	Wedge Picassofish	Rhinecanthus rectangulus
Other CRE-finfish	Blackbelly Picassofish	Rhinecanthus verrucosa
Other CRE-finfish	Guitarfish	Rhinobatidae
Other CRE-finfish	Ribbon Eel	Rhinomuraena quaesita
Other CRE-finfish	Weedy Scorpionfish	Rhinopias frondosa
Other CRE-finfish	Remora	Rhombochirus osteochir
Other CRE-finfish	Smallnose Boxfish	Rhynchostracion nasus
Other CRE-finfish	Largenose Boxfish	Rhynchostracion
Other CRE-finfish	Telescopefish	Rosaura indica
Other CRE-finfish	Minute Filefish	Rudarius minutus
Other CRE-finfish		Salarius alboguttatus
Other CRE-finfish	Spotted Rock Blenny	Salarius fasciatus
Other CRE-finfish	Blenny	Salarius luctuosus
Other CRE-finfish	Blenny	Salarius segmentatus
Other CRE-finfish	Righteye Flounders	Samaridae
Other CRE-finfish	3 Spot Flounder	Samariscus triocellatus
Other CRE-finfish	Graceful Lizardfish	Saurida gracilis
Other CRE-finfish	Nebulous Lizardfish	Saurida nebulosa

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Scats	Scatophagidae
Other CRE-finfish	Scat	Scatophagus argus
Other CRE-finfish	Schindleriid	Schindleria praematurus
Other CRE-finfish	Shindleriid	Schindleriidae
Other CRE-finfish	Snake Eel	Schismorhinchus labialis
Other CRE-finfish	Snake Eel	Schultzidia johnstonensis
Other CRE-finfish	Snake Eel	Schultzidia retropinnis
Other CRE-finfish	Spinecheek	Scolopsis affinis
Other CRE-finfish	2 Line Spinecheek	Scolopsis bilineatus
Other CRE-finfish	Ciliate Spinecheek	Scolopsis ciliatus
Other CRE-finfish	Bl And Wh Spinecheek	Scolopsis lineatus
Other CRE-finfish	Margarite'S Spinecheek	Scolopsis margaritifer
Other CRE-finfish	Spinecheek	Scolopsis taeniopterus
Other CRE-finfish	3 Line Spinecheek	Scolopsis trilineatus
Other CRE-finfish	Spinecheek	Scolopsis xenochrous
Other CRE-finfish	Narrow-Barred King Mackerel	Scomberomorus commerson
Other CRE-finfish	Scorpionfish	Scorpaenidae
Other CRE-finfish	Guam Scorpionfish	Scorpaenodes guamensis
Other CRE-finfish	Hairy Scorpionfish	Scorpaenodes hirsutus
Other CRE-finfish	Kellogg'S Scorpionfish	Scorpaenodes kelloggi
Other CRE-finfish	Minor Scorpionfish	Scorpaenodes minor
Other CRE-finfish	Coral Scorpionfish	Scorpaenodes parvipinnis
Other CRE-finfish	Blotchfin Scorpionfish	Scorpaenodes varipinis
Other CRE-finfish	Devil Scorpionfish	Scorpaenopsis diabolus
Other CRE-finfish	Pygmy Scorpionfish	Scorpaenopsis fowleri
Other CRE-finfish	Flasher Scorpionfish	Scorpaenopsis macrochir
Other CRE-finfish	Tassled Scorpionfish	Scorpaenopsis oxycephala
Other CRE-finfish	Papuan Scorpionfish	Scorpaenopsis papuensis
Other CRE-finfish	Scorpionfish	Scorpaenopsis sp
Other CRE-finfish	Tiger Snake Moray	Scuticaria tigrinis
Other CRE-finfish	Yellowspotted Scorpionfish	Sebastapistes cyanostigma
Other CRE-finfish	Galactacma Scorpionfish	Sebastapistes galactacma
Other CRE-finfish	Mauritius Scorpionfish	Sebastapistes mauritiana
Other CRE-finfish	Barchin Scorpionfish	Sebastapistes strongia
Other CRE-finfish	Pugnose Soapy	Secutor ruconius
Other CRE-finfish	Basslet	Selenanthias myersi
Other CRE-finfish	Hawkfish Anthias	Serranocirrhitus latus
Other CRE-finfish	Goby	Sicyopterus macrostetholepis
Other CRE-finfish	Goby	Sicyopterus micrurus
Other CRE-finfish	Goby	Sicyopterus sp
Other CRE-finfish	Goby	Sicyopus leprurus
Other CRE-finfish	Goby	Sicyopus sp
Other CRE-finfish	Goby	Sicyopus zosterophorum

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Peppered Moray	Sideria picta
Other CRE-finfish	White-Eyed Moray	Sideria prosopeion
Other CRE-finfish	Goby	Signigobius biocellatus
Other CRE-finfish	Goby	Silhouettea sp
Other CRE-finfish	Sillagos	Sillaginidae
Other CRE-finfish	Cardinalfish	Sillago sihama
Other CRE-finfish	Cardinalfish	Siphamia fistulosa
Other CRE-finfish	Cardinalfish	Siphamia fuscolineata
Other CRE-finfish	Cardinalfish	Siphamia versicolor
Other CRE-finfish	Banded Sole	Soleichthys heterohinos
Other CRE-finfish	Soles	Soleidae
Other CRE-finfish	Ghost Pipefish	Solenostomidae
Other CRE-finfish	Ghost Pipefish	Solenostomus cyanopterus
Other CRE-finfish	Ornate Ghost Pipefish	Solenostomus paradoxus
Other CRE-finfish	Flathead	Sorsogona welanderi
Other CRE-finfish	Cardinalfish	Sphaeramia nematoptera
Other CRE-finfish	Cardinalfish	Sphaeramia orbicularis
Other CRE-finfish	Sharpfin Barracuda	Sphyraena acutipinnis
Other CRE-finfish	Great Barracuda	Sphyraena barracuda
Other CRE-finfish	Yellowtail Barracuda	Sphyraena flavicauda
Other CRE-finfish	Blackspot Barracuda	Sphyraena forsteri
Other CRE-finfish	Arrow Barracuda	Sphyraena novaehollandiae
Other CRE-finfish	Pygmy Barracuda	Sphyraena obtusata
Other CRE-finfish	Slender Barracuda	Sphyraena putnamiae
Other CRE-finfish	Blackfin Barracuda	Sphyraena qenie
Other CRE-finfish	Barracudas	Sphyraenidae
Other CRE-finfish	Blue Sprat	Spratelloides delicatulus
Other CRE-finfish	Silver Sprat	Spratelloides gracilis
Other CRE-finfish	Blenny	Stanulus seychellensis
Other CRE-finfish	White-Bar Gregory	Stegastes albifasciatus
Other CRE-finfish	Pacific Gregory	Stegastes fasciolatus
Other CRE-finfish	Farmerfish	Stegastes lividus
Other CRE-finfish	Dusky Farmerfish	Stegastes nigricans
Other CRE-finfish	Panatella Silverside	Stenatherina panatella
Other CRE-finfish	Goby	Stenogobius genivittatus
Other CRE-finfish	Goby	Stenogobius sp
Other CRE-finfish	Hatchetfishes	Sternoptichidae
Other CRE-finfish	Goby	Stiphodon elegans
Other CRE-finfish	Goby	Stiphodon sp
Other CRE-finfish	Samoan Anchovy	Stolephorus apiensis
Other CRE-finfish	Indian Anchovy	Stolephorus indicus
Other CRE-finfish	Gold Esurine Anchovy	Stolephorus insularis
Other CRE-finfish	Caroline Islands Anchovy	Stolephorus multibranchus

Common Name	Scientific Name
West Pacific Anchovy	Stolephorus pacificus
Anchovy	Stolephorus sp
Reef Needlefish	Strongylura incisa
Littoral Needlefish	Strongylura leiura leiura
Giant Esturine Moray	Strophidon sathete
	Sufflamen bursa
	Sufflamen chrysoptera
	Sufflamen freanatus
	Symphysanodon typus
	Symphysanodontidae
	Synanceia verrucosa
	Synaphobranchidae
	Synaphobranchus sp
	Synchiropus circularis
	Synchiropus laddi
	Synchiropus morrisoni
	Synchiropus ocellatus
	Synchiropus sp
	Synchiropus splendidus
	Syngnathidae
i <i>i</i>	Syngnathoides biaculeatus
	Synodontidae
	Synodus binotatus
	Synodus dermatogenys
	Synodus englemanni
	Synodus jaculum
	Synodus variegatus
	Taenianotus triacanthus
	Taenioides limicola
	Taeniura meyeni
5	Terapon jarbua
	Teraponidae
	Tetraodontidae
	Tetraroge barbata
	Tetrarogidae
1	Thryssa baelama
	Thysanophrys arenicola
	Thysanophrys chiltonae
	Thysanophrys otaitensis
U 1	Tilapia zillii
1	Toxotes jaculator
	Toxotidae
AICHEIIISHES	Тохонаае
	West Pacific Anchovy Anchovy Reef Needlefish

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Spikefishes	Triacanthodidae
Other CRE-finfish	Sand Divers	Trichonotidae
Other CRE-finfish	Micronesian Sand-Diver	Trichonotus sp
Other CRE-finfish	Gurnards	Triglidae
Other CRE-finfish	Goby	Trimma caesiura
Other CRE-finfish	Goby	Trimma naudei
Other CRE-finfish	Goby	Trimma okinawae
Other CRE-finfish	Goby	Trimma sp A
Other CRE-finfish	Goby	Trimma sp B
Other CRE-finfish	Goby	Trimma taylori
Other CRE-finfish	Goby	Trimma tevegae
Other CRE-finfish	Goby	Trimmatom eviotops
Other CRE-finfish	3 Tooth Puffer	Triodon bursarius
Other CRE-finfish	3 Tooth Puffer	Triodon macropterus
Other CRE-finfish	Tripletooth Puffers	Triodontidae
Other CRE-finfish	Triplefins	Tripterygiidae
Other CRE-finfish	Keeled Houndfish	Tylosurus acus melanotus
Other CRE-finfish	Houndfish	Tylosurus crocodilis
Other CRE-finfish	Longjaw Triplefin	Ucla xenogrammus
Other CRE-finfish	Stargazers	Uranoscopidae
Other CRE-finfish	Stargazer	Uranoscopus sp
Other CRE-finfish	Porcupine Ray	Urogymnus africanus
Other CRE-finfish	Unicolor Snake Moray	Uropterygius concolor
Other CRE-finfish	Fiji Moray Eel	Uropterygius fijiensis
Other CRE-finfish	Brown-Spotted Snake Eel	Uropterygius fuscoguttatus
Other CRE-finfish	Gosline'S Snake Moray	Uropterygius goslinei
Other CRE-finfish	Moon Moray	Uropterygius kamar
Other CRE-finfish	Lg-Headed Snake Moray	Uropterygius macrocephalus
Other CRE-finfish	Marbled Snake Moray	Uropterygius marmoratus
Other CRE-finfish	Tidepool Snake Moray	Uropterygius micropterus
Other CRE-finfish	Lg-Spotted Snake Moray	Uropterygius polyspilus
Other CRE-finfish	Moray Eel	Uropterygius supraforatus
Other CRE-finfish	Moray Eel	Uropterygius xanthopterus
Other CRE-finfish	Roundray	Urotrygon daviesi
Other CRE-finfish	Glass Goby	Valenciennea muralis
Other CRE-finfish	Parva Goby	Valenciennea parva
Other CRE-finfish	Goby	Valenciennea puellaris
Other CRE-finfish	Goby	Valenciennea sexguttatus
Other CRE-finfish	Goby	Valenciennea sp
Other CRE-finfish	Goby	Valenciennea strigatus
Other CRE-finfish	Goby	Vanderhorstia ambanoro
Other CRE-finfish	Goby	Vanderhorstia lanceolata
Other CRE-finfish	Goby	Vanderhorstia ornatissima

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other CRE-finfish	Guilded Triggerfish	Xanthichthys auromarginatus
Other CRE-finfish	Bluelined Triggerfish	Xanthichthys careuleolineatus
Other CRE-finfish	Crosshatch Triggerfish	Xanthichthys mento
Other CRE-finfish	Wriggler	Xenishthmus sp
Other CRE-finfish	Flathead Wriggler	Xenisthmidae
Other CRE-finfish	Barred Wriggler	Xenisthmus polyzonatus
Other CRE-finfish	Triggerfish	Xenobalistes tumidipectoris
Other CRE-finfish	Blenny	Xiphasia matsubarai
Other CRE-finfish	Moorish Idols	Zanclidae
Other CRE-finfish	Moorish Idol	Zanclus cornutus
Other CRE-finfish	Esturine Halfbeak	Zenarchopterus dispar
Other Invertebrates	Crown-Of-Thorns	Acanthaster planci
Other Invertebrates	Stonefish	Actinopyga lecanora
Other Invertebrates	Blackfish	Actinopyga miliaris
Other Invertebrates	Sea Cucumber	Actinopyga obesa
Other Invertebrates	Sea Cucumber	Actinopyga sp
Other Invertebrates	Starfish	Asterinidae
Other Invertebrates	Starfish	Asteropidae
Other Invertebrates	Starfish	Astropectinidae
Other Invertebrates	Sea Cucumber	Bohadschia argus
Other Invertebrates	Sea Cucumber	Bohadschia graeffei
Other Invertebrates	Brown Sandfish	Bohadschia marmorata
Other Invertebrates	Sea Cucumber	Bohadschia paradoxa
Other Invertebrates	Sea Cucumber	Bohadschia sp
Other Invertebrates	Irregular Urchins	Brissidae
Other Invertebrates	Jellyfish	Cephea sp
Other Invertebrates	Cidarians	Cidaridae
Other Invertebrates	Crinoids	Class Crinoidea
Other Invertebrates	Sea Urchins	Class Echinoidea
Other Invertebrates		Clypeasteridae
Other Invertebrates	Sea Cucumbers	Cucumariidae
Other Invertebrates	Longspine Urchin	Diadema savignyi
Other Invertebrates	Longspine Urchin	Diadema setosum
Other Invertebrates	Sea Urchins	Diadematidae
Other Invertebrates	Sea Urchins	Echinoidea
Other Invertebrates	Sea Urchins	Echinometridae
Other Invertebrates	Reef Starfish	Echinosteridae
Other Invertebrates	Longspine Urchin	Echinothrix calamaris
Other Invertebrates	Longspine Urchin	Echinothrix diadema
Other Invertebrates	Sea Urchins	Echinothuriidae
Other Invertebrates	Slate Pencil Urchin	Heterocentrotus mammillatus
Other Invertebrates	Lollyfish	Holothuria atra
Other Invertebrates	Pinkfish	Holothuria edulis

Mariana CREMUS (Guam)	Common Name	Scientific Name
Other Invertebrates	White Teatfish	Holothuria fuscogilva
Other Invertebrates	Elephant'S Trunkfish	Holothuria fuscopunctata
Other Invertebrates	Sea Cucumber	Holothuria hilla
Other Invertebrates	Sea Cucumber	Holothuria impatiens
Other Invertebrates	Sea Cucumber	Holothuria leucospilota
Other Invertebrates	Sea Cucumber	Holothuria sp
Other Invertebrates	Sea Cucumber	Holothuriidae
Other Invertebrates	Sea Cucumbers	Holothuroidea
Other Invertebrates	Spiney-Armed Starfish	Mithrodia bradleyi
Other Invertebrates	Orange Starfish	Ophidiaster confertus
Other Invertebrates	Starfish	Oreasteridae
Other Invertebrates	Sea Cucumbers	Phyllophoridae
Other Invertebrates	Common Urchin	Pseudoboletia maculata
Other Invertebrates	Starfish	Sc Asteroidea
Other Invertebrates	Basket,Brittle, Serpentstars	Sc Ophiuroidea
Other Invertebrates	Starfish	Sphaerasteridae
Other Invertebrates	Sea Cucumbers	Stichopodidae
Other Invertebrates	Greenfish	Stichopus chloronotus
Other Invertebrates	Sea Cucumber	Stichopus horrens
Other Invertebrates	Sea Cucumber	Stichopus noctivatus
Other Invertebrates	Sea Cucumber	Stichopus sp
Other Invertebrates	Curryfish	Stichopus variegatus
Other Invertebrates	Sea Cucumber	Synapta maculata
Other Invertebrates	Sea Cucumber	Synapta media
Other Invertebrates	Sea Cucumber	Synapta sp
Other Invertebrates	Sea Cucumbers	Synaptidae
Other Invertebrates	Sea Urchins	Temnopleuridae
Other Invertebrates	Prickly Redfish	Thelenota ananas
Other Invertebrates	Amberfish	Thelenota anax
Other Invertebrates	Sea Cucumber	Thelenota sp
Other Invertebrates	Flower Urchin	Toxopneustes pileolus
Other Invertebrates	Shortspine Urchins	Toxopneustidae
Other Invertebrates	Shortspine Urchin	Tripneustes gratilla

Table A4. Hawaii CREMUS

Hawaii CREMUS	Common Name	Scientific Name
Akule	Bigeye scad	Selar crumenopthalmus
Opelu	Round scad	Decapterus macarellus
Surgeonfish	API	Acanthurus guttatus
Surgeonfish	BLACK KOLE	Ctenochaetus hawaiiensis
Surgeonfish	KALA	Naso annulatus,
Surgeonfish	KALA	N. brevirostris,
Surgeonfish	KALA	N. unicornis
Surgeonfish	KALALEI	Naso lituratus
Surgeonfish	KOLE	Ctenochaetus strigosus
Surgeonfish	MAIII	Acanthurus nigrofuscus
Surgeonfish	MAIKO	Acanthurus nigroris
Surgeonfish	MAIKOIKO	Acanthurus leucopareius
Surgeonfish	MANINI	Acanthurus triostegus
Surgeonfish	NAENAE	Acanthurus olivaceus
Surgeonfish	OPELU KALA	Naso hexacanthus
Surgeonfish	PAKUIKUI	Acnthurus achilles
Surgeonfish	PALANI	Acanthurus dussumieri
Surgeonfish	PUALU	Acanthurus blochii,
Surgeonfish	YELLOWFIN TANG	A. xanthopterus
Surgeonfish	YELLOW TANG	Zebrasoma flavescens
Jacks	DOBE	Caranx (Urapsis) helvolus
Jacks	KAGAMI	Alectis ciliaris
Jacks	KAHALA	Seriola rivoliana
Jacks	KAMANU	Elagatis bipinnulata
Jacks	LAE	Scomberoides lysan,
Jacks	LAE	S. sancti-petri (synonym for S.
		lysan)
Jacks	NO-BITE	C. equula
Jacks	OMAKA	Atule mata
Jacks	OMILU	Caranx melampygus
Jacks	PAOPAO	Gnathanodon speciosus
Jacks	PAPA	Carangoides orthogrammus
Jacks	PAPIO, ULUA (MISC.)	Carangidae
Carcharhinidae	Reef Sharks	Carcharhinidae
Crustaceans	A'AMA	Graspus tenuicrustatus
Crustaceans	BLUE PINCHER CRAB	Callinectes sapidus
Crustaceans	CRAB (MISC.)	n/a
Crustaceans	HAWAIIAN CRAB	Podophthalmus vigil
Crustaceans	KUAHONU CRAB	Portunus sanguinolentus

Hawaii CREMUS	Common Name	Scientific Name
Crustaceans	METABETAEUS LOHENA	METABETAEUS LOHENA
Crustaceans	MISC. SHRIMP/PRAWN	n/a
Crustaceans	OPAE ULA	HALOCARIDINA RUBRA
Crustaceans	A'AMA	Graspus tenuicrustatus
Squirrelfish	ALAIHI	Holocentridae
Squirrelfish	ALAIHI MAMA	Adioryx spinifer
Squirrelfish	MENPACHI	Myripristis sp.
Squirrelfish	PAUU	Holocentridae
Rudderfish	NENUE	Kyphosus bigibbus,
Rudderfish	NENUE	K. cinerescens
Wrasse	A'AWA	Bodianus bilunulatus
Wrasse	HILU	Coris flavovittata
Wrasse	HINALEA	Thalassoma sp.
Wrasse	KUPOUPOU	Cheilio inermis
Wrasse	LAENIHI	Xyichthys pavo
Wrasse	MALLATEA	Labridae
Wrasse	OPULE	Decapterus macarellus
Wrasse	POOU	Cheilinus unifasciatus
Wrasse	WRASSE (MISC.)	Labridae
Emperor	MU	Monotaxis grandoculis
Snappers	GOLDEN KALI	Erythrocles schegelii
Snappers	GURUTSU, GOROTSUKI	Aphareus furca
Snappers	RANDALL'S SNAPPER	Randallichthys filamentosus
Snappers	ТААРЕ	Lutjanus kasmira
Snappers	TOAU	Lutjanus fulvus
Snappers	WAHANUI	Aphareus furcatus
Mollusks	HE'E (DAY TAKO)	Octopus cyanea
Mollusks	HE'E PU LOA	Octopus ornatus
Mollusks	OLEPE	Albula glossodonta
Mullet	AMAAMA	Mugil cephalus
Mullet	SUMMER MULLET	Mugil sp.
Goatfish	KUMU	Parupeneus porphyeus
Goatfish	MALU	Parupeneus pleurostigma
Goatfish	MOANA	Parupeneus sp.
Goatfish	MOANO KALE	Parupeneus cyclostomus
Goatfish	MOELUA; GOAT FISH	Mulloidichthys sp.
	(RED)	
Goatfish	MUNU	Parupeneus bifasciatus
Goatfish	WEKE (MISC.)	Mullidae
Goatfish	WEKE A'A	Mulloidichthys flavolineatus
Goatfish	WEKE NONO	Mulloidichthys pflugeri

Hawaii CREMUS	Common Name	Scientific Name
Goatfish	WEKE PUEO	Upeneus arge
Goatfish	WEKE-ULA	Mulloidichthys vanicolensis
Parrotfish	PANUHUNUHU	Scarus sp.
Parrotfish	PANUNU	Scarus sp.
Parrotfish	UHU (MISC.)	Catalomus sp.
Groupers	ROI	Cephalopholis argus
Other CRE Finfish	AWA	Chanos chanos
Other CRE Finfish	AWAAWA	Elops hawaiensis
Other CRE Finfish	AWEOWEO	Heteropriacanthus cruentatus
Other CRE Finfish	GOLD SPOT HERRING	Herklotsichthys
		quadrimaculatus
Other CRE Finfish	HAULIULI	Gempylus serpens
Other CRE Finfish	HOGO	Pontinus macrocephalus
Other CRE Finfish	HUMUHUMU	Balistidae
Other CRE Finfish	IAO	Pranesus insularum
Other CRE Finfish	IHEIHE	Hemiramphidae
Other CRE Finfish	KAKU	Sphyraena barracuda
Other CRE Finfish	KAWALEA	Sphyraena helleri
Other CRE Finfish	KUPIPI	Abudefduf sordidus
Other CRE Finfish	LAUWILIWILI	Chaetodon auriga
Other CRE Finfish	LOULU	Monacanthidae
Other CRE Finfish	MAKAIWA	Etrumeus micropus
Other CRE Finfish	MALOLO	Exocoetidae
Other CRE Finfish	MA'O MA'O	Abudefduf abdominalis
Other CRE Finfish	MOI	Polydactylus sexfilis
Other CRE Finfish	MOLA MOLA	Mola mola
Other CRE Finfish	NEHU	Stolephorus purpureus
Other CRE Finfish	NOHU	Scorpaenopsis sp.
Other CRE Finfish	NUNU	Aulostomus chinensis
Other CRE Finfish	OIO (bonefish)	Albula glossodonta
Other CRE Finfish	OOPU HUE	Diodon sp.
Other CRE Finfish	PAKII	Bothus sp.
Other CRE Finfish	PIHA	Spratelloides delicatulus
Other CRE Finfish	POO PAA	Cirrhitus sp.
Other CRE Finfish	PUHI (MISC.)	Gymnothorax sp.
Other CRE Finfish	PUHI (WHITE)	Muraenidae
Other CRE Finfish	PUPU	Congridae sp.
Other CRE Finfish	SABA	Scomber japonicus
Other CRE Finfish	TILAPIA	<i>Tilapia</i> sp.
Other CRE Finfish	UPAPALU	Apogon kallopterus
Other Invertebrates	HA'UKE'UKE	Colobocentrotus atratus

Hawaii CREMUS	Common Name	Scientific Name
Other Invertebrates	HAWAE	Tripneustes gratilla
Other Invertebrates	WANA (urchin)	Dia dema sp., Echinothrix sp.
Other Invertebrates	NAMAKO (sea cucumber)	Holothuroidea
Other Invertebrates	SLATE PENCIL URCHINS	Heterocentrotus mammillatus
Other Invertebrates	HA'UKE'UKE	Colobocentrotus atratus
Other CRE Finfish	AHOLEHOLE	Kuhlia sandvicensis
Algae	LIMU (MISC.)	Gracilaria sp.
Algae	LIMU KOHU	Asparagopsis taxiformis
Algae	MANAUEA	Gracilaria coronopifolia
Algae	OGO	Aulostromus chinensis
Algae	WAWAEIOLE	Ulva fasciata

Appendix B Results of the Biomass Augmented Catch-MSY Model

Tables B1-B4 below summarize the maximum sustainable yield (MSY) estimates and risk of overfishing percentages for CREMUS groups in Appendix 1 as reported in Sabater and Kleiber (2014). Risk projections are presented in 5 percent increments. In accordance with National Standard 1 guidelines of the Magnuson-Stevens Act, the probability of overfishing cannot exceed 50 percent and should be a lower value (74 FR 3178, January 9, 2011).

CREMUS Group	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%	MSY
Selar crumenophthalmus – atule or bigeye scad	31.8	32.5	33.3	34.2	35	35.6	37.4	38.4	39.6	41.1	43.3
Acanthuridae (surgeonfishes)	103	108.4	113	117	122	125	129.4	133.8	138	142.5	148.6
Carangidae (jacks)	14	15.8	17	18.2	19.3	19.9	20.8	21.5	22.1	23.2	24.3
Carcharhinidae (reef sharks)	0.6	0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.1	2.3	2.3
Crustaceans (crabs)	2.3	2.8	3.3	3.8	4.3	4.7	5.3	5.9	6.5	7.3	7.8
Holocentridae (squirrelfishes)	12.6	13.3	13.8	14.3	14.7	15.1	15.5	15.9	16.2	16.6	16.8
Kyphosidae (rudderfishes)	1.2	1.4	1.6	1.7	1.9	2	2.2	2.3	2.5	2.6	2.6
Labridae (wrasses)	13.4	14.1	14.7	15.2	15.7	16.2	16.6	17.1	17.5	18.1	19.0
Lethrinidae (emperors)	14.6	15.8	16.9	17.8	18.6	19.6	20.4	21.3	22.1	23	23.7
Lutjanidae (snappers)	46.8	54	58.8	60.6	62	63.1	64.4	65.3	66.1	66.9	65.4
Mollusks (turbo snail; octopus; giant clam)	10	11.9	13.6	15.2	16.8	18.4	20.2	22.4	24.7	27.5	29.6
Mugilidae (mullets)	2.3	2.7	3.2	3.6	4.1	4.6	5.2	5.9	6.7	7.6	8.2
Mullidae (goatfishes)	10.7	10.9	11.2	11.4	11.7	11.9	12	12.1	12.3	12.5	12.7
Scaridae (parrotfishes)	232	240.8	249	260	268	272	280.1	285.1	290.2	300.3	294.6
Serranidae (groupers)	19.6	21.1	22.2	23.3	24.3	25.3	26.3	27.3	28.3	29.5	30.5
Siganidae (rabbitfishes)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	200
All Other CREMUS Combined	10.2	12.1	13.7	15.2	16.8	18.4	20.3	22.2	24.5	27	28.5

Table B1. American Samoa	CREMUS (k-revise method I	B results, in	thousands of pounds))
--------------------------	----------	-------------------	---------------	----------------------	---

CREMUS	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%	MSY
Group											
Selar	32.8	37.8	43.6	50.4	58.2	66.9	77.4	89.4	103.3	119.6	122.5
crumenophthalmus											
 atulai or bigeye 											
scad											
Acanthuridae	158	184.6	211	234	258	279	302.6	324.6	347.5	370	361.2
(surgeonfishes)											
Carangidae (jacks)	28.7	32.1	34.8	37.3	39.8	42.3	44.9	47.4	50.1	53	55.3
Carcharhinidae						Unk	nown				
(reef sharks)						Ulik	liowii				
Crustaceans	1.6	2.10	2.6	3.1	3.7	4.4	5.3	6.3	7.5	8.9	9.1
(crabs)											
Holocentridae	48.9	53.3	56.7	59.9	63.1	66.1	69.3	72.1	75	78	78.5
(squirrelfishes)											
Kyphosidae	12.9	15.1	17	18.9	20.8	22.7	24.6	26.5	28.5	30.5	29.5
(rudderfishes)											
Labridae	29.4	35.2	40.4	45.2	50.2	55.1	59.9	65.2	70.2	75.5	73.5
(wrasses)											
Lethrinidae	29.7	34.7	39.7	44.5	49.2	53.7	58.2	62.5	67.2	72.2	69.7
(emperors)											
Lutjanidae	107	123.4	137	150	164	177	190.4	202.7	215.1	228.7	225.8
(snappers)		• •	1.0		6.0				10 -	160	
Mollusks (turbo	3	3.9	4.8	5.8	6.9	8.2	9.8	11.6	13.7	16.3	16.7
snail; octopus;											
giant clam)	1.5	1.9	2.3	2.7	3.2	3.8	4.5	5.3	6.4	7.5	77
Mugilidae (mullets)	1.5	1.9	2.3	2.7	3.2	3.8	4.5	5.5	0.4	1.5	7.7
Mullidae	24.4	24.9	25.5	26.1	26.8	27.7	28.4	29.2	29.8	30.5	31
(goatfishes)	24.4	24.9	23.3	20.1	20.8	21.1	20.4	29.2	29.0	50.5	51
Scaridae	73.5	88.9	103	117	129	144	157.3	171.1	185.1	199	189.9
(parrotfishes)	15.5	00.9	105	11/	129	144	137.5	1/1.1	105.1	177	109.9
Serranidae	51.8	60.2	67.3	74.1	80.4	86.9	92.8	99.3	105.3	112	110.3
(groupers)	51.0	00.2	07.5	/ 1.1	00.1	00.7	12.0	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100.0	112	110.5
Siganidae	7.8	8.1	8.4	8.7	9.3	10.2	10.4	10.6	10.9	11	12
(rabbitfishes)	,	0.1	0	0.7	2.5	10.2	10.1	10.0	10.9	**	12
All Other	2.8	3.7	4.4	5.2	6.2	7.3	8.5	10.1	12	14.2	14.5
CREMUS											
Combined											

Table B2. CNMI CREMUS (k-revise method B results, in thousands of pounds)

5%	10%	15%	20%	25%	30%	35%	40%	45%	50%	MSY
39.3	42.8	45.5	47.9	50.2	52.3	54.4	56.4	58.5	60.8	61.3
74.5	81.1	86.2	90.1	93.5	97.6	101.7	106	109.8	114.7	118
25.2	26.8	27.8	28.6	29.3	29.9	30.6	31.1	31.7	32.2	31.7
1	1.0	1.4	1.6	1.0	2	2.2	2.4	2 (2.0	2.0
I	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.9	2.9
5.0	5.0	()	((7	7.2	7(0	0.2	0.(0 (
5.2	5.8	6.2	0.0	/	1.3	/.6	8	8.3	8.6	8.6
87	0	0.6	10.2	10.9	11.4	12	12.5	12.1	12.0	13.9
0.2	9	9.0	10.2	10.8	11.4	12	12.3	13.1	15.0	15.9
81	85	89	91	94	9.6	9.8	10	10.1	10.3	10.3
0.1	0.5	0.7	7.1	7.4	7.0	7.0	10	10.1	10.5	10.5
23.2	23.8	24.1	24.5	24 7	25.2	25.8	26.6	273	28.2	28.5
	-0.0					20.0	20.0	_,	_0	20.0
31.5	36.2	39.8	43.7	48	53	58	63.4	69.9	76.6	78
14.4	15.4	16.1	16.8	17.4	18	18.6	19.2	19.9	20.7	21.8
17.6	19.2	20.4	21.6	22.7	23.8	25	26.3	27.5	28.6	29
11	12.7	14.1	15.4	16.6	17.9	19.4	20.8	22.6	24.5	26.2
10.0	10 (110					160	
13.2	13.6	14	14.3	14.8	15.1	15.3	15.6	16	16.3	16.4
<u>711</u>	56.0	(0.(()((0.1	71.6	76	70.6	00.0	06.5	07.1
51.1	56.2	60.6	64.6	68.1	/1.0	/5	/8.0	82.3	86.5	87.1
16.4	17.0	10.1	20.2	21.4	22.5	22.7	24.8	26.1	27.4	28.6
10.4	17.9	19.1	20.5	21.4	22.3	23.1	24.0	20.1	27.4	20.0
16.8	174	17.8	18.1	18.2	18.4	18.6	18.8	19	19.2	19.7
10.0	1/.т	17.0	10.1	10.2	10.7	10.0	10.0	17	17.2	17.1
150	159	166	173	179	185	191 3	196.5	203	209.2	211.3
100	107	100	175	1/2	105	171.5	170.5	205	207.2	211.5
	39.3 74.5 25.2 1 5.2 8.2 8.1 23.2 31.5 14.4	39.3 42.8 74.5 81.1 25.2 26.8 1 1.2 5.2 5.8 8.2 9 8.1 8.5 23.2 23.8 31.5 36.2 14.4 15.4 17.6 19.2 11 12.7 13.2 13.6 51.1 56.2 16.4 17.9 16.8 17.4	39.3 42.8 45.5 74.5 81.1 86.2 25.2 26.8 27.8 1 1.2 1.4 5.2 5.8 6.2 8.2 9 9.6 8.1 8.5 8.9 23.2 23.8 24.1 31.5 36.2 39.8 14.4 15.4 16.1 17.6 19.2 20.4 11 12.7 14.1 13.2 13.6 14 51.1 56.2 60.6 16.4 17.9 19.1 16.8 17.4 17.8	39.3 42.8 45.5 47.9 74.5 81.1 86.2 90.1 25.2 26.8 27.8 28.6 1 1.2 1.4 1.6 5.2 5.8 6.2 6.6 8.2 9 9.6 10.2 8.1 8.5 8.9 9.1 23.2 23.8 24.1 24.5 31.5 36.2 39.8 43.7 14.4 15.4 16.1 16.8 17.6 19.2 20.4 21.6 11 12.7 14.1 15.4 13.2 13.6 14 14.3 51.1 56.2 60.6 64.6 16.4 17.9 19.1 20.3 16.8 17.4 17.8 18.1	39.3 42.8 45.5 47.9 50.2 74.5 81.1 86.2 90.1 93.5 25.2 26.8 27.8 28.6 29.3 1 1.2 1.4 1.6 1.8 5.2 5.8 6.2 6.6 7 8.2 9 9.6 10.2 10.8 8.1 8.5 8.9 9.1 9.4 23.2 23.8 24.1 24.5 24.7 31.5 36.2 39.8 43.7 48 14.4 15.4 16.1 16.8 17.4 17.6 19.2 20.4 21.6 22.7 11 12.7 14.1 15.4 16.6 13.2 13.6 14 14.3 14.8 51.1 56.2 60.6 64.6 68.1 16.4 17.9 19.1 20.3 21.4 16.8 17.4 17.8 18.1 18.2	39.3 42.8 45.5 47.9 50.2 52.3 74.5 81.1 86.2 90.1 93.5 97.6 25.2 26.8 27.8 28.6 29.3 29.9 1 1.2 1.4 1.6 1.8 2 5.2 5.8 6.2 6.6 7 7.3 8.2 9 9.6 10.2 10.8 11.4 8.1 8.5 8.9 9.1 9.4 9.6 23.2 23.8 24.1 24.5 24.7 25.2 31.5 36.2 39.8 43.7 48 53 14.4 15.4 16.1 16.8 17.4 18 17.6 19.2 20.4 21.6 22.7 23.8 11 12.7 14.1 15.4 16.6 17.9 13.2 13.6 14 14.3 14.8 15.1 51.1 56.2 60.6 64.6 68.1 71.6 16.4 17.9 19.1 20.3 21.4 22.5 16.8 17.4 17.8 18.1 18.2 18.4	39.3 42.8 45.5 47.9 50.2 52.3 54.4 74.5 81.1 86.2 90.1 93.5 97.6 101.7 25.2 26.8 27.8 28.6 29.3 29.9 30.6 1 1.2 1.4 1.6 1.8 2 2.2 5.2 5.8 6.2 6.6 7 7.3 7.6 8.2 9 9.6 10.2 10.8 11.4 12 8.1 8.5 8.9 9.1 9.4 9.6 9.8 23.2 23.8 24.1 24.5 24.7 25.2 25.8 31.5 36.2 39.8 43.7 48 53 58 14.4 15.4 16.1 16.8 17.4 18 18.6 17.6 19.2 20.4 21.6 22.7 23.8 25 11 12.7 14.1 15.4 16.6 17.9 19.4 13.2 13.6 14 14.3 14.8 15.1 15.3 51.1 56.2 60.6 64.6 68.1 71.6 75 16.4 17.9 19.1 20.3 21.4 22.5 23.7 16.8 17.4 17.8 18.1 18.2 18.4 18.6	39.3 42.8 45.5 47.9 50.2 52.3 54.4 56.4 74.5 81.1 86.2 90.1 93.5 97.6 101.7 106 25.2 26.8 27.8 28.6 29.3 29.9 30.6 31.1 1 1.2 1.4 1.6 1.8 2 2.2 2.4 5.2 5.8 6.2 6.6 7 7.3 7.6 8 8.2 9 9.6 10.2 10.8 11.4 12 12.5 8.1 8.5 8.9 9.1 9.4 9.6 9.8 10 23.2 23.8 24.1 24.5 24.7 25.2 25.8 26.6 31.5 36.2 39.8 43.7 48 53 58 63.4 14.4 15.4 16.1 16.8 17.4 18 18.6 19.2 17.6 19.2 20.4 21.6 22.7 23.8 25 26.3 11 12.7 14.1 15.4 16.6 17.9 19.4 20.8 13.2 13.6 14 14.3 14.8 15.1 15.3 15.6 51.1 56.2 60.6 64.6 68.1 71.6 75 78.6 16.4 17.9 19.1 20.3 21.4 22.5 23.7 24.8 16.8 17.4 17.8 18.1 18.2 18.4 18.6 18.8	39.3 42.8 45.5 47.9 50.2 52.3 54.4 56.4 58.5 74.5 81.1 86.2 90.1 93.5 97.6 101.7 106 109.8 25.2 26.8 27.8 28.6 29.3 29.9 30.6 31.1 31.7 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 5.2 5.8 6.2 6.6 7 7.3 7.6 8 8.3 8.2 9 9.6 10.2 10.8 11.4 12 12.5 13.1 8.1 8.5 8.9 9.1 9.4 9.6 9.8 10 10.1 23.2 23.8 24.1 24.5 24.7 25.2 25.8 26.6 27.3 31.5 36.2 39.8 43.7 48 53 58 63.4 69.9 14.4 15.4 16.1 16.8 17.4 18 18.6 19.2 19.9 17.6 19.2 20.4 21.6 22.7 23.8 25 26.3 27.5 11 12.7 14.1 15.4 16.6 17.9 19.4 20.8 22.6 13.2 13.6 14 14.3 14.8 15.1 15.3 15.6 16 51.1 56.2 60.6 64.6 68.1 71.6 75 78.6 82.3 16.4 17.9 19.1 20.3 21.4 <	39.3 42.8 45.5 47.9 50.2 52.3 54.4 56.4 58.5 60.8 74.5 81.1 86.2 90.1 93.5 97.6 101.7 106 109.8 114.7 25.2 26.8 27.8 28.6 29.3 29.9 30.6 31.1 31.7 32.2 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.9 5.2 5.8 6.2 6.6 7 7.3 7.6 8 8.3 8.6 8.2 9 9.6 10.2 10.8 11.4 12 12.5 13.1 13.8 8.1 8.5 8.9 9.1 9.4 9.6 9.8 10 10.1 10.3 23.2 23.8 24.1 24.5 24.7 25.2 25.8 26.6 27.3 28.2 31.5 36.2 39.8 43.7 48 53 58 63.4 69.9 76.6 14.4 15.4 16.1 16.8 17.4

Table B3. Guam CREMUS (k-revise method B results, in thousands of pounds)

CREMUS	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%	MSY
Group											
Selar	807	850.6	886	919	952	988	1025	1061	1099	1138	1,150
crumenophthalmus											-
 akule or bigeye 											
scad											
Decapterus	346	363.3	381	400	418	438	459.8	483.5	507.1	531.2	538
macarellus – opelu											
or mackerel scad											
Acanthuridae	196	231.1	259	288	313	342	367.9	395.1	425.4	452.6	445.5
(surgeonfishes)											
Carangidae	114	123.3	131	139	146	154	161.2	168.1	175.6	183.7	185.1
(jacks)											
Carcharhinidae	4.3	5.4	6.3	7.2	8	8.8	9.8	10.6	11.6	12.5	12.4
(reef sharks)											
Crustaceans	23.9	26.6	29.1	31.4	33.5	35.4	37.1	38.9	40.9	42.8	43.1
(crabs)											
Holocentridae	138	140.6	144	146	148	150	152	154.3	156.3	158.1	159.8
(squirrelfishes)											
Kyphosidae	86	90.5	94.5	98.1	101	105	108.6	112.1	115.7	119.6	122.8
(rudderfishes)											
Labridae	175	181.4	188	194	200	205	211	216.5	221.7	227.4	229.2
(wrasses)						-					
Lethrinidae	29.4	31	32.1	33.2	34.3	35.5	36.6	37.5	38.5	39.4	39.6
(emperors)											
Lutjanidae	264	280.5	292	303	312	321	330.3	338.2	346.7	356.2	359.3
(snappers)		• • •		<u> </u>			40.0	10.1		40.5	
Mollusks (turbo	26.6	29.2	31.3	33.4	35.7	38.2	40.8	43.4	46.4	49.5	50.3
snail; octopus;											
giant clam)	14.2	15.0	15.1	10.0	10.0	20.1	01.1			24.5	24.6
Mugilidae	14.3	15.9	17.1	18.2	19.2	20.1	21.1	22.2	23.3	24.5	24.6
(mullets) Mullidae	116	128.3	120	1.40	1.67	165	172.1	101.7	100.4	107.5	105.7
	116	128.3	138	148	157	165	173.1	181.5	189.4	197.5	195.7
(goatfishes) Scaridae	201	212.4	222	222	220	246	2517	257 (264.2	270 (271.5
	201	213.4	223	232	239	246	251.7	257.6	264.2	270.6	271.5
(parrotfishes)	08.7	107	111	117	101	125	120.4	122.2	126.1	120.0	141.2
Serranidae	98.7	106	111	116	121	125	128.4	132.2	136.1	139.9	141.3
(groupers) All Other	405	424.2	440	157	471	105	106.5	510.6	522.5	5756	540.8
CREMUS	405	424.2	440	457	471	485	496.5	510.6	523.5	535.6	540.8
Combined											

Table B4. Hawaii CREMUS (k-revise method B results, in thousands of pounds)

Appendix C Report of the P* Working Group

P* Working Group Meeting

December 11-12, 2013 1:00 pm – 5:00 pm Council Conference Room WPRFMC Office

Day 1

Present On Site: Dr. Pierre Kleiber (ret. NMFS PIFSC), Dr. Bob Humphreys (NMFS PIFSC), Mr. Ed Watamura (Advisory Panel Chair), Mr. Roy Morioka (H-FACT), Mr. Ed Ebisui (Council member, Program Planning Chair), Marlowe Sabater (WPRFMC), Dr. Bob Skillman (ret. NMFS PIFSC), Paul Dalzell (WPRFMC)

On the Conference Line: Dr. Erik Franklin (UH HIMB), Dr. Domingo Ochavillo (DMWR, AS), Dr. Todd Miller (DFW, CNMI), Michael Tenorio (DFW, CNMI), Mr. Jarad Makaiau (NMFS – PIRO)

Day 2

Present On Site: Dr. Pierre Kleiber (ret. NMFS PIFSC), Dr. Bob Humphreys (NMFS PIFSC), Mr. Ed Watamura (Advisory Panel Chair), Mr. Roy Morioka (H-FACT), Mr. Ed Ebisui (Council member, Program Planning Chair), Marlowe Sabater (WPRFMC), Paul Dalzell (WPRFMC), Dr. Erik Franklin (UH HIMB), Gerard DiNardo (NMFS PIFSC), Lennon Thomas (NMFS PIFSC)

On the Conference Line: Dr. Domingo Ochavillo (DMWR, AS), Mr. Jarad Makaiau (NMFS - PIRO)

REPORT

Introductions

Mr. Edwin Ebisui chaired the third meeting of the P* Working Group. In attendance were Robert Skillman, Pierre Kleiber, Robert Humphreys, Ed Watamura, Roy Morioka, Jarad Makaiau, Erik Franklin, Domingo Ochavillo, Todd Miller and Michael Tenorio. Marlowe Sabater and Paul Dalzell provided technical and administrative support.

Recommendations from the SSC

Council staff presented on the summary of the recommendations by the Scientific and Statistical Committee from its 114th meeting. The recommendation focuses on the endorsement of the Martell, Froese and Kleiber (MFK) model for management purposes and directed staff to finalize the MSY estimates for P* analysis. In addition, the SSC recommended to reconvene the P* WG and finalize the criteria to determine the appropriate level of risk and associated acceptable biological catch for the fishing year 2015. The SSC also suggested applying the MFK model to fully assessed Tier 1 stocks (e.g., bottomfish) in order to gauge the MFK model's accuracy. Council staff reminded the working group members that it is critical to finalize the P* score in this meeting in order to meet the timeline needed to complete the specification package to utilize the new ABCs for fishing year 2015.

Review of the previous P* WG Meeting

Council staff summarized the accomplishments of the P* WG from the 2 previous meetings, held May 28-29, 2013 and June 12, 2013, respectively. Staff also presented on the action items of the WG from the second meeting and how those action items were addressed. The actions included: 1) Covert the PSA scores from Thomas (2013) to the same scale as what is used in the Productivity-Susceptibility Dimension of the P* Analysis. The converted values were included in the briefing materials (Document 7.0). This would serve as a proxy for the Guam P-S exercise; 2) Finish/refine the P* criteria particularly the scientific information and the stock status. The scientific information was revisited and the approach aspect elements were re-evaluated for changes; 3) Follow-up with SSC members on their P-S scores. All of the P* WG members assigned to provide P-S scores had submitted their scores and was included in the briefing materials; and 4) Finalize the technical paper. The technical paper was included in the briefing materials as the final draft.

Review of the biomass-augmented catch-MSY model

Dr. Pierre Kleiber presented on the results of the comparative analysis suggested by the SSC to determine accuracy of the MSY results from the augmented catch-MSY model. MSY estimates from the MFK model were compared to MSY estimates from two PIFSC bottomfish stock assessments, the 2011 MHI Deep 7 bottomfish stock assessment and the 2012 bottomfish stock assessment for American Samoa, Guam and the CNMI. In two instances, the results of the augmented catch-MSY model were more conservative than the stock assessment results. Specifically, the results for American Samoa showed more conservative results where the augmented catch-MSY model estimated MSY at 51,000 lbs and the stock assessment estimated MSY at 76,000 lbs. Similarly, the results for CNMI from the catch-MSY approach are less than half of the results of the stock assessment (catch-MSY = 100,000 lbs and stock assessment = 173,000 lbs).

For Guam bottomfish and MHI Deep 7 bottomfish, the augmented catch-MSY approach provided less conservative estimates of MSY. Specifically, for Guam bottomfish, the augmented catch-MSY model estimated an MSY of 60,000 lbs while the stock assessment estimated and MSY of 56,000 lbs. For all comparative analysis, the biomass estimates are incorporated to simulate what was done with the augmented catch MSY approach. However, there is some circularity in the approach because the biomass estimates used in the augmented catch-MSY approach came from the biomass generated by the stock assessment. Similarly for MHI Deep 7 bottomfish, the augmented catch-MSY model resulted in MSY estimates that are higher than the MSY estimated in the PIFSC 2011 stock assessment. The data used for the augmented catch-MSY analysis was catch scenario 2/CPUE scenario 1 where the unreported non-commercial landing was assumed to be 1:1 to the reported commercial landing. The resulting MSY estimate for the catch-MSY approach was 1,548,000 lbs whereas the resulting MSY from the stock assessment (using CPUE scenario 1) was 848,000 lbs which is 45% lower that the catch-MSY result. It was hoped that the estimates be more close to each other.

The discrepancy in the Hawaii results may be due to how the augmented catch-MSY model responds to assumptions in stock exploitation relative to stock biomass. Bottomfish fisheries in the territories (with perhaps the exception of Guam) have high biomass and low fishing mortality. However Hawaii has higher fishing mortality and therefore higher population turnover

per time step. Too much turnover per time step can cause the underlying population model in the catch-MSY approach to be erratic. This is not a problem inherent in the Schaefer model but rather a problem in way it is currently coded in the catch-MSY software. This could be fixed, though perhaps at the expense of longer running times for the model.

The data also for Hawaii goes all the way back to 1948. Simulation run was also conducted to test for effect of the long catch time series by truncating to the most catch data since 1970. The results were almost the same. Also checked was the r-k density plot to see if there is anything wrong, but the plot does not provide any indication that there is something wrong in the r-k algorithm.

The Hawaii data seemed to be anomalous in more than one case. The Chair liked the idea that the model is generating conservative results for data poor stocks. However, in the case for stocks that are exploited there must be some ancillary factors affecting the results that need to be accounted for.

Review and changes to the P* Dimensions and Criteria

Council staff presented the different dimensions of the P* analysis and the criteria under each dimension as revised by the P* WG members from the last 2 meetings. The WG members reviewed the preliminary scores of the Model Information and Uncertainty Characterization Dimensions. The WG members retained the preliminary scores and deemed it applicable for the current methods under Tier 3.

For the Model Information Dimension, the WG deemed the MFK model falls somewhere between 2 and 4 since it aspects captured within this range.

Model Information Description	Score
Highly quantitative probabilistic approach that provides estimates of depletion and biomass status; includes MSY benchmarks; model input parameters include fishery dependent and independent information with limited assumptions	0.0
Quantitative probabilistic approach that provides estimates of depletion and biomass status; includes MSY benchmarks; model input parameters include at least fishery dependent or fishery independent information with additional assumptions;	2.0
Quantitative assessment non-probabilistic approach utilizing bulk estimators providing measures of exploitation or B, proxy reference points, includes MSY benchmarks; some sources of mortality accounted for	4.0
Semi quantitative assessment; utilizes estimators that generate relative measures of exploitation or B, proxy reference points, no MSY benchmarks, absolute measures of stock unavailable	6.0
No benchmark values, but reliable catch history	8.0
Bad. No benchmark values, and scarce or unreliable catch records	10.0

In order to determine exactly where, the WG scored the approach aspect. The scores are as follows:

Approach Aspects (AAs)	Score
Reliable catch history	0
Measure of depletion	1
Species-specific data	1
All sources of mortality accounted for (z)	0.5
Fishery independent information	0.5
Probability distribution available (output)	0
Population/biological parameters (r or k etc.)	0.5
SUM	3.5

Using the scaling equivalency table, the score of 3.5 has a scaled equivalent of 3.0.

AAs Score	Scaled equivalent	AAs Score	Scaled equivalent
0.5	2.1	4	3.1
1	2.3	4.5	3.3
1.5	2.4	5	3.4
2	2.6	5.5	3.6
2.5	2.7	6	3.7
3	2.9	6.5	3.9
3.5	3.0	7	4.0

Hence for the Model Information Dimension the score is 3.0.

The Uncertainty Characterization Dimension had not been revised since this dimension is applicable for a Tier 1 to Tier 3 stock. The WG maintained the **score of 5** for this model-based approach under this Tier. The group scored this dimension as 5.0 since uncertainties can be adjusted by controlling for the range of r and k as well as the process error of the Schaefer Model (see P* WG second meeting report). By process of elimination it cannot be scored as 7.5 because there is an estimate of MSY and probability distribution around that MSY.

The table for this Dimension is shown below:

Uncertainty Characterization Description	Score					
Complete. Key determinant – uncertainty in both assessment inputs and environmental conditions included	0.0					
High. Key determinant – reflects more than just uncertainty in future recruitment						
Medium. Uncertainties are addressed via statistical techniques and sensitivities, but full uncertainty is not carried forward in projections						
Low. Distributions of Fmsy and MSY are lacking						
None. Only single point estimates; no sensitivities or uncertainty evaluations						

Fishing Level Scoring Session

This model approach provides an estimate of relative sustainable harvest level and has limited information on the stock status. Hence the third dimension had been revised to provide insight of F/F_{MSY} and not B/B_{MSY}. Council staff presented a summary of the Fishing Level Table (Document 4.0) and explained how the values were derived. Each of the families with MSY estimates were scored based on the criteria constructed by the P* Working Group at its second meeting. The summary of the scoring criteria is shown in the table below. A logical argument in Excel was crafted following the criteria designed by the WG members. In order to determine the final scores for each family, the WG was asked to define and determine 2 parameters:

- 1) Define catch would the catch be defined as the point estimate of the most recent year in the time series; or an average of 3 years; or an average of 5 years
- 2) Determine MSY based on 2 different method in defining the r and k range here termed as k-revise method A and k-revise method B

Description	Fishing level	Score
Lightly harvested	Catch << 1/3MSY	0.0
Moderately harvested	Catch < MSY	2.5
Fully harvested	Catch \approx MSY	5.0
Over harvested	Catch > MSY	7.5
Severely Over	Catch > 2x+MSY	10.0
harvested		

Rationale for using 3 year average:

The WG members defined catch as average catch over a three year period. Using an average of a recent segment of the catch time series addresses short term fluctuation in catches brought about by variability in productivity and fishery dynamics. A three year average allows us to see trends that are occurring recently and is reasonable time frame for management to be reactive to recent changes in the fishery. This also balances random fluctuation in catch as opposed to real stock change which can then be used as point estimate for comparison with MSY reference points.

Rationale for using k-revise method B:

The catch-MSY method examines 30,000 randomly chosen points in a window in r-k space. Each point corresponds to a pair of r and k values. Plausible r-k pairs are identified if a Schaefer model run with those parameter values can generate a biomass time series that accommodates the catch time series as well as any measured values of biomass and satisfies other criteria such as biomass not going below zero or not exceeding k. The plausibility density in r-k space is interpreted as a probability density from which r, k, and hence MSY can be estimated where

$$MSY=rk/4.$$
 (1)

At the outset the window in r-k space is determined by ranges of r and k assumed to contain the true values of r and k. These ranges are purposely wide -- perhaps orders of magnitude (particularly for k) -- to minimize the possibility that the true value of either r or k is outside the window. To focus into a region of high density, another set of 30,000 points is then examined

from a revised window and MSY estimated. The revised ranges are calculated based on the outcome from the first window.

There are two methods for calculating the revised range for k, method A and method B, and Figures 1 and 2 show plausibility density for method A and B respectively. The dashed lines in the density plots indicate the locus of points corresponding to a constant value for MSY determined by equation (1) above with r and k estimated from the plausible r-k pairs. Ideally the density plots should show a high density ridge with density sloping off on either side and the MSY line associated with that ridge. Good examples are in the siga-a plot in Figure 1 and most of the plots in Figure 2. Some of the plots in Figure 1 indicate that the final window in r-k space was missing the highest density ridge, being located too far below/left (e.g. caran-a) or too far above/right (e.g. holo-a). The scattering of holes in the density plots is another indication that the window was not well located, and the near verticality of the MSY lines in several plots indicates that the range in k values was too narrow and badly located. Mis-located windows are also indicated in truncated density distributions of MSY from method A (Figure 3).

Because k-revise method B was more consistent in finding a good k range, the WG members determined that MSY estimates generated from the k-revise method B is preferred over k-revise method A. However, it was suggested that determination of ranges for r and particularly for k might be improved with a more flexible and perhaps interactive method for final placement of the window in r-k space.

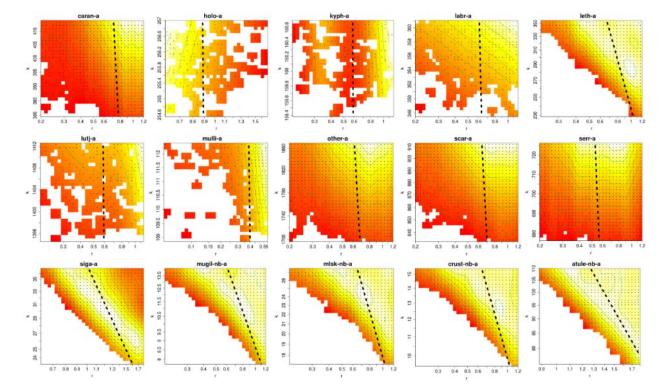


Figure 1. Density of plausible r-k combinations for the different families of reef fish and reef associated organisms using k-revise method A. Dashed lines show the locus of points corresponding to the estimated MSY.

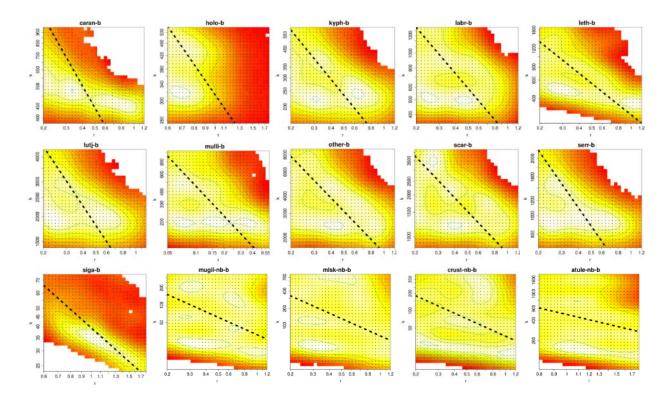


Figure 2. Density of plausible r-k combinations in r-k space for the different families of reef fish and reef associated organisms using k-revise method B. Dashed lines show the locus of points corresponding to the estimated MSY.

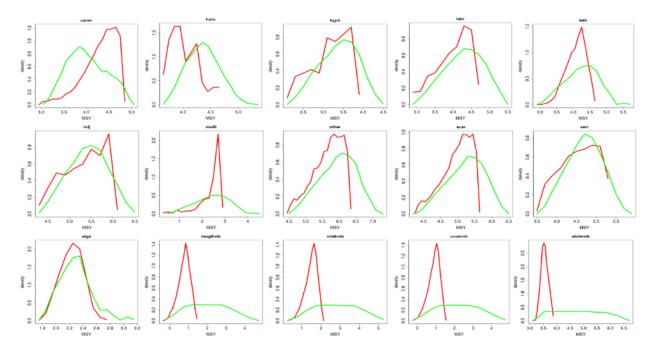


Figure 3. Density distributions of MSY values estimated by k-revise method A (red) and method B (green).

Productivity and Susceptibility Scoring Session

P* Working Group Members were requested to provide a score on the productivity and susceptibility for species that dominates the catch under each of their respective family grouping. When multiple species are scored under each family, the scores were averaged across species to represent the final score.

Productivity and Susceptibility Description	Score
Low risk. High productivity, susceptibility low.	0.0
Low/Medium	2.5
Medium risk. Moderate productivity, and susceptibility	5.0
Medium/High	7.5
High risk. Low productivity, high susceptibility	10

<u>Hawaii</u> – Bob Humphreys presented a summary of the Productivity Susceptibility scores (in collaboration with Ed DeMartini) for the coral reef MUS for Hawaii. The scores were given for species that make up the 90% of the coral reef catch. The productivity scores were based on the life history characteristics (e.g. age and growth, longevity, L_{inf} etc.) available from local studies or from the literature. Susceptibility scores were based on the type of fishery it was harvested as well as proximity of the habitat to human presence. If there is no information then a default risk score of 5 is assigned. Details of the PS scores are found in Appendix 1.

<u>Guam</u> – Lennon Thomas presented on the Productivity Susceptibility Analysis for the Guam coral reef MUS. The analysis utilized the expanded creel survey data and focused on 33 species that comprised more than 50% of the catch (Thomas 2013). These species represents the families of reef fishes that have ACLs. Six life history attributes were used to evaluate productivity: 1) Maximum age; 2) Maximum size; 3) Age at maturity; 4) Von Bertalanffy growth coefficient; 5) Natural mortality; and 6) Trophic level; were used to evaluate productivity. On the other hand, the four attributes used to evaluate susceptibility were: 1) Fishery value; 2) Vertical range; 3) Geographic distribution; and 4) Behavior and relationship to catchability; were used to evaluate susceptibility. All attributes were scored on a range of 1 to 3 where 1 is low, 2 is moderate, and 3 is high. The vulnerability of each species was then calculated which is the Euclidean distance from the *xy* orgin of a scatterplot. However, for the purposes of the P* analysis, only the final scores for the productivity and susceptibility were used. The final productivity and susceptibility scores were rescaled to the 0-10 scale of the P* PSA with 2.5 increments. The conversion table is shown below.

DESCRIPTION	PSA_scale	P_scale	S_scale
LOW	1	10	0
	1.1	9.5	0.5
	1.2	9	1
	1.3	8.5	1.5
	1.4	8	2
	1.5	7.5	2.5

DESCRIPTION	PSA_scale	P_scale	S_scale
	1.6	7	3
	1.7	6.5	3.5
	1.8	6	4
	1.9	5.5	4.5
MODERATE	2	5	5
	2.1	4.5	5.5
	2.2	4	6
	2.3	3.5	6.5
	2.4	3	7
	2.5	2.5	7.5
	2.6	2	8
	2.7	1.5	8.5
	2.8	1	9
	2.9	0.5	9.5
HIGH	3	0	10

To ensure compatibility with the study results, the converted scores for the P* PSA and the vulnerability scores were compared. Details of the PS scores are found in Appendix 2.

<u>CNMI</u> – Todd Miller presented on the summary of the Productivity Susceptibility scores (in collaboration with Michael Tenorio, Sean MacDuff and John Gourley) for the coral reef MUS for CNMI. The basis for the scoring was from its commonness or predominance in the underwater census surveys, creel survey, market survey and BioSampling program. For the productivity scores this was based on the frequency of sighting in the underwater surveys. The susceptibility scores were based on whether the species are targeted and its commonality in the commercial and non-commercial landing. Details of the PS scores are found in Appendix 3

<u>American Samoa</u> – Domingo Ochavillo presented the summary of the Productivity Susceptibility scores for the coral reef MUS for American Samoa. The scoring was based on the available life history characteristics for the productivity criteria. Scoring for the susceptibility was based on dominance in the coral reef fish catch. Details of the PS scores are found in Appendix 4.

P* for the Western Pacific Coral Reef Management Unit Species

Summing all the dimension scores yields the total uncertainties and when deducted from the 50% risk of overfishing will result in the P*. If accepted by the SSC, the level of catch associated with P* as provided in Sabater and Kleiber (2013) will correspond to the acceptable biological catch. Since the P* values in Sabater and Kleiber (2013) are presented in 5% increment, the SSC may consider rounding P* values up or down depending on the scores proximity to the incremental value.

Hawaii Grouping	M.I.	U.C	S.S	P.S	Σ	P*
Acanthuridae – surgeonfish	3	5	0	5.8	13.8	36.2
Atule - Selar crumenophthalmus	3	5	2.5	2.5	13.0	37.0
Carangidae – jacks	3	5	0	2.5	10.5	39.5
Carharhinidae – reef sharks	3	5				
Crustaceans – crabs	3	5	5	5	18.0	32.0
Holocentridae – squirrelfish	3	5	2.5	6.3	16.8	33.3
Kyphosidae - rudderfish	3	5	0	5	13.0	37.0
Labridae - wrasses	3	5	0	5	13.0	37.0
Lethrinidae - emperors	3	5	0	5	13.0	37.0
Lutjanidae – snappers	3	5	0	1.2	9.2	40.8
Mollusks – turbo snails; octopus	3	5	5	5	18.0	32.0
Mugilidae – mullets	3	5	2.5	6.6	17.1	32.9
Mullidae – goatfish	3	5	2.5	5.6	16.1	33.9
Opelu - Decapterus macarellus	3	5	2.5	5	15.5	34.5
Other CREMUS	3	5	0	6	14.0	36.0
Scaridae – parrotfish	3	5	0	7.5	15.5	34.5
Serranidae - groupers	3	5	0	0	8.0	42.0
Spiny lobster	3	5	0	5	13.0	37.0

Table 1. Summary of the dimension scores and the resulting P* for the Hawaii management unit species with ACLs for fishing year 2015.

Table 2. Summary of the dimension scores and the resulting P* and associated ABCs for the Guam management unit species with ACLs for fishing year 2015.

Guam Grouping	M.I.	U.C	S.S	P.S	Σ	P*
Acanthuridae – surgeonfish	3	5	2.5	3.9	14.4	35.6
Algae	3	5	0	5	13	37
Selar crumenophthalmus	3	5	7.5	4.3	19.8	30.2
Carangidae – jacks	3	5	5	5.7	18.7	31.3
Carcharhinidae – reef sharks	3	5				
Crustaceans – crabs	3	5	0	5	13	37
Holocentridae – squirrelfish	3	5	0	4.8	12.8	37.2
Kyphosidae – rudderfish	3	5	2.5	5.6	16.1	33.9
Labridae – wrasses	3	5	0	7.5	15.5	34.5
Lethrinidae – emperors	3	5	0	6.3	14.3	35.7
Lutjanidae – snappers	3	5	0	7.4	15.4	34.6
Mollusks – turbo snail; octopus	3	5	0	5	13	37
Mugilidae – mullets	3	5	0	5.8	13.8	36.2
Mullidae – goatfish	3	5	0	3.8	11.8	38.2

Other CREMUS	3	5	0	5	13	37
Scaridae – parrotfish	3	5	2.5	5.8	16.3	33.7
Serranidae – groupers	3	5	0	6.7	14.7	35.3
Siganidae – rabbitfish	3	5	0	4.1	12.1	37.9
Spiny lobster	3	5	0	5	13	37

Table 3. Summary of the dimension scores and the resulting P* and associated ABCs for the CNMI management unit species with ACLs for fishing year 2015.

CNMI Grouping	M.I.	U.C	S.S	P.S	Σ	P*
Acanthuridae – surgeonfish	3	5	0	4.3	12.3	37.7
Selar crumenophthalmus	3	5	0	2.5	10.5	39.5
Carangidae – jacks	3	5	0	4.2	12.2	37.8
Crustaceans-crab	3	5	0	5	13	37
Holocentridae - squirrelfish	3	5	0	4.8	12.8	37
Kyphosidae – rudderfish	3	5	0	5.6	13.6	36
Labridae – wrasses	3	5	0	7.5	15.5	35
Lethrinidae – emperors	3	5	2.5	4.9	15.4	34.6
Lutjanidae – snappers	3	5	0	3.2	11.2	38.8
Mollusks – turbo snail; octopus	3	5	0	3.2	11.2	38.8
Mugilidae – mullets	3	5	0	4	12	38
Mullidae – goatfish	3	5	0	4	12	38
Other CREMUS	3	5	0	4.8	12.8	37.2
Scaridae – parrotfish	3	5	0	6	14	36
Serranidae – groupers	3	5	0	5.3	13.3	36.7
Siganidae – rabbitfish	3	5	2.5	4	14.5	35.5
Spiny lobster	3	5	0	5	13	37

Table 4. Summary of the dimension scores and the resulting P* and associated ABCs for the American Samoa management unit species with ACLs for fishing year 2015.

American Samoa Grouping	M.I.	U.C	S.S	P.S	Σ	P*
Acanthuridae – surgeonfish	3	5	0	3.3	11.3	38.7
Selar crumenophthalmus	3	5	0	2.5	10.5	39.5
Carangidae – jacks	3	5	0	5	13	37
Carcharhinidae – reef sharks	3	5				
Crustaceans – crabs	3	5	5	6.3	19.3	30.8
Holocentridae – squirrelfish	3	5	0	6.3	14.3	35.8
Lethrinidae – emperors	3	5	0	5	13	37
Lutjanidae – snappers	3	5	0	7.5	15.5	34.5
Mollusks – turbo snail; octopus	3	5	0	7.5	15.5	34.5

Mugilidae – mullets	3	5	0	5	13	37
Kyphosidae – rudderfish	3	5	0	5	13	37
Labridae – wrasses	3	5	0	5	13	37
Mullidae – goatfish	3	5	0	5	13	37
Siganidae – rabbitfish	3	5	0	2.5	10.5	39.5
Other CREMUS	3	5	0	5	13	37
Scaridae – parrotfish	3	5	0	5	13	37
Serranidae – groupers	3	5	0	3.8	11.8	38.3
Spiny lobster	3	5	0	5	13	37

Rationale for the species grouping

In the initial 2012 ACL specifications, the different coral reef management unit species were grouped by family and ACLs were specified only for groups that comprised 90% of the total catch. This was done to reduce the number of species that would require ACLs as well as include all families that are harvested in large amounts in the fishery. The rest of the families were grouped as the bottom 10% of the catch and assumed not to be significant in terms of total landings.

The data used in the initial 2012 ACL specification was all available catch data up to 2008 for the territories and through 2009 for Hawaii. In the re-analysis of the data to be used in the model based approach, the data was updated to include all available catch through 2012. Catch data for the Territories was from the creel surveys (proxy for total catch to include shore-based and boatbased catch with varying levels of non-commercial catches from multiple gear) and dealer reports (commercial catch). The Hawaii data was only from commercial catch reports filed by fishermen with Commercial Marine Licenses. Non-commercial catch was not included. In the process of identifying the top 90%, the results yield a different grouping compared to the initial specification. This has legal ramifications because the National Standard 1 requires stocks subject to ACL specification be identified. This should be a static list to ensure consistent monitoring of each group over time. Process-wise this will result in the re-calculation of the top 90% every time new data is available otherwise it is not utilizing the best scientific information available. Shifting species groups that require ACLs is hard to monitor and will result in inconsistencies in the specification that ultimately will confuse the stakeholders. The species groupings that result from incorporating data through 2012 are the groups being monitored by the Archipelagic Plan Team and described in the Council annual reports. By using these fixed groupings into the future, it will enable consistent monitoring of catches and groups that would require ACLs should new data become available.

Rationale for the P* values

The assumption behind the tiered system approach is that the scientific uncertainties increase from a data-rich tier (e.g. Tier 1) to a catch-only tier (e.g. Tier 5). So in situations where less information is available regarding stock status as well as the fishery that harvests the stock, a larger buffer is needed to ensure that the stock is not going to be subject to overfishing or being overfished. This follows the precautionary principle in data poor situations. In the case for most of the Western Pacific stocks (e.g. coral reefs) where the current ACLs are based on catch-only information, the uncertainties were reduced when the augmented catch-MSY approach was used

to estimate MSY. Incorporating biomass from underwater census surveys into the model and some information regarding resilience and assumptions on carrying capacity enabled the Council to enhance the ACL specification from the catch-only approach. The critical factor is the biomass because this parameter is commonly estimated by using CPUE as a proxy in most surplus production models, yet these approaches are treated as a Tier 1.

Determining the appropriate level of scientific risk varies between regions. Other Regional Fishery Management Councils had specified either default P* values for each tier and a range of P* with a P*max. Currently, the omnibus amendment does not prescribe a range of P* values for each tier. Each tier is comprised of varying level of scientific information and model reliability. Tier 3 utilizes model based approaches where the uncertainty of OFL (in this case probability distribution around MSY as a proxy for OFL) can be estimated using Monte-Carlo simulation. The criteria for Tier 3 P* analysis was tweaked from the Tier 1 P* analysis applied to western Pacific bottomfish recognizing that the Tier 3 approach is not a real model based stock assessment. The model and scientific information are based on the merits and demerits of parameters and information that fits the Tier 3 methods. Hence a direct comparison between a Tier 1 P* score and a Tier 3 P* score is not feasible. Although intuitively based on the Tiered approach principle, the P* scores in Tier 3 should not exceed or be equal to the Tier 1 P* score. However, in this case, they do. Specifically, P* values for Hawaii CREMUS ranged from 32-42%. Species groups that exceeded or equaled the Tier 1 MHI Deep 7 Bottomfish (P*=40.8) were the families Lutjanidae and Serranidae from Hawaii at 40.8 and 42, respectively. These families are comprised of taape (Lutjanus kasmira) and roi (Cephalopholis argus) which are non-native species in Hawaii and considered invasive. There are some eradication efforts being conducted (on roi) by local fishing clubs to maintain ecological balance hence limiting catches for these species is not a priority for the Council.

The P* values for MUS groupings from all other jurisdiction falls generally below the P* values for the Tier 1 Territory Bottomfish (American Samoa 41%; Guam 40%; CNMI 39%). The stocks we analyzed and the Territory bottomfish stocks (majority of which are considered reef fish as well) both showed similar characteristics in which biomass levels are high relative to what is currently being harvested. Based on Tables 1-4 above, the P* range for CREMUS in each island area should be follows:

American Samoa - 30.8-39.5% Guam - 30.2-37.9% CNMI - 34.6-39.42% Hawaii - 32-42%

A more detail comparison between the dimensions in the Tier 1 and the Tier 3 accounted for the scientific uncertainties by using a Tier 3 approach. Table 5 shows the comparative scores between assessments versus the augmented catch-MSY approach

Model	Tier level	D1 score	D2 score	D3 score	D4 score
MHI Deep 7 Bottomfish	1	1.3	0	3	4.9
Am. Samoa shallow/deep BF	1	1.6	5.0	0	1.95
Guam shallow/deep BF	1	1.6	5.0	0	4.45
CNMI shallow/deep BF	1	1.6	5.0	0	4.61
Biomass augmented catch_MSY	3	3.0	5.0	0-7.5	0-7.5

Table 5. Comparative analysis of the dimension scores between Tier 1 and Tier 3.

The tier 3 had higher reduced scores for dimension 1 (assessment information) accounting for the lower quality and less quantity of scientific information utilized in the augmented catch-MSY approach. For dimension 2 (uncertainty characterization), the augmented catch-MSY score is similar to the Territory Bottomfish. The territory bottomfish assessment and the augmented catch-MSY approach had uncertainties around the OFL estimates via the probability distribution around the MSY estimate. These uncertainties were not carried forward to future projections for the augmented catch-MSY approach but were accounted for in the Territory bottomfish assessment. In hindsight, the Territory bottomfish assessment should have been scored with a 2.5 instead of 5.

Hawaii Non-Deep 7 Bottomfish

The previous ACL specification of the Hawaii non-deep 7 bottomfish was based on a model result averaging between: 1) the analog approach with the MHI Deep 7 bottomfish; 2) the 75th percentile of the catch; and 3) the average of the past 3 years of catch. Concerns were raised regarding this method of model result averaging for this was not based on any simulation or resampling method but simply took an average of three point estimates. This also did not generate any probability distribution around the mean value. In order to be consistent with the current effort to standardize the ACL specification process using the tier 3 approach, the biomass-augmented catch-MSY approach was applied to the updated catch time series of the non-deep 7 and applied the MHI biomass estimate of *Aprion virescens* (locally known as uku) which makes up more than 87% of the non-deep 7 complex.

There were previous recommendations to remove uku from the non-deep 7 complex because of recent changes in the fishery whereby uku is no longer a substitute fish when the MHI deep 7 bottomfish fishery closes. The uku fishery had evolved on its own and is now a regular targeted fishery. If a separate ACL were to be specified for uku, an FEP amendment is required to establish uku as a different management unit. The working group members agreed to keep uku under the non-deep 7 but to also to treat uku as an indicator species to be monitored as a separate species and as a complex.

Using the biomass-augmented catch-MSY approach, the method-B MSY estimate for the nondeep 7 bottomfish is 265,000 lbs. Applying the same stock status determination methodology in the P* analysis, the stock status dimension score is 2.5. The P-S dimension yields a score of 7.5 (see table below for details). Combining all the dimension scores yield a score of **18** and a corresponding P* value of **32**. The risk table is shown below.

1	ecies ame	Scientific Name	Prod.	Susc.	Sum	Ave	Justification
							Long lived (26 years); slow growing; highly
		Aprion					targeted; takes 5 years to reach maturity;
U	KU	virescens	7.5	7.5	15	7.5	average length 50 cm from an Lmax of 81 cm

Hawaii Coral Reef Ecosystem (Mullidae-Goatfish) (non-FSSI)

Risk table for the non-deep 7 bottomfish

risk table – k-revise b									
5%	10%	15%	20%	25%	30%	35%	40%	45%	50%
112.2	2 129.9	144.5	158.1	172.3	187.1	203.7	221.2	239.9	259.2

Next Step

1. SSC review of the P* score

2. SSC decide which ABC to take given that the risk table is in 5% increment (round up or down

Appendix D Report of the SEEM Working Group

Social, Economic, Ecological, and Management (SEEM) Working Group Meeting for Coral Reef Fisheries in Hawaii, Samoa, and Marianas Archipelagos

February 26-28, 2014 1:00 pm – 5:00 pm Council Conference Room

DRAFT REPORT

Report Highlights

- Chair welcomed members and asked for introductions.
- Council staff provided background and described Working Group purpose.
- The Working Group discussed fishery attributes that facilitate the use of ACLs in policy and management and the need to consider SEEM factors when setting these catch limits.
- In all island areas (three archipelagos; four political jurisdictions), the current level of observed catch of each coral reef stock is generally far below the stock's assumed biomass (note: this is not the case for the MHI bottomfish fishery, which is managed under a separate management plan.)
- The Working Group decided to use SEEM factors for the NMI that were recently developed by researchers at the NMFS Pacific Islands Fisheries Science Center as a starting point to consider factors important to the other three jurisdictions.
- The Working Group decided to comprehensively describe and score all SEEM factors, but to use only the ecological and management uncertainty factor scores to reduce from ABC, since the Council cannot use the results of a SEEM analysis to increase an ACL.
- Outcome: Based on ecological and management uncertainty considerations, the SEEM Working Group determined that reductions from coral reef MUS ABC in American Samoa, Hawaii, and the Marianas archipelagos of 5%, 5%, and 3% respectively may be warranted.

Full Report

The Council's Coral Reef Fisheries SEEM Working Group met from February $26^{th} - 28^{th}$, 2014 at the Council office in Honolulu to examine social, economic, ecological, and management uncertainty factors inherent in coral reef fisheries in American Samoa, Guam, Hawaii, and the Northern Mariana Islands.

Council Vice-Chair, Edwin Ebisui welcomed the Working Group members and opened the meeting with introductions.

Following introductions, Council staff provided a summary of the history of ACL management and the basis for conducting a SEEM analysis on the Region's coral reef fisheries. The Council now uses a catch-MSY model, augmented by Marlowe Sabater and Pierre Klieber to account for biomass, to specify ACLs for the Region's coral reef MUS and as such most of those fisheries are now considered Tier 3 stocks. Because of this change, the Council requested staff to convene a SEEM Working Group to examine SEEM factors for coral reef fisheries in the three island areas.

Staff also provided the Working Group with an overview of the Main Hawaiian Islands bottom fish fishery SEEM analysis, including process and scoring determinations, that was conducted in 2011. Staff recommended that the Working Group consider a similar process for the current analysis, since it has been accepted by the Council and NMFS, but that improvements to the process could be discussed and considered for future SEEM exercises.

The Group discussed the difference between setting ACLs for coral reef fisheries and the MHI bottomfish fishery. In the latter fishery, the ACL is more meaningful, since there is near-real time catch reporting, which enables in-season tracking of catch towards the ACL and ability to close the fishery if the ACL is going to be reached. After considering these differences, the Working Group affirmed the usefulness of conducting a thorough SEEM analysis on regional coral reef fisheries, to guide future SEEM-related research, to highlight the importance of WPacFIN, and to further the ecosystem fishery management approach the Council has undertaken.

Following this discussion, Drs. Cynthia Grace-McCaskey and Leila Sievanen (JIMAR-PIFSC) presented their recent research in the Northern Mariana Islands to determine how fishermen perceived the social and economic importance of reef fisheries, local knowledge of coral reef ecosystems and associated species, and perceptions about various management strategies. The team interviewed 38 fishermen and vendors and worked with Council staff to determine the scope of the research and appropriate questions. A purpose of the research was to provide data into the SEEM analysis for CNMI reef fisheries. Council staff discussed the extent to which this CNMI-specific information applied to regional coral reef fisheries.

Before proceeding to the four SEEM dimensions, the Working Group discussed several topics: fishermen discussing and practicing conservation; income from fishing should include money saved from food fishermen don't have to buy; conflict between ethnic groups; overfishing terminology and perceptions; and village net exceptions in the NMI.

After the presentation, the Group discussed the best way to proceed. It was decided to follow the existing approach and comprehensively describe and score all relevant SEEM factors. Each item will be scored between -2 and +2. This scale was developed by the MHI bottomfish SEEM Working Group. The main benefit of this approach is that it can be used by each member to highlight how important he believes each social and economic factor is and how serious a concern he believes each management uncertainty factor to be. It is also sensitive to the uniqueness of the ecological dimension, where scoring factors tends to be less one-sided

(positive or negative) than in the other three dimensions. Finally, since each ecological and management uncertainty factor can only be given a maximum of -2, there is less potential for one or two items to result in large reductions.

Like the MHI bottom fish SEEM group, the current working group decided that a net positive score across the S and E factors will equal no reduction. The reduction would thus come from the scores of the items in the ecological and management uncertainty factors. The Group also decided to use the NMI study factors as starting factors when discussing the other three jurisdictions. Finally, the Working Group decided to score all SEEM factors for all jurisdictions at the end.

Before proceeding to the four SEEM dimensions, the Group discussed several topics: fishermen discussing and practicing conservation; income from fishing should include money saved from food fishermen don't have to buy; conflict between ethnic groups; overfishing terminology and perceptions; and village net exceptions in the NMI.

Mariana Archipelago

Social Dimension Factors

The Group discussed the importance of understanding the cultural importance around sharing catch and post harvest distribution (fish flow) as well as the various effort triggers, since some of this information was not captured in the PIFSC study interviews. From the social attributes found in the PIFSC study, the Working Group decided to lump "food security" with "diet" and unpack "social identity" and "pride."

The final list of social factors the Working Group selected was:

Allows traditional practices and values to continue
Is an important part of Marianas food security and healthier diet
Reef fishing as part of social identity status
Provides fish important for culturally important events e.g. fiestas, funerals, parties
Is a highly skilled and well-respected practice and occupation
Sense of pride and accomplishment in producing food and cultural benefit to others

Economic Dimension Factors

Most discussion of economic factors centered on the notion that money associated with coral reef fishing in the NMI stayed local, as some interviewees claimed. It was pointed out that while some revenue might stay in the Commonwealth, some of it is remitted and that much of the gear and equipment is purchased off island. The second issue that was discussed was the relative importance of subsistence fishing in reducing an individual's or household's grocery bills.

The final list of economic factors the Working Group selected was:

Supports the local economy

Supplements income of those with part-time jobs or low wages

Is an important source of income and jobs (i.e. primary and secondary)

Acts as an economic "safety net"

Supports extractive tourism/service industries

Supports non extractive value (aesthetic and existence value)

House hold expenses are reduced by subsistence fishing

Ecological Factor Items

Coral reefs provide buffer from large scale perturbation

Uncertainty of ecosystem dynamics (trophic interactions; life history; impacts of climate changes)

Non-fishing factors that affects fish stocks and habitat (pollution, run-off, development)

De-facto MPAs provide additional protection for reef stocks

Management Uncertainty Dimension Factors

Level of education, outreach and enforcement

Management effectiveness (local-federal linkages; real-time accountability measure)

Availability of reliable fishery information (catch, effort, life history, real-time monitoring, late reporting, mis-reporting, under reporting)

Data collection improvement efforts (mandatory reporting in CNMI)

Other management systems may provide additional protection of reef stocks (monuments, sanctuaries, military closed areas)

American Samoa

Social Dimension Factors

The Working Group discussed some of the important cultural differences around fish and fishing in AS. Notably, that there are prescribed ways in which fish are distributed throughout the chief system. The Group also discussed the importance of communal fishing activities, such as for palolo and atulai, and the fact that there tends to be more village control of local fisheries resources than in other areas. The final list of social factors the Working Group selected was:

Allows traditional practices and values to continue

Is an important part of Am. Samoa food security and healthier diet

Reef fishing as part of social identity status

Provides fish important for culturally important events (e.g. Fa'lavalave, to'ona'i funerals, weddings, Chiefly investitures)

Is a highly skilled and well-respected practice and occupation Tautai?

Sense of pride and accomplishment in producing food and cultural benefit to others

Economic Dimension Factors

Members generally agreed that reef fish are not currently an important part of the local economy, but recognized that new fish markets are opening soon and that reef fishing is always there in the event of an economic downturn. In fact, it is not clear what will happen as federal money following the tsunami is phased out.

The final list of economic factors the Working Group selected was:

Supports the local economy
Supplements income of those with part-time jobs or low wages
Is an important source of income and jobs (i.e. primary and secondary)
Acts as an economic "safety net"
Supports extractive tourism/service industries
Supports non extractive value (aesthetic and existence value)
House hold expenses are reduced by subsistence fishing

Ecological Dimension Factors

American Samoa has some unique attributes relevant to ecological factors for ACL consideration. The islands are fairly small and high and receive a lot of annual rainfall, often in intense bouts. When this happens, people tend to stay out of the nearshore water because of pollution and reduced visibility. Members also discussed the ecological implications of management areas, such as community based fishery management sites.

The final list of ecological factors the Working Group selected was:

Coral reefs provide buffer from large scale perturbation

Uncertainty of ecosystem dynamics (trophic interactions; life history; impacts of climatological changes)

Non-fishing factors that affects fish stocks and habitat (pollution, run-off, development); frequency of high rain events and unfavorable weather and climatological conditions keeps people out of the water

Dominance of Community Based FMAs in most villages

Large biomass potential due to under-utilized stocks (due to changes in the social and economic status)

Management Uncertainty Dimension Factors

The Working Group discussed the data uncertainty problem in American Samoa. Improvements have been made, but there continue to no real time tracking of catch and no mechanism or process to close the coral reef fishery should the ACL be reached. There also is limited local capacity to conduct regular government enforcement of fishery regulations. The final list of management uncertainty factors the Working Group selected was:

Management effectiveness (local-federal coordinated management regime; realtime accountability measure)

Availability of reliable fishery information (catch, effort, life history, real-time monitoring, late reporting, mis-reporting, under reporting)

Timeliness of QA/QC input and output in catch and effort data which would affect the ability to conduct near-real-time monitoring of catch

Data collection improvement efforts (mandatory reporting in Am Samoa; improvement through efforts)

Other management systems may provide additional protection of reef stocks (monuments sanctuaries, CFMP closed areas)

<u>Hawaii</u> Social Dimension Factors

The cultural context of the reef fishery in Hawaii is more fragmented than in the other archipelagos, owing mostly to demography. However, there are still parts of the islands where coral reef fishing retains its cultural connotations and subsistence importance. Reef fish are also connected to the wider social fabric through events and ceremonies such as luaus, parties and weddings.

The final list of social factors the Working Group selected was:

Allows a variety of cultural, ethnic and Hawaiian traditional practices and values to continue

Is an important part of Hawaii food security and healthier diet

Reef fishing as part of social identity and status (clubs built around these fisheries)

Provides fish important for culturally important events e.g. first birthday luau, weddings, graduations, holidays etc.

Is a highly skilled and well-respected practice and occupation

Sense of pride and accomplishment in producing food and cultural benefit to others

Practice of customary exchange and fish flow to the community is still tied to the contemporary social fabric

Economic Dimension Factors

Members agreed that direct revenue from reef fish sales is not large. However, the sales of fishing gear and other fishing related provisions is likely an economic benefit to each of the islands. In addition, the important tourism component of the economy in some ways depends upon the availability of reef fish (divers, etc.).

The final list of economic factors the Working Group selected was:

Supports the local economy (including the fishing supply chain, fish markets and support network related to fishing)

Supplements income of those with part-time jobs or low wages

Is a source of income and jobs (i.e. primary and secondary)

Acts as an economic "safety net"

Supports extractive tourism/service industries

Supports non extractive value (aesthetic and existence value)

Money stays in the local economy (local manufacturing of fishing gear and supplies)

House hold expenses are reduced by subsistence fishing

Ecological Dimension Factors

The comparatively large size of the Hawaiian Islands makes for additional ecological factors to consider. For example, unlike the other two archipelagos, the Working Group felt that invasive marine species are important to consider. Also, the scale of development and issues like injection wells were discussed.

The final list of ecological factors the Working Group selected was:

Coral reefs provide buffer from large scale perturbation

Uncertainty of ecosystem dynamics (trophic interactions; life history; impacts of climate changes)

Potential effects of fishing interaction with protected species (prey competition)

Non-fishing factors that affects fish stocks and habitat (pollution, run-off, development, injection wells, ecological alteration, physical habitat degradation)

Effects of invasive species on ecological functions and stability

Ecological effects of ciguatera "scare"

De-facto MPAs and MLCDs provide additional protection for reef stocks

Management Uncertainty Dimension Factors

Hawaii management uncertainty items largely mirror the other two areas. The state does benefit from more staff and financial resources, but the islands are larger, which stretch those resources thin. As a result, enforcement is challenging. Also though the State is in the process of improving data collection, reef fish catch and effort statistics can be unreliable, especially for non-commercial participants.

The final list of management uncertainty factors the Working Group selected was:

Level of education, outreach and enforcement

Management effectiveness (local-federal linkages; real-time accountability measure)

Availability of reliable fishery information (commercial catch, effort, life history, realtime monitoring, late reporting, mis-reporting, under reporting)

Data collection improvement efforts (improvements in online reporting); revision of HMRFS

Availability of reliable fishery information (non-commercial catch and effort information is unknown, life history, real-time monitoring, late reporting, mis-reporting, under reporting)

Other management systems may provide additional protection of reef stocks (monuments, State MPAs, military closed areas, community based management areas)

Scoring and Final Scores

The Working Group discussed scoring and factor wording prior to voting, to ensure that all members were approaching the exercise the same way. Members generally agreed that the lack of socially-derived data specific to SEEM scoring for each archipelago was not ideal and discussed the need to conduct research into SEEM factors and the importance of each of those items to members of the fishery. However, most members felt fairly comfortable in making a determination, given that estimated catch is well below the estimated available biomass.

Appendix A contains the scores for each item in each SEEM factor for each archipelago. The table below contains the averaged scores for each factor for each archipelago and the corresponding percentage reduction from ABC recommended by the SEEM Working Group.

Archipelago	Social	Economic	Ecological	Management	% Reduction from
					ABC
American	7	6	2	-5	-5
Samoa					
Hawaii	9	8	-1.4	-3.2	-5
Marianas	9	8	0	-3	-3

Following the factor scoring, the Working Group discussed the issue that despite the fact that there is less management uncertainty surrounding MHI bottomfish management than the Region's coral reef fisheries, the management uncertainty scores in this SEEM analysis were less than those produced by the MHI bottomfish fishery SEEM Working Group in 2011. The Group came to three conclusions: 1) Membership of the two SEEM working groups differed, and this will produce different results, 2) the biomass-to-fishing effort ratio is much different for coral reef fisheries than for the MHI bottomfish fishery and it is likely that members were taking this into account when scoring, and 3) this working group worded some factors, especially ones in the ecological and management uncertainty dimensions, more neutrally.

Appendix A. SEEM scores

AMERICAN SAMOA	Mem#1	Mem#2	Mem#3	Mem#4	Mem#5	Mem#6	Mem#7	Mem#8	Mem#9
Social n=6	SCORE								
Allows traditional practices and values									
to continue	2	1	2	2	2	1	2	1	2
Is an important part of Am. Samoa									
food security and fishery development	1	1	0	1	1	1	1	0	2
Reef fishing as part of social identity									
status e.g. tautai	1	1	1	1	1	1	2	0	2
Provides fish important for culturally									
important events e.g. fa'a lave lave,									
funerals, weddings etc.	2	2	2	2	2	2	2	0	2
Is a highly skilled and well-respected									
practice and occupation	1	1	1	1	2	0	2	0	0
Sense of pride and accomplishment in									
producing food and cultural benefit to									
others	1	1	1	2	2	0	1	0	1
SUM	8	7	7	9	10	5	10	1	9

	Mem#1	Mem#2	Mem#3	Mem#4	Mem#5	Mem#6	Mem#7	Mem#8	Mem#9
Economic n=7	SCORE								
Supports the local economy through									
fishery development	1	1	0	0	0	0	1	0	2
Supplements income of those with part-time jobs or low wages	0	2	0	1	0	1	2	0	2
Is an potential source of income and									
jobs (i.e. primary and secondary)	1	1	1	0	1	0	1	0	2
Acts as a potential economic "safety									
net"	0	2	1	2	1	1	1	1	2
Supports extractive tourism/service									
industries	0	1	1	0	0	0	1	0	0
Supports non extractive value (aesthetic and existence value)	0	0	1	1	0	2	1	0	0

House hold expenses are potentially reduced by subsistence fishing	1	1	1	2	1	2	2	0	2
SUM	3	8	5	6	3	6	9	1	10

	Mem#1	Mem#2	Mem#3	Mem#4	Mem#5	Mem#6	Mem#7	Mem#8	Mem#9
Ecological n=5	SCORE								
Coral reefs provide buffer from large									
scale perturbation	-1	0	1	0	2	-1	1	2	-1
Uncertainty of ecosystem dynamics									
(trophic interactions; life history;									
impacts of climatological changes)	-1	-1	-1	-1	-2	0	-1	-2	-1
Non-fishing factors that affects fish									
stocks and habitat (pollution, run-off,									
development); frequency of high rain									
events and unfavorable weather and									
climatological conditions keeps people									
out of the water	0	1	-1	-1	-1	0	0	-2	0
Dominance of Community Based									
FMAs in most villages	0	1	1	2	2	2	2	2	0
Large biomass potential due to under-									
utilized stocks (due to changes in the									
social and economic status)	1	1	2	1	2	2	2	2	0
SUM	-1	2	2	1	3	3	4	2	-2

	Mem#1	Mem#2	Mem#3	Mem#4	Mem#5	Mem#6	Mem#7	Mem#8	Mem#9
Management n=6	SCORE								
Level of education, outreach and enforcement	-1	-1	-1	-1	-1	0	-1	-1	0
Management effectiveness (local- federal coordinated management regime; real-time accountability measure)	-2	-2	-2	0	-2	0	-2	-1	-1
Availability of reliable fishery information (catch, effort, life history, real-time monitoring, late reporting, mis-reporting, under reporting)	-2	-2	-2	-1	-2	-1	-2	-2	-1
Timeliness of QA/QC input and output in catch and effort data which would affect the ability to conduct near-real-time monitoring of catch	-2	-2	-1	-1	-2	-1	-2	-2	-1
Data collection improvement efforts (mandatory reporting in Am Samoa; improvement through efforts)	1	-1	-2	0	0	1	-1	-1	0
Other management systems may provide additional protection of reef stocks (monuments sanctuaries, CFMP closed areas)	2	1	1	-1	2	2	1	1	0
SUM	-4	-7	-7	-4	-5	1	-7	-6	-3

НАШАП	Mem#1	Mem#2	Mem#3	Mem#4	Mem#5	Mem#6	Mem#7	Mem#8	Mem#9
Social n=7	SCORE								
Allows a variety of cultural, ethnic and									
Hawaiian traditional practices and values to									
continue	2	2	2	2	2	1	2	1	1
Is an important part of Hawaii food security									
and healthier diet	2	1	2	2	2	0	2	1	0
Reef fishing as part of social identity and									
status (clubs built around these fisheries)	2	2	1	2	1	1	2	1	0
Provides fish important for culturally									
important events e.g. first birthday luau,									
weddings, graduations, holidays etc.	2	1	1	2	2	1	2	1	0
Is a highly skilled and well-respected practice									
and occupation	1	1	1	2	1	1	2	1	0
Sense of pride and accomplishment in									
producing food and cultural benefit to others	1	1	1	2	2	1	1	1	1
Practice of customary exchange and fish									
flow to the community is still tied to the									
contemporary social fabric	1	1	2	2	1	1	2	1	1
SUM	11	9	10	14	11	6	13	7	3

	Mem#1	Mem#2	Mem#3	Mem#4	Mem#5	Mem#6	Mem#7	Mem#8	Mem#9
Economic n=8	SCORE								
Supports the local economy (including the									
fishing supply chain, fish markets and									
support network related to fishing)	1	2	2	1	2	0	2	1	1
Supplements income of those with part-time									
jobs or low wages	1	1	1	1	1	1	2	1	0
Is a source of income and jobs (i.e. primary									
and secondary)	1	2	0	0	0	1	2	1	0

Acts as an economic "safety net"	0	1	0	2	0	2	1	1	0
Supports extractive tourism/service									
industries	1	2	1	1	1	-1	2	1	1
Supports non extractive value (aesthetic and									
existence value)	1	-2	2	2	1	0	2	1	-2
Money stays in the local economy (local									
manufacturing of fishing gear and supplies)	1	1	1	1	2	1	1	1	1
House hold expenses are reduced by									
subsistence fishing	1	1	0	2	1	1	2	1	1
SUM	7	8	7	10	8	5	14	8	2

	Mem#1	Mem#2	Mem#3	Mem#4	Mem#5	Mem#6	Mem#7	Mem#8	Mem#9
Ecological n=7	SCORE								
Coral reefs provide buffer from large scale									
perturbation	-1	0	0	0	2	-1	1	2	-1
Uncertainty of ecosystem dynamics (trophic									
interactions; life history; impacts of									
climatological changes)	-1	-1	-1	-1	-2	0	-1	-1	-1
Potential effects of fishing interaction with									
protected species (prey competition)	0	-1	1	0	-1	0	-1	-1	0
Non-fishing factors that affects fish stocks									
and habitat (pollution, run-off, development,									
injection well, ecological alteration, physical									
habitat degradation)	0	1	1	-2	-2	-1	-1	-2	-2
Effects of invasive species in ecological									
functions and stability	0	0	0	0	-1	-1	-1	-1	-1
Ecological effects of ciguatera "scare"	0	0	1	0	0	1	1	-1	0
De-facto MPAs provide additional protection									
for reef stocks	0	0	1	1	1	1	2	1	1
SUM	-2	-1	3	-2	-3	-1	0	-3	-4

	Mem#1	Mem#2	Mem#3	Mem#4	Mem#5	Mem#6	Mem#7	Mem#8	Mem#9
Management n=6	SCORE								
Level of education, outreach and									
enforcement	-1	0	-2	-1	-1	1	-1	-1	0
Management effectiveness (local-federal linkages; real-time accountability measure)	-2	-1	-2	0	-2	-1	-2	-1	0
Availability of reliable fishery information (commercial catch, effort, life history, real- time monitoring, late reporting, mis-reporting, under reporting)	-1	-1	-2	0	1	-1	-1	0	-1
Data collection improvement efforts (improvements in online reporting); revision of HMRFS	1	0	-2	0	1	0	-2	-1	0
Availability of reliable fishery information (non-commercial catch and effort information is unknown life history, real-time monitoring, late reporting, mis-reporting, under reporting)	-1	-1	-2	-1	-2	-1	-1	-2	-1
Other management systems may provide additional protection of reef stocks (monuments, State MPAs, military closed areas, community based management areas)	2	0	1	1	2	1	1	1	0
SUM	-2	-3	-9	-1	-1	-1	-6	-4	-2

MARIANAS	Mem#1	Mem#2	Mem#3	Mem#4	Mem#5	Mem#6	Mem#7	Mem#8	Mem#9
Social n=6	SCORE								
Allows traditional practices and values to continue	2	1	2	2	2	2	2	2	2
Is an important part of Marianas food security and healthier diet	2	2	2	2	2	1	2	0	2
Reef fishing as part of social identity status	2	1	1	1	1	2	1	1	2
Provides fish important for culturally important events e.g. fiestas, funerals, parties	2	2	2	2	2	1	2	2	2
Is a highly skilled and well-respected practice and occupation	2	2	1	1	1	1	2	0	0
Sense of pride and accomplishment in producing food and cultural benefit to others	2	2	1	1	2	1	1	1	1
SUM	12	10	9	9	10	8	10	6	9

	Mem#1	Mem#2	Mem#3	Mem#4	Mem#5	Mem#6	Mem#7	Mem#8	Mem#9
Economic n=7	SCORE								
Supports the local economy	1	2	1	1	2	0	1	1	1
Supplements income of those with part-time jobs or									
low wages	2	2	2	1	2	1	2	1	1
Is an important source of income and jobs (i.e.									
primary and secondary)	2	1	1	1	2	0	1	1	1
Acts as an economic "safety net"	2	2	1	2	2	2	2	2	2
Supports extractive tourism/service industries	1	0	0	1	1	-1	2	0	1
Supports non extractive value (aesthetic and									
existence value)	1	0	-1	1	1	2	1	1	-1
House hold expenses are reduced by subsistence									
fishing	2	1	1	2	1	1	2	1	1
SUM	11	8	5	9	11	5	11	7	6

	Mem#1	Mem#2	Mem#3	Mem#4	Mem#5	Mem#6	Mem#7	Mem#8	Mem#9
Ecological n=4	SCORE								
Coral reefs provide buffer from large scale									
perturbation	-1	1	-1	0	2	-1	1	2	-1
Uncertainty of ecosystem dynamics (trophic									
interactions; life history; impacts of climatological									
changes)	-1	-1	-1	-1	-2	0	-1	-2	-1
Non-fishing factors that affects fish stocks and									
habitat (pollution, run-off, development)	0	1	1	0	2	1	-1	-2	-1
De-facto MPAs provide additional protection for reef									
stocks	1	1	1	-1	2	2	1	1	-1
SUM	-1	2	0	-2	4	2	0	-1	-4

	Mem#1	Mem#2	Mem#3	Mem#4	Mem#5	Mem#6	Mem#7	Mem#8	Mem#9
Management n=5	SCORE								
Level of education, outreach and enforcement	-1	-2	0	0	0	0	-1	-1	0
Management effectiveness (local-federal linkages; real-time accountability measure)	-2	-2	-1	0	-2	-2	-2	-2	-1
Availability of reliable fishery information (catch, effort, life history, real-time monitoring, late reporting, mis-reporting, under reporting)	-2	-2	-2	0	0	-1	-2	-2	-1
Data collection improvement efforts (mandatory reporting in CNMI; improvement through efforts)	1	-1	-2	0	0	0	-1	-1	0
Other management systems may provide additional protection of reef stocks (monuments sanctuaries, military closed areas)	2	1	2	-1	2	1	-1	1	0
SUM	-2	-6	-3	-1	0	-2	-7	-5	-2