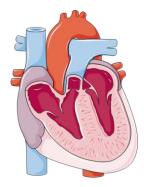


Rebecca Ritchie, Monash University

Head, Heart Failure Pharmacology Laboratory Theme Leader, Drug Discovery Biology Monash Institute of Pharmaceutical Sciences

The Burden of Heart Failure


Heart failure: a major cause of death worldwide

- Predicted to develop in 1 in 5 people in their lifetime, is a major cause of death.
- There is no effective "cure" for heart failure.
- Treatment of heart failure remains the same, regardless of the type of heart failure present in the patient, their gender, or whether the patient has diabetes and/or other comorbidities.

United States:

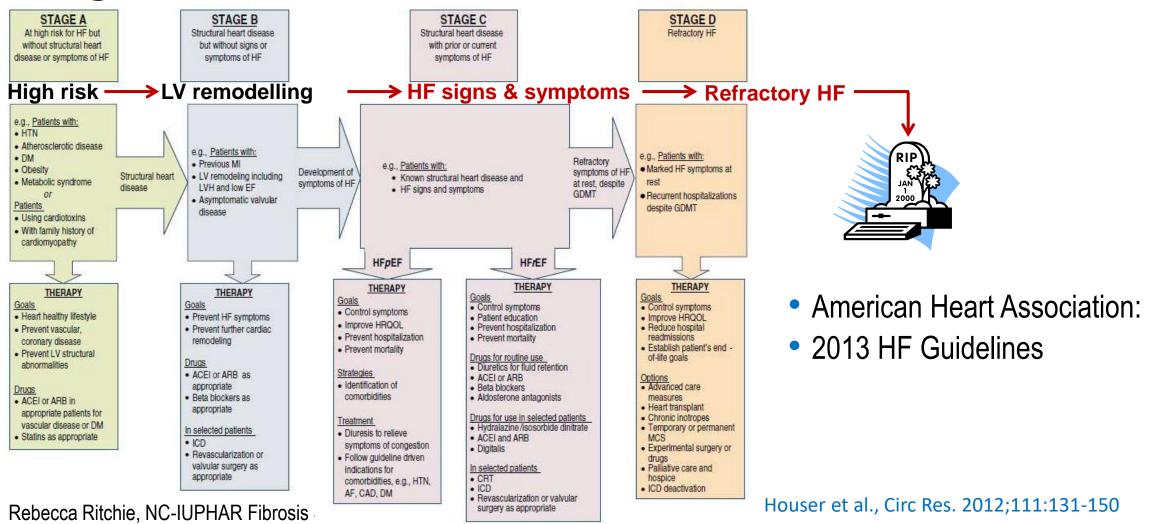
- >6.5 million individuals have HF;
- 1 million new cases are diagnosed annually
- Despite advances in diagnosis and treatment, 1-year mortality after HF hospitalization > 30%

Cresci S, Circ Genom Precis Med 2019 A Scientific Statement From the American Heart Association

The Burden of Heart Failure

United Kingdom:

- BHF: heart failure (HF) hospital admissions have risen by a third in 5 years
- ~920,000 people have HF → greater burden on health services than 4 common cancers combined
- HF patients stay in hospital for ~10 days (2x the average of all diagnoses)
 - Prof Nilesh Samani (BHF Medical Director): "HF poses a growing and increasingly complex challenge.... how we diagnose, treat and care for these patients could be far better."

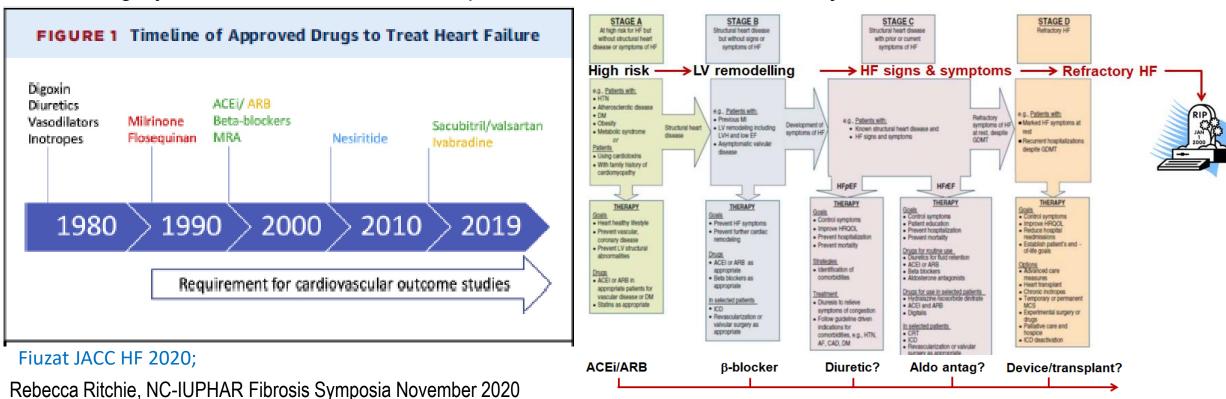

Australia:

~300,000 individuals have HF

Benjamin EJ, et al. Circulation 2017; British Heart Foundation tweet 04-09-2019; Newton PJ et al. Medical Journal of Australia 2016

lia

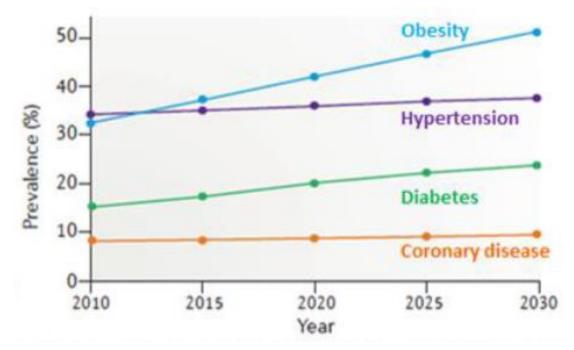
Stages of Heart Failure



Current Therapy for Heart Failure

Current therapies:

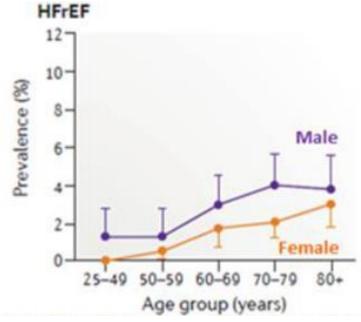
largely based on clinical trials in patients where left ventricular ejection fraction is reduced, HFrEF

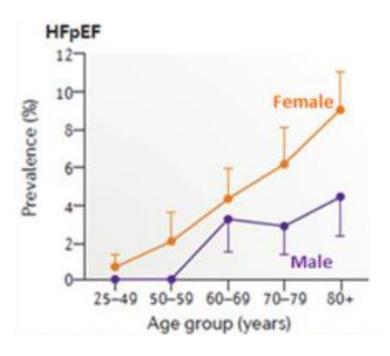


Heterogeneity of heart failure patients is considerable

whether the patient has diabetes and/or other comorbidities

PROJECTED BURDEN OF HEART FAILURE RISK




Dunlay SM et al Nat Rev Cardiol 2017

Heterogeneity of heart failure patients is considerable

- whether the patient has diabetes and/or other comorbidities
- the type of heart failure present
- patient gender

Dunlay SM et al Nat Rev Cardiol 2017

Big questions and areas of clinical need in heart failure

- Heart Failure with Preserved Ejection Fraction (HFpEF)
- The diabetic heart ("diabetic cardiomyopathy")
- Myocardial Infarction (and subsequent cardiomyopathy)

Cardiac fibrosis one of the common underlying factors

HFpEF: an ever-expanding clinical burden:

- HFpEF describes a diagnosis of heart failure in symptomatic patients whose LV EF is >50%
- in whom noncardiac causes of symptoms have been excluded
- phenotype is now more common than HFrEF in hospital admissions for HF
- Risk of HFpEF increases sharply with age
- additional risk factors for development of HFpEF include obesity and hypertension in particular

Mohammed et al Circulation. 2015; Pieske et al. Eur Heart J. 2019; Dunlay et al Nat Rev Cardiol. 2017; Redfield N Engl J Med. 2016; van Riet et al. Eur J Heart Fail. 2016; Shah SJ. J Cardiovasc Transl Res. 2017; Seferović et al. Eur J Heart Fail. 2018

HFpEF likely represents a spectrum of several aetiologies

- depending on which comorbidities are also present
- Females (esp elderly) overrepresented
- HFpEF is particularly heterogeneous
- Multimorbidity is common in HF
 - more pronounced in HFpEF
 - ~50% of patients have >5 major comorbidities

Dunlay et al Nat Rev Cardiol. 2017

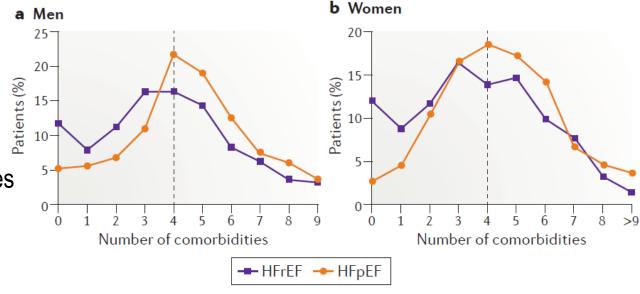
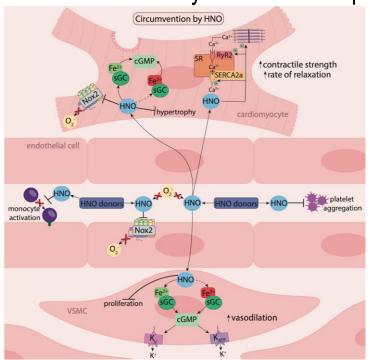


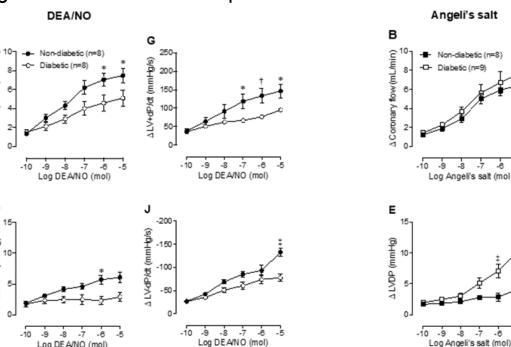
Figure 8 | Multimorbidity in heart failure in the community. The frequency distribution of number of comorbid conditions in a | men and b | women with heart failure with preserved ejection fraction (HFpEF) or heart failure with reduced ejection fraction (HFrEF). Patients with HFpEF more frequently had a higher number of comorbidities⁵⁴.

Characteristics of HFpEF

- increased cardiac mass, fibrosis and stiffness in human HFpEF, with ↓ microvascular density
- exercise intolerance, elevated left atrial pressure (LAP, particularly on exercise), pulmonary congestion and arterial stiffness are fundamental features
- systemic inflammation is also considered a key characteristic

The mechanisms are different, the comorbidities are different, disease aetiology is different – appropriate management of HFpEF will be different to HFrEF.


Mohammed et al Circulation. 2015; Pieske et al. Eur Heart J. 2019; Dunlay et al Nat Rev Cardiol. 2017; Redfield N Engl J Med. 2016; van Riet et al. Eur J Heart Fail. 2016; Shah SJ. J Cardiovasc Transl Res. 2017; Seferović et al. Eur J Heart Fail. 2018



Aberrant NO• signalling as a therapeutic target in HFpEF:

- HNO: redox sibling of NO•
 - Acutely overcomes responses dysregulated cardiac NO• responses in diabetes

Rebecca Ritchie, NC-IUPHAR Fibrosis Symposia November 2020

Velagic et al Frontiers Pharmacol 2020, manuscript in preparation 2020

200

∆LV+dPÆ

Aberrant NO• signalling as a therapeutic target in HFpEF:

 HNO donors limit diabetic cardiomyopathy in mice; Next-gen HNO-donor pharmacotherapies in development for HF

Identifier	Description	Inclusion	Intervention	Status	Data availability
NCT02157506	BMS-986231 dose escalation study (6h i.v. infusion, 3-12μg/kg/min)	LVEF <40%	BMS-986231 vs placebo	Recruited n=70; Completion 31/07/2015	Results published (39)
NCT03016325	BMS-986231 48h i.v. infusion in patients hospitalised for ADHF	LVEF ≤40%	BMS-986231 vs placebo	Recruited n=331; Completion 12/11/2019	No results in HF patients posted
NCT03016325	BMS-986231 8h i.v. infusion on top of diuretic (furosemide)	LVEF <45%	BMS-986231 vs placebo (crossover)	Recruited n=23; Completion 9/01/2020	No results posted; design published (43)
NCT03357731	BMS-986231 5h i.v. infusion	LVEF <40%	BMS-986231 vs GTN vs placebo (crossover)	Recruited n=185; Completion 10/05/2019	No results posted; design published (43)

Figure 2: Clinical trial update of HNO donor BMS-986231. Bristol Myers Squibb have several Phase 2 studies in HFrEF patients underway. None include HFpEF patients (despite the urgent clinical need) nor do they include longer-term studies to reduce LV dysfunction and remodelling over the longer-term (despite the drug's oral bioavailability). See text for references.

Cao et al Circ HF 2015; Hartman et al JACC. Bas Transl Sci 2018; Maack Eur Heart J 2019

Aberrant NO• signalling as a therapeutic target in HFpEF:

- observations of nitrosative stress in human HFpEF formed the basis of a new model of HFpEF
 - associated with increased activity of iNOS and enhanced S-nitrosylation of IRE1α
 - triggers defective XBP1 splicing (a detrimental, rather than a protective, consequence of S-nitrosylation)
- did not include females & was only undertaken in young mice (roughly ~20yrs-old in humans)
- lack of age- and gender appropriate models with common concomitant co-morbidities represents a roadblock in preclinical studies searching for new drug targets in HFpEF

Schiattarella GG et al. Nature. 2019; Redfield N Engl J Med. 2016; Dunlay et al Nat Rev Cardiol. 2017

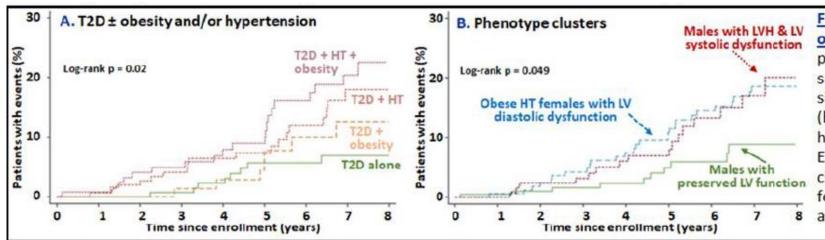
Big questions and areas of clinical need in heart failure

- Heart Failure with Preserved Ejection Fraction (HFpEF)
- The diabetic heart ("diabetic cardiomyopathy")
- Myocardial Infarction (and subsequent cardiomyopathy)

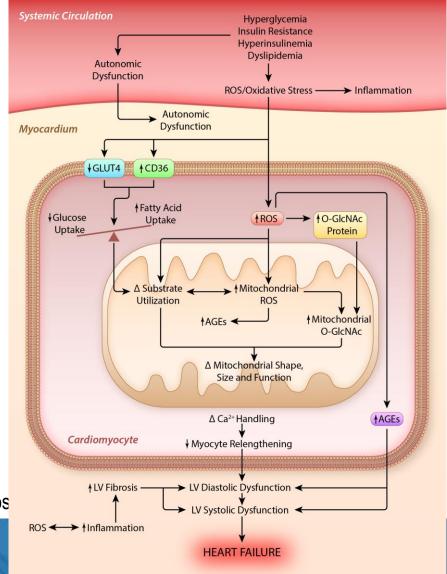
Cardiac fibrosis one of the common underlying factors

The problem of the diabetic heart

Diabetes

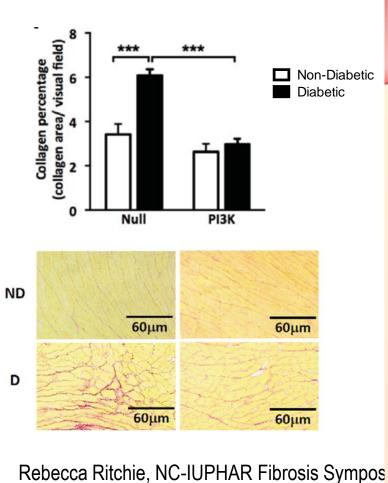

- increases heart failure risk >2.5-fold, independent of concomitant comorbidities; more-so in females.
- significant heterogeneity across patients with LV dysfunction and diabetes
- comorbidities commonly incorporating obesity, dyslipidaemia and hypertension

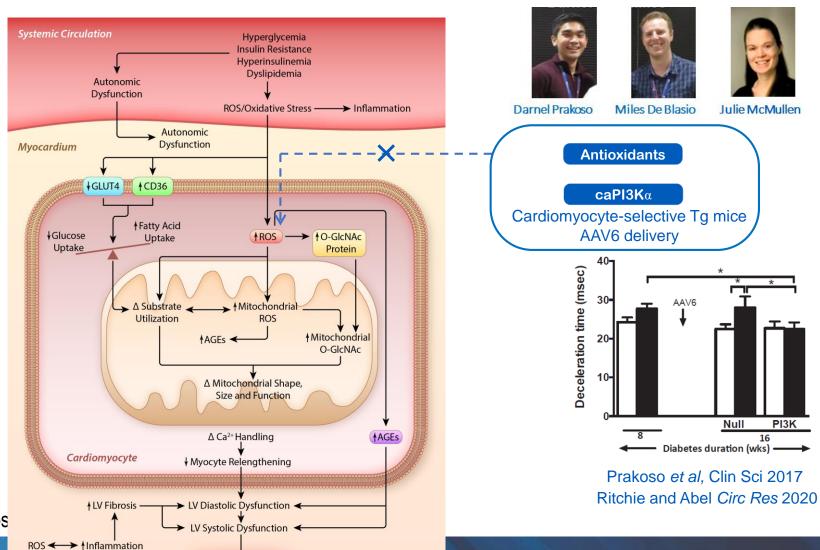
The problem of the diabetic heart


Diabetes

- heterogeneity also encompasses the nature of the impairments in LV function,
 - at the level of cardiac relaxation and compliance ('diastolic dysfunction') or
 - impaired cardiac contractility ('systolic dysfunction').
- This has important implications for therapy, with multiple, distinct phenotypic patient clusters described, each exhibiting different degrees of LV systolic and diastolic dysfunction.

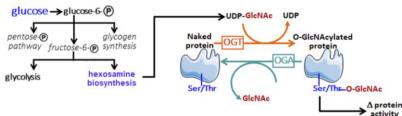
outcomes in type 2 diabetes (T2D): A: In prospectively-enrolled asymptomatic T2D subjects free of overt heart disease (n=745), significant differences in events (hospitalization or death) if obesity and/or hypertension (HT) were evident. B: Echocardiography identified 3 phenotype clusters; those with less comorbidities have fewer events; clear sex differences are also apparent^{1,4}

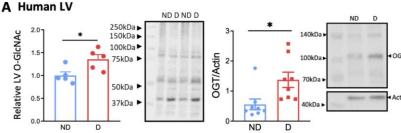


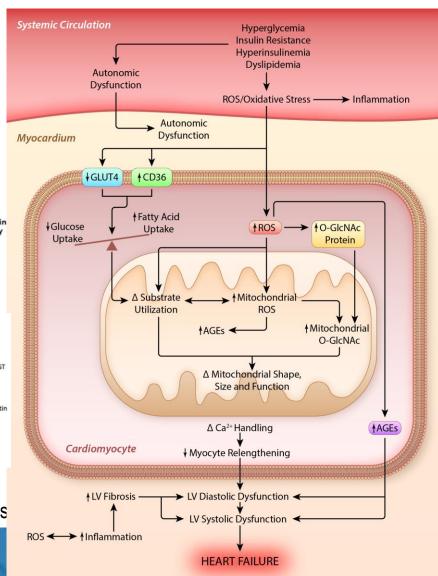

Ritchie and Abel Circ Res 2020

Rebecca Ritchie, NC-IUPHAR Fibrosis Sympos

HEART FAILURE

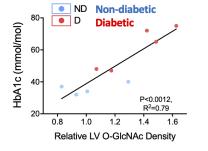


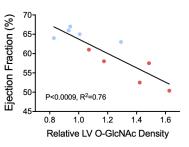



Maladaptive cardiac glucose metabolism

C Glucose metabolism to O-GlcNAc

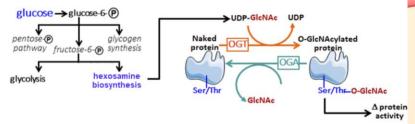
Rebecca Ritchie, NC-IUPHAR Fibrosis Sympos

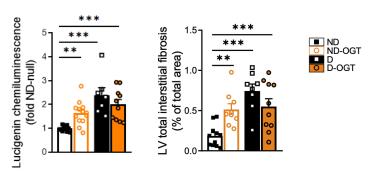




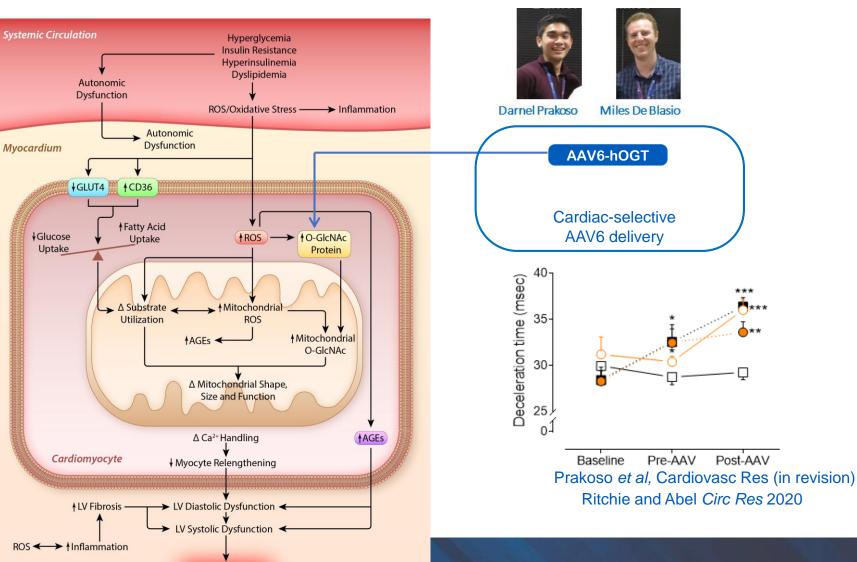
Darnel Prakoso

Miles De Blasio

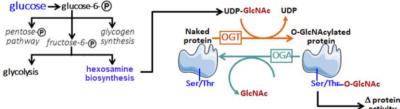

Prakoso *et al,* Cardiovasc Res (in revision) Ritchie and Abel *Circ Res* 2020

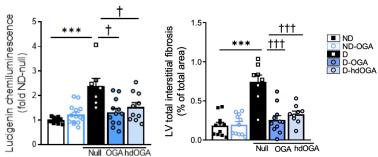

HEART FAILURE

Maladaptive cardiac glucose metabolism

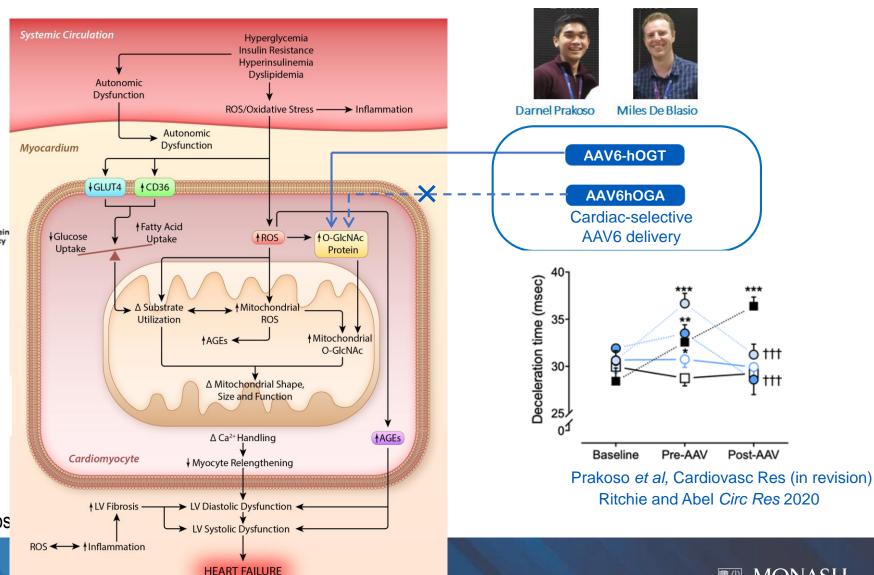

C Glucose metabolism to O-GlcNAc

Mouse LV


Rebecca Ritchie, NC-IUPHAR Fibrosis Sympos

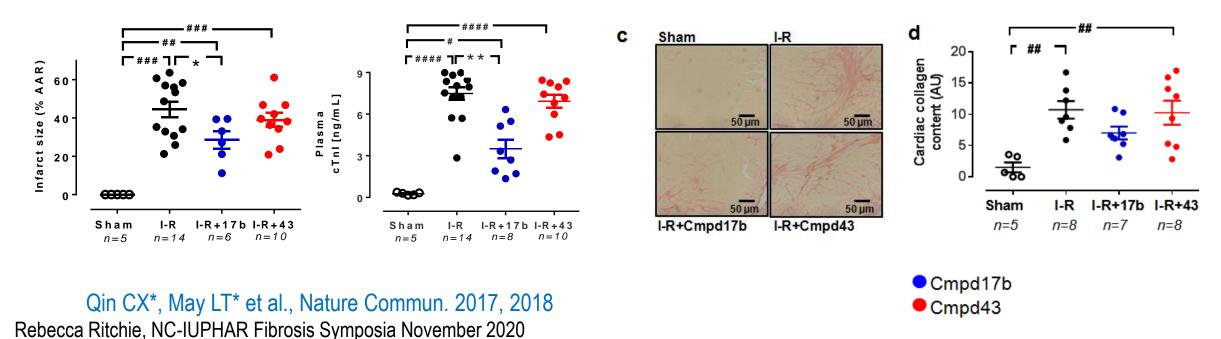


Maladaptive cardiac glucose metabolism


C Glucose metabolism to O-GlcNAc

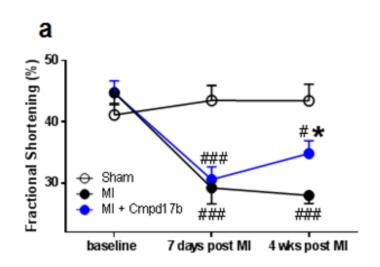
Mouse LV

Rebecca Ritchie, NC-IUPHAR Fibrosis Sympos

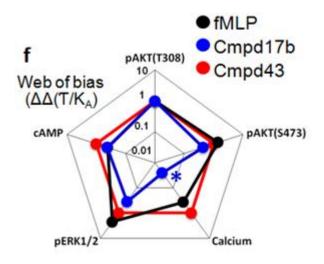

Big questions and areas of clinical need in heart failure

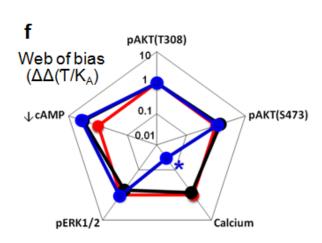
- Heart Failure with Preserved Ejection Fraction (HFpEF)
- The diabetic heart ("diabetic cardiomyopathy")
- Myocardial Infarction (and subsequent cardiomyopathy)

Cardiac fibrosis one of the common underlying factors



- Exploiting receptor mechanisms that promote resolution of inflammation: annexin-A1/formyl peptide receptors
 - FPR agonism as cardioprotection but it's the type of agonism that's important
 - FPR small-molecule agonists with **biased** signalling profile may represent an innovative approach for the development of pharmacotherapy for MI (both early necrosis as well as protecting cardiac function)

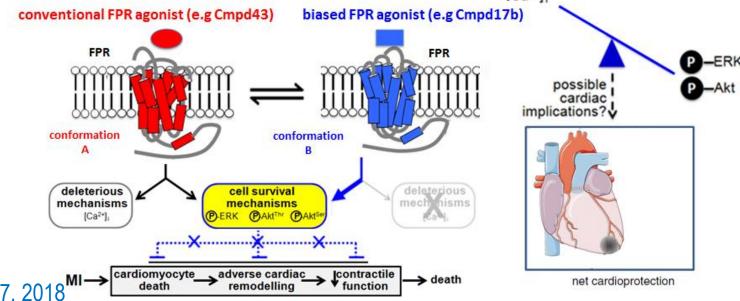



- Exploiting receptor mechanisms that promote resolution of inflammation: annexin-A1/formyl peptide receptors
 - FPR agonism as cardioprotection but it's the type of agonism that's important
 - FPR small-molecule agonists with **biased** signalling profile may represent an innovative approach for the development of pharmacotherapy for MI (both early necrosis as well as protecting cardiac function)

Signaling fingerprint in hFPR1-CHO cells


hFPR2-CHO cells

Qin CX*, May LT* et al., Nature Commun. 2017, 2018 Rebecca Ritchie, NC-IUPHAR Fibrosis Symposia November 2020


- ➤ Exploiting receptor mechanisms that promote resolution of inflammation: annexin-A1/formyl peptide receptors
 - FPR agonism as cardioprotection but it's the type of agonism that's important
 - FPR small-molecule agonists with biased signalling profile may represent an innovative approach for the development of pharmacotherapy for MI (both early necrosis as well as protecting cardiac function)

Qin CX*, May LT* et al., Nature Commun. 2017, 2018 Rebecca Ritchie, NC-IUPHAR Fibrosis Symposia November 2020

- ➤ Exploiting receptor mechanisms that promote resolution of inflammation: annexin-A1/formyl peptide receptors
 - FPR agonism as cardioprotection but it's the type of agonism that's important
 - FPR small-molecule agonists with **biased** signalling profile may represent an innovative approach for the development of pharmacotherapy for MI (both early necrosis as well as protecting cardiac function)

Qin CX*, May LT* et al., Nature Commun. 2017, 2018 Rebecca Ritchie, NC-IUPHAR Fibrosis Symposia November 2020

Big questions and areas of clinical need in heart failure

- Heart Failure with Preserved Ejection Fraction (HFpEF)
- The diabetic heart ("diabetic cardiomyopathy")
- Myocardial Infarction (and subsequent cardiomyopathy)

Take home message

 Clearly, one size does not fit all; gender, heart failure phenotype and concomitant comorbidities likely impact the efficacy of pharmacotherapies for tackling cardiomyopathy.

Acknowledgments

Heart Failure Pharmacology

Darnel Prakoso, Miles de Blasio, Mitchel Tate, Owen Woodman, Liz Vecchio, Minh Deo, Charlie Cohen, Anida Velagic, Selena Peng, Ting Fu, Alex Parker, Abhi Sharma, Natasha Alexander; Jerome Lall

Cardiovascular Pharmacology

Dr. Chengxue Helena Qin

DISCOVERY INSTITUTE

Cardiovascular & Pulmonary Pharmacology

A/Prof. Barbara Kemp-Harper

Preclinical Cardiology Microsurgery Baker and Imaging Platform

Prof Xiao-Jun Du, Dr Xiao-Ming Gao, Dr. Helen Kiriazis, Dr. Daniel Donner A/Prof Julie McMullen

