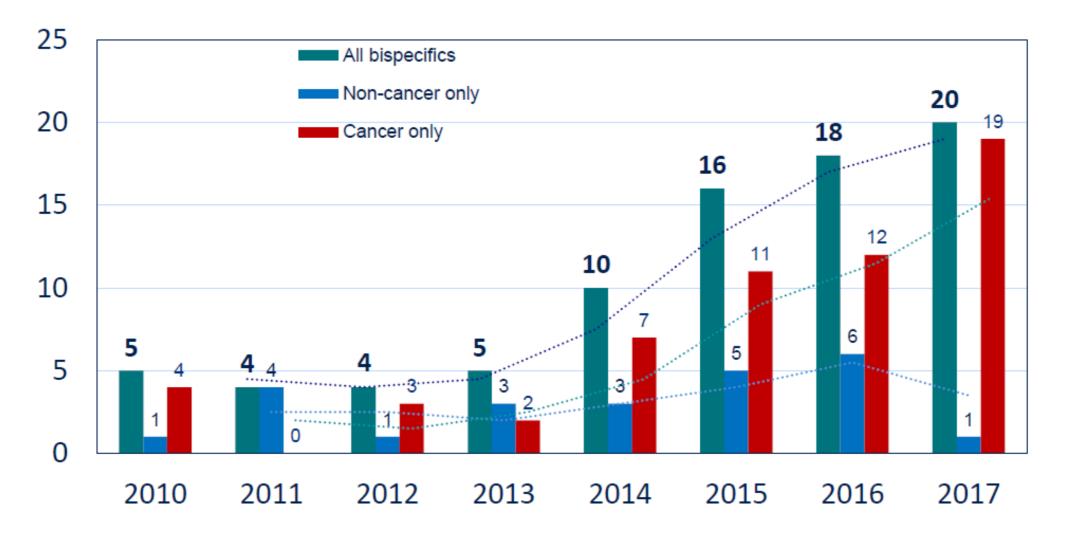
Bispecific antibody development in Immuno-Oncology: redirecting immune effector cells towards tumors

Thierry WURCH Sr. Director – Global External Innovation

Joint Meeting of NC-IUPHAR and the British Pharmacological Society Nov. 19-20, 2020



- Introduction General concepts
- **T cell engagers**
 - **O** Prototypical TCE: blinatumomab
- NK cell engagers
 - O Case study: AFM13 in T cell lymphoma
- Immune checkpoint modulators
 - Case study: MGD013, a PD1xLAG3 DART[®]
- Other bispecific Ab-based molecules
- **Take home messages**

Bispecifics: Year of FiH study entry

ANTI BODY SOCI . ETY

Reichert, J, 2018, The Antibody Society website

Bispecifics in Oncology

□Most (80%) are for cancer; 51 at Ph1 and 9 at Ph2

- T-cell redirection (38/60, 63%) most common mechanism of action
- Most frequent TAAs are CD20 and B-cell maturation antigen (5 bsAbs each), followed by CD33 and CD123 (4 bsAb each)
- **EGFR** family, Immune checkpoints targets also popular
 - VEGF, EGFR, HER2 (5, 4, 2 bsAbs, respectively), with DLL3/ VEGF most frequent (3 bsAbs)
 - PD-1, PD-L1 (4, 2 bsAbs, respectively) with PD-1/CTLA4 most frequent (3 bsAbs)

Bispecifics in non-cancer indications

ANTI BODY SOCI . ETY

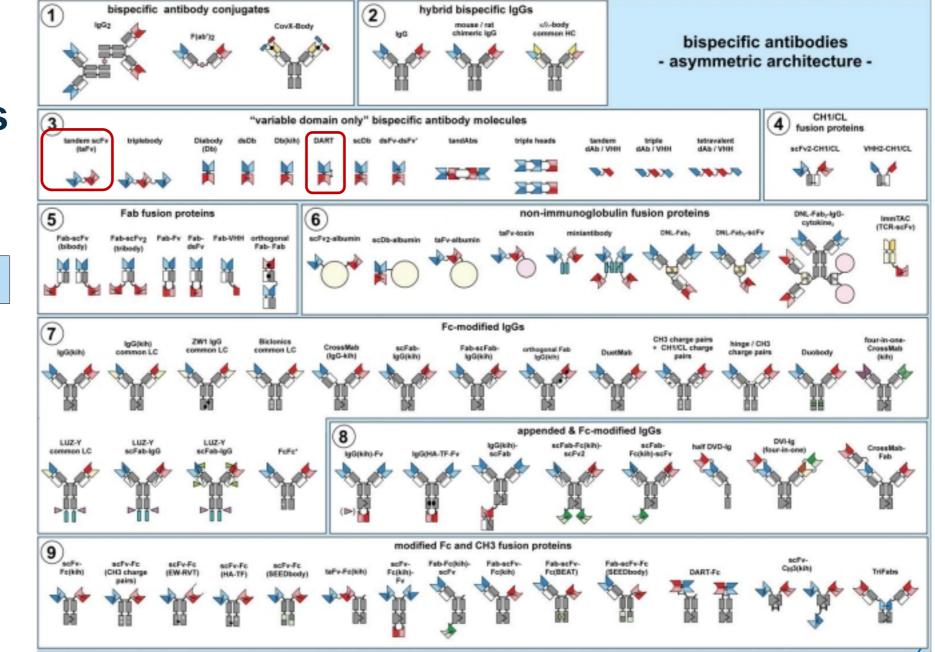
Only 15 (20%) bsAbs currently in clinical studies are for noncancer indications

• 10 at Phase 1, 5 at Phase 2

Disorders include immune-mediated/inflammatory (9 bsAb), metabolic, neurological, ophthalmic, respiratory disorders and infectious disease

Diverse array of targets, with IL-17 (3 bsAb) and TNF (2 bsAb) most frequent

RO6867461 VEGF-A/Ang-2 CrossMab ready to enter Phase 3 in diabetic macular edema

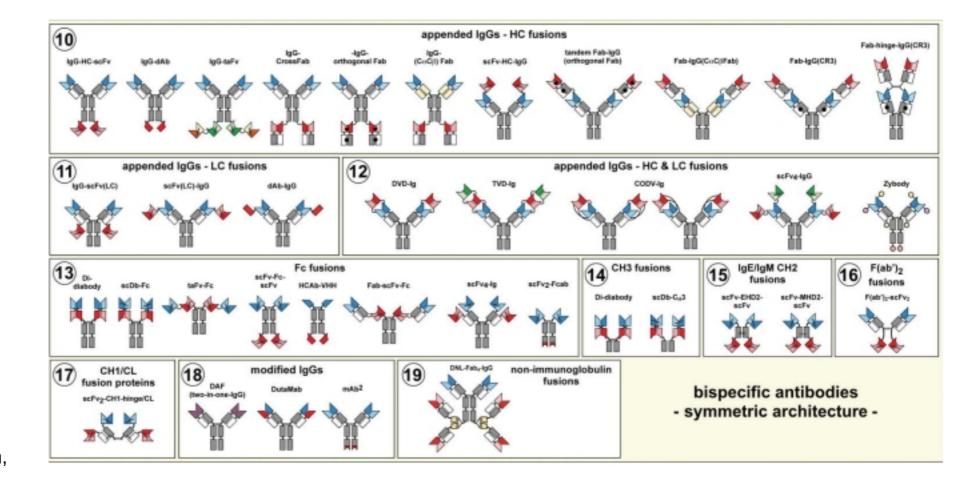

Reichert, J, 2018, The Antibody Society website

A zoo of formats exists

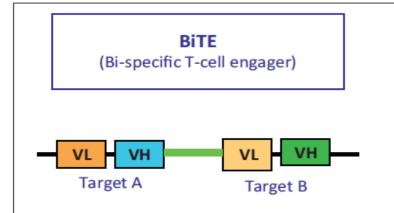

Asymmetric

Generally associated with extensive engineering

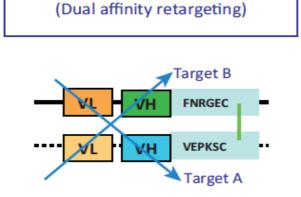
Brinkmann & Kontermann, MABS 2017



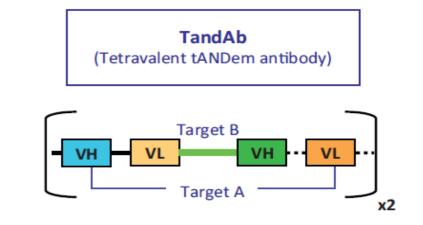
A zoo of formats exists


Unable to have differential valencies

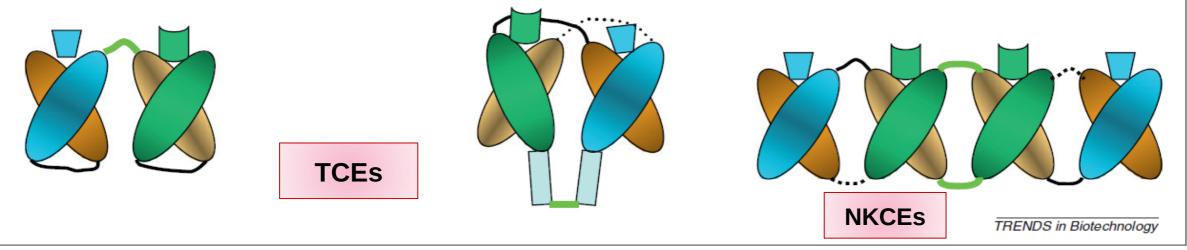
Brinkmann & Kontermann, MABS 2017



Examples of bispecific diabody-based scaffolds



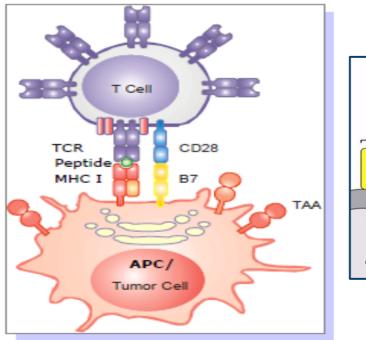
- ➤ 1 single polypeptide chain
- Flexible linker
- ➤ No chain dimerization

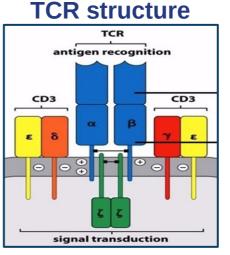


DART

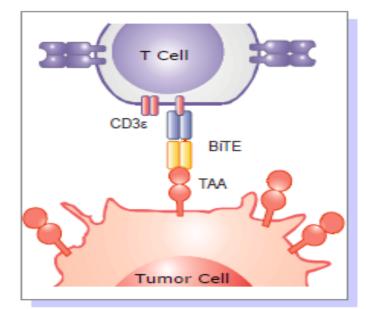
- 2 polypeptide chains
- No linker interchain disulfide bridge
- Fusion to Ckappa and IgG1 upper hinge

- ➤ 1 single polypeptide chain
- Highly flexible linkers
- Chain dimerization

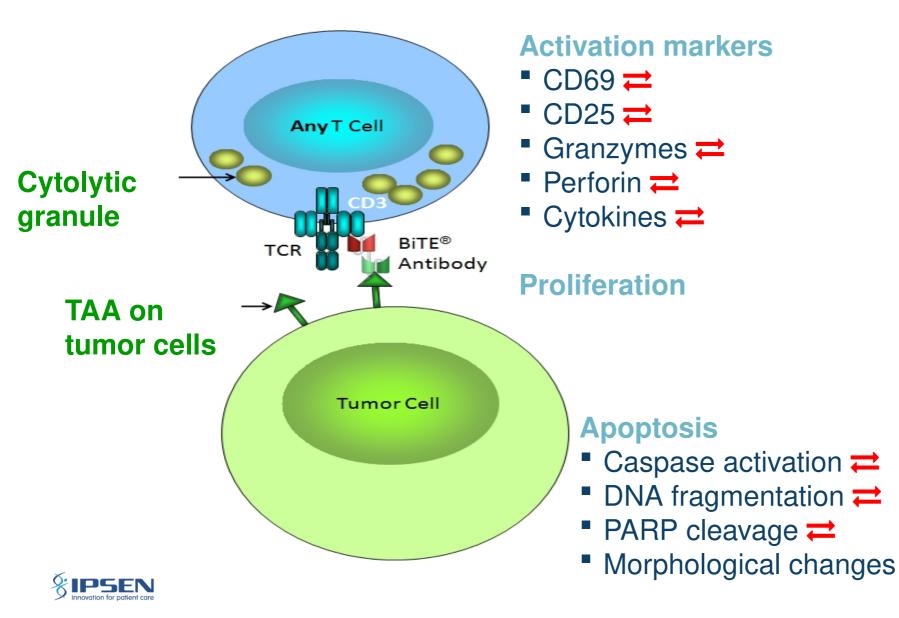

<u>BISPECIFIC T CELL</u> <u>ENGAGERS OR</u> BITE[®]

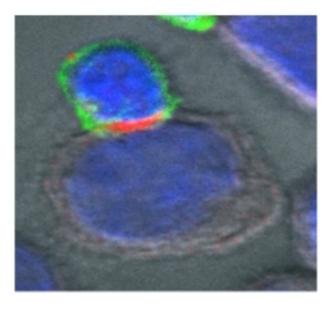


T cell engagers create an immunological synapse


Regular T cell activation

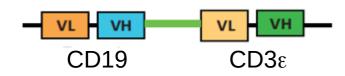
CD3-engaging scaffold


- Specific T Cell Receptor
- Peptide Antigen Presentation and Processing
- MHC I/β2 Microglobulin
- Co-stimulatory Molecules



- Any Cytotoxic T Cell (= Polyclonal)
- No Peptide Antigen
- No Antigen Processing
- No APCs needed
- No MHC I/β2 Microglobulin
- No Co-stimulatory Molecules

Cytolytic Immune Synapse


11

T cell engagers in clinical development

	Specificities (Target \times Effector Cell)	Drug	Stage	Comments	Trial Identifier	
	$CD19 \times CD3$	Blinatumomab ^{<i>a</i>}	Market and multiple Treatment of refractory/relapsed ALL phase II/III ongoing and phase II for r/r NHL studies		NCT02811679	
	$CD19 \times CD3$	AFM11	Phase I	NHL and ALL	NCT02106091; NCT02848911	
	$CD20 \times CD3$	$RG6026^{a}$ and $REGN1979^{a}$	Phase I	NHL and CLL	NCT02290951; NCT02290951	
н	$CD20 \times CD3$	Mosunetuzumab ^a	Phase I	NHL, CLL, and DLBCL	NCT02500407; NCT03677154	
e	$CLEC12A \times CD3$	MCLA-117 ^{a}	Phase I	AML	NCT03038230	
m	$CD33 \times CD3$	AMsG 330, GEM333, and AMV564	Phase I	AML and MDS	NCT02520427; NCT03516760; NCT03516591	
е	$CD123 \times CD3$	MGD006, JNJ-63709178 ^{<i>a</i>} , and APVO436 ^{<i>a</i>}	Phase I	AML	NCT02152956; NCT02715011; NCT03647800	
	BCMA \times CD3	BI 836909, JNJ64007957 ^{<i>a</i>} , PF-06863135 ^{<i>a</i>} , and REGN5458	Phase I	Multiple myeloma	NCT02514239; NCT03145181; NCT03269136; NCT03761108	
	$CD38 \times CD3$	GBR 1342 ^{<i>a</i>}	Phase I	Multiple myeloma	NCT03309111 2202	
	HER2 \times CD3	GBR 1302 ^{<i>a</i>}	Phase I	HER2-positive solid tumors	NCT02829372	
S	$PSMA \times CD3$	AMG 160 and $ES414^a$	Phase I	Prostate cancer	NCT03792841; NCT02262910	
0	DLL3 \times CD3	AMG 757	Phase I	Small-cell lung cancer	NCT03319940	
	NYESO1/LAGE-1A × CD3	IMCnyeso	Phase I	NYESO1 or LAGE-1A solid tumors	NCT03515551	
i	$SSTR2 \times CD3$	XmAb18087 ^{<i>a</i>}	Phase I	Neuroendocrine tumors and gastrointestinal stromal tumors	NCT03411915	
d	$GPC3 \times CD3$	ERY974 ^a	Phase I	GPC3-positive solid tumors	NCT02748837	
	$Gp100 \times CD3$	IMCgp100	Phase I/II	Uveal melanoma	NCT02570308	
Æ	$GD2 \times CD3$	Hu3F8-BsAb ^a (GD2/CD3)	Phase I/II	Neuroblastoma, osteosarcoma, and other GD2-expressing solid	NCT03860207	
→ Ir	nov	Mostly Pre-PoC asset	S	tumors	nl & Naso, Antibodies 2019	

Prototypical TCE: blinatumomab – BLINCYTO®

• Engineering:

- ⁰ 1 single polypeptide chain
- ^o Flexible linker
- ^o No chain dimerization

Dosing

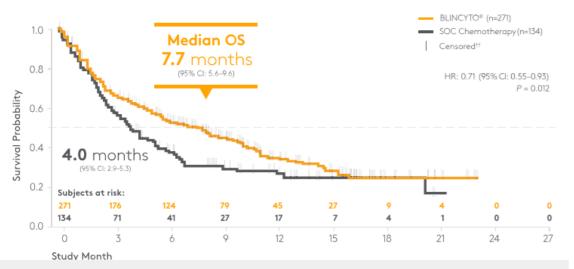
- O Continuous IV infusion
- ^o Dose weight-adapted
- Lead-in dose (1/3 of target) to diminish CRS risk

	FDA approval history
Mar 29, 2018	FDA Expands Approval of Blincyto (blinatumomab) to Treat Minimal Residual Disease- Positive B-Cell Precursor Acute Lymphoblastic Leukemia
Jul 11, 2017	FDA Grants Full Approval for Blincyto (blinatumomab) to Treat Relapsed or Refractory B-cell Precursor Acute Lymphoblastic Leukemia in Adults and Children
Sep 1, 2016	FDA Approves Blincyto (blinatumomab) For Use In Pediatric Patients With Philadelphia Chromosome-Negative Relapsed Or Refractory B-cell Precursor Acute Lymphoblastic Leukemia
Dec 3, 2014	FDA Approves Blincyto (blinatumomab) for Precursor B-Cell Acute Lymphoblastic Leukemia

BLINCYTO® TOWER Ph.3 study: SAFETY

Two black boxed warnings issued by FDA: ≻ CRS ≻ Neurological toxicities

Adverse reaction	BLINC (N=)	:YTO* 267)	SOC chemotherapy (N=109)		
	Any Grade* n (%)	≥ Grade 3* n (%)	Any Grade* n (%)	≥ Grade 3* n (%)	
Blood and lymphatic system	disorders				
Neutropenia®	84 (31)	76 (28)	67 (61)	61 (56)	
Anemia ^b	68 (25)	52 (19)	45 (41)	37 (34)	
Thrombocytopenia:	57 (21)	47 (18)	42 (39)	40 (37)	
Leukopenia ^d	21 (8)	18 (7)	9 (8)	9 (8)	
Cardiac disorders					
Arrhythmia*	37 (14)	5 (2)	18 (17)	0(0)	
General disorders and admini	stration-site	conditions			
Pyrexia	147 (55)	15 (6)	43 (39)	4 (4)	
Edema ^s	48 (18)	3 (1)	20 (18)	1 (1)	
Immune system disorders					
Cytokine release syndrome®	37 (14)	8 (3)	0(0)	0 (0)	
Infections and infestations					
Infections — pathogen unspecified	74 (28)	40 (15)	50 (46)	35 (32)	
Bacterial infectious disorders	38 (14)	19 (7)	35 (32)	21 (19)	
Viral infectious disorders	30 (11)	4 (1)	14 (13)	0(0)	
Fungal infectious disorders	27 (10)	13 (5)	15 (14)	9 (8)	
Injury, poisoning, and proced	ural complice	ations			
Infusion-related reaction ^h	79 (30)	9 (3)	9(8)	1 (1)	
Investigations					
Hypertransaminasemial	40 (15)	22 (8)	13 (12)	7 (6)	
Nervous system disorders					
Headache	61 (23)	1 (<1)	30 (28)	3 (3)	
Skin and subcutaneous tissue	disorders				
Rashi	31 (12)	2 (1)	21 (19)	0 (0)	



BLINCYTO® TOWER Ph.3 study: EFFICACY

Primary endpoint: Overall survival (intent-to-treat population)¹⁴

2:1

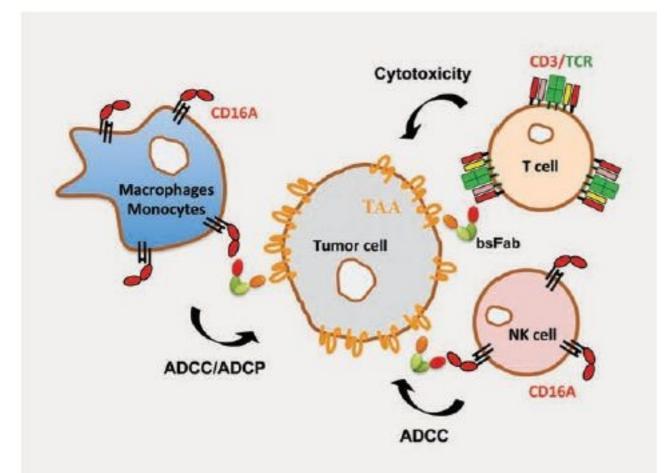
Randomization

Overall response


 ${\sf BLINCYTO}^{\circ}$ significantly increased complete remission rates compared with SOC chemotherapy 1

CR/CRh*,§§

Median duration of remission (DOR)


BLINCYTO® produced a more durable remission compared with SOC chemotherapy among patients who had CR/CRh*[§]

BISPECIFIC <u>NK</u> CELL <u>E</u>NGAGERS

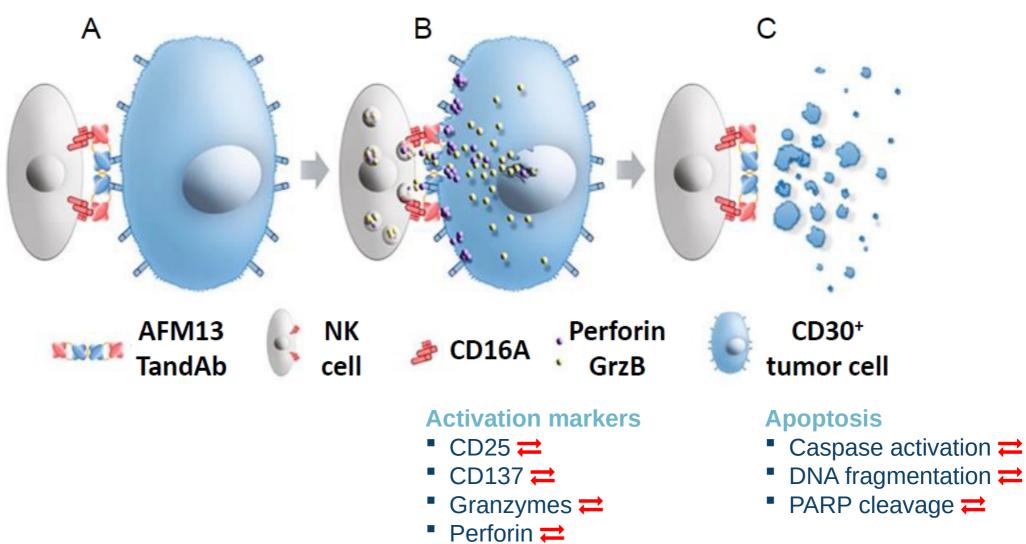
NK cell engagers: mimicking the TCE concept

- Mimicking Mab Fc properties: ADCC/ADCP
- Selective binding to CD16a/FcγRIIIa
- No binding to inhibitory FcyRIIa
- Independent of CD16a polymorphism (V/F158)

Major NK cell activators: CD16 and/or NKp46

Reminder: human FcyRs

Name	FcγRI CD64	FcγRlla CD32a	FcγRIIb C32b	FcγRIIc CD32c	FcγRIIIa CD16a	FcγRIIIb CD16b
Structure	common y-chain		ТТМ		₩	GPI
Function	Activating	Activating	Inhibitory	Activating	Activating	Activating
Affinity	High	Low	Low	Low	Low	Low
SNP		131H/R R: reduced affinity to IgG2	232I/T T: decreased inhibitory activity	57Q/X X: stop codon (non-functional protein)	158F/V V: increased affinity to IgG1/3/4	NA1/2 NA2: reduced affinity to IgG1/3

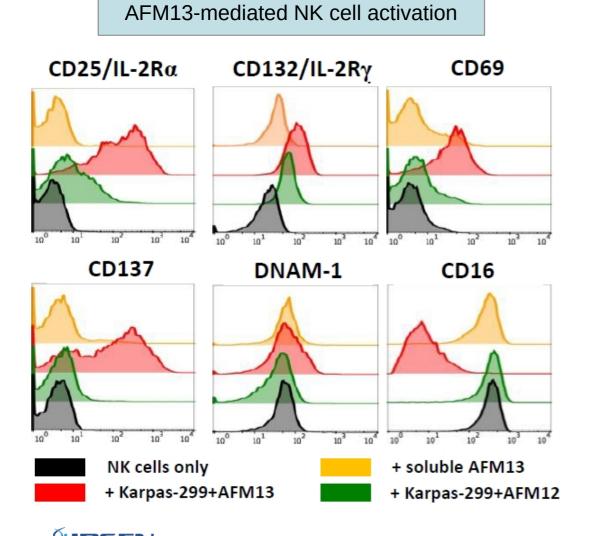

Activated by hlgG1

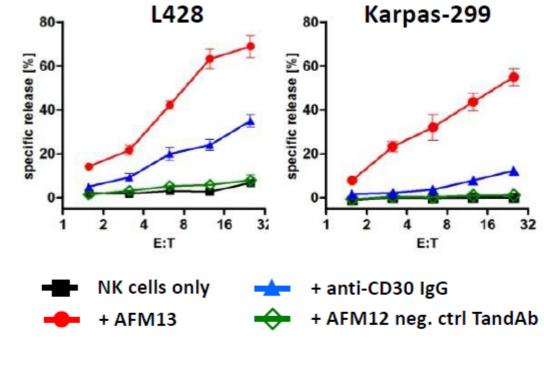
Examples of NK cell engagers

Mode of Action	Format	Targets	Molecules/ Biotech	Development stage
NK cell	Tandab	CD30xCD16	AFM13	Ph.2
redirection	Tandab	BCMAxCD16	AFM26	PC
	triKE aTriFlex BiKE	CD133xCD16	N.A.	PC
		BCMAxCD200xCD16	N.A.	PC
		CS1xNKG2D	N.A.	PC
	IgG like	CD20xNKp46	Innate Pharma	PC

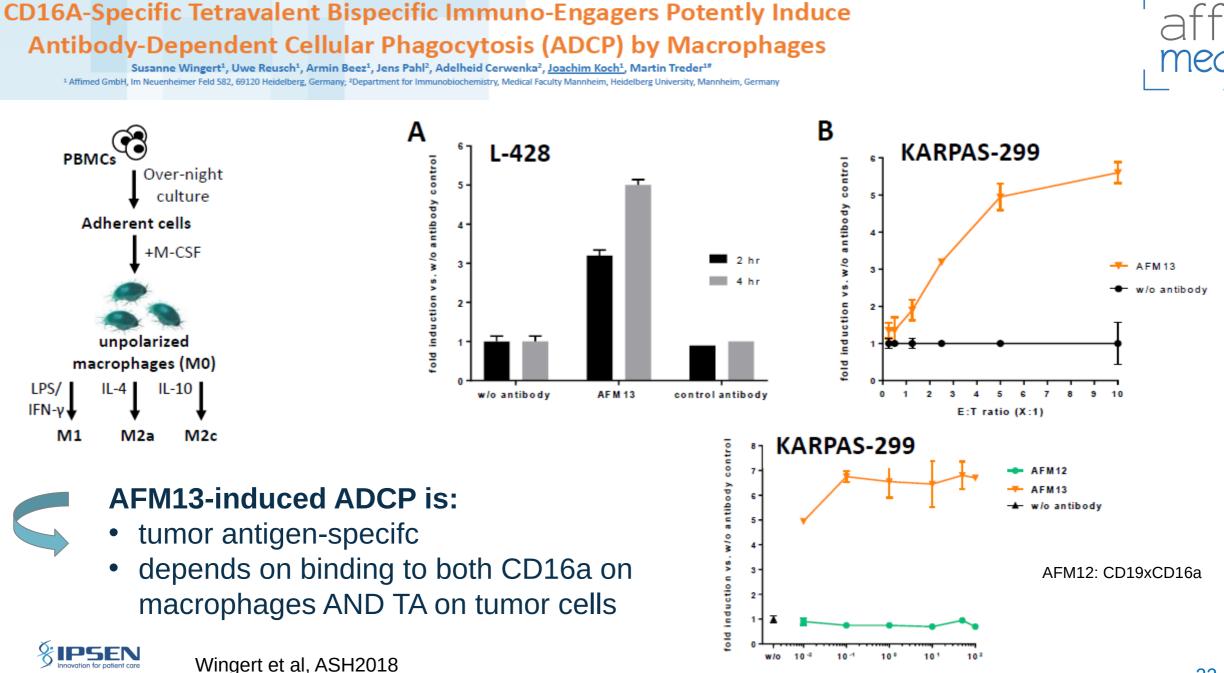
AFM13 induces CD30-specific NK cell activation & proliferation

• Cytokines (IL15, IFN γ) \rightleftharpoons


mea


AFM13 Is the Most Advanced Bispecific NK-Cell Engaging Antibody in Clinical Development Substantially Enhancing NK-Cell Effector Function and Proliferation

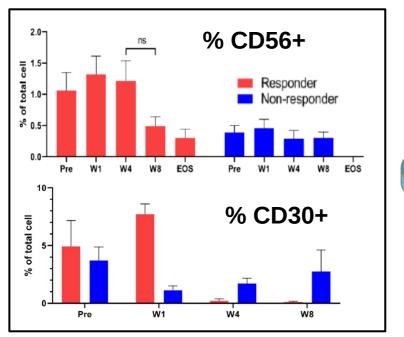
Jens Pahl, PhD¹; Uwe Reusch, PhD²; Thorsten Gantke, PhD²; Anne Kerber, MD²; Joachim Koch, PhD²; Martin Treder, PhD²# and Adelheid Cerwenka, PhD¹# ¹Innate Immunity, DKFZ, 69120 Heidelberg, Germany; ²Affimed GmbH, 69120 Heidelberg, Germany


AFM13-mediated tumor cell killing

AFM12: CD19xCD16a

Pahl J et al, ASH2016

antibody concentration [µg/mL]


Columbia University Medical Center Clinical and Biological Evaluation of the Novel CD30/CD16A Tetravalent Bispecific Antibody (AFM13) in Relapsed or Refractory CD30-Positive Lymphoma with Cutaneous Presentation: A Biomarker Phase Ib/Ila Study (NCT03192202).

Ahmed Sawas, MD¹, Pei-Hsuan Chen², George Vlad, PhD¹, Mikel Lipschitz², Jennifer Lue, MD¹, Changchun Deng, MD, PhD¹, Jennifer E Amengual, MD¹, Enrica Marchi, MD¹, Francesca Montanari, MD¹, Maher Abdul-Hay, MD⁴, Jonah Shulman, MD⁵, Hager Elgedawe¹, Matthew Shong¹, Karen Khan, RN¹, Larisa Geskin, MD¹, Scott J. Rodig, MD, Ph^{2,3}, and Owen A. O'Connor. MD. PhD¹

Cohort		Total						
Cohort	Dose	Schedule	Duration	exposure				
Cohort 1	1.5 mg/kg	weekly	weeks 1-8	12 mg/kg				
Cohort 2	7.0 mg/kg	weekly	weeks 1-8	56 mg/kg				
Cohort 3	7.0 mg/kg CIVI *	weekly	weeks 1-8	56 mg/kg				
Cohort 4	200mg flat dose	weekly	weeks 1-8	1600 mg				
*1 mg/kg, loading 6mg/kg as continuous infusion for 5 days per week								

*1 mg/kg loading 6mg/kg as continuous infusion for 5 days per week

Cohort	Disease	Toxicity	Response
	S-ALCL, Alk (-)	No AE	PR
1	T-MF	No AE	POD
	C- ALCL	Rash (G4) Skin infection (G3)	CR
	MF	IRR (G1)	SD
2	T-MF	IRR (G1)	SD
2	T-MF	Skin infection (G3) IRR (G1)	Not assessed
	T-MF	No AE	PR
3	S-ALCL, Alk (-)	No AE	PR
	MF	No AE	POD
4	T-MF	No AE	PR

AFM13 well tolerated
AFM13 high ORR 50% & active post-Adcetris
Biomarkers indicated increased NKs in responders

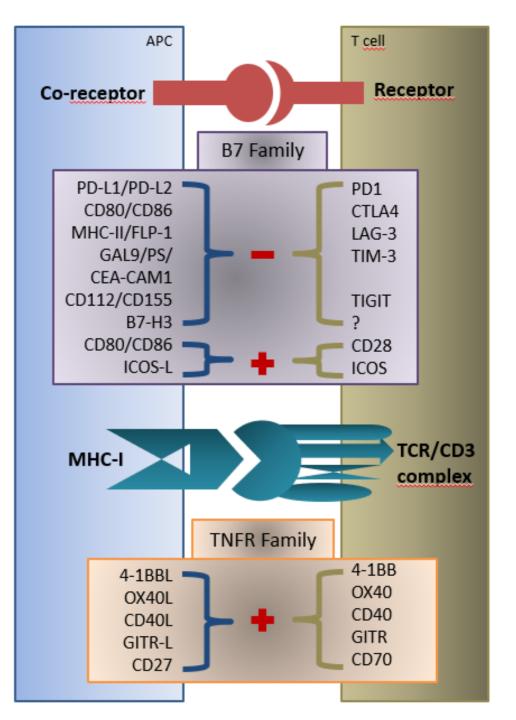
Sawas A et al, ICML2019

Disease: forms of cutaneous T cell lymphoma:

S-ALCL: systemic anaplastic large cell lymphoma

T-MF: transformed mycosis fungoides

Clinical response: CR, complete response, PR: partial response, PoD: progression of disease 23


BISPECIFIC IMMUNE CELLS MODULATORS

Major immune receptors controlling T cell activation

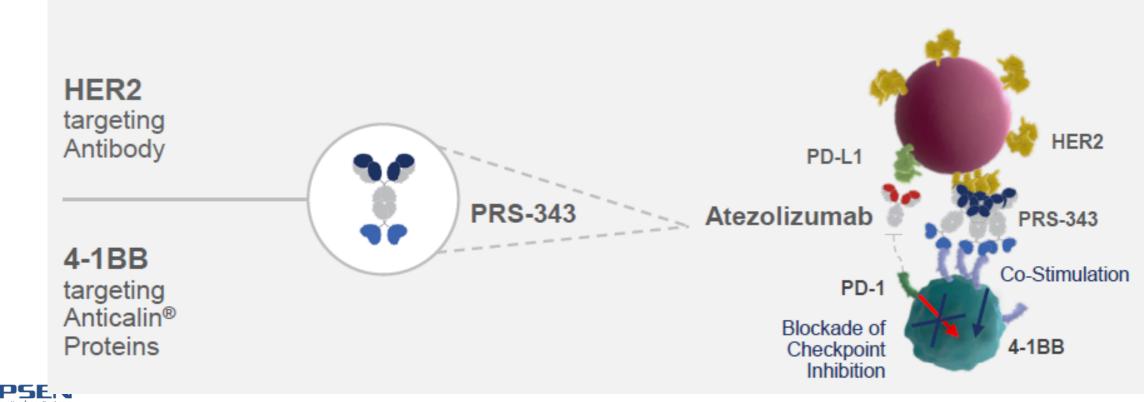
Bispecific MoAs engaging immune checkpoints:

- Dual Targeting of 2 inhibitory ICPs i.e., PD1xLAG3
- Dual co-targeting of one inhibitory and one co-stimulatory ICP *i.e.*, *PD-L1x4-1BB*
- Tumor-restricted co-stim. ICP targeting *i.e.*, *Her2x4-1BB*

Examples of Bispecific ICP modulators

Wurch & Chames, Médecines&Sciences 2019

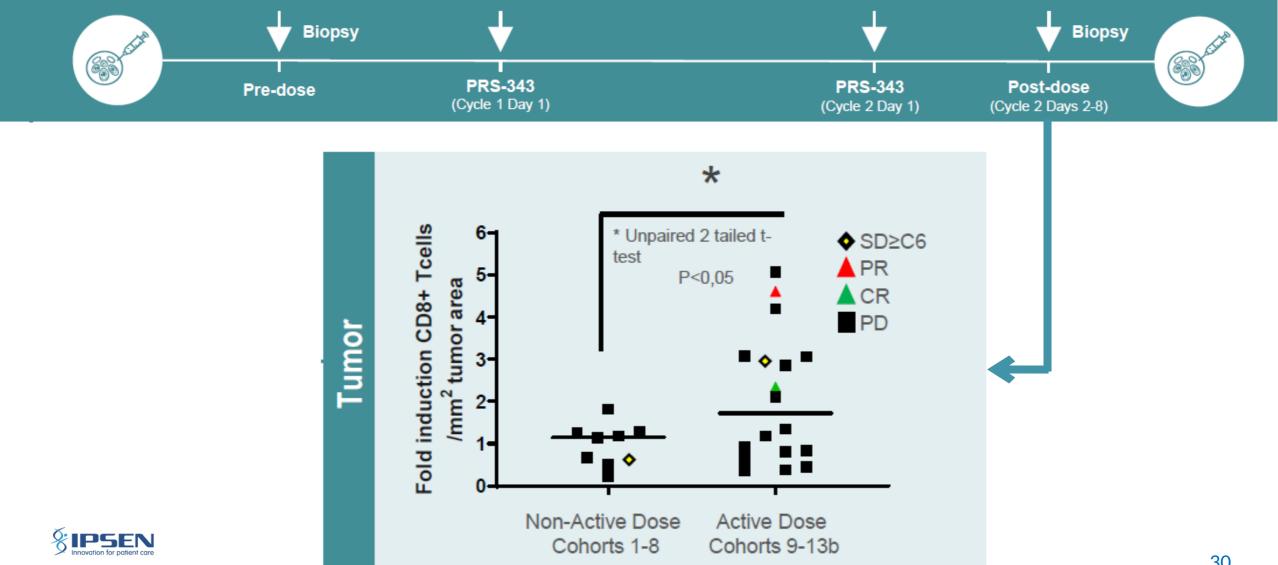
	Mode of Action	Targets	Molecule	Development stage
Co-inhibitory	Co-engagement of	PD-1xLAG-3	MGD013	Ph. I
immune modulators	two inhibitory ICPs to enhance T cell	PD-1xTIM-3	RO7121661	Ph. I
	activation	PD-1xTIM-3	MCLA-134	PC
		PD-L1xLAG-3	FS118	Ph. I
		CTLA-4xLAG-3	XmAb22841	Ph. I
		CTLA-4xPD1	XmAb20717	Ph. I
		CTLA-4xPD1	MGD019	Ph. I
Dual immune	Co-engagement of	PD-1xICOS	XmAb23104	Ph. I
modulators	both inhibitory & co- stimulatory ICPs to maximize T cell activation	PD-L1x4-1BB	PRS-344	PC
		PD-L1x4-1BB	MCLA-145	Ph. I
		PD-L1x4-1BB	FS222	PC
		PD-L1x4-1BB	ND021	PC
		PD-L1x4-1BB	-	PC
		PD-L1x4-1BB	-	PC
		CTLA-4xOX40	ATOR-1015	Ph. I
		CTLA-4xGITR	ATOR-1144	PC
Tumor-retargeted	Selective tumor	HER2x4-1BB	PRS-343	Ph. I
immune-modulators	targeting of a co- stimulatory ICP by	GPC3x4-1BB	PRS-342	PC
	co-engagement of a	5T4x4-1BB	AGL.APV-527	PC
	tumor-associated	FAPx4-1BB	MP310	PC
	antigen	FAPxCD40	-	PC
Immune modulators	ICP engagement	PD-L1 xTGF-βtrap	M7824	Ph. II
& cytokines	coupled to a cytokine	CTLA-4 xTGF-βtrap		PC



A Phase 1 Dose Escalation Study of PRS-343, a HER2/4-1BB Bispecific Molecule, in Patients with HER2-positive Malignancies

HER2-targeting moiety of the drug localizes to the tumor microenvironment and facilitates 4-1BB cross-linking 4-1BB cross-linking ameliorates T-cell exhaustion and is critical for T-cell expansion

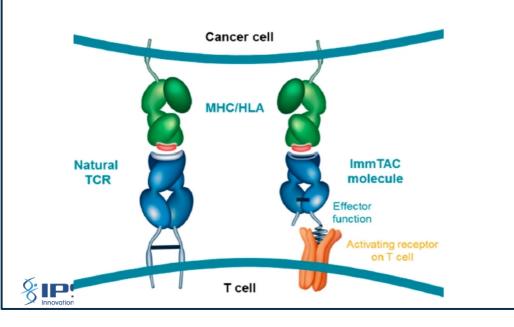
Summary of Responses of PRS-343 in Monotherapy



Cohort	13b	12b	11c	Obi	11b	11	10	9	
Best Response	18 mg/kg, Q2W	12 mg/kg, Q2W	8 mg/kg, QW	8 mg/Kg, Q2W	8 mg/kg, Q2W	8 mg/kg, Q3W	5 mg/kg, Q3W	2.5 mg/kg, Q3W	Total
Evaluable Patients	3	2	4	2	7	4	6	5	33
CR	1	-	-		-	-	-	-	1
PR	-	-	-		3	-	-	-	3
SD	-	-	1	1	3	3	3	2	13
ORR	33%	0%	0%	0%	43%	0%	0%	0%	12%
DCR	33%	0%	25%	50%	86%	75%	50%	40%	52%

ACTIVE SCHEDULES Schedule 1: Q3W dosing on day 1; 21-day cycle Schedule 2 (b): Q2W dosing on days 1, 15; 28-day cycle Schedule 3 (c): Q1W dosing on days 1, 8, 15; 21-day cycle In combination with atezolizumab: Q3W dosing on day 1; 21-day cycle

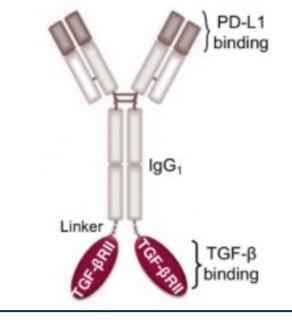
Increase in CD8+T Cells Support 4-1BB Engagement by PRS-343



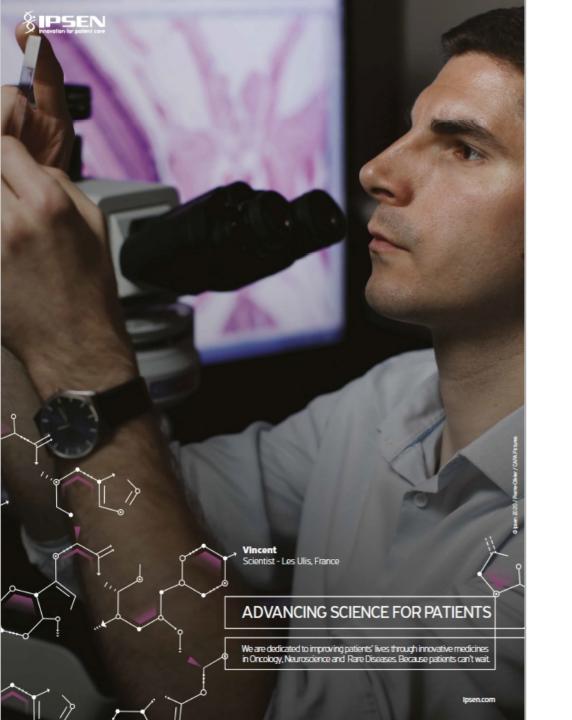
-pieris-

Other examples of bispecific Ab-based molecules

TCR-based TCE


 Product: IMCgp100
Biotech: Immunocore (UK)
Engineered solTCR against gp100 fused to CD3 scFv
Pivotal study in metastatic uveal melanoma on-going

Immunocytokines


Product: bintrafusp alfa/M7824
Pharma: Merck Serono/NCI
PD-L1 Mab fused to TGFβ trap
Pivotal study in 1st line NSCLC

M7824 α-PD-L1/TGF-βRII Trap

Take-Home messages

- Novel immune cell activators have emerged in the last decades thanks to the increased knowledge in tumor immunology and the engineering and design of numerous novel antibody- & non-Ig-based formats
- Most of these novel therapeutics showed promising preclinical data & for the most advanced early signs of clinical efficacy
- Despite the approval of blinatumomab in 2014 & first ICP inhibitors in 2011 (ipi) and 2014 (nivo), next generation molecules with potential BiC profile show difficulties to gain approval
- Solid tumors remain a real challenge for these novel classes of immune cell modulators
- Combination treatments will certainly be needed to increase the clinical benefit for patients

THANK YOU FOR YOUR ATTENTION

thierry.wurch@ipsen.com

www.ipsen.com