
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

First International Competition on Runtime Verification
Rules, Benchmarks, Tools, and Final Results of CRV 2014

Ezio Bartocci1, Yliès Falcone2,3, Borzoo Bonakdarpour4, Christian Colombo5, Normann Decker6, Klaus Havelund7,
Yogi Joshi8, Felix Klaedtke9, Reed Milewicz10, Giles Reger11, Grigore Rosu3, Julien Signoles12, Daniel Thoma6,
Eugen Zalinescu13, Yi Zhang3

1 Vienna University of Technology, Austria
2 Univ. Grenoble-Alpes, Inria, CNRS, Laboratoire d’Informatique de Grenoble, F-38000 Grenoble, France
3 University of Illinois at Urbana-Champaign, USA
4 McMaster University, Canada
5 University of Malta, Malta
6 Lübeck University, Lübeck, Germany
7 Jet Propulsion Laboratory, California Institute of Technology, USA
8 University of Waterloo, Canada
9 NEC Laboratories Europe, Heidelberg, Germany

10 University of Alabama at Birmingham, USA
11 University of Manchester, UK
12 CEA, LIST, Software Security Laboratory, PC 174, 91191 Gif-sur-Yvette, France
13 ETH Zurich, Switzerland

Received: date / Revised version: date

Abstract. The First International Competition on Runtime
Verification (CRV) was held in September 2014, in Toronto,
Canada, as a satellite event of the 14th international conference
on Runtime Verification (RV’14). The event was organized in
three tracks: (1) offline monitoring, (2) online monitoring of C
programs, and (3) online monitoring of Java programs. In this
paper we report on the phases and rules, a description of the
participating teams and their submitted benchmark, the (full)
results, as well as the lessons learned from the competition.

1 Introduction

Runtime verification1 [39,49,35,60,36,6], from here on re-
ferred to as RV, refers to a class of lightweight scalable tech-
niques for analysis of execution traces. The core idea is to in-
strument a program to emit events during its execution, which
are then processed by a monitor. This paper focuses specifi-
cally on specification-based trace analysis, where execution
traces are verified against formal specifications written in for-
mal logical systems. Other forms of RV, not treated in this
paper, include for example algorithm-based trace analysis,
such as detecting concurrency issues such as data races and
deadlocks; specification mining from traces; and trace visual-
ization.

Send offprint requests to:
1 http://runtime-verification.org

Specification-based trace analysis is a topic of particu-
lar interest due to the many different logics and supporting
tools that have been developed over the last decade, includ-
ing the following to just mention a few [56,54,9,50,57,32,
53,26,29,27,34,5,20,33,8,4,38]. Unlike proof-oriented tech-
niques, such as theorem proving or model checking, that aim
to verify exhaustively whether a property is satisfied for all
the possible system executions, specification-based RV auto-
matically checks only if a single execution trace is correct,
and it therefore does not suffer from the classic manual labor
and state-explosion problems, typically associated with theo-
rem proving and model checking. The achieved scalability of
course comes at the cost of less coverage.

As illustrated in Fig. 1, an RV process consists of three
main steps: monitor synthesis, system instrumentation, and
monitoring. In the first step, a monitor is synthesized from
a requirement expressed in a formal specification language
(e.g., regular expression, automaton, rule set, grammar, or
temporal logic formula), or it is programmed directly in a
general-purpose programming language [52,36]. A monitor
is a program or a device that receives as input a sequence of
events (observations) and emits verdicts regarding the satis-
faction or violation of the requirement. In the second step, the
system is instrumented using event information extracted from
requirements. The instrumentation aims at ensuring that the
relevant behavior of the system can be observed at runtime.
In the third step, the program is executed with the instrumen-
tation activated. In online monitoring, the monitor runs in
parallel with (or is embedded into) the program, analyzing the
event sequence as it is produced. In offline monitoring, the

http://runtime-verification.org


2 Bartocci et al.: Rules, Benchmarks, Tools, and Final Results of CRV 2014

event sequence is written to persistent memory, for example
a log file, which at a later point in time is analyzed by the
monitor. In online monitoring, monitor verdicts can trigger
fault protection code. In offline monitoring, verdicts can be
summarized and visualized in reports, or trigger the execution
of other programs. Instrumentation and monitoring generally
increase the memory utilization and introduce a runtime over-
head that may alter the timing-related behavior of the system
under scrutiny. In real-time applications, overhead control
strategies are generally necessary to mitigate the overhead by,
for example, using static analysis to minimize instrumentation,
or switching on and off the monitor [61,7,46].

During the last decade, many important tools and tech-
niques have been developed. However, due to lack of standard
benchmark suites as well as scientific evaluation methods to
validate and test new techniques, we believe that the RV com-
munity is in pressing need to have an organized venue whose
goal is to provide mechanisms for comparing different aspects
of existing tools and techniques.

For these reasons, inspired by the success of similar events
in other areas of computer-aided verification (e.g., SAT [43],
SV-COMP [18], SMT [1], RERS [40,41]), Ezio Bartocci, Bor-
zoo Bonakdarpour, and Yliès Falcone organized the First In-
ternational Competition on Runtime Verification (CRV 2014)
with the aim to foster the process of comparison and evalua-
tion of software runtime verification tools. The objectives of
CRV’14 were the following:

– To stimulate the development of new efficient and practi-
cal runtime verification tools and the maintenance of the
already developed ones.

– To produce benchmark suites for runtime verification tools,
by sharing case studies and programs that researchers and
developers can use in the future to test and to validate their
prototypes.

– To discuss the measures employed for comparing the tools.
– To compare different aspects of the tools running with

different benchmarks and evaluating them using different
criteria.

– To enhance the visibility of presented tools among dif-
ferent communities (verification, software engineering,
distributed computing and cyber security) involved in soft-
ware monitoring.

CRV’14 was held in September 2014, in Toronto, Canada,
as a satellite event of the 14th international conference on
Runtime Verification (RV’14). The event was organized in
three tracks: (1) offline monitoring, (2) online monitoring
of C programs, and (3) online monitoring of Java programs.
This paper conveys the experience on the procedures, the
rules, the participating teams, the benchmarks, the evaluation
process and the results of CRV’14. This paper complements
and significantly extends a preliminary report that was written
before RV’14 [3].

Paper organization. The rest of this paper is organized as
follows: Section 2 gives an overview of the phases and the
rules of the competition. Section 3 introduces the participating

FORMAL/INFORMAL REQUIREMENT 

Monitor Synthesis 

MONITOR 

INSTRUMENTED SYSTEM 

verdict 

feedback observation 

SYSTEM 

Fig. 1. Runtime verification main phases.

teams. Section ?? presents the benchmarks used in all the three
tracks of the competition. Section 4 defines the method used to
compute the score. Section 5 reports on the results. Section ??
discusses lessons learned. Finally, Section 6 concludes the
paper.

2 Phases and Rules of the Competition

Taking inspiration from the software verification competition
(SVCOMP) started in 2012 [17] we have arranged the the
overall process along three different phases for each track:

1. collection of benchmarks (Section 2.1),
2. training and monitor submissions (Section 2.2),
3. evaluation (Section 2.3).

The first phase (Dec. 15, 2013 - March 1, 2014) aims to stimu-
late each team to develop at most five benchmarks per track
that may challenge the tools of the other teams. In the second
phase (March 2, 2014 - May 30, 2014), the teams have the
possibility to further develop and improve their tools using the
benchmarks of the adversary teams. This cross-fertilizes new
ideas between the teams, since each team is exposed to the
same problems and challenges previously faced by the other
teams. The goal of the last phase (June 1, 2014 - Sept. 23,
2014) is to provide a framework for a fair and automatic eval-
uation of the participating tools. In the following we describe
the phases in more detail.

2.1 Collection of Benchmarks

In the first phase, the teams participating in each track prepare
and upload in a shared repository a set of benchmarks. We
now provide a description of the requirements of a benchmark
for the online and offline monitoring tracks.



Bartocci et al.: Rules, Benchmarks, Tools, and Final Results of CRV 2014 3

an_event_name, a_field_name = a_value, a_field_name = a_value
an_event_name, a_field_name = a_value, a_field_name = a_value

Fig. 2. Example of trace in CSV format

an_event_name
a_field_name = a_value
a_field_name = a_value

an_event_name
a_field_name = a_value
a_field_name = a_value

Fig. 3. Example of trace in custom format

<log>
<event>
<name>an_event_name</name>
<field>
<name>a_field_name</name>
<value>a_value</value>

</field>
<field>

<name>a_field_name</name>
<value>a_value</value>

</field>
</event>
<event>

<name>an_event_name</name>
<field>

<name>a_field_name</name>
<value>a_value</value>

</field>
<field>

<name>a_field_name</name>
<value>a_value</value>

</field>
</event>

</log>

Fig. 4. Example of trace in XML format

Online monitoring of C and Java programs tracks. In the case
of C and Java tracks, each benchmark contribution is required
to contain the following:

– A program package containing the program source code
(the program to be monitored), a script to compile it, a
script to run the executable, and an English description of
the functionality of the program.

– A specification package containing a collection of files,
each describing a property: an English description of the
property, a formal representation of it in the logical system
supported by the team, instrumentation information, and
the expected verdict (the evaluation of the property on the
program execution).

The instrumentation information describes of a mapping
from concrete events in the program (for example method
calls) to the abstract events referred to in the specification.
For instance, if one considers the HasNext property on Java
iterators (that a call of the method next on an iterator should
always be preceded by a call of the method hasNext that
returns true), the mapping should indicate that the hasNext
event in the property refers to a call to the hasNext() method
on an Iterator object, and similarly for the next event. Several
concrete events can be mapped to the same abstract event.

Offline monitoring track. In the case of offline track, each
benchmark contribution is required to contain the following:

– A trace, in either CSV, custom, or XML format, and a
description of the event kinds contained in the trace. The
three trace formats are illustrated in Fig. 2, 3, and 4.

– A specification package containing a collection of files
describing a property: an English description of the prop-
erty, a formal representation of it in the logical system
supported by the team, and the expected verdict (the eval-
uation of the property on the trace).

2.2 Training Phase and Monitor Collection Phase

During this phase, all participants can apply their tools to all
the available benchmarks in the repository, and possibly mod-
ify their tools to improve their performance. At the phase end,
they submit their contributions as monitors for the benchmarks.
A contribution is related one of the benchmarks uploaded in
the first phase, and contains a monitor for the property in the
benchmark together with two scripts, one for building and one
for running the monitor.

2.3 Benchmark Evaluation Phase

The evaluation of the teams’ contributions is performed on
DataMill2 [55], a distributed infrastructure for computer per-
formance experimentation targeted at scientists that are inter-
ested in performance evaluation. DataMill aims to allow the
user to easily produce robust and reproducible results at low
cost. DataMill executes experiments multiple times, obtaining
average values, and generally deploys results from research
on how to set up such experiments. Each participant has the
possibility to set up and try their tool using DataMill. The final
evaluation is performed by the competition organizers.

2 http://datamill.uwaterloo.ca

http://datamill.uwaterloo.ca


4 Bartocci et al.: Rules, Benchmarks, Tools, and Final Results of CRV 2014

3 Participating Teams and Tools

In this section we provide a description of participating teams
and tools.

3.1 C Track

Table 1 summarizes the teams and tools participating in the
track of online monitoring of C programs. The tools are de-
scribed in the rest of this subsection.

3.1.1 RITHM

RITHM (Runtime Time-triggered Heterogeneous Monitor-
ing) [54] is a tool for runtime verification of C programs.
RITHM is developed at the Real-time Embedded Software
Group at University of Waterloo, Canada.

RITHM takes a C program and a set of properties ex-
pressed in a fragment of first-order LTL as input. RITHM
instruments the C program with respect to the definition of
predicates supplied along with LTL properties, and it synthe-
sizes an LTL monitor. The program then can be monitored at
runtime by the synthesized monitor, where the instrumented
program sends events in its execution trace to the monitor.
Further, RITHM monitors a fragment of first order LTL spec-
ifications as described in [51]. RITHM monitor can be run
on Graphics Processing Units or multicore Central Processing
Units [51] for accelerating the verification of an execution
trace [16].

3.1.2 E-ACSL

E-ACSL [32] (Executable ANSI/ISO C Specification Lan-
guage) is both a formal specification language and a moni-
toring tool which are designed and developed at CEA LIST,
Software Security Labs. They are integrated to the Frama-C
platform [47], which is an extensible and collaborative plat-
form dedicated to source-code analysis of C software.

The formal specification language is a large subset of the
ACSL specification language [15] and is designed in a way
that each annotation can be verified at runtime [58]. It is a
behavioral first-order typed specification language which sup-
ports, in particular, function contracts, assertions, user-defined
predicates and built-in predicates (such as \valid(p) which
indicates that the pointer p points to a memory location that
the program can write and read).

The plug-in E-ACSL [59] automatically converts a C
program p1 specified with E-ACSL annotations to another
C program p2 which monitors each annotation of p1 at run-
time. More precisely, for each annotation a, p2 computes the
truth value of a and passes it as an argument to the C function
e acsl assert. By default, this function stops the program
execution with a precise error message if a is 0 (i.e., false) and
just continues the execution otherwise. The generated code

is linked against a dedicated memory library which can effi-
ciently compute the validity of complex memory-related prop-
erties (e.g., use-after-free or initialization of variables) [48,
42].

3.1.3 RTC

RTC [53] (Runtime checking for C programs) is a runtime
monitoring tool that instruments unsafe code and monitors
the program execution. RTC is built on top of the ROSE
compiler infrastructure. RTC finds memory bugs, arithmetic
overflows and under-flows, and runtime type violations. Most
of the instrumentations are directly added to the source file and
only require a minimal runtime system. As a result, the instru-
mented code remains portable. The team behind RTC consists
of researchers from the University of Alabama at Birming-
ham, North Carolina State University, Lawrence Livermore
National Laboratory, and Matlab.

3.2 Java Track

Table 2 summarizes the teams and tools participating in the
track of online monitoring of Java programs. The tools are
described in the rest of this subsection.

3.2.1 Larva

Larva [26] is a Java and AspectJ-based RV tool whose spec-
ification language (DATEs [25]) is a flavour of automata en-
riched with stopwatches. The automata are symbolic in that
they allow the use of local state in terms of Java variables
and data structures. Furthermore, Larva allows the full use of
Java for the specification of conditions which decide when
transitions trigger. Similarly, for each transition, an action can
be specified so that when it triggers, the local state can be
updated, possibly also carrying out actions on the monitored
system, e.g., to handle a detected problem.

The tool design and development has been inspired by case
studies in the financial industry [24] where there are frequent
soft real-time constraints such as limits on the amount of
money spent within a particular period and entity life-cycles
such as limiting the kind of operations users are allowed to
perform while suspended.

Over the years, a set of tools have been built to support and
augment Larva including conversion from other specification
languages (such as duration calculus [21]) to Larva specifica-
tion language, and extensions to support event extraction from
databases as well as saving the monitor state to a database
when it is not feasible to keep it in memory [23].

3.2.2 jUnitRV

jUnitRV [29] is a tool extending the unit testing framework
jUnit with runtime verification capabilities. Roughly, jUnitRV

provides a new annotation @Monitors listing monitors that are
synthesized from temporal specifications. The monitors check
whether the currently executed tests satisfy the correctness



Bartocci et al.: Rules, Benchmarks, Tools, and Final Results of CRV 2014 5

properties underlying the monitors. As such, jUnit’s concept of
plain assert-based verification limited to checking properties
of single states of a program is extended significantly towards
checking properties of complete execution paths.

To support specifications beyond propositional properties
jUnitRV uses a generic approach to enhance traditional runtime
verification techniques towards first-order theories in order to
reason about data. This allows especially for the verification
of multi-threaded, object-oriented systems. The framework
lifts the monitor synthesis for propositional temporal logics
to a temporal logic over structures within some first-order the-
ory. To evaluate such temporal properties, SMT (Satisfiability
Modulo Theory) solving and classical monitoring of proposi-
tional temporal properties is combined. jUnitRV implements
this framework for linear-time temporal logic based on the Z3
SMT solver [28]. The framework is described in detail in [30,
31].

3.2.3 JAVAMOP

JAVAMOP, with its core component RV-Monitor [50], is a
formalism-independent RV tool designed to effectively moni-
tor multiple parametric properties simultaneously. It is devel-
oped both by University of Illinois at Urbana Champaign and
Runtime Verification, Inc.3.

JAVAMOP specifications support a variety of formalisms
such as finite state machine, linear temporal logic, string rewrit-
ing systems, etc., which gives users a lot of freedom to ex-
press different kinds of properties. At the same time, several
optimizations ([22,45,50]) were proposed to make monitors
creation, garbage collection, and internal data structure ac-
cess more efficient. Besides, JAVAMOP can generate a single
Java agent out of multiple specifications. The Java agent can
be easily attached to the Java virtual machine to run with
Java programs. All these efforts make JAVAMOP capable of
monitoring multiple properties simultaneously on large Java
applications.

3.2.4 Monitoring at Runtime with QEA (MARQ)

The MARQ tool [57] monitors specifications written in the
Quantified Event Automata (QEAs) [2] specification language.
It has been developed at the University of Manchester by
Giles Reger and Helena Cuenca Cruz with input from David
Rydeheard.

QEAs combine a quantifier list with an extended finite
state machine over parametric events. Trace acceptance is
defined via the trace slicing approach, extended to allow exis-
tential quantification and a notion of free variables.

Syntax of QEA. We give a brief explanation of the syntax
used and will not repeat it below. A QEA consists of a quan-
tifier list and a state machine. They can have multiple Forall
or Exists quantifications with an optional Where constraint
restricting the considered values. States can be accept states,

3 https://www.runtimeverification.com

indicating that a trace is accepted if any path reaches an accept
state. There are two other state modifiers: skip indicates that
missing transitions are self-looping; next indicates that miss-
ing transitions implicitly go to the failure state. The failure
state is an implicit non-accept state with no outgoing transi-
tions; once the failure state has been reached success (for this
binding) is not possible.

The MARQ tool implements an incremental monitoring
algorithm for QEAs. A structural specialisation module at-
tempts to specialize the algorithm based on structural proper-
ties of the specification. Singly-quantified specifications are
directly indexed, otherwise a general symbol-based indexing
approach is used.

For monitoring Java programs, MARQ is designed to be
used with AspectJ. It also implements mechanisms for deal-
ing with garbage collection and can either use reference or
semantic identity for monitored objects.

3.3 Offline Track

Table 3 summarizes the tools teams and participating in the
track of offline monitoring. The tools are described in the rest
of this subsection.

3.3.1 RITHM-2

RITHM [54], as previously described, is a tool for runtime
verification. In addition to online monitoring of C programs, it
can process execution traces for performing offline verification.
Further, RITHM was extended to process execution traces
in XML and CSV formats as per the schemas described in
Section 2.1. RITHM is designed for monitoring specifications
described using LTL or a first order fragment of LTL [51].

3.3.2 MONPOLY

MONPOLY [9] is a monitoring tool for checking compliance
of IT systems with respect to policies specifying normal or
compulsory system behavior. The tool has been developed as
part of several research projects on runtime monitoring and
enforcement in the Information Security group at ETH Zurich.
MONPOLY is open source, written in OCaml.

Policies are given as formulas of an expressive safety frag-
ment of metric first-order temporal logic (MFOTL), including
dedicated operators for expressing aggregations on data items.
The first-order fragment is well suited for formalizing relations
between data items, while the temporal operators are used to
express quantitative temporal constraints on the occurrence
or non-occurrence of events at different time points. An event
streams can be input through a log file or a UNIX pipeline,
which MONPOLY processes iteratively, either offline or on-
line. The stream can be seen as a sequence of timestamped
databases, each of them consisting of the events that have
occurred in the system execution at a point in time. Each tuple
in one of the databases’ relations represents a system action
together with the involved data. For a given event stream and
a formula, MONPOLY outputs all the policy violations.

https://www.runtimeverification.com


6 Bartocci et al.: Rules, Benchmarks, Tools, and Final Results of CRV 2014

Further details on MFOTL and the tool’s underlying moni-
toring algorithm are given in [11,14,12]. MONPOLY has been
used in real-world case studies, in collaboration with Nokia
Research Lausanne [10] and with Google Zurich [13]. Fur-
ther performance evaluation and comparison with alternative
approaches can be found in [11] and [14].

3.3.3 STEPR

STEPR is a prototype log file analysis tool developed at the
Institute for Software Engineering and Programming Lan-
guages, University of Lübeck, Germany.4 It is loosely based
on the Lola stream processing verification language proposed
by d’Angelo et al. [27]. The log file is considered as an input
stream of data and the user can use stream operations to de-
fine new streams and combine them in an algebraic fashion.
Assertions can be specified on such streams that, once vio-
lated, make the program report an error. Streams can further
be declared as output streams that are written to report files in
various formats and verbosity. They provide additional infor-
mation on the exact position of the violation and error counts
allowing for convenient analysis of the occurred deviations.
STEPR is written in the Scala programming language 5 and
provides a Scala-internal domain-specific language for speci-
fications. The full power of Scala can be used for specifying
further stream operation if needed.

3.3.4 Monitoring at Runtime with QEA (MARQ)

MARQ was previously described in Section 3.2.4 as a tool for
monitoring Java programs. Here we give details of how it can
be used for offline monitoring.

MARQ can parse trace files in either CSV or XML formats
(JSON traces are not supported). The CSV parser has been
hand-written to optimise the translation of events into the in-
ternal representation. The XML parser makes use of standard
Java library features. As a consequence, the XML parser is
relatively inefficient compared to the CSV parser. Therefore,
we prefer the CSV format and would normally first translate
traces into this format.

One can use different events in the specification and the
trace when monitoring with MARQ. For example, an abstract
event in the specification can have a different name, arity, and
parameter order as the corresponding event in the trace. Fur-
thermore, multiple events in the trace can be mapped to an
abstract event, and vice-versa. To handle this, MARQ requires
the use of so-called translators that can translate event names
as well as permuting or dropping event parameters. Addition-
ally, translators can be used to interpret values i.e., to parse
strings into integer objects. Translators are required when a
parameter value should be treated as its interpreted value, as
is the case with a counter.

3.4 Summary

Table 5 summarizes some of the features of the tools presented
in this section. A checkmark sign (X) indicates a supported
feature. Four categories of features are presented.

Input requirement specification. The first category concerns
the specification of the input requirement that a tool can mon-
itor. The entry user-enabled in Table 5 is ticked when the
corresponding tool allows the user to specify the requirement.
In this case the tool supports one or more specification lan-
guages that allow the user to write flexible requirements to be
monitored. The entry built-in is ticked when the corresponding
tool has a number of built-in specifications that can be checked
at runtime without any specification effort by the user. Table 5
list next some of the following common specification lan-
guage features: automata-based, regular-expressions-based,
and logic-based, supporting logical-time where only the rel-
ative ordering of events is important or real-time where the
event occurrence times are also relevant. The language can
support propositional events and/or parametric events, depend-
ing on whether runtime events cannot carry or, respectively,
can carry data values. Generally, more expressive specification
languages require more complex monitoring algorithms. The
monitoring code can be generated from a high-level specifi-
cation language or directly implemented in a programming
language.

Instrumentation. The entry own instrumentation indicates
that the tool implements its own instrumentation phase of
the RV process. The entry relies on AspectJ indicates that
the tool uses AspectJ for instrumentation purposes. The en-
try relies on another technique indicates that the tool uses a
third-party technique and/or tool different from AspectJ for
instrumentation purposes.

Monitored systems. The entries in this category have their
expected meaning and indicate the kind of systems that the
tool can monitor (C programs, Java programs, or traces).

Monitoring mode. The entry time triggered indicates that the
stream of observations from the system is obtained through
sampling. The entry event triggered indicates that the steam
of observations is obtained following the execution of events
in the system.

4 Evaluation - Calculating Scores

In this section, we present in detail the algorithm to calculate
the final score for each tool. Consider one of the three com-
petition tracks (C, Java, and Offline). Let N be the number
of teams/tools participating in the considered track and L be
the total number of benchmarks provided by all teams. The

4 www.isp.uni-luebeck.de
5 www.scala-lang.org

www.isp.uni-luebeck.de
www.scala-lang.org


Bartocci et al.: Rules, Benchmarks, Tools, and Final Results of CRV 2014 7

Tool Ref. Contact person Affiliation
RITHM [54] B. Bonakdarpour McMaster Univ. and U. Waterloo, Canada
E-ACSL [32] J. Signoles CEA LIST, France
RTC [53] R. Milewicz University of Alabama at Birmingham, USA

Table 1. Tools participating in online monitoring of C programs track.

Tool Ref. Contact person Affiliation
LARVA [26] C. Colombo University of Malta, Malta
JUNITRV [29,30] D. Thoma ISP, University of Lübeck, Germany
JAVAMOP [44] G. Roşu U. of Illinois at Urbana Champaign, USA
QEA,MARQ [2] G. Reger University of Manchester, UK

Table 2. Tools participating in online monitoring of Java programs track.

Tool Ref. Contact person Affiliation
RITHM2 [54] B. Bonakdarpour McMaster Univ. and U. Waterloo, Canada
MONPOLY [9] E. Zălinescu ETH Zurich, Switzerland
STEPR N. Decker ISP, University of Lübeck, Germany
QEA, MARQ [2] G. Reger University of Manchester, UK

Table 3. Tools participating in the offline monitoring track.

maximal number of experiments for the track is N × L. That
is, each team has the possibility to compete on a benchmark.
Then, for each tool Ti (1 ≤ i ≤ N ) w.r.t. each benchmark Bj

(1 ≤ j ≤ L), we assign three different scores:

– the correctness score Ci,j ,
– the overhead score Oi,j , and
– the memory utilization score Mi,j .

In case of online monitoring (Java and C tracks), let Ej be
the execution time of benchmark Bj (without monitor). Note,
in the following, to simplicity notation, we assume that all
participants of a track want to compete on benchmark Bj . Par-
ticipants can of course decide not to qualify on a benchmark
of their track. In this case, the following score definitions can
be adapted easily.

Several considerations influenced the scoring principles:

– Since several benchmarks are provided in each track, we
wanted to provide participants with the possibility to com-
pete on a benchmark or not. We allocated a maximum
number of points that could be gained on a benchmark.
In our opinion, it limited the influence of the failure or
success on a benchmark and rewarded the overall behavior
of tools on the benchmarks in a track.

– We gave an important emphasis on the correctness of
monitoring verdicts. As such, the scoring mechanism gives
more priority to correctness of verdicts in that performance
is evaluated on a benchmark only when a tool provides
the correct verdict and negative points are assigned on a
benchmark when a tool produces a false verdict or crashes.

– Within a benchmark, scores are assigned to participants/-
tools based on how better they perform compared to each
other. Moreover, the proportion of points in benchmark

assigned to a tool depends on a performance ratio compar-
ing to the average performance of other tools. The average
performance of other tools is computed with the geometric
mean (because we dealt with normalised numbers [37]).

4.1 Correctness Score

The correctness score Ci,j for a tool Ti running a benchmark
Bj is (an integer) calculated as follows:

– Ci,j = 0, if the property associated with benchmark Bj

cannot be expressed in the specification language of Ti.
– Ci,j = −10, if in case of online monitoring, the property

can be expressed, but the monitored program crashes.
– Ci,j = −5, if, in case of online monitoring, the property

can be expressed and no verdict is reported after 10× Ej .
– Ci,j = −5, if, in case of offline monitoring, the property

can be expressed, but the monitor crashes.
– Ci,j = −5, if the property can be expressed, the tool does

not crash, and the verification verdict is incorrect.
– Ci,j = 10, if the tool does not crash, it allows to express

the property of interest, and it provides the correct verifi-
cation verdict.

Note that, in case of a negative correctness score, there is no
evaluation w.r.t. the overhead and memory-utilization scores
for the pair (Ti, Bj).

4.2 Overhead Score

The overhead score Oi,j , for a tool Ti running benchmark Bj ,
is related to the timing performance of the tool for detecting



8 Bartocci et al.: Rules, Benchmarks, Tools, and Final Results of CRV 2014

Tool Available at (URL)
E-ACSL (ver. 0.4.1) http://frama-c.com/download/e-acsl/e-acsl-0.4.1.tar.gz
JAVAMOP (VER. 4.2) http://fsl.cs.illinois.edu/index.php/JavaMOP4
JUNITRV https://www.isp.uni-luebeck.de/junitrv
LARVA http://www.cs.um.edu.mt/svrg/Tools/LARVA/
MONPOLY http://sourceforge.net/projects/monpoly
QEA(MARQ) https://github.com/selig/qea
RITHM/RITHM2 https://uwaterloo.ca/embedded-software-group/projects/rithm
RTC https://github.com/rose-compiler/rose/tree/master/projects/RTC
STEPR http://www.isp.uni-luebeck.de/stepr

Table 4. URLs where it is possible to download the tools participating to the competition.

U
se

r-
en

ab
le

d

B
ui

lt-
in

Pr
op

os
iti

on
al

E
ve

nt
s

Pa
ra

m
et

ri
c

E
ve

nt
s

A
ut

om
at

a-
ba

se
d

L
og

ic
-b

as
ed

R
eg

ul
ar

E
xp

re
ss

io
ns

-b
as

ed

L
og

ic
al

-t
im

e

R
ea

l-t
im

e

O
w

n
in

st
ru

m
en

ta
tio

n

R
el

ie
so

n
A

sp
ec

tJ

R
el

ie
so

n
an

ot
he

r
te

ch
ni

qu
e

C
pr

og
ra

m
s

Ja
va

pr
og

ra
m

s

Tr
ac

es

Ti
m

e
tr

ig
ge

re
d

E
ve

nt
tr

ig
ge

re
d

Participating Tool Input Requirement
Instrumentation

Monitored Monitoring
Specification Systems Mode

RITHM X X X X X X X X X X X
E-ACSL X X X X X X X X

RTC X X X X
LARVA X X X X X X X

JUNITRV X X X X X X X X X
JAVAMOP X X X X X X X X X X

MONPOLY X X X X X X X X
STEPR X X X X X
MARQ X X X X X X X X X

Table 5. Summary of features of the tools.

the (unique) verdict. For all benchmarks, a fixed total num-
ber of points O is allocated when evaluating the tools on a
benchmark. Thus, the scoring method for overhead ensures
that

N∑
i=1

L∑
j=1

Oi,j = O.

The overhead score is calculated as follows. First, we compute
the overhead index oi,j , for tool Ti running a benchmark Bj ,
where the larger the overhead index is, the better.

– In the case of offline monitoring, for the overhead, we
consider the elapsed time till the property under scrutiny
is either found to be satisfied or violated. If monitoring
(with tool Ti) of the trace of benchmark Bj executes in
time Vi, then we define the overhead as

oi,j =


1
Vi

if Ci,j > 0,

0 otherwise.

– In the case of online monitoring (C or Java), the overhead
associated with monitoring is a measure of how much
longer a program takes to execute due to runtime monitor-
ing. If the monitored program (with monitor from tool Ti)
executes in Vi,j time units, we define the overhead index
as

oi,j =


N
√∏N

l=1 Vl,j

Vi,j
if Ci,j > 0,

0 otherwise.

In other words, the overhead index for tool Ti evaluated
on benchmark Bj is the geometric mean of the overheads
of the monitored programs with all tools over the overhead
of the monitored program with tool Ti.

Then, the overhead score Oi,j for a tool Ti w.r.t. benchmark Bj

is defined as follows:

Oi,j = O × oi,j∑N
l=1 ol,j

.

 http://frama-c.com/download/e-acsl/e-acsl-0.4.1.tar.gz
http://fsl.cs.illinois.edu/index.php/JavaMOP4
https://www.isp.uni-luebeck.de/junitrv
http://www.cs.um.edu.mt/svrg/Tools/LARVA/
http://sourceforge.net/projects/monpoly
https://github.com/ selig/qea
https://uwaterloo.ca/embedded-software-group/projects/rithm
https://github.com/rose-compiler/rose/tree/master/projects/RTC
http://www.isp.uni-luebeck.de/stepr


Bartocci et al.: Rules, Benchmarks, Tools, and Final Results of CRV 2014 9

For each tool, the overhead score is a harmonization of the
overhead index so that the sum of overhead scores is equal
to O.

4.3 Memory-Utilization Score

The memory-utilization score Mi,j is calculated similarly to
the overhead score. For all benchmarks, a fixed total number
of points O is allocated when evaluating the tools on a bench-
mark. Thus the scoring method for memory utilization ensures
that:

N∑
i=1

L∑
j=1

Mi,j = M.

First, we measure the memory utilization index mi,j for tool
Ti running a benchmark Bj , where the larger memory utiliza-
tion index, the better.
– In the case of offline monitoring, we consider the maxi-

mum memory allocated during the tool execution. If mon-
itoring (with tool Ti) of the trace of benchmark Bj uses a
quantity of memory Di, then we define the overhead as:

mi,j =


1
Di

if Ci,j > 0,

0 otherwise,

That is, the memory utilization index for tool Ti evaluated
on benchmark Bj is the geometric mean of the memory
utilizations of the monitored programs with all tools over
the memory utilization of the monitored program with
tool Ti.

– In the case of online monitoring (C or Java tracks), mem-
ory utilization associated with monitoring is a measure of
the extra memory the monitored program needs (due to
runtime monitoring). If the monitored program uses Di,
we define the memory utilization as

mi,j =


N
√∏N

l=1Dl,j

Di,j
if Ci,j > 0,

0 otherwise.

Then, the memory utilization score Mi,j for a tool Ti w.r.t. a
benchmark Bj is defined as follows:

Mi,j = M × mi,j∑N
l=1 ml,j

.

4.4 Final Score

The final score Fi for tool Ti is then computed as follows:

Fi =

L∑
j=1

Si,j

where:

Si,j =

{
Ci,j if Ci,j ≤ 0,
Ci,j +Oi,j +Mi,j otherwise.

For the results reported in the next section, we set O = C =
M = 10, giving the same weight to the correctness, overhead,
and memory-utilization scores.

Team 1: RITHM-1 110,00 78,19 73,72 261,92
Team 2: E-ACSL 100,00 50,19 68,97 219,16

Team 4: RTC 70,00 20,70 17,31 100,01

Team Total scoreCorrectness
score

Overhead
score

Memory
score

0	

50	

100	

150	

200	

250	

300	

Team	1:	RITHM-1	 Team	2:	E-ACSL	 Team	4:	RTC	

Correctness	score	

Overhead	score	

Memory	score	

TOTAL	score	

Fig. 5. Graphical representation of the scores for the C track.

5 Results

In this section, we report on the results of the participants. The
raw experimental data and the scripts submitted by participants
can be obtained by cloning the repository available at:

https://gitlab.inria.fr/crv14/evaluation.

For each track, we present the scores obtained in each cat-
egory and the final scores achieved by each team, as defined in
Section 4. In the following tables, teams are ranked according
to their total scores.

Let us recall that the experiments were conducted on
DataMill [55]. The selected machine was queen, which has
an Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz (x86 64
architecture with 8 cores), 7.72GB of DDR3, and is running
on a Gentoo Linux distribution. We have considered the Wall-
clock time for our measures. Using DataMill guarantees that
each tool had the same execution environment and it was the
only running software during each experiment. Tools were
allowed to leverage the eight available cores.

5.1 Scores for the C Track

The detailed scores for the C track are presented in Table 6.
The final scores of the C track are reported in Table 7 and can
be visualized in Fig. 5. The final ranking of the teams is: first
is RITHM, second is E-ACSL, third is RTC.

As one can observe in Table 7, RITHM made the differ-
ence over E-ACSL on the overhead score; whereas RITHM
and E-ACSL have approximately the same correctness and
memory-utilization scores. Moreover, there is an important
gap between the two first tools in this track (RITHM and E-
ACSL) and RTC. Possible explanations for this discrepancy
are discussed in Section ??.

5.2 Scores for the Java Track

The detailed scores for the Java track are presented in Table 8.
The final scores of the Java track are reported in Table 9 and

https://gitlab.inria.fr/crv14/evaluation


10 Bartocci et al.: Rules, Benchmarks, Tools, and Final Results of CRV 2014

RITHM E-ACSL RTC
Reference to verdict mem ovhd verdict mem ovhd verdict mem ovhd
Benchmark (MB) (s) (MB) (s) (MB) (s)
Description v score m score o score v score m score o score v score m score o score

Section ?? F 1 012 756 0.68 N/A N/A N/A N/A N/A N/A
10 10 10 0 0 0 0 0 0

Section ?? F 1 012 756 0.68 N/A N/A N/A N/A N/A N/A
10 10 10 0 0 0 0 0 0

Section ?? F 614 168 0.42 N/A N/A N/A N/A N/A N/A
10 10 10 0 0 0 0 0 0

Section ?? F 614 168 0.42 N/A N/A N/A N/A N/A N/A
10 10 10 0 0 0 0 0 0

Section ?? F 647 696 0.69 N/A N/A N/A N/A N/A N/A
10 10 10 0 0 0 0 0 0

Section ?? F 11 916 0.01 F 12 980 0.30 F 37 040 0.19

10 4.46 9.59 10 4.10 0.16 10 1.44 0.14

Section ?? F 5388 0.001 F 4320 4.87 F 5984 0.01

10 3.18 9.09 10 3.96 0 10 2.86 0.29

Section ?? F 4236 0.01 F 4628 2.66 F 5856 0.19

10 3.79 9.52 10 3.47 0.03 10 2.74 0.27

Section ?? F 4212 N/A F 4312 N/A F 5792 0.01

10 3.70 0 10 3.61 0 10 2.69 10

Section ?? F 4212 N/A N/A N/A N/A F 1344 N/A
10 2.42 0 0 0 0 10 7.58 0

Section ?? F 4216 N/A F 6804 N/A F N/A 0.23

10 6.17 0 10 3.83 0 10 0 10

Table 6. Detailed scores for the C track.

Rank Team Correctness Overhead Memory TOTAL
Name Score Score Score SCORE

1 RITHM-1 110 78.19 73.72 261.92
2 E-ACSL 100 50.19 68.97 219.16
3 RTC 70 20.70 17.31 108.01

Table 7. Scores for the C track.

can be visualized in Fig. 6.

As one can observe in Table 9, the scores between the two
first highest scores are really close, we call it a draw between
QEA and JAVA-MOP. Thus, the final ranking of the teams is:
firsts are QEA and JAVA-MOP, second is JUNITRV, third is
LARVA. While there is a draw between QEA and JAVA-MOP,
one can notice that QEA did slightly better on the memory-
utilization score while JAVA-MOP did slightly better on the
overhead score. While the scores of the tools do not differ
much in terms of correctness, the rankings are due to first the
overhead score and then the memory score.

5.3 Scores for the Offline Track

The detailed scores for the Offline track are presented in Ta-
ble 10. The final scores of the offline track are reported in
Table 11 and can be visualized in Fig. 7. The final ranking
of the teams is: first is QEA, second is MONPOLY, third is
RITHM, fourth is STEPR.

As one can observe in Table 11, there is not much differ-
ence in terms of correctness score between the three first tools.
There is however a noticeable difference between each of the
three first tools in terms of global score. One can also notice
that the difference between QEA and MONPOLY was made
on the overhead score.



Bartocci et al.: Rules, Benchmarks, Tools, and Final Results of CRV 2014 11

LARVA JUNITRV JAVA-MOP QEA
Reference to verdict mem ovhd verdict mem ovhd verdict mem ovhd verdict mem ovhd
Benchmark (MB) (s) (MB) (s) (MB) (s) (MB) (s)
Description v m o v m o v m o v m o

score score score score score score score score score score score score

Section ?? F 0.55 1.54 F 1.92 6.08 F 1.94 0.17 F 2.65 0.20

10 1.95 2.66 10 2.70 0.14 10 2.68 4.96 10 1.96 4.35

Section ?? F 0.58 1.56 F 7.75 6.86 F 2.59 0.21 F 2.70 0.18

10 2.60 3.03 10 1.02 0.13 10 3.04 4.33 10 2.92 4.96

Section ?? F 0.66 1.56 F 1.92 3.74 F 9.03 0.22 F 5.24 0.24

10 4.54 2.11 10 4.99 0.28 10 1.06 4.66 10 1.83 4.40

Section ?? F 0.69 1.56 F 1.92 8.63 F 9.04 0.32 F 2.00 0.18

10 9.05 0.89 10 4.20 0.12 10 0.89 3.35 10 4.02 5.84

Section ?? F 0.95 1.57 F 1.92 8.57 F 9.69 0.73 F 2.64 0.22

10 10.97 0.83 10 4.76 0.17 10 0.94 2.05 10 3.46 6.83

Section ?? T 0.59 1.57 T 27.94 1.56 T 1.94 0.20 T 3.30 0.23

10 5.16 1.85 10 0.34 0.59 10 4.92 4.70 10 2.89 4.11

Section ?? T 0.65 1.58 T 308.67 22.93 T 1.94 0.20 T 2.65 0.25

10 7.10 1.36 10 0.03 0.04 10 4.97 5.19 10 3.64 4.12

Section ?? T 0.05 2173.26 T 244.27 49.94 T 32.24 26.27 T 5.85 25.99

10 162.39 0.29 10 0.19 2.06 10 1.46 3.92 10 8.06 3.97

Section ?? T 0.64 1.55 T 291.57 24.79 T 1.94 0.20 T 4.59 0.23

10 5.16 2.08 10 0.04 0.04 10 5.55 4.98 10 2.34 4.34

Section ?? T 1.13 1.56 T 680.19 100.57 T 2.58 0.24 T 110.33 1.26

10 7.76 2.45 10 0.03 0.02 10 7.35 7.45 10 0.17 1.40

Section ?? F 0.10 48.06 F N/A 2.98 F 5.17 0.79 F 4.53 2.04

10 40.93 0.56 10 0 1.59 10 4.41 5.99 10 5.04 2.32

Section ?? N/A N/A N/A F N/A 0.51 F 5.81 2.23 F 8.41 3.24

0 0 0 10 0 7.21 10 5.91 1.65 10 4.09 1.14

Section ?? F 0.10 35.78 F N/A 0.36 F 7.10 25.22 F 5.20 25.33

10 3.87 4.37 10 0 9.63 10 2.38 0.14 10 3.25 0.14

Section ?? F 0.56 1.57 F N/A 1.61 F 2.58 0.18 F 3.23 0.22

10 2.58 3.57 10 0 0.55 10 3.57 4.94 10 2.86 3.95

Section ?? F 0.03 2606.58 F N/A 7.58 F 647.19 87.00 F 837.29 190.89

10 841.28 3.03 10 0 8.85 10 3.93 0.77 10 3.04 0.35

Section ?? F 0.06 15 393.22 T N/A N/A F 1001.69 164.00 F 829.59 217.27

10 721.39 3.86 -5 0 0 10 2.78 5.66 10 3.36 4.28

Section ?? T/O 0 N/A T 717.92 88.35 T 801.15 242.00 T 844.54 288.08

-5 N/A 0 10 3.64 5.98 10 3.26 2.18 10 3.10 1.83

Section ?? T/O 0 N/A T 697.42 113.63 T 795.49 237.00 T 819.92 889.63

-5 N/A 0 10 3.67 6.22 10 3.21 2.98 10 3.12 0.79

Section ?? T/O 0 N/A T N/A N/A F 649.83 94.00 F 820.52 170.31

-5 N/A 0 -5 0 0 10 5.58 6.44 10 4.42 3.56

Section ?? F 0.16 27.22 F N/A 3.68 F 58.27 3.16 F 23.07 0.62

10 135.98 1.08 10 0 1.22 10 2.53 1.42 10 6.39 7.20

Section ?? T 0.29 70.12 T 86.04 8.8 T 267.45 5.64 T 142.74 5.29

10 160.62 2.18 10 4.06 2.30 10 1.31 3.59 10 2.45 3.82

Section ?? T 0 6882.58 T 300.2 49.9 T 309.00 6.08 T 156.66 5.59

10 267.43 2.24 10 2.00 0.55 10 1.94 4.53 10 3.82 4.92

Section ?? N/A N/A N/A F N/A 2.92 F 39.87 1.58 F 28.71 0.72

0 0 0 10 0 1.45 10 4.19 2.67 10 5.81 5.88

Table 8. Detailed scores for the Java track.



12 Bartocci et al.: Rules, Benchmarks, Tools, and Final Results of CRV 2014

Rank Team Correctness Overhead Memory TOTAL
Name Score Score Score SCORE

1 QEA 230 84.50 82.01 396.51
1 JAVAMOP 230 88.56 77.89 396.45
2 JUNITRV 200 49.15 31.67 280.82
3 LARVA 165 7.79 38.43 211.22

Table 9. Scores for the Java track.

RITHM MONPOLY STEPR QEA
Reference to verdict mem ovhd verdict mem ovhd verdict mem ovhd verdict mem ovhd
benchmark (MB) (s) (MB) (s) (MB) (s) (MB) (s)
description v-score m-score o-score v-score m-score o-score v-score m-score o-score v-score m-score o-score

Section ?? F 993 0.60 F 13 0.13 F 29.53 0.90 F 4.535 0.24

10 0.03 1.12 10 2.31 5.32 10 1.02 0.75 10 6.64 2.81

Section ?? F 993 0.60 F 1228 8.40 F 645.17 8.87 F 33.30 3.58

10 0.30 7.67 10 0.24 0.55 10 0.46 0.52 10 8.99 1.28

Section ?? F 614 0.98 F 13 0.12 F 31.26 0.91 F 4.53 0.19

10 0.05 0.63 10 2.32 5.41 10 0.97 0.68 10 6.66 3.28

Section ?? F 614 0.98 F 1696 15.80 F 622.30 21.10 F 517.07 12.22

10 2.83 8.41 10 1.02 0.52 10 2.79 0.39 10 3.36 0.68

Section ?? F 628 0.99 F 544 5.09 F 274.29 7.77 F 32.94 3.71

10 0.43 6.29 10 0.49 1.24 10 0.97 0.80 10 8.11 1.68

Section ?? N/A N/A N/A F 36.00 5.95 F 645.43 41.73 F 5.19 0.26

0 0 0 10 1.25 0.41 10 0.07 0.06 10 8.68 9.53

Section ?? N/A N/A N/A F 20 1.33 F 255.48 96.00 F 4.53 0.25

0 0 0 10 1.82 1.56 10 0.14 0.02 10 8.04 8.42

Section ?? N/A N/A N/A F 370 33.51 F 706.26 21.41 F 7.75 0.29

0 0 0 10 0.20 0.08 10 0.11 0.13 10 9.69 9.79

Section ?? N/A N/A N/A F 73.00 1.53 F 457.34 3.67 F 552.08 2.58

0 0 0 10 7.74 4.98 10 1.24 2.07 10 1.02 2.95

Section ?? N/A N/A N/A F 16.00 330.80 F 721.22 947.00 F 5935.90 1537.30

0 0 0 10 9.76 6.39 10 0.22 2.23 10 0.03 1.38

Section ?? T 14.27 5.40 T 13.00 5.05 T 634.99 10.84 T 127.62 4.51

10 4.48 2.65 10 4.92 2.84 10 0.10 1.32 10 0.50 3.18

Section ?? F 14.27 0.90 F 13.00 0.80 F 333.01 2.93 F 30.33 0.80

10 3.83 2.80 10 4.20 3.17 10 0.16 0.86 10 1.80 3.17

Section ?? F 14.27 7.20 F 13.00 1.04 F 501.91 3.20 F 30.86 1.05

10 3.86 0.59 10 4.24 4.08 10 0.11 1.32 10 1.79 4.01

Section ?? F 14.28 2.39 F 13.00 2.0 F 173.37 2.91 F 30.33 0.63

10 3.77 1.46 10 4.14 1.75 10 0.31 1.20 10 1.78 5.59

Section ?? T 15 0.04 T 17.00 353.00 T 112.56 2.20 T 29.73 0.59

10 3.97 9.15 10 3.50 0 10 0.53 0.18 10 2.00 0.67

Section ?? F 75.00 40.93 F 13.00 432.00 F 631.58 8.46 F 250.30 2.03

10 1.39 0.38 10 8.03 0.036 10 0.17 1.85 10 0.42 7.73

Section ?? F 14.04 0.16 F 24.00 3.06 F 36.01 1.19 F 295.52 1.36

10 4.94 7.67 10 2.89 0.40 10 1.93 1.03 10 0.23 0.90

Section ?? F 39.79 5.18 F 2675.00 3405.00 F 622.66 9.96 F 234.78 2.04

10 8.01 2.47 10 0.12 0.375 10 0.51 1.28 10 1.36 6.25

Section ?? T 14.00 5.14 T 13.00 26.21 T 494.39 9.17 T 239.60 3.54

10 4.62 3.12 10 4.98 0.61 10 0.13 1.75 10 0.27 4.53

Table 10. Detailed scores for the Offline track.



Bartocci et al.: Rules, Benchmarks, Tools, and Final Results of CRV 2014 13

Rank Team Correctness Overhead Memory TOTAL
Name Score Score Score SCORE

1 QEA 190 77.79 71.36 339.15
2 MONPOLY 190 39.35 64.19 293.54
3 RITHM-2 140 54.40 42.52 236.91
4 STEPR 190 18.46 11.93 220.40

Table 11. Scores for the Offline track.

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

300	
  

350	
  

400	
  

450	
  

Team	
  1:	
  Larva	
   Team	
  2:	
  jUnitRV	
   Team	
  4:	
  JavaMOP	
   Team	
  7:	
  QEA	
  

Correctness	
  score	
  

Overhead	
  score	
  

Memory	
  score	
  

TOTAL	
  score	
  

Fig. 6. Graphical representation of the scores for the Java track.

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

300	
  

350	
  

400	
  

Team	
  3:	
  RiTHM-­‐2	
   Team	
  4:	
  MonPoly	
   Team	
  6:	
  Stepr	
   Team	
  7:	
  QEA	
  

Correctness	
  score	
  

Overhead	
  score	
  

Memory	
  score	
  

TOTAL	
  score	
  

Fig. 7. Graphical representation of the scores for the Offline track.

6 Conclusions

This paper presents the final results of the first international
competition on runtime verification. A preliminary presen-
tation of the results have been reported during the RV 2014
conference in Toronto, Canada. This paper provides a compre-
hensive overview of the teams and their tools, the submitted
programs, traces, and specifications, the method used to com-
pute the scores, and the final results for each of the tracks.

We expect this report to help the runtime verification com-
munity in several ways. First, this report shall assist the future
organizers of the competition to build on the efforts made to
organize CRV 2014. Second, the report can also be seen as

an entry point to several benchmarks containing non-trivial
programs and properties. This shall help developers of tools
to assess and experiment with their tools.

Acknowledgements

The competition organizers, E. Bartocci, B. Bonakdarpour,
and Y. Falcone, are grateful to many people. The competition
organizers would like to warmly thank all participants for their
hard work, the members of the runtime verification community
who encouraged them to initiate this work, the Laboratoire
d’Informatique de Grenoble and its IT team for its support,
Inria and its GitLab framework, and finally the DataMill team
for providing us with such a nice experimentation platform to
run all benchmarks.

All the authors acknowledge the support of the ICT COST
Action IC1402 Runtime Verification beyond Monitoring (ARVI).
Ezio Bartocci acknowledges also the partial support of the Aus-
trian FFG project HARMONIA (nr. 845631) and the Austrian
National Research Network (nr. S 11405-N23) SHiNE funded
by the Austrian Science Fund (FWF). The research performed
by Klaus Havelund was carried out at Jet Propulsion Labora-
tory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration.

The authors are grateful to the insightful reviewers who
helped improving the quality of this paper.

References

1. Clark Barrett, Morgan Deters, Leonardo de Moura, Albert Oliv-
eras, and Aaron Stump. 6 Years of SMT-COMP. Journal of
Automated Reasoning, pages 1–35, 2012.

2. Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger,
and David E. Rydeheard. Quantified Event Automata: Towards
Expressive and Efficient Runtime Monitors. In Proc. of FM
2012: the 18th International Symposium on Formal Methods,
volume 7436 of LNCS, pages 68–84. Springer, 2012.

3. Ezio Bartocci, Borzoo Bonakdarpour, and Yliès Falcone. First
international competition on software for runtime verification.
In Bonakdarpour and Smolka [19], pages 1–9.

4. Ezio Bartocci, Luca Bortolussi, and Laura Nenzi. A temporal
logic approach to modular design of synthetic biological circuits.
In Proc. of CMSB 2013: the 11th International Conferenceon
Computational Methods in Systems Biology, volume 8130 of
LNCS, pages 164–177. Springer, 2013.



14 Bartocci et al.: Rules, Benchmarks, Tools, and Final Results of CRV 2014

5. Ezio Bartocci, Luca Bortolussi, and Guido Sanguinetti. Data-
driven statistical learning of temporal logic properties. In Proc.
of FORMATS 2014: the 12th International Conference on For-
mal Modeling and Analysis of Timed Systems, volume 8711 of
LNCS, pages 23–37, 2014.

6. Ezio Bartocci and Yliès Falcone. Runtime verification and
enforcement, the (industrial) application perspective (track intro-
duction). In Proc. ISoLA 2016: the 7th International Symposium
on Leveraging Applications of Formal Methods, Verification
and Validation: Discussion, Dissemination, Applications, Part
II, volume 9953 of LNCS, pages 333–338, 2016.

7. Ezio Bartocci, Radu Grosu, Atul Karmarkar, Scott A. Smolka,
Scott D. Stoller, Eretz Zadok, and Justin Seyster. Adaptive
runtime verification. In Proc. of RV 2012: the 3rd International
Conference on Runtime Verification, volume 7687 of LNCS,
pages 168–182. Springer, 2012.

8. Ezio Bartocci and Pietro Liò. Computational modeling, formal
analysis, and tools for systems biology. PLoS Computational
Biology, 12(1), 2016.

9. David Basin, Matúš Harvan, Felix Klaedtke, and Eugen
Zălinescu. MONPOLY: Monitoring usage-control policies. In
Proc. of RV 2011: the 2nd Internat. Conference on Runtime
Verification, volume 7186 of LNCS, pages 360–364. Springer,
2012.

10. David Basin, Matúš Harvan, Felix Klaedtke, and Eugen
Zălinescu. Monitoring data usage in distributed systems. IEEE
Transactions on Software Engineering, 39(10):1403–1426, 2013.

11. David Basin, Felix Klaedtke, Samuel Müller, and Eugen
Zălinescu. Monitoring metric first-order temporal properties.
Journal of the ACM, 62(2), 2015.

12. David Basin, Felix Klaedtke, and Eugen Zălinescu. Greedily
computing associative aggregations on sliding windows. Infor-
mation Processing Letters, 115(2):186–192, 2015.

13. David A. Basin, Germano Caronni, Sarah Ereth, Matúš Harvan,
Felix Klaedtke, and Heiko Mantel. Scalable offline monitoring.
Formal Methods in System Design, 49(1-2):75–108, 2016.

14. David A. Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen
Zălinescu. Monitoring of temporal first-order properties with
aggregations. Formal Methods in System Design, 46(3):262–285,
2015.

15. Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Ben-
jamin Monate, Yannick Moy, and Virgile Prevosto. ACSL: AN-
SI/ISO C Specification Language. Version 1.8, March 2014.

16. Shay Berkovich, Borzoo Bonakdarpour, and Sebastian Fis-
chmeister. GPU-based runtime verification. In 27th IEEE In-
ternational Symposium on Parallel and Distributed Processing,
IPDPS 2013, Cambridge, MA, USA, May 20-24, 2013, pages
1025–1036, 2013.

17. Dirk Beyer. Competition on software verification - (SV-COMP).
In Proc. of TACAS 2012: the 18th International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems - 18th International Conference, volume 7214 of LNCS,
pages 504–524. Springer, 2012.

18. Dirk Beyer. Status report on software verification - (competi-
tion summary SV-COMP 2014). In Erika Ábrahám and Klaus
Havelund, editors, Tools and Algorithms for the Construction
and Analysis of Systems - 20th International Conference, TACAS
2014, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2014, Grenoble, France,
April 5-13, 2014. Proceedings, volume 8413 of Lecture Notes in
Computer Science, pages 373–388. Springer, 2014.

19. Borzoo Bonakdarpour and Scott A. Smolka, editors. Runtime
Verification - 5th International Conference, RV 2014, Toronto,

ON, Canada, September 22-25, 2014. Proceedings, volume 8734
of Lecture Notes in Computer Science. Springer, 2014.

20. Sara Bufo, Ezio Bartocci, Guido Sanguinetti, Massimo Borelli,
Umberto Lucangelo, and Luca Bortolussi. Temporal logic based
monitoring of assisted ventilation in intensive care patients. In
B. Steffen and T. Margaria, editors, Proc. of ISoLA 2014: 6th
International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation, volume 8803 of LNCS,
pages 391–403, 2014.

21. Zhou Chaochen, C. A. R. Hoare, and Anders P. Ravn. A calculus
of durations. Inf. Process. Lett., 40(5):269–276, 1991.

22. Feng Chen, Patrick Meredith, Dongyun Jin, and Grigore Rosu.
Efficient formalism-independent monitoring of parametric prop-
erties. In IEEE/ACM International Conference on Automated
Software Engineering (ASE’09), pages 383–394, 2009.

23. Christian Colombo, Gordon Pace, and Patrick Abela. Safer
asynchronous runtime monitoring using compensations. Formal
Methods in System Design, 41(3):269–294, 2012.

24. Christian Colombo and Gordon J. Pace. Fast-forward runtime
monitoring - an industrial case study. In Runtime Verification,
Third International Conference, RV 2012, volume 7687 of Lec-
ture Notes in Computer Science, pages 214–228. Springer, 2012.

25. Christian Colombo, Gordon J. Pace, and Gerardo Schneider.
Dynamic event-based runtime monitoring of real-time and con-
textual properties. In Formal Methods for Industrial Critical
Systems (FMICS), volume 5596 of Lecture Notes in Computer
Science, pages 135–149. Springer, 2008.

26. Christian Colombo, Gordon J. Pace, and Gerardo Schneider.
Larva — safer monitoring of real-time java programs (tool
paper). In Proceedings of the 2009 Seventh IEEE Interna-
tional Conference on Software Engineering and Formal Methods,
SEFM ’09, pages 33–37, Washington, DC, USA, 2009. IEEE
Computer Society.

27. B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson,
B. Finkbeiner, H.B. Sipma, S. Mehrotra, and Zohar Manna.
LOLA: runtime monitoring of synchronous systems. In Pro-
ceedings of TIME 2005: the 12th International Symposium on
Temporal Representation and Reasoning, pages 166–174, 2005.

28. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an
efficient SMT solver. In C. R. Ramakrishnan and Jakob Rehof,
editors, Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,
2008. Proceedings, volume 4963 of Lecture Notes in Computer
Science, pages 337–340. Springer, 2008.

29. Normann Decker, Martin Leucker, and Daniel Thoma. jUnitRV—
adding runtime verification to jUnit. In Guillaume Brat, Neha
Rungta, and Arnaud Venet, editors, NASA Formal Methods, 5th
International Symposium, NFM 2013, Moffett Field, CA, USA,
May 14-16, 2013. Proceedings, volume 7871 of Lecture Notes
in Computer Science, pages 459–464. Springer, 2013.

30. Normann Decker, Martin Leucker, and Daniel Thoma. Moni-
toring modulo theories. In Erika Ábrahám and Klaus Havelund,
editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems - 20th International Conference, TACAS 2014,
Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014. Proceedings, volume 8413 of Lecture Notes in Computer
Science, pages 341–356. Springer, 2014.

31. Normann Decker, Martin Leucker, and Daniel Thoma. Monitor-
ing modulo theories. International Journal on Software Tools
for Technology Transfer, pages 1–21, 2015.



Bartocci et al.: Rules, Benchmarks, Tools, and Final Results of CRV 2014 15

32. Mickaël Delahaye, Nikolai Kosmatov, and Julien Signoles. Com-
mon Specification Language for Static and Dynamic Analysis of
C Programs. In Proceedings of SAC ’13: the 28th Annual ACM
Symposium on Applied Computing, pages 1230–1235. ACM,
March 2013.

33. Alexandre Donzé, Oded Maler, Ezio Bartocci, Dejan Nickovic,
Radu Grosu, and Scott A. Smolka. On Temporal Logic and Sig-
nal Processing. In Supratik Chakraborty and Madhavan Mukund,
editors, Proc. of ATVA 2012: 10th International Symposium on
Automated Technology for Verification and Analysis, Thiruvanan-
thapuram, India, October 3-6, volume 7561 of Lecture Notes in
Computer Science, pages 92–106. Springer-Verlag, 2012.

34. Yliès Falcone. You should better enforce than verify. In Howard
Barringer, Yliès Falcone, Bernd Finkbeiner, Klaus Havelund,
Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg Sokolsky, and
Nikolai Tillmann, editors, Proceedings of the 1st international
conference on Runtime verification (RV 2010), volume 6418 of
Lecture Notes in Computer Science, pages 89–105. Springer-
Verlag, 2010.

35. Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier.
Runtime verification of safety-progress properties. In 9th In-
ternational Workshop on Runtime Verification. Selected Papers,
volume 5779, pages 40–59, 2009.

36. Yliès Falcone, Klaus Havelund, and Giles Reger. A tutorial
on runtime verification. In Manfred Broy, Doron Peled, and
Georg Kalus, editors, Engineering Dependable Software Sys-
tems, volume 34 of NATO Science for Peace and Security Series,
D: Information and Communication Security, pages 141–175.
IOS Press, 2013.

37. Philip J. Fleming and John J. Wallace. How not to lie with
statistics: The correct way to summarize benchmark results.
Commun. ACM, 29(3):218–221, March 1986.

38. Ebru Aydin Gol, Ezio Bartocci, and Calin Belta. A formal meth-
ods approach to pattern synthesis in reaction diffusion systems.
In 53rd IEEE Conference on Decision and Control, CDC 2014,
Los Angeles, CA, USA, December 15-17, 2014, pages 108–113.
IEEE, 2014.

39. Klaus Havelund and Allen Goldberg. Verify your runs. In
Bertrand Meyer and Jim Woodcock, editors, Verified Software:
Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Confer-
ence, VSTTE 2005, Zurich, Switzerland, October 10-13, 2005,
Revised Selected Papers and Discussions, volume 4171 of Lec-
ture Notes in Computer Science, pages 374–383. Springer, 2005.

40. Falk Howar, Malte Isberner, Maik Merten, Bernhard Steffen,
and Dirk Beyer. The RERS grey-box challenge 2012: Analy-
sis of event-condition-action systems. In Tiziana Margaria and
Bernhard Steffen, editors, Leveraging Applications of Formal
Methods, Verification and Validation. Technologies for Master-
ing Change - 5th International Symposium, ISoLA 2012, Her-
aklion, Crete, Greece, October 15-18, 2012, Proceedings, Part
I, volume 7609 of Lecture Notes in Computer Science, pages
608–614. Springer, 2012.

41. Falk Howar, Malte Isberner, Maik Merten, Bernhard Steffen,
Dirk Beyer, and Corina S. Pasareanu. Rigorous examination of
reactive systems - the RERS challenges 2012 and 2013. STTT,
16(5):457–464, 2014.

42. Arvid Jakobsson, Nikolai Kosmatov, and Julien Signoles. Fast
as a shadow, expressive as a tree: hybrid memory monitoring
for C. In Roger L. Wainwright, Juan Manuel Corchado, Alessio
Bechini, and Jiman Hong, editors, Proceedings of the 30th An-
nual ACM Symposium on Applied Computing, Salamanca, Spain,
April 13-17, 2015, pages 1765–1772. ACM, 2015.

43. Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent
Simon. The international SAT solver competitions. AI Magazine,
33(1), 2012.

44. D. Jin, P. O. Meredith, C. Lee, and G. Roşu. JavaMOP: Efficient
Parametric Runtime Monitoring Framework. In Proceedings
of ICSE 2012: THE 34th International Conference on Software
Engineering, Zurich, Switzerland, June 2-9, pages 1427–1430.
IEEE Press, 2012.

45. Dongyun Jin, Patrick O’Neil Meredith, Dennis Griffith, and
Grigore Roşu. Garbage collection for monitoring parametric
properties. In Programming Language Design and Implementa-
tion (PLDI’11), pages 415–424. ACM, 2011.

46. Keanan Kalajdzic, Ezio Bartocci, Scott A. Smolka, Scott Stoller,
and G. Grosu. Runtime Verification with Particle Filtering.
In Proc. of RV 2013, the fourth International Conference on
Runtime Verification, INRIA Rennes, France, 24-27 September,
2013, volume 8174 of Lecture Notes in Computer Science, pages
149–166. Springer, 2013.

47. Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, and Boris Yakobowski. Frama-C: A Software Analysis
Perspective. Formal Aspects of Computing, pages 1–37, January
2015.

48. Nikolai Kosmatov, Guillaume Petiot, and Julien Signoles. An
optimized memory monitoring for runtime assertion checking of
C programs. In International Conference on Runtime Verifica-
tion (RV’13), volume 8174 of LNCS, pages 167–182. Springer,
September 2013.

49. Martin Leucker and Christian Schallhart. A brief account of
runtime verification. J. Log. Algebr. Program., 78(5):293–303,
2009.

50. Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin,
Patrick O’Neil Meredith, Traian-Florin Serbanuta, and Grig-
ore Rosu. Rv-monitor: Efficient parametric runtime verification
with simultaneous properties. In Bonakdarpour and Smolka [19],
pages 285–300.

51. Ramy Medhat, Yogi Joshi, Borzoo Bonakdarpour, and Sebastian
Fischmeister. Accelerated runtime verification of LTL specifica-
tions with counting semantics. CoRR, abs/1411.2239, 2014.

52. Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng
Chen, and Grigore Rosu. An overview of the MOP runtime
verification framework. STTT, 14(3):249–289, 2012.

53. Reed Milewicz, Rajesh Vanka, James Tuck, Daniel Quinlan, and
Peter Pirkelbauer. Runtime checking c programs. In Proceedings
of the 30th Annual ACM Symposium on Applied Computing,
pages 2107–2114. ACM, 2015.

54. S. Navabpour, Y. Joshi, C. W. W. Wu, S. Berkovich, R. Med-
hat, B. Bonakdarpour, and S. Fischmeister. RiTHM: a tool for
enabling time-triggered runtime verification for c programs. In
ACM Symposium on the Foundations of Software Engineering
(FSE), pages 603–606, 2013.

55. Augusto Oliveira, Jean-Christophe Petkovich, Thomas Reide-
meister, and Sebastian Fischmeister. DataMill: Rigorous perfor-
mance evaluation made easy. In Proc. of ICPE 2013: the 4th
ACM/SPEC International Conference on Performance Engineer-
ing, pages 137–149. ACM, 2013.

56. Amir Pnueli and Aleksandr Zaks. PSL model checking and
run-time verification via testers. In Jayadev Misra, Tobias Nip-
kow, and Emil Sekerinski, editors, FM 2006: Formal Methods,
14th International Symposium on Formal Methods, Hamilton,
Canada, August 21-27, 2006, Proceedings, volume 4085 of Lec-
ture Notes in Computer Science, pages 573–586. Springer, 2006.

57. Giles Reger, Helena Cuenca Cruz, and David Rydeheard. Marq:
monitoring at runtime with qea. In Proceedings of the 21st



16 Bartocci et al.: Rules, Benchmarks, Tools, and Final Results of CRV 2014

International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’15), 2015.

58. Julien Signoles. E-ACSL: Executable ANSI/ISO C Specifica-
tion Language, version 1.5-4, March 2014. frama-c.com/
download/e-acsl/e-acsl.pdf.

59. Julien Signoles. E-ACSL User Manual, March 2014.
http://frama-c.com/download/e-acsl/
e-acsl-manual.pdf.

60. Oleg Sokolsky, Klaus Havelund, and Insup Lee. Introduction to
the special section on runtime verification. STTT, 14(3):243–247,
2012.

61. Scott D. Stoller, Ezio Bartocci, Justing Seyster, Radu Grosu,
Klaus Havelund, Scott A. Smolka, and Eretz Zadok. Runtime
Verification with State Estimation. In Proc. of RV 2011, the
Second international conference on Runtime verification, San
Francisco, CA, USA, volume 7186 of Lecture Notes in Computer
Science, pages 193–207. Springer-Verlag, 2011.

frama-c.com/download/e-acsl/e-acsl.pdf
frama-c.com/download/e-acsl/e-acsl.pdf
http://frama-c.com/download/e-acsl/e-acsl-manual.pdf
http://frama-c.com/download/e-acsl/e-acsl-manual.pdf

	Introduction
	Phases and Rules of the Competition
	Participating Teams and Tools
	Evaluation - Calculating Scores
	Results
	Conclusions

