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A topological convex set is a convex set in a topological linear space with the induced topology. There
is a universal continuous affine mapping of such a set into a compact convex subset of a locally convex
linear space. Actually this compactification is a subset of a base normed Saks space. The results also
hold for topological convex modules.
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1. Introduction

Several authors have investigated the problem under which assumptions a convex subset
of a topological linear space can be embedded into a locally convex linear space. Jamison
with O’Brien and Taylor in [7], Lawson in [14] and Roberts in [21] have only considered
the case of compact convex sets. Semadeni in [23], [24] proves the existence of a universal
compactification of a bounded convex subset of a Hausdorff locally convex linear space,
which he calls the “affine compactificationÔ. The method he uses can be applied to the
far more general case of any convex subset of a topological linear space, as is shown in
the following.

For any topological convex set C, i.e. any convex subset of some topological linear space
E there exists a base normed ordered Saks space S∗(C) such that the base of its ordering
cone, which is compact in the locally convex topology of S∗(C), is the universal compacti-
fication of C. S∗(C) can be canonically extended to continuous affine morphisms between
topological convex sets and induces a functor S∗ from the category of topological convex
sets to the category of compact base normed Saks spaces, which furnishes a description
of this compactification analogous to the Stone-Čech compactification. This is proved in
§4.

These results can even be proved for topological convex modules and contain Semadeni’s
result as a special case. The notion of a convex module is a canonical generalization of the
notion of a convex set. It is used by Gudder [5], Flood [4], Swirszcz [25] and in [20]. The
notions of a convex and a topological convex module are introduced in §2 and some basic
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results are proved. Up to now, ordered Saks spaces seem not to have been introduced,
at least as far as the author knows. Consequently there are some degrees of freedom or
uncertainty in defining them. For the investigations at hand only a special type is needed,
namely base normed Saks spaces; they are defined in §3.

2. Topological convex modules

In the following all linear spaces considered will be real. IfX ⊂ E is a convex set in a linear

space and Ýα := (α1, . . . , αn), αi ≥ 0,
n
∑

i=1

αi = 1, then ÝαX(x1, . . . , xn) :=
n
∑

i=1

αixi defines a

mapping ÝαX : Xn → X, n ∈ N. Let Ωn
c :=

{

Ýα | Ýα ∈ [0, 1]n, Ýα = (α1, . . . , αn),
n
∑

i=1

αi = 1
}

and define Ωc :=
∞
⋃

n=1
Ωn

c the set of formal convex combinations. The above operations are

also described by the mappings

µn
X : Ωn

c ×Xn → X , (1)

n ∈ N, with µn
X(Ýα,x) :=

n
∑

i=1

aixi, Ýα ∈ Ωn
c , x ∈ Xn. If jn : Ωn

c × Xn →
∞
⋃

n=1
(Ωn

c × Xn)

denotes the inclusion, there is a unique mapping

µX :
∞
⋃

n=1

(Ωn
c ×Xn) → X (2)

with µXjn = µn
X , n ∈ N, giving an alternative representation of (1). This leads to the

Definition 2.1 ([18], [20]). A convex module C is a set C with a sequence of mappings

µn
C : Ωn

c × Cn → C ,

n ∈ N. If one writes the effect of the operations as formal sums,
n
∑

i=1

αici := µn
C(Ýα, c), Ýα ∈

Ωn
c , c ∈ Cn, the following equations have to be satisfied:

n
∑

i=1

δikci = ck , (C 1)

ci ∈ C, δik the Kronecker symbol, 1 ≤ i, k ≤ n, and

n
∑

i=1

αi

(
∑

k∈Ki

βikck

)

=
m
∑

k=1

(
n

∑

i=1
k∈Ki

αiβik

)

ck . (C 2)

In the last equation (α1, . . . , αn) ∈ Ωn
c , n ∈ N, and for 1 ≤ i ≤ n, Ki is a subset of

{k | 1 ≤ k ≤ m} = Nm of cardinality mi. Moreover,
n
⋃

i=1

Ki = Nm, Ýβi = (βik | k ∈ Ki) ∈

Ωmi
c and in the formal sum

∑

k∈Ki

βikxk the summands are supposed to be written in the

natural order of the k’s.
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A number of important computational rules follows from the above axioms (cf. [15], [18],

[20]), e.g. the fact that a sum
n
∑

i=1

αici is not changed by adding or omitting summands

with zero coefficients. Hence, for computations, by adding a suitable number of zeroes
one may assume that all the Ýβi, 1 ≤ i ≤ n, have the same length, Ýβi ∈ Ωm

c , so that (C 2)
takes the more simple form

n
∑

i=1

αi

(
m
∑

k=1

βikck

)

=
m
∑

k=1

(
n

∑

i=1

αiβik

)

ck . (C 2’)

Obviously any convex set - which will always mean a convex subset in some linear space -
is a convex module. The converse does not hold. Let M be a sup-semilattice and define,
for Ýα = (α1, . . . , αn) ∈ Ωc, xi ∈ M, 1 ≤ i ≤ n,

n
∑

i=1

αixi := V{xi | 1 ≤ i ≤ n and αi 6= 0} .

Then M is a convex module but in general not a convex set.

A morphism of convex modules f : C1 → C2, also called an affine mapping, is a mapping
preserving convex combinations:

f
(

n
∑

i=1

αic
1
i

)

=
n

∑

i=1

αif(c
1
i ) ,

c1i ∈ C1, 1 ≤ i ≤ n. The convex modules and the affine mappings constitute the category
Conv of convex modules. For any set X the standard simplex in R(X) is a free convex
module generated by X and any convex module is a quotient of a free one (cf. [20]).

A convex set X in a topological linear space E equipped with the induced topology is
called a topological convex set in E. The operations µn

X , n ∈ N, in (1) are then continuous
if one considers the topology induced by the l1-norm on Ωn

c . This leads to the

Definition 2.2. A topological convex module C is a convex module C with a topology
TC such that

µn
C : Ωn

c × Cn → C

is continuous for any n ∈ N, if Cn carries the product topology of TC , Ω
n
c the l1-norm

topology and Ωn
c ×Cn the product topology. A convex set C is called a topological convex

set, if there is a topology TC on C, with which C is a topological convex module.

If one considers the sum topology on the disjoint union
⋃

n

(Ωn
c × Cn) then an equivalent

statement is that µC :
⋃

n

(Ωn
c ×Cn) → C, defined as in (2), is continuous. The topological

convex modules with the continuous affine mappings form the category TopConv of
topological convex modules.

Countably convex sets were probably first introduced by Jameson [6] as subsets of Haus-

dorff topological linear spaces closed under countably convex combinations
∞
∑

i=1

αixi, αi ≥
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0,
∞
∑

i=1

αi = 1. He calls a subset M ⊂ E of a topological linear space CS-compact (con-

vex series compact) if
∞
∑

i=1

αixi, for xi ∈ M , converges for any xi and any sequence

(αi | i ∈ N), αi ≥ 0,
∞
∑

i=1

αi = 1, and lies in M. Countably convex modules without

topology were then investigated under the name superconvex spaces by Rodé [22], König
and Wittstock [13], Börger [2], Kemper [2], [9] and the author in [18], where they are
called superconvex modules.

Define Ωsc :=
{

Ýα | Ýα = (αi | i ∈ N), αi ≥ 0, i ∈ N, and
∞
∑

i=1

αi = 1
}

the set of formal

superconvex (or countably convex) combinations.

Definition 2.3 ([18]). A superconvex module C is a set with a mapping

µC : Ωsc × CN → C .

If one writes the effect of this mapping as a formal sum,
∞
∑

i=1

αici := µC(Ýα, c), Ýα ∈ Ωsc, c ∈

CN, the following equations have to be satisfied:

∞
∑

i=1

δikci = ck , (SC 1)

∞
∑

i=1

αi

(
∞
∑

k=1

βikck

)

=
∞
∑

k=1

(
∞
∑

i=1

αiβik

)

ck , (SC 2)

with ck ∈ C, k ∈ N, δik the Kronecker symbol and Ýα, Ýβi = (βik | k ∈ N) ∈ Ωsc.

A morphism f : C1 → C2 of superconvex modules, also called a superaffine mapping, is a
mapping preserving superconvex combinations:

f
(

∞
∑

i=1

αic
1
i

)

=
∞
∑

i=1

αif(c
1
i ) ,

Ýα ∈ Ωsc, c1i ∈ C1, i ∈ N. The superconvex modules with these morphisms form the
category SC of superconvex modules.

Let C be a superconvex module and consider an Ýα ∈ Ωsc with finite support, αi = 0 for

i > n. Then
∞
∑

i=1

αici, for c ∈ CN, does not depend on ci for i > n ([18], 1.2 (i)) and

one defines
n
∑

i=1

αici :=
∞
∑

i=1

αici , i.e. any superconvex module is also a convex module

(cf. [15], 2.10, 2.12). A set X is called a superconvex set, if X is a subset of some
linear space E, is a superconvex module and the (formal) superconvex sums extend the
usual convex combinations in E : For xi ∈ X, i ∈ N, and Ýα ∈ Ωsc with finite support
supp(Ýα) = {i | αi > 0}, i.e. αi = 0 for i > n with a suitable n,

∞
∑

i=1

αixi =
n

∑

i=1

αixi
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holds, where the right sum is the usual sum in E. Rodé shows in [22] that there is at
most one superconvex structure on a convex set in a linear space. Jameson investigates
superconvex sets in Hausdorff topological linear spaces in [6] and mentions that any se-
quentially complete, bounded convex set is a superconvex set. As the closed and the open
unit ball of a Banach space are superconvex sets, the above condition is not necessary.
Superconvex sets in topological linear spaces and 2.2 motivate the

Definition 2.4. A superconvex module C with a Topology TC is called a topological
superconvex module if the mapping

µC : Ωsc × CN → C

is continuous. Here, CN carries the product topology of TC and Ωsc the l1-norm topology.
The topological superconvex modules with the continuous superaffine mappings form the
category TopSC of topological superconvex modules. A topological superconvex set is a
superconvex set with a topology which makes it a topological superconvex module.

A superconvex subset X ⊂ E of a topological linear space is called a topological super-
convex set in E if X is a topological superconvex module with the topology induced by
E. If X is a topological superconvex subset in E, and E is a Hausdorff topological linear
space, then, for any Ýα ∈ Ωsc, x ∈ XN,

∞
∑

i=1

αixi = lim
n→∞

n
∑

i=1

αixi

holds in E, i.e.
∞
∑

i=1

αixi is an infinite convergent series in E in the usual sense (cp. [6]).

To see this, consider Ýα ∈ Ωsc with infinite support and put An :=
n
∑

i=1

αi. In the following,

we may always assume An > 0 by taking n large enough. Define

Ýαn := (A−1
n α1, . . . , A

−1
n αn, 0 . . . 0 . . .) ,

Ýαn ∈ Ωsc, n ∈ N, then lim
n→∞

Ýαn = Ýα in Ωsc holds in the l1-norm. Hence, (Ýα,x) =

lim
n→∞

(Ýαn,x) follows and the continuity of µX implies the assertion. Obviously, X is also

bounded and convex. Conversely, we have the

Proposition 2.5. Let E be a Hausdorff topological linear space and C ⊂ E a convex set.
If C is bounded and sequentially complete, then C is a topological superconvex set in E.

Proof. C is a superconvex set (cf. [6]). It remains to show that µC in 2.4 is continuous.
For this, we consider an element (Ýα, c) ∈ Ωsc × CN and a zero neighbourhood U in E.
There is a circled zero neighbourhood V with 5V ⊂ U and, because C is bounded, there
exists an εV > 0 with εVC ⊂ V . Moreover, for V and any k ∈ N there is a δ(V, k) > 0
and a zero neighbourhood W (V, k), such that for any

( Ýβ,d) ∈
[

(Ýα, c) + Oδ(V,k)(l1(N))×
∞
X
i=1

Wi

]

∩ (Ωsc × CN) ,
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with Wi := W (V, k), far 1 ≤ i ≤ k , Wi := C, for i > k ,
∑

n≤k

βn(dn − cn) ∈ V

holds. Here, Or(l1(N)), r > 0, denotes the closed ball with center the origin and radius r
in the Banach space l1(N). Also, there exists a k(V ) ∈ N with

∑

n>k(V )

αn < 2−1εV .

Define ε0 := εV , δ0 := min{2−1εV , δ(V, k(V ))} , W0 := W (V, k(V )), k0 := k(V ) and
consider any

( Ýβ,d) ∈
[

(Ýα, c) + Oδ0(l1(N))×
∞
X
i=1

Wi

]

∩ (Ωsc × CN) .

This implies
∑

n>k0

βn < ε0 ,
∑

n≤k0

βn(dn − cn) ∈ V .

Put A+ :=
∑

βn>αn

(βn−αn) , A− :=
∑

βn≤αn

(αn−βn) and assume, without loss of generality,

A+ > 0 and A− > 0.

Then
∑

n

(βn − αn)cn = A+

∑

βn>αn

γncn − A−
∑

βn≤αn

σncn

follows with γn := A−1
+ (βn − αn), for βn > αn, σn := A−1

− (αn − βn), for βn ≤ αn. This
implies

∑

n

(βn − αn)cn ∈ A+C − A−C ⊂ ε−1
0 A+V + ε−1

0 A−V ⊂ 2V ,

because A± < 2−1ε0. Moreover, we may assume that A0 :=
∑

n>k0

βn > 0, so that, with

τn := A−1
0 βn ,

∑

n>k0

βn(dn − cn) = A0

∑

n>k0

τndn − A0

∑

n>k0

τncn

holds, which implies
∑

n>k0

βn(dn − cn) ∈ A0C − A0C ⊂ ε−1
0 A0V + ε−1

0 A0V ⊂ 2V .

This yields
∑

n

βn(dn − cn) =
∑

n≤k0

βn(dn − cn) +
∑

n>k0

βn(dn − cn) ∈ 3V

and hence
∑

n

βndn −
∑

n

αncn =
∑

n

βn(dn − cn) +
∑

n

(βn − αn)cn ∈ U ,

which proves the assertion.
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3. Base normed Saks spaces

A Saks space is a triple (‖2‖, E,T), where E with the norm ‖2‖ is a normed linear space,
E with the topology T is a (Hausdorff) locally convex linear space and the unit ball O(E)
is bounded and closed in T (cf. [3]). In the following, a Saks space will be denoted by a
single letter E, its norm by ‖2‖E and its topology by TE. If Ei, i = 1, 2, are Saks spaces
a morphism f : E1 → E2 is a linear contraction, such that its restriction to the unit balls
is TE1 − TE2 continuous. The Saks spaces with their morphisms constitute the category
Saks1 of Saks spaces. A Saks space E is called complete if O(E) is TE-complete, which
implies that E with ‖2‖E is a Banach space ([3], 1.2). E is called compact if O(E) is
TE-compact. These special types define the full subcategories CSaks1 of complete and
CompSaks1 of compact Saks spaces. Examples of Saks spaces abound. The dual E ′

of any normed linear space is a compact Saks space if it is supplied with the dual norm
and the weak ∗-topology. If E is a locally convex linear space and B ⊂ E an absorbing,
bounded, closed and absolutely convex set, then the Minkowski functional of B makes E
a Saks space.

Definition 3.1. A base normed Saks space is a quadruple (‖2‖, C, E,T), where E is a
linear space ordered by the proper, generating cone C with base B, which induces the
norm ‖2‖, i.e. E is a base normed linear space (cf. [6], [26]). Moreover, E with the
topology T is a locally convex space and B is bounded and closed in T. Hence, C is
well-based and closed (cp. [6], 3.8.3).

A base normed Saks space will be denoted by a single letter E, its norm by ‖2‖E, its
cone by CE with base BE and its topology by TE. If M ⊂ E is a set in a linear space,
let conv(M) denote its convex closure and absconv(M) its absolutely convex closure. In

a base normed Saks space E
o

O(E) ⊂ absconv(BE) ⊂ O(E) holds, if
o

O(E) denotes the
open (with respect to the norm ‖2‖E) unit ball, and O(E) ⊂ absconv(BE), if M denotes
the TE-closure of a set M ⊂ E. As BE is TE-bounded so is O(E). But in general O(E)
is not TE-closed, hence a base normed Saks space is not necessarily a Saks space in the
sense of Cooper [3]. The Minkowski functional |2| of O(E) makes E a Saks space with
|2| ≤ ‖2‖E, but |2| is in general not a base norm.

A morphism of base normed Saks spaces f : E1 → E2 is a linear mapping with f(BE1) ⊂
BE2 , which, restricted to the bases f/BE1 : BE1 → BE2 is TE1-TE2 continuous. The base
normed Saks spaces and their morphisms form the category BNSaks1 of base normed
Saks spaces. A base normed Saks space E is called complete, if BE is TE-complete,
and compact, if BE is TE-compact. The corresponding full subcategories are denoted by
CBNSaks1 and CompBNSaks1; obviously CompBNSaks1 ⊂ CBNSaks1.

Proposition 3.2.
(i) If E is a base normed linear space with norm ‖2‖E, cone CE and base BE and BE

is superconvex, then E is a base normed Banach space ([18]).

(ii) If E is a complete base normed Saks space, (E, ‖2‖E) is a base normed Banach
space.

Proof. (i): For x ∈ E, ‖x‖E = inf{α > 0 | x ∈ α absconv(BE)} and

absconv(BE) = {y | y = λ1b1 − λ2b2, bi ∈ BE, λi ≥ 0, i = 1, 2 λ,+λ2 = 1}
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hold. A straightforward computation shows that

‖x‖E = inf{α+ β | α, β ≥ 0, x = αb1 − βb2, b1, b2 ∈ BE} .

−y ≤ x ≤ y implies y + x = αb1, y − x = βb2, α, β ≥ 0, bi ∈ BE, i = 1, 2, hence
y = 2−1(αb1 + βb2) and

‖y‖E = 2−1(α+ β) ≥ ‖x‖E . (∗)
If ε > 0, there are α, β ≥ 0 , b1, b2 ∈ BE with x = αb1−βb2 and ‖x‖E ≤ α+β < ‖x‖E+ε.
With y := αb1 + βb2 ‖x‖E ≤ ‖y‖E < ‖x‖E + ε and −y ≤ x ≤ y follows, hence

‖x‖E = inf{‖y‖E | − y ≤ x ≤ y} . (∗∗)

(∗) and (∗∗) show that ‖2‖E is a Riesz norm so that CE gives an open decomposition of
E because a Riesz norm is semi-decomposable ([26], 3.1, p. 30). Now Proposition 3.5.11
in [6] can be used to show that E is complete. Consider an increasing Cauchy sequence
cn ∈ CE , n ∈ N. We may assume that ‖cn+1 − cn‖E < 2−n and cn < cn+1, for n ∈ N. As
cn+1−cn ≥ 0 there is αn > 0 and bn ∈ BE with cn+1−cn = αnbn. αn = ‖cn+1−cn‖E < 2−n

implies ‖Ýα‖ :=
∞
∑

n=1
αn ≤ 1. Moreover

cn+1 − cn =
n

∑

i=1

(ci+1 − ci) =
n

∑

i=1

αibi

holds and

c0 :=
∞
∑

i=1

αi

‖Ýα‖
bi

is an element of BE. Define ‖Ýαn‖ :=
n
∑

i=1

αi, then an application of (SC 2) yields

c0 =
‖Ýαn‖
‖Ýα‖

n
∑

i=1

αi

‖Ýαn‖
bi +

(

1− ‖Ýαn‖
‖Ýα‖

)
∞
∑

i=n+1

αi

‖Ýα‖ − ‖Ýαn‖
bi .

As the second sum is in BE its norm is 1 and we get

‖ ‖Ýα‖c0 −
n

∑

i=1

αibi ‖E = (‖Ýα‖ − ‖Ýαn‖) .

This yields lim
n→∞

cn = ‖Ýα‖c0 + c1 hence (E, ‖2‖E) is complete ([6]).

(ii): BE is a convex, TE-bounded and TE-complete subset of (E,TE) hence is a topological
superconvex subset of E because of 1.5. Now the assertion follows from (i).

If E is a compact base normed Saks space, absconv(BE) is TE-compact, hence absconv(BE)
= O(E) holds, i.e. E is a compact Saks space in the sense of Cooper [3]. There are nu-
merous examples of base normed Saks spaces. The dual E ′ of any order unit normed
space is a compact base normed Saks space with the weak ∗-topology ([6], [26]). If E is a
Saks space in the sense of Cooper and ‖2‖E is a base norm for a base B of a generating
cone C in E with 0 6∈ B, then B is a base for C ([6]) and, with B and C, E is a base
normed Saks space.
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4. The compactification

From now on, the base of a base normed Saks space E with the topology induced by TE

will be denoted by Bs∗(E).

Proposition 4.1.
(i) The Bs∗(E), E a base normed Saks space, induce a functor Bs∗ : BNSaks1 →

TopConv.
(ii) The Bs∗(E), E a complete, base normed Saks space, induce a functor Bs∗ :CBNSaks1

→ TopSC.

Proof. (i): For a morphism f : E1 → E2 of base normed Saks spaces the restriction
to the bases is denoted by Bs∗(f) and is trivially continuous and affine. Bs∗(E) is also
obviously a topological convex module.

(ii): 2.5 implies that Bs∗(E) is a topological superconvex module if E is a complete base
normed Saks space.

Let C ∈ SC and E be a Hausdorff, linear topological space. Then f : C → E is called
superaffine, if f(C) ⊂ E is a topological superconvex set and the restriction of f to
C → f(C) is a superaffine mapping.

Lemma 4.2. Let E be a Hausdorff topological linear space, which is sequentially complete,
C a superconvex module and f : C → E a mapping. Then the following statements are
equivalent:

(i) f is superaffine,

(ii) f is affine and bounded.

Proof. If f is superaffine it is trivially affine and f(C) is bounded. If f is affine and

bounded, take an Ýα ∈ Ωsc with infinite support, so that one may assume An :=
n
∑

i=1

αi > 0

for n large enough. Then, for ci ∈ C, i ∈ N,

f
(

∞
∑

i=1

αici

)

−
n

∑

i=1

αif(ci) = (1− An)f
(

∞
∑

i=n+1

(1− An)
−1αici

)

.

If U is any zero neighborhood, which we may assume to be circled, there is an εU > 0
with f(C) ⊂ ε−1

U U . There exists n0(εU) such that 0 < 1− An < εU for n ≥ n0(εU). This
implies

f
(

∞
∑

i=1

αici

)

−
n

∑

i=1

αif(ci) ∈ U ,

i.e. (i).

Definition 4.3. For C ∈ TopConv, one defines Affc(C) := {f | f : C → R affine,
bounded and continuous}, R with its usual topology.

All constant mappings belong to Affc(C), the constant mapping with value 1 is denoted
by 1C . With the pointwise operations Affc(C) is a real linear space, it is also ordered by
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the pointwise order, f1 ≤ f2 if f1(c) ≤ f2(c) for c ∈ C. If E is a topological linear space
E ′ will denote the topological dual, i.e. the space of all continuous linear forms on E.

Proposition 4.4. If C ∈ TopConv, then:

(i) With the supremum norm Affc(C) is an order unit Banach space with order unit
1C.

(ii) With the dual norm and the weak ∗-topology Aff′
c(C) is a compact base normed Saks

space.

(iii) The evalution mapping τC(c)(f) := f(c), c ∈ C, f ∈ Affc(C), is affine, TC-weakly
∗-continuous and induces a natural transformation.

Proof. The proof of (i) is straightforward. The assertion of (ii) is a well-known theorem
([6], [26]). The weakly ∗-compact base is

Bs(Aff′
c(C)) = {Λ | Λ ≥ 0, ‖Λ‖ ≤ 1 and Λ(1C) = 1}

= {Λ | Λ ≥ 0, ‖Λ‖ = 1}

with the dual norm.

(iii) τC : C → Aff′
c(C) is obviously affine. Put

Ýf(Λ) := Λ(f)

for f ∈ Affc(C), Λ ∈ Aff′
c(C). Then the linear forms Ýf : Aff′

c(C) → R induce the weak
∗-topology. For f ∈ Affc(C), c ∈ C,

Ýf(τC(c)) = τC(c)(f) = f(c)

holds, i.e. ÝfτC = f , hence τC is TC-weakly ∗-continuous. If one regards C 7→ Aff′
c(C) as

an endofunctor of TopConv, τC induces trivially a natural transformation.

For a subset M ⊂ Aff′
c(C), cl∗(M) will denote the weak ∗-closure of M . Define

S∗(C) := R+ cl∗(τC(C))− R+ cl∗(τC(C)) ,

with R+ := {x | x ∈ R, x ≥ 0} , C ∈ TopConv and

‖z‖∗ := inf{α > 0 | z ∈ α absconv(cl∗(τC(C)))}

for z ∈ S∗(C). As cl∗(τC(C)) ⊂ Bs(Aff′
c(C))

‖z‖ ≤ ‖z‖∗

holds, for z ∈ S∗(C), with ‖2‖ the dual norm in Aff′
c(C). Hence, ‖2‖∗ is a norm in

S∗(C). Let T∗(C) or simply T∗ denote the locally convex topology induced in S∗(C) by
the weak ∗-topology.

Theorem 4.5. The following statements hold for C ∈ TopConv:

(i) S∗(C) is a compact base normed Saks space, with norm ‖2‖∗, order cone R+

cl∗(τC(C)) with base cl∗(τC(C)) and topology T∗(C). The S∗(C), C ∈ TopConv,
induce a functor S∗: TopConv → CompBNSaks1.



D. Pumplün / The universal compactification of topological convex sets and modules 265

(ii) Let τ∗(C) denote the restriction of τC to Bs∗(S∗(C)) = cl∗(τC(C)) with the topology
induced by T∗(C), C ∈ TopConv. Then the τ∗(C) induce a natural transformation
τ∗: TopConv → Bs∗ ◦ S∗ and S∗ is left adjoint to Bs∗ with adjunction morphism
τ∗.

Proof. (i) As cl∗(τC(C)) ⊂ Bs(Aff′
c(C)), cl∗(τC(C)) is weakly ∗-compact and P0 :=

R+ cl∗(τC(C)) is a proper, generating, weakly ∗-closed, well-based cone ([6], 3.8.3). P0

is also ‖2‖∗-closed and cl∗(τC(C)) is ‖2‖∗-closed and ‖2‖∗-bounded. Hence ‖2‖∗ is a
base norm and, if O∗(S∗(C)) is the unit ball with respect to ‖2‖∗ ,

O∗(S∗(C)) = absconv(cl∗(τC(C)))

because absconv(cl∗(τC(C))) is weakly ∗-compact ([8], 6.7.3). The proof of the last asser-
tion in (i) is obvious.

(ii) We first show that the functor Bs∗ : CompBNSaks1 → TopConv (cf. 4.1, (i)) is
full and faithful. Let ϕ : Bs∗(E1) → Bs∗(E2) be a continuous affine mapping. ϕ can
be uniquely extended to a linear mapping Ýϕ : E1 → E2, which is continuous because ϕ
is, hence Ýϕ is a morphism in BNSaks1. That τ∗(C), C ∈ TopConv, induce a natural
transformation is obvious.

To prove the universal property of τ∗(C) let ϕ : C → Bs∗(E) be a morphism in TopConv
and E ∈ CompBNSaks1. For simple notation put τ0 := τ∗(Bs∗(E)), τ0 : Bs∗(E) →
Bs∗(S∗(Bs∗(E))). τ0 is continuous hence τ0(Bs∗(E)) is weakly ∗-compact, i.e. τ0 is surjec-
tive. If τ0(x1) = τ0(x2) for x1, x2 ∈ Bs∗(E), then, for any f ∈ Affc(Bs∗(E)), f(x1) = f(x2)
follows. Moreover, any linear, TE-continuous λ: E → R is an element of Affc(Bs∗(E))
when restricted to Bs∗(E). This implies that τ0 is injective, hence an isomorphism in Top-
Conv. As Bs∗ is full and faithful, there is exactly one extension ψ0 : E → S∗(Bs∗(E))
of τ0 and ψ0 is an isomorphism in CompBNSaks1. Then ϕ0 := ψ−1

0 S∗(ϕ) : S∗(C) → E
is the unique morphism in CompBNSaks1 with the property ϕ = Bs∗(ϕ0)τ∗(C), which
proves the left adjointness of S∗ .

If we now consider the case C ∈TopSC, we see that because of 4.2 the above constructions
do not change. So, restricting S∗ to the full subcategory TopSC of TopConv 4.5 yields
the

Corollary 4.6. The functor S∗ : TopSC → CompBNSaks1 is a left adjoint of Bs∗ :
CompBNSaks1 → TopSC with adjunction morphism τ∗: TopSC → Bs∗ ◦ S∗ .

It should be noted that Bs∗ maps CompBNSaks1 to TopSC in any case. Also S∗(C) is
a compact base normed Saks space for C ∈ TopConv. If C has the discrete topology, i.e.
the trivial topology, 4.5 and 4.6 yield, in both cases, a universal compactification, too. If
one then forgets the weak topology on S∗(C) one has in τ∗(C) a morphism into the base
of a base normed Banach space, which is different from the universal one in [18].

A convex set B ⊂ E in a linear space, B 6= ∅, is called a base set, if, for all α, β > 0 and
b1, b2 ∈ B, αb1 = βb2 implies α = β. If E is a locally convex linear space and a convex
subset B 6= ∅ is not a base set, define

E0 := R× E ,
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which is a locally convex linear space with the product topology and B0 := {1} × B is a
base set in E0. E1 := R+ B0−R+ B0 with the induced topology is a locally convex linear
space, with the proper generating cone R+B0 with base B0 and 0 6= B0. If B is compact,
B0 is compact, too, and R+B0 is closed and well-based ([6], 3.8.5). This implies that E1

with the Minkowski functional of absconv(B0) as norm is a compact base normed Saks
space. Hence, for any compact convex subset B 6= ∅ of a locally convex linear space E,
we may always assume that B is the base of the base normed Saks space E.

Now, let C ⊂ E be a convex, bounded subset of the locally convex linear space E. C is
a topological convex set so, in particular, a topological convex module. Let τ∗(C)(c1) =
τ∗(C)(c2), then, for any λ ∈ E ′, λ(C) ⊂ R is bounded, hence λ/C ∈ Affc(C) and
λ(c1) = λ(c2), which implies c1 = c2. This means that τ∗(C) : C → Bs∗(S∗(C)) is
injective. Combining the preceding considerations with 4.5 shows that τ∗(C) is exactly
the universal compactification of Semadeni in [23], [24].
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