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Introduction

This thesis studies a specific connection of multiple zeta values and modular forms given by
multiple Eisenstein series. It is a cumulative thesis consisting of four works, [BK],[BT],[Ba2]
and [BK2], that can be found in the appendices , , and @ respectively. This text
is an example-driven overview and summary of the results obtained in these works. It
is intended to be submitted as a survey article in the Proceedings of the 2014 ICMAT
Research Trimester "Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field
Theory". It shall serve as an introduction and motivation for the above mentioned paperd!]

Most of the proofs of the main theorems therefore will be omitted.

Multiple zeta values are real numbers that are natural generalizations of the Riemann zeta

values. These are defined for integers s; > 2 and s5,...,5 > 1 by
1
C(SL...,SZ) = Z 51 s -
n1>ng>-->n; >0 ny ...y

Such real numbers were already studied by Euler in the cases [ = 1 and [ = 2 in the
18th century. Because of their occurrence in various fields of mathematics and theoretical
physics, the multiple zeta values had a comeback in the mathematical and physical research
community in the late 1990s due to works by several people such as D. Broadhurst, F.
Brown, P. Deligne, H. Furusho, A. Goncharov, M. Hoffman, M. Kaneko, D. Zagier et al..

Denote the Q-vector space of all multiple zeta values of weight k by
MZ, ::<C(sl,...,sl)‘sl+---+sl:kandl>O>Q

and write M Z for the space of all multiple zeta values. It is of central interest to understand
the Q-linear relations between these numbers. The first one is given by ((2,1) = ((3) and

several ways are known to prove this relation ([BB]). Using the representation of multiple

IThe versions in the appendix are the most recent ones and may differ from those available in the arxiv.
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zeta values as an ordered sum as above, their product can be written as a linear combination
of multiple zeta values of the same weight, i.e. the space MZ has the structure of a Q-

algebra. For example it is

€(2)-<(3) = <(2,3) +¢(3,2) + <€), (0.1)
C(3)-¢(2,1) = €(3,2,1) +¢(2,3,1) + (2, 1,3) +¢(5,1) +¢(2,4) . (0.2)

This way to express the product, which will be studied in Chapter 1 in more detail, is
called the stuffle product (also named harmonic product). Besides this, a representation
of multiple zeta values as iterated integrals yields another way to express the product of

two multiple zeta values, which is called the shuffle product. For the above examples, this

is given by
((2)-¢(3) = €(2,3) +3¢(3,2) + 6¢(4,1), (0.3)
C(3)-¢(2,1) =¢(2,1,3) +¢(2,2,2) +2¢(2,3,1) +2¢(3,1,2) + 5¢(3,2,1) +9¢(4,1,1) .

(0.4)

Since and are two different expressions for the product ((2) - ((3), we obtain
the linear relation ((5) = 2((3,2) + 6¢(4,1). These relations are called the double shuffle
relations. Conjecturally all Q-linear relations between multiple zeta values can be proven
by using an extended version of these types of relations. Often relations between multiple
zeta values are not proven by using double shuffle relations, since there are easier ways to
prove them in some cases. The relation ((4) = ((2,1,1) for example, has an easy proof
using the iterated integral expressions for multiple zeta values. A famous result of Euler
is that every even zeta value ((2k) is a rational multiple of 72*. For example, we have
CRP=20M), CUP=1a®), €67 = o). 05)
The relations can also be proven using the double shuffle relations, but for general k
there is no explicit proof of Eulers relations using only double shuffle relations so far.
Since the double shuffle relations preserve the weight it is conjectured that the space MZ
is a direct sum of the MZ,, i.e. there are no relations between multiple zeta values of
different weight.
Surprisingly, there are several connections of these numbers to modular forms for the full
modular group SLy(Z). Recall that modular forms are holomorphic functions in the com-
plex upper half-plane fulfilling certain functional equations. One of the most famous con-
nections between multiple zeta values and modular forms is established by the Broadhurst-

Kreimer conjecture.
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Conjecture 1. (Broadhurst-Kreimer conjecture) The generating series of the dimension

dimg (MZy,) of weight k multiple zeta values of length [ modulo lower lengths can be

written as
_ 1+ EX)Y
kvl

%dlm@ MZ40) XY = T GX)Y 1 8(0)Y2 —S(X)¥T"

1>0
where ) 3 12

X X X
EX) =ik W =% SO =gxma—x9

The connection to modular forms arises here, since S(X) = 375, dim Sy (SLo(Z)) X* is the
generating function of the dimensions of cusp forms for the full modular group. In the
formula of the Broadhurst-Kreimer conjecture, one can see that cusp forms give rise to
relations between double zeta values, i.e. multiple zeta values in the length [ = 2 case. For
example in weight 12, the first weight in which non-trivial cusp forms exist, there is the

following famous relation

5619917g(12) —168¢(5,7) + 150C(7,5) + 28¢(9,3) (0.6)

Even thoug our focus does not lie on the Broadhurst-Kreimer conjecture, the concept
of obtaining relations of multiple zeta values by cusp forms also appears in our context
of multiple Eisenstein series and g-analogues of multiple zeta values. It is known that
every modular form for the full modular group can be written as a polynomial in classical

Eisenstein series. These are for even k£ > 0 given by

1 1 (—2mi)k &
Gin== Y ———— =)+ > ok n
#(7) 2 )z (mT +n)k Ck) + (k—l)!nzlgk 1(n)g”
(m,n)#(0,0)

where 7 € H is an element in the upper half-plane, ¢ = exp(27i7) and ox(n) = >y, d*
denotes the classical divisor-sum. In [GKZ| the authors introduced a direct connection of
modular forms to double zeta values. They defined double Eisenstein series Gy, 5, € C[[q]]
which are a length two generalization of classical Eisenstein series and which are given
by a double sum over ordered lattice points. These functions have a Fourier expansion
given by sums of products of multiple zeta values and certain g-series with the double
zeta value ((s1, $2) as their constant term. In [Ba], the author treated the multiple cases

and calculated the Fourier expansion of multiple Eisenstein series Gy, 5 € C[[g]]. The
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result of [Bal] was that the Fourier expansion of multiple Eisenstein series is again a M Z-

linear combination of multiple zeta values and the g-series g4, ., € C[[¢]] defined by

m

Gtrpoot (T) = (=2ma) o [ty ty] with ¢ = €™ and
t1—1 tm—1
. vt 1
[tl,...,t].: ,qll an.
m u1>.~->zum>0 (ti — D (= 1)!
V1,...,Um >0
Theorem 2. ([Ba]) For sy,...,s > 2 the multiple Eisenstein series Gy, s, can be written

as a MZ-linear combination of the above functions g;, ;..

For example:

Gaaalr) =¢3,2,2) + (30(2,3) + 26(3,2)) 02(r) + 5 C(2 D7)

+3¢(3)g2,2(7) +4¢(2)g3.2(7T) + g3,22(7) -

The starting point of this thesis was the fact that there are more multiple zeta values
than multiple Eisenstein series, since ((s1,...,s;) exists for all s > 2,s5,...,5 > 1 and
the Gy, s just exists when all s; > 2. The main objective was to answer the following

question

Question 1. What is a "good" definition of a "reqularized"” multiple Eisenstein series, such

that for each multiple zeta value ((s1,...,s;)) with s1 > 1,89,...,8 > 1 there is a q-series

Gi:?..,sz = C(Slu cee 751) + Z Cann = C[[Q]]

n>0

with this multiple zeta value as the constant term in its Fourier expansion and which equals

the multiple Eisenstein series in the cases s1,...,8 > 27

By "good" we mean that these regularized multiple Eisenstein series should have the same,
or at least as close as possible, algebraic structure similar to multiple zeta values. Our
answer to this question was approached in several steps which will be described in the
following i)-iii). First i) the algebraic structure of the functions g was studied. During this
investigation, it turned out, that these objects, or more precisely the g-series [sq, ..., s]
are very interesting objects in their own right. It turned out that in order to understand
their algebraic structure it was necessary to study a more general class of g-series, called
bi-brackets in ii). The results on bi-brackets and brackets then were used, together with a

beautiful connection of the multiple Eisenstein series to the coproduct structure of formal
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iterated integrals, to answer the above question in iii).

i) To answer Question , the algebraic structure of the functions g, or more precisely the
algebraic structure of the g-series [sq,...,s], was studied in [BK]. It turned out that
these g-series, whose coefficients are given by weighted sums over partitions of n, are,
independently of their appearance in the Fourier expansion of multiple Eisenstein series,
very interesting objects in their own right. We will denote the Q-vector space spanned by all
these brackets and the constant 1 by MD. Since we also include the rational numbers, the
normalized Eisenstein series G (7) := (—27i) *Gy () are contained in MD. For example,

we have

_ 1 _
Gy = —— +[2], G4_T40+[4]’ GG——M-F

The algebraic structure of the space MD was studied in [BK] and one of the main results

[6].

was the following

Theorem 3. ([BK]) The Q-vector space spanned by all brackets, equipped with the usual
multiplication of formal g-series, is a Q-algebra, containing the algebra of modular forms

with rational coefficients as a subalgebra.

In fact, the product satisfies a quasi-shuffle product and the notion of quasi-shuffle products
will be made precise in Section [2.1] Roughly speaking, this means that the product of two
brackets can be expressed as a linear combination of brackets similar to the stuffle product
, of multiple zeta values. For example we will see that

L),

12
321 = 3,21+ [2,3,1] 4 21,3 + 5,1 + 2.4 + 5[2,2) - 52,3 -

[21-[8] = [3,2] + [2,3] + [3]
[37 1] Y

i.e. up to the lower weight term —:5[3] and (2,2] — £[2,3] — 15[3, 1] this looks exactly
like (0.1)),(0.2). One might ask if there is also a product structure, which corresponds to
the shuffle product (0.3) of multiple zeta values. It turned out that for the lowest length

case, this has to do with the differential operator d = qdiq. In [BK], it was shown that
2] - [3] = [2,3] + 3[3,2] + 6[4, 1] — 3[4] + d[3], (0.7)

which, again up to the term —3[4] + d[3], looks exactly like the shuffle product (0.3]) of
multiple zeta values. In particular it follows that d[3] is again in the space MD and in

general it was shown that
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Theorem 4. ([BK]) The operator d = qdiq is a derivation on MD.

ii) Equation above was the motivation to study a larger class of g-series, which will be
called bi-brackets. While the quasi-shuffle product of brackets also exists in higher length,
the second expression for the product, corresponding to the shuffle product, does not appear
in higher length if one just allows derivatives as "error terms". The bi-brackets can be seen
as a generalization of the derivative of brackets. For sq,...,s > 1, r1,...,r, > 0 we define
these bi-brackets by

T1 T s1—1 s1—1
lSl,...,Sl] Uy U, (% ..

=X T (s (s — 1) e N ]| 7]]

up>->u>0 1
V1,...,07>0

In the case riy = --- = r; = 0 these are just ordinary brackets. The products of these
seemingly larger class of g-series have two representations similar to the stuffle and shuffle
product of multiple zeta values in arbitrary length. For our example, the analog of the
shuffle product (0.4) for brackets can now be expressed as
B]-[2,1] =1[2,1,3] +[2,2,2] + 2[2,3,1] +2[3,1,2] + 5[3,2,1] + 9[4, 1, 1]
2,3 3,2 4,1
’ 2|7 T —=12,3] —2[3,2] — 6[4,1].

We will see in Section that these double shuffle structure can be described, using the
so called partition relation, in a nice combinatorial way. This gives a large family of linear
relations between bi-brackets. In fact numerical calculations show that there are so many

relations, that we have the following surprising conjecture
Conjecture 5. Every bi-bracket can be written in terms of brackets, i.e. MD = BD.

Using the algebraic structure of the space of bi-brackets, we now review the definition
of shuffle brackets [s1,...,s]|" and stuffle [s1,...,s]* version of the ordinary brackets as
certain linear combination of bi-brackets as introduced in [Ba2]. These objects fulfill the
same shuffle and stuffle products as multiple zeta values respectively. Both constructions
use the theory of quasi-shuffle algebras developed by Hoffman in [H]. We summarize the

results in the following Theorem.
Theorem 6. ([Ba2|)

i) The space BD spanned by all bi-brackets {;‘fiiﬂ forms a Q-algebra containing the
space of (quasi-)modular forms and the space MD of brackets as subalgebras. There
are two ways to express the product of two bi-brackets which correspond to the stuffie

and shuffle product of multiple zeta values.



ii) There are two subalgebras MDY C BD and MD* C MD spanned by elements
[s1,...,8]" and [s1,...,s]" which fulfill the shuffle and stuffle products, respectively,

and which are in the length one case given by the bracket [s4].
For example, similarly to the relation between multiple zeta values above, we have

[2,3]" 4+ [3,2]" + [5] = [2] - [3] = [2,3]" + 3[3,2]" + 6[4, 1]

iii) A particular reason for studying the [sq, ..., s;]* is due to their use in the regularization
of multiple Eisenstein series, i.e. they are needed in the answer of the original Question
This was implicitly done in [BT] by proving an explicit connection of the Fourier expansion
of multiple Eisenstein series to the coproduct on formal iterated integrals introduced by
Goncharov in [G]. This connection was already known to the authors of [GKZ] in the
length two case. Without knowing this connection, it was then rediscovered independently
by the authors of [BT] during a research stay of the second author at the DFG Research
training Group 1670 at the University of Hamburg in 2014. The result of this research
stay was the work [BT], in which the authors used the above-mentioned connection to
give a definition of the shuffle regularized multiple Eisenstein series. Later, the present
author combined the result of [BT| and the algebraic structure of bi-brackets to give a
more explicit definition of shuffle regularized multiple Eisenstein series using bi-brackets in
[Ba2).

Formal iterated integrals are symbols I(ag;ay, ..., an; ant1) with a; € {0,1} that satisfy
identities like real iterated integrals. We will write 1(3,2) for 7(1;00101;0) and we will
see that the elements of the form I(sy,...,s;), obtained in the same way as I(3,2), form
a basis of the space of formal iterated integrals in which we are interested. The space of
these integrals has a Hopf algebra structure with the multiplication given by the shuffle
product and the coproduct A given by an explicit formula, which we will review in Section
[ 4.1l For example it is

A(1(3,2)=1®1(3,2)+3I(2)®@I3)+2I3)®I(2)+1(3,2)®1.
Compare this with the Fourier expansion of the double Eisenstein series Gg o

Gs2(7) = ((3,2) 4 392(7)¢(3) + 295(7)¢(2) + gs.2(7) -
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Since A(I(sy,...,s;)) exists for all sq,...,s > 1, this comparison suggested a definition
of shuffle regularized multiple Eisenstein series G, by sending the first component of
the coproduct of I(sy,...,s) to a (—2mi)-multiple of the shuffle bracket and the second
component to shuffle regularized multiple zeta values. In [BT], it was proven that this
construction returns the original multiple Eisenstein series in the cases sq,...,s > 2.

Together with the results on the shuffle brackets in [Ba2|, we obtain the following

Theorem 7. ([BT],[Ba2]) For all sy,...,s > 1 there exist shuffle regularized multiple
Eisenstein series G} . € C[[q]] with the following properties:

i) They are holomorphic functions on the upper half-plane (by setting ¢ = exp(2mit)),
having a Fourier expansion with the shuffle regularized multiple zeta values as the

constant term.
ii) They fulfill the shuffle product.

iii) They can be written as a linear combination of multiple zeta values, powers of (—27i)
and shuffle brackets [...]* € BD.

iv) For integers si,...,s; > 2 they equal the multiple Eisenstein series

G, 1(7—) =Gy, (1)

81,ee4y8
and therefore they fulfill the stuffle product in these cases.

We now study the Q-algebra spanned by the G* and its relation to multiple zeta values.
Theorem [7] iv) gives a subset of the double shuffle relations between the G™, since the
stuffle product is just fulfilled for the case sq,...,s > 2. A natural question is, if they
also fulfill the stuffle product when some indices s; are equal to 1. For some cases this was

proven in [Ba2|. For example, it was shown, that

Gy -Gy = Gy +2G55, +Goy + Gy (0.8)
The method to prove this was to introduce stuffle regularized multiple Eisenstein series
Gy,

multiple Eisenstein series in the s1,...,s; > 2 cases. Since both G* and G* can be written

_____ s Which fulfill the stuffle product by construction and which equal the classical
in terms of multiple zeta values and bi-brackets, it was possible to compare these two
regularization. It was shown that all G* appearing in equal the G* ones, from which

this equation followed. In contrast to the shuffle regularized multiple Eisenstein series



the stuffle regularized ones could not be defined for all sy,...,s, > 1. Still, we have the

following results:

Theorem 8. ([Ba2]) For all s1,...,5 > 1 and M > 1 there exists G5 |

»S1

e C[q]] with

the following properties

i) They are holomorphic functions on the upper half-plane (by setting ¢ = exp(2miT))
having a Fourier expansion with the stuffle regularized multiple zeta values as the

constant term.

ii) They fulfill the stuffle product.

M

iii) In the case where the limit G7 = limpy 00 G exists, the functions G o

are a linear combination of multiple zeta values, powers of (—27i) and bi-brackets.

iv) For sy,...,s > 2 the G} exist and equal the classical multiple Eisenstein series

351

Gyt (T) = GG, (7)) -
It is still an open question which of the extended double shuffle relations of multiple zeta
values also hold for the G, or equivalently, under what circumstances the product of two
G" can be expressed using the stuffle product formula. Clearly there are some double
shuffle relations which cannot hold for multiple Eisenstein series. For example not all of
the Euler relations are fulfilled, since G2 is not a multiple of G4 as G is not modular
and G2 is not a multiple of G5 as there are cusp forms in weight 12. In Section , we will
explain this failure in terms of the double shuffle relations which are satisfied by multiple

Eisenstein series.

From the discussion above, we believe that Question [I] got a satisfying answer given by the
regularized multiple Eisenstein series G* and G*. In order to go back from multiple Eisen-
stein series to multiple zeta values, one can consider the projection to the constant term.
But there is another direct connection of brackets, and therefore also of the subalgebra of
modular forms, to multiple zeta values. The brackets can be seen as a g-analogue of multi-
ple zeta values. A g-analogue of multiple zeta values is said to be a g-series which gives back
multiple zeta values in the case ¢ — 1. Define for &k € IN the map Z; : Q[[¢]] = R U {oo}
by
Zi(f) = lim(1 - ¢)* f(q) -

q—1



Introduction

Proposition 9. ([BKl Prop. 6.4]) For s; > 2 and sy,...,s > 1 the map Z; sends a

bracket to the corresponding multiple zeta value, i.e.

. e :k
Zk([317...’3l]>:{ C(Sho ,Sl)7 S1 + 15 ’

s1+ -+ <k.

Since every relation of multiple zeta values in a given weight k is, by Proposition [9] in the

kernel of the map Z, this kernel was studied in [BK] with the following result
Theorem 10. ([BK| Thm. 1.13])

i) For any f € MD which can be written as a linear combination of brackets with weight
< k—2, we have d f € ker Z,.

ii) Any cusp form for SLy(Z) of weight k is in the kernel of Zj.

We give an example for Theorem |10[ii): Using the theory of brackets (Corollary [2.13]) we
can prove for the cusp form A = ¢[[,-0 (1 — ¢")** € S12(SLy(Z)) the representation

1
———A=1 1 2
56 5. 691 68[5, 7] + 150[7, 5] 4 28]9, 3]
1 83 187 7 5197
— 2] — 4 — — 8] — —112]. .
+ 1408[ ] 14400[ I+ 6048 6] 120 8] 691 (12 (09)
Letting Z15 act on both sides of one obtains a new proof for the relation , ie.,
5197
——((12) = 168((5,7) + 150¢(7,5) + 28¢(9,3) .

691
Another reason for studying the enlargement of the brackets given by the bi-brackets is
the following: In weight 4 one has the relation of multiple zeta values ((4) = ((2,1,1), i.e.
it is [4] — [2,1,1] € ker Z,. But this element can’t be written as a linear combination of
cusp forms, lower weight brackets or derivatives. But one can show, by using the double
shuffle relations of bi-brackets, that

[4] —[2,1,1] =

N | —

() +d2) — 52— [3] + ﬁ(ﬂ (0.10)

and Eé} € ker Z4. The description of the kernel of the map Z; was in fact our first motiva-
tion to study the bi-brackets. Equation ((0.10)) is also an example for the above mentioned
Conjecture , since it shows that the bi-bracket B(ﬂ can be written in terms of brackets

and therefore is an element in MD.

10



Outlook and related work

In the following paragraphs a.)-g.) we would like to mention some related works and give

an outlook to open questions.

a.) There are still a lot of open questions concerning multiple Eisenstein series as well as
the space of (bi-)brackets. After the above mentioned works [BK],[Ba2] and [BT], we now
have a good definition of regularized multiple Eisenstein series given by the G*. For the
structure of the space spanned by these series there are still several open questions, for

example
i) What exactly is the failure of the stuffle product for the G*' and when does it hold?

ii) For which indices s1,...,5 € IN do we have G, (1) = G% _ (7)7 Is there an ex-

plicit connection between these two regularizations similar to the regularized multiple

yeeesSp

zeta values given by the map p in [IKZ]?

iii) What is the dimension of the space of (shuffle) regularised multiple Eisenstein series?
Is there an explicit basis similar to the Hoffman basis of multiple zeta values (which

is given by all multiple zeta values ((s1,...,s;) with s; € {2,3})7

iv) Which linear combinations of multiple Eisenstein series are modular forms for SLy(7Z)?

Is there an explicit way to describe the failure of modularity?
v) Is the space of multiple Eisenstein series closed under the derivative d = qd% ?

vi) What is the kernel of the projection to the constant term? Does it consist of more

than derivatives and cusp forms?

vii) Is there a general theory behind the connection of the Fourier expansion of multiple
Eisenstein series and the Goncharov coproduct? Can we equip the space of multiple

Eisenstein series with a coproduct structure in a useful way?

Especially the last question seems to be interesting since the connection to the coproduct
of formal iterated integrals is quite mysterious and it seems that there might be a geometric

interpretation for this connection.

11



Introduction

b.) Several g-analogues of multiple zeta values were studied in recent years (see for exam-
ple [Zh],[Tal,[MMEF],[O0Z]). These g-analogues often have a product structure similar to
the stuffle product of multiple zeta values. In order to obtain something which corresponds
to the shuffle product one usually needs to modify the space and add extra elements. In
contrast, the bi-brackets have a nice algebraic structure, since they have analogues for
both products in a very natural way which therefore gives a lot of linear relations similar
to the double shuffle relations. Numerical experiments suggest that every bi-bracket can
be written as a linear combination of brackets and therefore (conjecturally) every relation

of bi-brackets gives rise to relations between multiple zeta values by applying the map Z.

c.) In the case of multiple zeta values, one way to give upper bounds for the dimension
is to study the double shuffle space ([IKZ], [IO]). Similarly, one can study the partition

shuffle space

PS(k —1,1) = {f € Q[X1, ., X0, V1, ., Y]] ] deg f =k — 1, f]P —f= f‘Shj =0vj},

for bi-brackets, where |p is the involution given by the partition relation (see Section
(3.1)) and |sp, is given by the sum of all shuffles of type j similar to the one in [IO]. Count-
ing the number of these polynomials, it is possible to give upper bounds for the dimensions
of the space of bi-brackets. This approach therefore enabled us to prove the conjecture
MD = BD up to weight 7 in a current work in progress ([BK3]). Therefore, considering the

space PS(k—1, 1) in more detail might be crucial to understand the structure of bi-brackets.

d.) In this work we were interested in modular forms for the full modular group and
consequently studied the level 1 case. In [KT], the authors studied double Eisenstein series
and double zeta values of level 2. They also derive the Fourier expansion of these series
which involves calculations similar to the level 1 case. One result is that they derive the
dimension of the space of double Eisenstein series and give also an upper bound for the
dimension of double zeta values of level 2, which involves the dimension of the spaces of
cusp forms of level 2. Beside the work on level 2 double Eisenstein series there is also work
by H. Yuan and J.Zhao in [YZ] on level N double Eisenstein series. Later on, the same

authors also considered a level N version of the brackets in [YZ2].

e.) At the end of [KT], the authors give a proof for an upper bound of the dimension

of double zeta values in even weight. We would like to recall this result, since the results

12



presented in the present work might be able to use these ideas for higher lengths. Consider
the space spanned by all normalized double Eisenstein series (—27i)™""*G, s(7) in even
weight £ = r + s. Denote by m; the projection of this space to the imaginary part. Using
the Fourier expansion of double Eisenstein series, the authors can write down the matrix
representation of m; explicitly. Together with well-known results on period polynomials

they obtain
k
dimg(¢(r,k—7) |2<r<k—1)g < 5—1—dimSk.

Due to the Broadhurst-Kreimer conjecture [I], it is conjectured that this is actually an
equality. The key fact here is, that it is possible to write down an explicit basis of the
imaginary part and the matrix representation of 7;. In order to also obtain upper bounds
for the dimensions of multiple zeta values in higher lengths, one might try to use the exact
same method as in the length two case. The imaginary part of the (again normalized by
the factor (—2mi)~*) multiple Eisenstein series is more complicated, since it involves the
functions ¢ in different length, where it is known that they are not linearly independent
anymore. But the algebraic structure of the g, or more precisely of the brackets [..], are
subject of the current work. It is quite possible that the results on the brackets enable one
to study the projection of the imaginary part of multiple Eisenstein series to obtain upper

bounds for the Broadhurst-Kreimer conjecture.

f.) The multiple Eisenstein series and the bi-brackets themselves also have connections to

counting problems in enumerative geometry:

i) In [AR] and [R], the author studies g-series Ax(a) € Q[[¢]] which arises from counting
certain types of hyperelliptic curves. One of the results is, that the Ax(q) are contained
in the ring of quasi-modular forms. The connection to the brackets is given by the fact
that Ax(q) = [2,...,2]. The results of [AR] can also be obtained by using an explicit

——

k
calculation of the Fourier expansion of Gio, o which will be done in an upcoming work
[Bad].

ii) In [O] and [QY], the authors connect certain g-analogues of multiple zeta values to
Hilbert schemes of points on surfaces. These g-analogues are just particular linear
combinations of brackets as explained in [BK2|] and Section

iii) The coefficients of bi-brackets also occur naturally when counting flat surfaces [Zo],

i.e. certain covers of the torus.

13
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g.) There also exists different "multiple’-versions of classical Eisenstein series. One of

them is treated in [BTS|, where the authors discuss the series defined by

Gpy,.2p, (T Z )DEEEEEEEDS H

n1 €L nr€L 7=1
(m n1)#(0,0) (m,nyr)#(0,0)

m+n72pf

for r > 2 and py,...,p, > 1 and prove (Theorem 2) that
2ot g, o (T) €Q [72, 72, Ga(T), Gu(1), GG(T)} .

The methods used to prove this statement are similar to the methods used in the calculation
of the Fourier expansion of multiple Eisenstein series. But besides this, there does not seem

to be a direct connection to the multiple Eisenstein series presented here.
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Chapter 1
Multiple Eisenstein series

In this chapter we are going to introduce multiple zeta values and present the multiple
Eisenstein series and their Fourier expansion. Especially the construction of the Fourier
expansion of multiple Eisenstein series in Section [I.2] was rewritten for this survey. It will
be a shortened version of the construction given in [Ba] using results by Bouillot obtained
in [Bo|. This chapter is not part of the works [BK], [BK2], [BT] and [BK2|]. Before we
discuss multiple Eisenstein series, we give a short review of multiple zeta values and their
algebraic structure given by the stuffle and shuffle product. In order to describe these two
products we will use quasi-shuffle algebras, introduced by Hofmann in [H], which will also
be needed later when we deal with the generating series of multiple divisor-sums (brackets)

and their generalizations given by the bi-brackets.

1.1 Multiple zeta values and quasi-shuffle algebras

Multiple zeta values are natural generalizations of the Riemann zeta values that are defined]]

for integers s; > 1 and s; > 1 for ¢ > 1 by

C(s1,...,8) = >

n1>ng>-->n;>0

1

nit...n
We denote the Q-vector space of all multiple zeta values of weight k£ by

MZ, ::<§(51,...,51)‘31+---+sl:kandl>0>Q.

ISome authors use the opposite convention 0 < n; < --- < n; in the definition of multiple zeta values.
This is in particular the case for the work [BT], where this opposite convention is used for multiple zeta

values and multiple Eisenstein series.

15



Chapter 1. Multiple Eisenstein series

It is well known that the product of two multiple zeta values can be written as a linear
combination of multiple zeta values of the same weight by using the stuffle or shuffle
relations (See for example [IKZ], [Zu2]). Thus they generate a Q-algebra MZ. There are
several connections of these numbers to modular forms for the full modular group. In the

smallest length the stuffle product reads

C(s1) - ((s2) = Z 51 g

n1>0 nl n2>0

ni>ng> na>n1>0 Ny T n1=nz>0

= ((51,82) + ((52,81) + (51 + 82) -

For length 1 times length 2 the same argument gives

C(s1) - C(s2,83) = C(s1, S2, s3) + C(s2, 81, S3) + C(52, S3, 51)
+ C(Sl + S22, 83) + C(Sg, S1 + 83) .

The second expression for the product, the shuffle product, comes from the iterated integral

expression of multiple zeta values. For example it is

C(Qa 3) =

/ dty dty dty dty dts
1

>t1>-->t5>0 tl 1— tg tg t4 1-— t5 ’

2 3

Multiplying two of these integrals one obtains again a linear combination of multiple zeta

values as for example

¢(2)-C(3) = €(2,3) +3¢(3,2) + 6¢(4, 1) .

More generally the smallest length case is given by

(o)) = Y (( __11) ¥ (j;_ﬂ)) (ab). (1)

a+b=s1-+5s9
a>1

To describe these two product structures precisely we will use the language of quasi-shuffle

algebras as introduced in [H].

Definition 1.2. Let A (the alphabet) be a countable set of letters, QA the Q-vector
space generated by these letters and (A) the noncommutative polynomial algebra over @

generated by words with letters in A. For a commutative and associative product ¢ on QA,

16



1.1. Multiple zeta values and quasi-shuffle algebras

a,b e Aand w,v € Q(A) we define on Q(A) recursively a product by lOw =w®1=w
and
aw © bv == a(w © ) + blaw ©v) + (aob)(w © V). (1.2)

By a result of Hoffman ([H, Thm. 2.1]) (Q(A),®) is a commutative Q-algebra which is
called a quasi-shuffie algebra.

To describe the stuffle and the shuffle product for multiple zeta values we need to deal with
two different alphabets A,, and A,. The first alphabet is given by A,, := {z,y} and we
set $ = Q(A,,) and H' = 1-Q + Hy, with 1 being the empty word. It is easy to see that
$' is generated by the elements z; = 277!y with j € IN, i.e. ' = Q(A,) with the second
alphabet A, := {z1, 20, ... }. Additionally, we define H° = 1Q + zHy.

i) On $H' we have the following quasi-shuffle product with respect to the alphabet A,
called the stuffle product. We denote it by * and define it as the quasi-shuffle product

with z; ¢ z; = zj4;. For a,b € N and w,v € H' we therefore have:
ZW * 250 = 2o (W * 2p0) + 2p(24w % V) + Zgyp(w * V) .
By (!, *) we denote the corresponding Q-algebra.

ii) On the alphabet A,, we define the shuffle product as the quasi-shuffle product with
o =0, and by ($', 1) we denote the corresponding Q-algebra.

It is easy to check that $° is closed under both products * and LU and therefore we have
also the two algebras ($°, %) and (H°, ).

By the definition of multiple zeta values as an ordered sum and by the iterated integral
expression one obtains algebra homomorphisms Z : (%, %) - MZ and Z : ($°,w) —
MZ by sending w = z, ...z to ((w) = ((s1,...,5), since the words in H° correspond
exactly to the indices for which the multiple zeta values are defined. It is a well known

fact, that these algebra homomorphisms can be extended to $':

Proposition 1.1. ([IKZ, Prop. 1]) There exist algebra homomorphisms

Z* (9 %) — MZ  and 2% (9L W) — MZ,

which are uniquely determined by Z*(w) = Z%(w) = ((w) for w € H° and by their images

on the word z;, which we set 0 here, i.e. Z*(2) = Z"(z;) = 0.
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Chapter 1. Multiple Eisenstein series

1.3 Multiple Eisenstein series and the calculation of

their Fourier expansion

The Riemann zeta values appear as the constant term in the Fourier expansion of classical

Eisenstein series. These series are defined by

1 1
Gr(T) = = Z —_— (1.3)
2 (e (mT +n)k
(m,n)#(0,0)

where k > 2 is the called the weight. Splitting the summation into the parts m = 0 and

m € Z\0 we obtain for even k

1 1 > 1

=13 L3 )
2 %:0 nk = g:Z (mT +n)k

To calculate the Fourier expansion of the sum on the right, one uses the well known

Lipschitz summation formula

Nk

1 —27)" & ki m
Z(Ter)’f:Ek;—l))'Zm T (14)

deZ " m=1
which is valid for k& > 1. With we obtain
—omi)k XX —2mi)k &
Gelr) = (k) + F S S kg — ey OIS g, (1)
(k, - 1) m=1n=1 (k - 1) n=1

where oj(n) = Y4, d* denote the divisor-sum. Formula also makes sense for odd
k but does not give a modular form, since there are no non trivial modular forms of odd
weight. The sum in (1.3]) vanishes for odd k, therefore instead of summing over the whole
lattice, we restrict the summation to the positive lattice points, with positivity coming
from an order on the lattice Z7 + Z. This in turn will also enable us to give an multiple
version of the Eisenstein series in an obvious way.

Let A, = Z1 + 7Z be a lattice with 7 € H := {x + iy € C | y > 0}. We define an order >
on A, by setting

M=o M —XeP

for A\;, As € A, and the following set P, which we call the set of positive lattice points
P={lr+meA, |I>0V(I=0Am>0)}=UUR
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1.3. Multiple Eisenstein series and the calculation of their Fourier expansion

l
e 06 06 06 06 ¢ o 0 0 0 o U
> MR
Definition 1.4. For s; > 3, s9,...,5 > 2 we define the multiple Fisenstein series of weight
k= s, +---+4 s and length [ by
1
Gs ) (T) = 51 \S
' l A=A =0 /\11 T /\ll
NEAS

It is easy to see that these are holomorphic functions in the upper half-plane and that they
fulfill the stuffle product, i.e. for example

Gg(T) : G4(T) = G4’3(7') + Gg’4<7'> + G7<T> .

By definition it is Gy, (T + 1) = Gs,.. 5 (7), i.e. there exists a Fourier expansion of

2miT

Gs, .5 in g =e"™". To write down the Fourier expansion of multiple Eisenstein series we
need to introduce the following g-series which will be studied in detail in Section [2.1 For

S1,...,8 > 1 we define

T T -
[817 ceay Sl] = . qulvl uvg c Q[[q]] )
U1>'§ul>0 (s — D). (s =1)!
V1 ,...,01 >0
and write g5, 5, (7) := (=2mi)* % [sq,..., s, which is an holomorphic function in the

2miT

upper half-plane by setting ¢ = e

Theorem 1.2. ([Ba], Fourier expansion) For s; > 3, s9,...,5 > 2 the Gy, 4 (7) can be
written as a M Z-linear combination of the functions g. More precisely there are rational

numbers A, ; € Q, for r = (ry,...,r) and 1 < j <[ —1, such that (with k =s; +--- + )

Gsl,.“,sl (7') = C(Sb e 751) + Z >\r,j : C(Th e 77"j) T Oriia,em (7') + Gsi,...5 (7') .

1<j<i-1
rit =k
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Chapter 1. Multiple Eisenstein series

Even though the proof of this statement is the main result of [Ba] we will give a shortened
version of it in the following.

The condition s; > 3 is necessary for the absolute convergence of the sum. Nevertheless
we can also allow the case s; = 2 by using the Eisenstein summation as it was done in
[BT] Definition 2.1. This corresponds to the usual way of defining the quasi-modular form
G5 in length one. Since the construction of the Fourier expansion described below uses
exactly this Eisenstein summation the Theorem is also valid for s; > 2.

For example the triple Eisenstein series G322 can be written as

Gaaalr) =C3,2,2) + (50(2,3) + 20(3,2)) 02(7) + 5 C(2 D7)

+ 3C(3)g2,2(7) +4¢(2)g3,2(7T) + g3,22(7) -

To derive the Fourier expansion we introduce the following functions, that can be seen

as a multiple version of the term ), m appearing in the calculation of the Fourier

expansion of classical Eisenstein series.

Definition 1.5. For sq,...,s; > 2 we define the multitangent function of length [ by

1
\1181,.--,81 (x) = Z

o, (@ na)s (@)
n,€Z

In the case [ = 1 we also refer to these as monotangent function.

These functions were introduced and studied in detail in [Bo]. One of the main results
there, which is crucial for the calculation of the Fourier expansion presented here, is the

following theorem which reduces the multitangent functions into monotangent functions.

Theorem 1.3. ([Bd, Thm. 3], Reduction of multitangent into monotangent functions)
For s1,...,8 > 2 and k = s; + --- + s; the multitangent function can be written as a
M Z-linear combination of monotangent functions, more precisely there are ¢, € MZj_,,
such that

Proof. An explicit formula for the coefficients ¢y, is given in Theorem 3 in [Bo|. The proof

uses partial fraction and a non trivial relation between multiple zeta values to argue that
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1.3. Multiple Eisenstein series and the calculation of their Fourier expansion

the sum starts at h = 2. For example in length two it is

Uyole) = 3 L

mi>me (I + m1)3(x + m2)2

1 2 3
N mgm ((ml —mg)2(x +my)3 + (mq —mo)3(z + my)? + (my — mo)*(z + m1)> (1.6)

! mng <(m1 - m2)13(x +my)? (my — mz?‘*(x + mz))

= 3C(3)Wa(x) +¢(2)Ws(x).
]

The connection between the functions g and the monotangent functions is given by the

following

Proposition 1.4. For sq,...,s, > 2 the functions g can be written as an ordered sum of
monotangent functions
Gsy.s (T) = Yoo Uy (maT). . T (m,T).
my>-->m;>0

Proof. This follows directly by the Lipschitz formula (1.4) and the definition of the func-
tions g. O]

Preparation for the Proof of Theorem [1.4: We will now recall the construction of
the Fourier expansion of multiple Eisenstein series introduced in [Bal, in order to prove

Theorem To calculate the Fourier expansion we rewrite the multiple Eisenstein series

as
G517~--u51(7—) = Z o ! )\
M0 A A
B 1
- ()\17--§)6Pl (M)A A2 (N)s

We decompose the set of tuples of positive lattice points P’ into the 2! distinct subsets
Ap x - x Ay C Pt with A; € {R,U} and write
1

GoLil(r) = > ; 5 :
15e-551 TR N Y=y A4+ )N+ -+ A)%2 .. (A)%

this gives the decomposition

o A A
GS1,~--751 - Z G317~--asl :

Al,...7AlE{R,U}
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Chapter 1. Multiple Eisenstein series

In the following we identify the A;...A; with words in the alphabet {R, U}

. In length
[ =1 we have Gi(7) = GE(7) + GY(7) and

GR(r) = 3 — = ¢(h),

mzo (07 +ny)k
n1>0

1
Glr)=>Y ———— = U(mr),
k( ) m1>0 (mlT—i_nl)k m1>0 k( ' )
n1€Z

where W, is the monotangent function given by

V()= Y

= (r+n)k ’

To calculate the Fourier expansion of GY one uses the Lipschitz formula (1.4). In general
the GU' _ can be written as

1
GY (1) =
51,...,81( ) m1>-§ml>0 (mlT + n1)51 . (mﬂ' + 'rLl)Sl
ni,...,n €Z

= Z U, (maT) ... Uy, (myT)

my>-->m;>0
(—27)s1 s

T (s =D (s — 1)

Z dil—l o d;lflqm1d1+--~+mzdz
mi>-->my>0
di,...,d;>0

= Gs1,...,8 (T) .

The other special case Gil,...7sl can also be written down explicitly:

1
GF T) = =((s1,...,8).
vt (7) ml:;mlzg (07 +ny)st ... (07 + ny)® b !
ny>-->n; >0

In length 2 we have Gy, , = GEE + GUE + GEV + GUU and

51,52 51,52 51,52 51,82
GUR — Z 1
e my>0,ma=0 (ma7 + 1)1 (07 + ng)™
n1€Z,n2>0
1
= Z \1181 (mlT) Z 5 — Ys1 (T)C(82) )
m1>0 ngy>0 U

1
GEU (1) = = v mT).
srnlT) mlzoz,q;zpo (M7 4 np)s (M T + ng)s2 Z o102 (07)
ni>ng
n;€Z

m>0
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1.3. Multiple Eisenstein series and the calculation of their Fourier expansion

In the case GUE we saw that we could write it as GY multiplied with a zeta value. In
general, having a word w of length [ ending in the letter R, i.e. there is a word w’ ending

in U with w = w'R" and 1 < r <[ we can write

G;Ul,...,sl (7-) = G/g)l/,...,sl,,« (T) ’ C(SZ*T‘Fl? e 7Sl> :

. MRUURR _ ~RUU
Example: Gy 567 = G35 - (6,7)

Hence one can concentrate on the words ending in U when calculating the Fourier expansion
of a multiple Eisenstein series. Let w be a word ending in U then there are integers
ri,...,7; > 0 with w = RMUR™U ... RU. With this one can write

G;Ul,...,sl (T) = Z \Ij817~~75r1+1 (mlT) ’ \IlSr1+2,~~.(m27—) s \Psl,rj,...,sl (ij> .

m1>e>m;>0

Example: w = RURRU

GRURRU — Z \1181,82 (mlT)‘Psg,S4,S5 (m27—)

S1y--435]
m1>ma>0

As A A3

A summand of GV

Proof of Theorem For sq,...,s; > 2 the Fourier expansion of the multiple Eisenstein

series G, .. s, can be computed in the following way

l
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Chapter 1. Multiple Eisenstein series

i) Split up the summation into 2' distinct parts G¥ where w are a words in {R,U}.

yee s3SI

ii) For w being a word ending in R one can write G?, as G¥ -((...,s) with a word

seeesS1

w’ ending in U.

iii) For w being a word ending in U one can write G, as
G;Ul7---751(7_) = Z \Ifsh,,,(mﬁ) ce \Ij...,sl (mﬂ') .

mi>--->m;>0

iv) Using the Theorem [1.6] we can write the multitangent functions in iii) as a M Z-linear
combination of monotangents. We therefore just have M Z-linear combinations with

sums of the form

Z Uy, (myT) ... Uy, (myT) = Gy, 1y (T) = (—27Ti)k1+"'+kl k1, ..., k).

m1>~-->m]->0

[

An explicit formula for the Fourier expansion of the multiple Eisenstein series for arbitrary
length can be found in [BT] Proposition 2.4. (with a reversed order of indices). Here we
just give the Fourier expansion for the length 2 and 3. For this we define for ny,no, &k > 0
the numbers C* by

ni,n2
k—1 k—1
kL= (=1 —1)m :
b = (1) (n2_1)+< ) <nl_1>

Proposition 1.5. i) ([GKZ, Formula (52)], [Ba], [BT]) For s;,ss > 2 the Fourier ex-

pansion of the double Eisenstein series is given by

GS1,82 (T) = <(517 52) =+ C(SQ)QI(T) + Z Cff,SQC(kQ)gkl(T) + Gs1,50 (T) .

k1+ko=s1+s2
k2,k2>2

ii) ([Bal, [BT]) For sy, s2,53 > 2 and k = s1 + 2 + s3 the Fourier expansion of the triple
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1.3. Multiple Eisenstein series and the calculation of their Fourier expansion

Eisenstein series can be written as

G81782,83 (T) = C(Slﬂ 52, S3> + C(SQv 83)981 <T> + C(S3)981,82 (T) Tt Gs1,50,s3 (T)
+C(ss) Y. CL,C(k)gr(7)

k1+ko=s1+5s2

+ Z Cjisgg(kQ)gkhS:s (T) + Z 0522,53C<k2)981,k’1 (7—)

k1+ko=s1+s92 k1+kao=s2+s3
-1 -1
+ Y (=t <k2 1) (k?’ 1>C(k37 k2) gk, (T)
ki1+ko+ks=k §2 §3
-1 -1
+ Z (_1)51+52+k2+k3 (k‘z > <k3 )C(l{:37 kQ)gkl (7')
ey +ha+ks=k by — 1) \s2 =1

S RO () (B2 ) ctmactraian ).

k1 +katka= s1—1)\s3—1
where in the sums we sum over all k; > 2.

]

We finish this section with a closer look at the stuffie product of two Eisenstein series. Since
the product of multiple Eisenstein series can be written in terms of the stuffle product it
is Gy - G3 = Ga3 + G324+ G5. On the other hand we have

G2+ Gy = (C(2) +92) (C(3) + g3) = C(2)C(3) +C(3)g2 + C(2)gs + g2 - g5 -

and by Proposition [1.8]it is

Gaz = ((2,3) —20(3)g2 + C(2)g3 + 923,
Gs2=((3,2) +3C(3)g2 +((2)g3 + 932 -

In conclusion, we obtain a relation for the product of the ¢g’s namely gs - g3 = g32 + g2.3 +
gs + 2¢(2)g3 and dividing out (—27i)> we get

1
12
We conclude that a product of the g-series [sy,. .., s] € Q[[¢]] has an expression similar to

2] [8] = [3,2] + [2,3] + [5] 3]

the stuffle product and that conversely, a product structure on these g-series could be used,
together with the Fourier expansion, to explain the stuffle product for multiple Eisenstein
series.

One might now ask, if the multiple Eisenstein series also "fulfill" the shuffle product. As
we saw above the shuffle product of {(2) and ((3) reads

¢(2) - C(3) = €(2,3) +3¢(3,2) +6¢(4,1) (1.7)
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Chapter 1. Multiple Eisenstein series

and since there is no definition of G4, this question does not make sense when replacing
¢ by G in . We will see that the understanding of the product structure of the brack-
ets, explained in the next two chapters, together with the Fourier expansion of multiple
Eisenstein series will help to answer this question. This will be done by introducing shuffle
regularized multiple Eisenstein series G* in Section [£.2l There we will see that we can
replace the ( in by G"' and that the G are given by the original G, for the cases in
which they are defined.
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Chapter 2

Multiple divisor-sums and their

generating functions

The classical divisor-sums o0,(n) = >4, d" have a long history in number theory. They are
well-known examples for multiplicative functions and appear in the Fourier expansion of
Eisenstein series. This chapter is devoted to a larger class of functions, that can be seen as
a multiple version of the divisor-sums and are therefore called multiple divisor-sums. For

natural numbers ry,...,r; > 0 they are defined by

Oy (n) = > vty (2.1)

ULVt tuv=n
u1>-->up>0

Even though the definition of these arithmetic functions is not complicated and somehow

canonical, the author could not find any results on these functions before he started study-

ing them in his master thesis [Ba]. As mentioned in the introduction, the motivation to

study them was due to their appearance in the Fourier expansion of multiple Eisenstein

series, but as it turned out later in [BK], they are very nice and interesting objects in their

own right. Similar to multiple zeta values they fulfill a lot of relations. For example it is
1 1

502(71) =o010(n) — §al(n) + nog(n) . (2.2)

Having objects of this type it is natural to consider their generating functions, which we
denote by
1

S1y..., 8] = Os1—1,...5-1(n)q"
51 l (31—1)!...(31—1)1§811 1)
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Chapter 2. Multiple divisor-sums and their generating functions

and which are, just for the sake of short notations, called brackets. The factorial factors
and the "shift" of —1 are natural if one thinks about the Fourier expansion of Eisenstein
series. With this notation the relation (2.2]) reads as

1 d

3= 2.2] = 521+ 4 (1] (23)

which can be seen as a counterpart of the relation ((3) = ((2,1) between multiple zeta
valued]

In this chapter, we want to focus on the algebraic structure of the space spanned by all
brackets, which we will denote by MD. This algebraic structure was studied in [BK]. We
will see that the space MD has the structure of a Q-algebra and that the product of two
brackets can be expressed in terms of brackets in a way that looks similar to the stuffle
product of multiple zeta values. The operator d = qd% which appears in plays an
important role in the theory of (quasi-)modular forms. We will see that the space MD is
closed under this operator and that this gives a second way of expressing the product of
two brackets in length one similarly to the shuffle product of multiple zeta values. This

second product expression in higher length will be discussed in Chapter [3]

2.1 Brackets

Definition 2.2. For any integers sq,...,5 > 0 we define the generating function for the

multiple divisor sum oy, ;41 by the formal power series

1 n
[817 ey Sl] = (51 — 1)' T (Sl — 1)' nz>:oo-sl—1,...751—1(n)q
R T s
= T L AUV Uy
= X DD & Qlld]).
V1,...,01>0

In the first chapter, we saw that these series, by setting ¢ = exp(2mir), appear in the
Fourier expansion of the multiple Eisenstein series but in this section we just view them
as formal power series. We refer to these generating functions of multiple divisor sums as

brackets and define the vector space MD to be the Q vector space generated by 1 € Q][q]]

IFurther, one can prove the relation ¢(3) = ¢(2,1) between multiple zeta values by multiplying both
sides in (2.3) with (1 — ¢)® and then take the limit ¢ — 1. We will discuss this in Chapter
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2.1. Brackets

and all brackets [s1, ..., s]. It is important to notice that we also include the constants in
the space MD.

Example 2.1. We give a few examples:

2] = q+3¢° +4¢° + Tq* +6¢° +12¢° +8¢" + 15¢° + ... |
1
4.2 =3 (¢° +3¢" + 15¢° + 27¢° + 7T8¢" + 135¢° + ... ) ,

1
444 = 52 (¢° + 99" + 45¢° + 190¢° + 642¢'° + 1899¢" + ... ) ,

1
3.1.3.1) = (4" +2¢" + 8" + 16¢" + 43¢" + 704" + ... ) |

1
[1.2.3,4,5) = 50 (¢" +17¢"° +107¢'7 + 512¢'® + 1985¢" + ... ) .

Notice that the first non vanishing coefficient of ¢ in [sy,...,s] appears at

1(1+1)
2

, because it belongs to the "smallest" possible partition
L-14(=1)-1+4--+1-1=n,

ie. u; =jand v; =1 for 1 <j <[. The number k = s; + --- + s; is called the weight of
[s1,...,8] and [ denotes the length.

We want to show that the brackets are closed under multiplication by proving that their
product structure is an example for a quasi-shuffle product. To do this we first introduce
some notations and quote some results which are needed for this.

Recall that for s,z € C, |z] < 1 the polylogarithm Lis(z) of weight s is given by Lis(z) =
Y >0 fL—z For s € N the Li_4(z) are rational functions in z with a pole in z = 1. More

precisely for |z| < 1 they can be written as

: s n ZPS(Z)
Ll_s(Z) = T;)n z = m
where Ps(z) is the s-th Eulerian polynomial. Such a polynomial is given by
s—1

Py(X) = Z Asn X",
n=0

where the Eulerian numbers A, ,, are defined by

Agn = é(—l)i <8 j 1) (n+1—1)%.
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Chapter 2. Multiple divisor-sums and their generating functions

For our purpose we write
Lil_s(Z>
(s —1)!"

Lemma 2.2. ([BK|, Lemma 2.5]) For s1,...,s € N we have

[s1, .o = > Lig (¢™)...Lig (¢")

ny>-->n;>0

1 Ps 71 j)

_ q"
sy =D)L (s = 1)! 2 H —qn

fnp>ee>n >0 =1

Lij_y(2) :=

]

Remark 2.3. i) The second expression in terms of Eulerian Polynomials will be im-

portant for the interpretation of these series as g-analogues of multiple zeta values in
Chapter [5]

ii) This representation is also used for a fast implementation of these g-series in Pari GP.
By doing so, the authors in [BK] were able to give various results on the dimensions of
the (weight and length filtered) spaces of MD. These results can be found in Section
5 of [BK].

The product of [s;] and [sg] can thus be written as

[s1] - [s2] = > Liiy, (¢™)Li—s, (¢"™)+ > -+ > Liy, (¢"™)Lii_s, (¢™)

ni1>n9 >0 no>n1>0 ni1=n2>0

= [51, 82 + [s2,81] + Z ﬂl*Sl (") ﬁl’” (a") -

n>0

In order to prove that this product is an element of MD the product fjil,sl (q") El,sg (q")
must be a rational linear combination of fil,j (¢") with 1 < j < s1 4 so. We therefore

need the following

Lemma 2.4. For a,b € IN we have
b
Lil_a( L11 b Z )‘a bL11 —j ) + Z )‘i,aLil—j (Z) + Lilf(aer) (Z) s
j=1
where the coefficient )‘i,b € Q for 1 < j < ais given by
Ny = (et (FHP T ) Dens
a—j (a+b—j)!
with By, being the k-th Bernoulli numberfT]

'For convenience we recall that the Bernoulli numbers By, are defined by eXX—_l =) k>0 %X k.
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2.1. Brackets

Proof. We prove this by using the generating function

X
ZLllk Xkl ZZ Xkl Zean: BZX'
k>0 fsoms0 ( n>0 -z
With this one can see by direct calculation that
1 1
LX) - L(Y) = v 1L(X) + X 1L(Y).
By the definition of the Bernoulli numbers
this can be written as
B, L(X)— LY
LX) L(Y) =3 (X = Y)" ' L(X Z Y — X)" 'L(Y) + LX) = L(Y)
n>0 n>0 nt X-Y

The statement then follows by calculating the coefficient of X*~1'Y*~! in this equation. [J

Now we are able to interpret the product structure of brackets as an example for a quasi-
shuffle product. We equip $' with a third product, beside the stuffle product * and the
shuffle product wi. This product will be denoted &, since it can be seen as a "bracket
version" of the stuffle product *. For a,b € N and w,v € $H' we define recursively the
product
b
2w B 250 = 24 (w B 2p0) + 2p(2,w B V) + 241 p(w B v) +Z>\ pzj(wEv +Z)\bazj wHEv),
Jj=1 Jj=1
where the coefficients )\Zyb € Q are the same as in Lemma . We equip MD with the

usual multiplication of formal g-series and obtain the following:

Theorem 2.5. ([BK| Prop 2.10]) For the linear map [.] : (', ®) — (MD, -) defined on

the generators w = z, ...z, by [w] :=[s1,..., 5] we have
[w & v] = [w] - [v]
and therefore MD is a Q-algebra and [.] an algebra homomorphism. [
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Chapter 2. Multiple divisor-sums and their generating functions

Example 2.6. The first products of brackets are given by

1] (1) =2(1,1)+ 2] - [1],
12 = (1,2 + 2,10 + (8] - 512,
0 [2,1] = [1,2,1] +2[2,1,1] — ‘;’[2, 0+2,2 431,
1
- 5[3]7
1 1

3] 12,1 = [3,2,1] + [2,3,1] + [2,1,3] + [5, 1] + [2,4] + 112[2,2] — 5231 - 5.1,

21 [3] = [3,2] + [2,3] + [3]

We end this section by some notations which are needed for the rest of this thesis.

Definition 2.3. On MD we have the increasing filtration Fil}" given by the weight and
the increasing filtration Fil} given by the length. For a subset A C MD we write

FIlY (4) =[50, s € Al st s <),

Filp(A) == <[31,...,sr] EA‘r§l>Q.

If we consider the length and weight filtration at the same time, we use the short notation

Fil;" == Fil}" Fil}".

Remark 2.7. As it can be seen by Theorem [2.6] the multiplication of two brackets respects

these filtrations, i.e.

il (MD) - Fil; (MD) C Fil)\ 1, 1, 41, (MD).

2.4 Derivatives and Subalgebras

In this section we want to give an overview of interesting subalgebras of the space MD
and discuss the differential structure with respect to the differential d = qdiq. One of the

main results in [BK] is the following

Theorem 2.8. ([BKl, Thm. 1.7]) The operator d = qd% is a derivation on MD, it maps
Fil;"(MD) to Fil}}5,,1(MD). O

The proof of Theorem uses generating functions of the brackets. It gives explicit

formulas for the derivatives d[si, ..., s for all [ which we omit here, since they are com-
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2.4. Derivatives and Subalgebras

plicated. For example we have

1 1
d@LH:—&ZLH+JZL%—@LZU+@L$+;@1U

—2[2,2,1,1] +[2,3,1] + 6[3,1,1] — 8[3,1,1,1] + [4,1,1].

In the following we give a list of subalgebras and review the results on whether they are

also closed under d or not.

i) (quasi-)modular forms: Next to the connection to modular forms due to their ap-
pearance in the Fourier expansion of multiple Eisenstein series, the brackets have a direct
connection to quasi-modular forms for SLy(7Z) with rational coefficients. In the case [ = 1

we get the divisor sums o4_1(n) = X4, d*1' and

1 n
k] = (=] > or-i(n)g" .

n>0

These simple brackets appear in the Fourier expansion of classical Eisenstein series with
rational coefficients G () 1= (—27i)*Gy(7) since we also included the rational numbers

in MD. For example we have

- 1 ~ 1 ~ 1
GQZ—Q‘FM, G4=@+[4], G6=—m+[6]-

Denote by Mq(SLy(Z)) = Q[G4, Gs| and Mq(SLy(Z)) = Q[Ga, Gy, Gg] the algebras of
modular forms and quasi-modular forms with rational coefficients.

It is a well-known fact that the space Mq(SLy(Z)) is closed under the operator d = qdiq.

ii) Admissible brackets: We define the set of all admissible brackets @M Z as the span
of all brackets [sy, ..., s] with s; > 1 and 1. This space is a subalgebra of MD ([BKl, Thm.

2.13]) and every bracket can be written as a polynomial in the bracket [1] with coefficients

in gMZ:
Theorem 2.9. ([BK|, Thm. 2.14, Prop. 3.14])
i) We have MD = qgMZ[[1]].

ii) The algebra MD is a polynomial ring over M Z with indeterminate [1], i.e. MD is
isomorphic to M Z[T'| by sending [1] to T'.

iii) The space QM Z is closed under d. [
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Chapter 2. Multiple divisor-sums and their generating functions

The elements in g M Z are the ones, where the corresponding multiple zeta values exist. It
will be reviewed in more detail in Chapter |5, when we consider the brackets as g-analogues

of multiple zeta values.

iii) Even brackets and brackets with no 1’s: Denote by MD" the space spanned by
1 and all [sq,...,s] with s; even for all 0 < j <[ and by MD* the space spanned by 1 and
all [s1,...,s] with s; > 1. Both spaces MD“*" and MD? are subalgebras of MD ([BK,
Prop. 2.15]). It is expected, that the space MD®" is not closed under d, since numerical
calculation suggest, that for example d[4,2] ¢ MD®". Whether the space MD* is closed
under this operator is an open and interesting question. In [BK2] it is shown, that this is
actually equivalent to one part of Conjecture 1 in [O] given by Okounkov.

To summarize, we have the following inclusion of Q-algebras

d d?

- ~

() PEeEe
Mq(SLy(Z)) — Mo(SLy(Z)) — MD® — MD* — qMZ — MD

\\\ d? //7‘
W -

The dashed arrows indicate the conjectured behavior of the map d, whereas the other ar-

rows are all known to be correct.

Though in length [ = 1 we derive not just one but several expressions for d[s] given by the

following Proposition.

Proposition 2.10. ([BK, Prop 3.3]) For s, sy with s; +s3 > 2 and s = s + s9 — 2 we

have the following expression for d[s]:

<818_1>df] = [s1] - [s2] + (sf—l) s + 1] —a+;5+2 <<Sal—_11> N <8a2—_11>> .

If you compare this formula with the shuffle product of multiple zeta values (1.1)) in the
length one times length one case you notice that Proposition basically states that the
brackets fulfill the shuffle product up to the term (818_1)M — ( s )[8 +1].

s s1—1

We end this chapter by using these formulas to prove the following identity
Proposition 2.11. The unique normalized cusp form A in weight 12 can be written as
A = 168[5, 7] + 150[7, 5] 4 28]9, 3]

1 83 187 7 5197
_— 9] — 4 -
* 1408[ ] 14400[ I+ 6048 6] 120 691

- 26.5.691
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2.4. Derivatives and Subalgebras

Proof. With the Eisenstein series Gg and Gio given by

Go = (~2mi) ¢(6) +16] = oo +16],
691

N o_n\—12 _
Gro = (=2m)77C(12) + [12) = g eomenng 121

the cusp form A can be written as A = —3316800G2 + 3432000G;2. Using quasi-shuffle

product of brackets one can derive

3455 5 691 6910

=——[2] - 4] + —— 115200[12] — ,
108 2] G [4] + o (6] + 115200[12] — 663360016, 6]
and therefore
1 1 1 360
- A =30[6,6] — 2 4] — 6] — —[12]. 2.4
26. 5. 691 6,6 12672[ ]+1920H 672[] 691[ ) (24)

Using Proposition for (s1,s2) = (4,8),(5,7),(6,6) we get the following three expres-
sions for d[10]

| 5 5 35 16
A0l = — S15.71 — 27661 — 217.5] — 2218 4] — 219,31 — 10[10. 2] — 20[11. 1
10 =~ 25,7 = 2066 - 217,51 - 21541 - 20,5 10020.2) — 20011,
1 1 1 1 1
_ 9 4 10111] + —[12
77900162 * 203200 Y ~ 362880 T 56208 + 101 + 5112,
5 5 14
A[10) = — [6,6] — 2[7,5] — 2[8,4] — ~-[9,3] — 10[10,2) — 20[11,1]
1 1 1
9 _ A+ 16+ 10111 + — 12
*+ 27000162 ~ Goazoo !t Tamoos 6! 10 + 5 2]
10 5 40
101 = — V751 - 28 41— 219 31— 10010, 2] — 20/11. 1
o) = - 07,5 2.4 - Lo, - 10j10.2) - 2011,
| 1 1 5

— 2 4] — 6] +10[11] + —|12].
4790016[ I+ 725760[ ] 381024[ I+ 10[11] + 126[ )

Summing them up as 0 = —504 d[10] + 1890 d[10] — 1386 d[10] we get

0 =168]5,7] — 30[6, 6] + 150[7, 5] + 28[9, 3]

5 181 7 7 (2.5)

9] — 4 + (6] — —[8] — 7[12

+ 6336[ ] 28800[ I+ 216[6] 120 8 - 7l12]
Combining (2.5 and (2.4)), in order to eliminate the occurrence of [6,6], we obtain the
desired identity. n
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Chapter 3

Bi-brackets and a second product

expression for brackets

In the previous chapter we have seen that the space MD of brackets has the structure of
a Q-algebra and that there is an explicit formula to express the product of two brackets
as a linear combination of brackets similarly to the stuffle product of multiple zeta values.
In this chapter we want to present a larger class of ¢-series, called bi-brackets. The quasi-
shuffle product of brackets extend to this larger class and therefore the space of bi-brackets
is also a Q-algebra. The beautiful feature of bi-brackets is, that there is a relation, which
we call partition relation, which enables one to express the product of two bi-brackets in
a second different way. These two product expressions then give a large class of linear
relations, similar to the double shuffie relations of multiple zeta values. A variation of
the bi-brackets were also studied in [Zu]. Later, the bi-brackets will be used to define
regularized multiple Eisenstein series in Chapter [d All results in this chapter were studied

and introduced in [Ba2].

3.1 Bi-brackets and their generating series

As motivated in the introduction of this section we want to study the following g-series:

Definition 3.2. For rq,...,7, >0, s1,...,5 > 0 and we define the following g-series
-1 -1
S1y--5 81 ut oy vt L) w01 ety
_ SRR M SR Q]
Tiye.., 17 > Suso T ! (s =D (s — 1)
Vlyenny v >

37



Chapter 3. Bi-brackets and a second product expression for brackets

which we call bi-brackets of weight 7y + -+ +rp + 51 + -+ - + 57, upper weight s; +--- + sy,
lower weight r1 + - -+ 4+ r; and length [. By BD we denote the Q-vector space spanned by
all bi-brackets and 1.

The factorial factors in the definition of bi-brackets will become natural when considering
generating functions of bi-brackets and the connection to multiple zeta values.

For ry = --- = r; = 0 the bi-brackets are just the brackets

S1y...,85] [ ]
=[s1,...,s
0,...,0 b ™t
as defined in Chapter [2| Similarly to the Definition of the filtration for the space BD
we write for a subset A € BD

W L -51,...,51
Fﬂk(A)'_<_r1,...,rl_€A 0<I<k, s+ +sl§k>Q
. -51... Sl-

Fil?(A) := T e Al0<LI<E <k
il (A) <_r1,...,rl_ Stsk,mit 4 S >Q
Filb(4) .= (|7 e a <)

_rl,...,rt

and again if we consider the length and weight filtration at the same time we use the short

notation FilZ\fl’L .= Fil}Y Fil}" and similar for the other filtrations.

Proposition 3.1. ([Ba2, Prop 4.2]) Let d := qd%, then we have

!
S1y.-+,8 S14---38i-1,8 +1,841,...,8
d[ 1 z] =Z<sj(rj+1)[ 1 j—115; j+1 ID
o, T =1 r

1, - 17"'771j7177nj+177aj+17"'77ﬁl
and therefore d (FileC}?’L(BD)) C Film?gjrl’l(BD).

Proof. This is an easy consequence of the definition of bi-brackets and the fact that
d En>0 anqn = En>0 na’nqn' O]
Proposition suggests that the bi-brackets can be somehow viewed as partial derivatives
of the brackets with total differential d.

In the following we now want to discuss the algebra structure of the space BD. For this we
extend the quasi-shuffle product @ of ! to a larger space of words. Since we have double
indices we replace the alphabet A, = {z1,25,...} by AP :={z,, | s >1,r > 0}.
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We consider on QAP' the commutative and associative product

s1 s2
1+ 7o : 1 + 9 .
Forn & S :< Z /\1‘1752 Zjritra Z >\]92,81 Zjritra

T = L} j=1

T+ T2
+ Rs1+82,r1+72
(&

and on Q(AP) the commutative and associative quasi-shuffle product

Rs1,ry W B Zgg oV = Zgy (w ZSQ,TQU) T Zsg,ro <z81,r1w U) + (281,r1 ] ZSz,rz)(w U) )

where the the numbers )‘i,b € Q for 1 < j < a are the same as before, i.e.

M=y (PRI B
. <

a—j a+b—j)"

Theorem 3.2. ([Ba2, Thm. 3.6]) The map H : (Q(APY ®m) — (BD, ) given by

. . S1,...,851
W= g 0] =
IR

fulfills [w @ v] = [w] - [v] and therefore BD is a Q-algebra.

Definition 3.3. For the generating function of the bi-brackets we write

X1,..., X,
Yi,.... Y

S1y... 581 s1—1 si—1 -1 -1
O 1 1 T1 T
= ¥ L”—l SR D O ES D RPN (A
81,...,51>0 1 yeee s
14,7 >0

These are elements in the ring BDge, = liglj BD[[Xy,...,X;,Y1,...,Y]]] of all generating

series of bi-brackets.

To derive relations between bi-brackets we will prove functional equations for their gen-
erating functions. The key fact for this is that there are two different ways of expressing

these given by the following Theorem.

Theorem 3.3. (|[Ba2, Thm. 2.3]) For n € IN set
qun

. nX e
En(X) =€ and Ln(X) = m

€ Qllg, XJ].-
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Chapter 3. Bi-brackets and a second product expression for brackets

Then for all [ > 1 we have the following two different expressions for the generating

functions:

|X1,...,Xl

}/1,...,}/} - Z HEuJ(}/;)LuJ<XJ)

up>-->u; >0 j=1

I
= Y JEy,(Xip1j — Xpgoj) Ly, (Vi + - + Yi_ji1)

ur>->up>0 j=1
(with X;41 := 0). In particular the partition relationd] holds:

X, X=X, X — X |

L (3.1)

X1, X,
Yi,...,Y

]

Remark 3.4. A nice combinatorial explanation for the partition relation (3.1) is the
following: By a partition of a natural number n with [ parts we denote a representation
of n as a sum of [ distinct natural numbers, i.e. 15 =444+ 3+ 2+ 1+ 1 is a partition
of 15 with the 4 parts given by 4, 3,2, 1. We identify such a partition with a tuple (u,v) €
IN' x IN' where the u;’s are the [ distinct numbers in the partition and the v;’s count
their appearance in the sum. The above partition of 15 is therefore given by the tuple
(u,v) = ((4,3,2,1),(2,1,1,2)). By P(n) we denote all partitions of n with [ parts and

hence we set
P(n) := {(u,v)E]le]Nl | n=wv; 4+ -+ wu, and u1>--->ul>0}

On the set Fj(n) one has an involution given by the conjugation p of partitions which can

be obtained by reflecting the corresponding Young diagram across the main diagonal.

((4,3,2,1),(2,1,1,2)) =H ., T =((6,4,3,2),(1,1,1,1))

Figure 3.1: The conjugation of the partition 15 = 4 4+4 + 34+ 2+ 14 1 is given by
p(((4,3,2,1),(2,1,1,2))) = ((6,4,3,2),(1,1,1,1)) which can be seen by reflection the cor-

responding Young diagram at the main diagonal.

'The bi-brackets and their generating series also give examples of what is called a bimould by Ecalle in
[E]. In his language the partition relation (3.1)) states that the bimould of generating series of bi-brackets

is swap invariant.
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On the set F(n) the conjugation p is explicitly given by p((u,v)) = (u',v') where u}; =

;o : —0 i
U1 + e+ Vi—jy1 and ’Uj = Ul—j+1 — U—j+2 with Up41 = 0, 1.€.

Uy, ..., U U1+"'+'Ul,...,’01+1)2,1}1
p: — . (3.2)
V.- U1 Upy Up—1 — Ugy - -, U — U2
By the definition of the bi-brackets its clear that with the above notation they can be
written as
S1y..., 81 1 r1,,81—1 . .s1—1 n
= ui'v ot q".
lrl,...,rll 7“1!(31—1)!...7“l!(sl—1)!n§>:O ((u,v)ze;ﬂl(n) 101 1Y

The coefficients are given by a sum over all elements in P;(n) and therefore it is invariant
under the action of p. As an example, consider [2,2] and apply p to the sum. Then we

obtain

MZZ( > vl-v2)q"=2( > ug-<ug—ug>)qn
(uw ) p((u0))

n>0 YEP2(n n>0 =(u',v")EP2(n)

R Eot W) R

n>0 \ (v )EP; n>0 \ (v v')EP2(n)

(3.3)

This is exactly the relation one obtains by using the partition relation.

Corollary 3.5. ([Ba2, Cor. 2.5]) (Partition relation in length one and two) For r,ry,ry >

0 and s, s1,52 > 0 we have the following relations in length one and two

NNt

[51,321 S (_1),6(31—]34—1{:)(1”2—'1—]') [rg—i-j—l—l,rl—j—kl

1,79 0<iom J so—1—k,s1—1+k
0<k<sp—1

[]

Remark 3.6. If we replace in the generating series in Definition [3.4] the bi-brackets by the
corresponding bi-words in and enforce the partition relation (3.1)) for this power series, we

obtain an involution

P Q(AY) — Q(AY).

By Corollary it is for example P(zs,) = 2zy+1.5-1. This will be needed to describe the

second product structure in the next section.
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Chapter 3. Bi-brackets and a second product expression for brackets

3.4 Double shuffle relations for bi-brackets

The partition relation together with the quasi-shuffle product can be used to obtain a
second expression for the product of two bi-brackets. Before giving the general explanation

this second product expression we illustrate it in two examples.

Example 3.7. i) We want to given a second product expression for the product [2]-[3].

1
1

R R SRR F RS

The partition relations for the length two bi-brackets on the right is given by

[1,11 _ [3,2] +3l4v 11 = [3,2] + 3[4, 1],

By the partition relation we know that [2] = [ ], 3] = m and using the quasi-shuffle

product we have

1,2 0,0 0,0
1,1 2,3 3,2 4,1
=10 2|7 =12 2(3,2 4,1).

Combining all of this we obtain
20 (3] _|1] |1
0] [0] [1] |2
1,11 [1,1 1 2
-[iaf 1] =2l ol
4
=12,3]+3[3,2] + 6[4,1] + SL] — 3[4].
Compare this to the shuffle product of multiple zeta values

¢(2)¢(3) = ¢(2,3) +3¢(3,2) +6¢(4,1).

Since d[3] = 3m this example exactly coincides with the formula in Proposition [2.12
for the derivative d[k].

ii) In higher length, expressing the product of two bi-brackets in a similar way as in 1)

becomes interesting, since then the extra terms can’t be expressed with the operator d

42



3.4. Double shuffle relations for bi-brackets

anymore. Doing the same calculation for the product [3]-[2, 1], i.e. using the partition

relation, the quasi-shuffle product and again the partition relation we obtain

1 1,1
2,1 = || - |
_ L ey L] g2 2 gt 1,1
12,01 " |0,2,1] " |0,1,2 0,3 {21 0,3 2,1
=12,1,3] +[2,2,2] + 2[2,3,1] + 2[3,1,2] + 5[3,2,1] + 9[4, 1, 1]

+ Bﬂ +2B ﬂ +3ﬁ(1)] 23] — 2[3,2] — 6[4,1].

This product can be seen as the analog of the shuffle product
C(3)-C(2,1) =¢(2,1,3) +¢(2,2,2) +2¢(2,3,1) + 2¢(3,1,2) +5¢(3,2,1) + 9¢(4,1,1).

Here the bi-brackets, which are not given as brackets, can not be written in terms of the

operator d in an obvious way.

This works for arbitrary lengths and yields a natural way to obtain the second product
expression for bi-brackets. To be more precise, denote by P : Q(AY) — Q(A) the
involution defined in Remark [3.8] Using this convention the second product expression
for bi-brackets can be written in Q(AP!) for two words u,v € Q(AM) as P (P(u) ® P(v)),
i.e. the two product expressions of bi-brackets which correspond to the stuffle and shuffle

product of multiple zeta values are given by
[u] - [o] =[u@v],  [u]-[v] = [P(P(u) & P(v))]. (3.4)

In contrast to multiple zeta values these two product expression are the same for some
cases, as one can check for the example [1] - [1, 1]. In the smallest length case, we have the

following explicit formulas for the two products expressions.

Proposition 3.8. ([Ba, Prop. 3.3]) For s1,s5 > 0 and 71,72 > 0 we have the following

two expressions for the product of two bi-brackets of length one:

i) ("Stuffle product analog for bi-brackets")
s s ) ) + +
11 e e | et
ri]o T2 r1,72 T2,T1 r1 T+ T

T1 + T2 51 (—1)82_1331+32,J’ S1 + So —j -1 ]
+< )Z ~ .

1 j=1 (51 + 82— j)! S1—J T+ T

(Tl + T2> SZQ )51 1B51+52 -7 (31 + S92 — ] - 1) [ ] ‘|

j=1 (51 + 82— j)! S9— ] 1+ 7o
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Chapter 3. Bi-brackets and a second product expression for brackets

ii) ("Shuffle product analog for bi-brackets")

[31] . |:92] _ Z <S1 + S —j — 1) (7“1 + 1o — kﬁ) (_1>r2—k lsl + S —j,j]
"1 2 1<j<s1 S1—J T k.ry+ry —k

0<k<ry

S1+sy—g—1\[(r14+ro—k elS1+S2—173,7
I Z (1 2—J )(1 2 ><_1)T1k[1 2 J]]
1<j<s2 81—1 Tl—]ﬂ k’,?“l—l-?"Q—k
0<k<r,

81+82—2 Sl—I—SQ—]_
+
81—1 T1+T2+1

i <31 + S — 2) f: (=1)" By 4rp—jt+1 <T1 +ro — j) [31 + 5.2 - 11

s1—1 j:O(T1+r2_j+1)! r—1J J
4 <81 + So — 2) 2 (—1)TlBrl+,«2_j+1 (7’1 + 79 —]) |:91 + So — 1]
51—1 j:O(rl_'_T?_-j—i_l)! T’Q—j j

Having these two expressions for the product of bi-brackets we obtain a large family of linear
relations between them. Computer experiments suggest that actually every bi-bracket can

be written in terms of brackets and that motivates the following surprising conjecture.

Conjecture 3.9. The algebra BD of bi-brackets is a subalgebra of MD and in particular

we have

FﬂZYﬁ»L(BD) C Fﬂmﬁd(/\/m) .

The results towards this conjecture, beside the computer experiments which have been

done up to weight 8, are the following
Proposition 3.10. ([Ba2l, Prop. 4.4]) For [ = 1 the Conjecture is true.

In [BK3] it will be shown, that Conjecture is also true for all length up to weight 7. For
higher weights and lengths there are no general statements. The only general statement

for the length two case is given by the following Proposition.

Proposition 3.11. ([Ba2, Prop. 5.9]) For all s1,s9 > 1 it is

81,82 |S1,52 A W,L
[ 170 ‘|7 [ 07 1 ] S F1151+52+1,3(MD)
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3.5. The shuffle brackets

3.5 The shuffle brackets

We now want to define a ¢-series which is an element in BD and whose products can be
written in terms of the "real" shuffie product of multiple zeta values. For eq,...,e; > 1 we

generalize the generating function of bi-brackets to the following

X1, .., X ! ‘
Y1, . aYl Z H EUj(}/}>Luj(Xj)eJ- (3-5)
er, ... ,€ up>->u>0 j=1

In particular for e; = --- = ¢; = 1 these are the generating functions of the bi-brackets.

To show that the coefficients of these series are in BD for arbitrary e; we need to define

the differential operator DY, := Dy, ¢, Dy,e, - - - Dy, ¢, With

7777 €

| ( 0 0 ) )
Dy .= — — —1].
o 1};[1 (’f ijp1 i ji

o _
where we set Wi 0.

Lemma 3.12. Let A be an algebra spanned by elements a,, s, with s1,...,5 € N, let

H(Xy,..., X)) = >, Qsy, o, Sle“l ... X3! be the generating functions of these elements
and define for f € Q[[X1,..., Xi]]

X X)) =X+ + X X+ + X, X))
Then the following two statements are equivalent.

i) The map ($', ) — A given by z,, ...z, + as,,. is an algebra homomorphism.

ii) Forall ;s € IN it is
HY Xy, ..., Xo)  HY (X1, Xops) = HY( Xy, . ..  Xrts) gnlr+9) »
where sh("+s) = Y oes(rs) 0 in the group ring Z[&, ] and the symmetric group &,
acts on Q[[X1,..., X,]] by (f|o) (X1, .., X,) = F(Xomr(1), - X))
Proof. This can be proven by induction over [ together with Proposition 8 in [I]. [
Theorem 3.13. ([Ba2, Thm. 5.7]) For sy,...,s; € N define [sy,...,s]" € BD as the

coefficients of the following generating function

Hy(Xi, 0, X)) = Y sty s Xt Xt

815,811

. 1 DY X1y Xt 1y Xy it 1s -+ 3 Xigbooipn+1
' [ i Yi, ...,

!
1<m<l 11+ ... Uy

-
i1t im=l

Then we have the following two statements
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Chapter 3. Bi-brackets and a second product expression for brackets

i) The [sq,...,s]" fulfill the shuffle product, i.e.

H! (X1, X)) -H Y (X, .., Xos) = HU(X, .  Xrts)|gnlr+) -

ii) For sy > 1, so,...,5 > 2 we have [s1,...,5]" = [s1,..., 5]

For low lengths we obtain the following examples:

Corollary 3.14. It is [s1]™ = [s1] and for | = 2,3,4 the [s1,...,s]| are given by

9 ool = lovsd 03 (7] - 150)
i) [s1,82,83)" = [s1, S2, 53] + s5.1 - 1 <[Sl’ 821 - [31,32]>
2 0,1
RN e
e (-2

1

S1, S92, S3
L 9 )
(51, 52, 83, 54 = [81, 52, 3, 54| + 51 -

ii) q ] — [s1, 32,53]>

2 0,0,1
+0551 - ; <:8878127’§41 — lsb’fg”fﬂ + [s1, 52, 54]>
+ 6.1 - ; (:811’78037’54] — l81()’78137’§41 + [s1, s3, 54]>
0501 ° i (Si:jg - 2[5(1):;3] — [813331 + [s1, s3]>
st (5] 2] )
ey (SOZ - h: ﬂ .3 [55: ﬂ ; B: 34] = h:ﬂ ¥ s 34]>
0y it - 214 Q?] - 2[521] + ?lﬂ — [31]> .

Proof. This follows by calculating the coefficients of the series GG, in Theorem (3.15, [

The shuffle brackets will be used to define shuffle regularized multiple Eisenstein series in

the next chapter.
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Chapter 4

Regularizations of multiple

Eisensteln series

This chapter is devoted to Question[I]in the introduction, which was to find a regularization
of the multiple Eisenstein series. We want to present two type of regularization: The
shuffle regularized multiple Eisenstein series ([BT], [Ba2|]) and stuffle regularized multiple
Eisenstein series (|[Ba2]).

The definition of shuffle regularized multiple Eisenstein series uses a beautiful connection
of the Fourier expansion of multiple Eisenstein series and the coproduct of formal iterated
integrals. The other regularization, the stuffle regularized multiple Eisenstein series uses
the construction of the Fourier expansion of multiple Eisenstein series together with a
result on regularization of multitangent functions by O. Bouillot ([Bo]).

We start by reviewing the definition of formal iterated integrals and the coproduct defined
by Goncharov. An explicit example in length two will make the above mentioned connec-
tion of multiple Eisenstein series and this coproduct clear. After doing this, we give the
definition of shuffle and stuffle regularized multiple Eisenstein series as presented in [BT]
and [Ba2|]. At the end of this chapter we compare these two regularizations with a help of

a few examples.

4.1 Formal iterated integrals
Following Goncharov (Section 2 in [G]) we consider the algebra Z generated by the elements
[(ag;ay,...,an;ans1), a; €{0,1}, N >0.
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Chapter 4. Regularizations of multiple Eisenstein series

together with the following relations
i) For any a,b € {0,1} the unit is given by I(a;b) := I(a;0;b) = 1.

ii) The product is given by the shuffle product LU

Lao; a1, - .., ans anen+1)I(ao; Gprtts - - - Qv N At N+1)
= Z H(ao; Ag=1(1)5 -+ - s Ag=1(M+N); aM+N+1);
O'ESI’L]V[J\]

where shys n is the set of 0 € Gpqn such that (1) < --- < o(M) and o(M + 1) <
<o <o(M+N).

iii) The path composition formula holds: for any N > 0 and a;,z € {0, 1}, one has

N

[(ap; as,...,an;ans1) = Z I(ag; ar, .. . a; ©)U(Z; apgas - - - an; angr)-
k=0

iv) For N > 1 and a;,a € {0,1} it is [(a; aq, . ..,an;a) = 0.
v) The path inversion is satisfied:

I(ap; ay,...,an;any1) = (—l)N]I(aN+1; an,...,a1;0ag) -

Definition 4.2. (Coproduct) Define the coproduct A on Z by

A (I(ag; ay, ..., an;ant1)) =
k
Z I[(Clo; Qiyy vy Qg CLN+1) ® H ]I(Cli,,; Qi 415+ -y Qi -1 Clz',,H) )
p=0
where the sum on the right runs over all i =0 < 43 < -+ < 9 < 941 = N + 1 with

0<k<N.

Proposition 4.1. (|G, Prop. 2.2]) The triple (Z,Lu, A) is a commutative graded Hopf

algebra over Q.

To calculate A (I(ag;aq, ..., as;a9)) one sums over all possible diagrams of the following

form.
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4.1. Formal iterated integrals

Ya,
5;Q .
6,

@)

as

Figure 4.1: One diagram for the calculation of A (I(ag;aq,...,as;a9)). It gives the term

I(ag; a1, ag, az; ag) @ I(ag; ar)l(ar; az, as; aq)l(aq; as, ag; az)l(ar; as; ag) -

For our purpose it will be important to consider the quotient spaceE]
T =17/1(1;0;0)T.
Let us denote by

I(ag;ay, ..., an;any1)

an image of [(ag; ay, . . .,ay;ay;1) in Z'. The quotient map Z — Z' induces a Hopf algebra
structure on Z*', but for our application we just need that for any wi,w, € Z', one has

A(wy W wy) = A(w;) W A(ws). The coproduct on Z' is given by the same formula as

before by replacing I with I. For integers n > 0,sq,...,s, > 1, we set
I(s1,...,s):=1(10,0,...,1,...,0,0,...,1,0,...,0;1).
—_——— —_——— ——
S1 Sp n
In particular, we write I(sq,...,s,) to denoteﬂ Io(s1,. .., 8).

Proposition 4.2. ([BT, Eq. (3.5),(3.6) and Prop. 3.5])

i) We have I,(0) =0ifn>1or 1if n=0.

'If one likes to interpret the integrals as real integrals, then the passage from Z to Z' regularizes these

integrals such that "—log(0) = [,_,_, at =0
2This notion fits well with the iterated integral expression of multiple zeta values. Recall that
dtl dtQ dt3 dt4 dtS
<<2’3):/ o6 st 1-ts
1>t > >t5>0 U1 —l2 13 4 — 15

2 3

This corresponds to I(2,3) (but is of course not the same since the I are formal symbols).
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Chapter 4. Regularizations of multiple Eisenstein series

ii) For integers n > 0,s1,...,8, > 1,

T(st,nnos) = (=17 Y (H (kf - 1))1(/{1,...,/@),

iz \s; — 1
where the sum runs over all k; +---+ k. =s;+---+ s, +n with k,..., k. > 1.
iii) The set {I(sy,...,s,) |7 >0,s; > 1} forms a basis of the space Z".
We give an example for ii): In Z' it is 1(1;0;0) = 0 and therefore

0=1(1;0;0)I(1;0,1;0)
=1(1;0,0,1;0) + 1(1;0,0,1;0) + 1(1;0,1,0;0)
= 21(3) + 1,(2)
which gives 11(2) = —21(3) = (=1)(3)(3).

1

Remark 4.3. Statement iii) in Proposition basically states that we can identify Z*

with $! by sending I(si,...,5;) t0 24 ...2,. In other words we can equip $' with the
coproduct A. Instead of working with I we will use this identification in the next section,

when defining the shuffle regularized multiple Eisenstein series.

Example 4.4. In the following we are going to calculate A(1(3,2)) = A(Z(1;0,0,1,0,1;0)).

Therefore we have to determine all possible markings of the diagram

Ty

where the corresponding summand in the coproduct does not vanish. For simplicity we
draw o to denote a 0 and e to denote a 1. We will consider the 4 = 2% ways of marking the
two e in the top part of the circle separately. As mentioned in the introduction, we want to
compare the coproduct to the Fourier expansion of multiple Eisenstein series. Therefore,
in this case we also calculate the expansion of G5 2(7) using the construction described in
Section . Recall that we also had the 4 different parts G5, GY¥, GEY and GYY. We
will see that the number and positions of the marked e correspond to the number and

positions of the letter U in the word w of G".

i) Diagrams with no marked e:
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4.1. Formal iterated integrals

ii)

iii)

£

Corresponding sum in the coproduct:
I(0;0;1) ® 1(1;0,1,0,0,1;0) = 1® 1(2,3).

The part of the Fourier expansion of G5 which is associated to this, is the one with
no U 'occurring', i.e. GER (1) = ((3,2).

Diagrams with the first @ marked:

Corresponding sum in the coproduct:
1(1;0,0,1;0) ® (1(1;0) - 7(0;0) - 1(0;1) - 1(1:0,1;0)) = I(3) @ I(2).
The associated part of the Fourier expansion of Gs is G§5(7) = g3(7) - ¢(2).

Diagrams with the second e marked:

Corresponding sum in the coproduct:
1(1;0,1;0) ® (1(150,0,1;0) - 1(0;1) - I(1;0))
+1(1;0,1;0) @ (I(1;0) - (0 0,1,0;1) - I(1;0))
+1(1;0,0,1;0) ® (1 ) - I(0;1,0;1) -1(1;0))
=I2)®I13)—112)® 11(2) +I(3)®I(2),
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Chapter 4. Regularizations of multiple Eisenstein series

where we used 7(0,0,1,0;1) = —I;(2) and 1(0;1,0;1) = (—1)*1(1;0,1;0) = I(2).
Together with [;(2) = —21(3) this gives

3I2)®@I(3)+1(3)®I1(2).

Also the associated part of the Fourier expansion is the most complicated one. We
had G55 (1) = 3,50 Us2(m7) and with we derived Usq(x) = 3Wq(z) - ((3) +
Us(x) - ((2), i.e.

G35 (7) = 3g2(7) - ((3) + ga(7) - (2).

N

Corresponding sum in the coproduct: 1(2,3) ® 1. The associated part of the Fourier

iv) Diagrams with both e marked:

expansion of G is GYY (7) = g32(7).
Summing all 4 parts together we obtain for the coproduct
A(1(3,2)=1®1(2,3)+3I2)®@I(3)+2I3)®I1(2)+1(2,3)®1
and for the Fourier expansion of Go3(7):
Gs2(7) = €(3,2) 4 392(7)C(3) + 295(7)¢(2) + g32(7) -

This shows that the left factors of the terms in the coproduct corresponds to the functions
g and the right factors to the multiple zeta values. We will use this in the next section to

define shuffle regularized multiple Eisenstein series.

4.3 Shuffle regularized multiple Eisenstein series

In this section we present the definition of shuffie regularized multiple Eisenstein series
as it was done in [BT] together with the simplification developed in [Ba2]. We use the
observation of the section before and use the coproduct A of formal iterated integrals

to define these series. As mentioned in Remark we can equip the space $! with
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4.3. Shuffle regularized multiple Eisenstein series

the coproduct A instead of working with the space Z'. Denote by MZB C C[[q]] the
space of all formal power series in ¢ which can be written as a Q-linear combination of
products of multiple zeta values, powers of (—27i) and bi-brackets. In the following, we
set ¢ = exp(2miT) with 7 being an element in the upper half-plane. Since the coefficient of
bi-brackets just have polynomials growth, the elements in MZB and BD can be viewed
as holomorphic functions in the upper half-plane with this identification.

In analogy to the map Z" : ($',11) — MZ of shuffle regularized multiple zeta values
(Proposition [1.2), the map g : ($', W) — Q[2i][[g]] defined on the generators 2, ... 2
by

1

t14++tm [tlﬂ .. 7tm]|—u

97 (2t - 26) = Gy e, (T) i= (—270)

Y

is also an algebra homomorphism by Theorem [3.15]
With this notation we can recall the definition of G™ from [Ba2] (which is a variant of the
definition in [BT], where the authors did not use bi-brackets and the shuffle bracket).

-----

.....

where m denotes the multiplication given by m: a ® b — a - b.
We can view GY as an algebra homomorphism G* : (9',w) — MZB such that the

following diagram commutes

(', W) 2= (H', W) @ (H',w)
Gwl |zesn
MZB <~—— MZ ® Q[2mi][[q]]
Theorem 4.5. ([Ba2, Thm. 6.5 |, [BT, Thm. 1.1, 1.2]) For all s4,...,s > 1 the shuffle

regularized multiple Eisenstein series G, have the following properties:

.....

i) They are holomorphic functions on the upper half-plane having a Fourier expansion

with the shuffle regularized multiple zeta values as the constant term.
ii) They fulfill the shuffle product.

iii) For integers sq,...,s; > 2 they equal the multiple Eisenstein series

.....

and therefore they fulfill the stuffle product in these cases.
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Chapter 4. Regularizations of multiple Eisenstein series

]

Parts i) and ii) in this theorem follow directly by definition. The important part here is iii),
which states that the connection of the Fourier expansion and the coproduct, as illustrated
in Example holds in general. It also proves that the shuffle regularized multiple
Eisenstein series fulfill the stuffle product in many cases. Though the exact failure of the

stuffle product of these series is unknown so far.

4.5 StufHe regularized multiple Eisenstein series

Motivated by the calculation of the Fourier expansion of multiple Eisenstein series described

in Section we consider the following construction.

Construction 4.6. Given a Q-algebra (A, ) and a family of homomorphism

{w = fu(m)},en

from ($H', %) to (A,-), we define for w € $H' and M € N

Fy(M) := Z fuw (M) ... fu, (my) € A,

1<k<l(w)
w1 ... W =W
M>m1>->mp>0
where [(w) denotes the length of the word w and wy ... w, = w is a decomposition of w

into k words in $'.

Proposition 4.7. ([Ba2, Prop. 6.8]) For all M € NN the assignment w +— F, (M), de-
scribed above, determines an algebra homomorphism from ($)', %) to (A,-). In particular

{w = F,(m)},,cn is again a family of homomorphism as used in Construction . ]

For a word w = 2, ...25, € $' we also write in the following fs, s (m) := f,(m) and

similarly Fy, (M) = F,(M).

Example 4.8. Let f,(m) be as in Construction . In small lengths the F, are given by

Fsl (M) = Z fsl (ml) ) F81782(M) = Z f51732 (ml) + Z f81 (ml)f82 <m2)

M>mq1>0 M>m1>0 M>mi1>mo>0
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4.5. Stuffle regularized multiple Eisenstein series

and one can check directly by the use of the stuffle product for the f,, that

FSl(M)'FSQ(M): Z f81(m1)’ Z f82<m2)

M>m1>0 M>m2>0

= Z f81<m1)f82(m2) + Z f82(m2)fs1(m1) + Z f$1(m1)f$2(m1)

M>m1>ma>0 M>mg>mi>0 M>mi1>0

= Z f51(m1)f52(m2) + Z f52(m2)f51(m1)

M>mq>mao>0 M>mo>m1>0

+ Z (f81,82 (ml) + f82781 (ml) + f81+s2 (ml))

M>m1>0

= F51752(M) + FS2,S1(M) + FS1+82(M) .

Let us now give an explicit example for maps f, in which we are interested. Recall
(Definition [1.5)) that for integers sq,...,s; > 2 we defined the multitangent function by

1
\Ijsl,m,sz(z) = Z

S on (2 na)" e (2 )
n;€z.
In [Bo|, where these functions were introduced, the author uses the notation 7 e (z)
which corresponds to our notation Wy, (2). It was shown there that the series Wy, 4 (2)
converges absolutely when sq,...,s, > 2. These functions fulfill (for the cases they are
defined) the stuffle product. As explained in Section [1.2]the multitangent functions appear
in the calculation of the Fourier expansion of the multiple Eisenstein series Gy, ., for

example in length two it is

GSLSQ(T) = C(Sla 32)+C(31) Z \Psz (mlT)+ Z \1151782 (mlT)+ Z \1181 (mlT)\IISQ(mQT) :

m1>0 m1>0 m1>mo>0

One nice result of [Bo] is a regularization of the multitangent function to get a definition of
U, s(z)forall sy, ..., s; € IN. Wewill use this result together with the above construction

to recover the Fourier expansion of the multiple Eisenstein series.

Theorem 4.9. (|[Bo]) For all sy,...,s, € IN there exist holomorphic functions ¥y, , on

l

H with the following properties

i) Setting ¢ = €*™" for 7 € H the map w — W, (7) defines an algebra homomorphism
from (51, %) to (C[lq]], ).

ii) In the case s1,...,s > 2 the ¥y,
Definition [L.3l

, are given by the multitangent functions in
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Chapter 4. Regularizations of multiple Eisenstein series

iii) The monotangents functions have the g-expansion given by

27m< —i—Zq) \Ifk(T):mZkl”fork>2

n>0 * n>0

Uy (1) =

tan(m')

iv) (Reduction into monotangent function) Every Wy, . (7) can be written as a MZ-

linear combination of monotangent functions. There are explicit ¢;;* € MZ s.th.

Wepo() = 84 33

i=1 k=1

where %1% = (l, if s =---=95 =1and [ even and 9°* = 0 otherwise. For

sy > 1 and s; > 1 the sum on the right starts at & = 2, i.e. there are no W,(7)

appearing and therefore there is no constant term in the g-expansion.

Proof. This is just a summary of the results in Section 6 and 7 of [Bo|. The last statement

iv) is given by Theorem 6 in [Bo]. O

Due to iv) in the Theorem the calculation of the Fourier expansion of multiple Eisenstein
series, where ordered sums of multitangent functions appear, reduces to ordered sums of
monotangent functions. The connection of these sums to the brackets, i.e. to the functions
g, is given by the following fact which can be seen by using iii) of the above Theorem. For

Ny, ...,Np > 21t is

Gs1rnnsn (T) = Z U, (myr) ... Uy, (myT) .

my>-->m; >0

For w € $' we now use the Construction 4.8/ with A = C[[¢]] and the family of homomor-
phism {w — U, (n7) }nen (See Theorem i)) to define

g M(w) = (- 27m)|w| Z Z Uy (ma7) .o Wy, (M)

1<k<l(w) M>m1>-->mp>0
wl...Wp=w

From Proposition it follows that for all M € IN the map g** is an algebra homomor-
phism from ($!, %) to C[q]].
To define stuffle regularized multiple Eisenstein series we need the following: For an arbi-

trary quasi-shuffle algebra Q(A) define the following coproduct for a word w

Z URv.
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4.5. Stuffle regularized multiple Eisenstein series

Then it is known due to Hoffman ([H]) that the space (Q(A), ®, Ay) has the structure of
a bialgebra. With this we try to mimic the definition of the G* and use the coproduct
structure on the space ($',*, Ay) to define for M > 0 the function G*™ and then take
the limit M — oo to obtain the stuffle regularized multiple Eisenstein series. For this we

consider the following diagram

(B, %) 2 (51, 5) @ (51, %)

Cllg] ==—Clldl o MZ

m

with the above algebra homomorphism g** : (9!, %) — C[[q]].

Definition 4.6. For integers s,...,5 > 1 and M > 1, we define the g-series G=M | €

.....

Cl[q]] as the image of the word w = z,, ...z, € $H' under the algebra homomorphism
(Z* ®g*,M) o AH:

,,,,,

For sq,...,s > 2 the limit
G (1) := lim GM o (1) (4.1)

, o o
exists and we have G, o =G; =Gy

-----

Remark 4.10. The open question is for what general sq,...,s; the limit in (4.1 exists.
It is believed that this is exactly the case for sy > 2 and so,...,s5, > 1 as explained in
Remark 6.14 in [Ba2]. This would be the case if ¥

with a constant term in the decomposition of Theorem iv). That this is the case is

1 are the only multitangent functions

-----

remarked, without a proof, in [Bo2] in the last sentence of page 3.

Theorem 11. ([Ba2]) For all s,...,s, € N and M € N the G:™ | € C[[q]] have the

.....

following properties:

i) Their product can be expressed in terms of the stuffle product.

ii) In the case where the limit G,
are elements in MZB.

"5, exists, the functions G§,

iii) For sy,...,5 > 2 the G

-----
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Chapter 4. Regularizations of multiple Eisenstein series

4.7 Double shuffle relations for regularized multiple

Eisenstein series

By Theorem we know that the product of two shuffle regularized multiple Eisenstein

series Gy with s1,...,8 > 1 can be expressed by using the shuffle product formula.

e

This means we can for example replace every ¢ by G" in the shuffle product (0.4)) of

multiple zeta values and obtain
Gy - G3' = Gy +3G3, +6GY . (4.2)

Due to Theorem {4.7]iii) we know that Gy}

product of two multiple Eisenstein series G, 5, can be expressed using the stuffle product

sy = Gsy 5 whenever s1,..., s > 2. Since the

formula we also have

Gy -Gy =Gy -G3=Ga3+ G320+ G5

(4.3)
=G+ G3y + Gy

Combining and we obtain the relation G§' = 2GY), 4+ 6GY;. In the following we
will call these relations, i.e. the relations obtained by writing the product of two GV
with sq1,...,s;, > 2 as the stuffle and shuffle product, restricted double shuffle relations.
We know that multiple zeta values fulfill even more linear relations, in particular we can
express the product of two multiple zeta values ((sy, ..., s;) in two different ways whenever
s1 > 2and s9,...,s > 1. A natural question therefore is, in which cases the G*' also fulfill
these additional relations. The answer to this question is that some are satisfied and some
are not, as the following will show.

In [Ba2, Example 6.15] it is shown that G, = G3,, , G3) = G5, Gyy, = G5, and
Gy, = Gi,. Since the product of two G* can be expressed using the stuffle product we

obtain
Gy - ;U?l:(;;. 3,1
= G§,1,2 + 2G;,2,1 + GZLl + G§,3 (4-4)
- G;LJLQ + 2G5:|271 + Géltll + Gg:ls .
Using also the shuffle product to express Gy' - Gy'; we obtain a linear relation in weight

5 which is not covered by the restricted double shuffle relations. This linear relation was

numerically observed in [BT] but could not be proven there. So far it is not known exactly
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4.7. Double shuffle relations for regularized multiple Eisenstein series

which products of the G*' can be written in terms of stuffle products.

We end this chapter by comparing different versions of the double shuffle relations and
explain, why multiple Eisenstein series can’t fulfill every double shuffle relation of multiple

zeta values. For this we write for words u,v € $!
ds(u,v) ;== ulv —u*v € H.

Recall that by $° we denote the algebra of all admissible words, i.e. $° = 1-Q + z8y.
Additionally we set $* = Q({z2,23,...}) to be the span of all words in ' with no 2
occurring, i.e. the words for which the multiple Eisenstein series G exists. These are also
the words for which the product of two multiple Eisenstein series can be expressed as the
shuffle and stuffle product by Theorem . Denote by |w| € $' the length of the word w
with respect to the alphabet {x,y} and define

edsy := {ds(u,v) €N | |ul+v|=Fk uen’venHu {zl}},
fdsy := {ds(u,v) € 9| |u|l+|v| =k, u,v e 530},
rdsy, := {ds(u,v) € 9| |u|l+|v| =k, u,v e 5’)2}.

Also set eds = (U~ edsy and similarly fds and rds. These spaces can be seen as the words
in $H° corresponding to the extendedﬂ-, finite- and the restricted double shuffle relations.
We have the inclusions

rds;, C fds, C edsy, .

View ¢ as a map H° — MZ by sending the word z, ...z, to ((s1,...,5;). It is known
(IKZ, Thm. 2]), that edsy is in the kernel of the map ¢ and it is expected (Statement (3)
after Conjecture 1 in [IKZ]) that actually eds, = ker(¢). Viewing G* in a similar way as
a map H° - MZB, we know that rds;, is contained in the kernel of this map (Theorem
iv)). But due to we also have ds(zg, 2221) € ker(G") which is not an element of
rdss. In [Ba] Example 6.15 ii) it is shown that there are also elements in fds; C edsy, that

are not in the kernel of G*. We therefore expect

rds C ker G C eds

In [IKZ] the authors introduced the notion of extended double shuffle relations. We use this notion
here for smaller subset of these relations given there as the relations described in statement (3) on page
315.
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Chapter 4. Regularizations of multiple Eisenstein series

and the above examples show, that it seems to be crucial to understand for which indices
we have G = G* to answer these questions.

We now discuss applications of the extended double shuffle relations to the classical theory
of (quasi-)modular forms. As we have seen in the introduction it is known due to Euler
that

5 715

COP = 26, P = L®), 6 = £oc(12). (15)

In the following, we want to show how to prove these relations using extended double
shuffle relations and argue why for multiple Eisenstein series the second is fulfilled but the
first and the last equation of (4.5]) are not.

i) The relation ¢(2)* = 2¢(4) can be proven in the following way by using double shuffle

relations. It is zg % 29 = 2ds(z3, 21) — %ds(zg, z) + 324, since
dS(Zg, Zl) = 2321 + %929 — 24 s
ds(za, 29) = 42321 — 24,

Zo % 2y = 22929 + 24 .
Applying the map ¢ we therefore deduce

C(2)2 _ C(ZQ * 22) - C (2 dS(Zg,Zl) — ;dS(ZQ, 22) + 224) = ;C(4) .

This relation is not true for Eisenstein series. Though ds(zs, 29) is in the kernel of G"
the element ds(z3, z1) is not. In fact, using the explicit formula for the Fourier expan-
sion of G5’} and Gy}, together with Proposition for d[2] we obtain G*(ds(z3, 21)) =
6¢(2) d G, where as before d = qdiq. Using this we get

1 ) )
G2 = G (2 % 25) = G™ <2 ds(z3,21) — 5 ds(z9, 22) + 224) =12¢(2)d Gy + §G4-
This is a well-known fact in the theory of quasi-modular forms ([Za]).

ii) Similarly to the above example one can prove the relation ((4)> = £((8) by checking
that

2
24k 2y = 3 ds(zy, 24) — 5 ds(zs3, z5) + 628

and since ds(zy, 24),ds(23, 25) € rdsg C ker G* we also derive G4* = %Gg by applying
the map G" to this equation.
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4.7. Double shuffle relations for regularized multiple Eisenstein series

iii) To prove the relation ((6)? = £2¢(12) in addition to the double shuffles of the form

ds(z4, 2) double shuffles of the form ds(z,zp, z.) are needed as well. This follows

indirectly from the results obtained in [GKZ|. Using the computer one can check that

) S 715 N 1
ek e — D 219 = —2
6 * 26 626 127 60172 " 92.19.113- 691

(R+ E)
with R € rds;s and F € eds;s \ rds; being the quite complicated elements

R = 2005598 ds(zg, z6) — 8733254 ds(z7, z5) + 8128450 ds(zg, z4) + 5121589 ds(zg, 23)
+ 16364863 ds(z10, 22) + 2657760 ds(z22s, 22) + 5220600 ds(z327, 22)
+ 12711531 ds(z426, 22) + 10460184 ds(z525, 22) + 18601119 ds(z424, 22)
+ 33877826 ds(z723, 22) + 39496002 ds(zg 29, z2) — 13288800 ds(z229, 25)
— 5220600 ds(z927, z3) — 5734750 ds(z326, 23) — 84659 ds(z425, 23)
+ 2820467 ds(z524, 23) — 5486485 ds(z623, 23) + 8462489 ds(z722, 23)
— 6067131 ds(z22¢, z4) — 7532671 ds(z325, z4) — 10879336 ds(z423, 25)
— 5151234 ds(z424, 24) + 3440519 ds(2z523, 24) — 1458819 ds (222, 24)
( z
(

—_— ~—  ~— —

+ 2259096 ds(z522, 25) — 4319105 ds(z324, 25) — 778598 ds(z522, 25)
+ 7609581 ds(z224, 26) + 13064898 ds(z323, z6) — 1281420 ds(z329, 27) ,

E = —22681134 ds(z11, 21) + 10631040 ds (2328, 21) + 4241200 ds(z721, 24)
+ 31893120 ds(z427, 21) + 58185960 ds(z52¢, 21) + 78309000 ds(z62s5, 21)
+ 77976780 ds(z724, 21) + 44849700 ds(zg 23, 21) — 13288800 ds(z92a, 21)
— 15946560 ds(z1021, 21) + 75052824 ds(2921, 29) + 19477164 ds(zs21, 23)
— 12951740 ds(z621, 25) — 10631040 ds(z221, 29)

Here the elements E and R are in the kernel of ( but E, in contrast to R, is not in
the kernel of G*'. The defect here is given by the cusp form A in weight 12 as one can

derive
2147

L —_—
G(B) = 1200

(—2mi)2A.

It is still an open problem how to derive these Euler relations in general by using double
shuffle relations. The last example shows that this also seems to be very complicated. But
as the examples above show, this might be of great interest to understand the connection

of modular forms and multiple zeta values. This together with the question which double

61



Chapter 4. Regularizations of multiple Eisenstein series

shuffle relations are fulfilled by multiple Eisenstein series will be considered in upcoming

works by the author.

62



Chapter 5
g-analogues of multiple zeta values

In general, a ¢g-analogue of an mathematical object is a generalization involving a new
parameter ¢ that returns the original object in the limit as ¢ — 1. The easiest example of

such an generalization is the g-analogue of a natural number n € IN given by

=1+q+-+q¢"".

Clearly this gives back the original number n as lim,_,;[n], = n.

Several different models for g-analogues of multiple zeta values have been studied in recent
years. A good overview of them can be found in [Zh]. There are different motivations to
study ¢-analogues of multiple zeta values.

That our brackets can be seen as g-analogue of multiple zeta values somehow occurred by
accident since their original motivation was their appearance in the Fourier expansion of
multiple Eisenstein series. But as turned out, seeing them as ¢-analogues gives a direct
connection to multiple zeta values. In this chapter we first show how the brackets can be
seen as a g-analogue of multiple zeta values and then discuss how one can obtain relations
between multiple zeta values using the results obtained in [BK]. The second section will

be devoted to connecting the brackets to other g-analogues.

5.1 Brackets as g-analogues of MZV and the map Z;

Define for k € IN the map Zj : Q[[¢]] = RU {oo} by

Zy(f) =1lim(1 — )" f(q).

q—1
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Chapter 5. g-analogues of multiple zeta values

Since we have seen that the brackets can be written as
1 Ps 71 j)

q"
(s1— D). . (s =1)! 2 H — g

np>-->n; >0 j=1

[$1,...,8] =

and using Py_1(1) = (k — 1)! and interchanging the summation and the limit we derive
([BKl Prop. 6.4]), that for s; > 1, i.e. [s1,...,5] € QMZ

s, k= e )

Zk ([s1,---,s1]) = Clons- 1) R

O, k>s14+---+s;.
Due to MD = qgMZ[[1]] (Theorem 2.11]) we can define a well-defined map[| on the whole
space MD by

7 FilY (MD) — R[T]
k k
2 (Z gj[l]k_]) = Zi(g;)T"7 € R[T]
j=0 J=0

where g; € Fil}N(qMZ).
Every relation between multiple zeta values of weight k is contained in the kernel of the
map Zj. Therefore the kernel of Z;, was studied in [BK].

Theorem 5.1. ([BK, Thm. 1.13]) For the kernel of Z{" € Fil}' (MD) we have
i) If for [s1,...,s] it holds sy + -+ + s, < k, then Z,flg[sl, ..,81] =0.
ii) For any f € Fil}¥ ,(MD) we have Z d(f) =0, i.e., dFil}¥ ,(MD) C ker Zj.

iii) If f € Fil}Y (MD) is a cusp form for SLy(Z), then Z(f) = 0.

Example 5.2. We illustrate some applications for Theorem [5.1] For this we recall iden-
tities for the derivatives and relations of brackets as they were given in [BK]. All of them

can be obtained by using the results explained in Chapter [2|

any =]+ 502 - 2.1, (5.1)
d[2) = [4] + 23] é[z] _43,1]. (5.2)
2] = 204 + 3] + 512 - 202,2) - 203,1], (5.3)
A1) = 3,1+ 52,1+ 5[1,2)+ (18] - 202,1,1] - [1,2,1], (5.4)
8] = 410[4] 2;2 2] + 12[4,4]. (5.5)

IThis map is similar to the evaluation map Z* : §! — R[T], of stuffle regularized multiple zeta values,

given in Proposition 1 in [IKZ]. We used this map in the previous chapters (Proposition ) with 7' = 0.
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5.1. Brackets as g-analogues of MZV and the map 7,

Using Theorem as immediate consequences and without any difficulties we recover the

following well-known identities for multiple zeta values.

i) If we apply Z3 to (5.1)) we deduce ¢(3) = ((2,1).

ii) If we apply Z4 to (5.2) and (5.3)) we deduce ((4) = 4¢(3,1) = %C(?, 2).

iii) The identity (5.4)) reads in M Z[[1]] as
1 1 1

a1 = (13— [2,1)+ 5f21) - 1)+ 20,1 - 5[4 = 52,1 - 213] + 5[2].

Applying Z¢% we deduce again the two relations ¢(3) = ¢(2,1) and 4¢(3,1) = ¢(4),
since by Theorem [5.1] we have

Z99(d1,1]) = (¢(3) — C(2. 1) T — 5¢(4) +2¢(3,1) = 0.
iv) If we apply Zg to (5.5) we deduce ((8) = 12¢(4,4).

v) As we have seen in Proposition the cusp form A can be written as
1

—— A = 1685, 7| + 150|7, 5] + 28|9, 3

S = 168(5.7] + 150(7,5) + 25[0. 3

1 83 187 7 5197
— 12| — 4 — —|8] — ——112]. .
1408[ ] 14400[ I+ 6048 6] 120 8] 691 [12] (56)
Letting Z15 act on both sides of (5.6) one obtains the relation

561;7«12) — 168¢(5,7) + 150¢(7,5) + 28¢(9,3) .

+

But as mentioned in the introduction there are also elements in the kernel of 7, that are
not covered by Theorem [5.1] In weight 4 one has the relation of multiple zeta values
C(4) = ¢(2,1,1), ie. it is [4] —[2,1,1] € ker Z,. But this element can’t be written as
a linear combination of cusp forms, lower weight brackets or derivatives. But using the
double shuffle relations for bi-brackets described in Section one can proveﬂ that

4 - [2.1.1) = © (af1) +d2) - 2] - 3] + ﬁ (1)] . (5.7

'That the last term [?(1)] in ([5.7) is in the kernel of Z4 can be proven in the following way: In Proposition
7.2 [BK] it is shown, that an element f =)

Z).. Here we have

>0 @nq" With a, = O(n™) and m < k — 1 is in the kernel of

2,1
|: 5 :| _ Z v1u1q1)1u1+1)2u2 < Z U1u1q1)1u1+v2u2 — d[l] . [1]7

1,0
) uy >us>0 u1,u10
v1,v2>0 v1,v2>0

where the < is meant to be coefficient wise. Since the coefficients of d[1] - [1] grow like n?log(n)? we

conclude [%(1)] € ker Zy.
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Chapter 5. g-analogues of multiple zeta values

Another way to see that many of the bi-brackets of weight k are in the kernel of the map
Zy, is the following. Assume that s; > r; +1and s; > r; + 1 for j = 2,...,[, then using

again the representation with the Eulerian polynomials (See also Proposition 1 [Zu]) we

S1y.-+,8 1
Lstots, <[rl lD = 7,C(31 — 71,581 —7’1)

Tyeves Ty rl .o

get

S1yees81
T1,--457T1

and in particular with this assumption it is { ] c ker Zs 4.y 41-

The study of the kernel Z,, is of great interest since it contains every relation of weight k.
We expect that every element in the kernel of Z; can be described using bi-brackets of a
"certain kind" and it seems to be a really interesting question to specify this "certain kind"
explicitly. To determine which bi-brackets are exactly in the kernel of the map Z; and also
which bi-brackets can be written in terms of brackets in M Z is an open problem. The

51,

naive guess, that exactly the bi-brackets L iﬂ where at least one r; > 0 are elements in

geeey

the kernel of Zg, 1.4 5,45 +.+r, 1S Wrong, since for example

11
lim(1 — g)° [1,0] -

5.2 Connection to other ¢g-analogues

In [ZL] the author gives an overview over several different g-analogues of multiple zeta
values. Here we complement his work and focus on aspects related to our brackets. To
compare the brackets to other g-analogues we first generalize the notion of a g-analogue of
multiple zeta values as it was done in [BK2]. This notion of a g-analogue does cover many
but not all g-analogues described in [ZL].

In the following we fix a subset S C IN, which we consider as the support for index entries,
i.e. we assume sp,...,8 € S. For each s € S we let Q4(t) € Q[t] be a polynomial with
Qs(0) = 0 and Q4(1) # 0. We set @ = {Q(t)},cg- A sum of the form

Qs,(¢") )
Zo(st,..y8) = > H =) (5.8)
ni>-->n >0 j= 1 q

with polynomials ), as before, defines a g-analogue of a multiple zeta-value of weight
k= s;+---+ s and length [. Observe only because of Qg (0) = 0 this defines an element

of Q[[¢]]. That these objects are in fact a g-analogue of a multiple zeta-value is justified
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5.2. Connection to other g-analogues

by the following calculation.
iy (- ) Zo(or 0= 3 Tl (@ )
q—1 ’ ’ 1> >0 j=1 g—1 5 (1 _ qnj)sj

= Qs1(1>Qsz(1) 'C<51""’Sl) ’

Here we used that <111—IH (1—-¢)*/(1 —q")* =1/n® and with the same arguments as in [BK]
Proposition 6.4, the above interchange of the limit with the sum can be justified for all
(s1,...,5) with s; > 1. Related definitions for g-analogues of multiple zeta values are given
in [By], [Ta], [Zu2] and J[OOZ]. It is convenient to define Zo(0) = 1 and then we denote

the vector space spanned by all these elements by
2(Q,8) = ( Zg(s1,.. .,sl)\z >0and sp,...,5 € S>Q. (5.9)
Note by the above convention we have, that @ is contained in this space.

Lemma 5.3. ([BK2, Lemma 2.1]) If for each r,s € S there exists numbers \;(r,s) € Q
such that

Qr(t) - Qs(t) = Zg Aj(r,s) (L= 1)"77Q;(t) (5.10)

then the vector space Z(Q,S) is a Q-algebra.
O]

Theorem 5.4. ([BK2, Thm. 2.4]) Let Z(Q,IN~;) be any family of g-analogues of multiple
zeta values as in (5.9), where each Q(t) € @ is a polynomial with degree at most s — 1,
then

Z(Q,Nsy) = MD* )

where MD* was the in Section defined subalgebra of MD spanned by all brackets
[s1,...,s] with s; > 2. Therefore, all such families of g-analogues of multiple zeta values
are Q-subalgebras of MD. O

The following proposition allows one to write an arbitrary element in Z(Q,N~;) as an

linear combination of [sy,...,s;] € MD".

Proposition 5.5. (|[BK2, Prop. 2.5]) Assume k£ > 2. For 1 < 4,5 < k — 1 define the

numbers bfij € Q by
kf%tj (t+k—1—i
= E 1 :

=1 7!
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Chapter 5. g-analogues of multiple zeta values

With this it is for 1 <i <k —1 and QF(t) = tP;(t)

G-1! 1)'
sz] 1 k JQE()

]

We give some examples of g-analogues of multiple zeta values, with some being of the above

type.

i) To write the brackets in the above way we choose QF(t) = eI 1 tP;_1(t), where the

S—

P,(t) are the Eulerian polynomials defined earlier by

tPs—l(t) o - s—14d
(1—1t)s =2 d

for s > 0. With this we have for all s1,...,s, € N

Z(q")
1—q”J ’

[81,...,81] = Z H

n1>...>n; >0 j=1
and MD = Z({Q¥(t))}s,N).
ii) The polynomials QT (¢) = t*=! are considered in [Tal,[Zu2] and sums of the form ({.8))
with s; > 1 and ss,...,s; > 1 are studied there. Using Proposition every g-analogue

of this type can be written explicitly in terms of brackets.

iii) Okounkov chooses the following polynomials in [O]

~
|

s =2,4,6,...

QT =1 .,
t=2 (1+t) s=3,57,....

and defines for sy,...,5, € S =Ny,

)

1 —q"a

2=y 1.2

ny>--->n; >0 ]70

We write for the space of the Okounkov g-multiple zetas

aMzV = Z({QF (t)}s, N>1) .

68



5.2. Connection to other g-analogues

Due to Theorem we have qMZV = MD*. In [O] Okounkov conjectures, that the space
gqMZV is closed under the operator d. In length 1 this is proven in Proposition 2.9 [BK2].

iv) There are also g-analogues which are not of the type as in (5.8). For example, the
model introduced in [OOZ] and further studied in [MMEF]. For si,...,s; > 1 they are
define by

q"
3(st, o)=Y

ni>-->n;>0 <1 - qn1)81 s (1 - qnl)sl .

It is easy to see, that every 3,(s1, ..., s;) can be written in terms of bi-brackets. For example

qm qnl (qnz + 1 — qn2>
3 (27 1) - =
! n1>§n:2>0 (1 —gm)*(1—qgm) n1>§n:2>0 (1—qm)*(1 —q"2)

_ q"q q"
R ey T RN (e

q"2)
n1>n2>0 n1>ng>0

=21+ >

n1>0

nl—l)
(1—qgm

E =[2,1]+ m - 12].

Similarly one can prove 3,(2,1,1) = [2,1,1] — 2[2,1] + L 0} + B} - %m + [2]. For higher

weights this also works as illustrated in the following

qm qnl (qm +1— qn2)
5 (27 2) = n T = n n:
(22 = o T PA— g 2 (1= B — g
2
~ A+ =2+ [l -,
Using again Proposition it becomes clear for arbitrary weights s1,...,s > 2 we can
write 3,(s1,...,s) in terms of bi-brackets.

Writing any ¢g-analogue in terms of bi-brackets enables us to use the double shuffle structure
explained in Chapter 3| to obtain linear relations for all of these g-analogues. This is still

work in progress and is not part of this thesis.
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Abstract

We study the algebra MD of generating function for multiple divisor
sums and its connections to multiple zeta values. The generating functions
for multiple divisor sums are formal power series in g with coefficients in Q
arising from the calculation of the Fourier expansion of multiple Eisenstein
series. We show that the algebra M™D is a filtered algebra equipped with
a derivation and use this derivation to prove linear relations in MD. The
(quasi-)modular forms for the full modular group SLa(Z) constitute a sub-
algebra of MD this also yields linear relations in MD. Generating functions
of multiple divisor sums can be seen as a g-analogue of multiple zeta values.
Studying a certain map from this algebra into the real numbers we will derive
a new explanation for relations between multiple zeta values, including those
in length 2, coming from modular forms.
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1 Introduction

Multiple zeta values are natural generalizations of the Riemann zeta values that
are defined for integers s; > 1 and s; > 1 for ¢ > 1 by

1
C(Sl,...,Sl) = Z nsl—nlsl

ni>ng>-->n; >0 1

Because of its occurence in various fields of mathematics and physics these real
numbers are of particular interest. The Q-vector space of all multiple zeta values
of weight k is then given by

MZ, ::<((51,...,sl)‘51+---+51:kandl>O>Q.

It is well known that the product of two multiple zeta values can be written as a
linear combination of multiple zeta values of the same weight by using the stuffle
or shuffle relations. Thus they generate a Q-algebra M Z. There are beautiful con-
jectures about the dimensions of finite dimensional subspaces of M Z determined
by the weight and the depth filtration.

In |[GKZ] Gangl, Kaneko and Zagier introduced double Eisenstein series, which
were generalized to multiple Eisenstein series in [Bal|. These series are sums over
certain positive sectors in the multiple product of a lattice. They give natural
generalizations of the well-known Eisenstein series from the theory of modular
forms similar as the multiple zeta values generalize special values of the Riemann
zeta function. These functions do by construction satisfy the stuffle relations. But
due to convergence problems the shuffle relation needs some modification; it seems
to hold up to an error term which involves derivatives. The motivation behind
this article is the idea to understand these corrections algebraically, although this
will not be discussed here furthermore (c.f. [BBK], [BT]). It has been shown in
[Bal] that multiple Eisenstein series have a Fourier expansion, which decomposes
as a MZ-linear combination of generating functions for multiple divisor sums
[s1,...,8] which we also refer to as brackets in this paper. For example the
double Eisenstein series G4 4 and the triple Eisenstein series G329 are given by

Gua(r) =C(4,4) +20¢(6)(—2mi)*(2)(gr) + 3¢(4)(—2mi)* [4] (qr) + (—270)*[4, 4](a7) ,
54

Gaaalr) 63,22+ ( 562:3) + 503,2)) (-20Rl(er) + 5 02.2)(-200"Bl(0)

Y
+3¢(3)(—2mi)*[2, 2] (qr) + 4C(2)(=2m)[3, 2](¢r) + (—2m3)"[3, 2, 2)(gr) ,

where 7 € H, ¢, = exp(2miT) and the brackets [sq, ..., s;] are kind of a combinato-
rial object! that will be described now. As a generalization of the classical divisor

'In [GKZ] certain linear combinations of these functions were called combinatorial Eisenstein
series
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sums we define for natural numbers ry,..., 7, € Ny = {0,1,2,...} the multiple

divisor sum by
0-7‘1,‘..77‘1(71) - Z fUIl o .. v;‘l . (11)

ULVt Fuvi=n
wup > >up>0

For any integers s1,...,s; > 0 the generating function for the multiple divisor sum
Os1-1,...,5,—1 is defined by the formal power series

1
= S1—1....51— " e )
[517 751] (81 — 1)' o (Sl — 1)| %%0- 1,....81 1<n)q QHQH
Here and in the following, we will simply write [sq, ..., s] instead of [sq, ..., s](q).

We refer to these generating functions of multiple divisor sums also as brackets.? .

Example 1.1. We give a few examples:
2] = ¢+ 3¢% +4¢° + 7¢* + 6¢° + 12¢° + 8¢" + 15¢° + . . .,

1
[4,2] = 5 (¢° +3¢* +15¢° +27¢° + T8¢ + 135¢° + ... ) ,

1
[4,4,4] = 516 (¢° +9q" + 45¢° + 190¢° + 642¢"° + 1899¢™" + ... ) |

1
3,1,3,1] = T (¢" +2¢" + 8¢"* + 16¢" + 43¢"* + 70¢" + ... ) ,

1
[1,2,3,4,5] = 55 (¢"° +17¢"° + 107¢"" + 512¢" + 1985¢" + .. .) .

Notice that the first non vanishing coefficient of ¢" in [sq,...,s] appears at
n= @, because it belongs to the "smallest" possible partition

14+ (0-1)-14---+1-1=n,

ie. u; =jand v; =1for 1 <j <!l The number k = s; +--- + s; is called the
weight of [sq,...,s] and | denotes the length. These numbers satisfy | < k.

Definition 1.2. We define the vector space MD to be the Q vector space gen-
erated by [0] = 1 € Q[[¢]] and all brackets [s1,...,s;]. On MD we have the
increasing filtration Fil)’ given by the weight and the increasing filtration Fill
given by the length, i.e., we have

FilY(MD) := ([51,--., 8] ‘31 +- 45 < k>Q
Filf(MD) = <[51, —. ‘r < l>Q.

2 The brackets [2, ..., 2] were in the context of partitions already studied by P.A. MacMahon
(see [Ma]) and named generalized divisor sums. It was shown in [AR] that these are quasi-
modular forms, see also Remark 2.1



If we consider the length and weight filtration at the same time we use the short
notation FilZ\fZ’L .= Fil}Y Filj". As usual we set

gr)¥ (MD) := Fil}Y (MD)/ Fil}¥ ,(MD)
grf(MD) := Filj(MD)/ Fil}" | (MD).

WL . _ WL
and as above gr; /= gr;’ gr/".

For example for even k > 4 the Eisenstein series Gy, which are well-known to be
modular forms of weight & for the group SLy(Z), are elements in this vector spaces,
because they satisfy

(5

1 1 By,
(—2mi)f (k= 1)

;)ok_l(mq” = —5 7110+ [K] € FilY (MD),

also the quasi-modular form Gy of weight 2 is an element of Fil}' (MD). Our first
result is

Theorem 1.3. The Q-vector space MD has the structure of a bifiltered Q-Algebra
(MD, -, Filyv, Fil]:), where the multiplication is the natural multiplication of for-
mal power series and the filtrations FilY¥ and Filt are induced by the weight and
length, in particular

Fil,)}:(MD) - Fil}\ . (MD) C Fil;)"h L (MD).

Remark 1.4. In fact we prove that this product on MD is a quasi-shuffle product
in the sense of Hofmann and Thara [HI].

Example 1.5. The first products of brackets are given by

[A]- [ = 2[1, 1] + [2] - [1], (1.2)
[A]- 2] = [1,2] + [2,1] + [3] = %[2], (1.3)
[1]-[2,1] =[1,2,1] +2[2,1,1] — 2[2, 1]+ [2,2] +[3,1]. (1.4)

For small weight k or at least a small [ length we can compute a sufficiently large
number of the Fourier coefficients of a bracket. We can therefore determine lower
bounds for the number of linearly independent elements in Filz\fl’L (MD), in order
to do so we need to check that the matrix of with rows given by the Fourier
coefficients of each element has a sufficient high rank.

Theorem 1.6. We have the following exact values or lower bounds for dimg FilZYl’L(MD)
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E\L | O 1 2 3 4 5 6 7 8 9 10 11
0 1

1 1 2

2 1 3 4

4 1 4 7 8

3 1 5 10| 14 | 15

) 1 6 |14 | 22 | 27 | 28

6 1 7 118 | 32 | 44 | 50 | 51

7 1 8 |23 | 44| 67| &8 | 91 92

8 1 9 | 28| 59 | 97 | 133 | 156 | 164 | 165

9 1 |10 | 34| 76 | 135 | 200 | 254 | 284 | 293 | 294

10 | 1 |11 | 40 | 97 | 183 | 290 | 396 | 474 | 512 | 522 | 523

11 | 1 | 12 | 47 | 120 | 242 | 408 | 594 | 760 | 869 | 916 | 927 | 928
12 | 1 |13 | 54 | 147 | 313 | 559 | 7 ? ? ? ? ?
13 | 1 |14 |62 | 177 | 398 | 7 ? ? ? ? ? ?
14 1|15 |70 | 212|498 | 7 ? ? ? ? ? ?
15 |1 |16 |79 | 249 | ? ? ? ? ? ? ? ?

Table 1: dimg Film’L(MD): exact value, lower bound

The number of generators of FiIZYZ’L(MD) is easily calculated, thus giving an upper
bound for the dimension of this space is equivalent to give a lower bound for the
number of relations in the generators of Filz\fl’L(MD). The equalities come from
the fact that we know enough relations in the cases marked black in Table 1.

For the multiple zeta values conjecturally all linear relations are due the fact that
the shuffle and the stuffle relations give two different description of the product
of two multiple zeta values, albeit in practice there are different methods to prove
distinct relations like the cyclic sum identity [HO| or the Zagier-Ohno relation
|OZ]. So far we know only one way to write a product of two brackets as a
linear combination in MD and this doesn’t suffice to give linear relations between
elements in MD. However, as we will see now, MD has the additional structure of
a differential algebra and moreover there are several ways to express the derivative
of a bracket. By now linear relations in MD are proved either by using derivatives
and or the theory of quasi-modular forms.

Theorem 1.7. The operator d = qdiq is a derivation on MD, it maps Fith]l’L(MD)
to Fﬂm;m(MD)-



Our proof actually allows us to derive explicit formulas for d[s;] and d[sy, sa].

Remark 1.8. Our formula for d[k] may be seen as the Euler decomposition for-
mula for MD, since for we prove in Proposition 3.3 that for s; + sy =k + 2

= 3 () (7)) e

Frankly speaking the derivative d[k] measures the failure of the shuffle relation for
the product of two length one bracket.

We will show now how to derive from these formulas non trivial linear relations.

Example 1.9. (Relations from derivatives) The first derivatives are given by

any = 8] + 52 - [2.1], (15)
2] = 14+ 203] - 5121 - 4[3,1], (1.6)
2] = 204) + 3] + 12— 202,2] - 233,1], (1.7)
ALY =B+ o2+ 12+ L3 2210 - L2, (L)
The difference of (1.6) and (1.7) leads to the first lincar relation in Fil}'(MD):
4] = 22,2) 203,11 + 3] - 5[2]. (1.9)

Example 1.10. (Leibniz rule) Since d is a derivation it satisfies the Leibniz rule,
e.g., because of (1.2)

d] - [ + 1] - d[1] = d([1] - [1]) = d(2[1, 1] + [2] = [1])
Now using (1.5), (1.6) and (1.8) together with the explicit description of the various
products we could alternatively prove the relation (1.9).

Example 1.11. (Relations from modular forms) It is a well-known fact from the
theory of modular forms that G2 = %Gg because the space of weight 8 modular
forms for SLy(Z) is one dimensional. We therefore have

1 7
— 4]+ 4] - 4] = =8] .
4]+ 4] [4] = 219
Using the product as described in Proposition 2.8 we get
1 1
4] - 4] = 2[4,4 — 4 - —=|2
which then gives the following relation in Fily' (MD):
1 1
=—4] — —[2| + 12[4,4]. 1.1
6
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Beside the methods mentioned in Example 1.9 and 1.11 other obvious ways to get
relations in weight k are either to multiply a relation in weight [ by a bracket of
weight k£ — [ or to take the derivative of a relation in weight k& — 2.

Example 1.12. (Relations from known relations) If we multiply the relation (1.9)
in weight 4 with [2], then we obtain in Fil' (MD):

1 1 1 4 1
6[2,2,2] — 2[3,1,2] — 2[2,3,1] — 2[3,2,1] + [2,4] — 2[3, 3] + [4,2] — 2[5,1].

[6]

If we apply d to the relation (1.9) in weight 4, then we obtain in Fil}' (MD):

= 2—10[2] - 2[3} + %[4} —3[5] — 2[2,2] - 3[3, 1] +4[2,3] + 2[2,4] (1.12)

+5[3,2] — 18[4,1] + 5[4, 2] + 6[5, 1] — 8[2,3,1] — 8[3,1,2] — 2[3,2, 1] + 18[4,1,1] .

[6]

In order to study the linear relations in the generators of MD systematically it is
better first to understand some of the algebra structure of MD. For this purpose
we call a brackets [sy, ..., s] admissible, if s; > 1. We show that the vector space
qM2Z of admissible brackets is a sub algebra of MD. In addition we prove that
MPD is a polynomial ring over M Z with indeterminate [1], i.e. we have

MD = qgMZ([1]]

(see Theorem 2.14). With this structure in our hands it is easy see that it suffices
to study the linear relations in the generators of the quotient spaces ngYl’L(qMZ)
in order to get upper bounds on the dimensions of all the graded or filtrated pieces
of gMZ or MD. In Theorem 5.5 we present our results in this direction. We like
to emphasize that the focus of this article is not to give the best possible results
on the number of relations. We expect that with a more detailed study of the kind
of relations we can obtain so far we could derive much better results and we plan
to come back to this in future [Ba2].

The notation M Z shall emphasize the relation to g-analogues of multiple zeta
values, which will be explained now. Our algebra qMZ is related, but not iso-
morphic, to a recent modification of multiple q zeta values as proposed in [OT] or
[Ta], see also Remark 6.1.

Define for k& > 0 the map Z, on Fil} (@M Z) by

Zx[s1,. 00,81 = E_I}%(l —q)fs1,...,s1].

We will show that with this definition we have

C(s1y..y81), k=814 +s
0, k>s14+--+s.

7



Since MD = M Z[[1]] we can define a map Z : Fil}¥ (MD) — R[T] by

k

k
z <Z gj[l}kﬂ) = Zi(g)T* € R[T]
=0 =0
where g; € Fil}N(qMZ). For our next result an analytical interpretation of Zglg

in a broader context is the key fact.
Theorem 1.13. For the kernel of Z{" € Fil}Y (MD) we have
i) If for [s1,...,s)] it holds s; + -+ + s, < k, then Z,‘jlg[sl, coy 8] =0.
ii) For any f € Fil}Y ,(MD) we have Z" d(f) = 0, i.e., dFil}¥ ,(MD) C ker Zj.

iii) If f € Fil}Y (MD) is a cusp form for SLy(Z), then Z'(f) = 0, i.e. Sp(SLy(Z)) C
ker Z,,.

Using Theorem 1.13 we get as immediate consequences and without any difficulties
the following well-known identities for multiple zeta values.

Example 1.14. i) If we apply Z3 to (1.5) we deduce ((3) = ¢(2,1).
i) If we apply Z; to (1.6) and (1.7) we deduce ((4) = 4¢(3,1) = 5¢(2,2).
iii) The identity (1.8) reads in M Z[[1]] as
1 1

At 1) = (- 210+ 502) - [0-+28,10 = 5l - 512,10 - 5080+ 3.

Applying Z$" we deduce again the two relations ¢(3) = ¢(2,1) and 4¢(3,1) =
((4), since by Theorem 1.13 we have

Z{9(d[1,1]) = (¢(3) = ¢(2, ) T - %C(‘l) +2¢(3,1) = 0.

iv) If we apply Zs to (1.10) we deduce ((8) = 12((4,4).

v) As an application of Theorem 1.6 we can prove for the cusp form A €
S12(SLy(7Z)) the representation

1

e A=1 1 2
5 F G0l 68[5,7] + 1507, 5] + 28[9, 3]
1 83 187 7 5197
- — 8] - Z2i12). (11
* 12082~ Taa00 U Goas ¥~ 1208~ Gor 1 (113)

Letting Z12 act on both sides of (1.13) one obtains the relation

%9174(12) = 168¢(5,7) + 150¢(7,5) 4 28¢(9,3) .
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Finally we point to the fact that the last identity coming from the cusp form A has
been obtained via period polynomials in [GKZ]. A remarkable fact of this relation
is that it is not provable within the double shuffle relations in weight 12 and depth
2 alone, since also the extended double shuffle relations are needed for its proof.
This article contains results that will be part of the dissertation project by the
first author.

We thank O. Bouillot, F. Brown, J. Burgos, H. Gangl, O. Schnetz, D. Zagier,
J. Zhao and W. Zudilin for their interest in our work and for helpful remarks.

2 The algebra of generating function of multiple
divisor sums

The proof of Theorem 1.3 will occupy this section. First we consider products of
polylogarithms at negative integers. This will give us an explicit formula for the
product of two brackets.

Remark 2.1. We start with a remark on where brackets also have appeared before.
In the following we will write {a}! for a length [ sequence a, ..., a.

i) The sum in (1.1) can be interpreted as a sum over all partitions of n into [
distinct parts u;. The v; count the appearance of the parts u;. For example
let ] =2, n=>5andr, =ry =1 then we have five partitions of 5 into 2
distinct parts:

and therefore 00 (5) = 5 and 041 (5) = 1211 +1%11+12.21+22.11+12.3 = 11.

ii) The multiple divisor sum ooy counts the number of partitions of n into [
distinct parts. Therefore the generating function of the partition functions
p(n) which counts all partitions of n can be written as

S pm)e = S,

n>0 >0

iii) The brackets [2,...,2] were already studied by P. A. MacMahon (see [Ma|)
under the name of generalized divisor sums in the context of partitions. They
were also studied in [AR|where it was also shown, that they are quasi-modular
forms.



Definition 2.2. Recall that for s,z € C, |z| < 1 the polylogarithm Li(z) of
weight s is given by
Z’I’L
Li = —.
=Y
n>0
We then define a normalized polylogarithm by

Lip_y(2) == Ll;(—sgz)

The normalized polylogarithm Li;_4(z) extends to an entire function in s and to
a holomorphic function in z where |z| < 1. However for our purposes it is enough
to know that for natural s > 0 this is a rational function in z with a pole at z =1
(c.f. Remark 2.4). Now we can define brackets as functions in g.

Proposition 2.3. For ¢ € C with |¢g| < 1 and for all s1,...,s € IN we can write
the brackets as

[81, cey Sl] = Z I/:ilfsl (C]m) cee 1::ilfsl (qﬂl) .

ny>-->n >0
Proof. This follows directly from the definitions, see also Lemma 2.5. O]

Remark 2.4. As mentioned above the polylogarithms Li_4(z) for s € IN are
rational functions in z with a pole in z = 1. More precisely for |z| < 1 they can

be written as (o)
. s.n__ ~Ls\Z
LI_S(Z) = Zn z = m

n>0

where Py(z) is the s-th Eulerian polynomial. Such a polynomial is given by

s—1
PS(X) = ZAs,ana
n=0

where the Eulerian numbers A, ,, are defined by

& (s+1
A, =S (=177 1—4)°.
=2 (e
Therefore the coefficients (the Eulerian numbers) of P, are positive. It fulfills the
relation

P (t) = Pe(t) (1 + kt) +t(1 — t)P(t)

and therefore Py (1) = k!. For proofs of all these properties see for example [Fo|. In
particular the recursive formula can be found in [Fo| as equation (3.3). Proposition
2.6 then gives an expression for the product of Eulerian polynomials as rational
linear combinations of polynomials in the form (1 — 2)? P;(z) with j,i € IN.

10
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Lemma 2.5. For sq,...,s € N we have

1 s~—1
o8l = o w2 H 1—q"759

n1>-->n >0 j=1

j

where Py (t) is the k-th Eulerian polynomial.

Proof. The claim follows directly from Remark 2.4 because

PS'_ " : 8i— -
2 H - (1- qi])s] - DR | DL ELED DL (OTA

ni>--->n;>0 j=1 ni>->n;>0 j=1v;>0 n>0

The product of [s1] and [sy] can thus be written as

[s1] - [s2] = Z Li,_ s L11 s (@™) + Z -+ Z Li_ st L11 s (@™)

ni>n2>0 ng>n1 >0 ni=n2>0

= [81752 52781 +ZL11 s1 Ll]- 52( n) .

n>0

In order to prove that this product is an element of FlIZYJrs2 (MD) the product

Lii_,, (¢") Li;_s, (¢") must be a rational linear combination of Li;_; (¢") with 1 <
J < 51+ so. We therefore need the following

Lemma 2.6. For a,b € IN we have
fil_a( Lll b Z )\a bL11 ] —|— Z )\b aLll ] + L11 (a+b) ( )

where the coefficient )\Z’b € Q for 1 <j<aisgiven by

- L fa+b—j—1\ Ba
Vo= (1)t a g
ap = (=1) ( a—j (a+b—j)!

Proof. We prove this by using the generating function

X

) Zzﬂikk(Z)X’“ 1 ZZ kflzzeann: 1i:XZ

k>0 k>0 n>0 n>0

With this one can see by direct calculation that

1 1

L(X)-L(Y) = xv 1



By the definition of the Bernoulli numbers

X B ..
eX—IZZHX

n>0

this can be written as

LX) = L(Y).

L(X)-L(Y):Zi(X YY" UL(X Z (Y = X)"'L(Y)+ X—_f/

n>0 n>0

The statement then follows by calculating the coefficient of X*~1Y*~! in this equa-
tion. ]

Example 2.7. We have A} ; = B; = —3 and thus

Li;_1(2) - Lij_1(2) = —Li;_1(2) + Liy_o(2) .
Therefore the product [1] - [1] is given by
][] =201, 1) + [21 = [1].

More generally, Lemma 2.6 implies the following explicit formula for the product
in the length one case.

Proposition 2.8. We have the formula
[81] : [82] = [817 32] + [827 31} 81 + 32 + Z )\sl 52 + Z )\32751 .

Proof. This is a straightforward calculation O

In order to prove Theorem 1.3 we need to show that the above considerations work
in general and not only in the length 1 case. For this we use the notion of quasi-
shuffle algebras ([HI|). Let A = {z1, 22, ... } be the set of letters z; for each natural
number j € IN; QA the Q-vector space generated by these letters and Q(A) the
noncommutative polynomial algebra over Q generated by words with letters in A.
For a commutative and associative product ¢ on QA, a,b € A and w,v € Q(A)
we define on Q(A) recursively a product by 1w = w % 1 = w and

aw * bv := a(w * bv) + blaw * v) + (a o b)(w * v) .
Equipped with this product one has the

Proposition 2.9. The vector space Q(A) with the product x is a commutative
Q-algebra.

12
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Proof. See [HI| Theorem 2.1. O

Motivated by the product expression of the polylogarithms in Lemma 2.6 we define
the product ¢ on QA by

a b
— J J
20 2 = E Nap?i T g Mpa?i Tt Zath -
J=1 J=1

This is an commutative and associative product on QA, because it arises from the
product of the pairwise linearly independent polylogarithms Li; ;(z) in Proposition
2.6, and therefore (Q(A), ) is a commutative Q-algebra by Proposition 2.9 above.
Theorem 1.3 now follows from the next proposition.

Proposition 2.10. For the linear map [.] : (Q(A), *) — (MD, ) defined on the
generators w = zg, ...z by [w] :=[s1,...,s] we have

[w s v] = [w] - [v]
and therefore MD is a Q-algebra and [.] an algebra homomorphism.

Proof. This follows by the same argument as in the multiple zeta value case, see
e.g. [H1] Thm 3.2, by using induction on the length of the words w and v together
with Proposition 2.6. 0

Now we have proven Theorem 1.3. As a special case of this theorem we have the
following explicit formula.

Example 2.11. For a,b,c € N we have

[a] - [b, c] = [2za * 2b2e] = [2a2b2e + 2bZaZe + 202c2a + 2b(2a © 2e) + (240 © 2p) 2¢]
=la,b,c] + [b,a,c] + [b,c,a] + [a+ b, c] + b, a—l—c]

+Z)\ b, 4] +Z)\ b, 4] +ZAabj, +Z%aj,

We would like to point out another structure of the algebra MD, which will be
important later on when we consider the connection to multiple zeta values, and
which was already mentioned in the introduction.

Definition 2.12. We define the set of all admissible brackets g M Z as the span of
all brackets [sy,...,s;] with s; > 1. With Fith]l’L(qMZ) we denote the admissible
brackets of length [ and weight %k similar to the non-admissible case.

With this we have the

Theorem 2.13. The vector space M Z is a subalgebra of MD.

13



Proof. It is enough to show that M Z is closed under multiplication. Let f =
[a,...] and g = [b,...] be elements in gMZ, i.e. a > 1 and b > 1. Due to
Proposition 2.10 we have

g =[zqw] - [2p0] = [zaw * 2] ,

where w,v € Q(A) are words in the alphabet A = {z1,25,...}. So in order to
prove the statement we have to show that z,w * zv is a linear combination of
words z.u € Q(A) with ¢ > 1 and arbitrary words u € Q(A). By the definition of
the quasi-shuffle product * we have

ZoW % 20 = Zo (W * 2p0) + 2p (24w % V) + (24 © 2p) (W x V) .

The first two summands clearly fulfill this condition, because we assumed a,b > 1,
so it remains to show that z, ¢ 2, € QA is a linear combination of letters z; with
j > 1. Again by definition we obtain

a b
_ J J
2a 0 2p = Zaib + g )\a,sz + g )‘b,azj
i=1 j=1

a b
= Zg4p + (/\clL,b + )\aa) 21+ Z )\i’ij + Z )\iﬂzj )
=2 =2

so it suffices to show that A}, + A}, vanishes for a,b > 1. From the definition of
A, in Lemma 2.6 it is easy to see that

b—2\ Buy
Aap + Mo = (1) + (=1)") <a+ )( -

a—1 a+b—1)1"

This term clearly vanishes when a and b have different parity. In the other case
a+b—11is odd and greater than 1, as a,b > 1. It is well known that in this case
Batp—1 = 0, from which we deduce that A} , + A, , = 0. O

Theorem 2.14. i) We have MD = qgMZ[[1]].

ii) The algebra MD is a polynomial ring over ¢M Z with indeterminate [1], i.e.
MD is isomorphic to ¢ M Z[T'| by sending [1] to T'.

Proof. i) First we show that any f € Fil}¥ (MD) can be written as a polynomial
in [1]. If we show that for a fixed [ and f € FilZYl’L(MD) one can find

g1 € FilZYl’L(q./\/lZ) and g9, 93 € Filx’fl(MD) such that f can be written as
f=g+[1] 9+gs, (2.1)

then the claim follows directly by induction on [.

14
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To show (2.1) it is clear that we can focus on the generators of MD which
we write as f = [{1}™,81,...,8_m), with s > Tand k =m+s1+ -+ s;_p.
By induction over m we prove that every element of such form can be written
asin (2.1). Form = 01itis f € Fil,¥ (QM2), i.e. g = f and g, = g5 = 0. For
the induction step we obtain by the quasi-shuffle product

m - [{1Y™ 51, siem) = [1] - {137 81, Simm) — 03

— Y s s {1

mi4-+m;=m
m;>0,Vj=1...1
mi<m

with g3 € FilkWJ’El(MD). The elements in the sum start with at most m — 1
ones, so we obtain a representation in the form of (2.1) inductively.

ii) We have to show that [1] is algebraically independent over ¢ M Z and therefore
the representation of f € MD in i) as a polynomial in [1] with coefficients

in ¢M2Z is unique. From Proposition 6.4 we obtain that for [si,...,s] €
qM2Z with s; + --- + s, = k we have for ¢ close to 1 the approximations
[$1,...,8] ~ ﬁ and from Remark 6.7 we know [1] ~ %ﬁz)' Therefore

the only polynomial in ¢MZ[T], which has [1] as one of its roots, is the
constant polynomial 0.

O

Remark 2.15. It is clear that [1] is an irreducible element in the ring MD, thus
it is clear that MD /([1]- MD) is a domain. But the non-obvious fact is that this
domain can be represented by qgMZ.

At the end of this section we want to mention two other subalgebras of MD. For
this denote by MD" the space spanned by 1 and all [sq, ..., s] with s; even for
all 0 < j <1 and by MD* the space spanned by all by 1 and all [sq,. .., s] with
S; > 1.

Proposition 2.16. MD%*" and MD?* are subalgebras of MD.

Proof. By the quasi-shuffle product formula Proposition 2.10 it is sufficient to
show that for 1 < j < a the X , € Q given by

/\j _ (_1)1,,1 a+b_j —1 Ba+b—j
ab a—j (a+b—7)!

vanish for j odd if a and b are even to prove that MD®" is a subalgebra of MD.
But this follows direclty by the fact that the By vanish for odd & > 1 and that the
case a + b — j =1 does not occur since j < a and b > 2.

15



In order to prove that MD? is a subalgebra of MD we have to show that

a+ b— 2) Ba+b—1
(

Al )\1 — _1(171 _117*1 v -
ap t e = (D)7 + (1) )( a—1 Jlatb—1)

vanishes for a, b > 1. This term clearly vanishes when a and b have different parity.
In the other case it is B,1p—1 = 0, because a + b — 1 is odd and greater than 1.
Hence it is A}, + A, = 0, whenever a,b > 1. O

The space MD* is studied further in [BK], where the authors consider a connection
of this space to other g-analogues of multiple zeta values.

3 A derivation and linear relations in MD

Our strategy to prove Theorem 1.7 is to use generating series of brackets. This
allows us to express the derivative in terms of elements in MD. We make these
calculations explicit in the case of first in the length 1 case and then for the length
2 case. Similar formulas for the general case are rather complicated.

Lemma 3.1. The generating series T(X1,...,X;) of brackets of length I can be
written as

emi X qn1 +tny

l
T(Xl,...,Xl): Z [81,...,8[}Xf1_1...XlSl_1: Z HW

S1,-.,81>0 ny,...,n>0 j=1

Proof. This can be seen by direct computation using the geometric series and the
Taylor expansion of the exponential function:

Z ﬁ eniXi Z gti(mttng)

N1 yeeny n;>0 j=1 v; >0

nitetn,

! eanjq

N1 yeeny n;>0 j=1
l nkj
= > >4 X" 3 guitmttn)
kilo Y
ni,...,n>0j=1k;>0 J v; >0
- k1 ki
“J’*vji"“"'_vl ny ... nl uiny+--t+ugng Xkl Xkl
- k ' k ' q 1 DY l
1:...R[:
kiyeok; >0 \ up>->u;>0
N yeeny n;>0
R 51—1 Sl—l
= E [S1,. .., s X7 X
81,.4,81>0
]
16
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We now study the derivative of brackets of length 1, much of the formulas presented
for this purpose may implicitly found also in [GKZ]. In particular the next lemma
is essentially a part of the calculation in the proof of Theorem 7 in |GKZ|. We
give it nevertheless because it is a good preparation for the proof of our Theorem

1.7.

Lemma 3.2. i) The product of two generating functions of multiple divisor

sums of length 1 is given by
TX)- TY)=T(X+Y, X)+T(X+Y,Y)-T(X+Y)+ R(X,Y)
where

Ri(X,Y) =) ")

_ 27
n>0 (1 q”)

ii) We have

nx 4" _ Z dfk]
Ze —— = X"+ [2].
n>0 (1 q ) k>0 k
In particular

Ri(X,Y) =) %(x +Y)F 2]

Proof. i) Remember that the generating functions are given by
T(X) Z Xk: 1 Z enX q
k>0 n>0

and
qnl +n2

o s1—1y so—1 n X+n2Y q”l
T(X,Y)= ) [s,s] X0 y=l= Y~ emXtm g l—qguim

51,52>0 n1,n2>0

With this in our hands we calculate

ng
TEOT(Y) = Y ey

n1,n2>0 1 - qnl 1= qn2
= Z et Z cee Z ...:;F1_|_F2_|_F3'
ni>n2>0 ng>nq >0 ng=n1>0

For these terms we get furthermore

ni
Fl — Z 61’7,1X+7L2Y q q

T2

n1>n2>0 1= qnl L= qn2
, n’ +ns n2
m=natng n X 4na(X+Y)_ 4" q =T(X+Y X
S il _gn — JX+YX)
nf,na>0

17

94



ni n2
F2 —_ § €n1 X+noY q q

ng>n1 >0 1 - q”l 1- qn2
me=mtn § ey g T(X +Y,Y)
150 L—gm1—qgmtn o
nl,nz
n 2 n n
Using <1fqn> = (1fqn)2 — 1fqn, we get for the last term
ey (4
F3 = 6n1 t < )
n1;2>0 1- qnl
72 n(X+y) 4 Zen(X+Y) q"
n>0 (1—¢)? n>0 (1—q")

=R(X,)Y)-T(X+Y).
ii) This can be seen by direct computation. First observe

=Y dMxtr =dY e e - —Zne 1_q)

k>0 n>0 n>0

and then use this to evaluate

Z dik] yen _ Z/ [kttt

k>0 k>0
= dT(t)dt = / ne™dt————
/0 ;;; (1-q )
= gy = o gy
= e = e .
n>0 1_Q) n>0 (1—q")? n>0 (1 —q")?

O

We now want to give explicit expressions for the derivative of multiple divisor sums
of length 1, which follow from the lemmas above:

Proposition 3.3. For s1,sy with s;1 + so > 2 and s = s1 + s3 — 2 we have the
following expression for d[s]:

(81 S_ 1)@ = [31]-[32}+(815_1> [s+1]—a+§+2 ((Sal__ll) + (52__11)) [a,b].

Proof. This is a direct consequence of Lemma 3.2 by considering the coefficient
of X*1=1y2=1 in the equation

T(X).T(Y):T(X+Y,X)+T(X+Y,Y)_T(X+Y)+Z$(X+Y)k+[2].

k>0

18
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by using
a—1 a—1 s1—1y sa—1
TX+Y,X)+T(X+Y,YV)= Y + [a, b X5y 2!
S1 — 1 SS9 — 1
81,82>0
a+b=s1+s2
81+82_2 s1—1lyrsa—1
T(X+Y)= ) [s1 4+ 89 — 1] ) X517 tys2—1
S1 — 1
81,82>0
Z%(X—}—Y)k: Z 51+52—2 d[51+82—2] Xsl—lysz—l'
k S1 — 1 81+ 8o — 2
k>0 $1,52>0

]

Example 3.4. In the following formulas we used the explicit description for the
product given in Proposition 2.8.

i) In the smallest case s = 1 there is just one choice given by s; =1, so = 2:
1
it} = 8]+ 5[2] - [2.1].

ii) For s = 2 we can choose s; = 1,85 = 3 and s; = sy = 2 and therefore we get
the two expressions:

d[2] = 2[4] + [3] + é[z] —2[2,9] - 2[3,1],
2] = 4] +203] - 2]~ 4[3,1],
from which the first linear relation in weight 4 follows:
4] = 22,2] — 2[3,1] + [3] - %[2] |

iii) In the case s = 3 one again gets two expressions and therefore one relation.

iv) For s = 4 one has s = 1, s =5 or s = 2, s = 4 and s; = s3 = 3 which

gives
d[4] = 4[6] + 2[5] + %[4] — §10[2] — 4[2, 4} — 4[3, 3] — 4[4, 2] — 4[5, 1] ,
d[4] = [6] + 4[5] — %[4] + %Om —9[3,3] — 3[4,2] — 8[5.1],
d[4] = g[ﬁ] 48] — o2 — 44, 2) — 805, 1]

19
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From which the following two relations follow

516] = 3[5] — ~[4] + 6[2, 4] + 6[3, 3] — 6[5, 1]

2
306 = 2[5] — %[4] + %[2} +4[2,4) 4 2[3,3] + [4,2] — 4[5, 1]

Theorem 3.5. Suppose k > 4, then there are at least ng — 1 linear relations in
the generators of ngYQ’L(q/\/lZ).

Proof. It is clear that the expressions for d[k—2] in Proposition 3.3 are symmetric
in s; and s5. There are {gj choices for s; and sy with s; + s = k£ and 51 < s5.

For each such choice we get a different expression for d[k — 2], because for s; < so

it only contains the length 2 terms [s; + 1,50 —1],...,[s1 + 52 — 1, 1] € QM Z with
non vanishings coefficients. This can be seen if we rewrite the statement by using
the stuffle product [s1] - [sa] = [s1, s2] + [s2, 51] + [s1 © s2]:

(i—_fi) de_-22}

= 51050 + (2121) [k — 1] —agk ((i‘_ﬁ) + (52__11> - 5) [a, ]

a>s1
By the same considerations as in proof of Theorem 2.13 we find that [s; ¢ s9] €
qMZ. Therefore we get [£] — 1 relations. O

We have checked that for £ < 20 we get all relations in length two by the above
method, cf. Theorem 5.5. This give some evidence for

Conjecture 3.6. For all weights k& > 4 the number of linear relations in the
generators of ngYQ’L qM2Z equals ng - L

Now we want to consider the derivative in the length two case.

Lemma 3.7. The product of two generating functions of multiple divisor sums of
length 1 and 2 is given by
TX)-TY,Z)=T(X+Y,Y,2)+T(X+Y, X+Z,2)+T(X+Y, X+ 7 X)
—TX+Y,2)-TX+Y, X+2)+ R(X,Y, 2),
where
qm qn1+n2

o n1(X+Y)4+noZ
Ry (XY, Z) = Z € ’ (1—gm)21—qutn

ni,n2>0

qm qn1+n2
1— qn1 (1 _ qn1+n2)2

+ Z e (X4+Y)+n2(X+2)

ni,ne>0

20
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Proof. i) We again split the sum into different parts as in the case for T'(X)T(Y):

qnz+n3

. _ n1 X+noY+n3zZ qnl an
T(X) T(Y,Z)— Z e™ 2 3 T—gul—g=1—quatms

ni,n2,n3>0

-y s Y s Y Y e Y

na>ni ni>n2+ns no+n3>ni>ng ni=ng ni=ngz+ns

=+ FB+F+F+ Fs.

The proof of Fi+Fy+F3 =T(X+Y,Y, 2)+T(X+Y, X+Y, Z2)+T(X+Y, X+Y, X)
is similar to the calculation in the lemma above and we leave it out here. The
evaluation of F, and Fj are similar and we therefore just illustrate the Fj case:

n1 2 ni+nsg
_ n1(X+Y)+n3Z q q
by = Z e ’ <1_qn1) 1_qn1+n3’

ni1=ngz,n3>0

_ Z €n1(X+Y)+n3Z qn1 B qn1 qn1+n3
(I—gm)? 1—gm) 1—gmtns’

ni=ng,n3>0

_ Z o (XHY)4nsZ q"
(1 _ qn)Q 1 — qn1+n3

qm +n3

~T(X+Y,2).

ni,n3>0

Definition 3.8. We define the operator D(f) on functions in X by

o= (557 |y

Observe that D(R;(X,Y)) =dT(Y) and for the length 2 it holds

Lemma 3.9. We have
D(Ry(X,Y, 2)) = dT(Y, 2).
Proof. For the two summands of Ry(X,Y,Z) one gets

n1 ni1+n2
D § : em (X4Y)+n2Z q q _
(1 _ qn1)2 1 _ qn1+n2

nl,n2>0
Z nle’rLlY-i-nQZ qnl qnl+n2
n1,n2>0 (1 o q”l)Q 1- q”1+”2
D Z e (X+Y)+n2(X+2) q" g _
n1,n2>0 1—gm (1—gmtm)2 |
1,Mm2
qnl qn1+n2
Z (nq + nz)enly+"2z )
_ _ + 2
oo L—qm (1—gmtm)
21
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Adding these two terms one obtains d 7'(Y, Z), because with d % = % and
the product formula we obtain

qn1 +n2

AT(Y.Z) = d mynz_ 4" _
(’ ) Z € 1_qn11_qn1+n2

ni,n2>0

Z nyemYtn2Z " g + (ny + ng)e™ ¥ 12?4 q" g
(1 _ qn1)2 1— qn1+n2 1 — gm (1 _ qn1+n2)2

nl,n2>0
0]

Proposition 3.10. The derivative of [si, s3] can be written as

d[s1,s2] = (2] - [s1, 52] — s1[s1 + 1,82, 1] — sa[s1, 80+ 1, 1] — [s1, 52, 2]

—( Z (a —1)[a,b, s9] + Z s1[s1+ 1,a,0] + Z (a—l)[sl,a,b]>

a+b=s1+2 a+b=s2+1 a+b=s2+2
+ 251[51 + 1, 82] + 82[51, So + 1] .

Proof. This follows directly from Lemma 3.7 by applying the operator

o) = (77) Lo

on both sides of the equation. It is straightforward to calculate D(T'(...,...))
for the various generating series 7'(...,...) in Lemma 3.7, e.g., the lefthand side
becomes [2]-T(Y, Z). By means of Lemma 3.9 the claim follows easily by collecting
all the terms. H

Example 3.11. i) For s; = sy = 1 Proposition 3.10 gives the representation of
d[1, 1] already mentioned above in (1.8):

3 1
here we used the quasi-shuffle product

S22,

2]-[1,1] =[3,1] + [1,3] + [2,1,1] + [1,2,1] + [1,1,2] — 5

ii) For s; =1, sy = 2 the corollary gives

d[1,2] = —é[l, 2]+2[1, 3]+ 1, 4]4—;[2, 2]+[3,2]—4[1,3,1]—[2,1,2] —2[2,2,1].

22
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iii) For s; =1, sy = 2 the corollary gives
d[2,1] = —é[2, 1]+ %[2, 2]+ [2,3] +4[3,1] +[4,1] — [2,2,1] — 6[3,1,1].
iv) The case s; = sy = 2 is given by
d[2,2] = —%{2,2]+2[2,3]+[2,4}+4[3,2]+[4, 2)—4[2,3,1]—4[3,1,2]—4[3,2,1].

At this point we like to indicate that the Leibniz rule is another source of linear
relations in MD.

Example 3.12. i) By means of the Leibniz rule and the quasi-shuffle product
we have

)2+ (142l = (- 2) = a ([1.2)+ 1)+ Bl - 5021)

Evaluating both sides separately we deduce the following linear relation in

length 3
5] =2[3,1,1] — [2,2,1] 4+ [2,3] + 2[3,2] — [4,1]
14 ! 2,2] -2[3,1 ! 2,1 ! 2 ! 3 3.1
bl 452 - 2B+ SR - SRl B (3D

ii) Using the same argument for [1] - [3] we have
1 1
dm-m+uymm=«mwndeLa+mu+uh—4%——@)

from which the following relation in weight 6 follows

6] =032 — 53031+ 5051+ 12,20 — 22,2+ 52,8 - [2.3,1)
+[2,4] + %[3, 1) 423,1,2] — [3,2] — 3[4,1] +3[4,1,1] + 5[4,2] — [5,1].

Theorem 3.13. i) There is a linear relation in the generators of grggL(qMZ).

ii) There are at least 3 linear relations in the generators of grggL(qMZ).

Proof. i) From Example 3.12 i) we deduce the relation
0=2[3,1,1] — [2,2,1]
in gr;)YgL(qMZ).
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ii) From Example 3.12 ii) we deduce the relation
0=2[3,1,2] + 3[4, 1,1]
in gry53 (@MZ) and from Example 1.12 we deduce that

0=3[2,2,2] —[3,1,2] — [2,3,1] — [3,2, 1]
= —4[2,3,1] — 4[3,1,2] — [3,2,1] + 9[4,1, 1]

]

We finally want to prove that the map d is a derivation for arbitrary length using
the same combinatorial arguments as in the length one and two cases but without
calculating explicit representations for d[sq, ..., /.

Proof. (of Theorem 1.7) To prove this statement we are going to use the same
combinatorial arguments as in the Lemma 3.7, Lemma 3.9 and Proposition 3.10
in a general way which means that we have
m ni ni+-+n;
T(X)T(}/l, o 7}/2) —_ Z emX+n1Y1+-~-+nlYl q q q

m,ni,...,n; >0

1_qm]_—qn1 "'1_qn1+“'+nl
l
=T(X +Yy,. . X+Y,X)+) T(X+Yy,... . X+Y,Y;,....Y)
j=1
l
+Rl_ZT(X+K7"'7X+}/}7}/}+17"'7}/2)7

Jj=1
(3.2)
where
! ! nytetng
R, = Z Z e (XAY1) 4 (X4Y) 41 Yipr -+ Y H q
=1 0 L (L gttt Jo
J=1 \ni,..m> i=

This can be seen by splitting up the sum in the same way as above. The first line
comes from the parts where one sums over the ordered pairs ny +---4n,;_1 <m <
ni+---+n;forj=1,...,land n;+---+n; < m. Setting m = ny+---+n;_1+m'
and n; = m’ + n} for these terms it is easy to see that one gets the sum over
m',ny,...,nf, ..., n which then gives T(X +Yi,..., X +V},Y},....Y).

The second line arises from the sum over m = n; +---+n;. In this case one again

uses the identity
n 2 n n
( q ) _ g
1—q (1—¢")? 1—¢"
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102

from which the rest follows easily.
Letting the operator D(f) = (dixf)
term then becomes

l l
I gt
D(Rl) = Z < Z (n1 + -+ nj)e e H (1 + qn1+~~+ni)5i,j+1>

ni,...,n; >0 i=1

‘X:O act on this it is easy to see that the last

and this is exactly d 7'(Y, . .., ¥;) which can be seen by induction on [ and the prod-
uct formula. The product on the left becomes [2]T(Y3,...,Y;) and the remaining
terms on the right all have elements in Fﬂz&;l +1(MD) as their coefficients and
therefore the statement follows. O

Proposition 3.14. The space M Z is closed under d.

Proof. This follows directly by the proof of Theorem 1.7 since in the formula for
dT(Yi,...,Y)), which one obtains by applying D to equation (3.2), it is easy to
see that the coeflicients of the monomials which contains a Y; are all in gMZ. [

Remark 3.15. We didn’t give an explicit formula for the derivative of brackets of
length [, since a general formula seems to be confusing. But for a specific bracket
one can get its derivative by applying first the operator D to the equation (3.2)
and then collecting the corresponding coefficients. For example for [ = 3 one can
deduce

1

1 3
d2,1,1) = 2. 1,1+ 5[2,1,2) - [2,1,2,1] + [2,1,3] + 5[2,2,1]

—2[2,2,1,1] +[2,3,1] + 6[3,1,1] — 83,1, 1,1] + [4,1,1].

Remark 3.16. Changing the perspective we can view Theorem 1.7) and its special
cases Lemma 3.7, Lemma 3.9 and Proposition 3.10 as results, which express the
failure of the shuffle relation for [s]-[s1,. .., s;] in terms of multiple divisor functions
of lower weight and length and derivatives. An optimistic guess is that this is also
the case for more complicated products. We want to come back to this in [BBK].

4 The subalgebra of (quasi-)modular forms

We call ) ) )
G = C( ) + (k,_l)!zak—l(n)qn: C( ) +[k‘]

(2mi)F 2 (2mi)F

the Eisenstein series of weight k. For even k = 2n due to Eulers theorem we have

in addition
(_ 1)71—132” (271.)271

2(2n)!

¢(2n) =
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and therefore

Gop = —= 2 Fil D),
2 2 (271)' + [ n] € 12n(M )
for example
Gy = 1+[2] Gy = ! +[4], Gg= L + [6]
SV TN T 1440 T 60480 '

Proposition 4.1. i) The ring of modular forms M (I'y) for I'y = SLy(Z) and
the ring of quasi-modular forms M (I';) are graded subalgebras of MD.

ii) The Q-algebra of quasi-modular forms Mk(Fl) is closed under the derivation
d and therefore it is a subalgebra of the graded differential algebra (MD,d).

iii) We have the following inclusions of Q-algebras
M (Ty) € M(Ty) C MDD ¢ MD! C qMZ C MD .

Proof. Let M, (I'y) (resp. My(T1)) be the space of (quasi-)modular forms of weight
k for T';. Then the first claim follows directly from the well-known facts

M(Fl) = @ M(Pl)k = Q[G4a Gﬁ]

k>1

M(T1) = P M) = Q[G2, G4, G-

k>1

The second claim is a well known fact in the theory of quasi-modular forms and a
proof can be found in |Za2| p. 49. It suffices to show that the derivatives of the
generators are given by

dGy =d[2] = 5G4 — 2G5,  dGy=15Gs — 8GLGy,

12
dGg = 20Gg — 12G,G¢ = TOGZ — 12G,»,Gs .

The last statement follows immediately by i) and the results before. O

Remark 4.2. The above formulas for d[2],d[4] and d[6] can also be proven with
Proposition 3.3.

Example 4.3. The theory of modular forms yield linear relations in MD. We
indicate here how to derive such a relation in weight 8. It is a well-known fact
from the theory of modular forms that G2 = %Gg because the space of weight 8
modular forms is one dimensional. We therefore have

L = () LTy
2073600 720 -~ \ 1440 © 2073600 6"
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Using the quasi-shuffle product from Proposition 2.6 we get

4[4 = 204,4) + 18] + 514 - 2],

which then gives the following relation in weight 8:

1 1

ol 252

8= 1

—[2] + 12[4,4].

It is well known that the weight is additive for multiplication of modular forms.
The above relation shows that the length is not additive with respect to the mul-
tiplication of modular forms.

Proposition 4.4. The algebra of modular forms is graded with respect to the
weight and filtered with respect to the length. We have
4 212

di WL A r ) 2Ft = 1 r 2
; lngrk,l ( 1)1" Y +].—.T2y+(1—$4)(].—$6)y )

in particular

;dlmQ M;(Ty) 2® = A=a91—)"

Proof. For each k there is an Eisenstein series GGy and this is the only element
of length 1 in M (T'y). Now the first statement follows immediately from the fact
that the polynomials G,G) with a + b = k generate My(I';) as an vector space
|Zal]. Setting y in the first formula we see again that the modular forms G4 and
G generate M (I'y) as an algebra. O

Notice that because of Theorem 1.6 we know all relations in Filgi]g’L(MD) and
therefore we could give a purely algebraic proof the relation G2 = %Gg without
using the theory of modular forms, which relies on complex analysis. Moreover,
again using Theorem 1.6, we can prove in Fil}}(MD) new identities for the cusp

form A ="

Proposition 4.5. For (a,b) € {(2,4),(4,6),(6,8),(8,10),(10,11),(11,12)} the
cusp form A € S5 can be uniquely written as

n
n>0 q .

2° 4 50 2“+50
A:m-[a}+2a Z dmnmn

m+n=12

where d,,,, € Q. Moreover, any other representation of A in Filg”g (MD) is a
linear combination of these six representations.
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Proof. By Theorem 1.6 we just have to solve systems of linear equations coming
from the coefficients of the brackets in question. Using the relations coming from
Proposition 3.3 this can be made very efficient with the computer. Ol

Taking a suitable linear combination of the identities in Proposition 4.5 we get the
representation (1.13) of A given in the introduction.

Remark 4.6. At the end of this section we just want to give a short remark
concerning the arithmetical aspect of the relations in Proposition 4.5 on which we
don’t want to focus in detail in these notes. Formulas like the ones above give
several representation of the Fourier coefficients of cusp forms in terms of multiple
divisor sums. One can also see the well-known congruence 7(n) = oy1(n) mod 691
and it is easy to derive a lot of other congruences involving 7(n) and the brackets
out of such relations.

5 Experiments and conjectures: dimensions

In this section we present data of some computer calculations regarding the number
of linear independent brackets with length and weight smaller or equal to 15. In
some cases we can prove these bounds to be sharp. Based on these experiments,
we make a conjecture on the dimension of the graded pieces of M Z and therefore
also for MD. We first recall our results on the algebraic structure of MD and
qMZ, where M Z is the sub algebra of MD generated by admissible brackets.
Both are a bi-filtered algebras with respect to the filtration Fill¥ given by the
weight and the filtration Fil} given by the length. Therefore as vector spaces we
have

MD = P e} (MD) = (P P ey (MD) (5.1)
k

koI<k
QM Z = @grzv(qMZ) = @ @ grz\fl’L(qMZ). (5.2)
k ko 1<k—1

Proposition 5.1. In the direct sums in (5.1) and (5.2) each summand is a finite
dimensional vector space. In particular, we have

k—1 k—2
dimg gr);"(MD) < (z B 1) ,  dimggr);"(aMZ) < (z B 1).

Proof. Let b(k,[) denote the number of brackets [sq, ..., s;] of weight k and length
[,ie. s1+---+ s =k and let a(k,l) denote the number of admissible brackets of
this type, i.e. s1 4+ ---+ s = k with s; > 1. It suffices to show

b(k,1) = (I;:D . alkl) = (?:f) (5.3)

28
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Now, if we write k = 1+ --- + 1, then these formulas are an easy combinatorial
fact, which can be seen by counting the possible ways of replacing [ — 1 of k — 1
plus symbols by a semi-column and then interpreting the remaining sums as tuples
(s1,...,5) (resp. k — 2 since we can’t replace the first plus symbol). O

Definition 5.2. We define
d'(k,1) = dimg gry.;" (aMZ).

The next proposition shows that, in order to understand the dimensions of the
various subspaces of M Z as well as of MD, which are induced by the filtration
given by weight or length, it suffices to understand d'(k, ).

Proposition 5.3. We have for M Z the identities

dimg gr)) (M Z) = Zd’ (k,1)

dimg Fil}¥ (oM 2Z) = ZZd’ 3,4)

jOlO

dimq Fil;" (aMZ) = ZZd’ (4,9)

7=0 =0

and for MD we have

k

dimq gry“(MD) =Y " d'(k - j,1 - j)

J=0

k k
dimq gry¥ (MD) = dimq Fil}Y (@M 2) =Y Y “d'(k - j.1 - j)

=0 j=0
k J
dimq Fily (MD) => "3 "> "d'(j—ri—r)
j=0 i=0 r=0
k l J
dimq Fil}","(MD) = S d(G-ri-r)

0 =0 r

Il
=)

J

Proof. If V is a vector space with filtration F, such that
0=Fo(V) CFy(V)C--- CR(V)C---CV,
then Fi(V) = @, gr} (V). We further know that

MD = qMZ[[1]],
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hence modulo Filz\fl’fl(./\/ll)) and Filzv_’il(./\/ll)) we have

k
gy (MD) =3 ey (aM2)[1]"
i=0
Now the claim follows by the properties of the product. O]

Theorem 5.4. We have the following results for dimg Filztll’L(qMZ)

ENLJO | 1 2 3 4 5 6 7 8 9 10 11
0 |1

1 11

2 |1] 2 2

3 |1] 3 4 4

4 11| 4 6 7 7

5 |1] 5 9 12 | 13 | 13

6 |[1| 6 |12 |18 22 23 23

7T 1| 7 |16 | 26 35 40 | 41 41

& | 1| 8 |20 36 53 66 72 73 73

9 |1 9 |25 48 76 | 103 | 121 | 128 | 129 | 129

10 | 1|10 | 30 | 63 | 107 | 155 | 196 | 220 | 228 | 229 | 229

11 | 1|11 | 36 | 80 | 145 | 225 | 304 | 364 | 395 | 404 | 405 | 405
12 | 1| 12 | 42 | 100 | 193 | 317 | 456 ? ? ? ? ?
13 1113 | 49 | 123 | 251 ? ? ? ? ? ? ?
14 11|14 | 56 | 150 | 321 ? ? ? ? ? ? ?
15 | 1|15 | 64 | 179 ? ? ? ? ? ? ? ?

Table 2: dimg FilZYl’L(q./\/lZ): proven exact, proven lower bounds.

Proof. We first explain how we obtain lower bounds with the help of a computer,
then we give an upper bounds by listing enough relations.

Lower bounds:

We calculated with the help of a computer a reasonable number of the coefficients
for each of the brackets in FilZYl’L(qMZ ). Now the rank of the matrix whose rows
are the coefficients gives us for dimg FilkWJ’L(q./\/lZ ) a lower bound. Since we work
only with a finite number of columns, it may happen that we can’t distinguish
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linear independent elements. The result of our computer calculations is that all
the entries® in the table of Theorem 5.4 are lower bounds.
For example in the case of FilmL(qMZ ) we checked that the following matrix

134 7 6 12 8 15
1 2 8
5 55 % 1325 25 B
1 3 14 73 172 195
s 2 3 5 2425 P
001 2 6 7 15 18|,
00 1 3 9 15 30 45
00 3 1 4 § 2 15
000 0 0 1 2 5

whose rows are the first 8 coefficients of the 7 brackets
2], 3], [4], [2, 1], [2, 2], 3, 1], [2, 1, 1]

has rank 6. Thus there are at least 7 (including the constant) linear independent
elements in Film’L(qMZ) and therefore dimg FilXYgL(qMZ ) >T.

Upper bounds:
Because of the identity

dimg Fi (aM2) = Y dimggr " (aMZ2)

1<k,j<I

it suffices to give upper bounds for dimg ng‘;’L(qMZ). We use the bounds given
by a(k,l) minus the number of known relations between the generators. There is
at least no relations in the generators of ngYiL(qMZ), in fact [k] is a generator. In

ngYQ’L(qMZ) we know by Theorem 3.5 that there are at least {@J relations in

between generators. In addition we know by Theorem 3.13 the number of relations
in length 3 for the weights 5 and 6. Now it is easily checked that the lower and
upper bounds coincide for the black marked entries in the table and hence the
theorem is proven. For example in the case of Filzfg’L(qMZ) we have that

dimq Filj5" (aM2) < Y7 Y dimggr) (aM2)

j<i<:£:;10)+3;4(<k12> B {(k;mJ)H_O

=143424+1="T.

3 The total running time on a standard PC for each entry was less then 24 hours. We point
to the fact, that refinements of our code may give some more entries in the table.
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O

Unfortunaly there is no direct way to get the dimension of ngt]l’L(qMZ) with the

help of a computer. However we can deduce the following conditional result.

Theorem 5.5. i) We have the following results for d'(k,[) = dimg ngY/L(qMZ)

ENIJO 1123 | 4 5 6 7181910 11
0 1,0

1 0|0

2 0|10

3 ]0(1|1|0

4 |01 |11 0

5 |[0|1]2| 2 1]0

6 (0|12 3|3 1 0
71011345 4 1 0

8 |[0]1|3] 6 8 8 ) 1 0

9 |0|1]|4| 7 |11 |14 12| 6 1 0

10 |0 1|4|10 |16 |21 |23 |17 | 7 1 0

11 |01 |5 |11 |21 |32|38|36|23]| 8 1 0
12 |0 | 1|5 |14 |28 |44 |60 | ? ?7 13019 1
131016 |16 |35 | 7 ? ? ? ?7 138 10
14 0| 1|6 |20 |43 | ? ? ? ? ? ? 47
15 (0|1 |7|21] 7 ? ? ? ? ? ? ?

Table 3: dimg ngYl’L(qMZ): proven, conjectured.

ii) We have the following results for the number of relations in dimg ngZ’L(qMZ)

32
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KNIl 1|23 | 4 5 6 7|8 9 |10
1

2 10

3 100

4 |10(1]| 0

5 |01 1|0

6 [0]2] 3 1 0

7 10| 2] 6 ) 1 0

8§ 1013|912 | 7 1 0

9 |03 1424|219 1 0

10 |0 | 4|18 |40 |49 33|11 | 1 0

11 |04 ]25]63] ? ? ?7 113 1 0
12 |0 |5 (36|16 | ? ? ? ? 1151
13 0|57 ? ? ? ? ? 7117
14 (0|6 | 7 ? ? ? ? ? ? ?
15 |0| 6| 7 ? ? ? ? ? ? ?

Table 4: Relations in dimg ngYl’L(qMZ): proven, conjectured.

Proof. i) If the dimensions of Fﬂz\fl’L(qMZ) are given, then

dimg gr};"(aM 2) = dimgq Fil};* (@M Z) — dimq Fil} 7, (aMZ)
— dimq Fﬂ}?jfh (@M Z) + dimq FilZ\Q]f,l—l(qMZ)a

because we have
grpy (M Z) = Fily ( Fill¥ (@M 2)/ Fil}Y | (qMZ))

/ Filk | (Fﬂ‘kN(qMZ) / FilX{l(qMZ)) .

Now using Theorem 5.4 we get all the black marked entries in Table 3. For the
conjectured entries in Table 3 we assumed that all the entries in Table 2 were
exact, except for the diagonals for which we guessed the entries for weight bigger
then 11.

ii) The number of independent relations we found give all the black marked entries
in Table 4, since by i) we know that there aren’t more. The conjectured entries in
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Table 4 equal the difference of the number of generators a(k,!) of in ngYl’L(qMZ)
minus the corresponding dimension conjectured in i).

O

Proof. (of Theorem 1.6) The entries in Table 1 were calculated from the values
for d'(k, 1) given in Theorem 5.5 by means of the formula given in Proposition 5.3.
Actually we have double-checked this table with the computer. Ol

Remark 5.6. Of course a lot of the conjectured relations in the table of Theorem
5.5 can be obtained by using the methods mentioned in this paper. We expect
that with a more detailed study of the kind of relations we can obtain so far we
could derive much better results and we plan to come back to this in future [Ba2|.

Remark 5.7. The lower bounds where proven with the help of a computer and
we expect that our program has found all the linear independent elements. We
therefore conjecture that Table 3 in Theorem 5.5 gives the exact values of d'(k,1)
for all k,[ we have tested. Assuming this we can ask for relations that are satisfied
by the d'(k,1). We observe that d}, = 31, d'(k, 1) satisfies: d) =1, d} =0, d) = 1
and

We see no reason why this shouldn’t hold for all £ > 11 also, i.e. we ask whether
Sl M2yt = Yk L LT (5.4)
8t 14 A G e T ‘

k>0 k>0

Even more speculative we may ask whether there a polynomial P(x,y),Q(z,y) €
Qlx,y] such that

P
Z dimg grz\fl’L(qMZ)xkyl = Z & (k, )ary' = (z, y) (5.5)
k,1>0 k1>0 Q(x,y)
and 2&b) — loode’ oy fact, for the data we have so far there exist a family of

Q(z,1) — 1-222-223"
polynomials P(z,y) and Q(z,y) such that if ggizg =Y a(k,l)a*y', then d'(k,1) =
a(k, 1) for all d'(k,!) in table in Theorem 3.

A general reason why such conjectural formulas may hold is that these are analo-
gous to the Zagier conjecture for the dimension d; of MZ,,

1

. W E_ k2
k>0 k>0
34
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and its refinement by the Broadhurst Kreimer conjecture

1+E(X)Y
1—O(X)Y +S(X)Y2—S(X)Y*"

Z dimg ngYl’L (MZ)XFY! L

k>0
>0
where
X2 XS X12
E(X)= 175, OX)=1r"%, S(X)=

(1—X4(1—X9%)"

We finally observe that conjecturally the algebra qMZ is much bigger than MZ
as we read of the following table.

kK |10]1]23]4|5]| 6 7] 8 9 10 11 12 13 14 15 16

dp |1 |01 |1 )12 23] 4]|35 7 9 12 16 21 28 37
dp |1]0|1|2|3|6]|10 |18 3256|100 | 176 | 312 | 552 | 976 | 1728 | 3056

Table 5: First values of dj, and dj.

6 Interpretation as a ¢-analogue of multiple zeta
values

We will show that the brackets can be seen as an g-analogue of multiple zeta

values.

Remark 6.1. The most common example for an g-analogue of multiple zeta values
are the multiple g-zeta values (see for example [Br|). They are defined for s; >
1,89,...,5,>1 as

Co(s1,.00u8) = Z H%, (6.1)
ny>-->n;>0 j=1 J

where one has to be careful with the notation here, because the brackets [n], in
this case denote the g-analogue of a natural number n;. They are given by

1—q" .
[’]’L]q = 1 g Z q] .
7=0
With this it is easy to see that since s; > 1
lim Gy (51, 50) = (51,1, 51).
q—1
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These function also fulfill a lot of relations from which one can deduce relations of
MZV due to the limiting process.

It seems strange to us, that albeit the cases (1 — ¢)®[s] have been treated as g-zeta
values |Zu|, |Pu| or [KKW] the definition (6.1) has become standard (see e.g. [Br],
[Zh],|OKZ]) and not (1 — ¢)s+%[sy, ..., 5].

Remark 6.2. There is also another ¢g-analogue, which is more directly connected
to the brackets. It is defined by

Colstsoys) = (1= a) " ¢y(s1,- -, 51)
qTLl(Sl—l) o qm(s,—l)

R RN e T T

ny>-->n;>0

and which are called modified g-multiple zeta values in |OT] or |Tal.

If all s; > 1, then modified g-multiple zeta values can be written in terms of
brackets, which follows from the fact that the Eulerian polynomials form a basis
of a certain space of polynomials [BK]. Clearly one has ZQ(Q, 5 2) =1[2,...,2]
because Pi(t) = 1. If all indices s; > 2 the connection gets a little bit more
complicated. For example it is

2],

Wl =

and this is due to the identity

2 £ 10)) tPy(1) 1 tP(t)
(I—6)* 31—t 2(1—t)3  3(1—1t)?

When one of the s; is equal to 1 we don’t expect such a simple connection. But
still there seems to be a connections if s; > 1, for example

C(2.1) = [2,1] = [2] +d[1]  mod ¢"*'Q[[q]] -

It is not difficult to check that the space of modified g-multiple zeta is closed under
multiplication (see e.g. [HI], p. 2). However, the algebra of admissible brackets
qM Z is not isomorphic to the Q-algebra of modified g-multiple zeta values in the
sense of [OT] or [Ta]. This is in essence due to the relation (,(2,1) = (,(3) in
contrast to [2, 1] # [3].

Definition 6.3. For k € IN we define the map Z : Fil}Y (@M Z) — R by

Zi ([s1,- ., s1]) = lm (1 — q)¥[s1,.... 1)) -

q—1
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Proposition 6.4. The map Zj, is linear and on the generators of Fil}¥ (@M Z),
i.e., on brackets with s; > 0, it is given by

C<517"‘751)7 k:51+"'+5l7
0, k>s1+--+s.

Zk ([81, .. ,Sl]) =

Proof. Using Lemma 2.5 and Lemma 6.6 below, we derive for k = s1 +--- + s

Zi ([s1,-..,s]) =1lim ((1 - q)"[s1, .. .,sl])

q—1

:(1113% <(1_q)k Z H T quz)sj>

ny>-->n >0 j= 1

! . "
- Z lim (1-9)% q JPSj—l(q )

=114 (1 —qgmi)si (s;—1)!

ny>-->n;>0 j=1

=((s1,--,8);

here we used that the k-th Eulerian polynomial Py(t) satisfies Py(1) = k!. If
k> s +...5itis Zy([s1,...,5]) = liml(l — @) (s, .. .,8) = 0. In
q—

Lemma 6.6 we will justify the interchange of the limit and the summation. O]

Corollary 6.5. Let f = ano a,q" be a quasi-modular form of weight k. Then
the map Zy sends f to (—2mi)*ag. The space Sy, of weight k cusp-forms is therefore
a subspace of the kernel of Z.

Proof. Any quasi-modular form of weight & can be written as a homogenous
polynomial in G5, G4 and Gy, therefore My (I';) C Q. Since Zj is a linear operator
we can focus on the monomials. Let us consider the most simplest case first. For
a,b € {2,4,6} we have

Za—l—b(GaGb) = hn%(l - q)a+bGaGb = 111’1}(1 - q)aGa 1111%(1 - q)bi = Za(Ga)Zb(Gb)
q— q— q—
and by Proposition 6.4 we have Z,(G,) Zy(Gy) = ¢(a)((b) which is exactly (—2mi)2+?

times the constant term of G,G,. The same argument holds for more general
monomials and therefore the claim follows. O

Lemma 6.6. i) Define a series {Fy(q)}amen by

ra=- Y ] L e e,

M>ni;>-->n;>0 j=1
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then it converges uniformly to (1—q)¥[s, ..., s;] for ¢ in the interval [0, 1] and

therefore
! . .
. o _ : (1—q)¥q" Py, (¢™)
tig (L= )l oml) = 3 I ] [Za 200y (62)

ni>-->n;>0 j=1

ii) Let k,n € IN be natural numbers and define the function

(1—q)*q"Pr1(q")
(T =gk —=1)! "

then for ¢ € [0,1] it is f1,,(¢) < + and for k > 1 we have f;,(¢q) < -5.

fk,n(Q) =

Proof. We start with the proof of ii) because we need it for the proof of i). It is

(1—-q)q"
(1—-4g")

because Py(¢g") = 1. This is bounded by & because the function
ba(q) = n(l = q)¢" = (L —¢")

is negative for all ¢ € (0,1) which can be seen by b,(1) = 0 and the fact that the
derivative

flm(Q) =

b (q) =n*(1 = )" + (" = q").
is positive. We will show that

(1-9?¢" Pialg") _ 1
(1—gn)? (k=1! = n?

for all k. This will be sufficient ii) for proving the statement for all £ > 2 because
it is =% < 1 for ¢ € (0,1). Because of the positivity of the coefficients of Pj_1(q)

1—qm
and P,_1(1) = (k — 1)! we have for ¢ € (0,1) that
Deald”)
(k—1)! —
It therefore remains to show that
(1—qP¢" 1
h,(q) = —F+— — —<0.
(q) =gy m=

We will do this by showing that h,(q) is monotonically increasing in the desired
interval and
lim h,(q) =0.

q—1

38

115



Appendix A. The algebra of generating functions for multiple divisor sums and
applications to multiple zeta values

116

The latter can be seen by using I’hospital twice. For the monotonicity we first
derive the derivative of h:

SO Call = ) - ).

The first factor is negative and we therefore just have to proof that the term in
the brackets is also negative for all n € IN and ¢ € (0,1) which we will do by
induction on n. For n = 1 this is trivial and for the inductive step we first rewrite
the statement as

ho(q) =

q(1 —q")
(1-1q)

Assuming that this holds for an n we can write

:Qqu <n(l+4q").

J=1

2

n+1
2> ¢ —2Zq +2¢" < n(14¢") + 24"

7=1 7j=1

Now we have to show that

|
n(1+¢") +2¢" < (n+1)(1+¢")
which we again do by first setting
gu(@) = (n+ DL +¢") = (n(1+¢") +2¢"7) = n(@" ™ —¢") + 1= ¢""

and then noticing that g,(1) = 0. The derivative ¢/,(¢) = —¢" ' (n*(1 — q) + q) is
clearly negative for ¢ € (0,1) which implies g,(¢) > 0 and therefore finishes the
inductive step.

We now prove i). Using the bounds in ii) and taking into account s; > 1 we have
the bound

CYURD S | (e i LS

1—gm)%i(s; —1)!
M>n1>--->n;>0 j=1

ning...ny
M>n1>-->n;>0

for ¢ € [0,1] and all M > 0. Therefore the sum on the right-hand side of (6.2)
converges uniformly as a function in ¢ and therefore we can interchange limit and
summation. Ul

1
[$1,...,5] with s; = 1 are polynomials in [1], it is clear that Z; can’t be extended

as an analytical map as given in Definition 6.3 to all Fil}¥ (MD).

Remark 6.7. In [Pu] it is shown [1] ~ —@ near ¢ = 1. Since a bracket
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7 Applications to multiple zeta values

As mentioned in the introduction we now want to consider a direct connection of
brackets with multiple zeta values (MZV).
We start by defining for any p € R, the following spaces

Q,= {Zanqn eR[[q] | an = O(np_l)}

n>0

and

Q. = {Zanqn e R[[q]] | 3¢ > 0 with a, = o<n’”‘5>} |

n>0

where a,, = O(n”~!) is the usual big O notation which means that there is an
C € R with |a,| < Cn*~! for all n € IN.

Lemma 7.1. i) Both Q., and Q, are R vector spaces.
ii) We have Q, 1 C Q., C Q,.
iii) Let r, s € R>; then
Qur Qes C Qoptsy, Qv Qs C Qoyys and Q- Qs C Qyps

Proof. It is obvious that i) and ii) hold. For iii) we consider f =} _ a,q¢" € Q,,
9= ,-0bng" € Qs. Then by definition |a,| < Cyn" ' and |b,| < Cyn*~! for some
constants Cy and Cs. Setting f-g =), _,c.q" we derive

Z Qpy Oy

ni+ns=n

<CiCy Y niny Tt < CiCon e = O

ni+ns=n

cn| =

and therefore f-g € Q,,,. By similar considerations the remaining cases follow. [J

Proposition 7.2. For p > 1 define the map Z, fora f =) _ a,q¢" € R[[¢]] by

Z,(f) =limsup (1 — q)” Z anq” ,

g1 n>0
where one assumes ¢ € (0,1). Then the following statements are true
i) Z, is a linear map from Q, to R
i) Q., C kerZ,.

iii) d Q<,—1 C ker(Z,), where as before d = qdiq.
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Proof. We prove i) and ii) simultaneously. In order to do this we use the following
expression for the polylogarithm

Li_y(q) =T(1+s)(—loggq) "+ ) W

n=0

(logq)"

which is valid for s # —1,—2,—3,..., |z| < 1 and where {(—s — n) is the analytic
continuation of the Riemann zeta-function. The proof of this can be found in [CG]
Corollary 2.1. The logarithm has the following expansion near g = 1

—log(q) =) Lo,

n

n=1

Using this one gets for ¢ > 0

; —_ A\P p—l—e _n _ 1; — A\PTj
limsup (1 — )" y_n""'"%¢" = lim (1 — )" Licy1(g)

q—1

n>0
: _ —((—pte—
= limsup (1 — ¢)” (I‘(p —e)(—logq)™"" + Z w (log C])”)
q—1 n—0 .
1—q)° I'(p), e=0
=T'(p —¢)limsup (1-9) == (p)
g1 (ZZL (1—nq>n) 0, >0

Now assume that for a ¢ > 0 we have f =" _a,q¢" with |a,| < C - nP=17¢ e,
feQ,fore=0and f € Q, for € > 0, then the calculation above gives

Zp (Z @nqn> <C-Z, <Z np—l—e> _ C-TI(p), e=0

n>0 n>0 0, e>0

1Zp()] =

and therefore Z,(f) € R and Z,(f) = 0 respectively.
For iii) we just have to observe that the derivative d = q% on y  _,a,q" is given
by > ,-0n0,q". With this it is clear that with i) we obtain d (Q<,—1) C Q<, C

ker(Z,). O
The brackets [sq,..., ] can be considered as elements in the spaces we studied
above.
Proposition 7.3. i) For any sy,...,s we have [s;,...,8] € Qg tpsi1-
ii) If all s1,89,...,5 > 1, then [s1,..., 5] € Qg 4ts,-
41
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iii) For any si,...,s we have

[81, ceey 3[] C ker(Zsl+...+sl+1)

and
d[Sl, ceey Sl] C ker(ZSl+.‘.+5l+2)

Proof. We begin with the proof of ii). It is a well-known fact that for s > 1 the
divisor sums o, (n) are in O(n*~!) and therefore [s] € Q,. Then by Lemma 7.1

iii) we have ) _ as, .5 (n)q" == [s1]...[81] € Qs) 1ot
It is clearly

— s1—1 Sl—l
0-51—1,..‘,51—1(7%) - g (%1 P ’Ul

uv1+-tuv=n
up > >u;>0

s1—1 si—1 __
< E V] .Y = Usy,...,5 (n) )

u1v1+-Fuv=n

which implies [s,..., 5] € Qg 4. ts -

In order to show i) we can use the same argument as in ii) except that one has
oo(n) € O(log(n)) C O(n®) for any € > 0. Using this we obtain [1] € Q-5 and
therefore [s1,..., 5] € Qcgyqois41 fOr sq,...,5 > 1.

Finally iii) is an immediate consequence of Proposition 7.2 ii) and iii). O

Using MD = gM Z][1]] we define a map
ZM - FilY (MD) — R[T7,

7z (Z 91‘[1]’”) = Z Zi(g;) T e R[T],

where g; € Fil}' (M Z).
Proposition 7.4. For all f € Fil}Y(MD) it is Z;'%,(d f) = 0.

Proof. An element in Fil}Y (MD) can be written as Zf:o g;[1]F7 with g; €
Fil}N(qMZ). The map Z,‘jlg is linear, it therefore suffices to prove the statement
for a f € Fil}Y (MD) of the form f = g;[1]*77. The derivative of this f is given by

df=dg;- 17+ (k= j)g;d] - [1]F 7.

As we saw before it is d[1] = [3] + 3[2] — [2,1] € ¢MZ and by Proposition 3.14 it

is dg; € gMZ. The map Z,'jif2 is therefore given on d f by
Zp(d f) = Zja (dgy) T + (k + §) Zjya (g;d[1]) T

It is Zj43 (g; d[1]) = Z;(g;) - Z5(d[1]) and by Proposition 7.3 we obtain Z3 (d[1]) =
Zj+s(dg;) = 0 from which the statement follows O
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Remark 7.5. The authors also expect that the implication
Zi(f) =0= ZM(f) =0
holds for arbitrary f € MD.

Now Theorem 1.13 follows by Proposition 7.3 and Proposition 7.4. Using these
propositions we are able to derive relations between MZV coming from elements in
the kernel of the map Z;. We give a few examples which give a new interpretation
of well known identities of multiple zeta values.

Example 7.6. i) We have seen earlier that the derivative of [1] is given by
1
dit} =[3]+ 2] - 2,1

and because of the proposition it is d[1], [2] € ker Z3 from which ((2,1) = ((3)
follows.

ii) (Shuffle product) Proposition 3.3 stated for s; + s; = k + 2 that

(S e (S e 2 ((20)(220))

Applying Zi,o on both sides we obtain the shuffle product for single zeta

values
OREED ((22)+(120) <t

Example 7.7. For the cusp form A € S5 C ker(Z;5) we derived the representa-
tion
A = 1685, 7] + 150[7, 5] + 289, 3]

1 83 187 6 7 5197

* 1408[2] B 14400[ I+ M[ J = m[fﬂ] - W[H].

26.5.691

Letting Z;5 act on both sides one obtains the relation

%917«12) = 168¢(5,7) + 150((7,5) + 28((9,3) .

In general it is known due to |GKZ| that every cusp form of weight k give rise to
a relation between double zeta values with odd entries modulo (k). We believe
that one can give an alternative proof of his fact with the help of brackets.
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At the end we want to mention a curious property of the brackets which seems to
appear at length 3. Fixing a weight k& and a length [ one could ask, if there are
linear relations between brackets [sy, ..., s/ with the same weight s;+---+s, =k
and length [. For [ = 2 using the computer the authors could not find any such
relations up to weight 30. But for [ = 3 there seem to be relations of this form
starting in weight 9. The first two of them are given by:

Conjecture 7.8. In FilggL(MD) and Fil%:;(MD) we have the relation

9
0 23[27374]+2[27473]_[27572]

+NB&H—&LW—%&ZM—B&$—&&%
+§@AM—MJAD—%M&$+%%&Q
+?w¢m—pam—m¢m+mzu
and
0 :%[2,3,5]+%4[2,4,4]+%[2,5,3] [2,6,2]
+NH&H—RL@—%BZN+§H&M—%BA&—B@%

+ﬂ%&ﬂ—HJ&D—?%ZQ—%%&&—%%&ﬂ

\)

+ = ([5,4,1] — [5,1,4]) — [5,2,3] + % 5,3, 2]

— Ot

+ g ([67 L, 3] - [6737 1]) - [7, L, 2} + [7’ 2, 1] ’

Notice that these are all elements in Fily' (@M Z) (resp. Fil}y(qMZ)) and therefore
a relation for triple zeta values would follow from this. There are similar relations
in higher weights and computations show the following:
k‘1—8‘9‘10‘11‘12‘13‘14‘15‘16‘17‘18‘19‘20
tk‘ 0 ‘1‘ 1 ‘ 3 ‘ 6 ‘ 8 ‘12‘16‘21‘25‘32‘37‘45

Table 6: Conjectured numbers ¢, of relations between [a, b, c| with a + b+ ¢ = k.
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The double shuffle relations
for multiple Eisenstein series

Henrik Bachmann? Koji Tasaka!

Abstract

We study the multiple Eisenstein series introduced by Gangl, Kaneko
and Zagier. We give a proof of (restricted) finite double shuffle rela-
tions for multiple Eisenstein series by revealing an explicit connection
between the Fourier expansion of multiple Eisenstein series and the
Goncharov coproduct on Hopf algebras of iterated integrals.

Keywords: Multiple zeta value, Multiple Eisenstein series, The Goncharov
coproduct, Modular forms, Double shuffle relation.
Subjclass[2010]: 11M32, 11F11, 13J05, 33E20.

1 Introduction

The purpose of this paper is to study the multiple Eisenstein series, which
are holomorphic functions on the upper half-plane {7 € C | Im(7) > 0}
and which can be viewed as a multivariate generalisation of the classical
Eisenstein series, defined as an iterated multiple sum

1
nr(T) = Z )\7111 )\?r (nla"'anr—l € ZZQynr GZZ?))?

77777

(1.1)

*email : henrik.bachmann@uni-hamburg.de, Universitat Hamburg
femail : koji.tasaka@math.nagoya-u.ac.jp, Graduate School of Mathematics, Nagoya
University



where the positivity [7+m > 0 of a lattice point is defined to be either [ > 0
orl=0,m>0,and IT+m > I'T+m/ means (I —1")7+ (m—m') > 0. These
functions were first introduced and studied by Gangl, Kaneko and Zagier [7,
Section 7], where they investigated the double shuffle relation satisfied by
double zeta values for the double Eisenstein series G, »,(7). Here the double
zeta value is the special case of multiple zeta values defined by

1
g(nl,...,nr): Z ’]nnl— (nl,...,nr,l EZZI7”T€Z22)-

N mnr
0<mi<--<m, 1 T
mi,...,my€7Z

(1.2)
Their results were extended to the double Eisenstein series for higher level
(congruence subgroup of level N) in [12] (N = 2) and in [16] (IV : general),
and have interesting applications to the theory of modular forms (see [15])
as well as the study of double zeta values of level N. Our aim of this paper
is to give a framework of and a proof of double shuffle relations for multiple
Eisenstein series.

The double shuffle relation, or rather, the finite double shuffle relation
(cf. e.g. [10]) describes a collection of Q-linear relations among multiple zeta
values arising from two ways of expressing multiple zeta values as iterated
sums (1.2) and as iterated integrals (3.1). Each expression produces an al-
gebraic structure on the Q-vector space spanned by all multiple zeta values.
The product associated to (1.2) (resp. (3.1)) is called the harmonic product
(resp. shuffle product). For example, using the harmonic product, we have

¢(3)¢(3) = 2¢(3,3) +¢(6),

and by the shuffle product formulas one obtains
¢(3)C(3) =12¢(1,5) + 6¢(2,4) + 2¢(3,3). (1.3)
Combining these equations gives the relation
12¢(1,5) +6¢(2,4) — ¢(6) = 0.

For the multiple Eisenstein series (1.1), it is easily seen that the har-
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monic product formulas hold when the series defining G, ., (7) converges

absolutely, i.e. ny,...,n,_1 € Z>9 and n, € Z>3, but the shuffle product
is not the case — the shuffle product formula (1.3) replacing ¢ with G does
not make sense because an undefined multiple Eisenstein series G 5(7) is in-
volved. This paper develops the shuffle product of multiple Eisenstein series
by revealing an explicit connection between the multiple Eisenstein series and
the Goncharov coproduct, and as a consequence the validity of a restricted
version of the finite double shuffle relations for multiple Eisenstein series is
obtained.

This paper begins by computing the Fourier expansion of G, . (7) for

Ni,...,n. > 2 (the case n, = 2 will be treated by a certain limit argument

-----

in Definition 2.1) in Section 2. The Fourier expansion is deeply related with
the Goncharov coproduct A (see (3.4)) on Hopf algebras of iterated inte-
grals introduced by Goncharov [8, Section 2], which was first observed by
Kaneko in several cases and studied by Belcher [6]. His Hopf algebra Z,(.5)
is reviewed in Section 3.2, and we will observe a relationship between the
Fourier expansion and the Goncharov coproduct A in the quotient Hopf al-
gebra 7! := Z,/1(0;0;1)Z, (Z, := Z,({0,1}), which can not be seen in Z,.
The space Z} has a linear basis (Proposition 3.5)

{I(ny,...,n.) | r>0,n1,...,n, € Z=o},

and we will express the Goncharov coproduct A(I(ny,...,n,)) as a certain
algebraic combination of the above basis (Propositions 3.7 and 3.9). As an
example of this expression, one can compute

A(I(2,3)) = 1(2,3) @ 1+ 31(3) @ I(2) + 21(2) @ I(3) + 1 ® I(2,3).

The relationship is then obtained by comparing the formula for A(1(n4,...,n,))
with the Fourier expansion of G, . (7), which in the case of 7 = 2 can be
found by (2.8) and (3.11). More precisely, let us define the Q-linear maps
3% 1 I} - Rand g : Z! — C[[q]] given by I(ny,...,n.) = (™(ny,...,n,)
and I(nqy,...,n.) ¥ Gn,...n.(q), where (™(nq,...,n,) is the regularised mul-
tiple zeta value with respect to the shuffle product (see Definition 3.1) and
Gny...n.(q) is the generating series of the multiple divisor sum appearing in
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the Fourier expansion of multiple Eisenstein series (see (2.4)). For instance,
by (2.8) we have

Gas(T) = ((2,3) + 3¢(3)g2(q) +2¢(2)g3(q) + g2,3(q),

and hence (3™ ® g) o A(1(2,3)) = G23(7). In general, we have the following
theorem which is the first main result of this paper.

Theorem 1.1. For integers ny,...,n, > 2 we have
(51“ @ g) ° A(I(nla s 7nr)) - Gnlqur (7’) (q = eQW\/le)'

The maps A : I! — T} ®Z! and 3™ : T} — R are algebra homomorphisms
(Propositions 3.4 and 3.6) but the map g : Z! — C|[[qg]] is not an algebra
homomorphism (see (4.1)). Thus we can not expect a validity of the shuffle
product formulas for the g-series (3" ®g)oA(I(n1,...,n,)) (n1,...,ny € Zsy)
which can be naturally regarded as an extension of G,,, ., (7) to the indices
with n; = 1.

We shall construct in Section 4.1 an algebra homomorphism g™ : Z! —

-----

C[[¢]] (Definition 4.3) using certain g-series, and in Section 4.2 we define a
regularised multiple Eisenstein series (see Definition 4.5)

Gro o (q)=0G"®g") o A((n,...,n.) €Cllgl] (n1,...,n, € Zx1).

-----

It follows from the definition that the g-series G, . (q) (n1,...,n, € Z>1)
satisfy the shuffle product formulas. We will prove that G} (g) coin-
cides with the Fourier expansion of G,, .. (7) when ny,...,n, > 2 and
¢ = €*™~17 (Theorem 4.6). Then, combining the shuffle product of G™’s
and the harmonic product of G’s yields the double shuffle relation for mul-

-----

tiple Eisenstein series, which is the second main result of this paper (see
Theorem 4.7 for the detail).

Theorem 1.2. The (restricted) finite double shuffle relations hold for G ., (q)

(nl, Lo,y € ZZI)'

The organisation of this paper is as follows. In section 2, the Fourier ex-
pansion of the multiple Eisenstein series G, ., (7) is considered. In section

4
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3, we first recall the regularised multiple zeta value and Hopf algebras of
iterated integrals introduced by Goncharov. Then we define the map 3™ that
assigns regularised multiple zeta value to formal iterated integrals. We also
present the formula expressing A(I(nq,...,n,)) as a certain algebraic com-
bination of I(ki,...,k;)’s, and finally proves Theorem 1.1. Section 4 gives
the definition of the algebra homomorphism g™ and proves double shuffle
relations for multiple Eisenstein series. A future problem with the dimension
of the space of G™’s will be discussed in the end of this section.
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2 The Fourier expansion of multiple Eisen-

stein series

2.1 Multiple Eisenstein series

In this subsection, we define the multiple Eisenstein series and consider its
Fourier expansion.

Recall the computation of the Fourier expansion of Gy, (7), which is well-
known (see also [7, Section 7)):

Gy (7) = Z (I +m)m Zmnl ZZ (IT +m)"

0<Ilt+m >0 meZ




= ((n1) +

where ox(n) =3, d* is the divisor function and ¢ = e*™V=17. Here for the

last equality we have used the Lipschitz formula

1 —2my/—1)™ 21—l 1
Z (1 4+ m)™ - : (n1 — 1)? Z ot g™ (> 2). (2.1)

meZ 0<vy

When n; = 2, the above computation (the second equality) can be justified
by using a limit argument which in general is treated in Definition 2.1 below.
We remark that the function G,,(7) is a modular form of weight n; for
SLy(Z) when n; is even (> 2) (Go(7) is called the quasimodular form) and a
non-trivial holomorphic function even if ny is odd.

The following definition enables us to compute the Fourier expansion
of Gy, . (7) for integers nq,...,n, > 2 and coincides with the iterated
multiple sum (1.1) when the series defining (1.1) converges absolutely, i.e.
Ni,...,Nye_1 > 2 and n, > 3.

Definition 2.1. For integersny,...,n, > 2, we define the holomorphic func-
tion Gyp,...n.(T) on the upper half-plane called the multiple Eisenstein series

by

-----

1
(;nh“an(T)lzz lim lim E SFE____XE_
1 o o. . TT

L—o0o0 M—o0

0=<Ap <<y
AiGZLT—FZ]\/[
1
= lim lim Z ,
L—o00 M—o00 ni... Ny
R P o PRI (b 4+ my) (I, +m,)
—L<ly,..,0 <L
—M<ma,..., my<M
where we set Zyy = {—M,—M+1,...,—1,0,1,..., M —1, M} for an integer
M > 0.
The Fourier expansion of G, .. (7) for integers ni,...,n, > 2 is ob-

tained by splitting up the sum into 2" terms, which was first done in [7] for
the case r = 2 and in [1] for the general case (they use the opposite con-
vention, so that the \;’s are ordered by A\; > --- = A, > 0). To describe

6
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each term we introduce the holomorphic function G,,, ., (w; - - - w,; 7) on the

7777

upper half-plane below. For convenience, we express the set P of positive
elements in the lattice Z7 + Z as the disjoint union of two sets

Py={lr+meZr+Z|l=0Am> 0},
Py={lr+meZr+Z|1>0},

i.e. Py are the lattice points on the positive real axis, P, are the lattice points
in the upper half-plane and P = PxUP,. We notice that \; < Ay is equivalent
to Ay — A; € P. Let us denote by {x,y}* the set of all words consisting of
letters x and y. For integers ny,...,n, > 2 and a word w; - --w, € {X,y}*
(w; € {x,y}) we define

7777777777

1
= lim i T
D D
A1 —A0€Puy T
)\T_A'r—:lepwr
Aoy \pELZLTHL0g
where )\ := 0. Note that in the above sum, adjoining elements \; — \;_1 =
(ll — li_l)T + (ml — mi_l), . 7)\]‘ — )\j—l = (l] — lj_l)T + (mj — m]’_l) are
in Px (ie. w; = -+ = w; = x with ¢ < j) if and only if they satisfy
mi—p <m; <---< m; with li,1 = li == lj (SiHCG (l—l’)7'+(m—m’) € PX
if and only if | =" and m < m/), and hence the function G, ., (w; - --w,)
is expressible in terms of the following function:

1
\I’n n = ’
1y (T) Z (T+my)™ - (T +m,)"

—oo<m <--<my <00

which was studied thoroughly in [3]. In fact, as is easily seen that the series
defining U,,, . (7) converges absolutely when ny,...,n, > 2, we obtain the



following expression:

=) > U (W) Ty (), (32)

o<l <<y,

where 0 < t; < --- < t;, < r + 1 describe the positions of y’s in the word
wy - Wy, 1.€.

wl---wr:X---ny---xyx---y X..-X yX---X’
e N~ =
t1—1 tQ—tl—l th_thfl_l r—th

and ((ny,...,ny—1) =1 when ¢; = 1.

As we will use later, we remark that the above expression of words gives
a one-to-one correspondence between words of length r in {x,y}* and the
ordered subset of {1,2,...,r}:

wl---wTH{th...,th}, <23)

where h is the number of y’s in wy---w,. We remark that in the corre-
spondence the word x" should correspond to the empty set as a subset of

{1,2,...,7}.

Proposition 2.2. For integers nq,...,n, > 2, we have

Proof. For \i,..., A\, € ZyT + Zy);, the condition 0 < Ay < --- < A, is by
definition equivalent to \; — A\;_y € P = PcU P, forall 1 <i <r—1
(recall A\g = 0). Since A; — \;_1 can be either in Px or in P, we complete the
proof. 0J

FExample. In the case of r = 2, one has for ny > 2,ny > 3

Gum(T) = D AN = ) AT

0<A1<A2 A1—Xo€EP
A, 2 ELTHTL Aa—\1€EP
A, 2 E€EZTHT
8
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=<Alz + Y D>+ D> )Al”lAQ"Q

A€ Px —Xo€EPx A— AoEPy A— )\QEPy
Ao—A1EPx >\2 A1EPy Ao—X1 EPx A2—A1EPy
ALAEZTHZ A N €ZT+L A M2€LTHZ M\ No€ZTHZ

= Gy o (xx) + Gy s (xy) + Gy s (yx) + Gy o (yy)-

2.2 Computing the Fourier expansion

In this subsection, we give a Fourier expansion of Gy, ,, (w; - - - w,).
Let us define the g-series gn, .., (q) for integers ny,...,n, > 1 by

_ (=2my/—1)mttne =1 ne—1_ugvr e,
Gnssenr (4) = (ny —1)!---(n, — 1)! § : Uy U g )
! ' " " 0<uy <--<up
0<v ..y Up

(2.4)
which divided by (—2my/—1)"+"+" was studied in [2]. We remark that
since gy, (¢) is the generating series of the divisor function o,,_1(n) up to a
scalar factor, the coefficient of ¢ in the g-series g, . n.(¢) can be regarded
as a multiple version of the divisor sum:

Ony,...,np (n) = Z /U?l b ’U?T717
U101+ HUrvr=n
O<uy <--<ur
V1., Ur EN
which is called the multiple divisor sum in [2] with the opposite convention
(but we do not discuss their properties in this paper). We will investigate an

algebraic structure related to the g-series g, . ,.(¢) in a subsequent paper.

To give the Fourier expansion of G, . (wi,...,w,), we need the follow-
ing lemma.
Lemma 2.3. For integers nq,...,n, > 2, we have

i > ((_1)nq+kq+1+...+kr ﬁ (Z - D

q=1 1+ tkp=n1++n, j=1
ki>n;kq=1 J#q

X C(l{iqfl, kq,Q, RN kl)C(kq+la kq+2, RN ]{77-)) = 0,



where ¢(ny,...,n,) =1 when r = 0.

Proof. This was shown by using an iterated integral expression of multiple
zeta values in [3, Section 5.5] (his notations Te" " (z) and Ze" "™ cor-
respond to our W, ., (z) and ((ny,...,n,), respectively). We remark that
he proved the identities Lemma 2.3 for nq,...,n, > 1 with nq,n, > 2. ]

Proposition 2.4. For integersny,...,n, > 2 and a word w; - - - w, € {X,y}*
with the ordered subset {ty,...,ty} given by the correspondence (2.3), we set
Ny, =ng, +--+ng, -1 form e {l,... h} where ty 1 =r+ 1. Then the

function Gy, p.(wy---wy;T) has the following Fourier expansion:

-----

----- ”r(wl e wT) - C(nh s 7nt1—1)

X Z E (_1)2&:1(Ntm+nqm+kqm+1+kqm+2+...+kqm+l_1)
t1<q1<ta—1 k¢, +++key—1=Ny,
t2<q2=<ts—1 kyy ootk 1 =Noy

th<qn<r o
REGST k=N,
kty ke 41, ke 22

(11 (n ) (mr_[lcagqml,.v. gl )

TV
gm—tm tm4+1—qm—1

where ¢ = e2™V1T, C(n1,....ny) = Gnyoomn(q¢) = 1 whenever r = 0 and

H;j:tl (:zj) = 1 when the product is empty, i.e. when {t1,t1+1,...,r} =
JAQ e sh
{a, - an}

Proof. Put N =ny + --- 4 n,. Using the partial fraction decomposition

1
(7‘ + ml)nl . o (T _|_ mr)nr

R o Gm) ) e (e (CDR(T)
- ;kw-;T:N <H (mq = mj)kj) (7 4 mg)ts (j—lll (mj = mq)kj> ’

k1,...,kr>1

10
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we obtain

Voo (1) =D > ((_1)N+nq+kq+1+~~+kr ﬁ (fz - i)

q=1 ki+-+kr=N Jj=1
k1,..o.kr>1 j#q (2.5)
X C(kq—la kq—Qv SRR kl)\I]kq (T)g(kq-ﬁ—l) kq+2a R k£)> )
41 rq

where the implied interchange of order of summation is justified because the

i—1

binomial coefficient (zf_l) vanishes if k; = 1 or k., = 1 and by Lemma 2.3

the coefficient of Wy(7) is zero. Using the Lipschitz formula (2.1) we easily
obtain for integers nq,...,n, > 2

G @ = Y Uy (waT) .y, (u,T). (2.6)

O<uy <--<usp
Combining the above formulas with (2.2) we have the desired formula. [

We remark that the formula (2.5), which in the case of r = 2 was done
n [7, Proof of Theorem 6], is found in [3, Theorem 3] and holds when
ni,...,n, > 1 with n;,n, > 2, but we use only the formula (2.5) for
ni,...,n, > 2 in this paper.

We give an example which was carried out in [7]. From (2.2) and (2.6),
it follows

Gnl,n2 (XX) = C(nly n2)7
Gnl,ng (Xy) = C(nl) Z \IJTLQ (ZT) = C(nl)gnz (Q)7

o<l
n1 N2 yy Z \I/m llT 712([27-) 9ny n2( )

0<li<ls

and using (2.5), we have

nl,nz yX Z qj’rh TL2 lT Z bl:tll nQC(kl)gkz (Q)’

o<l k1+ko=n1+n2
ki,ka>2

11



where for integers n,n’, k > 0 we set

bk, = (—1)" <::D + (=1)F (:,__11) (2.7)

Thus the Fourier expansion of G, ,(7) is given by

Gnlmz (T) = C(nh nQ) =+ Z (5n1,k1 =+ blel,ng)C(kl)g/Q (q) + 9n1,nz (q)7

k1+ko=n1+no
k1,k2>2

(2.8)

where 0, is the Kronecker delta.

3 The relationship between multiple Eisen-

stein series and the Goncharov coproduct

3.1 Regularised multiple zeta values

In this subsection, we recall the regularised multiple zeta value with respect
to the shuffle product defined in [10]. We first recall an iterated integral
expression of the multiple zeta value due to Kontsevich and Drinfel’d, and
then introduce the algebraic setup of multiple zeta values given by Hoffman.

We denote by wy(t) = % and w;(t) = ;£ holomorphic 1-forms on the
smooth manifold PE\{0,1,00}. For integers ny,...,n,_; > 1 and n, > 2
with N = ny + - -+ + n,, the multiple zeta value ((n4,...,n,) is expressible

as an iterated integral on the smooth manifold P¢\{0, 1, 0o}:

C(ny,...,n.) = // Way (1) A way (t2) A+ Away (EN), (3.1)

0<t1<to<---<tn<1

where a; = 1ifi e {I,n;+1,n1+na+1,...,n1+---+n,_1+1} and a; =0
otherwise.

Let $ = Q(eo, e1) be the non-commutative polynomial algebra in two
indeterminates ey and e;, and ' := Q + .9 and H° = Q + e1Hey its

12
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subalgebras. Set
Yo =€) =e160- - €
n—1
for each positive integer n > 0. It is easily seen that the subalgebra £ is
freely generated by y,’s (n > 1) as a non-commutative polynomial algebra:

‘s:jl = @<y17y27y37 .. >

We define the shuffle product, a Q-bilinear product on $, inductively by
ww m vw' = u(w m vw') + v(vw m w'),

with the initial condition w m 1 = 1 m w = w (1 € Q), where w,w" € §
and u,v € {eg,e1}. This provides the structures of commutative Q-algebras
for spaces $,H' and $H° (see [14]), which we denote by $, 9. and H°
respectively. By taking the iterated integral (3.1), with the identification
w;(t) <> e; (i € {0,1}), one can define an algebra homomorphism

Z:5 —R

ynl...ynT}—)C<n17...,7’l,,.) (n,>1)

with Z(1) = 1, since it is known by K.T. Chen [5] that the iterated integral
(3.1) satisfies the shuffle product formulas. By [10, Proposition 1], there is a
Q-algebra homomorphism

7" 9L R[T

which is uniquely determined by the properties that Z™ ! g = Zand 2% (e1) =
T. We note that the image of the word y,, - - - y,, in HL under the map Z™ is
a polynomial in T" whose coefficients are expressed as Q-linear combinations

of multiple zeta values.

Definition 3.1. The regularised multiple zeta value, denoted by (™ (ny, ..., n;.),
is defined as the constant term of Z™ (Yp, -+ Yn,) i T':

Cm(nlv s 7n7") = Zm(ym o 'ynr)

T=0"

13
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For example, we have (™(2,1) = —2¢(1,2) and

M(ny,y ..o yony) =C(ng,...yn,) (e > 2). (3.2)

3.2 Hopf algebras of iterated integrals

In this subsection, we recall Hopf algebras of formal iterated integrals intro-
duced by Goncahrov.

In his paper [8, Section 2|, Goncharov considered a formal version of the
iterated integrals

// dh A U c0) (33)

t1—ar  te—as tny —an

ap<t1<te<--<tny<anii

He proved that the space Z,(S) generated by formal iterated integrals carries
a Hopf algebra structure. Let us recall the definition of the space Z,(.5).

Definition 3.2. Let S be a set. Let us denote by Z,(S) the commutative
graded algebra over Q generated by the set

{I(ap; a1, ...,an;ans1) | N >0, a; € S}.

The element I(ag; ay, ... ,an;any1) is homogeneous of degree N and involves
the following relations.

(I1) For any a,b € S, the unit is given by I(a;b) := I(a;0;b) = 1.
(12) The product is given by the shuffle product: for all integers N, N’ > 0
and a; € S, one has

H(ao; ai,...,aN; CLN+N'+1)H(@0§ AN41y -+ ANLN/; aN+N/+1)
= E H(ao; Ag=1(1)y -+ Ag=1(N4+N")5 aN+N’+1)>
cEX(N,N')

where (N, N') is the set of o in the symmetric group Sy n+ such that
ol)y<---<o(N)ando(N+1)<--- <o(N+N').

14
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140

(13) The path composition formula holds: for any N > 0 and a;,x € S, one
has

N
I(ag;ay,...,an;ans1) = Zﬂ(ao; ay, ..., ap; )z apyr, ... an; ans)-
k=0

(14) For N > 1 and a;,a € S, I(a;aq,...,an;a) = 0.

We remark that the element I(ag; ay,...,ay;ays1) is an analogue of the
iterated integral (3.3), since by K.T. Chen [5] iterated integrals satisfy (I1)
to (I4) when the integral converges.

To give a Hopf algebra structure on the Q-algebra Z,(.S), we define the
coproduct on Z,(S) by

A(I(ag; a1, ..., an;an+1))
k

= Z H ]I(Gip; Qip4+15 -+ -5 Qg —1; aip+1) (3.4)

0<k<N p=0
10=0<i1 <-- <t <ipy1=N+1

® I(ao; @iy, - - -, i an 1),

forany N > 0 and a; € S, and then extending by Q-linearity. This is found in
[8, Eq. (27)], with the factors interchanged, and is used in [4] (see Eq. (2.18))
as a coaction on the space of motivic multiple zeta values which we do not
discuss in this paper.

Proposition 3.3. ([8, Proposition 2.2]) The coproduct A gives Z,(S) the
structure of a commutative graded Hopf algebra, where the counit c is deter-
mined by the condition that it kills Zoy(S).

We remark that the antipode A of the above Hopf algebra is uniquely and
inductively determined by the definition. For example, since A(I(ag; a;; aq)) =
I(ag; ar;a2) ® 1 + 1 ® [(ag; ai;az) for any ag, ai,as € S, we have

A(I(ag; ar; as)) + L(ag; ar;az) = 0 = wo c(I(ag; ar; az)),

where u : Q — Z,(5) is the unit. We do not develop the precise formula for
the antipode A in this paper.

15



3.3 Formal iterated integrals and regularised multiple
zeta values

In this subsection, we define the map 3 described in the introduction. Here-
after, we consider only the Hopf algebra

T :=Z,(S) with S = {0, 1}.
Consider the quotient algebra
7! = T, /1(0; 0; 1)Z,.

It is easy to verify that I(0;0; 1) is primitive, i.e. A(I(0;0;1)) = 1®1(0;0;1)+
I(0;0; 1)®1. Thus the ideal I(0; 0; 1)Z, generated by 1(0; 0; 1) in the Q-algebra
7, becomes a Hopf ideal, and hence the quotient map Z, — Z! induces a Hopf
algebra structure on the quotient algebra Z}. Let us denote by

: . 1
I(ag;a,...,an;any1) €T,

an image of I(ag; ay, . ..,ay;ay+1) in Z} and by A the induced coproduct on
7! given by the same formula as (3.4) replacing T with I. As a result, we
have the following proposition which we will use later.

Proposition 3.4. The coproduct A : I} — I! @ I} is an algebra homo-
morphism, where the product on I! @ I} is defined in the standard way by
(w1 ® we)(w] ® wh) = wywy @ wewly and the product on each summand T}.

We remark that dividing Z, by I(0;0;1)Z, can be viewed as a regulari-
sation for “fol dt/t = —log(0)” which plays a role as I(0;0;1) in the eval-
uation of iterated integrals. For example, one can write 1(0;0,1,0;1) =
—2I(0;1,0,0;1) in Z} since it follows 1(0;0,1,0;1) = I(0;0; 1)1(0;1,0;1) —
21(0;1,0,0; 1), and this computation corresponds to taking the constant term
of f; Ci—tll f:l 1%22 f;Q %‘ as a polynomial of log(e) and letting € — 0.

By the standard calculation about the shuffle product formulas, we obtain
more identities in the space Z} (see [4, p.955]).

16
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1. For n > 1 and a,b € {0, 1}, we have

I(a;0,...,0;b) =0. (3.5)

2. For integers n > 0,n4,...,n, > 1, we have

1(0:0,...,0,1,0,...,0,...,1,0,...,0;1)
———

VT
n ni Ny

= (=1)" 3 (H(Z:D)I(lﬁm 30

kl++]§r:nl++n7‘+n J:1

Lyeees r>1

where we set

I(ny,...,n.) ::I(O;},O,...,0,...,1,0,...,0;1).

~~ ~"
ni

In order to define the map 3™ as a Q-linear map, we give a linear basis of
the space Z}.

Proposition 3.5. The set of elements {I(ny,...,n,) | r > 0,n; > 1} is a
linear basis of the space T}.

Proof. Recall the result of Goncharov [8, Proposition 2.1]: for each integer
N >0 and ag,...,ans1 € {0,1} one has

I(ag; ar, ... ax;an1) = (=) (ayi1;an, - .., a1;a0), (3.7)
which essentially follows from (I3) and (I4). Then, we find that the collection
{I(0; a1, ...,an;1) | N > 0,a; € {0,1}}
forms a linear basis of the linear space Z,, since none of the relations (I1)

to (I4) yield Q-linear relations among them. Combining this with (3.6), we
obtain the desired basis. ]

17
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Let 3™ : Z! — R be the Q-linear map given by

I — R

I(nlw . 7n’r) — Cm(nlv' . 7n7“)
and 3™ (1) = 1.
Proposition 3.6. The map 3™ : Z} — R is an algebra homomorphism.

Proof. By Proposition 3.5, we find that the Q-linear map $L, — Z! given by
€qy - €ay — 1(0;a1,...,ay; 1) is an isomorphism between Q-algebras. Then
the result follows from the standard fact that the map Zm‘ ot 9m — R
given by yn, -+ Yn, — ¢™(n1,...,n,) is an algebra homomorphism. O

3.4 Computing the Goncharov coproduct

In this subsection, we express a formula for the Goncharov coproduct A for
I(nq,...,n,) as certain algebraic combinations of I(ki,...,k;)’s. Although
the formula can be obtained from Propositions 3.7 and 3.9, we do not give a
closed formula for A(I(ny,...,n,)) in general. We present a closed formula
for only A(I(ny,nz,n3)) in the end of this subsection.

To describe the formula, it is convenient to use the algebraic setup. Let
9 = (eg, €1, €}, €}) be the non-commutative polynomial algebra in four inde-
terminates eg, €1, €y and €}. For integers 0 < iy < ig < --- < i < N+1 (0 <
k < N), the word of length IV in )’ marking only letters e,, ,€q,,,-- -, €a,

with a prime symbol is denoted by e;, ., (a1,...,an):
k—1
, . ( ) g R / Ce / ce
€1, A1 -, AN ) 1= €qy Cai; 1 6aip €ai,1 eaip+1—1 eaik Caiy 11 Caps
p=1

where the product HI;: means the concatenation product. Let ¢ : $ —
7! ® I} be the Q-linear map that assigns to each word e;, _; (a1,...,ay)

18
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the right-hand side factor of the equation (3.4) with ay = 0 and ay4; = 1:
@(eil,..‘,ik (a’17 A 7a’N))

k
= H[(aip;a@'pﬂ, c. ,az‘p+1,1;aip+1) X I(O;ail, vy Qs 1),
p=0

where we set a;, = 0 and a;,,, = 1. For example, we have p(ey3(ai,...,as)) =
©(€a, €, Chas) = 1(05a1; a2)1(a; az)l(as; as; 1) @ 1(0;az, as; 1).
In the rest of this subsection, for integers nq,...,n, > 1 with N = n; +

<o+ n,., we set

{ai, -+ ,any} ={1,0,...,0,...,1,0,...,0},
1 1
ni— Np—
and write e;, _;, (n1,...,n,) == €;, i (a1,...,ay). Let S} be the set of
positions of 1’s:
Spomy ={Lni+ 1, ny+- -+ n, + 1}
Then a; = 1if j lies in the set S} and a; = 0 otherwise. Using these

notations, one has

N

A(ny, o)=Y Y ple i, (38)

k=0 0<i1 <-<ip<N+1

To compute (3.8), we split the right-hand side of (3.8) into 2" sums of
certain terms. For this, we need the following correspondence.
For each word w; ---w, of length r in {x,y}*, we can obtain a unique

ordered subset {ji,...,jn} C S} via the following correspondences:

Tyeeny Ny
wy o wy > {ty, .. th} — {J1,- 00} (3.9)

where the first correspondence is given by the correspondence (2.3) and the
second one is simply given by 1 <+ 1,n1+1<2,....n1+ - +n,_1+1<r
(note that the number h corresponds to the number of y’s in wy - - - w,). For

19



instance, the word yxyx"~% corresponds to the ordered subset {1,n; + ng +

1} € S;,....- We note that the word x" corresponds to the empty set as a
subset of S} .
For integers ni,...,n, > 1 and a word w; ---w, (w; € {x,y}) with the

ordered subset {ji,...,jn} given by the correspondence (3.9), we let

N
wnl,..‘,nr (wl T wr) = Z Z So(eh,.‘.,ik (nh cee >nr))-

k=h 0<iy <--<ip<N+1
{08y =100}

(3.10)

Proposition 3.7. For integers ny,...,n,. > 1, we have

A(I(nl,...,m)) = Z Yy (W1 -+ - W, ).

Proof. For the word e;, _; (ni1,...,n,), we denote by h the number of €}’s

;il, ey s les b= dege/1 (€4, ix(n1,...,my)). Since
a; = 1lifand only if j € S} . we have h = f({i1,..., i} NS} ). We
notice that i can be chosen from {0, 1,..., min{r, k}} for each k. Then, the

formula (3.8) can be written in the form

in the prime symbols e

(38)=> ’ > o€ i (1, ... 1))

k=0 h=0 0<i1 <+ <ip<N+1
ﬁ({’tl ,,,,, Z‘k}ﬂs}ll ):h

> o€ (n1,. .. n).

.....

|
WE

By specifying the ordered subset of S} . with length h, the above third

..... Ny
sum can be split into the following sums:

(38) = Z Z Z Z Sp(eil,m,ik (n17 s 7nr))

h=0 k=h {j1,...in}<Sh, 0<i1 <--<ip <N+1
J1<-<Jh {11 """ Zk}ﬂsvltl ,,,,, 'nr:{]l 7777 ]h}
20

145



Appendix B. The double shuffle relations for multiple Eisenstein series

146

I
]
WE
]

----- i (nlv 7”?))
h=0 {j1,....jn}C S k=h 0<iy <--<ip<N+1
77.1 AAAAA nr . . 1 _ . .
G1<<jn {11,...,zk}ﬂSnl YYYYY nr—{]l,...,jh}
.
- § wnh...,nT (wl T wr)
h=0 wi,..., wre{x,y}
t{l|lw;=y,1<I<r}=h
= > Vg (W1 -+ 07),
wi,...,wre{x,y}
which completes the proof. Ol

We express (3.10) as algebraic combinations of I(kq, ..., k;)’s. To do this,
we extract possible nonzero terms from the right-hand side of (3.10) by using
(I4). For a positive integer n, we define 19(n) as the sum of all words of degree
n — 1 consisting of ey and a consecutive ej:

m(n) =D eilen)* e,
a+k+8=n
a,8>0
E>1
Proposition 3.8. For integers ny,...,n, > 1 and a word wy - - - w, of length

rin {x,y}* with the ordered subset {t1,...,t,} given by the correspondence
(2.3), we have

t1<q1<t2—1
ta<g2<tz—1
thgéhgr

h

(¢ Mt —1 (ng,,) )
P\ Yny yntlfl €1 € ynfm+1 Yng,,—1€1 N0\ Nqp, )Yng,, 1 yntm+1—1 )
-
m=1

degree in e1=qm—tm

where t11 = r + 1 and the product Hzl:1 means the concatenation product
of words.

Proof. 1t follows ¢y, n. (X") = ©(Yn, - - Yn, ), S0 we consider the case h > 0

21



which means the number of y’s in w; - - - w, is greater than 0. We note that
the sum defining (3.10) runs over all words ¢y, - - - Cay (Co; € {€4;, €, }) With &
(h < k < N) prime symbols whose positions of €/’s are placed on the ordered

subset {j1,...,jn} of S} corresponding to the word w; - - - w, via (3.9):

1500y Nr

(3.10) ZN: > e (wo

k=h wo,W1,...,wrE{en,e1,e4}*
degeb (wow1 -wp)=k—h

1=~

(e’lwm)).

deg(wo)=71—1
dEg(e wm) J7n+1 ]m (1<m<h)
.7}1+17N+1

We find by (I4) that ¢(e;,. . (n1,...,n,)) is 0 whenever a;, = 0 (notice
ap = 0,a; = 1). This implies that if the above wy’s degree in the letter e is
greater than 0, then (p(ﬂ)o anzl (e’lwm)> = 0. For a word w € §', we also
find p(w) = 0 if w has a subword of the form eyve; with v € $ (v # 0),
ie. w = wiejueqws for some wy,wy € H’, because the left-hand side factor
of p(w) involves I(0;v;0) which by (I4) is 0. This implies that the above
second sum regarding to wy, (1 < m < h) of the form w,, = wejvejw, with
v € {ep,e1}* (v # 0) and wy,wy € {eg,e1,€e,}* can be excluded. Thus, the
possible nonzero terms in (3.10), sieved out by (I4), occur if wo = yn, = ** Yn,, _,
and w,, is written in the form

Ny —1 ar Ik B
€o Ynipopr """ Yng,,—1€1 60 (eo) €0Yngpi1 " Yne, 1o
-

-

~
degree in e1=qm—tm

where ¢, € {tm,tm + 1,.. . tmy1 — 1}, o, B,k € Zso with o + k +
Ng, — 1 and {t1,..., %} Corresponds to the word w; - --w, given by (2.3).

D\/

This completes the proof.

Before giving an explicit formula for vy, . ,, (w1 -w,), we illustrate an

example for r = 2. Tt follows 1, n,(xX) = @(eref' teref? ") = I(ng,ny) @ 1.

By (3.5) one can compute

Unia(Xy) = Y pleref T eleg () T eg) = I(n1) @ I(ny),
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Vs (YY) = D Yo eleheq(ep) T en ere? (e) = eg?)

a1+ki1+B81=n1 as+ke+L2=n2

a1,81>0 az,82>0
k1>1 ko>1
= 1 ® I(nl,nz),

and using (3.7) and (3.6) we have

Ve (yX) = Y plereglen) egarcg )+ D plehe aeg(en) T ep)

a+k+B=n1 a+k+pB=ns
a,8>0 a,>0
E>1 E>1

— Z by (k) @ I(ks),

ki+ka=ni+n2
k1,k2>1

where b’fw, is defined in (2.7). Therefore by Proposition 3.7 we have

A(I(n1,n2))

= I(nl,ng) &® 1+ Z ((thkl -+ b,];ll’n2)]-(k1) &® [(k‘g) +1 &® I(nl,ng).

ki+ko=ni1+no
k1,k2>1

(3.11)

Proposition 3.9. For integers ny,...,n, > 2 and a word wy - - - w, € {x,y}*
with the ordered subset {t1,...,t,} given by the correspondence (2.3), we set
Ny, =ny, +---+ny, .1 forme{l,... h} where tyyy =1+ 1. Then we

Uy (W1 wy) = (I(ng, ...,y 1) ®1)
> Z Z <_1)252:1(Ntm+nqm+kqm+1+kqm+z+~~+kqm+171)

t1<q1<ta—1 ky; 4+ +kiy—1=Ny,
t2502=t3—1 oy otk -1 =Ny

th<qn<r kth+----5:7€r:Nth

ki>1
. ki —1 L
9 < 11 <n§ - 1)) (g I(kqm_l,;.,ktm)f(ifqmﬂ,...,ktmﬂ_i))
j?é(]h_wlwq}b a Gm—tm tmt1—gm—1
23
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®[(kq1,...,kqh)},

where [[" j=1, (kj_l) =1 when {t;,t1+1,...;r} ={q1,- .., qn}-

X n;—1
JAQLgn

Proof. This can be verified by applying the identities (3.7), (3.5) and (3.6)
to the formula in Proposition 3.8. O

For the future literature, we present an explicit formula for A(1(n, n2, ng))
obtained from Propositions 3.7 and 3.9:

A(I(nl,ng,ng))
= I(nl,ng,ng) ® ]. + I(?’Ll,ng) ® I(ng) + I(nl) ® I(’I’Lz,ng) + 1 ® I(nl,TLQ,TLg)
+ Z { (5n37k3b1]211,n2 =+ 5n17k2b5112,n3) [(kl) ® [(k% k3)

k1+ko+ks=n1+na+n3
k1,k2,k3>1

+ ((_1)m+k3 (zz : 1) + (—1)mtn2 (z? : D) (7’2 : D I(k1, ko) @ I(k3)
+ ((—1)m+"3+k2 <k1 Bl 1) (kQ a 1) + 5k1,mbg;n3> I(k) (ky) ® I(kg)}.

n1—1 n3—1

3.5 Proof of Theorem 1.1

We now give a proof of Theorem 1.1. Recall the g-series g, n.(¢) defined
in (2.4). Let g : Z} — C[[¢]] be the Q-linear map given by g(I(ni,...,n,)) =
Gni,m, (@) and g(1) = 1.

Proof of Theorem 1.1. Taking 3™ ®g for the explicit formula in Proposition 3.9
and comparing this with Proposition 2.4, we have

(3m ® 9) (wm,..-,nr (wl T wr)) = Gn1,...,nr (wl e 'Ulr)-

Here the second sum (relating to k;) of the formula in Proposition 3.9 differs
from that of the formula in Proposition 2.4, but apparently it is the same
because binomial coefficient terms allow us to take k; > n; for t; < i <r
without ¢ = ¢q,...,q, and by Lemma 2.3 it turns out that the coefficient

24

149



Appendix B. The double shuffle relations for multiple Eisenstein series

of [/ kqh(q) becomes 0 if k;, = 1 for some 1 < j < h. With this the
statement follows from Propositions 2.2 and 3.7. [

We remark that the binomial coefficients in Proposition 3.9 essentially
arise from the formula (3.6) obtained from the shuffle product (I2), and
the binomial coefficients in Proposition 2.4 are caused by the partial fraction
decomposition. Thus a well-known similarity between the shuffle product (12)
and the partial fraction decomposition is an only exposition of Theorem 1.1
so far.

4 The algebra of multiple Eisenstein series

4.1 The algebra of the generating series of the multiple
divisor sum

In this subsection, we construct the algebra homomorphism g™ : Z! — C[[q]]
described in the introduction.

We give an expression of the generating function of ¢,, . .,.(q) as an iter-

-----

ated multiple sum. We let

_ gnl,m,nr (q) n;—1 ny—1
g(xy, ... x.) = Z C2ny/ Dy gt gt

ny,...,np>1

and set
Ul Lt Uy Ny
H(n1 ,,,,, nr) — euwcl q . euTzr q
T1yeensTr Z 1 — g 1 — gur !
0<ug <--- q q
1< <up

where ny,...,n, are positive integers and x1,...,x, are commutative vari-
ables, i.e. these are elements in the power series ring K[|z, ..., z,]], where
K = Q[lq]]-

Proposition 4.1. For each integer r > 0 we have

. 1,.,1,1 )
g($1, T ,:L’r) o H(xrfl'rfl ----- x2—x1,201/ "
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Proof. When r = 2 this was computed in the proof of Theorem 7 in [7] with
the opposite convention. Its generalisation is easy and omitted. Ol

We easily find that the power series H ("1”

T1,.., Ty
uct. More precisely, for a set X let us denote by $(X) the non-commutative

polynomial algebra over QQ generated by non-commutative symbols (2’2“)

indexed by ny,...,n, € N and z,...,2. € Xz, where Xy is the set of fi-

nite sums of the elements in X. The concatenation product is given by
("1 """ ”T) . ("’"“ """ "”S) = ("1 """ friflrdly.eos ””S). As usual, the harmonic product
Z] 40927 Zr41se92r4s Z1yeeeyRryRr4-1yees2r+5

x on $(X) is inductively defined for n,n’ € N, z, 2 € Xz and words w, w’ in

H(X) by

) satisfies the harmonic prod-

). .
= (1) (w ((2) ) + () - () - w) +w) + (220) - (ww),

with the initial condition w % 1 = 1 % w = w. Then the Q-linear map H
defined by

H :5({r i) — R =l K[y, 2]
(n1 ..... nr) }_>H(n1 ..... nT)

Tip 5ees Ty Tiq e Tip

becomes an algebra homomorphism of commutative Q-algebras.

It is known by Hoffman [9, Theorem 2.5] that there is an explicit isomor-
phism between algebras with respect to the harmonic product and the shuffle
product. This isomorphism is denoted by exp : H,,(X) — $.(X), called the
exponential map (see [9, p.52]), where $,(X) is the algebra equipped with
the product o = x or m (the shuffle product on $(X) is defined in the same
way as in m on $ = Q(eq,e1), switching the underlying vector space to
$H(X)). As a consequence, we have the following proposition.

Proposition 4.2. The composition map H o exp is an algebra homomor-
phism:
Hoexp: Hu({zi}2)) = R.

We use this map to obtain the ¢-series satisfying the shuffle product for-
mulas.

26
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Before going to the general case, we illustrate this procedure for r = 2.
We let h(zq,z2) := H o exp(( L1 ) = H( L1 )+ 3H( 2 ). By Proposi-

T1,22 T1,22 T1+x2

tion 4.2, the harmonic product of H’s gives rise to the shuffle product of
Ws: H()H() = h(x1,22) + h(z2,21). Modelling the change of variables

1
1 o

used in Proposition 4.1, set gy, (21, x2) := h(xe — 21, 21) = g(21, T2) +%H(x22)

Then, we get g(x1)g(z2) = H(le)H(;Z) = gu (T2, 1 + x2) + gu(z1, 21 +

x9), which shows that the coefficients of gy (x1, z2) satisfy the shuffle prod-
uct (I2) (note that the shuffle product formula (I12) gives I(ny)l(ny) =

Zk1+k2:n1+nz ((Ziii) + (:2:1))1(]{17 kQ))

We remark that the above shuffle relation provides the following relation:

g(z1)g(ws) = glwa, a1+ x2) + glwr, o +x2) + H(, 3, ). (41)

r1+T2

Since H(mliw) # 0, this proves that the g-series ¢y, n,(q) (n1,n2 > 1) do not
satisfy the shuffle product formulas.
In general, we define h(zy,...,z,) as an image of the monomial (;1 )

under the algebra homomorphism H o exp, which is given by

1 o
Wy, om) = Y e H (), (4.2)
o agligle ey, i1 %ig e Ty,
(31,82, +ym)

where the sum runs over all decompositions of the integer r as a sum of

positive integers and the variables are given by z; = x1 + -+ + 25,7}, =

Tig1 + o Tigigy - Ty = Tiyqegin 41 + oo+ 2p. It follows that the

power series h(xy,...,x,) satisfies the shuffle relation below.
h(xy,...,x0)h(@psq, .o @eps) = Bz, ... ,xr+s)|5h£r+s), (4.3)

where sh{t?) = > oex(rs) O 0 the group ring Z[S, ] (for the set X(r,s),
see (I12)), and the symmetric group &, acts on K[[xy,...,x,]| in the obvious
way by (f‘o)(acl, ooy @) = f(@o-101), ..., To-1(y) (it defines a right action,
ie. f‘(UT) =(f

As in the case of r = 2, we set

0)|T) with extending to the group ring Z[S,| by linearity.

Iu (1, xp) = h(w, — oy, .o Ty — X1, ). (4.4)
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With the coefficients of (4.4), we define a Q-linear map g™ : Z} — C[[¢]] and
prove that the map g™ is an algebra homomorphism.

Definition 4.3. We define the Q-linear map g™ : T} — C[[q]] by

g (I, ne)) = G5, ()

and g*(1) = 1, where the q-series gy, ., (q) is given by the coefficient of

ni—1 .

ny—1
xq "

r

Gu(—2mV =121, ..., =21V —1x,) = Z I (=t gt

N1yeeey ny>0

- m

Theorem 4.4. The map g™ : I} — Cllq]] is an algebra homomorphism.

Proof. 1t is sufficient to show that for any integers r,s > 1 the generating
function gy (1, ..., 2,4s) satisfies the shuffle relation:

GE (@1 )G (T o Trs) = GE (T, )[R, (4.5)

where the operator f is the change of variables defined by f*(z1,...,x,) =
fz1, 21 + x9,...,21 + -+- + x,) (remark that this expression of the shuf-
fle relation is also found in [10, Proof of Proposition 7] with the opposite
convention). For integers r,s > 1, let

N 92 oo r r4+1 -+ r4+s—1 r+s €S
Pr.s = rr—1 -+ 1 r+s --- r+2 r—+1 e

Applying the operator # to both sides of (4.4) we obtain ¢ (z1,...,2,) =
h(zy,...,x1) and therefore by (4.3) the left-hand side of (4.5) is reduced to

(LHS) = h(xy, ..., 21) R (@ psy - oo, Tpi)
=h(xy, ..., 2 )h(Tpgq, ... ,x,urs)‘pm
=h(xy, ..., Tres) ‘shffﬂ) ‘pr,s
= gﬁl (.Tl, s >xr+s)‘7-r+s|5hq(nr+s) |pr,57
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1 2 Y /r'
rr—1 -1
(I2)), one easily finds 7,500, s € X(r, s), and hence

where we set 7, = ( ) € 6,. For any o € X(r,s) (recall

ng-iH (‘rl? T >xr+8)‘7r+s|8h£r+5) |/0r,s = in_iH (‘rb ce ,$r+s)‘5h£r+8)a

which completes the proof. Ol

4.2 The double shuffle relation for regularised multiple
Eisenstein series

In this subsection, we prove the double shuffle relations for regularised mul-
tiple Eisenstein series (Theorem 1.2).

The regularised multiple Eisenstein series G} (q) is defined as follows.

77777 ez

Definition 4.5. For integers ny,...,n, > 1 we define the q-series G7, , (q)
by
Gflll nr(q): (5m®gm) oA(I(n17...7n7~)).

77777

jusg

We remark that one can easily deduce that our G ,,

(q) coincides with
Kaneko’s double Eisenstein series [11].

We begin by showing a connection with the multiple Eisenstein series
Gh,...n, (T), which can be regarded as an analogue of (3.2).

Theorem 4.6. For integers ny,...,n, > 2, with ¢ = 2™V =17 we have

Gsl ..... Ny (q) = Gnl 77777 Ny <T) .

Proof. As in the proof of Theorem 1.1, it suffices to show that for each word
wy - - - w, of length r in {x,y}* and integers ny,...,n, > 2, we have

(3m & gm) (wnl,...,nr (wl o wr)) - Gn1,...,nr (wl e wr)-

This immediately follows from the next identity: for integers nq,...,n, > 2
g;ul ..... nr(Q) - gnl,...,nr(Q)
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Combining (4.4) with (4.2), we have

1 .
gm(l.l;-u,l'r) = Z —'H(w//“;/?/ ..... Z;n// )7

(1o 11!22! R R R D
k) et

where (iy,...,%,) runs over all decompositions of the integer r as a sum
1" 1"

L 0o
of positive integers and z; = x, — x4, T,

Typ_iy—eip, - When m < r (ie. 4; > 1 for some j € {1,2,...,m}), there is
77777 (@) With ny, ..., n, > 2 from the coefficients of the

11,12, >'Lm

power series H (/" ) because it hes in K[[@r, Troiyy ooy @iy iy, 4]
1177197 I im,

Thus the contribution to gy (¢) with ny,...,n, > 2 is only the coeffi-

cient of 27t a1 /(- 277\/ 1)mttnr qn H( Lo bl ), which by

Tr—Tp—1,..,L2—L1,T1

= Tr—iy — Tp—ig—igy--->Ly =

? m

no contribution to gy}

Proposition 4.1 is Qm,...,nr( ). This completes the proof. ]

Let us give the precise statement of Theorem 1.2. The harmonic product
x on ' is defined inductively by

Yn, W * ynzw, = Yny (w * ymw/) + Uny (ynlw * w,) + Yny+ny (w * wl)v

and w1 =1xw = w for y,,, Yn, € H' and words w,w’ in H!, together with
Q-bilinearity. For each word w € $', the dual element of w is denoted by
cw € (91)Y = Hom(H', Q) such that ¢,(v) is 1 if w = v and 0 otherwise. If
w is the empty word 0, ¢, kills 1, and ¢, (1) = 1. With this we define the
Q-bilinear map har : I! x I} — I} by

har(I(wy), I(ws)) = Y culwr *wy)I(w)

we{y1,Y2,Y3,... }*

for words wy,wy € $H', where we identify I(w) = I(ny,...,n,) for w =
Yny " Yn,-

Theorem 4.7. For any words wy, wy in {ya, Y3, Ya, - - .}*, one has
(™ ® ¢™) o A(har(I(wy), I(ws)) — I(wi)I(ws)) = 0.

Proof. Consider the following holomorphic function on the upper half-plane:
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for integers L, M

1
(L7M) = > ——
Gn1 ----- ny (T) - Z /\?1 e /\?r ’

0<Ap << Ap
N €L, T+ pg

Write G4 (1) = G, (7) for each word w = 1y, - - - yn,. By definition,
it follows that these functions satisfy the harmonic product: for any words
wy, wy € H, one has

GEM (HGEM) (1) = Z Co(wy * wa) GEM (7)., (4.6)

wi w2 w
we{y1,Y2,Y3,--}*

Since the harmonic product x preserves the space % := Q(y2, Y3, ya, - - -),
taking limz, o limps o for both sides of (4.6), one has for words w1, wy € $?

Gun(T)Gu(T) = Y cwlwr xwy)Gu(7).

we{y2,y3,y4,... }*

Then the result follows from Theorem 4.6 and the fact that the map (5“‘ ®
g™) oA : I} — C[[q]] is an algebra homomorphism (Propositions 3.4, 3.6 and
Theorem 4.4). O

The first example of Q-linear relations among G™’s is
Gi'(q) — 4GT3(q) = 0, (4.7)

which comes from har(1(2),1(2)) — I(2)% The following is the table of the
number of linearly independent relations provided by Theorem 4.7 (we will
see that Theorem 4.7 is not enough to capture all relations when N > 5).

N|01234567 8 9 10
rel.]0 0 0 0 1 1 3 5 11 19 37

4.3 Further problems

We end this paper by mentioning the dimension of the space of G™’s. For con-
venience, we use a normalisation for all objects: for a sequence {7y, n.} in-
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dexed by positive integers ny, ..., n,, write ,,
As usual, we call ny + - -+ + n, the weight and ~,, ., admissible if n, > 2.
Let &y (resp. Q™)) be the Q-vector space spanned by all admissible G™s
(resp. g™’s) of weight N (resp. less than or equal to N). Set & = Q) = Q.
It is not difficult to deduce that each Q-linear relation among G™’s of the
form ¥ a,G™(q) = 0 (a, € Q) gives rise to a Q-linear relation among §™’s
modulo lower weight of the form > a,,g%(q) = 0 (mod QW~Y), where the
both sums run over admissible indices of weight N. For instance, the relation
(4.7) provides the relation — g5 (q) + g5 (¢) — 4g1%(q) = 0, where we actually
have used the known relations ((2) = —1/24 and ((1,3) = ((4) = 1/1440.
Thus we obtain the surjective map, which is an algebra homomorphism,
from the graded Q-algebra &£ := @ -, En (taking the formal direct sum) to
the graded Q-algebra @ -, Q™) /QW=Y given by éfl
(mod QW=Y). From this, we have

----------

dimg Q™) / QW < dimg Ey.

The second author performed numerical experiments of the dimension of the
above vector spaces up to N = 7. The list of (upper bounds of) the dimension
is given as follows.

N 234 5 6 7
dingN 1 2 3 §6 310 S18
dimg Q™M /QW-1V11 2 3 6 10 18

Interestingly, the above sequences coincide with the table [2, Table 5] (up
to N = 7) which is the list of the dimension of the space spanned by all
admissible g’s modulo lower weight (they denote g, . n,(q) by [, ..., 7]
and indicate that the above sequence is given by the sequence {d)y }n>2 de-
fined by dy = 2dy_, + 2d/y_5 for N > 5 with the initial values dj = 1,d} =
2,dj, = 3). It is also interesting to note that the Q-algebra £ contains the
ring Q[GE, G, G2] of quasimodular forms for SLy(Z) over Q, which is closed
under the derivative d = ¢d/dq (see [13]). It would be very interesting to
consider whether the Q-algebra &£ is closed under the derivative, because by
expressing dG™ as Q-linear combinations of G™’s and taking the constant
term as an element in C[[g]] one obtains Q-linear relations among multiple
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zeta values. For this, one can show that for NV > 1 we have

dé%(@) = N2(q Z Ginga- i

which was first proved by Kaneko [11]. We hope to discuss these problems

in a future publication.
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The algebra of bi-brackets and
regularized multiple Eisenstein series

HENRIK BACHMANN

September 29, 2015

Abstract

We study the algebra of certain g-series, called bi-brackets, whose coefficients are
given by weighted sums over partitions. These series incorporate the theory of modular
forms for the full modular group as well as the theory of multiple zeta values (MZV) due
to their appearance in the Fourier expansion of regularized multiple Eisenstein series.
Using the conjugation of partitions we obtain linear relations between bi-brackets,
called the partition relations, which yield naturally two different ways of expressing the
product of two bi-brackets similar to the stuffle and shuffle product of multiple zeta
values. Bi-brackets are generalizations of the generating functions of multiple divisor
sums, called brackets, [s1,...,s;] studied in [BK]. We use the algebraic structure
of bi-brackets to define further g-series [s1,...,s]" and [s1,...,s]* which satisfy the
shuffle and stuffle product formulas of MZV by using results about quasi-shuffle algebras
introduced by Hoffman. In [BT] regularized multiple Eisenstein series G were defined,
by using an explicit connection to the coproduct on formal iterated integrals. These
satisfy the shuffle product formula. Applying the same concept for the coproduct on
quasi-shuffle algebras enables us to define multiple Eisenstein series G* satisfying the
stuffle product. We show that both G*' and G* are given by linear combinations of
products of MZV and bi-brackets. Comparing these two regularized multiple Eisenstein
series enables us to obtain finite double shuffle relations for multiple Eisenstein series
in low weights which extend the relations proven in [BT].
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1 Introduction

Multiple zeta values are natural generalizations of the Riemann zeta values that are
defined for integers s; > 1 and s; > 1 for ¢ > 1 by

1

Sp
...TLl

C(Sl,...,sl) = Z 51

n
ny>ng>->n>0 1

Because of its occurrence in various fields of mathematics and physics these real num-
bers are of particular interest. The Q-vector space of all multiple zeta values of weight
k is then given by

MZ, ::<C(81,...,sl)|sl+-~~+sl:k:andl>O>Q.

It is well known that the product of two multiple zeta values can be written as a linear
combination of multiple zeta values of the same weight by using the stuffle or shuffle
relations. Thus they generate a Q-algebra MZ. There are several connections of
these numbers to modular forms for the full modular group. Some of them are treated
in [GKZ], where connections of double zeta values and modular forms are described.
One of them is given by double Eisenstein series Gy, s, € Cl[g]] which are the length
two version of classical Eisenstein series and which are given by a double sum over
ordered lattice points. These functions have a Fourier expansion given by sums of
products of MZV and certain g-series with the double zeta value ((s1,s2) as their
constant term. In [Ba] the author treated the multiple case and calculated the Fourier
expansion of multiple Eisenstein series (MES) Gy, .. 5, € C[[¢]]. The result of [Ba] was
that the Fourier expansion of MES is again a linear combination of MZV and ¢-series
[s1,- .-, 5] € Q[g]], called brackets, with the corresponding MZV as the constant term.
For example it is

Gaaa(r) =((3,2.2) + (2623 + Z6(3.2)) (2mPl2] + 5 (2 2)2mi)*}3

+3¢(3)(2mi)4[2, 2] + 4¢(2)(2m4)%[3, 2] + (271)7[3,2, 2] .

It turned out that the g-series [s1, ..., s;], whose coefficients a, are given by weighted
sums over partitions of n, are, independently to their appearance in the Fourier expan-
sion of MES, very interesting objects and therefore they were studied on their own in
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[BK]. There the authors studied the algebraic structure of the space MD spanned by

these brackets and we will refine, generalize and use some of the results in this note.
Due to convergence issues the MES are just defined for si,...,s; > 2 and therefore

there are a lot more MZV than MES. A natural question was therefore the following

Question 1. What is a "good" definition of a "regularized” multiple Eisenstein series,
such that for each multiple zeta value ((s1,...,s;) with s1 > 1,s9,...,8 > 1 there is a
multiple Eisenstein series

G =Cs1,- . 8) + Y ang” € C[[q]]
n>0

with this multiple zeta values as the constant term in its Fourier expansion and which
equals the original multiple Fisenstein series in the case s1,...,8 > 2%

By "good" we mean that these multiple Eisenstein series should have the same, or at
least as much as possible, algebraic structure as multiple zeta values, i.e. they should
fulfill the shuffle or/and the stuffle product. In [BT] the authors addressed this question
and they define (shuffle) regularized MES G, defined for all s1,...,s; € IN, which
coincide with the G, ., in the case s1,..., s > 2 and which fulfill the shuffle product.
In their construction the authors consider certain g-series similar to the brackets which
also fulfill the shuffle product.

In this note we want to consider a more general class of g-series which we call
bi-brackets. We will see that the g-series appearing in the construction in [BT] are
linear combination of bi-brackets. Furthermore we will address the above question with
respect to the stuffle product and we will construct another (stuffle) regularized type
of MES, denoted by G, ., satisfying the stuffle product formula. The bi-brackets
will also appear there and we will be able to write G and G* as sums of products of
MZV and bi-brackets which then enables us to compare these two types of regularized
MES.

Even when one is not interested in the question of extending the definition of MES
we want to emphasize the reader that these g-series are interesting by their own rights,
since they give a g-analogue of multiple zeta values with a nice algebraic structure.
These g-analogues have two ways to write the product of two such series similar to the
shuffle and the stuffle product for MZV. For s1,...,s; > 1, r1,...,7 > 0 these g-series,
which we call bi-brackets, are given by

$1 sy uf' ol ottt
b e
= 2 U (51— 1) —y 4T e Qllgl]-
Tlyeuey T s Suso 1! (s =D . (s = 1)
V1,...,0 >0

In the first section we will interpret this sum as a weighted sum over partitions of a
natural number n. The conjugation of partitions will give us linear relations between
the bi-brackets which we therefore call the partition relation. We use this relation to
prove a stuffle and shuffle analogue of the product of two bi-brackets and obtain for



example

2,3 n 3,2 n 5 130 |2 3 12,3 +33,2 +64,1 34 +34
0,0 0,0 o 120 |o| [o| 0,0 0,0 0,0 0 1|’
Compare this with the "real" stuffle and shuffle product of multiple zeta values

€(2,3) +¢(3,2) +¢(5) = €(2) - €(3) = €(2,3) +3¢(3,2) + 6¢(4,1).

Using the algebraic structure of the space of bi-brackets we define a shuffle [sq,. .., s;]"
and stuffle [s1,...,s]* version of the ordinary brackets as certain linear combination
of bi-brackets. These objects fulfill the same shuffle and stuffle products as multiple
zeta values. Both constructions use the theory of quasi-shuffle algebras developed by
Hoffman in [H]. We end the introduction by summarizing the results of this paper
on bi-brackets and regularized multiple Eisenstein series in the following two vaguely
formulated theorems:

Theorem A. i) The space BD spanned by all bi-brackets [sl’ S;] forms a Q-algebra
with the space of (quasi-)modular forms and the space MD of brackets as sub-
algebras. There are two ways to express the product as a linear combination of
bi-brackets which yields a large family of linear relations.

ii) There are two subalgebras MD" C BD and MD* C MD spanned by elements
[$1,...,81]" and [s1,...,s]* which fulfill the shuffle and stuffle products, respec-
tively, and which are in the length one case given by the bracket [s1].

For example we have similarly to the relation between MZV above
[2,3]* +[3,2]* + [5] = [2] - [3] = [2,3]" + 3[3,2]" + 6[4, 1]

Denote by MZB C C[[q]] the space of all formal power series in ¢ which can be written
as a linear combination of products of MZV, powers of (—27i) and bi-brackets.

Theorem B. i) The shuffle regularized multiple Eisenstein series Gy, o € Cl[q]]
defined in [BT] can be written as a linear combination of products of MZV, powers
of (—2mi) and shuffle brackets [rq,...,r,]", i.e. they are elements of the space

MZB.

ii) Forall si,...,s; € Nand M € IN there are g-series G5 | € C[[ ]] (see Definition
6.12) which fulﬁll the stuffle product. If the limit G e = lmy e GEM
exists it will be an element in MZB which still fulﬁlls the stuffle product n
that case the g-series G will be called stuffle regularized multiple Eisenstein
series.

150451

iii) For s1,...,s > 2 both regularized multiple Eisenstein series equal the classical
multiple Eisenstein series, i.e. we have

. *
G917 5SL T

Gy,..5, = G

815--+58
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Content of this paper: In section 2 we will introduce bi-brackets and their
generating series. We will show that there are a natural linear relations between bi-
brackets, called the partition relations. In section 3 we prove that the algebra of bi-
brackets has the structure of a quasi-shuffle algebra in the sense of [H]. The partition
relation will yield another way of multiplying two bi-brackets which differs from the
quasi-shuffle product and which therefore yields linear relations similar to the double
shuffle relations of MZV. The connection to modular forms and the derivatives of bi-
brackets will be subject of section 4. We will see that relations between bi-brackets
can be used to prove relations between modular forms and vice versa. Section 5 will be
devoted to the definition of the brackets [s1,...,s]" and [s1,...,s]*. For this we will
recall the algebraic setup of Hoffman in this section. Finally in section 4 we will recall
the results of [BT] and the definition of the shuffle regularized MES G". After this we
will define the stuffle regularized MES G*™ and G* by using a similar approach as in
the definition of G*. We end section 4 by comparing these two regularized MES in
low weights.
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2 Bi-brackets and their generating series

As motivated in the introduction we want to study the following g-series:

Definition 2.1. For r1,...,7 >0, s1,...,s > 0 and we define the following ¢-series
r1 ] s1—1 s;—1
S1y--+5 S| Uy U, Uy - 4ot
R EE Y e 1! 11'quw1 " e Q[lql]
T,y...,T7 1> >y >0 r1: r1: (81— )....(Sl— )

V1,...,0;>0

which we call bi-brackets of weight 1 4--- 47 +s1+ - -+ 57, upper weight s1+-- -+ sy,
lower weight r1 + - - - 4+ 7 and length . By BD we denote the Q-vector space spanned
by all bi-brackets and 1.

The factorial factors in the definition will become clear when considering their
generating functions and the connection to multiple zeta values. For r; =--- =1 =0



the bi-brackets are just the brackets

S1y.--595] _[S S]

0,...,0 | b
as defined and studied in [BK]. The space spanned by all brackets form a differential
Q-algebra MD with the differential given by d, = qdiq. We will see that the bi-brackets

are also closed under the multiplication of formal power series and therefore BD is a
Q-algebra with subalgebra MD (see Theorem 3.6).

Definition 2.2. For the generating function of the bi-brackets we write

Xy, Xyl Z 81,81 -l x5 Loypsl | ynet
= o LY
Y. .., Y 1,350 ri—1,...,mp—1
71,0.,7 >0

These are elements in the ring BDge, = ligj BD[[X1,...,X;,Y1,...,Y]]] of all gener-
ating series of bi-brackets.

To derive relations between bi-brackets we will prove functional equations for their
generating functions. The key fact for this is that there are two different ways of
expressing these given by the following Theorem.

Theorem 2.3. For n € IN set

et q"

Ey(X):=e"® and L,(X):= 1_6XneQ[[q, X]].

Then for all I > 1 we have the following two different expressions for the generating
functions:

X1, X
Yi,...,Y

l
= > [ E,()Ly, (X))

w1 >-->u >0 j=1

!
= Y By Xt — Xigomj) L, (Y1 + -+ 4+ Yizji1)
up>-->u>0 =1

(with X;41 := 0). In particular the partition relations holds:

Xl,...,Xl£YV1+"'+Y2,...,Y'1+Y2,Y1 (2.1)
}/17"'7}/2 Xl7Xl—1_Xl7"'7X1_X2
Proof. First rewrite the generating function as
r —1 sj—1
le"'aXl Z H J U] wivi vSi—1y,ri—1
= q" i X7 TY.?
—_ 1) J J
‘Yl"“’yz 51,.,51>0 j= 1 8 1)
T1,...,r >0
up > >0 >0
V] 4..0,07 >0

= Z ﬁ Vi3 et Y3 g4V

up>->u;>0 j=1
V1,...,01 >0
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The first statement follows directly by using the geometric series because

6Xu

ety - 0 L)

U
v>0 €q

For the second statement set u; = uj + -+ +uj_;y and v; = v + -+ +v_j41 (Le.
Vj =U_jy1 — V_jpg and vy = 0) for 1 < j <. This gives

qu1v1+~~+ulvl _ q(ua+-~‘+u£)v1+(u’1+~~+u;71)v2+~~+u;vl

— q(v1+~~~+vl)u/1+~--+v1u; — qviu’1+~-~+v2u;

and the summation over u; > --- > u; > 0 and vy,...,v; > 0 changes to a summation
over uf,...,u; >0 and v] > --- > v > 0 and therefore we obtain
! !
S e tienYigu = S ] eWimje1 Vg 2) X (Ut tup_ )Y v
g T e
e Ul yeensuy >0

l
V(X 1= X
Z He]( 1—j+1 ZJ+2)LU;<YI+...+}/Z—]'+1)
vy >>07>0j=1

which is exactly the representation of the generating function. ]

Compare the relation (2.1) to the conjugation (2.2) of partitions given at the end
of this section.

Remark 2.4. i) The bi-brackets and their generating series also give examples of
what is called a bimould by Ecalle in [E]. In his language the equation (2.1) states
that the bimould of generating series of bi-brackets is swap invariant.

ii) In [Zu] the author studied a variation of the bi-brackets, namely the series
3 S1y...,8] _ Z
T1y...,77 M,y >0

di,...,d;>0

mglildilil - m;l_1d?l_1q(m1+"'+ml)d1+"'+mldz
(Tl—l)!(sl—1)!...(7’1—1)!(81—1)! ’

which he calls multiple g-zeta brackets. These can be written in terms of bi-
brackets and vice versa. For this model the equation (2.1), which in [Zu] is called
duality, has the nice form
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Corollary 2.5. (Partition relation in length one and two) Forr,ri,r9 > 0 and s, $1, S3 >
0 we have the following relations in length one and two

sl r+1
rl |s—1]"
S1,82| S si—1+k\(r2+j\|r2+j+1,rm—j+1
1,72 0<jom k J so—1—k,s1—1+k|’
0<k<so—1
Proof. In the smallest cases the Theorem 2.3 gives

leXQ
Y17Y2

‘and‘

I +Yen
X, X1 - Xo

The statement follows by considering the coefficients of X*~'Y" and X't X521y iy
in these equations. ]

Example 2.6. i) Some examples for the length two case:

il =] v2loo] [ae] =l -olua] + s3]
I e R A R o R

e e o A e e e R i e P R i

ii) Another family of relations which can be obtained by the partition relation is

{1 g .
{{O}j_l,l,{o}n—j} = kgl {13712, {1}

for 1 < j <n. For example:

H =1 Ll)i(l)} = [1,2,1] +[2,1,1].

Remark 2.7. We end the discussion on bi-brackets and their generating series by
interpreting the coefficients of the bi-brackets as weighted sums over partitions which
gives an natural explanation for the partition relation (2.1). By a partition of a natural
number n with [ parts we denote a representation of n as a sum of [ distinct natural
numbers, i.e. 1I5=4+4+3+2+ 1+ 1 is a partition of 15 with the 4 parts given by
4,3,2,1. We identify such a partition with a tuple (u,v) € IN! x IN! where the u;’s are
the [ distinct numbers in the partition and the v;’s count their appearance in the sum.
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The above partition of 15 is therefore given by the tuple (u,v) = ((4,3,2,1),(2,1,1,2)).
By P(n) we denote all partitions of n with [ parts and hence we set

Pi(n):= {(u,v)G]le]Nl | n=wujv1 + -+ 4+ ww; and u1>~->ul>0}

On the set Pj(n) one has an involution given by the conjugation p of partitions which
can be obtained by reflecting the corresponding Young diagram across the main diago-
nal. On the set P;(n) the conjugation p is explicitly given by p((u,v)) = (u/,v") where

((4,3,2,1),(2,1,1,2)) = . T =((6,4,3,2),(1,1,1,1))

Figure 1: The conjugation of the partition 15 =4 +44+3+2+ 141 1is
given by p(((47 3,2, 1)? (27 1,1, 2))) = ((67 47 3, 2)7 (1? 1,1, 1)) which can be
seen by reflection the corresponding Young diagram at the main diagonal.

;o ;o . s
u; =01+ U and Vi = W1 — U—j12 with w11 := 0, i.e.
(S N V7] v+ -+ v, .., 01 + V2,01
p: T e Y ’ . (2.2)
V1., U1 U, Up—1 — Uy - - -, UL — U2

By the definition of the bi-brackets its clear that with the above notation they can be
written as

S15-+-581 1 r1,,51—1 r s1—1 n
= uitv MY qr.
[rl,...,rl} rll(sl—l)!...rl!(sl—l)!g( Z Lo b

(u,w)eP;(n)

The coefficients are given by a sum over all elements in P;(n) and therefore it is invariant
under the action of p. As an example consider [2,2] and apply p to the sum then we
obtain

[2’2]:Z< > Ul'Uz)anZ( > u'z'(uﬁ—U’z)>q”
)

n>0 \ (u,v)EP2(n n>0 \ p((u,v))=(u',v")EP2(n)

N n 1,1 1,1
=Z< > U’z-U'l)q—Z( > u’QQ)q=[1J—2[OQ].
n>0 \ (v v')EP2(n) n>0 \ (v v')EPy(n) ) J
(2.3)

This is exactly the relation one obtains by using the partition relation. Another trivial
connection to partitions is given by the following: The coefficients of the brackets of
the form [{1}!] count the number of partitions of length . Summing over all length
one therefore obtains the generating functions of all partitions:

Y11= p)e" =[] _1 F
Pt Sl

>0 n>0




3 The algebra of bi-brackets

The partition relations give relations in a fixed length. To obtain relations with mixed
length we need to consider the algebra structure on the space BD. For this we first
consider the product of bi-brackets in length one and then use the algebraic setup of
quasi-shuflle algebras for the arbitrary length case.

Lemma 3.1. Let By be the k-th Bernoulli number, then we get for all n € IN

Ln(X)-Ln(Y):Z%(X—Yle +Z (Y — X)L, (V)
k>0 7 k>0
Ln(X)_Ln(Y)
+ X-Y

The statement follows then by the definition of the Bernoulli numbers
e Z n'
n>0

O

Lemma 3.2. The product of two generating functions in length one can be written as

i) ("Stuffle product for bi-brackets")

Xi| | Xg| | X1, Xo| | | Xe, X P 1 X, X,
i| |Y2| |1, Y2 Yo, Y1 X1 —-Xo\\1+ Y, Yi+Ys
o
B X1 k-1 X2
— (X1 — X -1 )
+;§1k!( 1= X) <Y1+Y2+( A
ii) ("Shuffle product for bi-brackets")
Xy [ Xo| [ X+ Xp, Xy | X0+ X, X 1 X1+ X| X1+ X,
il | [v-Y| MYe-Yi| vi-¥\| W Ys
oo
Bk k—1 Xl +X2 k—1 Xl —|—X2
—((Y1 - Y5 -1
+kz::1 k!( 1 2) (’ Y +(=1) Y,

Proof. We prove i) and i) by using the two different ways of writing the generating
functions given by Theorem 2.3.

10
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i) By direct calculation it is

Xo
Y5

X17X2
Y1, Yo

+ 3" Bu(Yi 4 Ya) Lu(X1) Ln(X2) .

Yl n>0

X1
Yo, V1

‘X27X1

Applying the Lemma 3.1 to the last term yields the statement.
ii) The partition relation in length one and two (P) in (2.1) states

X1l p M X, Xo| p | 1+ Y2, 1)
Y Xi|7 |1, Y, Xo, X1 — Xo|’
and together with i) we obtain
X | Xo| p V1| [Y2] 0 V1, Y2 Yo, Y1 1 Y _ Y,
Yi| Y2 X1 | Xo X1,Xo| |Xo, X1| Yi—-Yo \|Xi1+4+Xo| | Xi1+4+Xo
- By, k-1 Y k—1 Y,
Pkoy s _
+k§ (1= 12) (‘X1+X2+( X1+ Xo
P | X1+ X2, Xy X1+ X9, Xy 1 X1+ Xo| [ X1+ X
.Y -V 1,Yo-1; Yi-Y, Y; Y,
= By 1 [ [X1+ X2 k1] X1+ Xo
—(Y7] - Y- -1 .
+k§ (1 -Y2) (‘ Y, +(=1) v,
O

Proposition 3.3. For s1,s9 > 0 and 71,72 > 0 we have the following two expressions
for the product of two bi-brackets of length one:

i) ("Stuffle product for bi-brackets")
5 , : -
{ 1} . {82} — [31 52} n [82 31} n (7’1 7’2)
T2 r1,7T2 T2, 1 1
+ r1 T2 i (_1)82_1Bs1+52*j s1+s2—753—1 J
)3 (s1+ 52— j)! s1—J 47

+ e i (_1)Sl_lBS1+S2fj s1+s2—j—1 J
71 (81+82—j)! SQ—j r1 + 7o

=1

r1+ 1o

S1 + 82:|

11
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ii) ("Shuffle product for bi-brackets")

s1| |82 s1+s2—g—1\(ri+ra—k ro—k |51+ 82—17,7
. — _1 2
|:T'1:| |:7"2:| Z < 81—j )( 71 >( ) k,T1+T2—k7

1<j<s1
0<k<rg
S1+s2—7—1 ri+rg—k _k $1+s2—73,7
p> < -1 >< Sk )Y e e
1<j<so 1 1 , 71+ T2
OSkST’l

S1+S2—2\[s1+s0—1
+
s1—1 ri+ro+1
$14 82 =2\ <~ (—1)2 By rg—jr1 (T1+12— 5\ [s1 + 52— 1
+ Z . .
s1—1 7“1+7“2—]+1) r—J J

? (
n s1+52 =2\ & (= 1) By qpyjy1 [r1+r2—5) |51+ 52— 1
s1—1 )= (7“1+7“2—J+1) re—J J

Proof. i) By Lemma 3.2 it is

X |[Xa| X0 X XX 1 ( X1 | | X )
Yi| Y2 Y1, Y2 o.vi| Xi-Xo \(i+Yy M1+Ys
=T =T
i E )kfl ( X1 + k—1 Xo ) )
= k‘ Yi+Y, Yi+Y,
=Ty

We are going to calculate the coefficient of X1~ X5> 1YY, in this equation.
Clearly [°1%2] 4 [?21] is the coefficient of T} and by the use of

T1,72 72,71

Xfil X271 s=2—jyvJ _ a—1yb—1
chi ZCSZX X = cappX{'X3

s>0 Xl s>0 j=0 a,b>0

one obtains

1 X, Xo S1+ 82| 51 —1 vrsa—1 -1
T5 = — = XXM+ Y T
2= X] — X2<Y1+Y2 Y1+Y2) 517§>0|:T—1 1 (1 2)
r1t+re—2 51+ S2 1 yso—lyr—ly ra—1
p— Z ( S ) 't — 2 X151 X252 Y1T1 Y2T2 .
51,82>0 1 1 2
71,72>0

With a bit more tedious but similar calculation one shows that the remaining
terms are the coefficients of T.

12
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ii) This statement follows by a similar calculation as in i).
O

We now want to recall the algebraic setting of Hoffman for quasi-shuffle products
and give the necessary notations for the rest of the paper.

Definition 3.4. Let A (the alphabet) be a countable set of letters, QA the Q-vector
space generated by these letters and Q(A) the noncommutative polynomial algebra
over Q generated by words with letters in A. For a commutative and associative
product ¢ on QA, a,b € A and w,v € Q(A) we define on Q(A) recursively a product
bylow=w®1l=wand

aw ® bv = a(w © bv) + blaw ©v) + (aob)(w O V). (3.1)

By a result of Hoffman ([H]) (Q(A), ®) is a commutative Q-algebra which is called a
quasi-shuffle algebra.

Notation 3.5. Let us now recall some basic notations for the shuffle and the stuffle
product which are the easiest examples of quasi-shuffle products. Since we will deal with
the shuffle product for different alphabets simultaneously we will use some additional
notations for this. For the alphabet A, := {z,y} set § = Q(A;,) and H! = 1-Q+Hy,
with 1 beeing the empty word. It is easy to see that $' is generated by the elements
z;j = 297ty with j € N, i.e. H! = Q(A,) with A, := {z1,29,...}. By |w| we denote the
the weight of a word w € $ which is given by the number of letters (in the alphabet
Agy) of w. On $H' we have the following two products with respect to the alphabet
A, which we call the indez-shuffle, denoted by L1 with ¢ = 0, and the stuffle product,
denoted by * with z; ¢ z; = zj44, i.e. we have for a,b € N and w,v € Hl:

ZaW W 2pv = 2o (w W 2pv) + 2p(2qw W V) , 49

2aW * 2p0 = zg (W * 2p0) + 2p(2qw * V) + Zgap(w x V). (3:2)
By (H!,w) and (1, *) we denote the corresponding Q-algebras, where the subscript z
indicates that we consider the quasi-shuffle with respect to the alphabet A,. We can
also define the shuffle product on $! with respect to the alphabet Agzy, which we call

the shuffle product, and by (Sﬁy, W) we denote the corresponding Q-algebra.

We now want to find a ¢ and a suitable alphabet such that we can view the algebra
of bi-brackets as a quasi-shuffle algebra. For a,b € IN define the numbers )\fw € Q for

1<j<aas
; _ a—i—b—]—l BCH,bf'
A‘ljl,b:(_]‘)bl g _J<"
a—j (a+b—j)!

For the alphabet AP := {2, |s,7 € Z,s > 1,r > 0} we define on QAP the product

T+ T\ o T+ 7o) o2

1 2 1 1 2 1

— J . J .
Zs1,r1 (O Zsg g —< ) E :)\51,S2Z]yrl+r2 + ( > E :)‘52,51ZJ7T1+T2

/5= /=

r1 4+ 1o
+ Zs1+s2,r1+r2
1

13



and on Q(AY) the quasi-shuffle product

Zo1,r W B Zgy 0 = Zsyry (W B 25y 15 0) + Zsgry (Z81,m W B O) + (Zs1,r B Zsg,ry ) (W B V)

Theorem 3.6. i) The product @ on QAP is associative and therefore (Q(AM), )
is a quasi-shuffle Algebra.

ii) The map [] : (Q(AP), @) — (BD,-) given by

S1,-.-,9]
W = Zsy,ry -+ Zsyymy > [w] = [7"1 r
ey

fulfills [w & v] = [w] - [v] and therefore BD is a Q-algebra.

Proof. Using Proposition 2.3 in [BK] it is easy to see that

S1,...,8 ut ~ w'l~
{ B } = Z ﬁLls1 (") ... r—i!Llsl(q N, (3.3)

up > >up>0

where Liy(z) = LZ;:}S‘?) Due to Lemma 3.1 (see also Lemma 2.5 in [BK]) we have

Lig(2) - Lip(z Z )\a bL1] )+ Z /\ L1] ) + Ligss(2),

This proves the first statement and the second statement follows directly by the defi-
nition of . O

Remark 3.7. As we saw in the proof of Proposition 3.2 for the product of two length
one bi-brackets, the shuffle product of bi-brackets is obtained by applying the partition
relation, the stuffle product and again the partition relation. This of course works for
arbitrary lengths and yields a natural way to obtain the shuffle product for bi-brackets.
To make this precise denote by P : Q(Ab) — Q(A) the linearly extended map which
sends a word w = Zg, r; ... Z%s,r, to the linear combination of words corresponding to
the partition relation. Using this convention the shuffle product for brackets can be
written in Q(AP) for two words u,v € Q(AY) as P (P(u) ® P(v)), i.e. the stuffle and
shuffle product for bi-brackets can be written as

[Pl £ wme],  [u]-[o] 2 [P (P(u) @ PW)). (3.4)

Remark 3.8. As mentioned in the introduction the bi-brackets can be seen as a ¢-
analogue of MZV: Define for k € IN the map Q[[q]] = RU{oo} by Z;(f) = limg—1(1 —
9)* f(q), which was introduced and discussed in [BK] for the subspace MD C Q[[q]].
On the bi-brackets this map is given by the following: Assume that s; > r; + 1 and

14
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sj >r;j+1for j =2,...,1, then, using the description (3.3) (see eg. Proposition 1 in
[Zu]), we obtain

S1y.-.,8 1
b ol :7'C($1—7’1,...,Sl—7"l).
T1,...,77

ZSl+~~+Sl |: 7'1' 7

Even though we don’t want to discuss this issue in this note it is worth mentioning
that an other motivation for considering the bi-brackets was to describe the kernel of
the map Zj, on the space gr)’ MD. This connection will be subject of upcoming works.
Applying the map Zj, to the equation (3.4) one obtains the stuffle and shuffle product
formula for MZV (See [Zu]). Finally we want mention that there are several other
different types of g-analogues which also have a stuffle and shuffle like structure (See
for example [MMEF] and [Zh] for a nice overview).

4 Derivatives and modular forms

In this section we want to discuss derivatives of bi-brackets with respect to the differ-
ential operator qd% and their connections to modular forms. For this we first introduce
the following notations:

Definition 4.1. On BD we have the increasing filtrations Fil)V given by the upper
weight,Fil.D give by the lower weight and FilE‘ given by the length, i.e., we have for
ACBD

Fill' (A) = (|7 e Alo< i<k st 4 < kg
_7'1,...,7"1_
Fﬂlkj(A)::<Sl’”.75l €A[0OSI<k,m+ - +mn<k),
_7’1,...,7"1_
. -81,...,St-
Fil(A) = (|7 e Al < g

If we consider the length and weight filtration at the same time we use the short
notation FilZVZ’L := Fil}¥ Fil} and similar for the other filtrations.

Proposition 4.2. Let d; := qd% then we have

l
e, Sl i+ 1,801,...
dq |:817 78l:| _ Z (8](7'] + 1) |:Sl ) ;3 85—1,55 + » Sj+1s 78l:|>

Tlyenn, Ty = Ti,eo.,Tj—1,75+1,m501,...,m

and therefore d, (Fil}';7""(BD)) c Fi:Y, (BD).

15



Proof. This is an easy consequence of the definition of bi-brackets and the fact that
dg > p=00nq" = >0 nang". Another way to see this is by the fact that the operator
dy on the generating series of bi-brackets can be written as

X150, X 0 90 [X1,...,X
%M Y:Z@XK*Y V|
10005 1] j=1 7 J 10005 1]
which follows from
nY X n nY X n
dy B )La(X) =dy S C O nem a0 0 g yyr,(x).

Proposition 4.2 suggests that the bi-brackets can be somehow viewed as partial
derivatives of the brackets with total differential d,. In this part we want to give some
explicit results on the following conjecture which was inspired by numerical experiments
and which, with the above interpretation, states that the space MD is closed under
partial derivatives.

Conjecture 4.3. The algebra BD of bi-brackets is a subalgebra of MD and in par-
ticular we have
4 W,D,L WL
Fil, 3, (BD) C Fil; )y, (MD).

Proposition 4.4. For [ = 1 the conjecture 4.3 is true.

Proof. In [BK] the authors proved that d;, MD C MD. Due to Proposition 4.2 we
therefore have [ﬂ € MD, i.e. the Conjecture is true for the length one case. ]

Remark 4.5. In [BK2] it will be shown that up to weight k& < 7 every bi-bracket can
be written in terms of brackets, by giving upper bounds for the number of algebra
generators of bi-brackets.

For lower weight d = 1 Proposition 4.4 is given explicitly by the following reformu-
lation of Proposition 3.3 in [BK].

Proposition 4.6. For all £ > 1 it is

:

=[K-0- > lab] —[k1]+[K]

a+b=k+1
1 1 By 1 W,L
=k+10+ K- > lab+ > —— (] - Soka[l] € Fily) o (MD)
2 atb=k+1 j=2 (k—j+1) 2 i
a>1
16

177



Appendix C. The algebra of bi-brackets and regularized multiple Eisenstein series

178

Proof. The functions L, (X) in the generating function fullfil the following differential
equation.

0
——Ly(X) = Lp(X)? + Lp(X).
ox Ln(X) (X)" + Ln(X)
Therefore we get
0 'X’ Z X 2 X X 2 X
o =D LY 4 Y e (Y) = ) e Lo (Y :
Iy n>0 n>0 n>0 Y

The first term also appears in the product of two generating functions:

X O n 77, n.
‘yHy': > LML)+ 3 Ly (VLen (V) + 3 ¢ La(Y)?
ni>nz >0 no>ni >0 n>0
v,Y| |v,Y X , |X,X X
— L,(Y)? = "X Ly (
X0/ "o x| 2 ) KO' ‘ T

And therefore we obtain
X X X, X X

Y |Y "yl |v,o| |vo| |y

IX

which gives the first expression by considering the coefficient of X*~1 in this equa-
tion. The second statement follows from the explicit stuffle product for bi-brackets in
Proposition 3.3:

k
10 51+ [ B 1 32 P =]

O

There it not much known so far for the length two and arbitrary weight case of the
Conjecture 4.3. Using the shuffle brackets we will prove (see Proposition 5.9 ) that for
all 51,80 > 11t is

81,52 |S1,52
|: 1.0 :|7 |: 0.1 :| € F1181+82+1 3(MD)

It would be interesting to know whether the approach in the proof of proposition 5.9
also works for higher lengths, or higher lower weight.

One motivation of considering (bi-)brackets is to build a connection between mul-
tiple zeta values and modular forms. In the following we will show how to use the
double shuffle structure on the space of bi-brackets described above to prove relations
between modular forms. On the other hand we use results of modular forms to prove
relations between bi-brackets. For k € IN denote by

) _ (k)
Ok = omiyr T =11 goa’f ! = Comip T (K]
17



the Eisenstein series of weight k. For even k = 2n due to Euler we have ((2n) =

W and therefore Gy, = —%gfl’)q + [2n] =: Ban + [2n] € Filyy (MD), for
example
~ 1 ~ 1 =~ 1

Proposition 4.7. i) The ring of modular forms M(I'1) for I'y = SLa(Z) and the
ring of quasi-modular forms M (T'7) are graded subalgebras of MD.

ii) The Q-algebra of quasi-modular forms Mk(Fl) is closed under the derivation dg
and therefore it is a subalgebra of the graded differential algebra (MD,d,).

iii) We have the following inclusions of Q-algebras
M (1) € M(I'y) € qMZ C MD C BD .

Proof. Let Mj(T1) (resp. My (1)) be the space of (quasi-)modular forms of weight
k for T'y. Then the first claim follows directly from the well-known facts M(I'1) =
®k>1 M(Fl)k = Q[G4, GG} and M(Fl) = @k>1 M(F1>k = Q[GQ,G4,G6]. The second
claim is a well known fact in the theory of quasi-modular forms and a proof can be

found in [Za] p. 49. It suffices to show that the derivatives of the generators are given
by

d, Gy = d,[2] = 5G4 — 2G%,  d,G4 = 15Gs — 8G2Gy,
- - 120 ~ .
d, G = 20Gs — 12G2Gg = 7Gi —12G1G,
which can be easily shown by the double shuffle relations of bi-brackets. O

It is a well-known fact from the theory of modular forms that G2 = %ég because
the space of weight 8 modular forms for SLy(Z) is one dimensional. We therefore have

sl 1414 = 118

Using the explicit stuffle product we get

1 1
4 - —
+360H 1512

which then gives the following relation in Fily’ (MD):

[4] - [4] = 2[4, 4] + [8] 2],

1 1

Bl = 54— 555

[2] + 12[4,4]. (4.2)
_ The identity (4.2) can also be proven by using the double shuffle relations, i.e.
G? = %Gg can be proven since it is equivalent to it. One can check that

1 1 st

sh st sh
1014~ 555120+ 1214,4] — [8] = —4(3]

[5] = [3] - [5]) +3([4] - [4] —[4] - [4]),

18
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where the right hand side is clearly zero. This purely combinatorial approach to prove
this kind of relation is similar to the one in [S].

Let us now use the theory of modular forms to obtain relations between bi-brackets.
It is a well-known fact (see [Za] 5.2) that for two modular forms f and g of weight k
and [ the nth-Rankin-Cohen Bracket, where n > 0, given by

=Y <—1>“<'“+Z_1> (”Z_l) a5 g

a,b,>0
a+b=n

is a modular form of weight k£ + [ + 2n. In the the case n > 0 this is a cusp form. For
~ ~ . . a —1)!a! a
f=Gr =B+ [k] and g = G; = 3 + [I] we obtain by using dj [g} = %[k: 1,
that o
(G, Gl = Sn,0BeBr + 7y - CRY

_ (k=14n)! (I-14n)!

with g = "o - Ta—or and
l+n k+n k+al|l|l+Dd
Cii = -1)" ~1) :
kl Bk[ n }‘F( )" By n +ab2;0( ) a b ]
a+b=n

For all n > 1 and all even k,l > 4 the function C,%’ll € S is therefore a cusp form
of weight k + | + 2n. This yields a source for relations between bi-brackets since the
dimension of Sj is smaller than the possible different C,%? . For example in weight 12
we have dim S12 = 1 and we have the two expressions A = 12 - 5!2. CffA =5.7!. CE’G,
with A = ¢ J],,>0(1— q”)24 being the unique normalized cusp form in this weight. This
yields the following relations between bi-brackets

T Bl bl bl -2 B = )i < s

In [H] it is shown, that every quasi-shuffle Algebra (Q(A), ®) is isomorphic to the shuffle
Algebra (Q(A), ). To make this precise define for a composition i1 + -+ + i, = n,

where i1,...,4,; > 0, of a natural number n and a word w = ajas...a, the following
element in Q(A):

(i1, -y im){w} = (a1 0+ 0a;; ) (@41 0+ 0 Qiytig) - (Qig gty 410+ O )

19



where the product is given by the composition of words and ¢ is the product on QA
belonging to ®. With this define the following two maps

1

expy(w) = Y (i1, -y im){w},
1<m<n 114« I
i1+ +im=n
(-1

log@(w) = Z - . (Zlaalm){w}
1<m<n 11...Um

Proposition 5.1. ([H],Thm. 2.5) The map exp is an algebra isomorphism from

(Q(A),w) to (Q(A), ®) with the inverse given by log.

In other words this enables one to give an isomorphism between two arbitrary quasi-
shuffle algebras on the same alphabets. We will use this now to define a stuffle version
for the brackets and later on the generating series of bi-brackets to define the shuffle
brackets.

Notice that for the brackets, i.e. bi-brackets with r; = --- = 1 = 0, we also
obtain an homomorphism [.] : (!, ®@) — (MD,) since we can view A, as a subset
of AEi. To define the stuffle brackets [s1, ..., s]*, which fulfill the stuffle product, we
use the above proposition to deform the quasi-shuffle product @ of the brackets into
the stuffle product *, i.e. we use the following compositions of maps to get a algebra
homomorphism from (!, %) to MD.

(92,%) > (MD, )
10g*\\ (-]
(92, w) (91, =)

€XPg

Definition 5.2. Define for s1,...,s € IN the stuffle bracket [s1,...,s]* as the image
of zg, ... %s under the above map, i.e

[51,...,5)" = [expg(log,(zs, - - - 25,))] -

By MD* (resp. ¢MZ*) we denote the spaces spanned by all (resp. all with s > 1)
stuffle brackets and 1.

Remember that the quasi-shuffle product & for brackets was induced by the follow-
ing map on QA

51 52
_ J . E J . _. § J .
Zsy O zg, = E :)‘51,5223 + )‘5275123 T Zsitsy =t Zsi4sy T Vs1,82%5
Jj=1 Jj=1 j>1

20

181



Appendix C. The algebra of bi-brackets and regularized multiple Eisenstein series

where we define the 77, , just for simplicity of the following formulas. Since log, (2, zs,) =

Zsy Zsy —%zsl+32 and expg (zs, 2s,) = zsleQ—i-%zlersQ +% Zj Y, 5,75 We obtain expg (log, (25, 2s,)) =
1 j :

251255 T 5 Zj Ve, 5,745 1€

[51782} 81752 Z 1,52 - Z 2751 '

Similarly one computes the length three case and obtains

[31;32733] [51,82,83 + 5 2731,32 ]’83 + 5 2732,83 17.] 12 27514*52,83[-]}
J>0 ]>O >0

q Z '751,32+33 + Z%l s2lJ J+ 83 Z 731752’753711 32]
]>0 ]>O J17J2>0

Example 5.3. For example we have [1] - [2,1]* = [1, 2, 1]* +2[2, 1, 1]* + [3, 1]* + [2, 2]*

with
2 =20 - g2, B =B+ - B 22 = (22— o,
. 3 11 1
[271’1] :[2’171] 4[2 ”"‘mp]_ﬂ[}?
* 1 1
[1,2,1]" =[1,2,1] —1[1,2} 4[2 1]+ 72[2]+3[3]

By construction we have the following

Proposition 5.4. Up to lower weight the stuffle brackets equal the brackets and
therefore

dim (gr)¥ (aMZ2) ) = dim (g1} (aMZ7)) .

Proof. This follow directly from the fact that ® and * on $! are equal up to lower
weights. 0

In Remark 6.6 we will see that the stuffle brackets can be used to define stuffle
regularized the multiple Eisenstein series. However as we will see, even though this
version is easy to write down, this will not yield the "best" definition and we will use a
more complicated construction.

We now want to define a g¢-series which is an element in BD and which fulfills

the "real" shuffle product of multiple zeta values. For ej,...,e; > 1 we generalize the
generating function of bi-brackets to the following
X1, ..., X
Yi, .Y = ) HEUJ L, (X5)% (5.1)
€1, ... ;€ up > >up>0 =1
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So in particular for e; = --- = ¢ = 1 these are the generating functions of the bi-
brackets. To show that the coefficients of these series are in BD for arbitrary e; we
need to define the differential operator D}:Lm,m = Dy, ¢, Dyy e, - .- Dy, ¢, With

e—1
1( 2 9
Dy =[] (= - -1 .
v kl;[l (k (5YH+1 aylm) )

9
where we set v = 0.

Proposition 5.5. The coefficients of (5.1) are in BD and it is

X1,..., X
lev-“a)/i

Y
€1,50s€1

X, Xi1—Xp, 0 X1—Xo
€1, y €]

‘ Yi+-4Y, . Y]

Proof. By %Ln(X) = L,(X)? + L,(X) one inductively obtains

L, (Y)et = <1a — 1) L (Y)¢ = 1:[1 (18 — 1) Ln(Y)
" - \edy e koY B
from which the statement follows after a suitable change of variables. ]
Notice that in the case e; = --- = ¢; = 1 this is exactly the partition relation. We
now want to define the shuffle brackets [s1, ..., s;]"' by using the following well-known
fact :
Lemma 5.6. Let A be an algebra spanned by elements ag,, . 5 with s1,...,5 € N,

let H(Xy,...,X;) = Zsj aslw’lefl_l .. .Xfl_l be the generating functions of these
elements and define for f € Q[[X1, ..., X]]]

Xy, X)) =X+ + X, X0+ -+ X, X))

Then the following two statements are equivalent

i) The map (£, W) — A given by z, ...z,

; P Qsy,..s is an algebra homomor-
phism.

ii) For all r,s € IN it is

HY (X1, X)) HA (X, Xog) = HA (X, X))

where shS’"*S) = ZaeE(r,s) o in the group ring Z[&, 15| and the symmetric group
S, acts on Q[[X1,..., X, ]] by (flo)(X1,..., Xs) = f(Xp-101)5- -+, Xom109)) -

Proof. This can be proven by induction over ! together with Proposition 8 in [I]. [

22
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Theorem 5.7. For si,...,s, € IN define [s1,...,s]|" € BD as the coefficients of the
following generating function

Hu(X1,..., X)) = > [s1,....s)2 Xy xp0!

51,...,5121
= ¥ 1 DY X1, X1, Xy it 1o -+ o> Xig oot 41
T il T tm )
1omey b il Yi,...,Y |Y:0
i1 im =l

Then we have the following two statements
i) The [s1,...,s/]"™ fulfill the shuffle product, i.e.

HY (X, X)) - HEY (X g, Xpgs) = HE (X, . o Xrgs) it -

ii) For s1 > 1, s2,...,s > 2 we have [s1,...,s]" = [s1,..., 1]

Proof. The first part of the proof is basically the same as in the discussion in section
4.1 in [BT] but with a reverse order and some changes in the notation. Consider the
alphabet A = {(¥) | n € N,y € Yz}, where Y7 is the set of finite sums of the elements
inY = {Y¥},Ys,...}. We denote a word in these letters by (Zizl,) For two letters
a,b € A define aob € A as the component-wise sum. With this we can equip Q(A) with
the quasi-shuffle product ® (3.1) and therefore obtain a quasi-shuffle algebra (Q(A), ®).

It is easy to see that the map (Q(A), ®) — BDgen given by

) 0, .. ,0
L QS S RO
Ty n1: ,’ni

is an algebra homomorphism. Using now Proposition 5.1 the series h defined by the
exponential map

L]0, .0
h(Xla"'aXT’): Z 1 2 Ylv 7Ym ’
1<m<n ety iy,
11+ +im=n

where Y = Xy, 1.y, + -+ Xi 4 qq; with Xo := 0, fulfills the (index-)shuffle product
ie.
h(Xl, Para ,Xr) . h(XT+1, Para ,XT+S) = h(Xl, Para 7XT+S)|Sh$«T+S) .

We now set Hy,(X1,...,X;) = h(X;, X;1-1—Xi, ..., X1—X2) and by the same argument
as in Theorem 4.3 in [BT] it is

HFU(XM .o 'aXT) ' HFU(XTHJ? .. 'aXT+S) = H&(Xl? o 'aXT+S)‘sh£.T+S) .

Combining the definition of h and H,, we observe that H,,(X1,...,X,) equals

0 0
1 ) )
Z PO Xr—i1+17Xr—il.—iQ—i-l_Xr—il—}—L 7X1_Xr—i1.—~~-—im_1+1 .

1<m<n 21+ .. i, im
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We now apply Proposition 5.5 to this and obtain i) of the Theorem. To prove ii) one
checks that the only summand on the right hand side, where all variables Xo, ..., X

appear, is the one with i; = - -+ = i, = 1 which is exactly [sq,...,s]X% 7! . .Xlsl_l.
Therefore the shuffle bracket [sy,...,s;]"" where so,...,s > 2 is given by the bracket
[$1,..., 8] O

For low length we obtain the following examples:

Corollary 5.8. It is [s1]" = [s1] and for | = 2,3,4 the [s1,...,s]|"are given by

i) [s1,s2]™ = [s1,52] + 0sy1 - % ([511} — [sﬂ) ,

2 0,1
1(]s1,83 81,83
+55271'§ q 1’0} — {0’1 ] —[31,53])
1 S1 3|51
et (-2

1 (1s1,s2,583
”Z) [81752783754]LU = [81752753784] + 684,1 S <|: ’ ’ - [51,82,53]

1 ,
i) [s1,s2,53]" = [s1, 82,83 + 0s5.1 - = <|:31 82} - [31,sz]>

2\| 0,0,1

+0s55,1 - % (:81077812:54] - [810”85:184} + [s1, 82, 54]>
+855.1 - % (:811’7%3”54] - [810”8137’;4} + [51, 83, 54]>
F0s5-54,1 i (Si: i?’ -2 {5(1):;3} - Fi:gg} + [s1, s3]>
vt ([ )
(S I N R e R ey B )
o (]2 )

Proof. This follows by calculating the coefficients of the series G, in Theorem 5.7. [
Proposition 5.9. For all s;,s9 > 1 it is

51,52
1,0 |’

51,52
0,1

1W,L
:| € F1181+82+1,3(MD)
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Proof. First notice that from [*}'j?] € MD by the stuffle product for bi-brackets

[7] - [s2] one deduces [*3'7'] € MD. Since the shuffle brackets fulfill the shuffle product
we have

[s1,s2]" - [1] = 2[s1, 82, 1] + 2[s1, 1, s2]™ + 2[1, 51, 52]™ + Z Vap.cla, b, )"

a,b,c>2

for some v, € Q. By Proposition 5.8 the brackets [sq, s2]™, [1, 51, 52| and [a, b, ¢]"
with a,b,c > 2 are elements of MD, i.e. 2[s1, 2, 1]" + 2[s1, 1, s2]" € MD. Using the
explicit formula for the length three shuffle brackets it is easy so check that

[51’82} , S9 > 1,

2[s1, 82, 1]"™ + 2[s1, 1, 59]" = 10 mod MD,
2[801”11] , Sa=1.
which proves the statement. O

Finally we give some numerical results on the dimension of the space spanned by
the shuffle brackets [sq, ..., s]". Denote by MD™ the Q-vector space spanned by all
[$1,...,8]" and 1 and qMZ" spanned by those where s; > 1. By the use of the
computer the author was able to give lower bounds for the dimension of gr)¥ (MD™)
for k < 10 by using a fast implementation of the bi-brackets in Pari GP

k of1]2]s]als]e]7]s]o] 0]
dim(grxv(q/\/lzu"))z‘1‘0‘1‘2‘3‘6‘10‘18‘32‘56‘100‘

Table 1: Lower bounds for dim (grzv(qMZm)).

We observe that these numbers coincide with the conjectured dimension for gr}¥ (@M Z)
given in [BK].

Remark 5.10. In the case of multiple zeta values the shuffle product is an easy con-
sequence of the expression as an iterated integral. It is therefore a natural question
whether there is also some kind of iterated integral expression from which the shuf-
fle product follows. This was done for other g-analogue models of MZV in [Zh] and
[MMEF] by the use of iterated Jackson integrals.

6 Multiple Eisenstein series G, G* and G*

In [BT] the authors defined regularized multiple Eisenstein series via the use of the
coproduct structure on the space of formal iterated integrals. We will recall the basic
facts in the following. It is important to notice that in [BT] the authors used a different
order of the indices for multiple zeta values and multiple Eisenstein series. Here we
will use the original order as in the paper [GKZ] and and work [Ba).
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Definition 6.1. For integers s; > 3 and s2,...,5; > 2, we define the multiple Eisen-
stein series G, . s (7) on H by

1
G817~~7SL(T) = E : 51 oL
T

A=A =0
NEAL

where \; € Zi1 + Z are lattice points and the order > on Z7 + Z is given by
miT +n1 = maeT + ng & (Mg > ma V (my = mg Ang > ng)) .

Remark 6.2. It is easy to see that these are holomorphic functions in the upper half
plane and that they fulfill the stuffle product, i.e. it is for example

G3(7’) . G4(7’) = G3}4(7‘) + G4,3(7') + G7(7‘) .

The condition s; > 3 is necessary for absolutely convergence of the sum. By choosing
a specific way of summation we can also restrict this condition to get a definition of
Gs,,....s,(T) with s; = 2 which also satisfies the stuffle product (see [BT] Definition 2.1).

Recall that we denote by MZB C C[[q]] the space spanned by all g-series given by
products of MZV, powers of (—27i) and bi-brackets. In [Ba] the Fourier expansion of
multiple Eisenstein series was calculated. In particular the results in [Ba] show that
we can consider Gy, . 5 to be an element in MZB by setting ¢ = e2™7 For example

Gs2(1) = ((3,2) +3C(3)g2(q) +2¢(2)g3(q) + g32(q) € MZB,

where for all s1,...,8 > 1 we write gs, 5 (q) = (=2ma)"t T T8 [s, ..., 5] We will
also use the following notation

ggj,...,sl (q) - (_27Ti)51+m+5l [817 L) sl]u-l )
81404487 — (-9 s14ri4-+s+ry S1y...455] .
o)) = (-2 e

Later we will suppress the dependence of ¢ and 7 and just write gs,, ., instead of
Js,....s,(q) and similar for the other functions considered above.

Following Goncharov ([G]) the authors in [BT] consider the algebra Z generated by
the elements I(ag; a1, ...,an;an+1), where a; € {0,1}, N > 0, with the product given
by the shuffle product W together with relations coming from real iterated integrals
(see [G] Section 2 and [BT] Section 3 for details but with a different order). This space
has the structure of a Hopf algebra with the coproduct given by

Ag (I(ag; a1, - .., an;an+1)) =
k (6.1)
Z (]I<a0a [ ERRE 7aik; aN+1) & H H(aip; aip+17 .. 7aip+1—1; aip+1))7
p=0
26
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where the sum runs over all 19 =0 <43 < -+ <1 <ipp1 =N+ 1with0 <k < N.
The triple (Z,1w, Ag) is a commutative graded Hopf algebra over @ ([G] Proposition

2.2). For integers n > 0,81,...,8, > 1, we set
I(s1,...,s,) :==1(1;0,0,...,1,...,0,0,...,1,0,...,0;1).
—_———— —_——— ——
S1 Sp n
In particular, we write I(s1,...,s,) to denote Iy(s1,...,s,). The quotient space ' =
Z/1(0;0;1)Z also has the structure of a Hopf algebra with the same coproduct and
due to Proposition 3.2 in [BT] the elements I(si,...,s;) form a basis of 7!, i.e. as a

-algebra the space Z! is isomorphic to (L ,) by sending I(s1,...,s;) to 2z, ... 2.
Ty 1 l

In the following we therefore consider ﬁéy as a Hopf algebra with the above coproduct.

Proposition 6.3. [IKZ|(shuffle & stuffle regularized MZV) There exist algebra ho-
momorphisms Z" : (J’)glcy,u_l) — MZ and Z* : (91,%) - MZ with (Y(sy,...,s) =
ZM (2, ... 2,) and ((s1,...,851)" = Z% (2, . .. 25,) such that

C*(s1y---581) = CM(s15-..,8) =C(s1,---,8)
for s; > 2 and s2,...,s > 1. They are uniquely determined by Z"(z1) = Z*(z1) = 0.
Proof. This follows from the results of section 2 in [IKZ]. O
We now recall the definition of G* from [BT].

Definition 6.4. For integers s1,...,s > 1, define the g-series G, ¢ (¢) € MZB,
called (shuffle) reqularized multiple Fisenstein series, as

Gg—i,...,sz (q) :=m ((gm ®Z%) o AG(’ZSI e Zsl)) )

where g : (61, ) — C[[¢]] is the algebra homomorphism defined by g"(zs, . .. 25, ) =
5.5 (q) and m denotes the multiplication given by m :a ® b+ a - b.

We can view G" as an algebra homomorphism G" : (ﬁ;y, w) - MZB such that
the following diagram commutes

A
(ﬁiyv LU) — (ﬁiya U—l) ® (ﬁ;w LU)

Gmi J/Zu_l®g|_u

MZB MZ C[[q]]

m
Summarizing the results of [BT| we have

Theorem 6.5. [BT] For all s1,...,5 > 1 and ¢ = ¢*™7 with 7 € H the regularized
multiple Eisenstein series G} _, (¢) have the following properties:

i) They are holomorphic functions on the upper half plane having a Fourier expan-
sion with the regularized multiple zeta values as the constant term.

27
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ii) They fulfill the shuffle product, i.e. we have an algebra homomorphism (nglcy, W) —
MZB by sending the generators zg, ... z5, to G (q).

81500581

iii) For integers s1,...,s > 2 they equal the multiple Eisenstein series

G;Llj,..,,sl(Q) = GSL...,S[ (Q)
and therefore they fulfill the stuffle product (see Remark 6.2) in these cases.

Theorem 6.5 provides a large family of linear relations between the GY, since one
can write the product Gy, (¢) - Gy, . (q) in two different ways whenever one has
S1y.v+y81,T1, .-+, m > 2 by using the stuffle and shuffle product formula. We will call
these relations the restricted double shuffle relations, since they are just a subset of all
(finite) double shuffle relations of MZV, where the indices s; and r; are additionally
allowed to be 1 whenever j < [ and 7 < m. We compare the number of both relations
at the end of this paper.

Numerical experiments suggest (see the dimension discussion at the end of [BT]),
that there are additional relations between the G* coming from the double shuffle
relations, where some indices are also allowed to be 1. It is therefore interesting to
understand the exact failure of the stuffle product for the regularized multiple Eisen-
stein GY which seems not to be covered best possible by the Theorem 6.5. In the
following we want to sketch a possible approach to answer this question. The basic
idea is to define stuffle regularized multiple Eisenstein series G, which equals the
shuffle regularized ones in most of the cases. For this we need the following: For an
arbitrary quasi-shuffle algebra Q(A) define on the following coproduct for a word w

Ag(w) = Z URv.

uUv=w

Then it is known due to Hoffman ([H]) that the space (Q(A), ®, Ag) has the structure
of a bialgebra. With this we try to mimic the definition of the G*' and use the coproduct

structure on the space (9!, *, Ay) to define G*, i.e. we consider the following diagram

(B, 4) M (9L, %) @ (51, %)

G*\L lg*@)z*

Clla] =——Clldl e M2

with a suitable choice of an algebra homomorphism g* : ($1, %) — C[[q]].

Remark 6.6. One naive way to define g* would be to define it on the generator
W= zg,...25 by (=2mi)t TS [g, . g]* which would yield stuffle regularized the
multiple Eisenstein series which coincide with the G* in the length one case. But
already in length two this differs from the original multiple Eisenstein series even when
all s; > 2 for example it is

G32(1) = G35(1) = ((3,2) +3¢(3)92(q) + 2¢(2)g3(q) + g3.2(q)
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but the naive approach would give ((3,2) + 2¢(2)g3(¢) + ¢2.3(¢). Even though these
are similar this seems not to be the definition we want and we need to find an alterna-
tive definition for g* in the following such that G* coincide with the original multiple
Eisenstein series.

Motivated by the calculation of the Fourier expansion of multiple Eisenstein series
described in [Ba] and [BT] we consider the following construction.

Construction 6.7. Given a Q-algebra (4, -) and a family of homomorphism

{w = fu(m)}men

from (1, ) to (A, -), we define for w € $! and M € N

Fy(M) := Z Jwi (ma) ... fu,(mi) € A,
1<k<I(w)
Moy Sy >0

where [(w) denotes the length of the word w and w; ... w; = w is a decomposition of
w into k words in §1.

Proposition 6.8. For all M € IN the map from (., x) to (4, -) defined by w + F,,(M)
is an algebra homomorphism, i.e. {w + F,(m)}, o is again a family of homomor-
phism as in the Construction 6.7.

Proof. We use the coproduct structure on (52,*7AH) to prove the statement by

induction over M. It is F,,(1) = 0 which clearly fulfills the stuffle product. For the
induction step one checks that Fi,(M + 1) = > o= Fu(M)fy (M) which is exactly
the image of w under (F(M) @ f(M)) o Ap, i.e. it fulfills the stuffle product by the
induction hypothesis. O

For a word w = z, ... 25 € H! we also write in the following fs, s (m) := fu,(m)
and similarly Fs, g (M) := F,(M).

Example 6.9. Let f,,(m) be as in the construction. In small lengths the F,, are given

FSI(M): Z fsl(m1)7

M>m1>0
FSLSQ(M) = Z f51752(m1) + Z f81(m1)f82(m2)
M>m1>0 M>m1>mo>0
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and one can check directly by the use of the stuffle product for the f,, that
Fsl(M)'FSZ(M): Z fsl(ml)' Z f52(m2)

M>m1>0 M>mgo>0

= > fam)fuma)+ D fuma)fa(m)+ D f(ma)f(m)

M>mi1>mg>0 M>mao>m1>0 M>m1>0

= Y fam)fuma)+ Y fo(ma)fs (m1)

M>mi>mo>0 M>ma>m1>0

+ Z (f81,82 (ml) + f32751 (ml) + f51+82 (ml))

M>mi1>0
= FS1,82(M) + FS2,81(M) + F81+82(M> .

Let us now give an explicit example for maps f,, in which we are interested. For
this we need to define the following

Definition 6.10. For integers si,...,$ > 1 with s1,s; > 2 we define a holomorphic
function ¥y, g (2) on C — Z called the multitangent function by
1
v z) = .
517-.‘,31( ) m;;m (Z+n1)31 --~(Z—|—nl)sl
njEZ

When [ = 1 we refer to Wy, (z) as the monotangent function.

In [Bo] the author uses the notation 7e™ " (z) which corresponds to our ¥,,,  , (2)
and showed that the series defining W,,, 5, (%) converges absolutely when ni,...,n, >
2. These functions fulfill (for the cases they are defined) the stuffle product. The mul-
titangent functions appear in the calculation of the Fourier expansion of the multiple
Eisenstein series G, .. s, (see [Ba], [BT]), for example in length two it is

G155 (1) = ((51, 82)+((s1) Z W, (maT)+ Z Wy 50 (M17)+ Z Wy, (m17) W, (mar) .

m1>0 m1>0 m1>mao>0

One nice result of [Bo] is a regularization of the multitangent function to get a definition
of Uy, 4 (2) for all s1,...,s € IN. We will use this result together with the above
construction to recover the Fourier expansion of the multiple Eisenstein series.

Theorem 6.11. ([Bo]) For all sq,...,s; € IN there exist holomorphic functions ¥y,
on H with the following properties
i) Setting ¢ = e*™" for 7 € H the map w + W,,(7) defines an algebra homomorphism
from (2, ) to (C[[g]]. -)-
ii) In the case si,s; > 2 the Wy, are given by the multitangent functions in
Definition 6.10.

iii) The monotangents functions have the g-expansion given by

b= = o) (L4 ), wn) = O S et ok 0
1 GGy A U =
30
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iv) (Reduction into monotangent function) Every W, (7) can be written as a
MZ-linear combination of monotangent functions. There are explicit esl’ wol e

MZ s.th.
\Ilslv"'ysl( 681, oo + Z Z 6517 VSl\Ilk
i=1 k=1
where §51st = (T ,) if s =--- =5, =1and [ even and 61> % = 0 otherwise.

For s; > 1 and s; > 1 the sum on the right starts at k = 2, i.e. there are no ¥;(r7)
appearing and therefore there is no constant term in the g-expansion.

Proof. This is just a summary of the results in Section 6 and 7 of [Bo]. The last
statement is given by Theorem 6 there. O

Due to iv) in the Theorem the calculation of the Fourier expansion of multiple
Eisenstein series, where ordered sums of multitangent functions appear, reduces to
ordered sums of monotangent functions. The connection of these sums to the brackets,
i.e. to the functions g, is given by the following fact which can be seen by using iii) of
the above Theorem. For ni,...,n, > 2 it is

9s1,...,5r (Q) = Z \1]31 (mlT) s \Ijsl (mlT) .

mp>--->my >0

For w € $! we now use the Construction 6.7 with A = C[[g]] and the family of
homomorphism {w +— W, (n7)}nen to define

g M (w) = (—2m)l > > o (M) ... Uy (mpT) .

1<k<l(w) M>mq>-->mp>0
wy... Wp=w

From Proposition 6.8 and the Theorem 6.11 it follows that for all M € IN the map g*
is an algebra homomorphism from (2, *) to C[[q]].

Definition 6.12. For integers si,...,5; > 1 and M € IN, we define the ¢-series
G*M .. (q) € C[[q]] as the image of the word w = z,, ...z, € $: under the algebra

S15--

homomorphism (Z* @ gvM) o Ap:
GiM (1) = m (@M © 2%) 0 Ay (w)) € Cllq]].
For si,...,s; > 2 it is easy to see that the limit

* o *,M
Gs, .5 (T) = lim GOY (O (T)

8150y M—00 815+,

exists and that we have

Proposition 6.13. For s1,...,5; > 2 we have Gg, s =G5, =G5,

S150-4581"

Proof. This follows since the construction above was exactly the one which appears
in the calculation of the Fourier expansion of multiple Eisenstein series. See [Ba] and
[BT] for details. O
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We now want to discuss whether the limit of G:i{\{ .5 (7) as M — oo exists for more
general s1,...,s; € IN. Since it is a finite sum of ordered sums of multitangent functions
we can, by Theorem 6.11 iv), restrict to the case of ordered sums of monotangent
functions and powers of 7, i.e. we want to determine when the limit of

Z film7) ... fi(mT)
M>mq1>-->m;>0

with fj(1) = Ws(r) for some s € IN or fj(r) = 1 exists. One easily checks that
this exactly the case when fi(7) has no constant term, i.e. fi(r) # ¥i(r) and
fi(1) # 1. We deduce that therefore the limit of G:i{‘f[_”sl (1) as M — oo exists when
all Uo, sy Wsi s 1>+, ¥s have no constant term. Even though the Theorem 6.11
iv) just justifies this for the case all s; > 2 we see, by using the explicit reductions
to monotangents given in [Bo], that for low weights in fact the ¥y __;(7) are the only
multitangent functions with constant term. This question remains open but seems to
be crucial in order to get a definition of G* for all admissible indices.

Remark 6.14. That W _;(7) are the only multitangent functions with a constant
term is also expected by the author of [Bo]. Since there is no proof of this statement
so far, we just use this here in low length, where the explicit formulas for the ¥ are
known.

The functions g(sl’ ’Sl) Le. the bi-brackets, will appear in G, every time there
is a j <[ with s; = 1 as we will see in the following examples:

Example 6.15. i) We are going to calculate G5 ; 5. For this we use the Table 1 and
6 at the end of [Bo] where one can find that \112 12(2) = Ui2(2) = ¥a1(2) =0,
therefore it is

Gylh(r) =C(2, 1,2+ Y Wolmar) (1,2 + Y. Wa(my7) Ty (mar) - ((2)°
0<mi<M M>mi>m2>0
+ > Wo(my1) W1 (mar)Wa(maT).

M>m1>mo>m3>0

Taking the limit M — oo and using the explicit forms of Uy, (k > 1), ((2,1,2)* =
¢(2,1,2), ¢(2)* = ¢(2) and ((1,2)" = —¢(2,1) = {(3) = —2((2,1) we obtain

* J—
21,2 = 5 hm G2,1,2

= 0(2:1,2) = 20(2. g2 + <) (92 + 59() - <—22m'>92)

=((2,1,2) —2¢(1,2)95" +¢(2)g21 + 9212

A~
=Gyi-

1 .
+ 212+ 5 (96D — 9D — (~2mi)ges)
(
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Similarly one can prove that G3'; = G35, G35, = G35, and Gy} = G} from
which we obtain the following stuffle product in weight 5:

Géu . G%ﬁl == EL’J]_’Q + 2G§L32,1 + GZJ;J]_ + Gél;ld . (62)
ii) There are G3, _, that differ from G| . For example it is

13 . 1 3 . 1

5@@)92 — (—2mi)ga1 + 59(?:(1)) - g(—2m)g(?) + 19@) +921.1,
. 1 3 . 1

G%,Jl,l = ((2,1,1) —4¢(2)g2 — (—27i)ga,1 + 59(?:(1)) - E(—QW)QG) + 69(3) +92,1,1-

5 1 )

Gy — G511 = 592 + g(*Qm)g(D - Eg(g) #0

It is still an open question for which indices s1, ..., s; we have Ggimvsl =G
The author wants to address this question in upcoming projects.

G;,l,l = <(2a 17 1) -

*
S150581°

We end this paper by a comparison of different version of the double shuffle relations.
For this we write for words u,v € $', ds(u,v) = u v —u*v € H', where the W is
again the shuffle product with respect to the alphabet {z,y} and * the stuffle product
with respect to the alphabet {21, 22,...}. Write $° for the algebra of all admissible
words, i.e. H0=1-Q + 29y, and set $H? = Q({z2, 23,... }) to be the span of all words
in ! with no z; occurring, i.e. the words for which the multiple Eisenstein series G
exists.

With this we define the numbers edsj, (extended double shuffle relations of weight
k), fdsy (finite double shuffle relations of weight k) and rdsj, (restricted finite double
shuffle relations of weight k) by

edsy, := dimg (ds(u,v) € H' | [u| +|v| =k, ue H%v e H0U {y})Q,
fdsy, := dimgq (ds(u,v) € H' | Ju| + |v| = k, u,v € 530>Q,
rdsy, := dimg (ds(u,v) € H' | |u| + [v] = k, u,v € 532>Q.

For the number of admissible generators of weight k which equals 282 for k& > 1, i.e.
words in $°, we write geny. By Theorem 6.5 we know that the number of relations
between the GY of weight k is at least rdsy. But these relations don’t suffice to give
all relations between (shuffle) regularized multiple Eisenstein series since some of the
finite double shuffle relations which are not restricted are also fulfilled. The numbers
dy, .
dpXk= ———
Ig) 1-X2-X3

are the conjectured dimensions for M Z. Since it is also conjectured that edsj is the
number of all relations between MZV of weight k& one expects that di = geny — edsy,
which so far is not known. It was observed in [BT] that up to weight 7 the dimension
of

Ee=(Gq o@k=s1+-+s, 1=20s1,....501 =218 2>2),
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seems to be the same as the dimension of grzv(q./\/lZ). The following table gives an
overview of these numbers up to weight 14.

k 1(2(34|5|6 |7 |8] 9 10|11 ] 12| 13 | 14

edsy, 0[0[1]3|6][14]29]60| 123|249 | 503 | 1012 | 2032 | 4075

fdsy, 0jo|o|1|2|7|16]40| 92 | 200|429 | 902 | 1865 | 3832

rdsg ojof{o|1|1|3 |5 11|19 ]| 37| 65 | 120 | 209 | 372

geng 0|1 |2|4|8|16|32]|64| 128|256 | 512 | 1024 | 2048 | 4096
dp = geng—eds, |0 1|11 |22 |3 |4] 5 | 7|9 |12 16| 21
dim &, > o|1|2|3|6]10|18] 72| 2 | 2 | ? ? ? ?

Table 2: Comparison of the number of extended-, finite-, and restricted-
double shuffle relations.

The last line give lower bounds of the dimension of the space & spanned by all
admissible shuffle regularized multiple Eisenstein series of weight k which are for £ <5
exact since we derived all relations up to this weight.
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A short note on a conjecture of Okounkov
about a g-analogue of multiple zeta values

HENRIK BACHMANN, ULF KUHN

October 12, 2015

Abstract

In [Ok| Okounkov studies a specific g-analogue of multiple zeta values and
makes some conjectures on their algebraic structure. In this note we want
to compare Okounkovs g-analogues to the generating function for multiple
divisor sums defined in [BK].

1 Introduction

Multiple zeta values are natural generalizations of the Riemann zeta values that
are defined for integers s; > 1 and s; > 1 for ¢ > 1 by

1
C(517"'7Sl) = Z nsl—nlsl

n1>ng>-->n; >0 1

Because of its occurence in various fields of mathematics and physics these real
numbers are of particular interest. In [Ok| Okounkov discusses a conjectural
connection from enumerative geometry of some Hilbert schemes to a specific ¢-
analogue Z(si,...,s;) of the multiple zeta-values. He denotes by qMZV the Q-
algebra generated by these. In this short note we want to discuss the connection
of these g-multiple zeta values to the algebra MD of generating functions for mul-
tiple divisor sums [sy, .., s;] defined by the authors in [BK]|. More precisely we
have

Theorem 1.1. Let MD* = ([s,..., 5] € MD |s; > 1Vi or 51 = ()q.
i) The sub vector space MD? is in fact a sub algebra of MD.

ii) We have qMZV = MTDF, in particular the Q-vector space generated by the
Z(s1,...,8) is closed under multiplication.

198



iii) We have ¢ Z(k) € qM2zV for all k£ > 2.

The first two statements are merely a reformulation results implictly contained
in [BK]|. The third is direct consequence of some explicit formula given in [BK].
It gives some evidence to the conjecture of Okunkov, that the operator d is a
derivation on qMZV.

Acknowledgements: We thank J. Zhao for pointing out some minor mistakes in
the first version of this notes.

2 g-analogues of multiple zeta values

In the following we fix a subset S C IN, which we consider as the support for index
entries, i.e. we assume sp,...,s € S. For each s € S we let Q4(t) € Q[t] be a
polynomial with Q),(0) = 0 and Q,(1) # 0. We set Q = {Q.(t)},cq- A sum of the

form
ZQ(Sl,...,Sl) = Z H ?i q"J (21)

ny>-->n;>0 j= 1

with polynomials @), as before, defines a g-analogue of a multiple zeta-value of
weight & = s; + -+ 4+ s; and length [. Observe only because of Q5 (0) = 0 this
defines an element of Q[[¢]]. This notion is due to the identity

(111_13} (1 —q)kZQ(Sl,...,Sl) = Z Hhm (Qs] (5_—;2;5])

ny>-->n >0 j= 1
:Qsl( )Qsz( )'C($17"'7Sl)'
Here we used that lin% (1 —-q)°/(1 —¢")® =1/n° and with the same arguments as
q—r

in [BK]| Proposition 6.4, the above identity can be justified for all (si,...,s;) with
s; > 1. Related definition for g-analogues of multiple zeta values are given in [Br],
[Ta], [Zu] and [OOZ]. It is convenient to define Zg(0)) = 1 and then we denote the
vector space spanned by all these elements by

Z(Q,S) = <ZQ(51, . ,sl)| [>0and s1,...,s € S>Q ) (2.2)
Note by the above convention we have that @ is contained in this space.

Lemma 2.1. If for each r, s € S there exists numbers \;(r, s) € Q such that

Q1) - Qo) = D N(rs) (1= Q,(0), (2.3)
1§§‘€§r+s

then the vector space Z(Q,S) is a Q-algebra,

2
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Appendix D. A short note on a conjecture of Okounkov about a g-analogue of multiple
zeta values

Proof. We have to show that Zg(sy,...,s) Zg(r1,...,rm) € Z(Q,S) and illus-
trate this in the [ = m = 1 case because the higher length case will be clear after
this. Suppose there is a representation of the form (2.3) then it is

Zo(r) - Zo(s) = ZM. > Qug)

o (L=gm)m A= (1= qm)°
_ Qr(¢")Qs(q")
- n1§;>0 i n2§>0 i ni= §n>0 (1 —4q )7”+3
= Zo(r,s) + Zo(s,r) + Y NZo(j) € Z(S,Q).
jes’

O

We give three examples of g-analogues of multiple zeta values, which are currently
considered by different authors where just the second and the third will be of
interest in the rest of this note.

0) The polynomials QT (t) = ¢*~! are considered in [Ta] and sums of the form
(2.1) with s; > 1 and ss,...,s > 1 are studied there.

i) In |BK] the authors choose Q¥(t) = ﬁtPs,l(t), where the Py(t) are the
eulerian polynomials defined by

tPs—l(t) - —14d
- Y
(1—t) Z

for s > 0. With this define for all s;,...,5, € N

[S1, .., 81] i= Z H 1_an 55

n1>..>n;>0 j=1

and set
MD = Z({Q7 (1))}, IN) .

These brackets are generating functions for multiple divisor sums and they
occur in the Fourier expansion of multiple Eisenstein series.

ii) Okounkov chooses the following polynomials in [OK]

QO(t) = {t

s=2,4,6,...
(1+t) 5=23,5,7,....

v: [N
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and defines for s1,...,5 € S = Ny
!
29- ¥ Igtes
ny>-: >nl>0]—0 q

We write for the space of the Okounkov g-multiple zetas
aMzZV = Z({Q7(t)}s, N>1) .

Proposition 2.2. For the polynomials above we have

i) for 7,5 € N and QF(t) = tP, (1)

(=11 1>'
QF () ZA )IQI(t) +ZA ™ IQF (1) + QP (1),
j=1

where the coefficient )\ib € Q for 1 <j<aisgiven by

@‘f’b—j—l) Boyv—j
a—7j (a+b—7)

)‘i,b = (—1)bl<
ii) for r,s € Ny it is

o
o o (X)) ,T,s even or r + s odd
Ol @n = {4@r+s<> F (1= tPQ% oft) 1y odd.

In particular, because of Lemma 2.1, the vector spaces MD and qMZV are Q-
algebras.

Proof. In [BK] the claim i) is proven. The cases in ii) are checked easily.

Corollary 2.3. MDF = Z({Qf}S ,IN>1) is a sub algebra of MD.

Proof. Using Proposition 2.2 it is easy to see that it suffices to show that

_ _ +b—2 Batp-1
AL A — (1)t _1)01 a __—atbml
a,b+ b,a (( ) +( ) ) a—1 (a+b_]_)l

vanishes for a,b > 1. This term clearly vanishes when a and b have different parity.
In the other case a +b — 1 is odd and greater than 1, as a,b > 1. It is well known
that in this case B,yp_1 = 0, from which we deduce that A}Lb + )‘aa =0. ]
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Appendix D. A short note on a conjecture of Okounkov about a g-analogue of multiple
zeta values

Theorem 2.4. Let Z(Q,IN-) be any family of g-analogues of multiple zeta values
as in (2.2), where each Q4(t) € @ is a polynomial with degree at most s — 1, then

Z(Q7 IN>1> = MDﬁ :
and therefore all such families of g-analogues of multiple zeta values are Q-sub

algebras of MD. In particular qMZV = MD*.

Proof. To proof the first equality it is sufficient to show that for each s > 1 there
are numbers A\; € Q with 2 < j < s such that

Q) _ 5~ @)
(1—t)3_z>\j(1—t)j'

The space of polynomials with at most degree s — 1 and no constant term has
dimension s — 1. For 2 < j < s the polynomials (1 —¢)*/Q’(t) are all linear
independent since (1) # 1 and therefore such A; exist. The second statement
follows directly from the definition of qMZV. Ol

The following proposition allows one to write an arbitrary element in Z(Q,IN<;)
as an linear combination of [si, ..., s;] € MD".

Proposition 2.5. Assume k£ > 2. For 1 <i,j < k—1 define the numbers b’“ €eQ

by
kibk}]t] _ (t+k—1—z‘> .
7! k—1
With this it is for 1 <i < k —1and QF(t) = 15t P5(t)
Zbu (1 =0M7Q7 ().
Proof. We want to show that

i

k— %
2y 2 d\")
(1 —t)F z_:] 1—tﬂ+1

By the definition of the Eulerian Polynormals it is

k—1 bk
Z? g+1 Z Zd]td
Jj=1 =1 d>0
k—1 k
—z(z L)
d>0 \j=1
B —1+/<:—1)t
('
5
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The claim now follows directly from the easy to prove formula

Ofﬂk—Ej(”Zf[f)%

O

We give some examples how to write elements in gqMZV as linear combinations of
elements in MD. From the proposition we deduce for the length one case for all
k>0

2k 2k+1
Z(2k) = B[] and  Z(2k+1) =Y (05 + 0L ) 1]
Jj=2 Jj=2

Clearly this also suffices to give linear combinations in higher length.

Example 2.6. We give some examples

2=, 2(3)=2p).
Z(4)=[ -z, 2(5)=2p] - 28],
26)= 6] - 41+ 512, Z(7) =207 - 5[5 + 4= 8],
2(2,2) = [2,2],  Z(2,4) = [2,4] — ~[2,2]

The g-expansion of modular forms are well known to give rise to g-analogues of
Riemann zeta values. Let us denote by Mg = Q[G4, Gg] and Mg = Q[Ga, G4, G|
the ring of modular and quasi-modular forms, where the Eisenstein series G, Gy
and Gg are given by

1 1 1

ng—ﬁ—f—p], G4:%+[4}, GGZ—m+[6]

We clearly have the following inclusions of Q-algebras

Mg C Mg C gMZV C MD .

where the second inclusion follows from

1
——— 472

G 51+ (2),
Gy = +ﬂm+1ﬂ®

71440 6 ’

1 1 1
6= om0+ @+Zﬂ®+ﬁ#m)
6
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Appendix D. A short note on a conjecture of Okounkov about a g-analogue of multiple
zeta values

In the theory of modular forms the operator d := qdiq plays an important role and

it is a well known fact that MQ is closed under d. In [BK] the authors showed the
following

Theorem 2.7. The operator d is a derivation on MD that is compatible with the
filtrations on MD given by the weight and the length.

In |OKk| the following conjecture is stated by Okounkov
Conjecture 2.8. The operator d is a derivation on qMZV.

For the derivative of a length one generating series of multiple divisor sums we
have several identies. These will be used to make the following result which gives
some evidence for the conjecture above.

Proposition 2.9. It is dZ(k) € gqMZV for all k& > 2.

Proof. In [BK| Theorem 3.5 the authors prove the following representation of the
derivative d[k — 2]

(jl_—zl> dE{Zk__22] = [s1] - [s2] = [s1, 52] = [52, 1]

e B () () e

a>sq

where s, s5 > 0 can be choosen arbitrary such that k = s; 4+ s5. First divide both
sides by (Sk;_Ql) (k—2)"!. Whenever k > 4 all elements on the right of the resulting
equation belong to MD* except for the term with [k —1,1]. By direct calculation
one obtains that for s; = 1 and s, = k — 1 the coefficient of [k — 1,1] is —(k — 2)
and for s, = 2 and s; = k—2 it is —2(k —2) and therefore d[k —2] can be expressed
as an element in MD*. O

Since d is a derivation it satisfies the Leibniz rule. Therefore the above proposition
allows us to derive further identites, e.g.

AZ(k, ... k), d (Z(ky, ko) + Z(ky, k1)) € qQMZV. .
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Example 2.10. Some examples of representations of d Z(s) in gqMZV.

Z(2)=3Z(4) + Z(2) — Z(2,2),

Z(3) =52Z(5) + Z(3) — 4Z(3,2) — 62(2,3) ,

Z(4) = 10Z(6) + 22Z(4) + 42Z(4,2) — 8Z(2,4) — 6Z(3,3),
( [2) = —62(6) — 122(2,2,2) — 152(4,2) + 3Z(2,4) + 9Z(3,3) ,
7(3,3) =4Z(8) — 122(2,3,3) — 10Z(3,2,3) — 82(3,3,2)

+Z(3,5) — Z(5,3) +82(6,2) + 3Z(3,3),,
d7(2,2,2) = —247(2,2,2,2) + 92(2,3,3) + 9Z(3,2,3) + 62(3,3,2)

—15Z(4,2,2) — 15Z(2,4,2) 4+ 3Z(2,2,4) — 62(2,6) + 62(5,3) — 62(6,2).

At the end we give some conjectured representations of dZ(s) in qMZV coming
from numerical experiments and which where checked for the first 200 coefficients
but which should be also provable by using the results in |[BK].

dZ(2,3) =22(7) — 16Z(2,2,3) — 42(2,3,2) — 87(3,2,2)
—15Z(4,3) — 4Z(3,4) + 42(5,2) + 5Z(2,5) + Z(3,2) — Z(2,3),
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Zusammenfassung

Diese Arbeit beschaftigt sich mit Multiplen Eisensteinreihen, die einen Zusammenhang
zwischen Multiplen Zeta-Werten und Modulformen liefern. Multiple Zeta-Werte sind Ve-
rallgemeinerungen der Riemansschen Zeta-Werte, die eine Vielzahl von Q-linearen Rela-
tionen erfiillen. In dhnlicher Weise sind die von Gangl, Kaneko und Zagier eingefithrten
Multiplen Eisensteinreihen Verallgemeinerungen der klassischen Eisensteinreihen. Multiple
Eisensteinreihen besitzen eine Fourierentwicklung bestehend aus Produkten von Multiplen
Zeta-Werten und bestimmten g-Reihen, die als Brackets bezeichnet werden.

Aus Konvergenzgriunden gibt es mehr Multiple Zeta-Werte als Multiple Eisensteinreihen.
Das Ziel dieser Arbeit war es daher, die bisher bekannte Definition durch eine geeignete
Regularisierung Multipler Eisensteinreihen zu erweitern. Dafiir wird die Fourierentwick-
lung dieser Reihen genauer untersucht und insbesondere die Algebra Struktur der dort
auftretenden Brackets betrachtet.

Es wird gezeigt, dass die Algebra-Struktur dieser Brackets dhnlich ist zu der von Multiplen
Zeta-Werten und dass der Raum aller Brackets abgeschlossen ist under dem Operator qdiq.
Ahnlich zu den Multiplen Zeta-Werten erfiillen diese g-Reihen auch viele Q-lineare Rela-
tionen. Diese Relationen kénnen auf eine rein kombinatorische Art beschrieben werden,
indem die Brackets zu sogenannten Bi-Brackets verallgemeinert werden.

Es wird gezeigt, dass die Fourierentwicklung Multipler Eisensteinreihen eine direkte Verbindung
zu dem Koprodukt von formalen Iterierten Integralen besitzt. Mit Hilfe der Algebra Struk-
tur der Bi-Brackets und diesem Zusammenhang werden zwei Arten von regularisierten
Multiplen Eisensteinreihen angegeben.

Waéhrend der Untersuchung der Brackets stellt sich auflerdem heraus, dass diese g-Reihen
auch als g-Analogs von Multiplen zeta-Werten betrachtet werden kénnen. Dies liefert,
neben den Multiplen Eisensteinreihen, eine weitere direkte Verbindung von Modulformen

zu Multiplen Zeta-Werten.
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Abstract

This thesis studies a specific connection of multiple zeta values and modular forms given
by multiple Eisenstein series. Multiple zeta values are real numbers being natural general-
izations of the Riemann zeta values fulfilling a large class of Q-linear relations. In a similar
way multiple Eisenstein series are a generalizations of classical Eisenstein series studied
by Gangl, Kaneko and Zagier. These functions have a Fourier expansions that consists of
products of multiple zeta values and certain g¢-series, called brackets.

Due to convergence reasons there are more multiple zeta values than multiple Eisenstein
series. The goal of this thesis was to give an extended definition of regularized multiple
Eisenstein series by studying the Fourier expansion of multiple Eisenstein series and in
particular the algebraic structure of the brackets.

It is shown that the space of brackets have a similar algebraic structure as the space of
multiple zeta values and that it is closed under the differential operator qdiq. Similar to
multiple zeta values the brackets fulfill a lot of Q-linear relations. These linear relations
can be described in a combinatorial way by extending the space of brackets to a larger
class of g-series called bi-brackets.

Using this algebraic structure together with a connection of the coproduct of formal iterated
intgegrals to the Fourier expansion of multiple Eisenstein series, we define two types of
regularized multiple Eisenstein series.

Besides their appearance in the Fourier expansion, the brackets can also be seen as a ¢-
analogue of multiple zeta values. This gives another direct connection of modular forms to

multiple zeta values, since the space of modular forms is contained in the space of brackets.
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