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Abstract
Purpose: The purpose of the current investigation was to create, compare, and validate sex-specific decision 

tree models to classify metabolic syndrome.

Methods: Sex-specific Chi-Squared Automatic Interaction Detection, Exhaustive Chi-Squared Automatic 
Interaction Detection, and Classification and Regression Tree algorithms were run in duplicate using metabolic 
syndrome classification criteria, subject characteristics, and cardiovascular predictor variable from the National Health 
and Nutrition Examination Survey cohort data. Data from 1999-2012 were used (n=10,639; 1999-2010 cohorts for 
model creation and 2011-2012 cohort for model validation). Metabolic Syndrome was classified as the presence of 3 
of 5 American Heart Association National Heart Lung and Blood Institute Metabolic Syndrome classification criteria. 
The first run was made with all predictor variables and the second run was made excluding metabolic syndrome 
classification predictor variables. Given that the included decision tree algorithms are non-parametric procedures, 
all decision tree models were compared to a logistic regression based model to provide a parametric comparison. 

Results: The Classification and Regression Tree algorithm outperformed all other decision tree models and 
logistic regression with a specificity of 0.908 and 0.952, sensitivity of 0.896 and 0.848, and misclassification error of 
0.096 and 0.080 for males and females, respectively. Only one predictor variable outside of the metabolic syndrome 
classification reached significance in the female model (age). All metabolic syndrome classification predictor 
variables reached significance in the male model. Waist circumference did not reach significance in the female 
model. Within each model, 5 female and 3 male pathways built off of <3 American Heart Association National Heart 
Lung and Blood Institute Metabolic Syndrome classification criteria resulted in an increased likelihood of presenting 
Metabolic Syndrome. 

Conclusion: The proposed pathways show promise over other current metabolic syndrome classification 
models in identifying Metabolic Syndrome with <3 predictor variables, before current classification criteria.
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Introduction
Metabolic syndrome (MetS) is a constellation of cardiometabolic 

predictor variables that when presented in tandem increases the risk 
of cardiovascular disease (CVD) and insulin resistance [1,2]. The 
prevalence of this classification affects approximately 1 in 3 adults in 
the United States [3]. Due to the high prevalence of this syndrome, 
proper identification of persons with MetS is imperative in order to 
prevent and/or modify the multiple predictor variables associated with 
CVD related morbidity and mortality as well as its high healthcare costs 
[1,2,4,5]. Furthermore, utilization of pathways for MetS classification 
could guide health education professional interventions before the 
onset of related morbidity and mortality. Using Decision Trees (DT) 
as a preliminary pre-metabolic syndrome classification criterion could 
improve outcomes associated with the development of MetS or could 
halt the progression of MetS and its relative consequences [6].

Classification of metabolic syndrome

Although there have been numerous attempts to harmonize 
classification models for MetS, there remains a lack of consensus 
amongst the leading organizations with particular disagreement based 
on predictor variable cut-off points as well as which predictor variables 
should be considered in making the MetS classification [1,7-9]. More 
recently, there has been support for MetS to be considered as a pre-
morbid condition intended to inform health educators and clinicians 
on relative risk of developing CVD rather than a clinical diagnosis 
[6,10]. In lieu of a clinical diagnosis, MetS can provide a research 

framework for establishing a unified cardiometabolic pathophysiology, 
quantifying chronic disease risk, guiding clinical management 
decisions, and providing a concise methodology to inform public health 
and health education professionals of the relationship of clustering 
predictor variables [10]. 

Classification criteria based on the leading models from the 
national cholesterol

Education Adult Treatment Panel III (ATPIII), the International 
Diabetes Federation (IDF), the World Health Organization (WHO), 
and the American Heart Association National Heart Lung and 
Blood Heart Institute (AHA/NHLBI) risk models are limited in their 
usefulness because they classify MetS based on predictors with binary 
thresholds [1,2]. There currently exists limited evidence-based research 
that considers the severity of these MetS cardiometabolic predictor 
variables, their interactions with one another, and their relationship 
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algorithm: (1) 𝜒2-test for independence using an adjusted p-value for 
each predictor. (2)The predictor with the smallest adjusted p-value 
(i.e., most statistically significant) is split if the p-value less than the 
user-specified significance split level (𝛼split) is set at 0.05; otherwise the 
node is not split and is then considered a terminal node.

The stopping step utilizes the following user-specified stopping 
rules to check if the tree growing process should stop: (1) If the current 
tree reached the maximum tree depth level, the tree process stops. (2) 
If the size of a node is less than the user-specified minimum node size, 
the node will not be split. (3) If the split of a node results in a child node 
whose node size is less than the user-specified minimum child node 
size value, the node will not be split. The parent node is the level where 
the data set divides into child nodes that can themselves become either 
parent nodes or end in a terminal or decision node. (4) The CHAID 
algorithm will continue until all the stopping rules are met.

Exhaustive CHAID (E-CHAID) proposed by Biggs, DeVille, and 
Suen uses the basic CHAID algorithm with more computationally 
intensive merging and testing of response variables [17]. In the 
E-CHAID algorithm, there is no reference to any αmerge value. 
Rather category merging continues until only two categories remain. 
Therefore, careful considerations should be made for over-fitting when 
the E-CHAID algorithm is used for large data sets with large amounts 
of continuous predictor variables.

Classification and regression trees

Unlike CHAID based algorithms, the Classification and Regression 
Tree (CART) algorithm proposed by Breiman, Freidman, Stone, and 
Olshen builds purely binary trees [18]. Therefore, CART pathways 
are easier to understand as parent nodes are always split into 2 child 
nodes that partition data to maximize homogeneity of each subset. In 
the CART procedure, the maximum tree is produced followed by tree 
pruning to avoid over-fitting.

The first step in the tree growing process is to find each predictor 
variables best split. In the CART algorithm, the splitting step employs 
a statistical calculation known as the Gini Impurity Function. This 
function is a measure of how often a randomly selected case would 
be incorrectly predicted; therefore it is used to determine the optimal 
binary split of the parent node into the child nodes. In the next step 
when the stopping rules are satisfied, the best possible split is chosen 
for the predictor variable when the impurity decreases the most from 
the parent node to the child nodes. This impurity decrease is quantified 
by the Gini Improvement Measure, which measures the decrease in 
impurity from the parent node to the child node. The parent node will 
be split when the change in impurity is maximized.  

Logistic regression

Logistic Regression (LR) is a widely utilized statistical technique in 
binary response prediction [19]. However, LR output can be tedious to 
interpret and requires considerations for mutlicollinearity and missing 
values. These models are used when the response variable (𝑦) is binary 
with the response variable taking the value of 1 with probability of 
success 𝜋 or the value of 0 with probability of failure 1 − 𝜋, and the 
predictor variables (𝑥𝑖) are either categorical or continuous values 
represented by the following equation:
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Where 𝛽0 is a constant and 𝛽𝑖 are the coefficients of the predictor 
variables in the model. The LR equation, called the likelihood function, 

to CVD. A major limitation within these models is the dichotomous 
nature of predictor variable identification [6,10]. However much like 
obesity, there are varied clinical implications based on the severity of 
predictor variables used to define MetS where the dichotomized cut-
off points for each predictor variable might be clinically ambiguous. 
Furthermore, current MetS classification models lack consideration for 
established CVD predictor variables such as patient demographics (i.e. 
race/ethnicity and socioeconomic status), smoking [3] and previous 
cardiovascular events [11]. The creation of clinically feasible pathways 
for MetS classification that both stratifies each predictor variable based 
on its severity and then considers the interaction effect as predictor 
variable clusters could be invaluable for reducing risk of cardiovascular 
morbidity and mortality [5].

Decision trees

DT methodologies have been shown to be effective tools for the 
classification and prediction of cardiometabolic chronic disease such 
as MetS and insulin resistance [6,12-14]. However, with the exception 
of Miller, Fridline, Liu & Marino and Stern et al. other models have 
been based on international samples. To the best of our knowledge, 
no published pathways for MetS classification derived from DT 
methodologies have been built, validated, and implemented in clinical 
practice [6,14]. 

DTs are powerful classification and prediction techniques that 
analyze how both categorical and continuous predictor variables best 
combine to create pathways explaining the outcome of a given binary 
response variable according to statistical tests in tandem with “if-
then” logic [6,14,15]. In DT algorithms, the data set is partitioned into 
two or more mutually exclusive subsets in each split with the goal of 
producing subsets of the data which are as homogeneous as possible 
with respect to the response variable. This nonparametric modeling 
technique shows promise over traditional regression techniques in 
that DT’s make no assumptions about the underlying data including 
mutlicollinearity, are able to handle missing variables, are easily 
interpreted by non-statisticians, and consider the effects of variable 
clusters in relation to sample subsets unlike regression which considers 
the effect of each variable within the entire sample.

Chi-squared automatic interaction detection

The Chi-Squared Automatic Interaction Detection (CHAID) 
algorithm proposed by Kass operates using a series of merging, splitting, 
and stopping steps based on user-specified criteria as follows [16]. The 
merging step operates using each predictor variable where CHAID 
merges non-significant categories using the following algorithm: (1) 
Perform cross-tabulation of the predictor variable with the binary 
target variable. (2) If the predictor variable has only 2 categories, go 
to step 6. (3) 𝜒2 -test for independence is performed for each pair of 
categories of the predictor variable in relation to the binary target 
variable using the 𝜒2 distribution (df=1) with significance (αmerge) 
set at 0.05. For nonsignificant outcomes, those paired categories are 
merged. (4) For nonsignificant tests identified by αmerge >0.05, those 
paired categories are merged into a single category. For tests reaching 
significance identified by αmerge ≤ 0.05, the pairs are not merged. (5) If 
any category has less than the user-specified minimum subset size, that 
pair is merged with the most similar other category. (6) The p-values 
for the merged categories are adjusted using a Bonferroni correction to 
control for Type I error rate.

The splitting step occurs following the determination of all the 
possible merges for each predictor variable. This step selects which 
predictor is to be used to “best” split the node using the following 
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IL). Each DT analysis was run in duplicate with parent nodes defined at 
250 subjects, child node defined at 100 subjects, and significance for all 
statistical tests within each DT set at ≤ 0.05. Maximum tree depth was 
user specified at 5 levels. The NHANES cohort data was divided by sex 
to create sex-specific models for MetS classification with the 2011-2012 
cohort reserved for model validation. Each DT algorithm was run twice 
with the first model including all possible predictor variables and the 
second without any AHA/NHLBI MetS classification criteria. Predictor 
variables included the AHA/NHLBI MetS classification criteria in 
addition to binary smoking status, American Heart Association Blood 
Pressure Classification, anthropometrics [height (cm), weight (kg), 
Body Mass Index (BMI) (kg/m²), and weight classification)], marital 
status, socioeconomic status measured via Family Poverty to Income 
ratio (PIR) (a measure of adjusted family income to relative poverty 
threshold), and race/ethnicity. Each DT was assessed using classification 
specificity, sensitivity, and classification error expressed as proportions. 
Sensitivity quantifies the proportion of correctly classified MetS and 
specificity gives the proportion of correctly classified non-MetS.

Within the CART algorithm, DT predictor variables were ranked 
by level of importance related to MetS. The best DT model was chosen 
and described for each node using the total proportion of MetS and 
no-MetS classification and a MetS Index describing the estimated 
probability of MetS compared to the overall prevalence of MetS in 
the NHANES cohort. For both the training and validation sets, MetS 
classification threshold was set at the current MetS prevalence within 
the NHANES cohort in accordance with Stern et al. who used DT 
models to explain insulin resistance. In this study the classification 
threshold of the response variable was set at the response variable’s 
prevalence within the study cohort [14]. Instead of maintaining the 
50% classification threshold for the response variable, the optimal 
classification cut-off point was set to maximize the sum of theoretical 
sensitivity and specificity, as determined from the cohort data. This 
decision was made to increase the number or correctly classified cases 
of MetS.

Stepwise Forward Logistic Regression (LR) was performed on the 
predictor variables used to define MetS as a parametric classification 
comparison. This procedure was used to approximate the predictive 
power of the DT techniques. The classification threshold was set at the 
current prevalence of MetS within the NHANES cohort as mentioned 
previously. The final LR model was corrected for multicollinearity 
problems between the predictor variables by removing highly 
correlated predictor variables. Within LR, severe multicollinearity 
can cause instability in the model coefficients when highly correlated 
variables are included in the model. Variables with large amounts of 
missing data were excluded. 

is used for estimating the regression model coefficients. The maximum 
likelihood estimation method uses an iterative procedure to find the 
model coefficients that best match the pattern of observations in the 
sample data. Interpretation of the model comes from transforming the 
LR coefficients for each predictor variable by taking the exponential 
of the coefficients (𝑒𝛽𝑖) to determine the influences of each predictor 
variable on the response variable in terms of the odds ratio. To 
determine if each model coefficient is statistically significant, the Wald 
statistic is used. 

Purpose

The central hypothesis states that the decision tree pathways derived 
from DT algorithms using data from National Health and Nutrition 
Examination Survey (NHANES) cohorts would detect the presence 
of MetS in adults with <3 AHA/NHLBI MetS predictor variables. The 
current investigation had two aims. The first aim was to develop and 
validate sex-specific pathways for MetS classification using multiple 
DT derived methodologies. The second aim was to compare each DT 
model with and without MetS classification criteria. 

Materials and Methods
Data management

The study sample was derived from National Health and Nutrition 
Examination Survey (NHANES) data made publically available by the 
Centers for Disease Control and Prevention (CDC). This included 7 
cohorts from 1999-2012 collected in 2-year intervals. The data was 
arranged in a column-wise format with each subject given a sequence 
identifier. Data management was performed with dataset merging 
and data subset functions using SPSS version 22 (SPSS Inc., Chicago, 
IL). The final sample size for inclusion in model development was 
n=10,639 (male: n=5,474; female: n=5,165). The current investigation 
was approved by the Institutional Review Board.

The inclusion criteria were based on the following parameters: Age 
range of 18-59 years, 12 hour fasting protocol for laboratory values, 
abstinence from alcohol and/or tobacco use prior to laboratories, 
and a negative exam for pregnancy for females. The age criteria was 
chosen based on Ford, Li, and Zhao [3] where the highest prevalence 
of MetS was exhibited after 59 years of age. This decision was made 
in order to create pathways to detect MetS before onset of MetS with 
traditional classification criteria based on the high prevalence of MetS 
beyond age 59. Participants with missing data based on the MetS 
classification criteria were excluded due to the inability/uncertainty in 
making a complete MetS classification. The 1999-2010 cohorts were 
reserved for model creation (training) and the 2011-2012 cohort was 
reserved for model validation. Both of the training and validation sets 
were separated by sex. The distributions of all parameters were the 
same between training and validation sets. Blood pressure readings 
were the average of 4 blood pressure collections per subject. An 
indicator of cardiovascular events was built off of the presence of 1 of 
5 cardiovascular events including congestive heart failure, coronary 
heart disease, angina, heart attack, and/or stroke. 

Metabolic syndrome classification

The MetS classification was defined as the presence of 3 of 5 
predictor variables based on the clinical classification model proposed 
by the AHA/NHLBI, see Table 1 [1]. 

Statistical analysis

The DT models were developed using CHAID, E-CHAID, and 
CART algorithm analysis using SPSS version 22 (SPSS Inc., Chicago, 

Measure Defining Cut-off Points
Elevated Waist Circumference¹

Male >94 cm
Female >80 cm 

Elevated Triglycerides² ≥ 150 mg/dl 
HDL Cholesterol²

Male <40 mg/dl 
Female <50 mg/dl 

Blood Pressure² ≥130 mmHg Systolic and/or ≥ 80 mmHg 
Diastolic

Fasting Plasma Glucose² ≥100 mg/dl 

¹Values based on lowered AHA/NHLBI Guidelines [1]
²Drug therapy for dyslipidemia, hypertension, and/or hyperglycemia were 
alternate indicators meeting the criteria for MetS for that risk factor

Table 1: National Health Lung & Blood Institute Metabolic Syndrome Classification 
Criteria.
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Results
Model performance

The average prevalence of MetS within the NHANES cohort 
was 33.1%. Subject characteristics are displayed in Table 2. The best 
performing models based on specificity and sensitivity for both males 
and females (Table 3) were the CART models considering all study 
parameters as contenders for inclusion. The classification error of each 
of the best performing models were also the lowest of the DT and LR 
models at 0.096 and 0.080 for the male and female model, respectively. 

Best performing female model

The first split within the DT was based on Triglycerides (TG) which 
corroborates with the ranked order of importance in Figure 1. The 
second level was on splits based on either High Density Lipoprotein 
Cholesterol (HDL-C) or Fasting Plasma Glucose (FPG). All MetS 
classification risk-factors were present in the model with the exception 
of Waist Circumference (WC). The only non-MetS predictor variable 

that the algorithm identified as statistically significant was age for the 
female cohort (Table 4 and Figure 2) with age greater than 46 years 
were 6.3 times more likely to be classified with MetS. However, this 
predictor variable was present in the lowest level within the model. 
Within the female cohort, all the terminal nodes with significant risk 
of Mets (MetS Index>1) were based on <3 MetS classification criteria. 
Within the female model the terminal node with the highest likelihood 
of presenting with MetS using <3 AHA/NHLBI MetS classification 
criteria is interpreted as a female patient presenting with TG<150 mg/
dl, FPG100 mg/dl, and HDL<50 mg/dl. The probability of MetS for 
this pathway is 0.969 which results in being 2.910 times more likely to 
than the average likelihood of presenting with MetS (Table 4, Terminal 
Node 9). 

Best performing male model

The first split within the DT was based on TG which corroborates 
with the ranked order of importance in Figure 3. All second level splits 
were based on WC. Considering the risk-factors ranked by importance, 

 Male Female
Parameter Total MetS No Mets Total MetS No Mets

Age at Screening (year) 36 ± 13 42 ± 11 33 ± 12 37 ± 12 43 ± 11 34 ± 12
Family PIR 2.60 ± 1.65 2.69 ± 1.67 2.55 ± 1.63 2.48 ± 1.67 2.35 ± 1.64 2.53 ± 1.68
Weight (kg) 86.0 ± 19.9 97.2 ± 19.9 79.8 ± 17.0 75.3 ± 20.3 86.9 ± 21.7 70.1 ± 17.3

Standing Height (cm) 175.7 ± 7.7 175.8 ± 7.7 175.6 ± 7.8 162.2 ± 7.0 161.7 ± 7.0 162.4 ± 7.0
Body Mass Index (kg/m²) 27.8 ± 5.8 31.4 ± 5.6 25.8 ± 4.8 28.6 ± 7.3 33.1 ± 7.6 26.5 ± 6.2
Waist Circumference (cm) 96.8 ± 15.8 107.9 ± 13.8 90.8 ± 13.3 93.4 ± 16.6 104.9 ± 15.4 88.2 ± 14.3
Total cholesterol (mg/dl) 193 ± 42 205 ± 45 186 ± 39 192 ± 41 204 ± 45 186 ± 38
LDL-cholesterol (mg/dl) 117 ± 35 124 ± 36 114 ± 35 113 ± 34 122 ± 37 109 ± 32
HDL-cholesterol (mg/dl) 48 ± 13 41 ± 11 52 ± 13 56 ± 15 48 ± 13 60 ± 15

Triglyceride (mg/dl) 147 ± 149 225 ± 212 105 ± 68 115 ± 97 179 ± 144 87 ± 41
Systolic Blood Pres (mmHg) 121 ± 14 127 ± 15 118 ± 12 115 ± 15 123 ± 18 111 ± 12
Diastolic Blood Pres (mmHg) 72 ± 12 77 ± 12 69 ± 11 69 ± 11 74 ± 11 67 ± 10

Fasting Glucose (mg/dl) 104 ± 34 118 ± 48 97 ± 18 99 ± 29 115 ± 44 92 ± 14

Based on Collective Sum of 1999-2012 NHANES Cohorts

Table 2: Sample Characteristics.

  Training Validation 
Sex Model Specificity¹ Sensitivity² Risk³ Specificity¹ Sensitivity² Risk³

Male

CHAID 0.815 0.866 0.167 0.850 0.870 0.172
E-CHAID 0.814 0.834 0.179 0.796 0.835 0.191

CART 0.908 0.896 0.096 0.900 0.856 0.115
LR 0.843 0.878 0.144 0.827 0.853 0.164

CHAID-MetS 0.654 0.865 0.271 0.597 0.839 0.319
E-CHAID-MetS 0.718 0.807 0.250 0.686 0.785 0.289

CART-MetS 0.608 0.898 0.289 0.558 0.881 0.330
LR-MetS 0.746 0.776 0.244 0.738 0.811 0.239

Female

CHAID 0.889 0.822 0.132 0.870 0.756 0.160
ECHAID 0.838 0.837 0.162 0.838 0.782 0.179
CART 0.952 0.848 0.080 0.939 0.811 0.100

LR 0.881 0.854 0.127 0.878 0.835 0.134
CHAID-MetS 0.722 0.754 0.268 0.689 0.786 0.282

ECHAID-MetS 0.718 0.755 0.271 0.698 0.777 0.284
CART-MetS 0.767 0.732 0.244 0.753 0.731 0.254

LR-MetS 0.770 0.706 0.249 0.733 0.724 0.270

CHAID = Χ² Automatic Interaction Detection, E-CHAID = Exhaustive Χ² Automatic Interaction Detection, CART = Classification and Regression Tree, LR = Logistic 
Regression 
Bold values indicate best performing models
¹Specificity = Proportion of correctly classified non-MetS cases
²Sensitivity = Proportion of correctly classified MetS cases
³Risk = MetS misclassification defined as total proportion of MetS misclassification

Table 3: Model Performance.
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BMI was in the top predictor variables. However this predictor variable 
did not appear in the model. Within the male DT, there were 3 
pathways that resulted in a significant increase in likelihood of MetS 
(MetS Index>1) was based on <3 MetS criteria (Table 5 and Figure 4). 
Within the male model the terminal node with the highest likelihood 
of presenting with MetS using <3 AHA/NHLBI MetS classification 
criteria is interpreted as a male patient presenting with TG ≥ 150 mg/
dl, WC<94 cm, and a FPG>100 mg/dl. The probability of MetS for 
this pathway is 0.655 which results in being 1.967 times more likely to 
than the average likelihood of presenting with MetS (Table 5, Terminal 
Node 10). 

Discussion
The purpose of the current investigation was to create, compare, 

and validate sex-specific DT models to classify MetS. DT models were 
derived using CHAID, E-CHAID, and CART algorithms based on the 

presence of MetS as the response variable and the MetS classification 
criteria, predictor variables from cardiovascular risk model and subject 
characteristics as the predictor variables whose values were obtained 
from 1999-2012 NHANES data [3,6,10,11,13]. MetS is classified by 
the presence of 3 of 5 criteria defined by AHA/NHLBI classification 
guidelines [1]. 

This study has multiple novelties. First, these models are based 
on large amounts of data that is representative of adults in the United 
States. Second, the pathways derived from this model show promise 
in accurately classifying sex-specific MetS using fewer measurements 
than traditional classification criteria. Third, unlike traditional MetS 
classification models, the pathways of the current investigation do 
not provide universal cutoffs for each predictor variable. Rather, these 
pathways consider the clustering and multilevel interactions among 
predictor variables to identify stepwise pathways to classify MetS. 
Finally, each pathway describes the likelihood of developing MetS.
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Figure 1: Female CART Decision Tree Ranked Order of Normalized Importance.

Terminal Node Level 1 Level 2 Level 3 Level 4 Level 5 MetS¹ MetS Index²
9 TG<150 FPG ≥ 100 HDL-C<50 * * 0.969 2.910
5 TG ≥ 150 HDL-C<50 * * * 0.962 2.889

12 TG ≥ 150 HDL-C ≥ 50 FPG ≥ 100 * * 0.956 2.871
14 TG<150 FPG ≥ 100 HDL-C ≥ 50 SBP ≥ 130 * 0.897 2.694
16 TG<150 FPG ≥ 100 HDL-C ≥ 50 SBP<130 Age ≥ 46 0.391 1.174
11 TG ≥ 150 HDL-C ≥ 50 FPG<100 * * 0.330 0.991
8 TG<150 FPG<100 SBP ≥ 131 * * 0.304 0.913
15 TG<150 FPG ≥ 100 HDL-C ≥ 50 SBP<130 Age<46 0.062 0.186
7 TG<150 FPG<100 SBP<131 * * 0.024 0.072

TG = Triglycerides (mg/dl), WC = Waist Circumference (cm), FPG = Fasting Plasma Glucose (mg/dl), SBP = Systolic Blood Pressure (mmHg), HDL-C = High Density 
Lipoprotein Cholesterol (mg/dl), Age (years)
Bold values indicate that the predictor reached the MetS threshold within the AHA/NHLBI MetS Classification Criteria
* Indicates no further node splits within level
¹Probability of MetS Classification
² MetS Index = Estimated probability of MetS compared to the overall prevalence of MetS in the NHANES cohort (33.1%)

Table 4: Female CART Decision Tree Model Performance.
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Figure 2: Female MetS Classification Decision Tree. Tree Growth Method = CART. All study parameters were contenders for inclusion on CART model. The absence 
of a parameter indicates that it did not reach significance for inclusion in the model.
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In this study the prevalence of MetS within the NHANES cohort, a 
representative sample of the United States adult population, was 33.1% 
which approximates Ford, Li, & Zhao’s study that found the prevalence 
of MetS within the NHANES cohort to be 34.3% [3].

The first level split indicates the risk-factor with the highest 
association with MetS. The first level split was based on TG which 
corroborates with Worachartcheewan et al. who used CART to classify 
MetS in a sample of Thai men and women [13]. The results of this study 
also corroborate with Miller, Fridline, Liu, & Marino who used the 
CHAID algorithm to classify MetS in a sample of young adults using 
NHANES data. The best performing model in this study was built as 
a user-specified first level split on WC [6]. When the algorithm was 
not user-specified, the CHAID algorithm identified TG as the first level 
split. Interestingly in this study, the proposed CHAID model with the 
user-specified first split on WC outperformed the CHAID algorithm 
without first-level split specification and the logistic regression model 
in both overall sensitivity and classification accuracy for MetS.

There were notable differences between the male and female 
models. The first was that WC was present in the male model but not 
the female model. This phenomenon might be based on the body fat 
distribution of women prior to menopause that occurs in women at or 
near the age split identified by the DT model [20]. This suggests that a 
moderate increase in adiposity would not result in a significant increase 
in central adiposity. Therefore the WC measurement might not be 
warranted in women. Conversely for men, the body fat distribution 
would contribute to increases in central adiposity as body fat increases. 
This finding corroborates with Hari et al. who compared sex-specific 
differences between multiple MetS classification models and found that 
measures of central adiposity, specifically WC, were more profound 

for males than females [21]. Future investigation regarding this 
phenomenon is warranted considering that physicians and health 
professionals recommend WC measurements for both sexes. 

Also notable was the close relationship between WC and BMI 
based on the normalized order of importance in Figures 1 and 4. 
Both WC and BMI have been shown to be a strong proxy of visceral 
adiposity [22]. However, BMI only considers the relationship of 
weight to height and does not consider actual body composition and 
girth measurements. Central adiposity has been identified as a strong 
predictor of MetS and a strong contributor to BMI and Despres et 
al. demonstrated a strong correlation between BMI and WC which 
suggests the interchangeability of measures [22]. Given that WC was 
more significantly associated with MetS than BMI, the inclusion of WC 
most likely diminished the effect of BMI in the DT models. Therefore 
WC seems to be a more sensitive predictor of MetS than BMI.

Also interesting in the female model was the inclusion of a non-
MetS classification criterion parameter, age. Although this factor was 
not present in a high-risk MetS pathway (MetS Index>1), age ≥ 46 
years were 6.3 times likely to present with MetS than females within 
this pathway with an age<46 years. One suggestion for the split based 
on age was at 46 years relates to the cardiometabolic changes related 
to menopause. However, a review by Barret-Conner of menopause 
in relation to CVD risk in women delineated the direct relationship 
between menopause and CVD risk [23]. The methodology of the 
current investigation was unable to explain the inclusion of this 
predictor. Further investigation exploring the relationship between 
central adiposity and likelihood of presenting with MetS for women by 
age and pre, peri, and post-menopause is warranted.

A successful improvement in current methodologies using the 
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Figure 3: Male CART Decision Tree Ranked Order of Normalized Importance.
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Figure 4: Male MetS Classification Decision Tree. Tree Growth Method = CART. All study parameters were contenders for inclusion on CART model. The absence 
of a parameter indicates that it did not reach significance for inclusion in the model.

models developed in the current investigation in relation to other 
classification models would be the classification of MetS with less 
than 3 risk-factors and/or identify the MetS risk of multiple clustering 
combinations of predictor variables. In the female model all of the 
pathways leading to increased risk of MetS were based on less than 
3 predictor variables. However, in the male model only one pathway 
required less than 3 predictor variables for MetS classification. Clinical 
application of these pathways can inform health educators and/or 
clinicians identifying high risk pathways and focusing on interventions 
that could shift a patient to a lower risk pathway. 

Conclusions
In summary, the current investigations findings suggest that DT-

based pathways to classify MetS and likelihood of presenting with MetS 
could detect MetS before other classification models. Within the female 
model, waist circumference measures did not reach significance as a 
predictor variable. However, age did reach significance for inclusion 
in the female model. Five of the pathways with increased likelihood 
of MetS in the female model were built using ≤ 2 MetS AHA/NHBLI 
classification criteria. Three of the pathways with increased likelihood 
of MetS in the male model were built using ≤ 2 MetS AHA/NHLI 
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classification criteria. Future research warrants the implementation 
and further validation of these pathways using a clinical sample. 
There still remains no clinically established criterion for pre-metabolic 
syndrome. These pathways show promise in developing a preliminary 
pre-metabolic syndrome classification tool to guide intervention before 
the onset of MetS using current models. 
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Terminal Node Level 1 Level 2 Level 3 Level 4 Level 5 MetS¹ MetS Index²
16 TG<150 WC > 94 FPG ≥ 100 SBP > 130 * 1.000 3.003
19 TG<150 WC > 94 FPG ≥ 100 SBP<130 HDL-C<40 1.000 3.003
12 TG ≥ 150 WC ≥ 94 FPG > 98 * * 0.990 2.973
17 TG ≥ 150 WC ≥ 94 FPG ≤ 98 HDL-C<40 * 0.990 2.973
10 TG ≥ 150 WC<94 FPG ≥ 100 * * 0.655 1.967
9 TG ≥ 150 WC<94 FPG<100 * * 0.650 1.952
18 TG ≥ 150 WC ≥ 94 FPG ≤ 98 HDL-C ≥ 40 * 0.372 1.117
13 TG<150 WC ≤ 94 FPG<100 HDL-C<40 * 0.353 1.060
20 TG<150 WC>94 FPG ≥ 100 SBP<130 HDL-C ≥ 40 0.299 0.898
14 TG<150 WC ≤ 94 FPG ≥ 100 HDL-C ≥ 40 * 0.046 0.138
3 TG<150 WC ≤ 94 * * * 0.015 0.045

TG = Triglycerides (mg/dl), WC = Waist Circumference (cm), FPG = Fasting Plasma Glucose (mg/dl), SBP = Systolic Blood Pressure (mmHg), HDL-C = High Density 
Lipoprotein Cholesterol (mg/dl), Age (years)
Bold values indicate that the predictor reached the MetS threshold within the AHA/NHLBI MetS Classification Criteria
* Indicates no further node splits within level
¹Probability of MetS Classification
² MetS Index = Estimated probability of MetS compared to the overall prevalence of MetS in the NHANES cohort (33.1%)

Table 5: Male CART Decision Tree Model Performance.
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