GUIDING ABC

Dr Chan Ka Chun Alan Queen Elizabeth Hospital

Guiding vs. Diagnostic catheters

A Guide has

- Stiffer shaft
- Re-enforced construction (3 vs. 2 layers)
- Larger internal diameter (ID)
- Shorter & more angulated, non tapering atraumatic tip

Guiding Catheters Provide:

- Conduit for device and wire transport
- Vehicle for contrast injection
- Pressure measurement
- Support for device advancement

GUIDE SELECTION CONSIDERATIONS

- Location and complexity of Lesion
- Native Coronary vs Graft
- Coronary Anatomy
- French Size (6, 7, 8)
- Femoral, Radial
- User Style (Active vs Passive Placement)
- Aortic Width
- Operator's Familiarity with Specialty Curves

Femoral vs Right RA vs Left RA

6 FR Guides

- **PROS** Small arterial puncture
 - Brachial/radial access
 - Permit active support

7-8 FR Guides

- Better passive support
- Better visualization
- Better torque response
- More device options

- CONS Less torque response
 - Less visualization

- Large arterial puncture
- Pressure dampening
- Limited to PTCA & stents More contrast

Relative Size

Adapted from From AM, Gulati R, Prasad A, Rihal CS. CCI 2010. 76: 911-916

Commercial Sheathless Guide System

- ID of 7.5 Fr guide
- OD of 6 Fr sheath
- Tapered dilator
- Hydrophilic coated
- Smooth insertion, little spasm
- Tendency to slip
- Expensive

Sheathless Eaucath, Asahi Intecc®, Japan

Courtesy Rajiv Gulati

MAJOR ADVANCEMENT OF TRI

Design Concept Thinner sheath wall thickness to make outer diameter smaller

Size variation

3 size variation to improve daily TRI practice

- Support provided by either anatomy or catheter composition/curve shape
- Minimal manipulation of the guide required
- Firm catheter is preferred over a soft catheter
- Uses shaft support/curve configuration to maintain ostial position
- Rarely deep-seat the catheter

- Uses aortic root to form desired curve shape and provide backup support
- Comfortable with manipulation of catheter (active engagement)
- Prefers catheters that are flexible and can reshape in vivo
- Commonly used for deployment of stents or bulky devices

Co-Axial Alignment

ARTERIAL PRESSURE TRACINGS FROM GUIDING CATHETER

Normal

Ventricularization

Damped

Note: Side holes allow perfusion, but don't prevent guiding catheter injury to the ostium

COMMON TAKEOFFS OF LEFT CORONARY ARTERY

Horizontal

Inferior

Common Takeoffs of Right Coronary Artery

Horizontal

Inferior

Superior

Curve/Tip Length

Curve/Tip Length

CURVE LENGTH

Shorter curve: may be useful for superior orientation

Longer curve: May be useful for inferior orientation

Tip Orientation

Guiding Catheter Selection - LCA

Normal JL4,EBU3.5

Dilated Root JL5, EBU4, AL

Superior Origin AL, EBU

Short Left Main JL4 Short Tip, JL3.5

Tip Rotation-JL Catheters

Counter-clockwise to LAD * Clockwise to LCX *

*Assumes tip is engaged in left main; clockwise rotation will turn primary curve anteriorly, and the tip will point posteriorly

Amplatz Left

Amplatz Removal

Advance catheter

Rotate tip away from ostium

GUIDING CATHETER SELECTION: SVG TO LCA

RAO 30°

GUIDING CATHETER SELECTION: SVG TO RCA (OR LPDA)

1. Horizontal - JR4, RCB, AL, MP

2. Inferior - MP, AL

2

GUIDING CATHETER SELECTION: IMA

- IMA catheter: standard
- JR: sometimes useful from radial/brachial approach
- * Don't be "locked-in" to the AP projection Shallow RAO, LAO views are very useful in "tough cases"

LCB

IMA

Back-Up Support

The ability of the guiding catheter to remain in position and provide a stable platform for the advancement of interventional equipment

- Passive Support: Relies on properties of the shaft and tip to maintain position in the ostium
- Active Support: Relies on active manipulation of guiding catheter to gain support, by rotating the catheter and/or actively advancing the catheter (deep-seating maneuver)

DEEP-SEATING MANEUVER

GUIDING CATHETER SELECTION AND SUPPORT

Guiding Catheter Support

without support

extra support from

power support from

Left Coronary Curves

Right Coronary Curves

Short Tip JR

Bypass Graft Curves

EXTRA-SUPPORT GUIDING CATHETERS:

Support from the Ipsilateral Sinus of Valsalva

Amplatz Coronary Curves

Multipurpose Curves

POWER GUIDES:

Maximum Support from Opposite Wall of Aorta

EBU (Extra Back Up) Curves

M.A.C. Multi-Aortic Curve

For left and right coronaries, femoral or radial approach

Backup Support - Hyper shaft

Focusing on flexibility of the tip, soft resin material is applied in Hyperion. While resin normally gets deformed due to heat, ASAHI's unique technology enables the catheter to have flexibility, back up support, and anti-heat deformation.

Backup Support ~anti- heat deformation~

The curve is extended in warm water to a shape as if it is engaged, and the catheter tip is fixed onto the axis of the force gauge. The back-up support is evaluated by measuring the change of force in certain time intervals (0–120 mins)

Backup Support ~2nd curve~

2nd curve with high rigidity provides good retention of the curve.

Backup Support ~3rd curve~

Unique curve proximal to 2nd curve provides stable backup support by increasing the area of the catheter in contact with the aorta wall.

JL/AL shape

Maneuverability – HENKA-Braid

Unlike conventional guiding catheters, Hyperion's shaft is braided differently at the proximal and the distal area.

- \Rightarrow enables transmission of the push force
 - prevents backing out of the catheter

HENKA-Braid

- Asahi Intecc's unique braiding technology provides well-balanced shaft with reinforced supportive shaft that gradually becomes softer towards the tip

Flexible Tip -Material

Soft material & tungsten powder – same as that of the ASAHI Corsair

Facilitates safe engagement and precise positioning due to its flexibility and visibility.

All Round Processed Tip

All Round Processed Tip

Without sharp edges on the tip, the Hyperion can be maneuvered safely.

Round processed tip of the conventional products All round processed Tip of Hyperion

Shape Type	Shape Code	Usable Length	Catalog No. 6Fr	Catalog No. 7Fr	Catalog No. 8Fr
Judkins Left	JL3.5	100cm	HJ60JL350P10000	HJ70JL350P10000	
	JL3.5 ST	100 cm	HJ60JL350P10001	HJ70JL350P10001	
	JL3.5 SH	100 cm	HJ60JL352P10000	HJ70JL352P10000	HJ80JL352P10000
	JL3.5 STSH	100cm	HJ60JL352P10001*	HJ70JL352P10001	HJ80JL352P10001
	JL4.0	100 cm	HJ60JL400P10000	HJ70JL400P10000	-
	JL4.0 ST	100 on	HJ60JL400P10001	HJ70JL400P10001	-
	JL4.0 SH	100 on	HJ60JL402P10000	HJ70JL402P10000	HJ80JL402P10000
	JL4.0 STSH	100 cm	HJ60JL402P10001*	HJ70JL402P10001	HJ80JL402P10001
Judkins Right	JR3.5	100 cm	HJ60JR350P10000	HJ70JR350P10000	-
	JR3.5 SH	100 cm	HJ60JR352P10000	HJ70JR352P10000	HJ80JR352P10000
	JR4.0	100cm	HJ60JR400P10000	HJ70JR400P10000	-
	JR4.0 SH	100 om	HJ60JR402P10000	HJ70JR402P10000	HJ80JR402P10000
Amplatz Left	AL0.75	100 cm	HJ60AL070P10000	HJ70AL070P10000	-
	AL0.75 SH	100cm	HJ60AL072P10000	HJ70AL072P10000	HJ80AL072P10000
	AL1.0	100cm	HJ60AL100P10000	HJ70AL100P10000	III
	AL1.0 SH	100 cm	HJ60AL102P10000	HJ70AL102P10000	HJ80AL102P10000
	AL1.5	100 cm	HJ60AL150P10000	HJ70AL150P10000	
	AL1.5 SH	100 om	HJ60AL152P10000	HJ70AL152P10000	HJ80AL152P10000
Short Amplatz Left	SAL0.75	100 om	HJ60AL070P10002*	HJ70AL070P10002*	
	SAL0.75 SH	100 cm	HJ60AL072P10002*	HJ70AL072P10002*	HJ80AL072P10002*
	SAL1.0	100 cm	HJ60AL100P10002	HJ70AL100P10002	-
	SAL1.0 SH	100om	HJ60AL102P10002	HJ70AL102P10002	HJ80AL102P10002
	SAL1.5	100 om	HJ60AL150P10002	HJ70AL150P10002	-
	SAL1.5 SH	100 cm	HJ60AL152P10002	HJ70AL152P10002	HJ80AL152P10002
Power Backup	PB3.0	100 cm	HJ60PB300P10000	HJ70PB300P10000	
	PB3.0 SH	100 om	HJ60PB302P10000	HJ70PB302P10000	HJ80PB302P10000
	PB3.5	100 on	HJ60PB350P10000	HJ70PB350P10000	-
	PB3.5 SH	100 cm	HJ60PB352P10000	HJ70PB352P10000	HJ80PB352P10000
	PB4.0	100 cm	HJ60PB400P10000*	HJ70PB400P10000	
	PB4.0 SH	100 om	HJ60PB402P10000*	HJ70PB402P10000	HJ80PB402P10000
Super Power Backup	SPB3.0	100 cm	HJ60SP300P10000	HJ70SP300P10000	-
	SPB3.0 SH	100 cm	HJ60SP302P10000	HJ70SP302P10000	HJ80SP302P10000
	SPB3.5	100 on	HJ60SP350P10000	HJ70SP350P10000	-
	SPB3.5 SH	100 cm	HJ60SP352P10000	HJ70SP352P10000	HJ80SP352P10000
	SPB3.75	100 cm	HJ60SP370P10000	HJ70SP370P10000	—
	SPB3.75 SH	100cm	HJ60SP372P10000	HJ70SP372P10000	HJ80SP372P10000
	SPB4.0	100cm	HJ60SP400P10000	HJ70SP400P10000	-
	SPB4.0 SH	100 cm	HJ60SP402P10000	HJ70SP402P10000	HJ80SP402P10000
Special C	SC3.5	100 om	HJ60SC350P10000*	HJ70SC350P10000*	
urve	SC3.5 SH	100 cm	HJ60SC352P10000*	HJ70SC352P10000*	HJ80SC352P10000*
ICA Backup	RB0.75	100 cm	HJ60RB070P10000*	HJ70RB070P10000*	-
\sim	RB0.75 SH	100 cm	HJ60RB072P10000*	HJ70RB072P10000*	HJ80RB072P10000*
	RB1.0	100 cm	HJ60RB100P10000*	HJ70RB100P10000*	-
	BB10 SH	100	H I6088102810000*	H 17088102810000*	H I8088102810000*

TRANS RADIAL INTERVENTION

Ikari Guide Catheters

Ikari et al. J Invasive Cardiol 2005 ;17:636-41

Original position (A, C) and Power position (B, D) The angle between the catheter and the reverse side of the aorta is small in A but big as 90 degree in B. Thus, backup force is strong in power position. The distal tip of the catheter is not inserted deeply (D)

Power position is easily formed by pushing the Ikari L catheter. In the power position, the catheter attaches on the reverse side of the aorta firmly and can generate great backup force. Furthermore, the catheter does not touch aortic valve. It never complicates aortic regurgitation

LEFT MAIN STENOSIS

ISSUES: Co-axial alignment, Power guide not necessary

JI 4

LCx: Right Angle Takeoff

Right angle takeoff

Significant tortuosity

Distal target lesion

ISSUES: Co-axial alignment and extra support

GUIDE: EBU, XB, AL

ISSUES: Co-axial alignment Extra support may be needed

GUIDE: EBU3.5

LAD: Total Occlusion

RCA: Horizontal Takeoff

ISSUES: Co-axial alignment JR4 may point inferiorly Extra support not necessary

GUIDE: JR4 ST JR 3.5 AR 1

Simple lesion

RCA: Horizontal Takeoff

Very tortuous vessel

ISSUES: Co-axial alignment; Extra- or powersupport because of tortuosity

GUIDE: AR, HS, AL, MAC

Origin is superior & anterior

Usual origin of RCA in RSV

RCA: High-Anterior Origin

ISSUES: Co-axial alignment Anomalous origin is challenging for JR4

GUIDE: AL Hockey stick Multipurpose

Ostial RCA: Inferior Takeoff

ISSUES: Co-axial alignment is crucial

(Rotablator)

Powerguide is unnecessary & will make the procedure more difficult

GUIDE: JR4 JR4 ST JR 3.5

RCA: Shepherd Crook

ISSUES: Co-axial alignment

"Simple" lesion, so extrasupport is not necessary

Aggressive position with AL should be avoided

GUIDE: Hockey stick

RCA: Shepherd Crook

- Long shepherd crook
- ISSUES: Co-axial alignment
 - Extra support is necessary because of tortuosity

GUIDE: Hockey stick

SVG to LAD: Ostial Lesion

ISSUES: Co-axial alignment (JR4 is OK, but slightly short)

GUIDE: JR5, AR1

SVG to LAD: Superior Takeoff

ISSUES: Co-axial alignment for superior takeoff

Extra support not necessary unless lesion is rigid

GUIDE: Hockey stick LCB IMA

SVG to PDA: Inferior Takeoff

Ostial disease (may have to treat this, too)

ISSUES: Co-axial alignment Aggressive guide may make it more difficult to treat the ostium

GUIDE: MP AR AL

Anomalous RCA

High, anterior takeoff with inferior course

Usual origin of RCA

GUIDE: AL

Anomalous RCA

A TYPICAL CASE

IL 4.0 GUIDING, LMN BIFURCATION PCI

SIMPLE AND ADVANCED ANCHORING BALLOON

SIMPLE AND ADVANCED ANCHORING BALLOON

CONCLUSION

- Characteristic of guiding
- different guiding shape to fit different anatomy
- Passive vs active guide manipulation
- Concept of action and reaction in PCI mechanics
- A good choice of guiding make half of the success of a PCI

