

SEA CUCUMBERS AS NOVEL RESOURCE IN THE NORTH ATLANTIC:

NOVEL OPPORTUNITIES FOR BIOMATERIAL AND MEDICINAL PRODUCT DEVELOPMENT 3D tissue scaffolds: under extensive development

> Pharmaceuticals: under development

ØREFORSKING

10/13/2020

Cosmeceuticals: available

FAO ZONE CODE (ATLANTIC OCEAN AND ADJACENT SEAS)	SUBZONES	SEA CUCUMBER SPECIES		
18 (Arctic Sea)	Alaska, Hudson Bay, Gulf of St. Lawrence	Cucumaria frondosa		
21 (Atlantic, Northwest)	(21.2 H/J); (21.6 B/C) West Greenland coast and Canadian East coast	C. frondosa		
	27.2: <u>Norwegian Sea,</u> <u>Spitzbergen, and Bear Island</u> ; 27.4: <u>North Sea</u>	Parastichopus tremulus		
	27.7: Irish Sea, West of	P. tremulus;		
	Ireland, Porcupine Bank,	P. regalis;		
	Eastern and Western English	Holothuria tubulosa,		
	<u>Channel, etc</u> .	H. forskali,		
27		Thyone fusus		
(Atlantic, Northeast)	27.8: Bay of Biscay	P. tremulus; P. regalis; H. forskali		
	27.9a: Portuguese waters	P. tremulus; P. regalis; H. forskali; Aslia lefevrei		
	27.10: Azores Grounds and	H. tubulosa,		
	Northeast Atlantic South	H. forskali,		
		H. arguinensis,		
		H. mammata		
	27.14: East Greenland	P. tremulus		

Distribution of 10 North Atlantic Sea Cucumber species

Distribution data per species available at:

www.sealifebase.org www.marinespecies.org www.iucnredlist.org

10/13/2020

Dr. Miroslava ATANASSOVA, Møreforsking AS

Distribution of North Atlantic Sea Cucumber species and state of the art genomic information

FAO ZONE CODE (ATLANTIC OCEAN AND ADJACENT SEAS)	SUBZONES	SEA CUCUMBER SPECIES	
34	34.1 and 34.3: Northern	P. regalis,	
(Atlantic, Eastern Central	and Southern Coastal Africa	H. arguinensis, H. poli (34.3 only!)	
		H. mammata (34.3 only!)	
37 (Mediterranean and Black Sea)	37.1, 37.2 and 37.3: Mediterranean Western, Central and Eastern	H. tubulosa (1 and 3 only) H. forskali (1 and 3 only), H. arguinensis (1 only), H. poli (all three subzones) H. mammata (all three subzones), T. fusus (all three subzones)	
41 (Atlantic Southwest)	41.1: Amazon, 41.2 (2.1 and 2.2.: Santos and Rio Grande and 41.3: Patagonia	H. grisea	

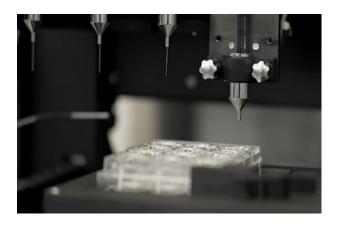
In the National Center for Biotechnology Information (NCBI) site full genome information from *HOLOTHUROIDEA* is available for 8 sea cucumber species:

Apostichopus japonicus, A. leukothele, A. parvimensis, Australostichopus mollis, Stichopus horrens, Actinopyga echinites, Holothuria glaberrima and Paelopatides confundens.

One of these species is from the Atlantic – H. glaberrima

Several open bioprojects on full genome sequencing in process for H. polii, H. scabra, H. arguinensis, H. nobilis, H. forskali,

Dr. Miroslava ATANASSOVA, Møreforsking AS


3D-engineered tissue & organ development

Due to the limited availability of donor tissues and organs for clinical applications a lot of attention has been paid in the past 20 years in translational medical research to tissue and organ engineering;

The scaffolds or "supports" that ensure cell survival in these engineered tissues and organs are often composed of biopolymers which form hydrogels under physiological conditions;

The scaffold biopolymers need to be:

- > non-toxic/biocompatible,
- widely available and cheap,
- not elicit immune response in the host,
- have a controlled degradation process and kinetics,

➢ have specific mechanical and physico-chemical properties to ensure best functionality of the

constructs

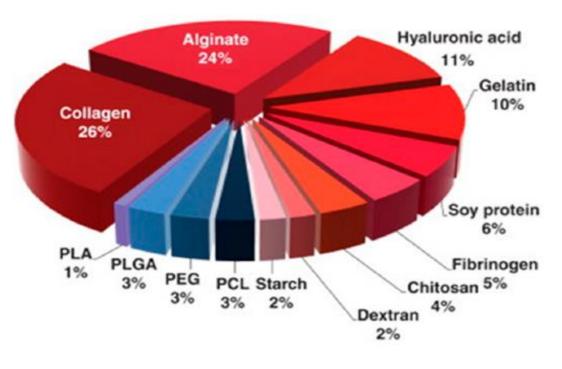
10/13/2020

OF IH AT

NORA

3D tissue scaffold development from marine sources

Review


Biomaterials Based on Marine Resources for 3D Bioprinting Applications

Yi Zhang ¹, Dezhi Zhou ², Jianwei Chen ¹, Xiuxiu Zhang ¹, Xinda Li ², Wenxiang Zhao ² and Tao Xu 1,2,*

- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China; yi-zhang16@mails.tsinghua.edu.cn (Y.Z.); chenjw17@mails.tsinghua.edu.cn (J.C.); zhangxx19@mails.tsinghua.edu.cn (X.Z.)
- ² Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China; zhoudz17@mails.tsinghua.edu.cn (D.Z.); li-xd15@mails.tsinghua.edu.cn (X.L.); zhaowx19@mails.tsinghua.edu.cn (W.Z.)
- * Correspondence: taoxu@mail.tsinghua.edu.cn; Tel.: +86-10-62798112

Received: 13 August 2019; Accepted: 25 September 2019; Published: 28 September 2019

ORTH ATLA

CUCUMBER

3D tissue scaffold development from marine sources

Table 4. Resume of marine-derived biomaterial hydrogels in 3D bioprinting for tumor model.

Marine-Derived Biomaterial	Marine Biomaterial Resources	Tumor Model	Bioink Composites	3D Bioprinting Technology	Ref.	
	Brown algae	Cervical	Gelatin/alginate/fibrinogen/Hela cells	Extrusion bioprinting	[231]	
			Alginate/U87 glioma cell line	Extrusion bioprinting	[34]	
		Glioma	Gelatin/alginate/fibrinogen/glioma stem cell	Extrusion bioprinting	[27,225]	
			Gelatin/alginate/fibrinogen/glioma stem cell/human mesenchymal stem cells	Coaxial extrusion bioprinting	[234]	
Alginate			Alginate/glioma stem cell/U118 glioma cell line	Coaxial extrusion bioprinting	[226]	
		Breast	Alginate/gelatin/MDA-MB-231 breast cancer cells	Extrusion bioprinting	[230]	
			Alginate/gelatin or collagen/breast epithelial cells	Extrusion bioprinting	[232]	
		Lung		Alginate/gelatin/lung cancer cell A549/95-D	Extrusion bioprinting	[229]
		Pituitary adenoma	Alginate/gelatin/rat pituitary adenoma GH3 cells	Extrusion bioprinting	[233]	
Chitosan	Shell -	Glioma	Chitosan/HA/glioma stem cell	Extrusion bioprinting	[224]	
		Neuroblastoma	Chitosan/gelatin/neuroblastoma cells	Extrusion bioprinting	[227]	

Citation: Zhang et al., Mar Drugs, 2019

Dr. Miroslava ATANASSOVA, Møreforsking AS

ORTH ATL

3D tissue scaffold development in the case of sea cucumbers

Collagens from at least 5 Indo-Pacific species have already been partially or fully characterized From the Atlantic species – *H. glaberrima* and *C. frondosa* have been thoroughly studied in this aspect

Available online at www.sciencedirect.com

Matrix Biology 21 (2003) 625-635

(2003) 625-635

Purification, characterization and cloning of tensilin, the collagen-fibril binding and tissue-stiffening factor from *Cucumaria frondosa* dermis

Jennifer P. Tipper^{a,*}, Gillian Lyons-Levy^a, Mark A.L. Atkinson^b, John A. Trotter^a

*Department of Cell Biology and Physiology, University of New Mexico School of Medicine, BMSB/155, Camino de Salud, Albuquerque, NM 87131, USA *University of Texas Health Center at Tyler, TX 75708, USA

Received 20 August 2002; received in revised form 8 October 2002; accepted 8 October 2002

Abstract

The inner dermis of the sea cucumber, *Cucumaria frondosa*, is a mutable collagenous tissue characterized by rapid and reversible changes in its mechanical properties regulated by one or more protein effectors that are released from neurosecretory cells. One such effector, tensilin, is a collagen-fibril binding protein, named for its ability to induce dermis stiffening. Tensilin was purified using an affinity column constructed from *C. frondosa* collagen-fibrils. The protein migrates as a single band on SDS-PAGE (Mr ~33 kDa) and has an isoelectric point of 5.8. Equilibrium sedimentation experiments suggest a molecular mass of ~28.5–29.4 kDa. Carbohydrate analysis of tensilin revealed no measurable sugar content. The molar amount of tensilin was determined to be 0.38% that of collagen and 47% that of stiparin, a constitutive matrix glycoprotein. A full-length cDNA clone

OPEN CCESS Freely available online

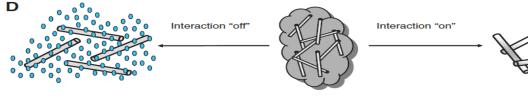
Softenin, a Novel Protein That Softens the Connective Tissue of Sea Cucumbers through Inhibiting Interaction between Collagen Fibrils

Yasuhiro Takehana¹*, Akira Yamada², Masaki Tamori¹, Tatsuo Motokawa¹

1 Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan, 2 Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo, Japan

Abstract

The dermis in the holothurian body wall is a typical catch connective tissue or mutable collagenous tissue that shows rapid changes in stiffness. Some chemical factors that change the stiffness of the tissue were found in previous studies, but the molecular mechanisms of the changes are not yet fully understood. Detection of factors that change the stiffness by working directly on the extracellular matrix was vital to clarify the mechanisms of the change. We isolated from the body wall of the sea cucumber Stichopus chloronotus a novel protein, softenin, that softened the body-wall dermis. The apparent molecular mass was 20 kDa. The N-terminal sequence of 17 amino acids had low homology to that of known proteins. We performed sequential chemical and physical dissections of the dermis and tested the effects of softenin on each dissection stage by dynamic mechanical tests. Softenin softened Triton-treated dermis whose cells had been disrupted by detergent. The Triton-treated dermis was subjected to repetitive freeze-and-thawing to make Triton-Freeze-Thaw (TFT) dermis that was softer than the Triton-treated dermis, implying that some force-bearing structure had been disrupted by this treatment. TFT dermis was stiffened by tensilin, a stiffening protein of sea cucumbers. Softenin softened the tensilin-stiffened TFT dermis while it had no effect on the TFT dermis without tensilin treatment. We isolated collagen from the dermis. When tensilin was applied to the suspending solution of collagen fibrils, they made a large compact aggregate that was dissolved by the application of softenin or by repetitive freeze-and-thawing. These results strongly suggested that softenin decreased dermal stiffness through inhibiting cross-bridge formation between collagen fibrils; the formation was augmented by tensilin and the bridges were broken by the freeze-thaw treatment. Softenin is thus the first softener of catch connective tissue shown to work on the cross-bridges between extracellular materials.



3D tissue scaffold development in the case of sea cucumbers

SET HATLAN

Several artificial constructs, mimicking the mechanical properties of sea cucumber collagens have been developed

as novel materials in parallel

008

a steep vetocity profile at the norizon. Here the various aspects of the physics of artificial black holes conspire together, in contrast to most other proposals (1-4, 10-16).

References and Notes

- Artificial Black Holes, M. Novello, M. Visser, G. E. Volovik, Eds. (World Scientific, Singapore, 2002).
 G. E. Volovik, The Universe in a Helium Droplet
- (Clarendon Press, Oxford, 2003).
 W. G. Unruh, R. Schützhold, *Ouantum Analogues: From*
- W. G. Unruh, R. Schutzhold, Quantum Analogues: Fr Phase Transitions to Black Holes and Cosmology (Springer, Berlin, 2007).

 R. Schützhold, W. G. Unruh, *Phys. Rev. D* 66, 044019 (2002).
 G. E. Volovik, *J. Exp. Theor. Phys. Lett.* 76, 240 (2002).
 U. Leonhardt, P. Piwnicki, *Phys. Rev. Lett.* 84, 822

(2000). 16. U. Leonhardt, Nature 415, 406 (2002). 17. P. W. Milonni, Fast Light, Slow Light and Left Handed

Light (Institute of Physics, Bristol, UK, 2004). 18. T. A. Jacobson, G. E. Volovik, Phys. Rev. D 58, 064021

- (1998). 19. R. Schützhold, W. G. Unruh, Phys. Rev. Lett. 95, 031301
- (2005).
- G. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, CA, 2001).

and Physical Sciences Research Council, Continuous Variable Quantum Information with Atoms and Light, the Ultrafast Photonics Facility at St Andrews, and Leonhardt Group Aue.

Supporting Online Material www.sciencemag.org/cgi/content/full/319/5868/1367/DC1 SOM Text

is accepted 24 January 2008

References and Notes 30 November 2007; accepted 24 January 2008 10.1126/science.1153625

Figs. S1 to S13

Table S1

Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis

Jeffrey R. Capadona, 1,2,3 Kadhiravan Shanmuganathan, 1 Dustin J. Tyler, 2,3 Stuart J. Rowan, 1,2,3,4 Christoph Weder 1,2,4

Sea cucumbers, like other echinoderms, have the ability to rapidly and reversibly alter the stiffness of their inner dermis. It has been proposed that the modulus of this tissue is controlled by regulating the interactions among collagen fibrils, which reinforce a low-modulus matrix. We report on a family of polymer nanocomposites, which mimic this architecture and display similar chemoresponsive mechanic adaptability. Materials based on a rubbery host polymer and rigid cellulose nanofibers exhibit a reversible reduction by a factor of 40 of the tensile modulus, for example, from 800 to 20 megapascals (MPa), upon exposure to a chemical regulator that mediates nanofiber interactions. Using a host polymer with a thermal transition in the regime of interest.

can be created that exhibit similar architecture and properties. The control of nanofiber interactions exploited here in solid polymer materials is similar to that observed in aqueous dispersions of poly(acrylic acid)-coated carbon nanotubes (δ) or cellulose nanofibers (θ), which have been shown to exhibit large viscosity changes upon variation of pH. The materials further complement other polymeric systems with morphing mechanical behavior—for example, cross-linked polymers that change cross-link density upon a change in pH or ionic concentration (I0, I1).

The first series of nanocomposites studied is based on a tubbery ethylene oxide–epichlorohydrin 1:1 copolymer (EO-EPI) (Fig. 1C) into which a rigid cellulose nanofiber network was incorporated (Fig. 1, C and D). The EO-EPI matrix displays a low modulus and can accommodate the untake of several chemical stimuli Cellulose nano-

Journal of Materials Chemistry A

PAPER

Check for updates

Cite this: J. Mater. Chem. A, 2018, 6, 24291

Novel sea cucumber-inspired material based on stiff, strong yet tough elastomer with unique self-healing and recyclable functionalities[†]

JianHua Xu, Sheng Ye and JiaJun Fu 💿 *

Constructing ideal sea cucumber-inspired materials (SCIMs), which are able to transform to stiff yet tough materials after exposure to external stimuli, and better resist external impact, is a huge challenge. Herein, inspired by nature, abundant Zn^{2+} -imidazole cross-links were distributed into a hydrogen-bonded/ Diels-Alder dynamic covalent dual-crosslinked network, resulting in an extraordinary enhancement in machanical properties and covaled in the surplus of a stiff streng up touch SCIM which demonstrates

View Article Online View Journal |View Issue

Aquaculture 515 (2020) 734590

Contents lists available at ScienceDirect

Aquaculture

journal homepage: www.elsevier.com/locate/aquaculture

Extraction and characterization of collagen from sea cucumber (*Holothuria cinerascens*) and its potential application in moisturizing cosmetics

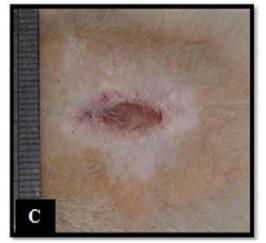
Po-Hsien Li^{a,b,*}, Wen-Chien Lu^c, Yung-Jia Chan^a, Wen-Ching Ko^d, Chao-Chuen Jung^d, Dung Thi Le Huynh^{e,f}, Yu-Xiang Ji^b

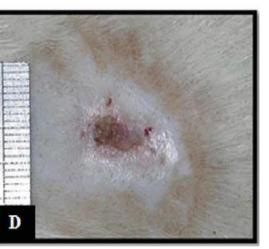
^a Department of Medicinal Botanical and Health Applications, Da-Yeh University, No.168, University Rd, Dacun, Changhua, 51591, Taiwan, ROC

^b College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China

^c Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, No. 217, Hung-Mao-Pi, Chia-Yi City, 60077, Taiwan, ROC

^d Department of Food Science and Technology, Da-Yeh University, 168 University Rd, Dacun, Chang-Hua, Taiwan, ROC


^e College of Biotechnology and Bioresources, Da-Yeh University, No. 168 University Rd, Dacun, Chang-Hua, 51591, Taiwan, ROC


^f Faculty of Food Science and Technology, Ho-Chi-Minh City University of Food Industry, No.140, Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho-Chi-Minh City, Viet Nam

3D tissue scaffold development in the case of sea cucumbers

Sea cucumber (*Stichopus hermanii*) based hydrogel to treat burn wounds in rats

Rozaini Mohd Zohdi,¹ Zuki Abu Bakar Zakaria,² Norimah Yusof,³ Noordin Mohamed Mustapha,⁴ Muhammad Nazrul Hakim Abdullah⁵

¹Department of Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia ²Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

³Division of Agrotechnology and Biosciences, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia ⁴Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

⁵Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Received 3 June 2010; revised 21 November 2010; accepted 25 November 2010 Published online 18 April 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/jbm.b.31828

Hydrogel on alginate basis with 5% sea cucumber powder, at 21 days post wound formation

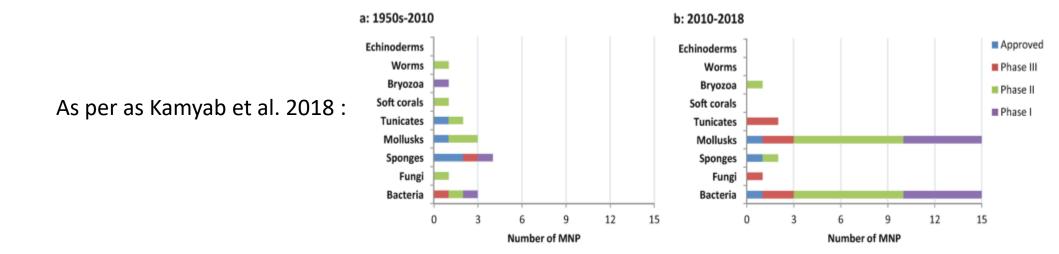
3D tissue scaffold development in the case of sea cucumbers

Our group at Møreforsking (with biotechnological and medical background) is concretely studying the physicochemical and functional properties of *P. tremulus* collagen, with special focus on self assembling peptides and bioink development

Other research interests of the group are on:

- Molecular studies
- bioavailability studies of bioactive components and nutrients from the sea cucumber raw material for incorporation into functional food and/or nutraceutical preparations
- bioinformatic interpretation of DNA or peptide sequences

NORA



SET CUCUMBER NELWOOD

Pharmaceutical bioprospecting in the search for marine natural drug candidates

- Consists in searching in the natural environment for novel chemical structures and their medical potential
- The lack of sufficient knowledge on the total biodiversity of our Planet and the related genetic information is an important limitation; technological bottlenecks
- Still, bioprospecting is considered of strategical-importance for discovering novel antimicrobial and anticancer drug candidates

	Major classes of	Examples of bioactive	Distantiation	Encode of an encoder	Deferre
Holothuroids: Triterpene glycosides, peptides, polysaccharides, lipids	secondary metabolites Triterpene glycoside	compounds Holothurins (A–B)	Biological activity Antifungal, anticancer, ichthyotoxic	Example of organisms Holothuria atra, Holothuria fuscocinerea	References Yamanouchi (1955), Kobayashi et al. (1991), Popov et al. (1994), and Zhang et al. (2006d)
	Triterpene glycoside	Echinoside A	Antifungal	Actinopyga echinites	Kitagawa et al. (1985)
	Triterpene glycoside	Holotoxin A-F	Anticancer, antifungal, antiprotozoa	Apostichopus japonicus	Kitagawa et al. (1976), Anisimov et al. (1983), Maltsev et al. (1985), and Wang et al. (2012)
	Triterpene glycosides	Holotoxin	Antifungal	S. japonicus	Yano et al. (2013)
	Polysaccharides	Glucosamine, Galactosamine	Antihyperlipidemic, antioxidant	A. japonicus	Liu et al. (2012)
	Sulfated polysaccharides	FucCS, GAGs	Anticoagulant, antithrombin, antiparasitic	Ludwigothurea grisea	Mourão et al. (1998), Borsig et al. (2007), and Marques et al. (2016)
	Sulfated polysaccharides	FucCS	Anticoagulant, antithrombin, antihyperglycemic, antiviral, insulin-sensitizing	Thelenota ananas, Cucumaria frondosa	Borsig et al. (2007), Huang et al. (2013), and Hu et al. (2014a)
	Sulfated polysaccharides	FucCS	Anticoagulant, antiparasitic	Isostichopus badionotus	Marques et al. (2016)
	Sulfated polysaccharides	GAGs	Antihyperlipidemic	*Metriatyla scabra	Liu et al. (2002)
	Fatty acid	EPA-enriched PL, 12-MTA, ODAs	Antioxidant, antihyperglycemic, anticancer, antihyperlipidemic	C. frondosa, Stichopus japonicus	Yang et al. (2003), Nguyen et al. 2011, Hu et al. (2014b), Wu et al. (2014), and Ku et al. (2015)
	Lipid	Cerebrosides, galactocerebrosides, AMC-2	Anticancer, antihyperlipidemic	*Stichopus variegatus, Acaudina molpadioides, Bohadschia argus	Sugawara et al. (2006), Ikeda et al. (2009), Zhang et al. (2012), and Du et al. (2015)
	Sphingolipid	Cerebroside	Antioxidant	S. japonicus, Acaudina molpadioides	Duan et al. (2016) and Xu et al. (2011)
	Lysophospholipid	LPC, L-PAF	Anti-inflammatory	Holothuria atra	Nishikawa et al. (2015)
	Peptide	Phenoloxidase, lysozyme	Antimicrobial	C. frondosa	Beauregard et al. (2001)
	Peptide	ACE inhibitory peptide	Antihypertension	Acaudina molpadioides	Zhao et al. (2009)
-	Peptide	T-antigen-binding lectin	Antibacterial	Holothuria scabra	Gowda et al. (2008)
Ź	Phenolic compounds	n.d.	Anti-inflammatory	S. japonicus	Song et al. (2016)

NORA MØREFORSKING

Pharmaceutical bioprospecting in sea cucumbers (as per Kamyab et al. 2018)

10/13/202

(continued)

Major classes of	Examples of bioactive			
secondary metabolites	compounds	Biological activity	Example of organisms	References
Phenolic compounds	(Z)2,3-DPAN	Anticancer	Holothuria parva	Amidi et al. (2017)
Pigments	Carotenoids	Antioxidant	Holothuria atra	Esmat et al. (2013)
Pigments	β-carotene, echinenone, canthaxanthin, etc.	Antioxidant	Plesiocolochirus minaeus	Maoka et al. (2015)
Sulfated alkene	2,6-DMHS, OS, DS	Antibacterial, antifungal	A. japonicus	La et al. (2012)
Mucopolysaccharide	SJAMP	Antitumor, immunomodulatory effect	S. japonicus	Song et al. (2013)
Glycolipid/ Sphingolipid	2,6-DMHS, OS, DS	Anticancer	A. japonicus	La et al. (2012)
Saponin	Frondanol A ₅	Anticancer	C. frondosa	Janakiram et al. (2010)and Jia et al. (2016)
Saponin	n.d.	Antihyperlipidemic	Pearsonothuria graeffei	Hu et al. (2010) and Wu et al. (2015)
Monosulfated triterpene glycosides	Cumaside	Radioprotective	Cucumaria japonica	Aminin et al. (2011)

Pharmaceutical bioprospecting in sea cucumbers (as per Kamyab et al. 2018)

Pharmaceutical bioprospecting in sea cucumbers

Several active components with anticancer and anticoagulant/antiplatelet activity are known to have already entered pharmaceutical drug development trials:

NORA

MØREFORSKING

- TBL-12 an extract containing sea cucumber compounds has entered pilot phase II trial in patients with Asymptomatic Multiple Myeloma. It is the first natural product to be granted orphan drug indication for the treatment of Multiple Myeloma by the FDA since 2012.
- Frondoside A from *C. frondosa*, has also received special pharmacological attention due to its broad spectrum of anti-cancer effects[.]

• There is a great potential for several bioactive groups from sea cucumbers to reach concrete, high-added value applications (in tissue engineering and pharmaceutical development)

MØREFORSKING

- Bioactive peptides have special relevance as novel drug candidates
- Need for a systematic acquisition of genetic biodiversity information to enable the discovery of the full metabolic/ high-added value generation potential of the temperate water species
- Need for further studies of the environmental makeup and ecosystemic functions of the sea cucumbers in order to establish the importance of all possible applications for the society

NORA

THANK YOU FOR YOUR ATTENTION!

Dr. Miroslava Atanassova Email: <u>miroslava.atanassova@moreforsk.no</u> LinkedIn: https://www.linkedin.com/in/miroslava-atanassova-23719a29/

Dr. Miroslava ATANASSOVA, Møreforsking AS