624.131

F22
1961
E. 2

(2)

## ENGINEERING

## SOIL CLASSIFICATION

## for <br> RESIDENTIAL DEVELOPMENTS



FEDERAL HOUSING ADMINISTRATION WASHINGTON 25, D. C.

ENGINEERINGSOILCLASSIFICATION FOR RESIDENTIAL DEVELOPMENTS

Compiled and edited by the FEDERAL HOUSING ADMINISTRATION Architectural Standards Division

Technical Studies Staff
from data prepared by the VIRGINIA POLYTECHNIC INSTITUTE

Bureau of Public Roads and State Highway Departments, URFMAFities and Colleges


August 1959
Revised November, 1961
For sale by the Superintendent of Documents, U. S. Goverument Printing Office Washington 25, D. C. - Price $\$ 1.25$

## PREFACE

The technical studies staff of the Federal Housing Administration initiated the development of a soils engineering program with emphasis on obtaining uniformity in the procedures to be used by the Sanitary Engineering Section of FHA in evaluating, testing, and reporting. It was thought that ultimately a more comprehensive soils engineering program could be developed from this foundation to provide engineering data on the behavior of soils with respect to foundations, streets, and roads, and for other structural, mechanical, and site engineering purposes.

The Technical Studies Advisory Committee of the National Academy of Sciences recommended that FHA adopt the Unified Soil Classification System for this soils engineering program. It also recommended the development of guides to applicable physical characteristics of the fifteen soils groups in this system.

Accordingly, the Federal Housing Administration contracted with the Virginia Polytechnic Institute for preparation by the Institute of a report to amplify and adopt the basic concepts of the Unified Soil Classification System with respect to general suitability of soils for residential building sites. This revised report was prepared by the Virginia Engineering Experiment Station of the Virginia Polytechnic Institute and constitutes Section I of this manual.

Concurrently, the Federal Housing Administration contracted with the National Academy of Sciences, through its Building Research Advisory Board for designation by the Board of a group of regional soil scientists and engineers to guide the development of the originalV.P.I. report.

To broaden the scope and usefulness of the manual, FHA entered into an agreement with the Bureau of Public Roads, Division of Physical Research, for compilation by the Division of pertinent engineering test data prepared in its laboratory on representative agricultural soil series throughout the country, as sampled and correlated by the Soil Conservation service of the U.S. Department of Agriculture. Additional soil test data has been prepared in a cooperative program involving state highway departments, universities or colleges and the Bureau of Public Roads.

These test data in tabular form and alphabetical order comprise Section II of this manual. They provide a practical method of utilizing existing agricultural soil survey information. In addition, they provide a basis for interpreting agricultural soil classification series and types in terms of the Unified Soil Classification System and the American Association of Highway Officials classification system for practical engineering uses.

James R. Simpson, Elvin F. Henry, and Bernard T. Craun of the FHA Architectural Standards Division conceived the idea of this type of manual and supervised the selection and preparation of the material.
Preface ..... iii
List of tables. ..... vi
Section I
Acknowledgments ..... vii
Engineering Soil Classification for Residential Developments ..... 1
Part I. Introduction ..... 1
Soils at the site ..... 1
Limitations of applicability of classification systems ..... 2
Part II. Soil classification system ..... 5
Basis of the Unified Soil Classification System ..... 5
Field and laboratory identification. ..... 5
Review of soil groups ..... 6
Word description ..... 6
Tabulation of descriptive data ..... 9
Part III. Characteristics and properties of disturbed soils ..... 13
General engineering characteristics of soil components ..... 14
Disturbed soils at residential building sites ..... 15
Additional site problems involving disturbed soils ..... 26
Part IV. Characteristics and properties of undisturbed soils ..... 27
Influence of conditions and environment ..... 27
Characteristics of uniform formations. ..... 27
Characteristics of non-uniform formations. ..... 31
Word description of undisturbed soils ..... 32
Undisturbed soils at residential building sites ..... 32
Additional site problems involving undisturbed soils ..... 34
Appendix A. Field identification. ..... 39
Identification of soil groups ..... 39
General identification ..... 39
Appendix B. Identifying soils by a triangle based on Unified Soil Classification System ..... 47
Unified soil classification triangle ..... 47
Summary and conclusions ..... 53
Discussion ..... 53
Appendix C. Consistency and relative density tabulations ..... 57
Relative density ..... 58
Appendix D. Short glossary of soil mechanics and pedological terminology ..... 59
Section II
Acknowledgments ..... 73
Engineering Soils Test Data for Some Soil Series. . . . . . . . ..... 75
Part I. Introduction ..... 75
Engineering Test Data for Soils Sampled by Soil Conservation Service and Tested by Bureau of Public Roads ..... 79
Footnotes ..... 133
Part II. Engineering Test Data for Soils Sampled by Soil
Conservation Service and Tested by Highway Laboratories ..... 135
Footnotes ..... 167
LIST OF TABLES
Table 1 Description of Soils ..... 11
Table 2 Disturbed Soils at Residential Building Sites ..... 35
Table 3 Undisturbed Soils at Residential Building Sites. ..... 37
Table Al Unified Soil Classification ..... 45
Table B5 Unified Soil Classification System Identification Triangle ..... 51
Table B6 Various Soil Types with Identification Determinants (USCS) ..... 52
Table B6 Gradation Curves-Coarse Grained Soils (USCS). ..... 52

## Acknowledgments

This section was prepared at the Virginia Polytechnic Institute, Blacksburg, Virginia, by Mr. J. H. Hunter, associate professor of civil engineering, as project No. 367, Virginia Engineering Experiment Station. The project was under the administrative direction of Dr. H. M. Morris, professor of civil engineering and head of the civil engineering department. Suggestions and comments were contributed by members of the faculty of Virginia Polytechnic Institute, especially those of the department of civil engineering. Messrs. R. W. Spangler, J. E. Strickland, and J. E. Moore, graduate students in that department, were most helpful in the literature search and in assembling data.

With the approval of the president of the National Academy of Sciences, the following special advisory committee was appointed to consult with the Virginia Polytechnic Institute during the preparation of this report and to review and evaluate it upon completion:

Mr. W. G. Shockley, Corps of Engineers, U. S. Army (chairman)
Mr. T. W. Bendixen, Robert A. Taft Engineering Center, U. S. Public Health Service

Mr. W. A. Clevenger, Woodward-Clyde-Sherard \& Associates Professor R. F. Dawson, University of Texas
Mr. D. M. Greer, Greer Engineering Associates
Professor R. G. Hennes, University of Washington
Professor G. A. Leonards, Purdue University
Professor G. F. Sowers, Georgia Institute of Technology
Robert M. Dillon, executive director of the Building Research Advisory Board, directed the activities of the committee.

Section I, as originally prepared by the Virginia Polytechnic Institute during 1958, was approved by the Buildings Research Advisory Board of the National Academy of Sciences as treating all items in an authoritative manner. Minor revisions were made to Section I by Virginia Polytechnic Institute during 1960.

The Unified Soil Classification System developed by the Corps of Engineers, U. S. Army, and published as Technical Memorandum No. 3-357 prepared by the Waterways Experiment Station, Vicksburg, Mississippi, March 1953, provided the basic data for this report.

## SECTION I

# ENGINEERING SOIL CLASSIFICATION FOR <br> RESIDENTIAL DEVELOPMENTS 

## PART I: INTRODUCTION

1. Uniform soil classification has its principal value as an aid to communication between engineers. The homebuilding industry is so widespread geographically that a common language is an important objective for anyone associated with the industry. As a step towards that objective, this report presents a brief review of the Unified Soil Class ification System with generalized guides for application to soils at residential building sites.
2. The report has two purposes: First, it is intended that by use of the guides in the report the more troublesome soils at residential building sites will be better recognized; and, second, it is intended that the report will aid in establishing the Unified Soil Classification System as the uniform system of engineering soil classification to be used by the Federal Housing Administration in administering its real estate mortgage insurance programs.

## Soils at the Site

3. If the soils at a residential building site are classified according to the Unified Soil Classification System, then they must be placed in one or more of the fifteen groups which comprise the system. At any one site many soil groups, both in the disturbed and in the undisturbed condition, may be found; or perhaps only two or three of the groups may be encountered. The range in engineering properties in any one soil group in the undisturbed state may be large or relatively small, depending on past geologic history and present density or consistency and moisture content, and whethe'r or not these factors are constant throughout the site.
4. Undisturbed soils in different groups but with similar geologic history and hydrologic conditions often will have more engineering characteristics in common than two samples of the same group with different geologic history. In the disturbed state, soils in any one group may have widely varying characteristics but, in general, the characteristics resulting from controlled placing and compaction are reasonably consistent in any one group.
5. For example, fills occur that have been carefully designed and closely controlled during construction and, as a result, they have fairly well defined characteristics. These characteristics are consistent from point to point in any one fill and they are also consistent from one fill to
another in a different location, provided the same methods of construction were used on soils classified as coming from the same soil group. Fills also occur, made from essentially the same soil, that have been dumped into place without engineering supervision and, consequently, the properties are widely variable even though the soil grouping is known.
6. Residential areas, then, may be developed on soils that comprise the whole range of soil groups with variations in characteristics within any one soil group and with wider variations in characteristics between different soil groups.
7. Even though the soil groups at a building site may be identified according to the Unified Soil Classification System, the characteristics of any one group cannot be considered to have definite numerical values. The factors that influence strength, consolidation, expansion, and other engineering characteristics depend as much on in situ consistency or density and geologic factors as on texture and remolded plasticity qualities; consequently, it is impossible to evaluate these features on the basis of identification alone. The soils in a given group, however, do have generally similar behavior characteristics, since behavior is one of the criteria for classification in the Unified System. This is especially true in controlled fills, where past geologic and hydrologic influences are greatly reduced in importance.
8. While classification of the soils according to the Unified Soil Classification System does not provide sufficient information for design purposes, it will give the engineer an indication of the behavior of the soil when it is found at a residential site. This information may be sufficient to serve as a broad outline for accepting a proposed soil used or for requiring investigations and evaluation by a competent engineer before acceptance. Classification in the Unified Soil Classification System with an adequate and complete soil description, including in-place condition description, enables an engineer to utilize his judgment and experience.

## Limitations of Applicability of <br> Classification Systems

## General

9. The Unified Soil Classification System will not solve soil engineer ing problems, nor will any other classification system. Classification per se cannot possibly give anything more than a general idea of the materials that must be dealt with, and classification of the soils at a building site should be considered as the starting point for pertinent investigations. These investigations may be no more extensive than the application of engineering experience and judgment to the problem, or they may require field and laboratory tests and evaluations in addition to engineering experience and judgment. Stated another way, classification alone cannot be used to do design. In order that this may be clearly un-
derstood, the following paragraphs mention a few situations and problems that occur at residential building sites and cannot be solved by identification alone.
10. The major limitations of the applicability of the Unified Soil Classification System are indicated by the basis of the system; texture, plasticity, and behavior in recompacted condition. The Unified System does not indicate the variation in a soil formation, although it permits the logging of variation produced by different soil layers or lenses.
11. In using the Unified System or any other system of classification it is not sufficient to identify a soil formation from the examination of a sample from one point in the soil mass, for a formation will vary in both a horizontal and a vertical direction and at times will be entirely different within a few feet either vertically or horizontally from the point examined. Usually the vertical variation is much more marked than the horizontal variation. Adjacent or nearby strata or lenses may so affect any related structure that the soil in intimate contact with the structure may possibly be of secondary importance.
12. While the Unified System requires description of the moisture condition of the soil and description of the soil at the particular moisture condition at the time of examination, it is not intended to provide for the profound effects that changes in moisture may have on some soil groups. These changes may be the result of climatic conditions, of the existance of nearby vegetation, or of such man-made influences as drainage ditches or watering devices for lawns and plants; whatever the source of change in the hydrologic conditions, the results are about the same. In delineating a soil group the Unified System does not take into account the wide range of densities or consistencies that may exist in situ. An adequate description, as required by the Unified System, includes adjectives describing density or consistency along with the group symbol.
13. In many regions the possibility of landslides is a major concern. Among many factors related to slides are surface topography, ground water, water pressure, and the physical properties of the soils that make up the soil profile. The Unified System can be used to describe the complexities of a given soil profile, but the System by itself cannot be used to predict possible landslides.
14. The major limitations of the applicability of the Unified Soil Classification System are, then, those that are imposed by variations in soil formations, by hydrologic changes, by conditions not included in a given soil description, and by the complex factors related to such mass phenomena as landslides. Among other items which are of importance in some cases and may, therefore, be considered to be related to limitations of the applicability of the System are such factors as mineral composition of grains, grain shape, type of exchangeable ions, and secondary structure. These factors are not considered when a soil is identified as belonging to a particular group in the Unified Soil Classi-
fication System, but they should be included in the word description when it is expected that they will influence a planned soil use.

Limitations for
residential building sites
15. The general limitations listed in paragraph 9 apply to residential building sites. Since loads are relatively low in residential developments, hydrologic change effects probably are of greater immediate concern than variations in soil deposits and in density or consistency; but each case must be examined on its own merits. For sewage disposal fields, variations in soil formations are of considerable importance. In regions susceptible to landslides, the limitations imposed by related factors are probably of paramount importance.
16. The soil classification system adopted by the Federal Housing Administration and presented in this report is the Unified Soil Classification System. This classification system is described and explained in Waterways Experiment Station technical memorandum 3-357, The Unified Soil Classification System, with two appendices. These appendices give the classification of the soils in groups which compose the system according to their engineering behavior for various types of construction of interest to the Corps of Engineers, such as embankments and foundations for roads and airfields.
17. When the system was published in March 1953, the Bureau of Reclamation published a parallel document, the Unified Soil Classification System, A Supplement to the Earth Manual, with a table showing relative desirability of the groups for various uses of interest to the Bureau of Reclamation in the construction of earth dams and embankments, canals, foundations, and roadways. In both publications the Unified System is applied primarily to conditions in which the soils are used as construction materials.

## Basis of the Unified Soil Classification System

18. The Unified Soil Classification System is based on the identification of soils according to the textural and plasticity qualities of their ingredients and on the grouping of soils with respect to their behavior in a remolded or reworked condition. It is not intended to delineate precisely a soil for a specific purpose, for this is the function of the soils engineer who evaluates a particular soil for a particular purpose in terms of its past history as well as the present conditions and anticipated future conditions imposed by the construction and operation of a structure or system of structures. This, however, does not prevent the classification of the soils in these groups according to their general engineering behavior for various uses.
19. While this system of classification is based on qualities of the soil ingredients and on behavior in the remolded condition, this does not mean that the Unified System cannot be used for undisturbed soils. See part IV for a discussion of undisturbed soils. Disturbed soils are discussed in part III.

## Field and Laboratory Identification

20. The publications noted in paragraphs 16 and 17 contain the necessary information for properly classifying soils into soil groups. Selections from the Waterways Experiment Station document are included as appendix A for convenient reference. Only portions concerning general identification with appropriate tables and charts are included; for laboratory identification, the reader is referred to the original publication.
21. When the identification determinants for a soil have been ascertained with satisfactory accuracy by either field or laboratory examination the soil is assigned a letter symbol from the fifteen available groups in the USCS. This symbol accompanies the word description for the soil. the previously mentioned publications of the Waterways Experiment Station and the Bureau of Reclamation define the Unified System, but other publications report suggestions and techniques which aid in processing the identification determinants for classification purposes. One of these aids is the Unified Soil Classification triangle, a partially graphic means of classifying soils in this system. This triangle simplifies the purely mechanical steps necessary for selecting the proper group symbol. It may be particularly convenient for use in laboratory classification procedures. Appendix B contains the triangle and portions of the paper from ASTM Special Technical Publication No. 254 which reported the development and use of this device.

## Review of Soil Groups

22. The Unified Soil Classification System places soils in fifteen groups which are represented by letter symbols. The coarse-grained soils (over 50 percent coarser than No. 200 sieve size) are first given the symbol $G$ (gravel) or $S$ (sand), depending on which predominates. If more than 50 percent of the part that is coarser than the No. 200 sieve size is larger than the No. 4 sieve size, it is given the symbol G; and if more than 50 percent is smaller than the No. 4 sieve size it is given the symbol $S$. This is followed by a second letter that denotes the gradation or the amount and kind of fines present: $W$, well graded with little or no fines; $P$, poorly graded with little or no fines; $M$, appreciable amount of silty fines; and C, appreciable amount of clayey fines.
23. The fine-grained soils (over 50 percent smaller than the No. 200 sieve size) are divided into groups based on whether they have a relatively low (L) or high (H) liquid limit. These two groups are subdivided into $M$, meaning predominantly inorganic silty materials and very fine sands with little to no plasticity and low dry strength; C, meaning primarily inorganic clays with plasticity and toughness and medium to high dry strength; and $O$, meaning organic silts and clays with a plasticity range that corresponds with the silty inorganic materials.
24. Examples of the se symbols as used in the Unified System are MH, CL , and OH. A separate symbol, Pt , is used for peat and other highly organic soils. In addition to these combinations of symbols, the system provides for dual groupings under certain conditions. The different symbols and the soils they represent are shown in table Al, appendix $A$, and in tables 2 and 3.

## Word Description

25. An adequate word description of a soil is an essential part of the Unified Soil Classification System, not an addition to the System. Soils
may be distinguished from other soils in the same group by the use of descriptive words and phrases. Locally coined words and geological or pedological terms and phrases are often helpful in localized areas and may be given in addition to but not as a substitute for the required description.
26. The group symbols will indicate typical soils, but there are important characteristics of soils which are not fully designated by symbols yet are easily ascertained by the investigator. This is particularly important for soils that are being investigated for use in place as foundations for structures. Here the natural condition of the soil, such as its consistency or degree of compactness, its structure, and its moisture content, are of equal importance to the classification of its constituents.

## Use categories

27. For residential site developments, the main purposes for which soils are investigated can be divided into three categories: (l) borrow materials for fills beneath foundations and for subgrades for roadways; (2) foundations for structures; and (3) residential sewage absorption systems.
28. The emphasis of various features to be described depends on which of the categories is involved. For such structures as streets and roads, and in the general grading of a construction site, significant quantities of soil may be excavated to reach a desired grade. In the interest of economy, use should be made of this excavated material in the construction of fills. Such areas, therefore, often become sources of materials and the investigation must take into account the dual purpose. Descriptions of soils encountered in such explorations must contain the essential information required, both for borrow material and for foundation soils.
29. Borrow materials. Soils that are potential sources of borrow material must be described adequately in the log of the exploratory test pit or auger hole. Since these materials are destined to be disturbed by excavation, transportation, and compaction in a fill, their structure (except as it relates to difficulty of excavation) is less important than the amounts and characteristics of the soil constituents. The recording of their natural moisture content is important. Very dry borrow materials require the addition of water for compaction control, and very wet soils containing appreciable fines may require expensive processing in order to be usable.
30. In many soils, excavation for borrow materials beneath the water table is difficult or requires special equipment and methods, and, consequently, logging of the position of the water table is of considerable practical importance. If cementation of the grains is present, it should be noted in the log, for cementation can present excavation difficulties. Borrow pit holes are logged so as to indicate divisions between soils of different classification groups. Within the same soil group, however, significant changes in moisture, density, and other conditions are logged.
31. Foundations for structures. When soils are explored as foundations for structures, their natural structure, compactness, and moisture content are of outstanding importance. The position of the ground water table is extremely important and should not be omitted from the log of the investigation. Logs of foundation explorations must emphasize the in-place condition of the soil in addition to describing its constituents.
32. The natural state of foundation soils is significant because ultimate bearing capacity, settlement, and swelling are subject to wide variations with conditions. Information that a clay is hard and dry, or soft and moist, is important. Differences in consistency from point to point in an area where a building is to be constructed should be shown so that these variations can be recognized in the design of the foundations.
33. Correct field classification, including a complete word description, is needed so that effects such as swelling and heave which are the result of changes in soil conditions can be anticipated. If a building is to be founded on fill on soft clay, the weight of the fill material may cause settlement of the fill under the action of the building loads and the load imposed by the fill. It is necessary, consequently, to investigate and describe the undisturbed soil at the site even though the structure will not be in immediate contact with the underlying formation.
34. Information concerning density and consistency (in both the undisturbed and the disturbed states for clays) is of such importance in many phases of soils engineering as applied to residential site developments that adjectives describing them should always be used in descriptions. Several scales are available for rating density and consistency. Appendix $C$, giving several examples of these scales, is included for convenient reference.
35. Residential sewage absorption systems. Soils that are potentially the absorption phase of a residential sewage system must be adequately described so that sustained absorption capacity of the soil for effluent can be predicted. Test pits or auger holes must penetrate to a depth sufficient for a reliable prediction of the absorption capacity of the area. The holes are logged so as to describe each soil group and to indicate the divisions between soils of different groups.
36. Permeable layers which are desirable for this use can be identified adequately by soil groups and supplemental descriptions. These layers must extend sufficiently either horizontally or vertically so that the quantity of effluent can be absorbed and dissipated, and the water table at its highest level must be at such a level that the soil can handle the added liquids. The description of these soils must, therefore, contain information on the extent of permeable layers, the position of these layers relative to the water table and to impermeable layers, and an estimate of the changes in water table level with the seasons of the year. In soils with an appreciable amount of binder, a description of the secondary structure is important. Soil color, particularly if mottled, should be described.
37. Certain pedologic terms relating to structure are included in appendix $D$, a short glossary of terms relating to soil mechanics. The use of pedologic terminology is helpful in describing the structure of soils that are potentially the absorption phase of residential sewage systems, for it is of considerable aid in interpreting percolation test data.

## Tabulation of Descriptive Data

38. Table 1 lists data that are needed to describe soils for borrow materials, for foundations, and for residential sewage absorption systems. All of these descriptive data are not always needed. Judgment should be used to include pertinent information, to avoid negative information, and to eliminate repetition. The items that are indicated by $R$ should always be reported, while those that are marked as D are usually desirable. Examples of soil descriptions are given in the classification chart, table A1, appendix A.

Table 1
DESCRIPTION OF SOIIS

| Items of Descriptive Data <br> (1) | Coarsegrained Soils ${ }^{1}$ (2) | Finegrained Soils ${ }^{1}$ (3) |
| :---: | :---: | :---: |
| Typical name (examples are shown in classification chart, table A1, appendix A) | R | R |
| Approximate percentage of gravel and sand | D |  |
| Maximum size of particles (especially for soils containing cobble and boulder sizes) | R | R |
| Shape of the coarse grains; angularity | D |  |
| Surface condition of the coarse grains; coatings | D . |  |
| Hardness of the coarse grains; possible breakdown into smaller sizes | D |  |
| Color (in moist condition for fine-grained soils) | D | R |
| Moisture conditions (dry, moist, wet, saturated) | R | R |
| Drainage conditions (combined effect of runoff, soil permeability, and internal soil drainage) | R | R |
| Position relative to water table ${ }^{2}$ | R | R |
| Percolation test results ${ }^{3}$ (if site is in non-sewer area) | R | R |
| Organic content | D | D |
| Plasticity (of fine fraction in coarse-grained soils; degree and character for fine-grained soils) | D | R |
| Amount and maximum size of coarse grains (for fine-grained soils only) |  | D |
| Structure and stratification (give dip and strike; root holes; slickensides; angular blocky; etc.) | R | R |
| Cementation; type | R | R |
| Degree of compactness; loose or dense (excepting clays) | R | R |
| Consistency in undisturbed and remolded states (cohesive only) | . | R |
| Local or geologic name | D | D |
| Group symbol | R | R |
| Note: 1. In columns 2 and 3: $R=$ Required information; and $D=$ Desired always required) <br> 2. When the water table position is not determined by exploratio below the elevation of the bottom of the test pit or auger ho so stated. If the position of the water table is not determi existence of impervious soils this should be stated. If the known to exist at some general elevation in the area that is of exploration then this information may be given but must be only an estimate. <br> 3. The results of percolation tests are not intended as a part of of a soil for routine classification in the Unified Soil Clas However, in a residential area without sewers these tests are necessary and a soil description without this information woul |  | not <br> s <br> n <br> 。 <br> . 11 |

## PART III: CHARACTERISTICS AND PROPERTIES OF DISTURBED SOILS

39. As was stated in the introduction, when soil groups at a building site have been identified according to the Unified Soil Classification System the characteristics of any one group cannot be considered to have definite values. Certain properties, if only poorly suited soils are available, may be improved by proper construction methods.
40. In constructing a road or a low fill as a foundation for a house slab, good percolation (internal drainage) characteristics are desirable; but, if such materials are not available locally, adequate drainage may be designed and installed if necessary, although the cost may be excessive. If soil strength is low, this may be compensated for by proper design of a fill or of the structure on the fill. If chemicals in a soil will cause certain kinds of underground conduits to deteriorate rapidly, it is possible to use some other resistant type of conduit.
41. From these examples and from the admitted variations in properties within any one soil group it is evident that the proper design of any portion of a residential building development may require evaluation of soil properties and soil uses in more detail than is possible by reference to a general soils classification system. However, the grouping of soils in the Unified Soil Classification System is such that a gene ral indication of their behavior in residential site development problems may be obtained. This is especially true when it is applied to controlled fills, where the effects of past geologic and hydrologic influences are usually greatly reduced. It is on this basis that the behavior characteristics of soils are presented in the following paragraphs and in the classification table. When all the significant variables affecting engineering properties are identified and understood, it will then be possible to predict and control the engineering behavior of soils with more confidence and greater accuracy.
42. Controlled compaction is commonly used to vary such conditions as degree of saturation, water content, and density, each of which affects the engineering characteristics of a soil. When the fundamental properties of clay and other fine particles are altered by ion exchange, another type of change has taken place. Ion exchange with its accompanying effect on engineering characteristics is seldom attempted in residential site developments. Chemical stabilization of large masses of soil has about the same present status. In this report ion exchange and chemical stabilization of large masses are not considered. They are, nevertheless, important possibilities and should be kept in mind for the future.

## General Engineering Characteristics of Soil <br> Components

## Gravel and sand

43. Both of the coarse-grained components of soil (gravel and sand) have many similar engineering properties when disturbed, differing mainly in degree. Well-graded, compact gravels or sands are stable materials. The coarse-grained soils when devoid of fines are pervious, easy to compact, little affected by hydrologic conditions, and not subject to frost action. Although grain shape and gradation as well as size affect these properties, for the same amount of fines gravels are generally more pervious, more stable, and less affected by water or frost than are sands.
44. As a sand becomes finer and more uniform, it approaches the characteristics of silt with a corresponding decrease in permeability and reduction in stability in the presence of excess water. Fine sands are more subject to bulking (increase in volume due to manipulation) than gravels.

## Silt and clay

45. Even small amounts of fines may have important effects on engineering properties of the soils in which they are found. As little as 2 to 5 percent of particles smaller than the No. 200 sieve size in sand and gravel may make the soil virtually impervious, especially when the coarse grains are well graded. Less than 10 percent of fines in wellgraded sands and gravels may result in serious frost heaving. Small quantities of clay added to coarse-grained materials act as a binder and improve the gravels and sands for use as a surfacing material for roads.
46. Silt. Silts are soils in which nonplastic fines predominate. They may be unstable in the presence of water and have a tendency to become "quick" when saturated in a loose condition. Silts are fairly impervious, difficult to compact, and are highly susceptible to frost heaving. Some silts or clays, such as loess, have very low density with a slight cementation holding the soil grains apart which is destroyed when the soil is saturated or compacted. A loess that has been modified by temporary immersion, erosion, and subsequent deposition may support substantial loads satisfactorily. Silts, when compacted and saturated, usually have some compressibility, and the higher the liquid limit of a silt the more compressible it is likely to be.
47. Clay. Clays are soils in which plastic fines predominate. They have low resistance to deformation when wet, and when dry they form hard cohesive masses. Clays are generally impervious, difficult to compact when excessively wet, and impossible to drain by ordinary means.
48. Permeability and drainage characteristics are modified by macrostructure in some clay formations. Macrostructure is usually of little importance in a clay that has been compacted in a fill.
49. Large expansion and contraction with changes in hydrologic conditions are characteristics of many clays. The small size, flat shape, and mineral composition of clay particles combine to produce a material that is both compressible and plastic.
50. In the Unified Soil Classification System the liquid limit is used to distinguish between clays of high compressibility (symbol H) and those of low compressibility (symbol L). Differences in plasticity of clays are reflected by their plasticity indexes. At the same liquid limit, the higher the plasticity index the more cohesive is the clay. Soft clays often exert high lateral pressures.

## Organic matter

51. Organic matter in the form of partly decomposed vegetation is the primary constituent of peaty soils. Varying amounts of finely divided vegetable matter, or organic carbons resulting from decomposition are found in plastic and nonplastic sediments and have major effects on their properties. This results in organic silts and silt-clays of low plasticity, and organic clays of medium to high plasticity.
52. It is most important that organic matter be recognized in classification. Organic soils are usually dark brown or black in color and often have a noticeable odor. If a soil is suspected of being organic in nature and has no odor, heat applied to a small sample with a match will often bring out the odor. Soil samples suspected of being organic but not definitely determined as such in the field should be sent to a soils laboraory for further investigation.
53. High compressibility is the major problem where organic soils are encountered. Fibrous soils like peat cannot be compacted by any feasible means and are not usually utilized as foundation material. Fills are frequently placed over compressible, soft organic layers, and the combined weight of the fill material and the building may result in serious settlement. Structures on organic soils or on fills over organic soils must be designed with these unfavorable characteristics very clearly in mind.

## Disturbed Soils at Residential Building Sites

54. General characteristics of the soil groups of the Unified Soil Classification System pertinent to disturbed soils at a residential building site are presented in table 2. Based on these characteristics and on experience, table 2 also compares the soil groups in desirability for various pertinent uses. The numeral "l" is used for the group or groups usually considered most desirable; higher numbers indicate desirability decreasing with the magnitude of the numbers. The symbols "NS" indicate that a soil group is not generally suitable for the use shown or that, in the rating of characteristics, its quality is so poor that no relative rating is assigned.
55. In the columns stating the relative ratings of the soil groups with reference to unfavorable characteristics, such as compressibility and potential frost action, it should be kept in mind that the groups which show little evidence of the se unfavorable characteristics are given the lower numerical ratings; on the other hand, where groups are compared with reference to favorable characteristics, such as workability and shearing strength, the groups which show greater evidence of the se features are given the lower numerical ratings. It should be clearly recognized that the numerical ratings given in the table are approximate and are intended only as a guide to aid the investigator in comparing soils for various purposes. Numerical comparisons apply only within a single vertical column.
56. It should be noted that with advantageous conditions and proper design almost any soil could be used for almost any purpose, especially for road construction and for fills for structures. An exception is in the case of a soil that is potentially the absorption phase of domestic sewage systems; here, it is difficult if not impossible to make an unsuitable soil adequate for this purpose through design. It is impossible to cover all possible considerations in the brief description of pertinent soil characteristics and uses contained in this report.
57. The various features presented in the table are discussed in the following paragraphs.

## System nomenclature

58. Major divisions, group symbols, and typical names shown in the first four columns follow those assigned in the original publications defining the system. They are repeated in table 2 for convenience.

## Workability and compaction characteristics

59. Workability as a construction material. Workability of a soil is defined as a measure of the ease with which a soil is handled and traversed by ordinary construction equipment. There are many conditions that affect the workability of a soil as a construction material. Among these conditions are water content, structure, consistency, cementation and sensitivity of the soil, and such other factors as the equipment used and the position of the water table.
60. Generally the coarse-grained soils are easy to handle and equipment can traverse these soils with little difficulty. An exception to this is any fine, dry, uncemented sand, which may have undesirable trafficability characteristics.
61. The fine-grained soils, especially at high water contents, may prove difficult to traverse, for example, in excavation operations. The fine-grained soils may have good handling characteristics and trafficability at low water contents if their liquid limits are low (ML, CL and OL). Fat clays (CH) may prove to be stiff or even hard at low water
contents. The soil groups are compared for desirable workability characteristics in column 5, the more desirable ratings being the lower numbers.
62. Compaction characteristics. Some soils compact best with a crawler type tractor, some with a rubber-tired roller, some with a sheepsfoot roller, and some with a heavy vibrating roller. In some backfills, space may be so limited that smaller types of compaction equipment must be used. The selection of the proper equipment for compaction is not discussed, nor is the equipment rated. The ratings given in column 6 differentiate the soil groups with reference to the ease with which proper compaction can be obtained, with the assumption of reasonably suitable compaction equipment being used and with proper control of moisture being exercised.
63. Granular soils with little or no fines generally are easily compacted, with the well-graded soils, GW and SW, usually furnishing higher densities than the poorly-graded soils, GP and SP. Coarse-grained soils with fines of low plasticity are easily compacted with proper equipment; however, the range of moisture contents for effective compaction may be narrow, and close moisture control may be desirable for economic field operations. This is also generallytrue of the silty soils in the ML group. Gravels and sands with plastic fines, groups GC and SC, are fairly easy to compact, although this quality may vary somewhat with the character and amount of fines.
64. The compaction characteristics of fine-grained soils are variable. Lean clays and sandy clays (CL) are usually the better of the fine-grained soils. Fat clays and lean organic clays or silts (OL and CH) are usually fair to poor, and organic or micaceous soils (MH and OH) are usually poor.
65. The compaction characteristics of the highly organic soils, Pt, are such that compaction of these soils is not feasible.
66. In column 6, the lower numbers indicate the more desirable soils with compaction characteristics being the basis of comparison.
67. Unit dry weight. In column 7 of table 2 are shown ranges of unit dry weight of the soil groups for the standard AASHOl (Proctor, 3 layers - 25 blows each layer - 5.5 lb hammer - 12 in . drop) compactive effort and for the Modified AASHO ${ }^{2}$ ( 5 layers - 25 blows each layer - 10 lb hammer - 18 in . drop) compactive effort. It is emphasized that these values are for guidance only and that design or construction control should be based on laboratory test results.

Shearing strength when
compacted and saturated
68. Shearing strength is not an intrinsic property of a given soil, but varies over a considerable range with varying conditions, such as den-

[^0]sity, moisture content, and degree of consolidation. In controlled fills, constructed from specific soil groups, such conditions as density and moisture content are fairlv uniform. The shear strengths of some groups vary with the magnitude of the confining pressures and in other groups are nearly independent of confining pressures in most design situations. Other groups fall somewhere between these two extremes; at low confining pressures the shear strength is little affected and at higher con-fining pressures the effect of the pressures on shear strength become more pronounced.
69. Shearing strength is important in such problems as stability of slopes and in arriving at a value for the ultimate bearing capacity of soils for foundation purposes. The coarse-grained soils ( $G$ and $S$ ) have sufficient shearing strength for most purposes except in the case of excessive neutral stresses (water pressure). The fine-grained soils ( $M$ and $C$ ) when moist usually have less shearing strength than coarsegrained soils. In column 8, shearing strengths are rated so that the groups with higher shearing strengths have the lower numbers. The nature of shearing strength does not permit a numerical evaluation of the range for each soil group.

Compressibility when compacted and saturated
70. Compressibility of a soil pertains to its susceptibility to decrease in volume when subjected to load. Volume decrease of a soil may be of two types. The first is the relatively long-term (for fine-grained soils) compression or consolidation under dead load such as the weight of a structure or the weight of the fill itself. The second is the short-term deformation and subsequent rebound which occurs under moving wheel loads when fill material is used under a roadway. Usually the long-term consolidation is not a problem within a properly designed and constructed fill; a compressible soil under a heavy fill is another matter. Even in the case of layers of compressible soil beneath a fill, if adequate provision is made for settlement of the fill during construction it will usually have little influence on the load-carrying capacity of the surface layers of the fill.
71. Some soils are elastic and will deflect under moving loads. This, of course, is seldom a problem under structures such as residences but may be a problem in road maintenance. It is fortunate that the free-draining, coarse-grained soils (GW, GP, SW, and SP), which in general make the best subbase and base materials, exhibit almost no tendency toward high compressibility or elasticity. In general, compressibility of finegrained soils increases with increasing liquid limit, especially in disturbed soils.
72. Column 9 in table 2 shows the relative compressibility of compacted and saturated soils with lower numbers indicating soils of lesser compressibility. Soils rated 1 and 2 have negligible compressibility; 5 indicates a soil of medium compressibility; and 7 indicates a soil of high compressibility.
73. Expansion potential is related to shrinkage potential. Volume changes associated with swelling and shrinkage are likely to cause considerable distress to structures, especially to the walls and foundations of houses, and to roads in areas where large moisture variations occur in soils. Several factors influence the expansion potential of soils. The most important of these is moisture variation. Other important factors a are density, structure, and mineralogic composition. For example, some clay minerals are known to be more active than others.
74. Most investigations of swelling soils have been made on compacted samples at various initial water contents and as moisture was absorbed either the expansion or the developed pressure was measured. These investigations, as reported, are not conveniently related to the USCS except in a general way.
75. Swelling pressures can be very large. Values for some expansive clays are over 10 tons per sq. ft. Controlled placement of fill will reduce the expansion potential. For the least expansion, fills of expansive clays should be placed in a wet condition and compacted lightly. However, a suitable balance should be maintained between design of a fill for minimum expansion potential and design for permissible settlement and for adequate strength.
76. If moisture conditions in a fill could be kept constant, no trouble from this source should be expected. Since this is impossible, some volume change is probable if a soil is susceptible to volume change with changing moisture content. The coarse-grained soils are usually least affected by changes in moisture content. The clays are usually most susceptible, and silts may be susceptible. Since a moisture content change is necessary for expansion to take place, soils with high liquid limits and high moisture content may have reduced activity because of reduced permeability.
77. In column 10, expansion potential for compacted soils is rated by three numbers only. Soils with little or no expansion potential are rated as 1; soils that may be susceptible to a moderate degree are rated as 2; and soils which should be suspected of possible volume change are rated as 3. It is expected that in the future it will be possible to differentiate more closely between different groups, and then additional numbers can be added to indicate the degree of differentiation.

1 The FHA Soil PVC Meter TS 5:6 is a convenient device for determining the potential volume change (PVC) of a soil.
78. The percolation (internal drainage) characteristics of soils are a direct reflection of their permeability. The presence of excess mois ture in fill material, except for free-draining, coarse-grained soils, may cause loss of strength. The moisture may come from the infiltration of rain water or as a result of capillary rise from an underly ing water table, or the moisture used in compaction may cause excess water pressures under certain conditions. While free-draining materials permit rapid draining of water, they permit rapid ingress of water also, and if such materials are adjacent to less pervious materials and have free access to water they may serve as reservoirs to saturate the less pervious materials.
79. It is obvious, therefore, that in certain circumstances adequate drainage systems should be provided. In situations where high permeability is desired, the gravelly and sandy soils with little or no fines (groups GW, GP, SW, and SP) have excellent percolation characteristics. The GM and SM groups have fair to poor percolation characteristics, whereas GC and SC groups may be practically impervious. Soils of the ML, MH, and Pt groups have medium to low permeability. All of the other groups have medium to low permeability or are practically impervious. Drainage systems become increasingly important for the less pervious soils.
80. The ranges or lower limits of the coefficient of permeability for the soil groups are given in column 11, in addition to a word description of the permeability rating. The permeability of a soil depends on several factors, including the size and shape of the soil grains, grain orientation, soil structure, degree of compaction, and the viscosity of the fluid. In compacted fills, natural grain orientation and soil structure are presumably destroyed, but the layers of soil which make up the fill are likely to give a different permeability in the horizontal direction than that which might be measured in the vertical direction. The permeability in the direction parallel to the layers is usually larger than that in the direction perpendicular to the bedding.
81. Percolation characteristics and coefficients of permeability have general applications to all phases of construction at a residential building site, but perhaps the most direct use is in selecting soils for the absorption phase in a domestic sewage disposal system. These characteristics are the paramount ones to be considered for this use.

## Potential frost action

82. Frost action includes the heave caused by ice lenses forming in a soil and the subsequent loss of strength as a result of excess moisture during thawing periods. Some soils are more susceptible to frost action than others.
83. In addition to a susceptible soil, two other conditions must exist for frost action to become a major consideration. These are a source of water during the freezing period and a suitable temperature gradient which exists long enough for freezing temperatures to penetrate the ground. Water necessary for the formation of ice lenses may become available from a high ground-water table, capillary supply, water held within the voids of the soil, or through infiltration.
84. The degree of ice formation that will occur in any given case is markedly influenced by environmental factors such as surrounding topography, elevation, cyclic repetition of the freezing process, available supply of water, and drainage conditions. Temperature variations induced by various insulators and sources of heat may reduce frost action in a given case.
85. In general, the silts and fine silty sands are the worst offenders as far as frost is concerned. Coarse-grained materials with little or no fines are affected only slightly if at all. Clays (CL and CH) are subject to frost action, but the loss of strength of such materials may not be as great as for silty soils. Inorganic soils containing less than three percent of grains finer than 0.02 mm . in diameter by weight are generally nonfrost-susceptible. Fines with low plasticity indexes are usually more susceptible than those with high indexes.
86. If conditions are expected that would make frost action possible, the most desirable procedure is to remove any susceptible soil and replace it, to the depth of frost penetration, by a soil which is not susceptible. If this is une conomical the design of any associated structure should be based on the reduced strengths and on the heave that must be expected. For residential buildings, susceptibility of the soil to frost action may indicate that a house with a basement is preferable to one constructedon a slab foundation; foundations that are below the frost line should not heave in any soil except under unusual conditions. In many cases, proper drainage methods to prevent the accumulation of water in the soil pores will greatly reduce frost action potential.
87. Column 12 rates the soil groups according to potential frost action. If the potential is non-existent or very slight the rating is 1 ; if it is very high the rating is 5 .

## Corrosion potential

88. Some soils tend to cause corrosion in underground conduits or pipes placed in them. The corrosion potential depends on chemicals in the soil, usually dissolved in the soil moisture, and on the material from which the conduits are made. The presence of these chemicals cannot always be predicted, but experience has shown that it is influenced by the composition of the grains, among other things. If the grains of a soil are composed of organic material, then organic acids in the soil water should be expected. Other chemicals that are undesirable because of corrosive abilities on some conduits are dissolved sulfate and chloride salts.
89. Among the tests that are available for testing for corrosive chemicals in soils are electrical resistivity tests and pH tests (acidity or alkalinity tests). Corrosion potential is usually associated with the plastic fines in a soil, with the organic soils having a higher potential than other plastic soils.
90. In column 13, soils that are ranked as 1 have a low potential and those ranked as 4 are considered to have high potential for corrosion of underground conduits.

Relative desirability
of fills for roadways
91. Subbase or base materials. In columns 14 and 15 the soil groups are rated as to relative desirability as subbase and base materials, provided they are not subject to frost action. In areas where frost heaving is a problem, the value of materials as subbases will be reduced, depending on the potential frost action of the material, and the relative desirability changes to those shown in column 16. In each of these columns the smaller numbers indicate the more desirable soils.
92. Usually non-frost susceptible soils are preferred for base courses in areas where frost heave is a problem. Proper design procedures should be used in such situations. The coarse-grained soils in general are the best subbase and base materials. Poorly-graded gravels and some silty gravels, group GP and some soils in the GM group, are usually only slightly less desirable as subbase materials, and under favorable conditions are usable as base materials; however, poor gradation and other factors sometimes reduce the value of such soils to such an extent that they offer only moderate strength and their value as a base material is less. The light loading expected on residential streets does not make this a serious defect.
93. The GC and SW groups are reasonably good subbase materials but are not as desirable as base materials as other groups. The SP and SM soils usually are considered good to adequate subbase materials and under favorable conditions may be used as base materials. The SC soils are fairly good subbase materials. With proper design, pavements may be constructed on any of the remaining soils, including SC, but they are much less desirable as base courses than are the groups mentioned above.
94. The fine-grained soils range from a fair relative desirability rating to that of the least desirable; the highly organic soils, Pt, are not suitable for use in a fill. The lower qualities represented by the finegrained soils are compensated for in flexible pavement design by increasing the thickness of overlying base material, and in rigid pavement design by increasing the pavement thickness or by the addition of a base course layer.
95. Wearing surface (untreated). For wearing surfaces on unsurfaced roads sand-clay-gravel mixtures (GC) are generally considered the most satisfactory. However, for best results they should not contain too
large a percentage of fines and the plasticity index should be in the range of 5 to about 10 . Other soil groups are rated in column 17 in order of decreasing desirability for this use.

Surface stabilization with additives
96. The stabilization of surface soils, as in low-cost road construction or underneath a foundation slab, makes the effect of mechanical stabilization through compaction more lasting. Untreated fills may abrade more or less rapidly under traffic or soften and disintegrate as a result of wetting and drying or freezing and thawing. Stabilization by additives usually adds materially to the strength of the treated layers. Some additives, such as Portland cement, lime, and bitumen, are often economically feasible, while others, such as resins and gels, are at present usually expensive. However, with technological improvements these additives may become more useful under ordinary conditions. In general, soils that are predominantly coarse-grained show very marked hardening under proper chemical treatments; silty soils show marked hardening; clayey soils show substantial hardening; and peaty, highly organic clays and fat clays cannot be economically treated.
97. Difficulties of mixing additives in the soil become more pronounced with the more clayey soils. The relative effectiveness of stabilization with additives of the surface of fills is rated in column 18 with the soil groups most effectively stabilized given the rating of 1 . It should be noted that ratings are based almost entirely on stabilization with Portland cement.

Fill as
foundations for low buildings
98. Suitability of properly compacted soils for foundations of low buildings (up to and including three stories are considered as low buildings) is primarily dependent on the strength and consolidation characteristics of the fill material, but the effects of the characteristics of the subsoil on which the fill is placed may control.
99. The ability of the subsoil to satisfactorily carry the load imposed by the building and the fill should be given due consideration. For the average residence it will be found that roughly each 2 ft . of fill depth beneath the house weighs as much as the house itself. For deep fills, it will be found that the weight of the residence is only a small percentage of the total weight on the subsoil and foundation rock. Landslides involving the fill, the subsoil, and the foundation rock are often associated with deep fills. The effects of the subsoil on fill behavior and the possibilities of landslides associated with fills are beyond the scope of this report. See paragraph 163.
100. Usually properly compacted fills will have sufficient strength to support the relatively light loads from low buildings. Even though a fill may be properly compacted and have sufficient strength for its purpose, there may be some subsidence as a result of consolidation. For most
soil groups subsidence as a result of consolidation is usually of a tolerable magnitude; however, organic soils, OL and OH , may have large settlements as a result of consolidation even though they were compacted in the filling operation and are usually unsuitable for use in fills.
101. When disturbed soils of the CL, CH, and OH types are compacted in fills and used as foundations for low buildings, there is danger of expansion under unfavorable climatic conditions. Discussions under paragraphs 73 through 77 should be given careful consideration when these soils are used.
102. Some of the other soil groups have other peculiarities that should be considered when contemplating their use as fills to support low buildings. Uniformly graded soils of the SP and SM groups and some soils in the ML group, if below the water table, may become "quick" or liquify during construction operations if they are loose. Highly organic soils, Pt , are so difficult to compact that they are seldom, if ever, suitable for load supporting fills.
103. In column 19 the soil groups are rated according to relative desirability as foundation materials with the most desirable soils being given the rating of 1 . Each soil group is assigned a different number, but the difference between the desirability of the GW group (1) and the SC group (5) is small, whereas the difference in desirability increases rapidly for higher numerical ratings. These ratings cannot take into account the effects of subsoils and slope stability factors.

Relative desirability for
water and sewerage purposes
104. Columns 20,21 , and 22 of table 2 carry ratings of the relative desirability of the soil groups for several uses of interest in sanitary engineering problems. The ratings given in column 19 for low buildings apply equally as well for sanitary engineering structures such as water and sewage treatment plants of the dimensions ordinarily found in residential site developments. In the case of exceptionally heavy loads, such as might occur under stand-pipes and water storage tanks, the ratings apply in a general way but the type of structure and the type of foundation have such a large influence that the soils in the groups cannot be successfully rated. Each case must be analyzed individually.
105. Low berm for sewage lagoons. Low berms (usually less than 6 ft . in height) for sewage lagoons are usually constructed of more or less homogeneous materials found at the site. For satisfactory functioning of a sewage stabilization pond the evaporation and seepage losses must not exceed the total amount of incoming sewage; consequently, the embankment (as well as the bottom of the pond) should be relatively impervious for economical construction. Almost any soil can be used if the embankment is made wide enough. Since a reasonable width is desirable (a minimum crest width is often taken as that width which will permit the passage of a vehicle for convenient maintenance), permeability and percolation characteristics as well as stability or strength are important in rating soil groups for this use. The natural soil underneath
a proposed embankment should be considered in planning and design, for seepage may occur through this region even though the berm is constructed of relatively impervious materials. Natural, undisturbed soils as related to sewage lagoons are discussed in part IV.
106. Again, the important factors in rating soil groups for use in a berm are stability and permeability. Compaction characteristics are not as important for this use as they might be for other purposes since density requirements for lagoon embankments are seldom as stringent as those for, say a load-carrying fill. Controlled compaction is desirable, but uncontrolled compaction is not uncommon. Some groups with good stability are pervious. Those groups having a combination of good stability and low permeability are most desirable. The soils which best fulfill these requirements are the GC, SC, GM, and SM groups. The ML, MH, CL, and CH groups should be satisfactory when used in combination with the above groups. The clay and silt groups, when used alone, may be found lacking in stability and subject to erosion, and consequently they may require excessive maintenance.
107. If it is found that the commonly available soils at a site are so permeable that a core of impermeable material is required for economical construction, then the GC, SC, CL, and CH groups may be expected to be suitable core material.
108. Lack of stability and organic content generally decrease the desirability of the organic and highly organic soil groups so that they are seldom used for sewage stabilization pond embankments, except under special circumstances.
109. Column 20 gives the relative desirability of the soil groups for use as low berms for sewage lagoons. Permeability and stability are both considered. In this column, as in pervious columns, the lower the numerical rating the higher the relative desirability is.
110. Compacted earth lining for water storage reservoirs and sewage lagoons. Water storage reservoirs and sewage lagoons constructed on pervious soils, such as those from the GW, GP, SW, and SP groups, may lose large quantities of liquids as a result of seepage through the bottoms and sides of the storage areas. The quantity of seepage usually can be materially reduced by compacted linings of less pervious materials. The effectiveness of such linings is related, of course, to the permeability of the soil which is lined or sealed. For example, if the bottom of a storage area was composed of silt soils, sealing it with one of the gravelly soils would not have much effect on seepage but it might be quite useful in preventing erosion.
111. In situations where sealing a storage area against seepage is the most important consideration, the GC, SC, CL, and CH groups will usually be the most desirable soils for lining purposes. If reduction in seepage quantities and protection from erosion are of equal consequence, then the GC and SC groups will be found to be best suited for these purposes. If protection from erosion with a lesser reduction in seepage is a satisfactory aim, then the GM and SM groups may be utilized in addition to the GC and SC groups.
112. The relative desirability of the soil groups for compacted linings is based on both permeability and resistance to erosion. These ratings are shown in column 21, with the more desirable soils for this purpose having the lower numbers.
113. Domestic sewage disposal area. In column 22 the soil groups are rated according to relative desirability for use as the absorption phase of a domestic sewage disposal system. Such installations as disposal beds or trenches for the disposal of the effluent of septic tanks are considered. Disposal pits, while unlikely in a fill area, may be necessary because of unsuitable permeability of the fill material combined with advantageous characteristics of the subsoil. Disposal pits must be designed on the basis of a thorough site investigation which may include a test boring at the proposed site, and pits are not considered in this rating.
114. Fill areas are generally not suitable for use as a domestic sewage disposal area, but when a development is to be on disturbed soil in a nonsewer area some well designed and well constructed fills of coarsegrained, free-draining soils (GW, GP, SW, and SP) may be suitable for this purpose, provided the underlying formations are at least as permeable as the soil in the fill. These soils are rated $l$ in the table.
115. It is unlikely that fills constructed of fine-grained soils can be used as a domestic sewage disposal area, and these are rated as not suitable in column 22. Some groups will require appropriate tests before it can be determined whether or not they are suitable. These soils are rated 2 in the table. In deciding upon the desirability of a particular fill for a disposal area such conditions as position and fluctuations of the water table, characteristics of the soil under the fill, and topography must be considered.

## Additional Site Problems Involving Disturbed Soils

116. Many site problems involving fill material do not lend themselves to tabulation in the Unified Soil Classification System. Generally they are problems of engineering analysis.
117. Two of these problems are mentioned here as examples. First, the effects which may be attributed to a composite system of a fill placed on undisturbed soil must be analyzed from the point of view of the combined effects of the two materials. Structures which are located partly on a fill material and partly on undisturbed material present another facet of this same problem. Second, the stability of slopes and criteria for recommended stable slopes require engineering analysis. Conditions are so important here that they overshadow the characteristics attributable to the soil components which are the basis of the Unified Classification System. Then, again, this second problem cannot be entirely divorced from the first mentioned above.
118. Existing fills constructed with uncontrolled compaction must, of course, be individually investigated and the properties of the fill determined therefrom. The investigation is usually expensive, and the properties are usually poor.

# PART IV: CHARACTERISTICS AND PROPERTIES OF 

 UNDISTURBED SOILS
## Influence of Conditions and Environment

119.The characteristics and properties of natural, undisturbed soils depend so much on local conditions, environment, and past geological history of the formations that any attempt to tabulate or rate them is fraught with great difficulties. Such an attempt would be apt to result in an exceedingly cumbersome text and in tables that would be of limited value because of wide variations in properties and numerous exceptions which would exist as a result of influences not directly accounted for by the Unified Soil Classification System.
120. As an alternative approach, the following paragraphs point out the critical situations that can occur as a result of combinations of condition and environment for each of the soil groups in the Unified Soil Classification System. This does not mean that the Unified System cannot be used with undisturbed soils. It can and should be used to classify the soils, and the adequate word description is most necessary in communicating information about the soil profile.

## Characteristics of Uniform Formations

Coarse-grained soils
121. The coarse-grained soils are usually the most desirable soils for most engineering purposes at a residential site development. The value of these soils depends a great deal on the relative density of the formations. Loose soils can settle dangerously if vibrated. Non-uniform density can cause unequal settlements. Usually, with moderate density, the strength of these soils is sufficient to carry any load from structures ordinarily found in residential areas; if there is a limit on loads it will usually be imposed by allowable settlement.
122. Poorly graded fine sands and silty sands (SP and SM) are more affected by density than others in the coarse-grained groups; if below the water table and loose they may become "quick" and flow during excavation operations and may result in lost ground in the surrounding area if proper dewatering techniques are not utilized.
123. Usually a simple penetration test will yield sufficient results for evaluating the density of coarse-grained soils. Sometimes a portion of the resistance to penetration can be attributed to cementation of the grains. The density of loose formations can usually be increased by any one of several methods which involve vibration of the formation. Position of the water table and degree of saturation are also desirable information if excavation is contemplated
124. When the free-draining soils (GW, GP, SW, and SP) are to be used for sewage disposal areas, a high water table can prevent effici-
ent absorption and distribution of effluents unless the groundwater has noticeable velocity. In the silty or clayey sands and gravels (GM, GC, SM, and SC) cementation is not unusual, and this impairs their use for sewage disposal purposes. Percolation tests are needed to determine the value of these less permeable coarse-grained soils.
125. The clayey gravels and sands (GC and SC) are generally sufficiently impermeable for use as the bottom of water storage reservoirs or sewage stabilization ponds. The silty gravels and sands (GM and SM) may be suitable for this purpose but excessive seepage may be a problem in the more pervious of these soils.

## Fine-grained soils

126. Silts. The density, water content, degree of saturation, and position of the water table are of extreme importance in silt formations and deposits. The density of these formations can be fairly well determined by simple penetration tests. Loose or soft silts are often unsatisfactory for the direct support of foundations. Deep beds of silt, often more or less organic, are encountered near the present or former shores of oceans and lakes and in the beds of present or ancient rivers. Formations of residual silts are common in some areas. When these formations are below the water table and have never had the opportunity to become dried, they are likely to be as soft and compressible as normally loaded clays near the liquid limit.
127. The non-plastic silts and silts of low plasticity(ML)may liquify easily if saturated and flow as a viscous liquid. Some silts, on the other hand, are relatively stable even with a low density if there is a clay binder present. Silts requiring stabilization during excavation operations of a temporary nature may sometimes be stabilized by the well-point method or even by freezing, but this is expensive.
128. Erosion is a major problem for slopes on silts. Slopes on loose silt or cuts made in silts are subject to slides if they become saturated. The difficulties of excavation increase with decreasing plasticity of the silt, if saturated. Some rock flours (non-plastic, inorganic silts) have become notorious for their troublesome characteristics and are known locally as "bull's liver."
129. Excavation below the water table in loose plastic silts (both ML and MH) is likely to result in considerable loss of ground and settlement of the adjacent ground surface caused by drainage of the silt and the accompanying consolidation. This may not be serious in shallow excavations. Silt deposits are the most susceptible of all soil deposits to frost heave and subsequent loss of strength on thawing, provided sources or water and low temperatures are available.
130. Silts vary widely in their desirability as soils for domestic sewage disposal areas. The presence of a well developed, water-table structure greatly improves their value, particularly if the structure is of a blocky nature. Loose or soft silts may be troublesome from a trench construction viewpoint, and they often give trouble by infiltration of silt into the prepared gravel beds of the disposal area.
131. Loess is silt or clay deposited as a result of wind action. The characteristics of true loess deposits are likely to be extremely different from those of waterlaid silts. On account of the calcareous binder present (a clay binder sometimes occurs) in most loess deposits, the material is likely to have appreciable cohesion with a relatively low density. It may be capable of sustaining loads of several tons per square foot without appreciable settlement. However, the quality of the binder or cementing material is likely to differ from point to point, partly on account of erratic variations in the leaching action of groundwater. Hence, the strength of the deposit is likely to vary widely within short distances.
132. Deep profiles of loess have a tendency towards a well developed pedological structure and are often permeated by roots and root holes. Under these conditions loess may make a good sewage disposal area.
133. Deposits of true loess are unsaturated. If they become saturated some of the binder is likely to dissolve or soften, and the deposit may lose its cohesion. In this event the structure of the soil collapses, and the void ratio (see appendix D) decreases significantly. This is likely to cause settlement of the ground surface irrespective of the loads on the soil and failure of sewage absorption fields in the loess. Cuts in loess require special consideration. They should be made almost vertical, otherwise they will slough to an almost vertical face with subsequent weathering.
134. Once the characteristics of undisturbed, wind deposited, true loess have been destroyed, the material behaves like an ordinary slightly plas tic silt. Upon completion of a footing or slab foundation on loess, special precautions must be taken to insure that the water table will not be raised or the loess become saturated by any subsequent activities. In a number of instances, small structures founded on loess in semi-arid climates have settled on account of saturation of the subsoil caused by sprinkling or irrigation required to maintain lawns or landscaping. In other instances accumulation of water from other sources beneath structures have led to large subsidences.
135. Ordinary silts (including re-deposited modified loess) can be used for foundations in a residential site development even though they require closer attention than the coarse-grained soils. Footings and slabs with design bearing values of several tons per square foot have been successfully constructed. Silts, in general, are less desirable for foundation soils than are the coarse-grained soils. Some silts require expert investigation and analysis.
136. Inorganic clays. The ultimate bearing capacity of clay formations depends primarily on the shearing resistance of the clay. Secondary structural characteristics such as hair cracks and slickensides will reduce the overall shearing strength of a formation in soils where they occur. These same characteristics indicate increased permeability (at least until swelling occurs which would close the channels), and this may result in increased value of the soils for domestic sewage disposal areas. The unconfined compressive strengths and the shearing strengths of clays can be roughly estimated on the basis of penetration tests (see appendix C) or vane tests.
137. Medium to hard clays usually can be used in a residential development as a foundation material without concern for its load-bearing capacities. With the relatively low loadings associated with residences there may be some consolidation of the clay with consequent subsidence; with proper design of the foundation it is not likely to be intolerable.
138. Deep fills on clays may result in high loadings from the weight of the fill and the structures on it. In this case engineering analysis may be required.
139. Clays in the CL group will generally compress less than the clays in the CH group if the two groups have similar loading histories. For clays identified as belonging to the same group, those with very soft or soft consistencies in the undisturbed state may be expected to compress more than those with stiffer consistencies. With proper design of the foundations of a structure a clay of almost any consistency can be used.
140. If channels exist for the flow of fluids in a clay formation as a result of its structure, these channels may be sealed off by the fine-grained ingredients of the formation if the soil is manipulated such as when a cut is made in the excavation of a trench or bed for a sewage absorption area. The highly plastic clays with high moisture content are most susceptible to this type of action. Clays that originally may have had appreciable absorption capacity may become almost impermeable after slight surface disturbance at an interface. This characteristic, along with generally low permeability, limits the value of such soils for use as the absorption phase of a domestic sewage disposal system, but it increases the desirability of these soils for use as the bottom of water storage reservoirs or sewage lagoons.
141. Clays of the CL group with a low degree of saturation may be expansive if they are subject to wide fluctuations in moisture content. It is noted that merely placing a structure on a soil will induce a change in the moisture content.
142. Soils that are hard and dry are potentially the most expansive of any of the soils in the CL group. Clays with a high moisture content are not as subject to expansion but they may be subject to shrinking. Any clay that has a plasticity index greater than 15 may be an expansive clay if it is subjected to wide changes in moisture content. Clays of high compressibility (CH) are nearly all potentially expansive clays but reduced permeability may decrease the magnitude of moisture change and thus reduce the tendency for rapid swelling or shrinking.
143. In expansion and shrinking as in other types of movement small differential movement is usually more damaging than larger uniform movement. A system of surface drainage that will insure uniform drainage and will carry off surface water rapidly is usually most desirable. In the usual residential site development it is not economical to try to improve the consistency of a clay deposit, but adequate drainage systems help.
144. Percolation tests for appraising expansive soils for use as the absorption phase of a domestic sewage disposal system must be carefully conducted. The soils must be at a moisture content and in an expanded condition similar to that which will exist under use conditions. This
means that generally they must be saturated and the saturated condition must be maintained for a sufficient time for expansion to take place.
145. The color of clay subsoils is an excellent clue to their value for sewage disposal. Mottled coloring or dull grey coloring of a clay is a strong indication of poor internal drainage and thus poor soils for use as an absorption area for a domestic sewage disposal system.
146. Organic clays. The comments contained in the above paragraph generally apply to organic clay formations (OL and OH). In general, organic clays are more compressible than inorganic clays and foundations of these formations must be designed to take this into account. If a formation of organic clay of high compressibility is shallow it may be economical to remove such soils from the foundation area and use a more desirable subsoil or backfill with more suitable soils. It is not unusual for organic soils to be covered with a fill of other soil in order to distribute building loads evenly through the organic soils. In this case the combined weight of the fill and building loads must be considered in estimating settlements. These soils are not likely to be suitable for use as the absorption phase of a domestic sewage absorption system because of their low permeability and poor internal drainage.

## Highly organic soils

147. The highly organic soils ( Pt ) are generally very poor foundation materials. However, if a soil of the Pt group is well consolidated it is possible to design satisfactory foundations for it. Usually the peaty soils are so compressible that large settlements should be anticipated unless loads are transmitted through these soils to some more resis tant layer. Highly organic soils are often found in low, swampy areas and, as a result, they may be filled over to bring the area up to grade. Here the peat must carry not only the load of the buildings but also the weight of the fill, and large settlements may be expected. If possible, it is advisable to avoid highly organic soils for foundations.

## Characteristics of Nonuniform Formations

148. Many formations consist either of definite strata or of more or less lenticular elements. Some of the components of the formation may consist of fairly desirable material, whereas others may be relatively undersirable because of some of the conditions mentioned above. On the basis of preliminary investigations one can usually conclude at once whether some parts of the deposit are of such quality as to be of no further concern. Attention can then be focused on the weaker, more compressible or otherwise less desirable members. Nonuniform formations can be investigated and identified according to the Unified Soil Classification System. The characteristics of the individual strata can be estimated on the basis of the descriptions given above for uniform deposits and the results combined and modified to indicate the behavior of nonuniform deposits.
149. An adequate word description as outlined in part II and tabulated in table 1 is a basic step in classifying undisturbed soils. An adequate description will permit the trained observer to anticipate many of the problems that can arise with undisturbed soils.

## Undisturbed Soils at Residential Building Sites

150. General characteristics of the soil groups of the Unified Soil Classification System pertinent to undisturbed soils at a residential building site are indicated in table 3. Based on these characteristics and experience, table 3 also compares the soil groups according to desirability for various pertinent uses. The numeral "l" is used for the group or groups usually considered most desirable; higher numbers indicate desirability decreasing with the magnitude of the numbers. Numerical comparisons apply only within a single vertical column. It should be clearly recognized that the numerical ratings are highly approximate and are intended only as a guide to aid the investigator in comparing soils for various purposes; conditions and environment will often make different numerical sequences not only desirable but necessary.
151. In table 3, columns 1 and 2 show the group symbols and the names of the soil types. Column 3 refers to text paragraphs which are applicable to various soil formations. Columns 4 through 9 rate the relative desirability of the soils for various uses at a residential building site and show the following: column 4, roadway subgrade when not subject to frost action; column 5, roadway subgrade when subject to frost action; column 6, foundations for low buildings when the soil formation is either dense or hard; column 7, foundations for low buildings when the soil formation is either loose or soft; and column 8, domestic sewage disposal area (absorption phase for liquid effluent from septic tanks); and colum 9, site for unlined reservoir or unlined sewage lagoon. The various features presentedare discussed briefly in the following paragraphs.

## Significant features

152. The influence of conditions and environment and an indication of the characteristics of the various soil groups when found in uniform formations are indicated in column 3 by references to applicable paragraphs in the text. The characteristics of the soil groups in the disturbed state (part III) should be reviewed for comparison.

Relative desirability
for roadway sub-grade
153. Columns 4 and 5 rate formations of the various soil groups as subgrades for roadways under conditions where frost action is not possible and where frost action is possible. The more desirable soils under each condition are given the lower numerical ratings.
154. Columns 6 and 7 rate deposits of the various soil groups as foundations for low buildings (up to and including three-story buildings). Column 6 shows the relative desirability of dense noncohesive soils or hard cohesive soils while column 7 rates the groups when they are loose or soft. The relative ratings are greatly influenced by conditions as will be noted by referring to the references listed in column 3. The relative ratings apply to low buildings for sanitary engineering structures as well as they do to residences.

Domestic sew-
age disposal area
155. In column 8 of table 3 the soil groups are rated according to relative desirability when formations of these soils are used as the absorption phase of domestic sewage disposal systems. Such installations as disposal beds or trenches are considered. Pits are not included in this rating. If a formation is uniform and is of a free-draining material, a shallow pit may be quite satisfactory. If the formation is nonuniform and the top layer is not suitable for other common methods of disposal then a site investigation must be made. It is noted that the successful use of pits in the local area may be sufficient indication but this can not be depended on in many cases.
156. The various conditions that affect permeability of natural formations will affect the value of a formation for use for absorption of liquids. The permeability in a direction parallel to the bedding may be many times that in directions perpendicular to the bedding. Such secondary structural features as root holes, shrinkage cracks and tension or shear cracks may give misleading values of the permeability when the soil is tested in place.
157. The coarse-grained soils (GW, GP, SW, and SP) which are rated 1 in the table are probably suitable as disposal areas. Those soils rated 2 will probably require percolation tests to determine whether or not they will be satisfactory. Such tests should be conducted by experienced personnel who are able to take into account the condition of the soil at the time of the test. Formations that are rated NS (CH, OH, and Pt) are not likely to be satisfactory for use as the absorption phase of a domestic sewage disposal system.

Reservoir or
sewage lagoon site
158. The most desirable soils on which to construct an unlined water reservoir or an unlined sewage lagoon are formations composed of the GC, SC, CL, or CH soil groups. These are likely to be impervious enough to prevent damage to the functioning of the storage area which can occur as a result of seepage. These soils are usually satisfactory when they occur as uniform deposits or when they occur in combination
with each other. These impervious soils are assigned the lower num-
159. Formations composed of groups with a silt component (MH, ML, GM, or SM) are less desirable than more impervious groups for use as the bottom of ponds or reservoirs, but they may be satisfactory when they occur in conjunction with layers of less permeable soils. The GM and SM soil groups have generally better resistance to erosion than do the ML and MH groups.
160. Layers which are composed of the GP, GW, SP, or SW soil groups are usually quite permeable and are not suitable for the ave rage installation unless some means is provided for reducing seepage, such as a line $r$ or sealer of impervious materials. These soil groups are rated not suitable, NS, in column 9 of table 3.
161. Organic content combined with questionable permeability cause deposits of organic and highly organic soils to be relatively undesirable for reservoir or lagoon installations. They are seldom used for this purpose except under special circumstances.
162. Numerical ratings are approximate and are intended only as a guide to aid the investigator in comparing various soils for a stated purpose. For example, a few instances have been reported where sewage stabilization ponds have been constructed on "sand and gravel" (sic) areas with the anticipation that the algae growths and sewage solids would in time cover the sides and bottom of the pond and would the reby considerably reduce the seepage losses. One such installation did in fact perform as anticipated, but the reduction in seepage was not sufficient to prevent contamination of the local ground water with undesirable chemicals. This statement should be clarified, perhaps, by adding that at this installation the seepage was gradually decreased to a point such that essential biological processes could be successfully maintained, but the quantity of seepage was not reduced to a rate that would preclude noticeable contamination of the local ground water by certain chemicals that are commonly found in household wastes. This particular installation was abandoned after about a year of operation. Can formations with semi-pervious drainage characteristics be used as the site for a storage area? They might be successfully used under certain special conditions; ratings of soil for this use must be tempered by engineering experience

## Additional Site Problems Involving Undisturbed <br> Soils

163. There are many site problems involving undisturbed soils that are problems in soil mechanics and do not lend themselves to tabulation in the Unified Soil Classification System. These are soil problems of design and analysis. The complications of nonuniform deposit problems of design and problem, have already been mentioned in deposits, which is a widespread slopes, either natural slopes or slopes th paragraph 148. The stability of engineering analysis. Usually if cuts that are the result of cuts, requires mon in the local area there will be no tromade at slopes which are commany exceptions to this rule as a result ouble with slides; there may be slides on natural slopes are a pressing probcalized conditions. Landtoo, is a problem of engineering analysis.


| GROUP symbls <br> (1) | TYPICAL HANES 0 F SOIL GIDUPS (2) | CRITICAL <br> featuires <br> Taxt Parafirapho <br> (3) | relative desianatlitt ich various uses |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Hoadway Sub-grade |  | $\begin{aligned} & \text { Foundarions } \\ & \text { for Low Buildinps } \end{aligned}$ |  | Domertic Sewnce Disposal Area (8) | Reservoir or Lagioon site (9) |
|  |  |  | Not Subjoct so Froal hetion (4) | Subject to Frost Aetion (5) | Derge or Hard (6) | Loose or Soft (7) |  |  |
| GW | Well-graded fravely gravelzand mixtures, litcle or no fines. | $\begin{aligned} & 121 \text { throuph } 125 \\ & 148,169 \end{aligned}$ | 1 | 1 | 1 | 1 | 1 | N3 |
| OP | Poorly grsiod fraveie or riravel-sand mixtures, little or no finos. | $121 \text { through } 125$ $148,149$ | 3 | 3 | 1 | 2 | 1 | HS |
| $\sigma M$ | Slley rravela, rravel-sand-silt mixtures. | $\begin{aligned} & 121 \text { ehrough } 125 \\ & 148,149 \end{aligned}$ | 4 | 9 | 2 | 2 | 2 | 5 |
| GC | Clayey gravels, riavel-sand-elay mixtures. | $\begin{aligned} & 121 \text { through } 125 \\ & 148,149 \end{aligned}$ | 6 | 5 | 3 | 1 | 2 | 1 |
| 5 | Well-graded sands. rravelly sands, iftele or no fines. | $121 \text { through } 123$ $148,169$ | 2 | 2 | 1 | 2 | 1 | NS |
| $s p$ | Poorly graded sanda or cravelly sands, little or no fines. | $121 \text { through } 125$ $146,149$ | 5 | \% | 1 | 2 | 1 | NS |
| SM | Silty sand, sand silt mixtures. | $\begin{aligned} & 121 \text { through } 125 \\ & 148,149 \end{aligned}$ | 6 | 10 | 2 | 2 | 2 | 6 |
| SC | $\begin{aligned} & \text { Clayoy sands, sand-clay } \\ & \text { mixtures. } \end{aligned}$ | 121 through 125 168, 149 | 7 | 6 | 3 | 2 | 2 | 2 |
| 准 | Inorganic silta and very fino sands, rock flour, silty or clayey fine aanda or clayay silis aith slight plasticity. | 126 through 130 132 through 135 148, 149 | 8 | 12 | 3 | 3 | 2 | 8 |
| CL | ```Jnorganic elays of low to medium plusticity, fravelly clays, sandy clays, silty clays, lewn claya.``` | $\begin{aligned} & 136 \text { through } 145 \\ & 148,149 \end{aligned}$ | 8 | 7 | $\begin{gathered} 3 \\ \text { Expansion } \\ \text { very danerous, } \\ \text { if drs } \end{gathered}$ | 3-5 | 2 | 3 |
| OL | Orpanic silcs, and organic siley clays of low plasticity. | 166, 148, 149 | 9 | 12 | 4 Expansion daneerous | 4 | 2 | 9 |
| 1 HH | Inorganic ailes, micaceous or diatonaceous fina aandy or alley soils, elastic silta. | $\begin{aligned} & 126 \text { Ehrough } 130 \\ & 132 \text { ehrough } 135 \\ & 148,149 \end{aligned}$ | 10 | 13 | 5 | 4 | 2 | 7 |
| CH | Inorfanic elays of high plasticity, rat elays. | $\begin{aligned} & 136 \text { through } 145 \\ & 148,149 \end{aligned}$ | 11 | $B$ |  | $\begin{aligned} & \text { Ey } \\ & \text { Expansion } \\ & \text { might bee } \\ & \text { dangeroue } \end{aligned}$ | HS | 4 |
| OH | Orponic clays of medium co hiph plasticizy,orpanic silts. | 146, 148, 149 | 12 | 14 | $\begin{gathered} 6 \\ \text { Expansion } \\ \text { dangerous } \end{gathered}$ | 5 | HS | 9 |
| Pt | Peat and orber highly organic solls. | 147, 148, 149 | NS | NS | 7 | HS | ns | HS |
| TEXT | EkEACE (Paragraph Tumber) |  | 153 | 253 | 154 | 154 | $\begin{gathered} 155 \\ \text { ihrough } \\ 157 \end{gathered}$ | $\begin{gathered} 158 \\ \text { chrouzh } \\ 162 \end{gathered}$ |

Hota: Numbers in each columa indicane relative desirability, The numeral nl" is used for the group or groups usually considered most desirable ical higher numbers indicato desirability decreasing hit tho
 condicions and environment will often make differont nuthorical sequances not only desirable but necessary.

## APPENDIX A

## FIELD IDENTIFICATION

Quoted from Unified Soil Classification System, Volume 1, March, 1953, Technical Memorandum No. 3-357, Office of the Chief of Engineers, Waterways Experiment Station, Vicksburg, Mississippi.

## Identification of Soil Groups

17. The unified soil classification is so arranged that most soils may be classified into at least the three primary groups (coarse grained, fine grained, and highly organic) by means of visual examination and simple field tests. Classification into the subdivisions can also be made by visual examination with some degree of success. More positive identification may be made by means of laboratory tests on the materials. However, in many instances a tentative classification determined in the field is of great benefit and may be all the identification that is necessary, depending on the purposes for which the soils in question are to be used. Methods of general identification of soils are discussed in the following paragraphs, and a laboratory testing procedure is presented. It is emphasized that the two methods of identification are never entirely separated. Certain characteristics can only be estimated by visual examination, and in borderline cases it may be necessary to verify the classification by laboratory tests. Conversely, the field methods are entirely practical for preliminary laboratory identification and may be used to advantage in grouping soils in such a manner that only a minimum number of laboratory tests need be run.

## General Identification

18. The easiest way of learning field identification of soils is under the guidance of experienced personnel. Without such assistance, field identification may be learned by systematically comparing the numerical test results for typical soils in each group with the "feel" of the material while field identification procedures are being performed.

Coarse-grained soils
19. Texture and composition. In field identification of coarse-grained materials a dry sample is spread on a flat surface and examined to determine gradation, grain size and shape, and mineral composition. Considerable experience is required to differentiate, on the basis of a visual examination, between well-graded and poorly-graded soils. The durability of the grains of a coarse-grained soil may require a careful examination, depending on the use to which the soil is to be put. Pebbles and sand grains consisting of sound rock are easily identified. Weathered material is recognized from its discolorations and the relative ease with which the grains can be crushed. Gravels consisting of weathered granitic rocks, quartzite, etc., are not necessarily objectionable for construction purposes. On the other hand, coarse-grained soils containing
fragments of shaley rock may be unsuitable because alternate wetting and drying may result in their partial or complete disintegration. This property can be identified by a slaking test. The particles are first thoroughly oven-or sun-dried, then submerged in water for al least 24 hours, and finally their strength is tested and compared with the original strength. Some types of shales will completely disintegrate when subjected to such a slaking test.
20. Examination of fine fraction. Reference to the identification sheet (table $1^{1}$ ) shows that classification criteria of the various coarse-grained soil groups are based on the amount of material passing the No. 200 sieve and the plasticity characteristics of the binder fraction (passing the No. 40 sieve). Various methods may be used to estimate the percentage of material passing the No. 200 sieve; the choice of method will depend on the skill of the technician, the equipment at hand, and the time available. One method, decantation, consists of mixing the soil with water in a suitable container and pouring off the turbid mixture of water and fine soil; successive decantations will remove practically all of the fines and leave only the sand and gravel sizes in the container. A visual comparison of the residue with the original material will give some idea of the amount of fines present. Another useful method is to put a mixture of soil and water in a test tube, shake it thoroughly, and allow the mixture to settle. The coarse particles will fall to the bottom and successively finer particles will be deposited with increasing time; the sand sizes will fall out of suspension in 20 to 30 seconds. If the assumption is made that the soil weight is proportional to its volume, this method may be used to estimate the amount of fines present. A rough estimate of the amount of fines may be made by spreading the sample out on a level surface and making a visual estimate of the percentage of fine particles present. The presence of fine sand can usually be detected by rubbing a sample between the fingers; silt or clay particles feel smooth and stain the fingers, whereas the sand feels gritty and does not leave a stain. The "teeth test" is sometimes used for this purpose, and consists of biting a portion of the sample between the teeth. Sand feels gritty whereas silt and clay do not; clay tends to stick to the teeth while silt does not. If the re appears to be more than about 12 per cent of the material passing the No. 200 sieve, the sample should be separated as well as possible by hand, or by decantation and evaporation, removing all of the gravel and coarse sand, and the characteristics of the fine fraction determined. The binder is mixed with water and its dry strength and plasticity characteristics are examined. Criteria for dry strength are shown in column 5 of the classification sheet, table 11 ; evaluation of soils according to dry strength and plasticity criteria is discussed in succeeding paragraphs in connection with fine-grained soils. Identification of active cementing agents other than clay usually is not possible by visual and manual examination, since such agents may require a curing period of days or even weeks. In the absence of such experience the soils should be classified tentatively into their apparent groups, neglecting any possible development of strength because of cementation.

[^1]Fine-grained soils
21. The principal procedures for field identification of fine-grained soils are the test for dilatancy (reaction to shaking), the examination of plasticity characteristics, and the determination of dry strength. In addition, observations of color and odor are of value, particularly for organic soils. Descriptions of the field identification procedures are presented in the following paragraphs. The dilatancy, plasticity, and dry strength tests are performed on the fraction of the soil finer than the No. 40 sieve. Separation of particles coarse than the No. 40 sieve is done most expediently in the field by hand. However, separation by hand probably will be most effective for particles coarser than the No. 10 sieve. Some effort should be made to remove the No. 10 to No. 40 frac$t$ ion but it is believed that any particles in this size range remaining after hand separation would have little effect on the field identification procedures.
22. Dilantancy. The soil is prepared for test by removing particles larger than about the No. 40 sieve size (by hand) and adding enough water if necessary, to make the soil soft but not sticky. The pat of moist soil should have a volume of about $1 / 2$ cubic inch. The pat of soil is alternately shaken horizontally in the open palm of one hand, which is struck vigorously against the other hand several times, and then squeezed between the fingers. A fine-grained soil that is nonplastic or exhibits very low plasticity will become livery and show free water on the surface while being shaken. Squeezing will cause the water to disappear from the surface and the sample to stiffen and finally crumble under increasing finger pressure, like a brittle material. If the water content is just right, shaking the broken pieces will cause them to liquefy again and flow together. A distinction may be made between rapid, slow, or no reaction to the shaking test, depending on the speed with which the pat changes its consistency and the water on the surface appears or disappears. Rapid reaction to the shaking test is typical for nonplastic, uniform fine sand, silty sand (SP, SM), and inorganic silts (ML) particularly of the rock-flour type, also for diatomaceous earth (MH). The reaction becomes somewhat more sluggish with decreasing uniformity of gradation (and increase in plasticity up to a certain degree). Even a slight content of colloidal clay will impart to the soil some plasticity and slow up materially the reaction to the shaking test. Soils which react in this manner are somewhat plastic inorganic and organic silts (ML, OL), very lean clays (CL), and some kaolin-type clays (ML, MH). Extremely slow or no reaction to the shaking test is characteristic of all typical clays (CL, CH) as well as of highly plastic organic clays (OH).
23. Plasticity characteristics. Examination of the plasticity characteristics of fine-grained soils or of the fine fraction of coarse-grained soils is made with a small moist sample of the material. Particles larger than about the No. 40 sieve size are removed (by hand) and a specimen of soil about the size of a $1 / 2-\mathrm{in}$. cube is molded to the consistency of putty. If the soil is too dry, water must be added and if it is sticky, the specimen should be spread out in a thin layer and allowed to lose some moisture by evaporation. The sample is rolled by hand on a smooth surface or between the palms into a thread about $1 / 8 \mathrm{in}$. in
diameter. The thread is then folded and rerolled repeatedly. During this manipulation the moisture content is gradually reduced and the specimen stiffens, finally loses its plasticity, and crumbles when the plastic limit is reached. After the thread crumbles, the pieces should be lumped together and a slight kneading action continued until the lump crumbles. The higher the position of a soil above the " $A$ " line on the plasticity chart, plate 2 (CL, CH), the stiffer are the threads as their water content approaches the plastic limit and the tougher are the lumps as the soil is remolded after rolling. Soils slightly above the "A" line (CL, CH) form a medium tough thread (easy to roll) as the plastic limit is approached but when the threads are formed into a lump and kneaded below the plastic limit, the soil crumbles readily. Soils below the " $A$ " line (ML, MH, OL, OH ) form a weak thread and, with the exception of the OH soils, cannot be lumped together into a coherent mass below the plastic limit. Plastic soils containing organic material or much mica (well below the "A" line) form threads that are very soft and spongy near the plastic limit. The binder fraction of coarse-grained soils may be examined in the same manner as fine-grained soils. In general, the binder fraction of coarsegrained soils with silty fines (GM, SM) will exhibit plasticity characteristics similar to the ML soils, and that of coarse-grained soils with clayey fined (GC, SC) will be similar to the CL soils.
24. Dry strength. The resistance of a piece of dried soil to crushing by finger pressure is an indication of the character of the colloidal fraction of a soil. To initiate the test, particles larger than the No. 40 sieve size are removed from the soil (by hand) and a specimen is molded to the consistency of putty, adding water if necessary. The moist pat of soil is allowed to dry (in oven, sun, or air) and is then crumbled between the fingers. Soils with slight dry strength crumble readily with very little finger pressure. All nonplastic ML and MH soils have almost no dry strength. Organic silts and lean organic clays of low plasticity (OL), as well as very fine sandy soils (SM), have slight dry strength. Soils of medium dry strength require considerable finger pressure to powder the sample. Most clays of the CL group and some OH soils exhibit medium dry strength. This is also true of the fine fraction of gravelly and sandy soils having a clay binder (GC and SC). Soils with high dry strength can be broken but cannot be powdered by finger pressure. High dry strength is indicative of most CH clays, as well as some organic clays of the OH group having very high liquid limits and located near the A-line. In some instances high dry strength in the undisturbed state may be furnished by a cementing material such as calcium carbonate or iron oxide.
25. Color. In field soil surveys color is often helpful in distinguishing between various soil strata, and to an engineer with sufficient preliminary experience with the local soils, color may also be useful for identifying individual soils. The color of the moist soil should be used in identification as soil color may change markedly on drying. To the experienced eye certain dark or drab shades of gray or brown, including almost black colors, are indicative of fine-grained soils containing organic colloidal matter (OL, OH). In contrast, brighter colors, including medium and light gray, olive green, brown, red, yellow, and white, are generally associated with inorganic soils. Use of the Munsell soil
color charts and plates, prepared for the U. S. Department of Agriculture by the Munsell Color Company, Baltimore, Maryland, is suggested in the event more precise soil color descriptions are desired or to facilitate uniform naming of soil colors.
26. Odor. Organic soils of the OL and OH groups usually have a distinctive odor which, with experience, can be used as an aid in the identification of such materials. This odor is especially apparent from fresh samples. It gradually diminishes on exposure to air, but can be revived by heating a wet sample.

## Highly organic soils

27. The field identification of highly organic soils (group Pt ) is relatively easy inasmuch as these soils are characterized by undecayed or partially carbonized particles of leaves, sticks, grass, and other vegetable matter which impart to the soil a typical fibrous texture. The color ranges generally from various shades of dull brown to black. A distinct organic odor is also characteristic of the soil. The water content is usually very high. Another aid in identification of these soils may be the location of the soil with respect to topography: low-lying, swampy areas usually contain highly organic soils.


## APPENDIX B

## IDENTIFYING SOILS BY A TRIANGLE BASED ON UNIFIED SOIL CLASSIFICATION SYSTEM

l. Appendix B contains selected quotations from "Identifying Soils by a Triangle Based on Unified Soil Classification System', by Jack McMinn, along with portions of the discussion which were published with this paper.
2. Mr. McMinn's paper with its accompanying discussion can be found complete and in its original published form in ASTM Special Technical Publication No. 254, dated 1960. STP 254 is a publication of the American Society for Testing Materials, and the following quotations are made with the permission of this Society.
. . The USCS makes no grain "size" distinction between silts and clay particles. Rather the grain size distinction is between gravel, sand and fines. Fines include both clay and silt particles. Further identification of this fraction of the sample is based on plasticity characteristics.

UNIFIED SOIL CLASSIFICATION TRIANGLE
Purpose:
The USCS triangel Table B5 gives a more graphic, and hence more direct, means of identifying soils under USCS than the original organization chart type presentation of the same material. The triangle is useful as a training aid to soils engineers and technicians who are required to learn USCS procedures, and it also serves as an abbreviated reference for persons already familiar with the system . . .

## Salient Features:

The USCS is basically a trilinear textural classification system with the further refinements of (a) determination of the physical (plasticity) characteristics of the fine-grained fraction and (b) determination of the gradation characteristics of the coarse-grained fraction. The percentages by weight of gravel ( 3 in . to No. 4 sieve), sand (passing No. 4 to No. 200 sieve) and fines (passing No. 200 sieve) are first determined. When the sample contains 5 per cent or more fines, the liquid and plastic limits of the portion passing the No. 40 sieve are determined. When the sample contains 12 per cent or less fines, the gradation coefficients (for uniformity and curvature) are determined. From this, the final classification is made and a letter symbol assigned.

The letter symbols used with this system are as follows:

```
G = Gravel
S = Sand
M = Silt
C = Clay
O = Organic
Pt = Peat
W = Well graded
P = Poorly graded
H = High liquid limit (50 per cent or greater)
L = Low liquid limit (less than 50 per cent)
```

Any soil identified by the USCS can be represented by a combination of two or more of these letter symbols.

Procedure for Using Triangle:
Table B6 presents various soil types along with their identification determinants. As an illustration of the use of the USCS triangle B5 take, for example, the identification determinants shown for the second soil in B5. The intersection of the gradation coordinates indicates that this material is represented by one of the following four symbols: GW-GM, GP-GM, GW-GC or GP-GC.

As shown by the gradation curve No. 3 in Table B6, this material is poorly graded. In addition, the plasticity chart shows that the plasticity indices of the portion of the material passing No. 40 sieve plot below the "A line" and the fine fraction is therefore of a silty nature. The symbol for this material must then be GP-GM and the name under USCS is "poorly-graded-silty-sandy-gravel."

This identification should then in all cases be further refined by supplementary characteristics are listed below:

Fine Grained Soils:
Consistency (in situ)

| Description | Unconfined Compressive Strength, or Approximate Allowable Foundation Pressure, tons per sq ft or kg per sq cm |
| :---: | :---: |
| Very soft . . . . : . . . | $<1 / 4$ |
| Soft . . . . . . . . . . . | 1/4 to 1/2 |
| Medium . . . . . . . . . . | $1 / 2$ to 1 |
| Stiff • • . . . . . . . . . | 1 to 2 |
| Very stiff . . . . . . . . . | 2 to 4 |
| Hard. . . . . . . . . . | $>4$ |

Sensitivity $\left(\right.$ Ratio $\left.=\frac{\text { undisturbed } P_{c}}{\text { remolded } P_{c}}\right):{ }^{a}$


Coarse Grained Soils:
Relative Density (in situ)

| Description | Standard Penetration Resistance, blows per ft |
| :---: | :---: |
| Loose | $<10$ |
| Medium dense . . . . . . . . . | 10 to 30 |
| Dense . | $>30$ |

Grain Size (coarse, medium, fine)
Modifying Constituents or Characteristics
(self explanatory):
Roots, fibrous organic, burnt organic, debris, rubble, cementation, roots, worm holes, chemical ingredients, porous structures, permeability.

Moisture Characteristics (in situ)
Dry, damp, moist, wet (limits for these vary with individual soils and selection of a particular description depends on personal judgment).

Other Characteristics:
Color
Geological data (particularly information as to origin or type of deposition)
Provincial descriptive information (caliche, Chicago clay, Boston blue clay, San Francisco bay mud)

As a result of work now being carried on in the field of "Soil Technology" it should be possible in the near future to elaborate further on the properties of fine-grained soils. When such things as clay mineral content, ion exchange properties, and soil-water system characteristics can be expressed in simple terms, these properties can be appended to the soil description as additional identifying information.

## Symposium on Soil for Engineering Purposes

VARIOUS SOIL TYPES WITH IDENTIFICATION DETERMINANTS (USCS)

| Soil Name* | Symbol | Gravel, per cent | Sand, per cent | Fines, per cent | Gradation Characteristics of Coarse Fraction |  | Plasticity Characteristics of Fines |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | D60/ D10 | $\begin{gathered} (D 30)^{2} / \\ \text { D10 } \times \\ \text { D60 } \end{gathered}$ | Plasticity Index | Liquid <br> Limits |
| Gravelly sand, well graded. . . . . . . . | SW | 34 | 64 | 2 | 10 | 1.2 | $\cdots$ | $\cdots$ |
| Silty sandy gravel, poorly graded. . . | GP-GM | 70 | 20 | 10 | 260 | $16^{\circ}$ | 5 | 34 |
| Silty sand. . . . . . . . . . . . . . . . . . . . | SM | 10 | 70 | 20 | . . . | . . | 10 | 40 |
| Silty, clayey sand | SM-SC | 10 | 70 | 20 | . . | ... | 6 | 16 |
| Clayey sandy gravel. | GC | 50 | 20 | 30 | . . . | $\ldots$ | 13 | 30 |
| Inorganic silt, low plasticity . . . . . . | ML | 5 | 35 | 60 |  |  | 8 | 35 |
| Inorganic sandy clay, high plasticity | CL | 2 | 30 | 68 | $\cdot$ | . . | 22 | 42 |
| Organic clay, high plasticity . . . . . . | OH | 0 | 10 | 90 |  |  | 24 | 60 |

* Other Pactors to be Included in Soil Description:

1. Fine grained soils
(a) Consistency (soft, medium, stiff, very stiff, hard)
(b) Sensitivity
2. Coarse grained soils
(a) Relative density (loose, medium dense, dense)
(b) Grain size (coarse, medium, fine).
3. Modifying or secondary constituent (roots, worm holes, debris, rubble, fibrous organic, cementation)
4. Moisture characteristics (dry, damp, moist, wet)
5. Color, geological data (origin or type of deposition)
6. Provincial descriptive information (caliche, San Francisco bay mud, Boston blue clay, Chicago clsy)



## SUMMARY AND CONCLUSIONS

1. This paper presents a simple, graphic means of identifying soils in accordance with USCS.
2. The soils triangle presented herein was developed for the following reasons:
(a) To serve as a training aid for soil engineers and technicians interested in learning the details of the USCS.
(b) To serve as an abbreviated reference for persons already familiar with the USCS.
(c) To stimulate interest in and encourage use of the USCS as a common denominator for soil identification.

## DISCUSSION

MR. ARTHUR A. WAGNER - The author has developed a graphical presentation of the procedure for classifying soils by the use of the laboratory classification criteria . . . .

To those not familiar with the system, this paper may create a misconception in that it did not discuss or mention the "field method" for classifying soils. The discussion and example given in the paper may give the impression that it is necessary to have the results of detailed laboratory tests, gradation and Atterberg limits, and to compute the values of $C_{u}$ and $C_{c}$ in order to classify a soil. This is not entirely correct . . . . The basic purpose of the system is to define the potential engineering properties of a soil; the provision for identification of soil properties and cataloging them in accordance with the basic soil groups is just a means to that end.

The greatest value of the system is the provision for classifying soils in the "field" by identifying the gradation and plasticity characteristics by visual observations and simple hand tests. To keep the system within the same order of accuracy as the methods employed, only 15 basic groups were established to cover the range of soils from peat to gravel. Although the groups are broad, the limits were selected so that the engineering properties of each are significantly different. It was recognized that a wide variety of soils may fall within one group. To distinguish between these, a description is required in addition to assigning a group symbol.

The field method is used for logging soils. If the field description and classification are adequate, the amount of sampling and laboratory testing required to analyze a borrow area or foundation will be limited to only testing samples of the poorest, most critical, average or the best material as the case may be . . . .

MR. W. G. SHOCKLEY - In soil mechanics there are at least two schools of thought concerning soil classification systems. One is that soils are so diverse in nature that it is practically impossible to fit them into rigid categories from which their potential engineering properties may be deduced. Therefore, the soils engineer must examine each soil individually and classify it in terms of its potential use for the project under consideration. The other is that some system of classifying soils must be established in order for soil mechanics engineers to communicate intelligently with one another. This is especially true in a large organization where engineering soils data may be reviewed by several echelons, some of which may be far removed from the site of the work. At the operating level, the soils technician in the laboratory who is charged with classifying soils feels a strong need for firm rules of identification so that he is not faced with decisions involving judgment every time he must classify a given soil. Furthermore, in a large laboratory it is seldom possible for the soils engineer on a project to assume the role of technician and classify all the soils on the project with which he must be concerned.

The writer tends to subscribe to the concept of a formal classification system for soils in the interest of communication between engineers. However, the soils engineer working on a project should familiarize himself with the soils to the extent that he recognizes and takes into account the limitations of a classification system and the potential engineering properties of the soils with which he is working. Mr. McMinn's paper provides a useful tool for the laboratory technician to classify soils according to the Unified Soil Classification System. For those who have need for such a device as his soil triangle, it adequately represents the breakdown of categories in the Unified System, and as such it can be used to advantage in the laboratory or office. Nonetheless, the writer wishes to re-emphasize the fallacy of prediction of engineering properties of soils from the blind use of this or any soil classification system, and the need for judgment on the part of soils engineers in evaluting the properties of the soils with which he is dealing.

MR. JOHN P. GNAEDINGER - It is unfortunate that the engineer ing profession has not universally agreed on the terminology and systems for the classification and identification of soils. One need only study building codes in various cities to observe the variation in systems. The Unified Soils Classification System, however, is the closest to being accepted by all engineers. Since the Soil Triangle presented in this paper should greatly simplify the use of the system, it is an important step in establishing the Unified Soil Classification System in the profession.

My only suggestion is that the importance of density for coarsegrained soils and the importance of density, cohension, and compressibility for fine-grained soils should be emphasized. Except for selection of borrow material and placement of compacted fills, most engineering problems are associated with in situ soils. The importance of the se properties warrants a conspicuous mention of these properties beside the Soil Classification, rather than treating these important properties as optional in a particular classification . . . .

MR. JACK McMINN (author) - With regard to Mr. Wagner's comments, it is certainly true that visual and simple hand test methods play an extremely important role in soil identification. In some private firms, visual methods are relied on almost exclusively for soil identification. . . An at least partially identifying name when accompanied by other verbal descriptive information, such as that suggested by Mr. Gnaedinger in his discussion, would seem quite adequate to make possible easy and accurate communication between soils engineers.

Mr. Shockley's comments describe quite well the purpose and limitations of the proposed soil identification triangle. The intent is to simplify the purely mechanical steps necessary to categorize a particular soil under the Unified Soil Classification System and thus encourage use of the system by those firms and agencies which have not yet adopted it.

The author wishes to thank all the discussors for reviewing and commenting on this paper. Also, special thanks are due Mr. Earl B. Hall, Chief, Soils Section, U.S. Army Corps of Engineers, South Pacific Division Laboratory, for suggestions and guidance at the time this identification triangle was developed.

## APPENDIX C CONSISTENCY AND RELATIVE DENSITY TABULATIONS

## Consistency

Table C 1
Consistency of Undisturbed Cohesive Soils

| Consistency <br> (1) | $q_{u}{\underset{(2)}{(T s f})^{l}}^{1}$ | Rule -of-Thumb <br> (3) | Blows ${ }^{2}$ per Foot <br> (4) |
| :---: | :---: | :---: | :---: |
| Very soft | 0.25 | Core (Height = twice diameter) sags under own weight | 0-1 |
| Soft | 0.25-0.50 | Can be pinched in two between thumb and forefinger | 2-4 |
| Firm (medium) | $0.50-1.00$ | Can be imprinted easily with fingers | 5-8 |
| Stiff | 1.00-2.00 | Can be imprinted with considerable pressure from fingers | 9-15 |
| Very stiff | 2.00-4.00 | Barely can be imprinted by pressure from fingers | 16-30 |
| Hard | 4.00 | Cannot be imprinted by fingers | Over 30 |

$\mathrm{l}_{\mathrm{q}_{u}}$ is unconfined compressive strength in tons/sq ft.
${ }^{2}$ Blows as measured with 2 -in. OD, $13 / 8$-in. ID sampler driven 1 ft by $140-\mathrm{lb}$ hammer falling 30 in . See Tentative Method for Penetration Test and Split-Barrel Sampling of Soils, ASTM Designation: Dl586-58T.

Note: The rules-of-thumb and the results of the penetration test given in columns 3 and 4 are used only to determine the consistency of soils as described by the terms in column l. The values in column 2, unconfined compressive strength, are given only to serve as a means of checking the field methods against laboratory methods, and this should be done from time to time. The values from column 2 must not be used for design without laboratory verification. It is noted that unconfined compressive strength is not synonymous with ultimate bearing capacity.

## Relative Density

## Table C 2

## Relative Density of Cohesionless Soils

| $\begin{gathered} \text { Term } \\ (1) \end{gathered}$ | $\frac{\text { Rule-of-Thumb }}{(2)}$ | Blows ${ }^{1}$ per Foot (3) |
| :---: | :---: | :---: |
| Very loose | --- | 0-4 |
| Loose | Easily penetrated with $1 / 2 \mathrm{in}$. reinforcing rod pushed by hand | 5-10 |
| Firm (medium) | Easily penetrated with $1 / 2 \mathrm{in}$. reinforcing rod driven with $5-\mathrm{lb}$ hammer | 11-30 |
| Dense | Penetrated a foot with $1 / 2 \mathrm{in}$. reinforcing rod driven with 5-1b hammer | 31-50 |
| Very dense | Penetrated only a few inches with a $1 / 2$ in. reinforcing rod driven with $5-1 \mathrm{~b}$ hammer | Over 50 |

${ }^{1}$ Blows as measured with $2-\mathrm{in}$. OD, $13 / 8$-in. ID sampler driven 1 ft by $140-1 \mathrm{~b}$ hammer falling 30 in . See Tentative Method for Penetration Test and Split-Barrel Sampling of Soils, ASTM Designation: D1586-58T.

Note: The rules of thumb shown in column 2 are given merely as an example of one of numerous simple field procedures that are in current use for selecting an adjective to describe density. Many other procedures are equally as good and column 2 is not intended to establish a preferred method. The results of the penetration test, as shown in column 3, are widely accepted as a standard for the terms shown in column 1 .

## APPENDIX D

## SHORT GLOSSARY OF SOIL MECHANICS AND PEDOLOGICAL TERMINOLOGY

1. A few of the terms used in the body of this report are defined on the following pages. Terms not used in this report are included if it is believed that they will be useful in formulating a word description of a soil group. Terms from the field of soil mechanics and from the field of pedology are used.
2. Terms and definitions are not identified as belonging to a particular field except in cases where terms are used in both fields but with distinctly different definitions. When such an exception occurs, the term is listed twice, once with the pedological definition, and once with the soil mechanics definition.
3. Several glossaries that are commonly available are longer and more complete. Many of the definitions stated in this appendix are from "Glossary of Terms and Definitions in Soil Mechanics", from the Journal of the Soil Mechanics and Foundations Division, Proceedings of the American Society of Civil Engineers, Paper 1826, dated October, 1958; and from "Glossary of Pedologic (Soils) and Landform Terminology for Soil Engineers", Highway Research Board Special Report 25, National Academy of Sciences - National Research Council Publication 481, dated 1957.
"A" Horizon
The uppermost layer of the soil profile from which inorganic colloids and other soluble materials have been leached. Usually contains remnants of organic life.

Alluvium
Soil the constituents of which have been transported in suspension by flowing water and subsequently deposited by sedimentation.

## Atterberg Limits

The water contents that correspond to the boundaries between the states of consistency of a remolded, cohesive soil. See Liquid Limit, Plastic Limit, and Shrinkage Limit.
"B" Horizon
The layer of a soil profile in which material leached from the overlying " A " horizon is accumulated.

Portion of soil passing No. 40 U.S. standard sieve.

## Blocky (or Block-Like) Structure

The soil aggregates have a blocky shape, irregularly six-faced, and with the three dimensions nearly equal. The size of the se aggregates ranges from a fraction of an inch to 3 or 4 in . in thickness. This structure is found in the $B$ horizon of many soils. When the edges of the cube are sharp and rectangular faces are distinct, the type is identified as blocky or angular blocky. If sub-rounding is apparent, the aggregates are identified as nut-like, nuciform, or subangular blocky. See Structure, Soil (Pedologic definition).

## Bulking

The increase in volume of a material due to manipulation. Rock bulks upon being excavated; damp sand bulks if loosely deposited, as by dumping, because the apparent cohension prevents movement of the soil particles to form a reduced volume.

## "C" Horizon

Undisturbed parent material from which the overlying soil profile has been developed.

## Calcareous

A term used to describe soils containing sufficient calcium carbonate (often with magnesium carbonate) to effervesce visibly when treated with hydrochloric acid.

## Catena

A group of soil series within any one soil zone developed from similar parent material, but with contrasting characteristics of the solum due to differences in relief or drainage.

Coefficient of Permeability (Permeability) (Soil Mechanics definition)
The rate of discharge of water under laminar flow conditions through a unit cross-sectional area of a porous medium under a unit hydraulic gradient and standard temperature conditions (usually $20^{\circ} \mathrm{C}$ ).

Note: Where the term Permeability is used in this report it is intented that the Soil Mechanics definition is applicable. Contrast with Permeability (Pedologic definition).

## Columnar Structure

Structure with the vertical axis of aggregates longer than the horizontal and with rounded tops. When the tops are level and clean cut, the
structure is identified as prismatic. Found in the B horizon when present. See Structure, Soil (Pedologic definition).

## Compaction

The densification of a soil by means of mechanical manipulation. Compaction Curve (Proctor Curve) (Moisture-Density Curve)

The curve showing the relationship between the dry unit weight (density) and the water content of a soil for a given compactive effort.

Compressibility
Property of a soil pertaining to its susceptibility to decrease in volume when subjected to load.

## Concretions

Hardened local concentrations of certain chemical compounds, such as calcium carbonate, and iron and manganese oxides, that form indurated grains or nodules of various sizes, shapes, and colors.

Consolidation
The gradual reduction in volume of a soil mass resulting from an increase in compressive stress.

Crumb Structure
Small, soft, porous aggregates irregular in shape and rarely larger than $1 / 3 \mathrm{in}$. in size. If the aggregates are relatively nonporous, they are identified as granular. Both types are found in surface soils, especially those high in organic matter. See Structure, Soil (Pedologic definition).

Degree of Saturation (Per Cent Saturation)
The ratio, expressed as a percentage, of (1) the volume of water in a given soil mass to (2) the total volume of intergranular space (voids).

## Density

See Unit Weight. Usually means dry unit weight or unit dry weight.
Note: Although it is recognized that "density" is defined as mass per unit volume, in the field of soil mechanics the term is frequently used in place of unit weight.

Drainage, Soil
Refers to the rapidity and extent of the removal of water from a soil, in relation to additions, especially by surface runoff and by flow through the soil.

## Drift

Material of any sort deposited by geological processes after having been removed from another. Glacial drift includes the material deposited by glaciers and by the streams and lakes associated with them.

Dry Density

## See Dry Unit Weight.

## Dry Unit Weight

The weight of soil solids per unit of total volume of soil mass.

## Field Moisture Equivalent

The minimum water content, expressed as a percentage of the weight of the oven-dried soil, at which a drop of water placed on a smoothed surface of the soil will not immediately be absorbed by the soil but will spread out over the surface and give it a shiny appearance.

## Flocculent Structure

An arrangement composed of flocs of soil particles instead of individual soil particles. See Structure, Soil (Soil Mechanics definition).

Free Water
See Ground Water

## Frost Action

Freezing and thawing of moisture in materials and the resultant effects on these materials and on structures of which they are a part or with which they are in contact.

Granular Structure
Small, soft, relatively nonporous aggregates of soil particles irregular in shape and rarely larger than $1 / 3 \mathrm{in}$. in size. This type of structure is found in surface soils, especially those high in organic matter. See Structure, Soil (Pedologic definition).

Ground Water (Free Water) (Gravitational Water) (Phreatic Water)
Water that is free to move through a soil mass under the influence of gravity.

## Honeycomb Structure

An arrangement of soil particles having a comparatively loose, stable structure resembling a honeycomb. See Structure, Soil (Soil Mechanics definition) and Primary Structure.

## Horizon (Soil Horizon)

One of the layers of the soil profile, distinguished principally by its texture, color, structure, and chemical content. See A horizon, B horizon, and $C$ horizon.

Laminated Structure
Platy structure with the plates or very thin layers lying horizontal or parallel to the surface. See Plate-Like Structure and Structure, Soil (Pedologic definition).

## Liquefaction

The sudden large decrease of the shearing resistance of a cohesionless soil. It is caused by shock or other type of strain and is associated with a sudden but temporary increase of the porefluid pressure. It involves a temporary transformation of the material into a fluid mass.

## Liquid Limit

a. The water content corresponding to the arbitrary limit between the liquid and plastic states of consistency of a soil.
b. The water content at which a pat of soil, cut by a groove of standard dimensions, will flow together for a distance of $1 / 2 \mathrm{in}$. under the impact of 25 blows in a standard liquid limitapparatus.

## Loess

A uniform aeolian deposit of silty material having an open structure and relatively high cohesion due to cementation of clay or calcareous material at grain contacts. A characteristic of loess deposits is that they can stand with nearly vertical slopes.

## Macrostructure

Structural features of a soil that are visible to the naked eye.

## Massive Structure

Large uniform masses of cohesive soil, structureless. See Structure, Soil (Pedologic definition).

Maximum Density (Maximum Unit Weight)
The dry unit weight defined by the peak of a compaction curve.

## Maximum Unit Weight

See Maximum Density.

## Modified Loess

A soil that is a loess that has lost its typical characteristics by secondary processes, including immersion, erosion, and subsequent deposition; chemical changes involving the destruction of the bond between the particles; or chemical decomposition of the more perishable constituents such as feldspar.

## Moisture Content (Water Content)

The ratio, expressed as a percentage, of (1) the weight of water in a given soil mass to (2) the weight of solid particles.

## Mottled

Irregularly marked with spots of different colors.
Neutral Stress (Pore Pressure) (Pore Water Pressure)
Stress transmitted through the pore water (water filling the voids of the soil).

Nut or Nuciform Structure
A block-like structure with apparent sub-rounding. About 75 mm in size, usually. See Block-Like Structure and Structure, Soil (Pedologic definition).

Parent Material
The relatively unaltered, unconsolidated mass of material from which a soil profile developes.

Pedology
The science dealing with the soil as a natural body.
Per Cent Compaction
The ratio, expressed as a percentage, of (1) dry unit weight of a soil to (2) maximum unit weight obtained in a laboratory compaction test.

## Percolation

The movement of gravitational water through soil. See Seepage.

## Permeability (Pedologic definition)

That quality of the soil that enables it to transmit water or air. It is measured in terms of rate of flow through a unit cross-section of saturated soil in unit time.

## Permeability (Coefficient of Permeability) (Soil Mechanics definition)

The rate of discharge of water under laminar flow conditions through a unit cross-sectional area of a porous medium under a unit hydraulic gradient and standard temperature conditions (usually $20^{\circ} \mathrm{C}$ ).

Note: Where the term Permeability is used in this report it is intended that the Soil Mechanics definition is applicable.

Plastic Limit
a. The water content corresponding to an arbitrary limit between the plastic and the semisolid states of consistency of a soil.
b. Water content at which a soil will just begin to crumble when rolled into a thread approximately $1 / 8 \mathrm{in}$. in diameter.

Plasticity
The property of a soil which allows it to be deformed beyond the point of recovery without cracking or appreciable volume change.

Plasticity Index
Numerical difference between the liquid limit and the plastic limit.
Plate-Like (Platy) Structure
Flat aggregates of soil particles with vertical dimension much less than the horizontal dimensions, found most often in surface horizons, but may be found in the subsoil as it is often inherited from the parent materials. See Structure, Soil (Pedologic definition).

Primary Structure
The arrangement of the particles in a soil is the primary structure. See Flocculent Structure, Honeycomb Structure, and SingleGrained Structure. Compare with Secondary Structure. Also see Structure, Soil (Soil Mechanics definition).

## Prismatic Structure

Elongated column structure with level and clean-cut tops. If the tops are rounded, the structure is identified as columnar. Found in the B horizon when present. See Structure, Soil (Pedologic definition).

Profile (Soil Profile) (Pedological definition)
A vertical section of the soil through all its horizons and extending into the parent material.

## Profile (Soil Profile) (Soil Mechanics definition)

Vertical section of a soil, showing the nature and sequence of the various layers, as developed by deposition or weathering, or both.

## Quick Condition (Quicksand)

Condition in which water is flowing upwards with sufficient velocity to reduce significantly the bearing capacity of the soil through a decrease in intergranular pressure.

## Relative Density

The ratio of (1) the difference between the void ratio of a cohesionless soil in the loosest state and any given void ratio to (2) the difference between its void ratio in the loosest and in the densest states.

Residual Soil
Soil derived in place by weathering of the underlying material.
Saturated Unit Weight
The wet unit weight of a soil mass when saturated.

## Secondary Structure

Structure that developes after a soil is deposited. This structure is often produced by shrinkage, caused by drying of cohesive soils. Cracks form which separate the soil into irregular or more or less regular blocks which are secondary particles. The cracks may later fill with some other soil to form a monolithic but non-homogeneous mass. Faulting, brought about by landslides, also may produce a secondary structure. Compare with Primary Structure. See Structure, Soil (Soil Mechanics definition).

## Seepage (Percolation)

The slow movement of ground water through the soil.

## Sensitivity

The effect of remolding on the consistency of a cohesive soil.
Series (Soil Series)
A group of soils developed from the same parent material, having similar soil horizons, and having essentially the same characteristics throughout the profile except for the texture of the $A$, or surface horizon.

Shrinkage Limit
The maximum water content at which a reduction in water content will not cause a decrease in volume of the soil mass.

Single-Grain Structure (Pedologic definition)
No aggregation of the particles, such as in dune sand. (Other pedologic terms for structure are for aggregations of particles. See, for example, Granular Structure and Crumb Structure).

Single-Grained Structure (Soil Mechanics definition)
An arrangement composed of individual soil particles; characteristic structure of coarse-grained soils. See Primary Structure.

## Slickensided

A secondary structural feature of some soils that is produced by movements along the walls of joints. A soil is slickensided if it has inclined planes of weakness that are slick and glossy in appearance. See Secondary Structure.

Soil-Forming Factors
Factors, such as parent material, climate, vegetation, topography, organisms, and time involved in the transformation of an original geologic deposit into a soil profile.

## Soil Stabilization

Chemical or mechanical treatment designed to increase or maintain the stability of a mass of soil or otherwise to improve its engineering properties.

## Solum

That part of the soil profile, above the parent material, in which the processes of soil formation are taking place. In mature soils, this includes the $A$ and $B$ horizons, and the character of the material may be greatly unlike that of the parent material.

Stratified (Pedologic definition)
Composed of, or arranged in, layers. The term is applied to geological materials, as stratified alluvium. Those layers in soils that are produced by the soil-forming processes are called horizons, while those inherited from the parent material are called strata.

Stratified (Soil Mechanics definition)
Composed of, or arranged in, layers. Stratification is typical of soils deposited under water. If the individual layers are not thicker than about l in. and are of roughly equal thickness, the soil is called laminated

## Structure, Soil (Pedologic definition)

The aggregation of soil particles into clusters of particles, which are separated from adjoining aggregates by surfaces of weakness. Structure is judged by observation, by breaking of clods, or by dropping of clods. If the clods are easily broken with cleavage planes visible the soil is structured. If there is difficulty in breaking the clods and an irregular surface results then the soil is non-structured. See BlockLike, Columnar, Crumb, Granular, Laminated, Massive, Nut or Nuciform, Prismatic, Single-Grain, and Vesicular Structure.

## Structure, Soil (Soil Mechanics definition)

The arrangement and state of aggregation of soil particles in a soil mass. See Primary Structure and Secondary Structure.

## Submerged Unit Weight

The weight of the solids in air minus the weight of water displaced by the solids per unit of volume of soil mass; the saturated unit weight minus the unit weight of water.

## Subsoil

a. A soil which lies beneath another soil and is unlike the upper soil in some distinctive way. For example, the natural or undisturbed soil on which a fill is placed is often called the subsoil.
b. In pedology, subsoil refers to the $B$ horizon of soils with distinct profiles. In soils with weak profiles, it is the soil below the surface soil. For pedologic uses, it is considered an undesirable term.

## Surface Water

Refers to water that occurs on the surface of the earth as opposed to water that occurs within the voids of a soil mass.

## Transported Soil

Soil transported from the place of its origin by wind, water, or ice and redeposited.

## Ultimate Bearing Capacity

The average load per unit of area required to produce failure by rupture of a supporting soil mass.

## Unconfined Compressive Strength

The load per unit area at which an unconfined prismatic or cylindrical specimen of soil will fail in a simple compression test.

## Unit Weight

Weight per unit of volume. See Dry Unit Weight, Maximum Unit Weight, Saturated Unit Weight, Submerged Unit Weight, and Wet Unit Weight.

Vesicular Structure
A soil structure containing many small cavities, or pores, smooth on the inside as though formed by gas bubbles. See Structure, Soil (Pedologic definition).

Vane Test (Vane Shear Test)
An in-place shear test in which a rod with thin radial vanes at the end is forced into the soil and the resistance to rotation of the rod is determined.

Void
Space in a soil mass not occupied by solid mineral matter. This space may be occupied by air, water, or other gaseous or liquid material.

## Void Ratio

The ratio of (1) the volume of void space to (2) the volume of solid particles in a given soil mass.

Water Content (Moisture Content)
The ratio, expressed as a percentage, of (l) the weight of water in a given soil mass to (2) the weight of solid particles.

Water Table (Pedologic definition)
The upper surface of a zone of saturation in the soil or parent material.

Water Table (Free Water Elevation) (Ground Water Surface) (Free Water Surface) (Ground Water Elevation) (Soil Mechanics definition)

Elevations at which the pressure in the water is zero with respect to the atmospheric pressure.

Note: Where the term Water Table is used in this report, it is intended that the Soil Mechanics definition is applicable.

## Wet Unit Weight

The weight (solids plus water) per unit of total volume of soil mass, irrespective of the degree of saturation.

## SECTION II

## Acknowledgments

Section II of this manual was prepared by J. R. Chaves and J. F. Koca, research engineers, under the direction of Harold Allen, Chief, Division of Physical Research, and P. C. Smith, Chief, Soils Branch, of the Bureau of Public Roads.

It includes a compilation of soils engineering test data made on soil samples taken from all sections of the country by soil scientists from the Soil Conservation Service in cooperation with the various State Agricultural Experiment Stations.

Samples were taken in accordance with standard procedures of the American Association of Highway Officials (AASHO) in a cooperative program involving state highway departments, universities and colleges, and the Bureau of Public Roads.

# ENGINEERING SOIL TEST DATA FOR SOME <br> SOIL SERIES 

PART I: INTRODUCTION

The data in this tabulation were obtained by the Division of Physical Research, Bureau of Public Roads, U. S. Department of Commerce, by testing soil samples collected by Soil Survey, Soil Conservation Service, U. S. Department of Agriculture, in county or area soil surveys. The soil samples were obtained and tested primarily so that adequate engineering interpretations could be included in the specific soil survey reports. Consolidation of the soil test data into one table was made by request of the Technical Studies Program, Architectural Standards Division, Federal Housing Administration, for use in evaluating the physical properties of soils on which buildings are constructed.

It is anticipated that the table of data will be of interest to many engineers and scientists, and some of these persons may not be familiar with all the types of information given in the table. Consequently, this introduction contains a brief description of pedologic concepts.

Figure 1 is a generalized soil profile showing the principal horizons or layers in a typical soil. Such profiles develop from parent materials, such as weathered granite, sandstone, or stratified alluvial deposits, that are subjected to various types of weathering. The type of soil profile that develops is dependent upon the climate (rainfall and temperature), vegetative cover, topography, and the length of time that the materials have been subjected to weathering.

Figure l shows that the surface layer or A horizon represents a zone of leaching and also accumulation of organic material while the subsoil, or $B$ horizon, consists of a zone of accumulation of material (clay, colloidal organic matter or chemical substances) removed from the $A$ horizon due to the action of percolating water. The C horizon represents weathered rock or other material that has contributed to the A and B horizons. The D horizon is composed of any material that has some influence on profile development but is not the parent material of the soil.

Since soil profiles are developed with definite describable characteristics, soil scientists are able to identify, classify, and map the various kinds of soils. A name such as "Charlton" is applied to soils that are similar in characteristics and occur in similar environments. Such a mappable unit is known as a soil series. The soil type is a subdivision of the soil series based on the texture (particle-size distribution) of the surface horizon. Thus the Charlton series may be subdivided into two soil types, such as Charlton fine sandy loam and Charlton loam.

Samples have been collected from a variety of soils throughout the United States, hence, special symbols are used to designate certain conditions or characteristics in the soil profile. The following are subscripts used with the principal soil horizon symbols $A, B, C$, and $D$ to indicate special conditions or characteristics. The subscripts are used alone or in combination, always with one of the principal soil horizon symbols. For example: (1) Bb indicates a buried B horizon, (2) Bbca indicates a layer of accumulated calcium carbonate in the $B$ horizon, and Bca means that this horizon is buried.
b. - buried soil horizon
ca. - a layer of accumulated calcium carbonate
cs. - a layer of accumulated calcium sulfate
g. - a layer of reduction characterized by the presence of ferrous iron and neutral gray colors produced by a process involving saturation of the soil with water for long periods in the presence of organic matter. " $G$ " indicates intense reduction.
m . - a horizon that is indurated. " M " is used to indicate an irreversibly indurated horizon or layer.
r. - applied to D layer of hard rock like that from which the C horizon has developed.
t. - outstanding accumulation of clay in the $B$ horizon

Additional information on formation, classification, and mapping of soils is given in the Soil Survey Manual, U. S. Department of Agriculture Handbook No. 18, 1951.

Most of the samples that have been obtained and tested were taken from the principal soil horizons of the more extensive soil series occurring in the various counties. Wherever a single profile has been sampled for a specific soil type, some departure from the test data may be expected at other localities. Where the soil type has been sampled at two or more localities, the test data usually show a conside rable range in physical properties, but the data may not represent the maximum variation for the soil in that county.

The soil samples were tested by the Soils laboratory, Bureau of Public Roads, in accordance with standard procedures of the American Association of State Highway Officials. The test procedures are described in "Standard Specifications for Highway Materials and Methods of Sampling and Testing, Part II, "The American Association of State Highway Officials, Washington, D. C., 1955. The moisture-density data were obtained in accordance with A.A.S.H.O. Designation T 99-49, which is the same as the current (1959) Method A of "Standard Method of Test for The Moisture-Density Relations of Soils Using a 5.5-1b. Rammer and a 12-in. Drop," A.A.S.H.O. Designation T 99-57.

Horizon of maximum biological activity, of eluviation (removal of materials dissolved or suspended in water), or both

Horizons of illuviation (of accumulation of suspended material from $A$ horizon) or of maximum clay accumulation. Blocky or prismatic structure.

The weathered parent material. Occasionally absent.

Any stratum underneath the soil, such as hard rock or layers of clay or sand that are not parent material but which may have significance to the overlying soil. Frequently absent.

| A |
| :---: |
| B SURFACE SOIL |
| B |
| SUBSOIL |
| $D$ |

Figure 1. - Generalized soil profile showing principal horizons.

## SECTION II

## ENGINEERING TEST DATA FOR SOILS SAMPLED BY SOIL CONSERVATION SERVICE AND TESTED BY BUREAU OF PUBLIC ROADS

ENGINEERING TEST DATA FOR SOILS SAMPLED BY SOIL CONSERYATION SERYICE AND TESTED by bureau of public roads










ENGINEERING TEST DATA FOR SOILS SMMPLED BY SOIL CONSERVATION SERVICE AND TESTED BY BUREAU OF PUBLIC ROADS
$30-10 \%$ discarded in incpling.
$40-50 \%$ divesrded in cempling.
$60-70 \%$ dicerded in eampling.











engine rrng test data for solls sumpled by soil conservation seance ano tested by bureavof public ronos





ENGINEERING TEST DATA FOR SOILS SUMPLED BY SOIL CONSERYATIO SERVCE AND TESTED ay GUREN OF PUBBLC ROADS



| sot mane |  | -ancut matraial | - mourion phoy |  | morture - deneitr |  | wicmanical amalrues ${ }^{\text {d }}$ |  |  |  |  |  |  |  | $\begin{gathered} \text { Louno } \\ \text { Liwir } \end{gathered}$ | Platyiciry INDEX | claburication |  | nemanks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Duph | Herse | Minom | O-plene |  | Amention | ${ }^{\text {mancoma }}$ | smon ${ }^{1}$ |  | Pment |  |  |  |  | S.enmo. ${ }^{\text {y }}$ | Urima 1 |  |
|  |  |  | ndo. |  | Lem/uh. | - |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Leadvale ollt lomm | Noumt, sean. | Alurso | $\begin{gathered} 0-8 \\ 37-31 \\ 32-48 \end{gathered}$ | $\underset{0}{1}$ | $\begin{gathered} 109 \\ 98 \\ 98 \end{gathered}$ | $\begin{aligned} & 18 \\ & 24 \\ & 26 \\ & 26 \end{aligned}$ |  |  |  |  |  |  |  |  | $\begin{aligned} & 32 \\ & 63 \\ & 56 \end{aligned}$ | $\begin{aligned} & 10 \\ & 34 \\ & 2 \boldsymbol{2 2} \end{aligned}$ | $\left(\begin{array}{ll} L-4 & (8) \\ L T-6 \\ L-7-5 & (20) \\ L-7 \end{array}\right)$ |  | oos diccarded in ampling. 70\% disearded in ampling. |
|  | M1ount, menn. | Sem | ( $\begin{gathered}0-8 \\ 88-18 \\ 18-36\end{gathered}$ |  | $\begin{aligned} & 112 \\ & 116 \\ & 102 \end{aligned}$ | $\begin{aligned} & 15 \\ & 15 \\ & 22 \end{aligned}$ |  |  |  |  |  |  |  |  | $\begin{aligned} & 24 \\ & 24 \\ & 53 \end{aligned}$ | $\begin{array}{r} 22 \\ 6 \\ 10 \\ 28 \end{array}$ | $\left[\begin{array}{ll} 1-7-9 & (10) \\ 2-4 & (8) \\ 1-7-6 & (18) \end{array}\right.$ |  |  |
| Lentonis atopy lomen | Pottar, Pa. | Sentatopar and conclomorato | $\begin{gathered} 5-10 \\ 15-25 \end{gathered}$ | 4 | ${ }_{217}^{217}$ | $\begin{aligned} & 20 \\ & 12 \end{aligned}$ |  |  |  |  |  |  |  |  | ip | $\underset{\sim}{\mathbf{R}}$ | $\begin{aligned} & \begin{array}{l} -2-4 \\ 2-24 \\ 2 \end{array}(0) \\ & \hline \end{aligned}$ | $\left\lvert\, \begin{aligned} & \mathbf{s k} \\ & \mathbf{s k} \end{aligned}\right.$ |  |
| Lenuit sine amat lom | Daplina, 8.0. | Conotal Miater oley | $\begin{gathered} 0-8 \\ 22-30 \\ 30-42 \end{gathered}$ | $\begin{aligned} & \hat{1} \\ & \mathbf{B} \end{aligned}$ | 115 102 102 | $\begin{aligned} & 13 \\ & 20 \\ & 20 \end{aligned}$ |  |  | $\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 96 \\ & 98 \\ & 98 \end{aligned}$ | $\begin{aligned} & 59 \\ & \mathbf{E 1} \\ & 81 \end{aligned}$ | $\begin{aligned} & 50 \\ & 77 \\ & 78 \end{aligned}$ | $\begin{aligned} & 16 \\ & 49 \\ & 59 \end{aligned}$ | $\begin{aligned} & 11 \\ & 42 \\ & 45 \end{aligned}$ | $\begin{aligned} & 20 \\ & 49 \\ & 59 \end{aligned}$ | $\begin{aligned} & \stackrel{5}{26} \\ & 32 \end{aligned}$ | $\left\lvert\, \begin{array}{ll} -4 & (5) \\ n^{-7-6} & (16) \\ -7-6 & (29) \end{array}\right.$ | $\begin{aligned} & \mathfrak{c o - a} \\ & \mathbb{a} \\ & \boldsymbol{a} \end{aligned}$ |  |
| Lemoir cilt 10 em | Tharfax, Th. | Coantal Maln nodimentt | ( $\begin{gathered}2-6 \\ 6-15 \\ 6-15 \\ 47-67\end{gathered}$ | $\begin{aligned} & A \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & 201 \\ & 108 \\ & 99 \\ & 116 \end{aligned}$ | $\begin{aligned} & 20 \\ & 10 \\ & 23 \\ & 14 \end{aligned}$ |  |  | 100 100 | $\begin{gathered} 99 \\ 100 \\ 100 \\ 99 \end{gathered}$ | $\begin{aligned} & 94 \\ & 97 \\ & 96 \\ & 65 \end{aligned}$ | $\begin{aligned} & 92 \\ & 95 \\ & 94 \\ & 50 \end{aligned}$ | $\begin{aligned} & 40 \\ & 47 \\ & 68 \\ & 20 \end{aligned}$ | $\begin{aligned} & 25 \\ & 30 \\ & 53 \\ & 18 \end{aligned}$ | $\begin{aligned} & 36 \\ & 33 \\ & 59 \\ & 26 \end{aligned}$ | $\begin{array}{r} 80 \\ 10 \\ 30 \\ 8 \end{array}$ |  | ar |  |
| Leom 1900 and | garnoota, Ma. | $\underset{\substack{\text { Onooanor } \\ \text { anand }}}{ }$ |  |  | $\begin{aligned} & 104 \\ & 101 \\ & 106 \\ & 109 \end{aligned}$ | $\begin{aligned} & 14 \\ & 16 \\ & 13 \\ & 10 \end{aligned}$ |  |  | $\begin{aligned} & 100 \\ & 1000 \\ & 1000 \\ & 100 \end{aligned}$ | $\begin{aligned} & 96 \\ & 96 \\ & 97 \\ & 97 \end{aligned}$ | $\begin{gathered} 5 \\ 12 \\ 9 \\ 6 \end{gathered}$ | $\begin{aligned} & 5 \\ & 9 \\ & 8 \\ & 5 \end{aligned}$ | $\begin{aligned} & 3 \\ & 6 \\ & 4 \\ & 3 \end{aligned}$ | $\left.\begin{aligned} & 1 \\ & 5 \\ & 3 \\ & 2 \end{aligned} \right\rvert\,$ |  | P <br> 8 <br> 8 | $\left\lvert\, \begin{aligned} & 1-3(0) \\ & 2-2-4(0) \\ & n-3(0) \\ & n-3(0) \\ & n-3 \end{aligned}\right.$ |  |  |
| Lanter allt 20 ma | soote, Mens. |  | $\begin{aligned} & 0-9.5 \\ & 2424 \\ & 44.5 \\ & 0-9 \end{aligned}$ | $\begin{aligned} & 1 \\ & 3 \\ & 0 \end{aligned}$ | $\begin{gathered} 93 \\ 104 \\ 109 \end{gathered}$ | $\begin{aligned} & 23 \\ & 19 \\ & 16 \end{aligned}$ | 100 | $\begin{gathered} 100 \\ 96 \end{gathered}$ | $\begin{gathered} 100 \\ 99 \\ 94 \end{gathered}$ | $\begin{aligned} & 96 \\ & 97 \\ & 96 \end{aligned}$ | $\begin{aligned} & 89 \\ & 86 \\ & 64 \end{aligned}$ | $\begin{aligned} & 78 \\ & 80 \\ & 57 \end{aligned}$ | $\begin{aligned} & 36 \\ & 35 \\ & 30 \end{aligned}$ | $\begin{aligned} & 26 \\ & 28 \\ & 28 \end{aligned}$ | $\begin{aligned} & 44 \\ & 38 \\ & 38 \end{aligned}$ | 15 |  |  |  |
|  | soovi, wime. | Seno | $\begin{aligned} & 20-3 \\ & \begin{array}{l} 0-35 \\ 47-66 \\ 664 \\ 0-5 \\ 14-32 \end{array} \end{aligned}$ |  | $\begin{gathered} 94 \\ 202 \\ 100 \\ 104 \\ 106 \\ 84 \end{gathered}$ | $\begin{aligned} & 22 \\ & 18 \\ & 28 \\ & 19 \\ & 17 \end{aligned}$ | 100 | $\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 99 \end{aligned}$ | $\begin{gathered} 98 \\ 99 \\ 99 \\ 97 \\ 100 \end{gathered}$ | 92 94 92 91 | $\begin{aligned} & 67 \\ & 66 \\ & 68 \\ & 69 \end{aligned}$ | $\begin{aligned} & 61 \\ & 59 \\ & 62 \\ & 69 \end{aligned}$ | $\begin{aligned} & 29 \\ & 35 \\ & 36 \\ & 35 \end{aligned}$ | 22 29 29 26 26 | $\begin{aligned} & 35 \\ & 43 \\ & 38 \\ & 47 \\ & 43 \end{aligned}$ | $\begin{aligned} & 15 \\ & 24 \\ & 18 \\ & 23 \\ & 22 \end{aligned}$ | $\left\lvert\, \begin{aligned} & 2-6(8) \\ & 2-7-6(8) \\ & 2-6(9) \\ & 2-7-6(13) \\ & 2-7-6(12) \end{aligned}\right.$ | $\begin{aligned} & \text { au } \\ & \text { ua } \\ & \text { aL } \\ & \text { au } \end{aligned}$ |  |
|  |  |  | 412 |  | $\begin{array}{r} 83 \\ 123 \end{array}$ | $\begin{aligned} & 32 \\ & 15 \end{aligned}$ | 100 | 95 |  | $\begin{gathered} 97 \\ 100 \\ 80 \end{gathered}$ | $\begin{aligned} & 69 \\ & 96 \\ & 55 \end{aligned}$ | $\begin{aligned} & 62 \\ & 93 \\ & 50 \end{aligned}$ | $\begin{aligned} & 28 \\ & 80 \\ & 24 \end{aligned}$ | $\begin{aligned} & 22 \\ & 7 \\ & 16 \end{aligned}$ | $\begin{aligned} & 31 \\ & 87 \\ & 30 \end{aligned}$ | $\begin{aligned} & 11 \\ & 49 \\ & 12 \end{aligned}$ |  |  |  |


encineering test data for solls sumpled by soll conservation service no tested ay bureau of rutlic ronos


engineerrig test data for solls sumpled by soil conservation service no testeo by bureau of public ronos


engine rimg test data for solls smpled by soll conservatow service nnd tested by bureav of rublic ronds


EnGine Ering test data for solls swileo by soll conservaton senvee nid tested by bureavof fublic roaos









engineering test data for soils sumpled by soil conservation service and tested by bureau of public road


| 1 |  |  |
| :---: | :---: | :---: |
| 1 |  |  |
| 11 |  | явя вяя |
| ！ |  | 896 авв |
| ${ }^{4}$ | ssa comu omue anm | $\ldots$ |
| ${ }^{1}$ | 285 29n＋nera | mon son |
| 1 |  |  |
| 娄 |  | 7xa 9 98 |
| － |  | 幺8x ssa |
| \％ |  | ¢88 |
| － |  |  |
| 17 |  |  |
|  | npoo sopo naoo | 292 2na |
| ${ }^{146}$ | 33a matay mata saxa |  |
| 11 | －mo ．anto－uto onto | $\cdots$ |
| ${ }^{1} 18$ |  |  |
| 1 |  |  |
| ， | 年 | 1 |
| \％ | － |  |
| 1 | I | 1 |
| 1 | \％ | ， |
|  |  |  |
|  |  | 11 |

## Footnotes

1 Mechanical analyses according to the Ame rican Association of State Highway Officials Designation T 88. Results by this procedure frequently may differ somewhat from results that would have been obtained by the soil survey procedure of the Soil Conservation Service (SCS). In the A.A.S.H.O. procedure, the fine material is analyzed by the hydrometer method and the various grain-size fractions are calculated on the basis of all the material, including that coarser than 2 mm . in diameter. In the SCS soil survey procedure, the fine material is analyzed by the pipette method and the material coarser than 2 mm . in diameter is excluded from calculations of grain-size fractions. The mechanical analyses used in this table are not suitable for use in naming texture classes for soils.

2/ Coarse particles were discarded during field sampling of some soils. Laboratory test data were corrected to include the percent discarded in field sampling, as noted in "Remarks" column.

3/ Based on Standard Specifications for Highway Materials and Methods of Sampling and Testing (Pt. 1, Ed. 7): The Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes, A.A.S.H.O. Designation M 145-49.

4/Based on the Unified Soil Classification System, Technical Memorandum No. 3-357, Volume 1, Waterways Experiment Station, Corps of Engineers, March 1953.

## SECTION II

PART II: ENGINEERING TEST DATA FOR SOILS SAMPLED BY SOIL CONSERVATION SERVICE AND TESTED BY HIGHWAY LABORATORIES
enginetring test data for solls sampled by soil conservation service and tested ay hiohway taioratories $\sqrt{ }$ (

enoinetrino test data tor soils sampled ay soil conservation service and tested ay hiohway iaboratories ${ }^{\text {/ }}$

| not manm | countration | panant mavenial | onouvion moun |  | moitune ommerry |  | mectanicaL avalvens |  |  |  |  |  |  |  | Havip |  | comouricarion |  | n*unnat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | O-altmosMinisture |  |  |  |  |  | Prevers saluan |  |  |  |  | aushoal | (mins/ |  |
|  |  |  | Dount | Hexicm |  |  | 2m. | ( |  | (100) | (0) | . $\times$ m | osem | - 08. |  |  |  |  |  |
| Netan lomen |  |  | mon' |  | W/ment | 「 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ximbell, nobr. | Loona over Plettocene gravol |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} 20 \\ 29 \\ \hline \end{gathered}$ | $\begin{aligned} & 17 \\ & 24 \end{aligned}$ | $\begin{aligned} & 30 \\ & 39 \\ & 39 \end{aligned}$ | $\begin{gathered} 10 \\ 18 \\ \hline A \end{gathered}$ |  | $\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{BC} \end{aligned}$ |  |
|  |  | stocene eravol | $\begin{aligned} & 2 \lambda-17 \\ & 27-32 \end{aligned}$ | $\begin{aligned} & \mathrm{p} \\ & \mathrm{c} \end{aligned}$ | $\begin{array}{\|l\|} 105 \\ 17 \end{array}$ | ${ }_{13}^{18}$ | $\left\lvert\, \begin{aligned} & 100 \\ & 10 \end{aligned}\right.$ | $96$ | $\begin{aligned} & 91 \\ & 90 \end{aligned}$ | $\begin{aligned} & 81 \\ & 73 \end{aligned}$ | $\begin{aligned} & 67 \\ & 47 \end{aligned}$ | $\begin{aligned} & 61 \\ & 36 \end{aligned}$ | $\begin{aligned} & 29 \\ & 15 \end{aligned}$ | 12 | $26$ |  |  |  |  |
|  | ximball, Mobr. | Sama | ${ }_{12-18}^{0-6}$ | $\hat{\mathrm{B}}$ | $\frac{122}{99}$ | $\underset{21}{12}$ | 100 | 9 | ${ }^{90}$ | $\begin{aligned} & 72 \\ & 93 \end{aligned}$ | $\begin{aligned} & 58 \\ & 85 \\ & 85 \end{aligned}$ | $\begin{aligned} & 50 \\ & 77 \end{aligned}$ | $\begin{aligned} & 28 \\ & 37 \end{aligned}$ | $\underset{\substack { 34 \\ \begin{subarray}{c}{24{ 3 4 \\ \begin{subarray} { c } { 2 4 } } \\ {\hline}\end{subarray}}{ }$ | $\begin{aligned} & 29 \\ & 43 \\ & 43 \end{aligned}$ | $\begin{gathered} 8 \\ 20 \end{gathered}$ |  | $\begin{aligned} & \mathrm{KLL}_{\mathrm{LL}} \mathrm{CL} \\ & \mathrm{CI}_{\mathrm{BC}} \end{aligned}$ |  |
|  |  |  | ${ }_{\text {26-32 }}$ |  |  |  | 100 | 89 |  |  |  |  |  |  | 31 |  |  |  |  |
|  | Kinball, Mobr. | Bamo | $\stackrel{0}{0.6}$ | $\hat{\mathbf{g}}$ | 122 | $\begin{aligned} & 24 \\ & 17 \\ & 17 \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 97 \\ & 99 \end{aligned}$ | $\begin{aligned} & 94 \\ & 95 \\ & 95 \end{aligned}$ | $\begin{aligned} & 83 \\ & 84 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{aligned} & 60 \\ & 64 \\ & 64 \end{aligned}$ | $\begin{aligned} & 50 \\ & 54 \\ & 50 \end{aligned}$ | $\begin{aligned} & 21 \\ & 27 \\ & 27 \end{aligned}$ | $\begin{aligned} & 15 \\ & 23 \\ & 28 \end{aligned}$ | $\begin{aligned} & 27 \\ & 36 \\ & 36 \end{aligned}$ | $\begin{array}{r} 8 \\ { }_{8}^{8} \\ 8 \end{array}$ |  | ct cL cL |  |
|  |  |  | 22-38 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Ximball, Mebr. | Sume |  | $\begin{aligned} & \hat{A} \\ & \mathbf{B} \end{aligned}$ | $\begin{aligned} & 1097 \\ & 99 \\ & 120 \end{aligned}$ | $\begin{aligned} & 15 \\ & 23 \\ & 11 \end{aligned}$ | 1200 | $\begin{aligned} & 97 \\ & 93 \end{aligned}$ | $\begin{aligned} & 93 \\ & \substack{900 \\ 86} \end{aligned}$ | $\begin{aligned} & 82 \\ & 96 \\ & 70 \end{aligned}$ | $\begin{aligned} & 69 \\ & 89 \\ & 40 \end{aligned}$ | $\begin{aligned} & 58 \\ & 88 \\ & 80 \\ & 30 \end{aligned}$ | $\begin{aligned} & 22 \\ & 41 \\ & 24 \end{aligned}$ | $\begin{aligned} & 16 \\ & 37 \\ & 11 \end{aligned}$ | $\begin{aligned} & 30 \\ & 49 \\ & 25 \\ & 29 \end{aligned}$ | $\begin{array}{r} 8 \\ 25 \\ 8 \\ 8 \end{array}$ | $\begin{aligned} & A-4(7) \\ & A-7(6) \\ & A-4(1) \end{aligned}$ | $\begin{aligned} & \mathrm{ML}-\mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{BC} \end{aligned}$ |  |
|  | Kimball, nebr. | Loess over coutvanh gravel | $\begin{gathered} 0-6 \\ 35-24 \\ 30-4 \theta \end{gathered}$ | $\begin{aligned} & \hat{A} \\ & \hat{B} \end{aligned}$ | $\begin{aligned} & 218 \\ & 104 \\ & 124 \end{aligned}$ | $\begin{aligned} & 13 \\ & 19 \\ & 10 \end{aligned}$ | $\left\lvert\, \begin{aligned} & 200 \\ & 20 \\ & 100 \end{aligned}\right.$ | $\begin{aligned} & 96 \\ & 99 \\ & 95 \end{aligned}$ | $\begin{aligned} & 87 \\ & 97 \\ & 87 \end{aligned}$ | $\begin{aligned} & 66 \\ & 89 \\ & 30 \end{aligned}$ | $\begin{aligned} & 48 \\ & 78 \\ & 78 \end{aligned}$ | $\begin{aligned} & 40 \\ & 12 \\ & 10 \end{aligned}$ | $\begin{aligned} & 15 \\ & 33 \\ & 6 \end{aligned}$ | $\begin{aligned} & 29 \\ & 29 \end{aligned}$ | $\begin{aligned} & 26 \\ & 47 \\ & 47 \end{aligned}$ | $\begin{aligned} & 5 \\ & \stackrel{5}{23} \\ & m p \end{aligned}$ |  | $\begin{aligned} & \mathrm{sunsc} \\ & \mathrm{CL}-\mathrm{SH}-\mathrm{BN} \end{aligned}$ |  |
|  | Kimbath, nobr. | Saso |  | $\begin{gathered} \mathrm{A} \\ \mathrm{~B} \end{gathered}$ | $\begin{aligned} & 221 \\ & 108 \\ & 102 \end{aligned}$ | $\begin{gathered} 10 \\ 17 \\ 9 \end{gathered}$ | $\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 93 \\ & 99 \\ & 99 \end{aligned}$ | $\begin{aligned} & 83 \\ & 97 \\ & 78 \end{aligned}$ | $\begin{aligned} & 60 \\ & 84 \\ & 45 \end{aligned}$ | $\begin{aligned} & 39 \\ & \left.\begin{array}{l} 67 \\ 18 \end{array}\right) \end{aligned}$ | $\begin{aligned} & 32 \\ & 59 \\ & 16 \end{aligned}$ | $\begin{aligned} & 14 \\ & 32 \\ & 92 \end{aligned}$ | $\begin{gathered} 11 \\ 86 \\ 8 \end{gathered}$ | $\begin{array}{\|l\|l} 25 \\ 38 \\ 19 \end{array}$ | 7 4 4 |  | $\mathrm{SH}-\mathrm{BC}$ CL $\mathrm{SH}-\mathrm{BC}$ |  |
|  | ximsall, nebr. | Same |  | $\hat{A}_{\hat{C}_{\mathrm{C}}}$ | $\begin{aligned} & 124 \\ & 124 \\ & 124 \end{aligned}$ | $\begin{gathered} 10 \\ 24 \\ 9 \end{gathered}$ | $\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 96 \\ & 99 \\ & 94 \end{aligned}$ | $\begin{aligned} & 86 \\ & 96 \\ & 79 \end{aligned}$ | $\begin{aligned} & 63 \\ & 9 \\ & 30 \end{aligned}$ | $\begin{aligned} & 29 \\ & 45 \\ & 20 \end{aligned}$ | $\begin{gathered} 23 \\ 38 \\ 9 \end{gathered}$ | $\begin{gathered} 11 \\ \substack{22 \\ 7} \end{gathered}$ | $\begin{array}{r} 9 \\ 29 \\ \hline 6 \end{array}$ | $\begin{array}{\|l\|l} 21 \\ 30 \\ K \mathbb{P} \end{array}$ | $\begin{array}{r} 4 \\ { }_{23}^{4} \\ { }^{2} \end{array}$ |  | $\begin{aligned} & \mathrm{SK}-\mathrm{SC} \\ & \mathrm{SC} \mathrm{SC}-\mathrm{BM} \end{aligned}$ |  |
| Anarillo fine esndy loan | Lemb, Tex. a/ | Allurlal and aeollas sedimento (quaternary and Tertlary | - $\begin{gathered}0-11 \\ 1729 \\ 38-56\end{gathered}$ | $\begin{aligned} & \hat{\beta} \\ & \mathbf{c}_{\mathrm{ca}} \end{aligned}$ |  |  | 120 | 76 | 100 72 | $\begin{gathered} 990 \\ 1200 \\ 68 \end{gathered}$ | $\begin{aligned} & 52 \\ & 60 \\ & 46 \end{aligned}$ | $\begin{aligned} & 42 \\ & 54 \\ & 43 \end{aligned}$ | $\begin{aligned} & 18 \\ & 33 \\ & 29 \end{aligned}$ | $\begin{aligned} & 15 \\ & 28 \\ & 28 \end{aligned}$ | $\begin{aligned} & 24 \\ & 35 \\ & 30 \end{aligned}$ | 7 19 14 | $\begin{aligned} & \operatorname{A}-4(3) \\ & A-6 \\ & A-6 \end{aligned}$ | $\begin{aligned} & \mathrm{KL}-\mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{SC} \end{aligned}$ |  |
|  | Lamb, Tex. ¢f | Samo |  | $\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$ |  |  | 120 | 99 | $\begin{aligned} & 100 \\ & 100 \\ & 90 \end{aligned}$ | $\begin{aligned} & 95 \\ & 97 \\ & 97 \end{aligned}$ | $\begin{aligned} & 42 \\ & 45 \\ & 61 \end{aligned}$ | $\begin{aligned} & 34 \\ & 38 \\ & 54 \end{aligned}$ | $\begin{aligned} & 13 \\ & 22 \\ & 29 \end{aligned}$ | $\begin{aligned} & 11 \\ & 20 \\ & 26 \end{aligned}$ | $\begin{aligned} & 19 \\ & 29 \\ & 32 \end{aligned}$ | $\begin{aligned} & 5 \\ & 14 \\ & 17 \end{aligned}$ |  | $\begin{aligned} & \mathrm{BY}-\mathrm{sc} \\ & \mathrm{sc} \\ & \mathrm{CL} \end{aligned}$ |  |
|  | Lemb, Tex. ${ }^{\text {a }}$ | Sase | $\begin{gathered} 0-9 \\ \frac{02}{12-26} \\ 42-72+ \end{gathered}$ | $\begin{aligned} & \hat{\mathrm{g}} \\ & \mathrm{c}_{\mathrm{cc}} \end{aligned}$ |  |  | 100 | 97 | $\begin{gathered} 100 \\ 95 \end{gathered}$ | $\begin{gathered} 100 \\ 99 \\ 90 \end{gathered}$ | $\begin{aligned} & 50 \\ & 62 \\ & 66 \end{aligned}$ | $\begin{aligned} & 36 \\ & 53 \\ & 64 \end{aligned}$ | $\begin{aligned} & 16 \\ & 33 \\ & 52 \end{aligned}$ | $\begin{aligned} & 24 \\ & 26 \\ & 37 \end{aligned}$ | $\begin{array}{\|l\|l} 22 \\ 37 \\ 26 \end{array}$ | $\begin{aligned} & 50 \\ & 20 \\ & 20 \end{aligned}$ | $\begin{aligned} & \operatorname{A}-4(3) \\ & A_{0}-6(9) \\ & \operatorname{A}-6(7) \end{aligned}$ | $\begin{aligned} & \text { sur-sc } \\ & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$ |  |
| $\underset{\substack{\text { manrinio sundy clay } \\ \text { loam }}}{ }$ | Lamb, Tex. a/ | Sama | $\begin{array}{\|} 0.10 \\ 10.32 \\ 56-30 \\ 56 \end{array}$ | $\begin{aligned} & \hat{\mathrm{B}} \\ & \mathrm{c}_{\mathrm{ca}} \end{aligned}$ |  |  | $\infty$ | 98 | 97 | $\begin{gathered} 100 \\ 100 \\ 95 \end{gathered}$ | $\begin{aligned} & 51 \\ & 67 \\ & 74 \end{aligned}$ | $\begin{aligned} & 44 \\ & 60 \\ & 68 \end{aligned}$ | $\begin{aligned} & 22 \\ & 34 \\ & 18 \end{aligned}$ | $\begin{aligned} & 20 \\ & 32 \\ & 35 \end{aligned}$ | $\begin{array}{\|l} 25 \\ 35 \\ 30 \end{array}$ | $\begin{aligned} & 10 \\ & 18 \\ & 15 \end{aligned}$ | $\begin{aligned} & A-4(3) \\ & A_{-}-6(10) \\ & A-6(10) \end{aligned}$ | CL CL CL CL |  |
|  | Lamb, Tex. ${ }^{\text {a }}$ | Sane | $\begin{aligned} & 0-12 \\ & 32-25 \\ & 37-66+ \end{aligned}$ | $\begin{aligned} & \hat{B} \\ & c_{e a} \end{aligned}$ |  |  | 100 | 98 | $\begin{aligned} & 100 \\ & 100 \\ & 90 \end{aligned}$ | $\begin{aligned} & 99 \\ & 99 \\ & 93 \end{aligned}$ | $\begin{aligned} & 67 \\ & 72 \\ & 66 \end{aligned}$ | $\begin{aligned} & 57 \\ & 65 \\ & 57 \end{aligned}$ | $\begin{aligned} & 26 \\ & 39 \\ & 34 \end{aligned}$ | $\begin{aligned} & 23 \\ & 35 \\ & 38 \end{aligned}$ | $\begin{array}{\|l\|l} 331 \\ 41 \\ 30 \end{array}$ | $\begin{aligned} & 14 \\ & 22 \\ & 16 \end{aligned}$ |  | $\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$ |  |
|  | Lamb, tex. | Same | $\begin{gathered} 0-11 \\ 11-21 \\ 26-21 \\ 26-70+ \end{gathered}$ | $\begin{aligned} & \hat{A} \\ & \mathbf{c}_{\mathrm{ca}} \end{aligned}$ |  |  | 100 | 99 | $\begin{gathered} 100 \\ 100 \\ 98 \end{gathered}$ | $\begin{aligned} & 99 \\ & 99 \\ & 94 \end{aligned}$ | $\begin{aligned} & 62 \\ & 71 \\ & 62 \end{aligned}$ | $\begin{aligned} & 53 \\ & 64 \\ & 62 \end{aligned}$ | $\begin{aligned} & 30 \\ & 39 \\ & 34 \end{aligned}$ | $\begin{aligned} & 22 \\ & 34 \\ & 20 \end{aligned}$ | $\begin{aligned} & 29 \\ & 40 \\ & 32 \end{aligned}$ | $\begin{aligned} & 13 \\ & 20 \\ & 18 \end{aligned}$ | $\begin{aligned} & A-6(7) \\ & A_{0}-6(1) \\ & A-6(9) \end{aligned}$ |  |  |

engineering test data for solls sampled ay soil conservation service and tested by highway laboratories ${ }^{\text {/ }}$

engine iring test data for soils sampled by soil conservation service and tested by highway laboratories ${ }^{\mathbf{1 /} / 4}$





[^2]engineering test data for soms sampleo ay soil conseavation service and tested by higmway laboratories d/




[^3]nurva, ac
'enginering test data for soits sampled by soil conservation service and tested by highway laboratories ${ }^{\text {D }}$

enoinereino test data for soils sampled ey soil. conservation senvict and tested ey hiohway laboratories ${ }^{\text {d }}$

engineering test data for solls sampled by soil conseryation service and tested by mighway laboratories ${ }^{\text {/ }}$

| noll mave | LOCATROM COUMTY AMD OTAFEI | -atent mateaial | - mosition mions |  | montune-denitive |  | matmanieal amalyeiz $V$ |  |  |  |  |  |  |  | Lloulo |  imdex | clabification |  | nswanks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | owism |  |  |  |  |  |  |  |  |  |  | memay | villad |  |
|  |  |  | Dorn | Halı |  |  | 3 m |  | $\begin{aligned} & \text { Kat } 10 \\ & 0.0 \infty \end{aligned}$ | $\begin{aligned} & N_{0}+40 \\ & 1,0-\infty \end{aligned}$ | $\begin{aligned} & \mathrm{R}, 200 \\ & 1 .-17 \end{aligned}$ | csee | -sten | .0080 |  |  |  |  |  |
| Fairbope flue sandy10am | HeIntosh, Ca. | Pavilico marline terrace | $\cdots$ |  | Lemen. 6. | Pare |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 0.5 | ${ }^{\text {a }}$ |  | 19 |  |  | 100 |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 16-24 | ${ }^{\text {B }}$ | 98 | 23 |  |  | 100 | 99 | 76 | 72 | 56 | 54 | 64 | 32 | A-4 A-7-5 | SK |  |
|  |  |  | 32-47 | c | 97 | 2 |  |  |  | 100 | 77 | 73 | 58 | 56 | 61 | 30 | A-7-5(20) | ME-CE |  |
|  | MeIatont, Cat. | Same |  |  |  |  |  |  | 100 |  |  | 27 |  |  |  |  |  |  |  |
|  |  |  | 12.19 28.41 | B ${ }_{\text {B or }}$ D | 98 105 | 23 18 |  |  | 100 | 99 99 | ${ }^{33}$ | 68 68 | 57 | 54 | nP 64 55 | IP 33 | A-2-4 ${ }^{\text {a }}$ - 5 (18) | $\underset{\text { HR-CE }}{\text { SN }}$ |  |
|  |  |  |  |  |  |  |  |  |  |  | 62 | 58 | 45 | 42 | 55 | 30 | A-7-6, ${ }^{\text {a }}$ ( | ${ }_{\text {cm }}$ |  |
| Falaington fine sandyjoes | Lanceater, va. ${ }^{\text {a }}$ | Cosstal Plain aedisente |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | $7-27$ $34-65$ | ${ }^{3}$ | 112 | 10 |  |  | 100 100 | 96 95 | 40 32 | 36 29 | 18 | ${ }^{8}$ | 19 | ${ }_{6 P}$ |  |  |  |
|  |  |  |  |  |  |  |  |  | 100 | 98 | 10 | 10 | 8 | 6 | 21 | ${ }_{\text {HP }}$ | A-3(0) | ${ }_{\text {SP-SK }}^{\text {SM }}$ |  |
| Flint fine sandy loam | Darlingtoo, 8. c. | Alluvilua (terrace) | 0.6 | ${ }^{1}$ | 118 | 12 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 12-42 | ${ }^{\text {B }}$ |  | 27 |  |  | 100 |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 42-614 |  | 103 | 21 |  |  |  | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 79 \\ & 58 \end{aligned}$ | $\begin{aligned} & 72 \\ & 52 \end{aligned}$ | $\begin{aligned} & 55 \\ & 39 \end{aligned}$ | $\begin{aligned} & 53 \\ & 36 \end{aligned}$ | $\begin{aligned} & 65 \\ & 49 \end{aligned}$ | $\underset{2}{29}$ | $\begin{gathered} \operatorname{A}-7-5(20) \\ A-7-6(10) \end{gathered}$ | $\begin{aligned} & \mathrm{NH} \\ & \mathrm{NLL} \\ & \mathrm{NL} \\ & \hline \end{aligned}$ |  |
| Flogd allity ciay loan | Dodge, Mina. | $\left\lvert\, \begin{aligned} & \text { olacian till } \\ & (\text { Iovan }) \end{aligned}\right.$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 33-52 | ${ }_{c}^{\text {c }}$ | $\xrightarrow{89}$ | ${ }_{11} 10$ |  |  | 100 | 98 |  |  |  |  |  |  |  |  |  |
|  |  |  | 524 | c | 126 |  | 100 | 83 | 92 | 83 | 52 | 46 | 24 | 19 | 27 | 13 | A-6-5 |  |  |
|  | Dodge, Minn. | Sase |  |  |  |  |  |  |  | 7 |  | 40 | 19 | 16 | 25 | 1 | A-6(3) | sc |  |
|  |  |  | 25-34 | ${ }_{\text {B }}$ | 92 130 | $\stackrel{23}{8}$ |  |  |  | 92 | 78 | 76 |  | 28 |  |  |  |  |  |
|  |  |  | 40 | c | 123 | 21 | 100 | 90 81 | 88 | 72 | 25 53 | 23 50 | $\frac{12}{26}$ | 10 | 19 | 24 <br> 4 | 2-7-5 $4.2-4.0)$ | KH or or STHCSC |  |
|  | Dodgo, Minn. | Same |  |  |  |  |  |  |  |  |  |  |  | 21 | 32 | 17 | A-¢6) |  |  |
|  |  |  | 26-45 | 8 | 122 | 12 |  |  | 100 |  |  |  | 40 |  |  |  |  |  |  |
|  |  |  | 45. | c | 222 | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | $\left\lvert\, \begin{aligned} & 100 \\ & 100 \end{aligned}\right.$ | $\begin{aligned} & 93 \\ & 91 \end{aligned}$ | $\begin{aligned} & 92 \\ & 89 \end{aligned}$ | 85 81 | 58 58 | 53 | 31 | 25 | 32 | 17 | A-67 ${ }^{2}$ | ${ }_{\text {CL }}{ }_{\text {CL }}$ or ofr |  |
| calestovn mine casd | HeLotorl, Ca. | O1d beech ridge |  |  |  |  |  |  |  |  |  |  |  | 3 | 31 | 17 | a-6.7) | CL |  |
|  |  |  | ${ }^{0.7}$ | ${ }^{\text {A }}$ | 104 | 14 |  |  | 100 |  |  |  |  |  |  |  |  |  |  |
|  |  |  | - | $\stackrel{1}{8}_{\mathrm{C}_{\mathrm{g}}}$ | 104 104 | 14 16 |  |  |  | 100 | 19 | 9 | 8 | 6 | $\mathrm{MP}_{18}$ | ${ }_{\text {ar }}$ | ${ }^{\text {A-3 }}$ (0) | ${ }_{\text {SP-SK }}$ |  |
|  | McIatosh, da. | Sase |  |  |  |  |  |  |  | 100 | 8 | 7 | 6 | 5 | $\sqrt{2 P}$ | ${ }_{8 P}$ | A-3(0) | $\mathrm{SP}_{\text {SP-SN }}$ |  |
|  |  |  | 10-27 | ${ }_{8}^{8}$ | 104 | 14 16 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 27.43 | $\mathrm{c}_{8}$ | 100 |  |  |  |  | 100 | 9 | 8 | 6 | 5 | $\underset{\text { NP }}{\text { HP }}$ | ${ }_{\text {PP }}^{\text {P }}$ | ${ }^{\text {A-330 }} \mathrm{C}$ | ${ }_{\text {SP. }}^{\text {SPR }}$ |  |
| ceorgoville silt lown | Beluda, 8. c. |  |  |  |  |  |  |  |  |  |  | 10 | 7 | 6 | 1 P | 118 | A-2-4(0) | SM |  |
|  |  | Carolibe elate | 0.9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 2-38 | ${ }^{8}$ | 100 | 23 - | 20 | 96 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 38.78 | c | 100 |  |  |  |  | 98 | 96 | 96 | 5 | 38 | 26 60 | 29 |  | $\xrightarrow{\text { NH-CI }}$ |  |
|  |  |  |  |  |  |  |  |  |  |  |  | 90 | 45 | 30 | 53 | 20 | A-7-5(15. |  |  |
| Oilead sandy loam | Darliagtoo, B. C. | coantal Plain sedimente | $\begin{gathered} 0.13 \\ 13-27 \\ 27-54+ \end{gathered}$ | $\begin{array}{lll} A \\ B & & \\ C & & B \end{array}$ | $\begin{aligned} & 119 \\ & 118 \\ & 101 \end{aligned}$ | $\begin{aligned} & 9 \\ & 16 \\ & 26 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & 1< \\ & 72 \\ & 94 \end{aligned}$ | $\begin{aligned} & 10 \\ & 37 \\ & 86 \end{aligned}$ | $\begin{aligned} & 15 \\ & 36 \\ & 83 \end{aligned}$ | $\begin{aligned} & 98 \\ & 28 \end{aligned}$ | $\begin{array}{r} 7 \\ 25 \\ 52 \end{array}$ | 19 37 53 | 18 16 16 | $\begin{aligned} & A-2-4(0) \\ & A-Q 20 \end{aligned}$ | ST |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 53 | 23 | $A-7-5(16)$ | r H -CB |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

enoineting test data for soils sampled iy soil conservation service and tested iy highway laboratories ${ }^{3}$

engineering test data for soils sampled by solt conservation service and tested by highway laboratories ${ }^{\text {/ }}$

RNOINEEINO TEST DATA FOR SOILS SAMPLED BY SOIL CONSERVAYION SERVICE AND TESTED EY hIGHWAY LABOEATORIES

enginerring test data for soils sampled by soil conservation service and tested by highway laboratories ${ }^{\text {/ }}$

ENGINEERINO TEST DATA FOR SOILS SAmpLED BY SOIL CONSERVAYION SERVICE AND TESTED BY hIGHWAY LABORATORIES ${ }^{2}$

engineering test data for solls sampled by soil conservation service ano tested oy highway laboratories ${ }^{\boldsymbol{D}}$




enginerting test data for soils sampled by sotl conservation service and tested by hohway laboratories ${ }^{2}$

a/ Tests perforaed by Pennsylvania Departaent of Highuays
Tests perforued by V1retaisa Department of Higinays.
g Based on Asso Desigution T99-57, Method $c$.
engineering test data for soils sampled by soll conservation service and tested by highway laboratories ${ }^{\prime}$

enginetring test data ion som sampled ay soil constevation service and tested oy hiohway laboratories ${ }^{1 /}$

engineering test data lor soils sampled by soil conservation service and tested ay highway laboratories $\sqrt{V}$

enoinerino test data tor soils sampled by soli. conservation service and tested by highway labotatories ${ }^{\prime}$

engineering test data for soits sampled by soil conservation service and tested by highway laboratories ${ }^{\text {d/ }}$

| noil mank |  | panent materal | - -owtron mom |  |  |  | Hecmamieal amalisiel/ |  |  |  |  |  |  |  | Lious | $\begin{aligned} & \text { PLAB- } \\ & \text { TICITT } \end{aligned}$moEn | clabipication |  | neuanks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Opinge |  |  |  |  |  | Percoume Smalior That ${ }^{\text {d }}$ |  |  |  |  |  |  |  |
|  |  |  | Oomb | Moise |  |  | 3 m | $\begin{array}{\|l\|} \hline \operatorname{knct} \\ (4,7 \infty) \end{array}$ | $\begin{array}{\|c\|c\|} \operatorname{mos} 10 \\ 0.0-1 \end{array}$ |  | $\left\|\begin{array}{c} \operatorname{cosen} \\ 100100) \end{array}\right\|$ | -sm | .0800 | .08man |  |  | Masms | Unilued |  |
| Salonle allt loan | Kodlak Isiand, Alanka | Volcanic ash on eilty alluriun over glacial outsab | bthe |  | tb, /ov.in. | Precome |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | $10 \frac{1}{2}-19$ | $\mathrm{cc}_{0}$ | $\begin{aligned} & 62 \\ & 95 \end{aligned}$ | $\begin{aligned} & 40 \\ & 24 \end{aligned}$ |  |  | $\begin{array}{r} 100 \\ 99 \end{array}$ |  |  |  |  | $2{ }^{6}$ |  | ${ }_{2 P}^{29}$ |  | SM |  |
|  |  |  | $91-31$ | $\mathrm{D}_{\mathrm{ob}}$ | $128$ | $\begin{aligned} & 24 \\ & 10 \end{aligned}$ | 100 | 140 | $\begin{aligned} & 99 \\ & 27 \end{aligned}$ | $\begin{aligned} & 97 \\ & 11 \end{aligned}$ | $\begin{gathered} 88 \\ 4 \end{gathered}$ | $\stackrel{8}{85}$ | 38 2 | $\begin{gathered} 24 \\ 24 \end{gathered}$ | ${ }_{6}^{45}$ | ${ }_{4 T}^{12}$ |  | ${ }_{\text {ck }}^{1 / 2}$ |  |
|  | Kodiak Ialand, Alaske | Same | 9-12 | c | 70 | 32 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 12-20 | $c_{0}$ | 88 | 26 |  |  | 100 | 10 93 | 62 | 30 56 | ${ }_{21} 10$ | ${ }_{14}^{6}$ | ${ }_{\text {ITP }}^{\text {IP }}$ | ${ }_{\text {HP }}^{\text {HP }}$ | A-2-4(0) | SM |  |
|  |  |  | 27-40. |  | 116 | 13 | 100 | 37 | 25 | 15 | 8 | 8 | 4 | 14 3 | ${ }_{\text {RP }}^{\text {RP }}$ | $\underset{\text { IP }}{ }$ | A-4 $A-1-3$ ( | M. $\mathrm{CH}-\mathrm{Ca}$ |  |
|  | Kodiak Islend, Alaska | Sune | 5-8 | c | 61 | 41 |  |  | 100 | 98 |  |  |  |  |  |  |  |  |  |
|  |  |  | 9-16 | ${ }_{0}{ }_{0}$ | 80 | 33 |  |  | 200 | 99 | 83 | 76 | 32 | 19 | ${ }_{54}^{\text {Kr }}$ | ${ }_{10}$ | A-2-4(0) | SM |  |
|  |  |  | 14-24. |  | 126 | 11 | 100 | 29 | 19 | 7 | 4 | 4 | 2 | 2 | ${ }_{\text {NP }}$ | ${ }_{\text {HP }}$ | A-S(11) |  |  |
| Sassefras fine sandy loam | $\begin{aligned} & \text { Rortmuberland, } \\ & \text { ve. a/ } \end{aligned}$ | Coantal Plain sedimente |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | $0-10$ 14.33 | ${ }_{\text {A }}^{\text {B }}$ | 123 | 10 |  |  | 100 | 89 | 42 |  | 10 | 6 |  |  |  |  |  |
|  |  |  | 42-66 |  |  | 12 |  |  | 100 100 | 91 | 50 | 48 | 25 | 18 | ${ }^{16}$ | 7 | A-4 $x-4$ $(1)$ ( |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | 5 | 4 | 3 | 11 | MP | A-3(0) | ${ }_{\text {SP-SM }}^{\text {SM-SC }}$ |  |
| Scantic oflt loam | Rartford, Conn. | Lscuatrine terrace | $0-6$ | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | - | ${ }^{\text {B }}$ B | 108 | 19 |  |  | 100 | 109 |  |  | 52 | 30 | 74 | 20 | A-7-5(16) |  |  |
|  |  |  | 26-60 | ${ }^{8}$ | 107 | 20 |  |  | 100 | 100 99 | 97 95 | 95 | 54 63 | 28 | 39 | 16 | A-6(10) | ${ }_{\text {ct }}$ |  |
|  | Hortford, Conn. | Sase | 0.7 | $\wedge$ | 81 |  |  |  |  |  |  |  |  |  | 37 | 15 | A-6(10) | cl. |  |
|  |  |  | 120.34 | ${ }_{\text {B }}^{\text {g }}$ | 112 | 16 |  |  |  | 100 | 95 | 92 | 34 | 23 | 55 |  |  |  |  |
|  |  |  | 40-54 | ${ }^{\text {d }}$ | 128 | 9 | 98 | 60 | 50 | ${ }_{38} 9$ | 91 23 | 88 21 | 34 9 | 25 6 | ${ }_{21}^{31}$ | 10 4 | A-4(8) | ${ }_{\text {krem }}$ |  |
|  | Bartford, Conn. | Same | $0-7$ | ${ }^{\text {A }}$ | 88 |  |  |  |  |  |  |  |  |  |  |  | A-2-4(0) | CR-CC | 10\% discarded in sampling |
|  |  |  | 10-36 | ${ }_{8}^{\text {P }}$ | 111 | 16 |  |  | 98 | 97 | ${ }_{88}^{91}$ | $\stackrel{87}{84}$ | 29 | 18 | 49 | 14 | A-7-5(12) |  |  |
|  |  |  | 36-52 | ${ }^{5}$ | 126 | 10 |  |  | 30 | ${ }_{20}$ | 16 | 84 14 | 5 | 23 | 33 | 12 | $A-6(9)$ | ${ }_{\text {cL }}$ |  |
| $\begin{aligned} & \text { Sharpaburg silty clay } \\ & \text { loan } \end{aligned}$ | Yashiogton, Kebr. | Peorlan loces |  |  |  |  | (sca | atic | sapples | corre | ceted ro |  |  | 3 | 23 | 5 | A-1-a (0) | $\mathrm{CH}_{\mathbf{4}-\mathrm{Cc}}$ | 50\% $\quad$. |
|  |  |  | ${ }_{20-30}^{0.6}$ | ${ }^{\text {A }}$ | 100 | 20 | dso | carded | large | r than | $\frac{19}{9}$ inch |  |  |  |  |  |  |  |  |
|  |  |  | $20-30$ $42-60$ | ${ }^{B}$ | 103 |  |  |  |  |  |  |  |  | 33 | 38 | 13 |  |  |  |
|  |  |  | 42-60 |  | 104 | 20 |  |  |  | 100 | 99 100 | 95 95 | 37 38 | 32 33 | 50 46 | 26 | A-7-6 6 (16) | ${ }_{\mathrm{CL}}^{\mathrm{ML}}$ |  |
|  | Hushingtoa, Hebr. | Sama | $0-7$ | $\wedge$ | 103 |  |  |  |  |  |  |  |  |  | 46 | 23 | A-7-E(14) | CL |  |
|  |  |  | 17-30 | B | 102 | 2 |  |  |  | - | 10 | 97 | 35 | 30 | 37 | 12 | A-G(9) |  |  |
|  |  |  | 48-6 | c | 106 | 19 |  |  |  |  | 100 | 97 97 | 41 36 | 36 30 | 50 4 | 23 | A-7-6 15 |  |  |
|  | Vashingtoo, zebr- | Same | 0.6 |  |  |  |  |  |  |  |  |  |  |  | 4 | 20 | A-7-6(13) |  |  |
|  |  |  | 10-22 | 8 | 100 | ${ }_{2}$ |  |  |  |  | 100 | 97 |  |  | 44 |  |  |  |  |
|  |  |  | 42-60 | c | 106 | $\underset{\sim}{0}$ |  |  |  |  | 100 100 | 97 | 41 | 35 | 53 | 26 | $\left.\begin{array}{l} A-7-6 \\ \mathrm{~A}-7-6 \\ 12 \end{array}\right)$ | ${ }_{\mathrm{MOH}-\mathrm{CH}}^{\mathrm{Ma}}$ |  |
|  |  |  |  |  |  |  |  |  |  |  | 10 | 97 | 38 | 33 | 4 | 21 | $\begin{gathered} \substack{A-7-6 \\ A-7-6(17) \\ 13} \end{gathered}$ | $\begin{aligned} & \text { KII- } \\ & \mathrm{CL} \end{aligned}$ |  |
|  | Vashlogton, Mebr. | Sase | 0.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 23-23 | - | 101 | 23 |  |  |  | 10 |  |  |  |  | 44 |  |  |  |  |
|  |  |  | 45-60 | c | 109 | 20 |  |  |  |  | 100 100 | 97 96 | 42 35 | 36 | 51 | 24 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | 35 | 29 | 42 | 20 |  | ${ }_{\mathrm{CL}}^{\mathrm{CL}} \mathrm{CH}$ |  |
| Shyberg ailt loam | Dodge, Minn. | urod-deponited anterial over glacial till (Iova | 26.38 |  | 117 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 35-50 | $8^{8}$ | 116 | 14 | 100 | $\begin{aligned} & 92 \\ & 98 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 50. | c | 107 | 18 |  | $98$ | 98 100 | $\begin{aligned} & 94 \\ & 99 \end{aligned}$ | $\begin{aligned} & 76 \\ & 93 \end{aligned}$ | 74 98 | 30 43 | 26 37 | 32 34 43 | 16 19 24 | A-6(7) A. 6 (2a) | ${ }_{\text {CL }}^{\text {CL }}$ |  |
|  | Dodge, Mina. | 3080 | 27-38 |  | 120 |  |  |  |  |  |  |  |  |  |  |  | A-7-6(14) | CL |  |
|  |  |  | 40-51 | ${ }^{88}$ | 120 | 11 | $100$ | $\begin{array}{r} 90 \\ 90 \end{array}$ | 83 | $\begin{aligned} & 81 \\ & 42 \end{aligned}$ |  |  |  | 20 | 28 | 25 | A-6(5) |  |  |
|  |  |  | 53. | c | 121 | 12 |  | $100$ | 98 | $\begin{aligned} & 42 \\ & 89 \end{aligned}$ |  |  | $2_{9}^{7}$ | 88 | MP 29 | ${ }_{125}^{16}$ |  |  |  |
|  | Dodec, Minn. | Sene |  |  | 109 | 17 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 346.46 | ${ }_{c}^{\mathrm{B}_{\mathrm{B}}^{\mathrm{B}}}$ | 112 | $\begin{aligned} & 16 \\ & 16 \end{aligned}$ |  |  | 100 | 98 | 86 | 83 | 35 | 32 30 | 38 35 | 2 | A-6(12) | cL |  |
|  |  |  |  |  |  |  |  |  | 100 | 95 | 75 | 72 | 35 | 31 | 36 | 19 | A- $6(12)$ A-6 12 | ${ }_{\text {CL }}^{\text {CL }}$ |  |

ENOINERRING TESY DATA FOR SOILS SAMPLED DY SOIL CONSERVATION SERVICE AND TESTED EY hIOhWAY LABORATORIES ${ }^{\boldsymbol{\prime}}$


[^4]enginering test data for soils sampled by soll conservation service and tested by highway laboratories ${ }^{1 /}$

enginering test data for soils sampled oy soil conservation service and tested by highway laboratories ${ }^{2}$

engineering test data for soils sampled by soil conservation service and tested by highway laboratories ${ }^{1 / 2}$

enginetring test data ior soils sampled by soll conservation service and tested by highway haboratories ${ }^{2}$


1/ Samples were tested in accordance with standard procedures of the American Association of State Highway Officials (AASHO) in a cooperative program involving State highway departments, universities or colleges, and the Bureau of Public Roads. Letter footnotes a, b, c, etc., referring to specific soils as noted in the "Location" column, identify the testing agency. Where no letter footnote occurs, tests on samples from that location were performed by the Division of Physical Research, Bureau of Public Roads.

2/ Moisture-density tests were performed in accordance with AASHO Test Designation T99-57, which has 4 methods of test, as follows:

Method A. -
Soil material retained on No. 4.sieve is discarded. Material passing No. 4 sieve is compacted in 4 -inch diameter mold in 3 equal layers, using 25 blows per layer of a 5.5 -pound rammer dropping 12 inches.

Method B. -
Sample preparation same as in Method A. Material passing No. 4 sieve is compacted in 6 -inch diameter mold in 3 equal layers, using 56 blows per layer of a 5.5 -pound rammer dropping 12 inches.

Method C. -
Same as Method A except sample is split on $3 / 4$-inch sieve and material retained on $3 / 4$-inch sieve is discarded. Material passing 3/4-inch sieve is tested.

Method D. -
Sample preparation same as in Method C. Soil Material is compacted in 6 -inch diameter mold in 3 equal layers, using 56 blows per layer of a 5.5 -pound rammer dropping 12 inches.

When not indicated by a letter footnote on the page of test data, sample was tested by Method A. When sample was tested by one of the other 3 methods, or by a variation from one of the 4 test methods, the method is indicated by a letter footnote on page of test data.

3/ Mechanical analyses according to the American Association of State Highway Officials Designation T88, except as indicated by letter footnote on page of test data. Results by the T88 procedure frequently may differ somewhat from results that would have been obtained by the Soil Survey procedure of the Soil Conservation Service (SCS). In the A. A. S.H.O. procedure, the fine material is analyzed by the hydrometer method and the various grain-size fractions are calculated on the basis of all the material, including that coarser than 2 mm . in diameter. In the SCS Soil Survey procedure, the fine material is analyzed by the pipette method and the material coarser than 2 mm . in diameter is excluded from calculations of grain-size fractions. The mechanical analyses used in this table are not suitable for use in naming Soil Survey texture classes for soils.

4/Coarse particles were discarded during field sampling of some soils. Note immediately following the test data of the soil indicates whether the laboratory test data were corrected for the discarded material. Percentage discarded in field sampling is noted in the "Remarks" column.

5/ Based on Standard Specifications for Highway Materials and Methods of Sampling and Testing (Pt. 1, Ed. 7): The Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes, A. A.S.H.O. Designation M145-49.

6/ Based on the Unified Soil Classification System, Technical Memorandum No. 3-357, Volume 1, Waterways Experiment Station, Corps of Engineers, March 1953.

Ensineerins soil classification for residential

$$
\begin{aligned}
& \text { OED ARTMENT OE HOLISING } \\
& \text { AND UPBBAN OEVELOPMENT } \\
& \text { OCT E IGG, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WASHINGTON. DRY } \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$


[^0]:    1 ASTM Designation D 698-42 T
    2 ASTM Designation D 1557-58 T

[^1]:    1 Table Al in this report

[^2]:    3) Teste performed by Texas Higaway Departaent.
[^3]:    a/ Teats perforsed by Vireinia Departaeat of Highvays.

[^4]:    

