

The South African Sugar Industry

Eldana saccharina

2005: Eldana-Fusarium interaction described 2005: Eldana control manual produced 2004: Bt GM cane with Monsanto gene produced and tested at SASRI 2004: First recommendation on use of silicon to increase resistance to eldana 2004: N42 released for its eldana resistance 2004: Aerial use of Fastac approved 2003: Fastac registered 2002: N39 released for its eldana resistance

1999: In-house Bt GM cane produced and tested at SASRI 1991: Potted screening trials conducted routinely in the plant breeding selection programme 1989: N21 released for its eldana resistance 1988: Insect Rearing Unit opened at SASRI 1982: Pest And Disease Committees formed

> 1975: First exotic parasitoids introduced for biological control of *E. saccharina*

> > 10 1940s

2015: Ampligo, Coragen and Steward (emergency) registrations 2015: N58 and N59 released for their eldana resistance 2014: Workshop held to develop 5 yr research plan (2015-2020) 2014: IPM manual for eldana control produced 2013: Industry support for GM inclusion in IPM solution to eldana 2012: Sterile Insect Technique 'in cage' proof of concept achieved 2011: Implementation of "push-pull" promoted in the field

1980c

20005 2000s: E. saccharina evolves cold tolerance and increasingly moves into Midlands regions

20105

1990s: Another borer threatens from Mozambique - Chilo sacchariphagus

1980: E. saccharina found as far south as Port Shepstone

1975: First report of *E. saccharina* infestation south of Tugela River

1970: E. saccharina observed in Hluhluwe in susceptible NCo376, soon to become widespread and a major pest

1953: E. saccharina disappears

1970s

1940s: E. saccharina causing extensive damage on Umfolozi Flats, gradual change to resistant Co281

1939: Severe infestation of *E. saccharina* on Umfolozi Flats in POJ2725 (highly susceptible), POJ2878, POJ2714, Co301 also damaged, Co281 more resistant

1920s 1930s 1929: First report of Eldana saccharina in Mtubatuba, South Africa

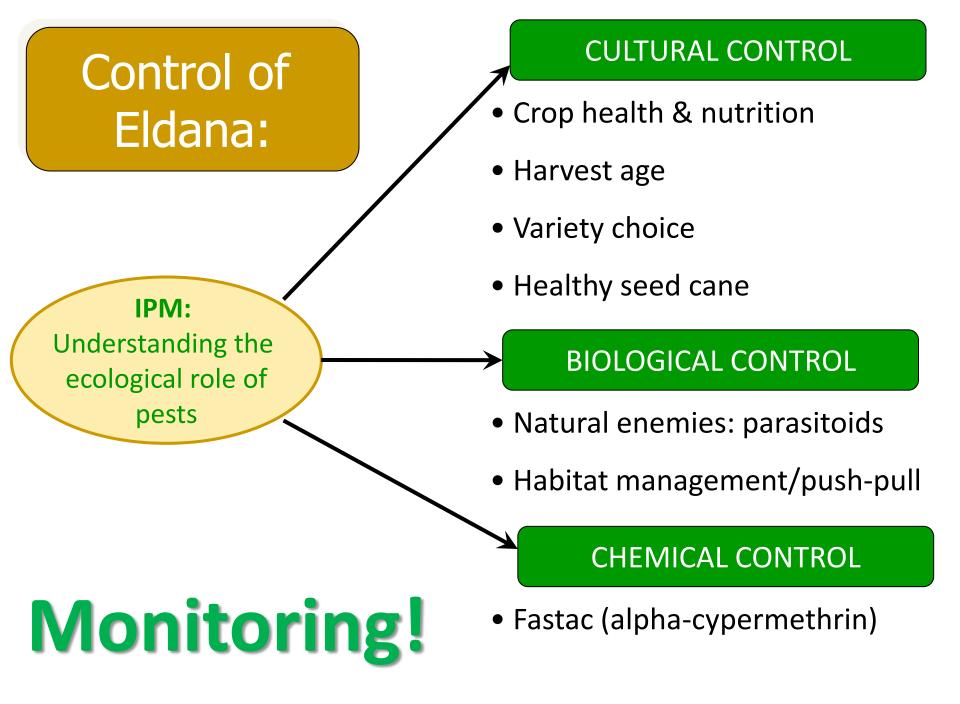
1960s

1925: EXPERIMENT STATION ESTABLISHED

1950s

CULTURAL CONTROL

BIOLOGICAL CONTROL


CHEMICAL CONTROL

Area-Wide Integrated Pest Management

Area-Wide:

Sugarcane: a grass species in a diverse ecosystem Habitats: Wetlands Alien weeds

No farm boundaries! Farmer cooperation!

What is habitat management or push-pull?

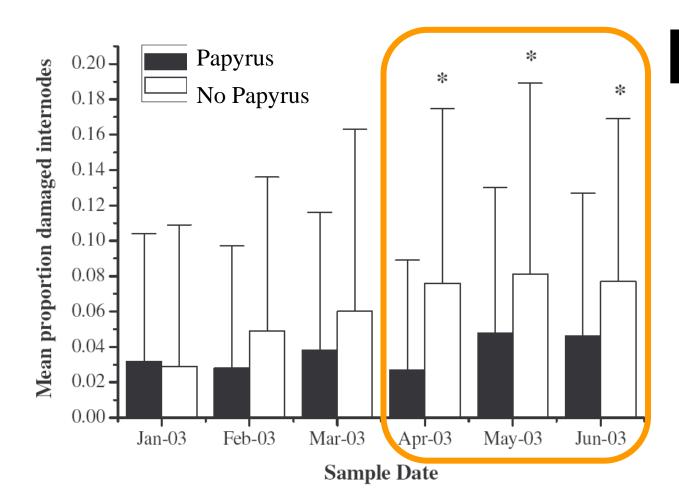
- "Habitat management is an ecologically based approach aimed at favoring natural enemies and enhancing biological control in agricultural systems." (Landis et al 2000)
- Push-pull is a specific example of habitat management where the behaviour of the pest and its natural enemies is manipulated using semiochemicals or plant volatiles.

Does push-pull work?

Cyperus papyrus

Melinis minutiflora

PULL:

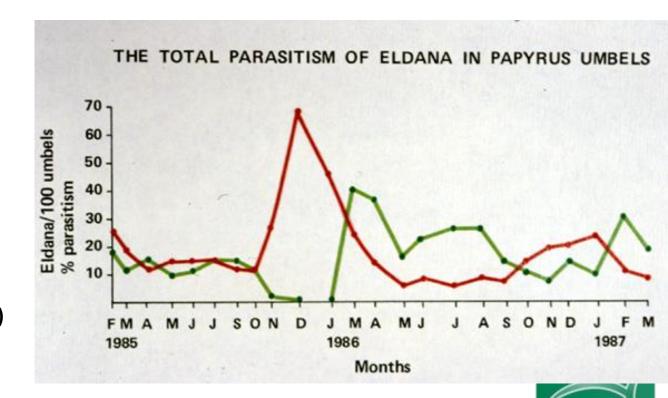

- Eldana larvae prefer sedges (e.g. papyrus) to cane
- Eldana moths prefer laying eggs on mature maize than on sugarcane

Lab trials:

PUSH:

Molasses grass repels moths

Field trials: PULL



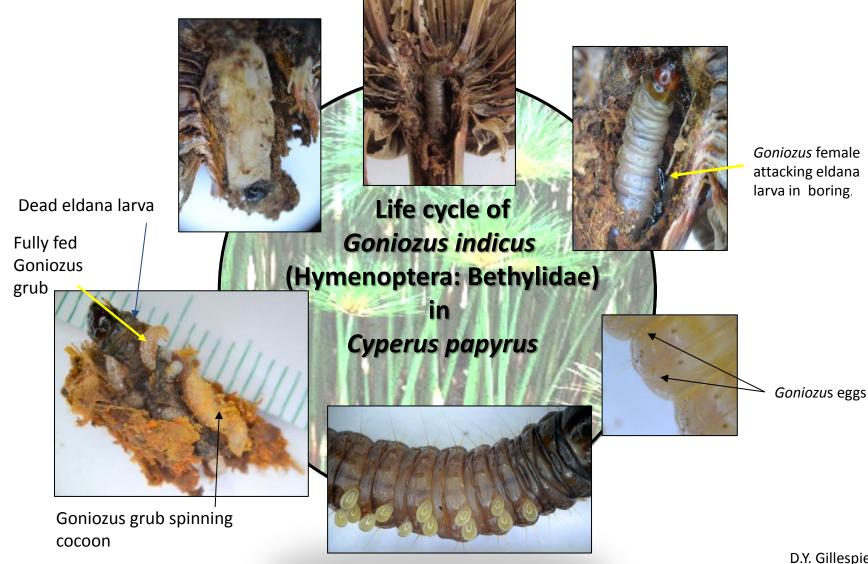
Cyperus papyrus

Presence of *Cyperus papyrus* decreases *Eldana* damage in adjacent sugarcane

AW-IPM: *E. saccharina* push-pull. Reestablishment of wetland habitats

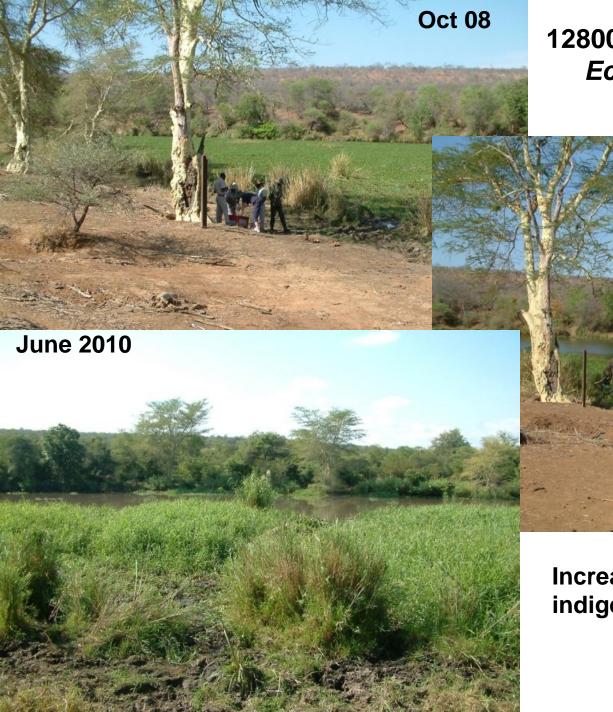
- Papyrus and dives are preferred oviposition sites, rather than sugarcane, for *E. saccharina* females (Atkinson, 1980 and Kasl, 2004)
- In these two indigenous host plants there are good biocontrol agents, giving "text book" control (Conlong, 1990)

Life cycle



D.Y. Gillespie 2016

Reference: D.A. Barraclough. A new species of Tachinidae (Diptera) parasitic on the sugarcane borer *Eldana saccharina* (Lepidoptera: Pyralidae), in Natal, South Africa. Bulletin of Entomological Research 81(02):133 - 136 · June 1991

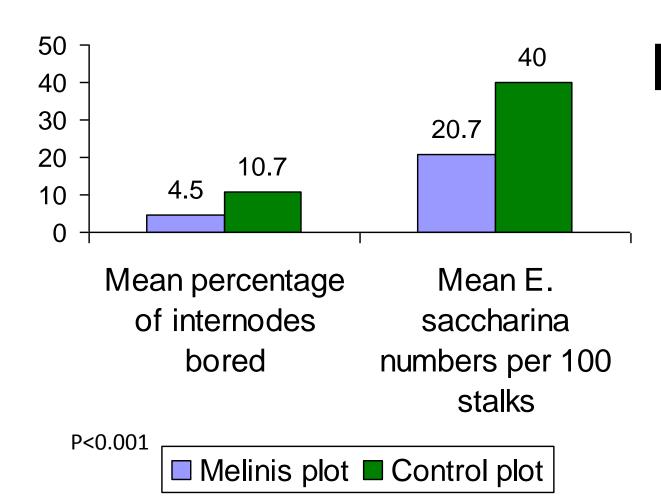


Reference: DE Conlong, DY Graham and H. Hastings 1988. Notes on natural host surveys and laboratory rearing of Goniozus natalensis Gordh (Hymenoptera: Bethylidae), a parasitoid of Eldana saccharina Walker (Lepidoptera: Pyralidae) larvae from Cyperus papyrus L. in Southern Africa. J. Ent. Soc. S. Afr. 51(1):115-127.

D.Y. Gillespie 2016

AW-IPM and weed biocontrol?

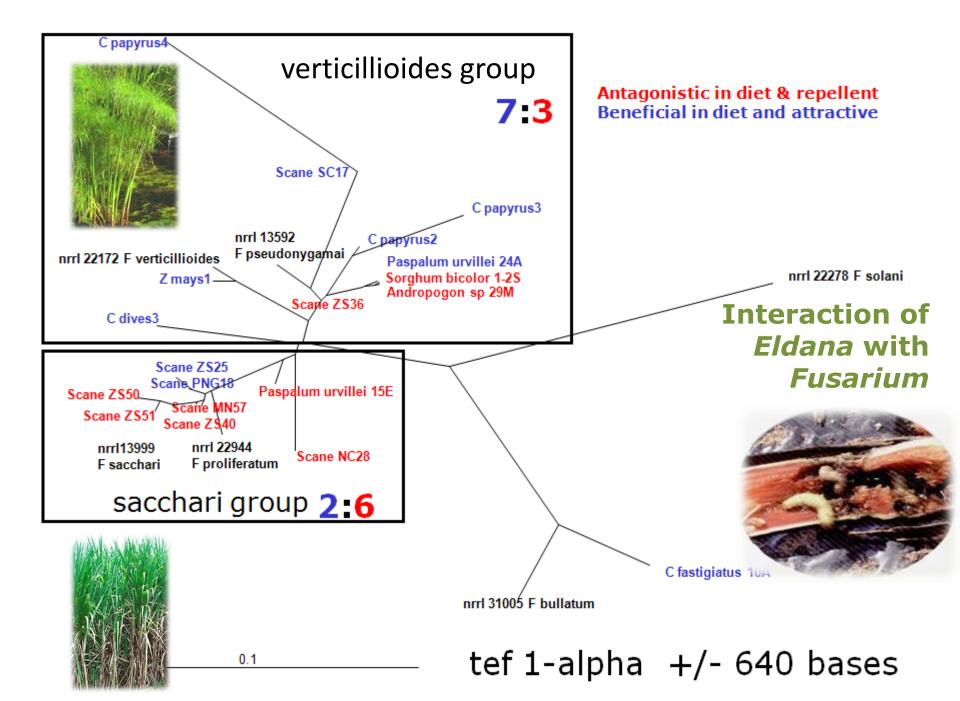
- Clearing IAP's with biocontrol agents- especially those mass reared?
- Increased habitat for indigenous host plants?
- Increased habitat for crop pests and their natural enemies?
- Habitat management can be accomplished more readily and populations of natural enemies augmented?

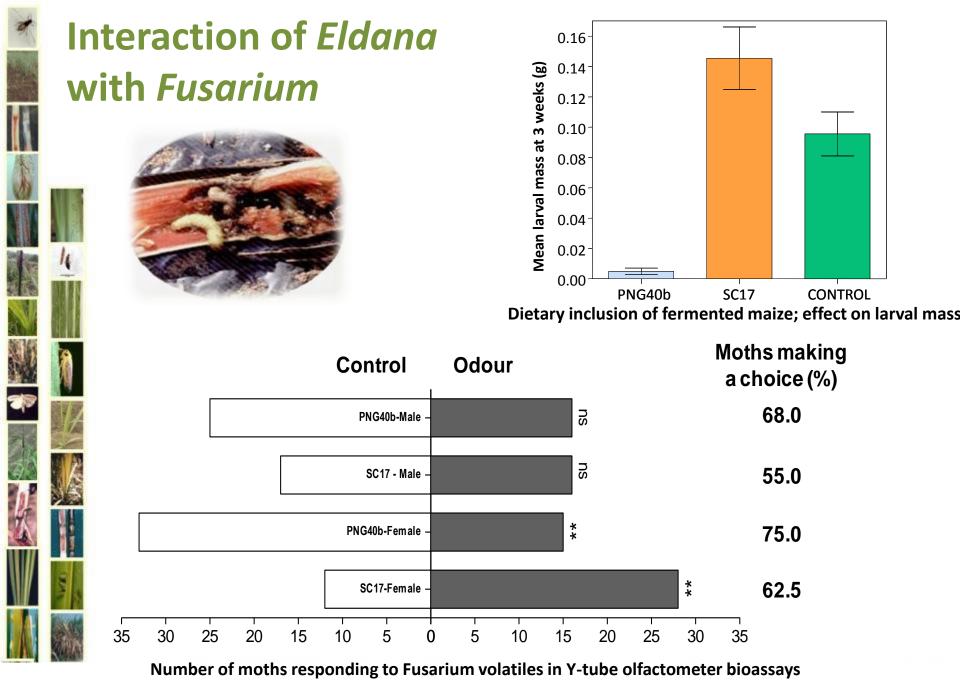

12800 *Neochetina* and 14400 *Eccritotarsus* released

Oct 09

Increased habitat for indigenous host plants

AW-IPM: Habitat Management – "Push" plants


Field trials: PUSH



Melinis minutiflora (SA)

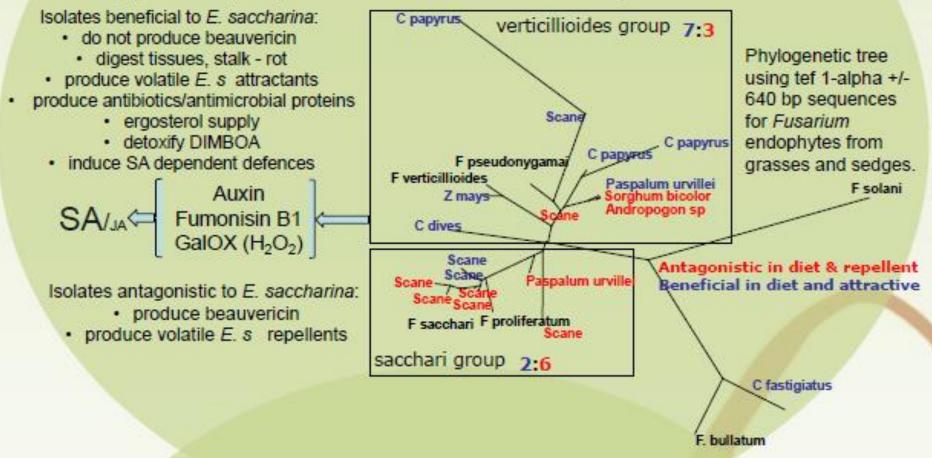
MOLASSES GRASS decreases Eldana damage and numbers in adjacent sugarcane

Interaction of Eldana with Fusarium

	1. DRY MIX				
	Ingredients	Amount/ volume per kg	Instructions		
	Crushed sugarcane stalk (g)	58			
0.27g cholesterol	Wheat flour (brown) (g)	58			
cholesterol	Egg powder (g)	18	Dry mix		
	Chickpea (g)	58	Mix thoroughly		
	Yeast (g)	2.5			
	Milk powder (g)	14			
	Ascorbic acid (g)	2.5			
	Sugar (g)	0			
	2. ANTI-MICROB	IALS			
	Nipagin (g)	1.4	Dissolve nipagin and dithane in ethanol Add formalin		
	Ethanol (ml)	25	Add to the dry mix		
	Formalin 40% (ml)	3.2	Mix well		
	3. GELLING AGENT				
	Agar (g)	3	Dissolve agar in water		
	Water (ml)	600	Autoclave		
	4. ANTI-MICROB		Add to dry mix		
	Propionic acid (ml)	1.5	Add phosphoric acid carefully to the		
	Phosphoric acid	0.15	water Add whole volume to the		
	Water (ml)	100	wet mix		
	5. ACTIVE DRY I	NGREDIENT			
ergosterol	Fusarium (SC17) fermented maize (g)	56	Add last Mix well		

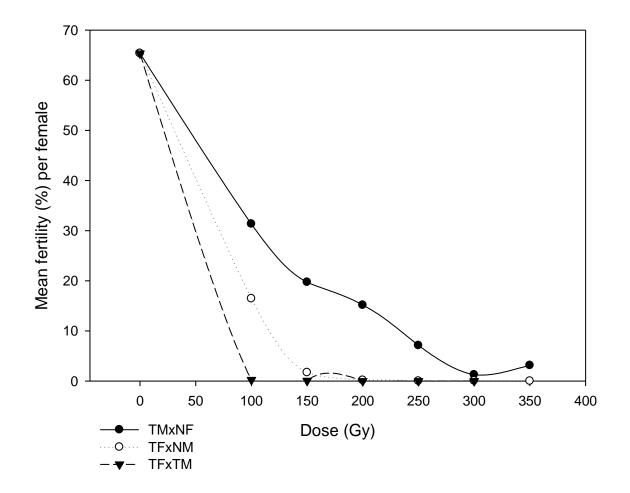
Interaction of Eldana with Fusarium

New Diet						
	Cross No.	Total Num Eggs	Fertile	%	Infertile	%
	1	365	358	98.08	7	1.92
	2	371	361	97.30	10	2.70
	3	342	330	96.49	12	3.51
	4	224	216	96.43	8	3.57
	5	436	420	96.33	16	3.67
	Average	348	337	97	11	3
Old Diet						
	Cross No.	Total Num Eggs	Fertile	%	Infertile	%
	1	164	149	90.85	15	9.15
	2	277	266	96.03	11	3.97
	3	132	103	78.03	29	21.97
	4	325	295	90.77	30	9.23
	5	287	270	94.08	17	5.92
	Average	237	217	90	20	10



Endophytes

Endophytic Beauveria bassiana in maize can protect against stem-borers. In sugarcane Fusarium endophytes are frequently found. Isolates can be beneficial or antagonistic to Eldana saccharina.



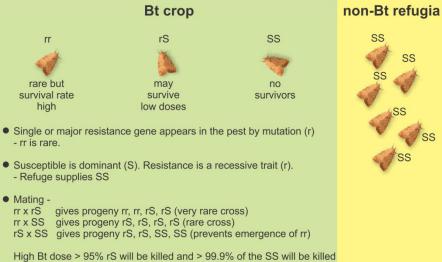
Insecticides

-reduced dose immunosuppression

	Stalk/foliar application							
Product	Actives g/L	Formulation	MOA (IRAC group)	Rate/ha	Comments			
Genesis	Pyriproxyfen 100	EC	Juvenile hormone analogue (7C) Egg hatch and pupation failure. Sub-lethal: Pupal weight, adult longevity, fecundity and fertility reduced. Various defective adults. Decreased cellular immunity.	50 mls	May disrupt mating and increase susceptibility to pathogens Partner with: Coragen (mating disruption thru semi-paralysis), Broadband (<i>Beauveria</i>), Dipel (<i>Bt</i>), chitin biosynthesis inhibitor			
Denim Fit	Lufenuron 400 Emamectin 100	WG water dispersible granule	Chitin biosynthesis inhibitors (15) Egg mortality & molting failure. Sub-lethal: Increased ease of pathogen penetration; reduced adult fecundity Decreased cellular immunity.	100g				
Broadband	Beauveria bassiana	EC	Fungal entomopathogen	500 mls	Combine with suppressors of immunity from classes 7C and 15			
Dipel	Bacillus thuringiensis	DF water dispersible granule	Bacterial entomopathogen (11)	500 g	above			

SIT: Parental sterilisation

Marking of lab reared radiated adults



SIT for eldana

- Radiation biology study of eldana showed 200Gy to be a good radiation dose, with no effects on eldana reproduction biology, and F1 sterility could be induced (A Walton- MSc Thesis March 2011)
- Moths could be marked with calco red with no effects on reproduction biology (A Walton- MSc Thesis March 2011
- Mating behaviour and competiveness of 200Gy radiated moths as good as wilds, and cage study showed population suppression and cane damage reduction in SIT treatment compared to control (P. Mudavanhu- PhD thesis December 2012)

Bt advantage - Approximately 18% of borer damage is due to *Sesamia*.

Surveys:	1 st June 2014 to 3			
Mill	Eldana	Sesamia	Total	%Sesamia
ML	604	1	605	0.2
PG	520	36	286	12.6
UF	479	95	574	16.6
FX	3647	377	4024	9.4
AK	3104	128	3232	4
EN	5625	404	6029	6.7
MS	7037	2774	9811	28.3
GH	8040	4061	12101	33.6
DL	4443	1682	6125	27.5
ES	2899	599	3498	17.1
NB	843	553	1396	39.6
SZ	11523	693	12216	5.7
UK	4150	261	4411	5.9
IND	52914	11664	64308	18.1

Thank you

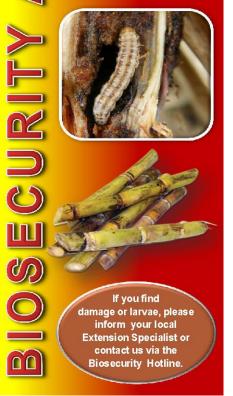
for helping us

keep track

of this pest

Biosecurity Hotline: +27 (0)60 544 5393

SIST


South African Sugarcane Research Institute

www.sug<mark>ar.org.za</mark>

July 2013

ALERT

The Chilo stalk borer poses a real threat to sugarcane in South Africa. Your assistance is requested to look out for damage and larvae as illustrated inside.

Estimated indirect losses due to a shortened crop duration

Age of crop (months)	Tonnes tRV/ha
12	5.12
18	10.54
Annualised yield for 18 month	6.97 tRV/ha/annum
Model increase/annum	1.85 (36%)
Commercial RV increase/annum	[#] 0.7 x 1.85 = 1.295
Grower + miller value of RV gain (no eldana)	R8 569 /ha/annum

1 Euro = approx. R15

One of the consequences of a shortened crop duration

Estimated direct losses due to borer damage

PD&VCC area	Average yield tRV/ha	Average age at harvest (mo)	Average age at survey (mo)	Average % IB in surveys	Estimated Average % IB at harvest	corrected tRV/ha gain per 1% reduction in Internodes Bored	max gain Rands/ha harvested	total hectares	ha harvested /annum	max gain Rands/mill area/annum
Malelane/Komati	11.4	13.5	11.0	1.5	2.0	0.143	1907	39816	35392	R 67 498 932
Pongola	11.2	14.1	11.7	0.6	1.0	0.150	1001	16869	14357	R 14 374 304
Irrigated SSG	8.4	13.8	-	-	1.5	0.146	1462	8252	7176	R 10 489 541
Umfolosi	10.4	12.6	10.5	0.3	0.4	0.134	347	17163	16346	R 5 664 661
Umfolosi SSG	2.4	12.6	-		0.4	0.134	339	4759	4532	R 1 534 589
Felixton	7.9	13.0	11.1	1.0	1.5	0.156	1556	20226	18670	R 29 056 510
Amatikulu	5.0	14.0	11.4	2.3	3.5	0.168	3896	20000	17143	R 66 785 074
Entumeni	5.2	19.0	13.4	1.7	3.0	0.228	4531	8870	5602	R 25 384 416
Zululand SSG	3.5	15.3	-	-	1.9	0.184	2317	18483	14465	R 33 512 458
Maidstone	6.7	15.0	13.5	3.7	4.5	0.180	5366	22572	18058	R 96 905 749
Gledhow	6.7	14.8	12.4	3.3	4.0	0.178	4707	27553	22340	R 105 165 187
Darnall	6.7	14.3	11.6	2.8	3.5	0.172	3981	19595	16443	R 65 459 033
NCoast SSG	3.5	14.7	-	-	3.5	0.176	4089	9389	7664	R 31 338 840
Eston	10.4	25.0	16.2	1.6	2.0	0.300	3981	33768	16209	R 64 519 626
Noodsberg/ UCL	10.4	24.0	19.0	0.6	1.0	0.288	1916	48088	24044	R 46 069 891
Midlands SSG	8.4	24.5	-	-	1.0	0.294	1954	5532	2710	R 5 293 915
Sezela	8.3	17.7	14.8	2.2	3.0	0.212	4225	34375	23305	R 98 455 882
Umzimkulu	8.3	19.1	14.1	1.8	3.0	0.229	4558	22205	13951	R 63 589 761
SCoast SSG	5.6	18.4	-	-	3.0	0.221	4389	5249	3423	R 15 023 668
RV price R/ton	R 6 617			Average	2.3		Totals	382764	281829	R 846 122 038

1 Euro = approx. R15

Guideline of licensing costs (US\$) obtained from biotechnology developer companies and their licensing consultants.

ACTIVITY	SCENARIO 1:	SCENARIO 2:	SCENARIO 3: "GO-IT-ALONE'
Licence agreement fee	250 000	Approx. 25% of	0
Annual R&D fee	0	the trait value	0
Milestone payments:		spread evenly	
Transformation success	300 000	over milestone	0
Greenhouse efficacy	0	payments	0
Event PoC field testing	500 000	and/or royalties.	0
CFT: commercial events	300 000	Payment	0
Lack of yield impact	0	structure	0
Regulatory submission	0	designed during	0
Regulatory approval	500 000	negotiations.	0
Royalties (value of trait)	3 to 9% (e.g. 7%)	25%	0%

Cost of Bt development up to deregulation (year 14).

	SCENARIO 1	SCENARIO 2	SCENARIO 3
Year 1	R8 291 000	R291 000	R291 000
Years 2 - 9	R11 370 000	R1 770 000	R13 770 000
Years 10 - 14	R55 010 000	R39 010 000	R39 010 000
Total Investment to year 14	R74 671 000	R41 071 000	R53 071 000
Royalties /ha/annum	R234	R418	R0

1 Euro = approx. R15

Sustainability | Resilience | Innovation |

SASRI Research focuses on the development of the comprehensive technology toolkit that is required for sustainable, resilient and innovative Eldana IPM on an area-wide basis

HABITAT MANAGEMENT

Restoration of wetlands and natural vegetation corridors Fallow crops Crop residue management

STERILE INSECT TECHNOLOGY

<u>Potential</u> release of irradiated males for sterile F₁ generation Eldana population control

CROP STRESS MANAGEMENT

Crop nutrition Soil Health Surface water management Irrigation management

ELDANA IPM RESEARCH AT SASRI

VARIETY RESISTANCE

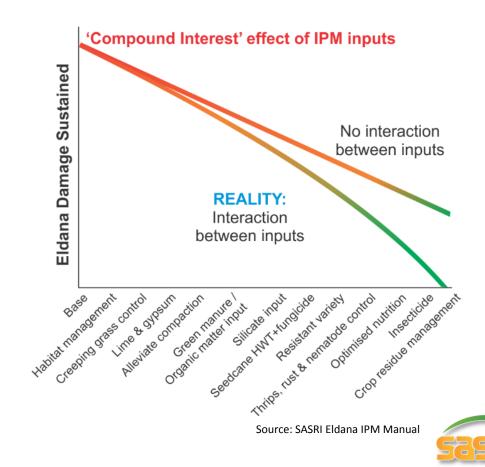
Production of Eldana resistant cultivars through classical, mutation and precision (markerassisted) breeding

Potential expansion of IPM toolkit to encompass Bt GM technology

CHEMICAL & BIOLOGICAL CONTROL

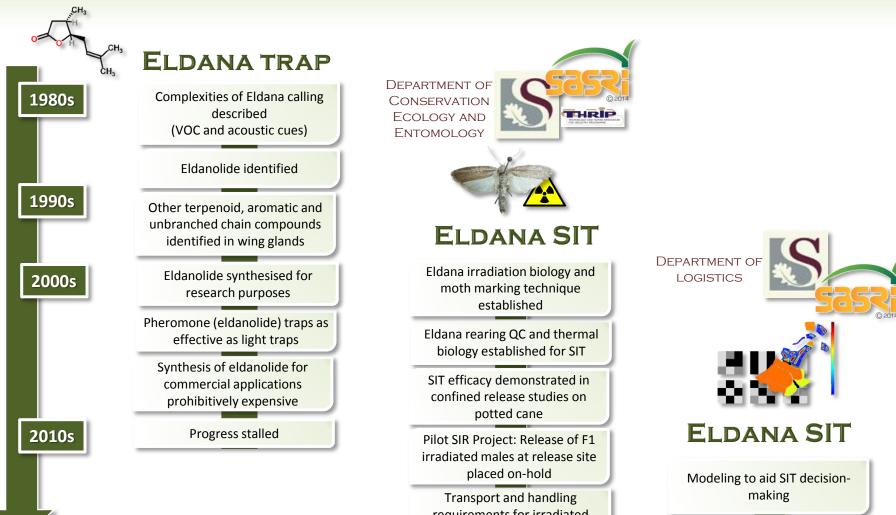
Evaluation of novel blue and green label alternative chemistries

Evaluation of biological agents and plant resistance inducing chemistries


TRAIT DEVELOPMENT

Classical and emerging technologies to introduce novel sources of resistance from: ancestral species closely related species, unrelated species

Sustainability | Resilience | Innovation |


Efficacy of Eldana IPM is dependent on the sum of the several technologies and practices that comprise the toolkit

Whilst individual technologies and practices may decrease population size, effective and sustainable Eldana control on an area-wide basis requires the coordinated implementation of as many of the IPM technologies and practices that is practicable

Sustainability | Resilience | Innovation |

STERILE INSECT TECHNOLOGY: PROGRESS

requirements for irradiated Eldana under investigation

Sustainability | Resilience | Innovation |

STERILE INSECT TECHNOLOGY AS A COMPONENT OF ELDANA IPM

KEY CONSIDERATIONS FOR DISCUSSION

POTENTIAL EFFICACY OF SIT IN ELDANA CONTROL: DEMONSTRATED

- Thermal and radiation biology of Eldana established.
- Contained-release (cage) studies on potted sugarcane plants indicate significant reduction in Eldana damage through SIT.

PROOF-OF-CONCEPT OF SIT: REQUIRED

- Irradiation facility for KZN.
- Increased Eldana rearing throughput.
- Proof-of-concept pilot release programme.

A BUSINESS CASE: REQUIRED

Outcomes of pilot release programme to enable Business Case preparation.

INVESTMENT PARTNERSHIPS: REQUIRED

Business Case to secure investment partners for independent commercially-viable enterprises.

Estimated (speculated) that ...

- Release of ~300 million irradiated Eldana moths per week required per sugar mill area
- A facility equivalent to XSIT in Citrusdal required per mill area

Summary

- Eldana eradication is probably not possible
 - however SIT and Bt are complimentary approaches
 - Proven for pink bollworm control in cotton in USA
 - 'go-ahead' for the Bt approach has been given
 - but impact will not be felt for at least 20 years
 - -candidate genes: Bt Cry1Ac, Bt Cry2Ab, ALS, Fumonisin esterase
 - Irradiator acquisition for proof of concept Pilot SIT a problem
 - but see our poster –F1: Fast tracking Eldana saccharina moths for Sterile Insect Release.

