
 
 

 

  
Abstract—The Multiple Sleep Latency Test (MSLT) is a 

standard test to objectively evaluate patients with excessive 
daytime sleepiness. Sleep onset latencies are determined by 
visual analysis, which is costly and time-consuming. The aim of 
this study was to implement and test a single automatic 
algorithm to detect the sleep onset in the MSLT on the basis of 
electroencephalographic (EEG) signals. The designed algorithm 
computed the relative EEG spectral powers in the occipital area 
and detected the sleep onset corresponding to the intersection 
point between the lower and alpha frequencies. The algorithm 
performance was evaluated by comparing the sleep latencies 
computed automatically by the algorithm and by a sleep 
specialist using MSLT recordings from a total of 19 patients (95 
naps). 
The mean difference in sleep latency between the two methods 
was 0.025 min and the limits of agreement were ± 2.46 min 
(Bland-Altman analysis). Moreover, the intra-class correlation 
coefficient showed a considerable inter-rater reliability (0.90). 
The algorithm accurately detected the sleep onset in the MSLT. 
The devised algorithm can be a useful tool to support and speed 
up the sleep specialist’s work in routine clinical MSLT 
assessment. 
 

Index Terms—Automatic Algorithm, Drowsiness, 
Electroencephalography, Multiple Sleep Latency Test, 
Polysomnography, Sleep onset. 
 

I. INTRODUCTION 
The Multiple Sleep Latency Test (MSLT) is considered the 

gold standard test for the objective measurement of 
sleepiness [1], [2]. Clinical routine detection of sleep onset 
and, therefore, of sleep latency in MSLT is currently carried 
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out by a sleep specialist, who visually inspects the 
electroencephalographic (EEG), electro-oculographic 
(EOG), and electromyographic (EMG) patterns following 
standard criteria [3]. This process is time-consuming and 
consequently expensive. Accordingly, an automatic method 
to detect the sleep onset in the MSLT would be useful to 
facilitate and speed up the clinician’s work. 

Several studies have reported the development of automatic 
sleep scoring tools based on the analysis of 
polysomnographic signals [4]–[12], but very few of them 
were addressed to the application of these methods to the 
MSLT. Moreover, these few studies were not systematically 
tested under routine conditions, with the result that no 
conclusions could be drawn on the algorithm’s suitability for 
obtaining an accurate value of sleep latency in clinical 
practice. Accordingly, the aim of the present study was to 
design, implement and test an automatic EEG-based 
algorithm for sleep onset detection during routine MSLT 
carried out on patients with suspected sleepiness. 

 

II. METHODS 

A. Patients and Signal Recording 
The MSLT data from 19 patients (9 men, 10 women; mean 

age: 44.4 (SD=17.1) years) with a complaint of hypersomnia 
examined by the Multidisciplinary Sleep Disorders Unit of 
the Hospital Clínic of Barcelona (Barcelona) were analyzed 
retrospectively. Subjects were randomly selected, the only 
requirement being that they had to have fallen asleep during 
the test. The patients were taking no medication at the time of 
the study. Ten patients had idiopathic hypersomnia, 4 
narcolepsy and 5 had normal sleep latency, despite a 
complaint of hypersomnia. 

All subjects were studied using a 32-channel digital 
polygraph (Deltamed, Coherence 3 NT, software version 4.0, 
Paris, France). The MSLT protocol consisted of 5 naps in 
each patient, recorded at 9:30, 11:30, 13:30; 15:30 and 17:30, 
subsequent to a full polysomnogram the previous night. The 
collected data (a total of 95 naps) included EEG, two EOG 
and submental EMG. The EEG electrodes were mounted on 
the scalp (F3, F4, C3, C4, O1, O2, A1, and A2) according to 
the International 10-20 System. The EEG signals were 
sampled at 256 Hz, digitized with a 16-bit A/D converter 
within a bandwidth of 0-48 Hz. 

B. Assessment of Sleep Latency by a Sleep Specialist 
Conventional visual scoring of each nap recording was 

conducted by a sleep specialist using 30-s epochs. The first 
epoch, with at least 16 s of any sleep stage, was considered 
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the sleep onset in that nap. For each patient, the mean visually 
determined sleep latency (SLv) was computed as the mean of 
the values corresponding to the 5 naps. 

C. Algorithm for Automatic Assessment of Sleep Latency 
The algorithm designed for the automatic detection of the 

sleep onset was applied on the O1 occipital EEG channel. 
First the EEG power spectral density was calculated by 
applying Welch’s periodogram to epochs lasting 2 s each 
(Hamming window, 50% overlapping). The relative EEG 
powers corresponding to each of the four classic frequency 
bands (0.2<δ≤3.5 Hz, 3.5<θ≤7.5 Hz, 7.5<α≤13.0 Hz, 
13.0<β≤28.0 Hz) were computed by dividing the power 
within each band by the total power across all bands. Signals 
were smoothed by robust loess (locally weighted scatterplot 
smoothing; 10% of data span), which is a non-parametric 
fitting smooth curve technique [13].  

Second, the algorithm searched the first time from the 
“lights out” that α power decreased and δ power increased 
reaching an intersection. This point was identified as the 
sleep onset for that nap. If such an intersection was not found 
during the nap, the algorithm restarted the search of an 
intersection between α and θ powers and this point was 
considered the sleep onset. For each patient, the sleep latency 
automatically determined by the algorithm (SLa) was the 
mean of the values corresponding to the 5 patient’s naps. 

D. Comparison between Visually and Automatically 
Computed Sleep Latencies 
SLv and SLa were compared by a Bland-Altman analysis 

[14] to provide an estimate of the mean difference and limits 
of agreement of automatic and visual assessment of the sleep 
latency. Moreover, the Pearson correlation coefficient and 
the intra-class correlation coefficient were calculated to 
provide more indices of comparison between both methods. 
The statistical analysis was performed using SPSS 15.0. 
 

III. RESULTS 
An example of the performance of the algorithm to 

automatically detect the sleep onset in a nap is presented in 
Fig. 1 (a). After the test started, when the patient closed 
his/her eyes, α power increased while δ power decreased. 
When he/she was falling asleep, α power decreased and δ 
power increased. The algorithm located the sleep onset at the 
α-δ intersection. The solid vertical line indicates the time of 
the sleep onset independently detected by the clinician 
through conventional visual inspection of the 
polysomnographic signals. The algorithm was able to 
automatically detect the sleep onset by means of a α-δ 
intersection in 78 of the 95 naps. In 17 naps the sleep onset 
was detected by a α-θ intersection. The comparison between 
SLv and SLa is shown in Fig. 1 (b). 

The mean difference was 0.025 min and the limits of 
agreement were ±2.46 min. The good agreement between 
SLa and SLv was also reflected by the high values of their 
Pearson and intra-class correlation coefficients (0.90 in both 
cases). 

 
 

 
 
Fig. 1. (a) Example of the evolution of α and δ EEG powers from the start of 
one nap (see text for explanation). (b) Bland-Altman plot comparing the 
sleep latencies computed visually by a sleep expert (SLv) and those 
computed automatically by the algorithm developed in this study (SLa). The 
solid line represents the mean difference and the dashed lines are the limits of 
agreement. 
 

IV. DISCUSSION 
In this study we designed and implemented a computer 

algorithm for automatically assessing the sleep latency in the  
MSLT. When tested under routine clinical conditions, the 
algorithm was able to automatically provide sleep latency 
values very close to the ones conventionally determined by 
an expert visual inspection. 

Several authors have reported algorithms that detect 
sleepiness based on EEG recordings. Due to the recent 
interest in reducing driver risks, many of these sought to 
detect fatigue and drowsiness and to assess the alertness level 
during driving [15], [16]. Nevertheless, only few studies 
were focused on the application of automatic methods to 
detect sleep in the MSLT. 

Hasan et al. presented a computer classification system 
based on EEG, EOG and EMG signals as a clinical support 
tool for sleep onset detection during a MSLT [4]. The 
comparison between the computer and the visual scores 
showed a relatively good agreement, but the validation of the 
algorithm was rather poor since it was assessed for only 9 
naps randomly selected from the MSLT studies of 9 patients. 
In a subsequent work, the same algorithm was tested on 
ambulatory recordings of seven healthy subjects, but the 
analysis was limited to identifying the different wakefulness 
and sleep stages, with no computation and validation of the 
sleep latency [5]. 
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Another study compared sleep latencies obtained from the 
standard analysis of MSLT and an automatic method for the 
detection of slow eye movements (SEMs) [10]. Despite the 
authors found SEMs useful as a marker of sleepiness, they 
reported the potential inadequacy of the method in conditions 
where sleep onset can occur with REM sleep, as in 
narcolepsy. 

The algorithm used in this study is simple and 
straightforward since it is based on the well accepted concept 
that sleep onset is characterized by a decrease in α waves of 
the EEG [17]. The algorithm computes the relative EEG 
power of the different conventional frequency bands from the 
left occipital area and identifies the sleep onset as the point 
where α power decreases over the lower EEG frequency 
bands, in keeping with the standard sleep stage detection 
procedure [3]. 

As this algorithm is based on the presence of an occipital α 
rhythm, it would probably not work in those subjects that do 
not have α waves when awake – approximately 10% of the 
healthy adult population [17]. In contrast with the more 
complex methods previously proposed [6]–[12], [18], the 
algorithm devised for this study has the advantage of 
detecting sleep onset by means of a general criterion (α vs. δ 
or α vs. θ). Accordingly, it does not require the optimization 
of several mathematical parameters nor the application of a 
threshold to be tuned for a specific group of patients to 
improve detections.  

When comparing the values of sleep latency determined by 
the specialist (SLv) and by the automatic algorithm (SLa) in 
19 patients subjected to standardized MSLT in the sleep lab, 
the results obtained in this study provided evidence of the 
suitability of the devised algorithm. The difference between 
SLa and SLv was small (1.52 s) and similar to that expected 
when comparing results obtained by different sleep 
specialists. Furthermore, the Pearson and intra-class 
correlation coefficients found in this study (0.90) were within 
the range of the inter-rater reliabilities reported when 
comparing the performance of clinical scorers in 
conventional MSLT analysis (0.79 [19] and 0.96 [20]). 

In conclusion, the proposed algorithm proved to be a robust 
and precise tool for locating the sleep onset and deriving the 
sleep latency in MSLT. This algorithm, used alone or in 
combination with information obtained automatically from 
other PSG signals such as EOG [7], [10], [12], could be a 
reliable tool for supporting and speeding up the sleep 
specialist’s task in MSLT analysis. Moreover, the simplicity 
of the method proposed in this study, which requires only one 
occipital EEG channel, suggests its potential application for 
the automatic sleep onset detection in 24-h screening tests. 
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