

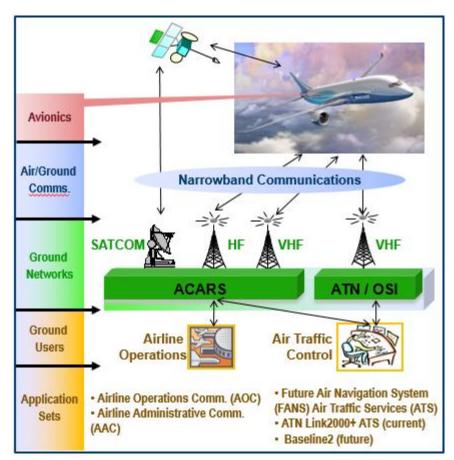
Internet Protocol Suite (IPS) ecoDemonstrator Validation and

Development Update

Greg Saccone, Co-chair of AEEC IPS Subcommittee Group Boeing Research & Technology Airspace Operational Efficiency

1. P. K. & 3

IP06 of ACSICG/9 19 Apr 2022



With thanks: Aloke Roy and Mike Olive, Honeywell

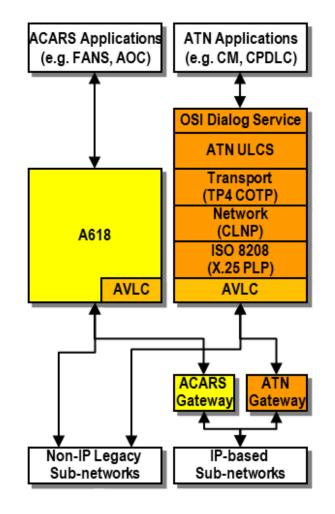
Agenda

- Current Air-Ground Environment Overview
- Internet Protocol Suite (IPS) Approach and Benefits
- Evolution of the technology
- Standardization activities
- Validation and testing

Infrastructure: Existing Networks – ACARS and ATN

Source: "Internet Protocol Suite for Safety Services: Progress Towards a Validated Standard", ICNS 2017

- Aircraft Communications Addressing and Reporting System (ACARS)
 - Character-oriented, in use since late 1970s
 - Defined by ARINC Specifications 618 and 620
 - In use in domestic/oceanic/remote airspaces
- Aeronautical Telecommunications
 Network (ATN)
 - Based on Open Systems Interconnection (OSI) reference model
 - Bit-oriented, in use since early 2000s
 - Defined by ICAO Doc 9705 and Doc 9880
 - Only used in European domestic airspace

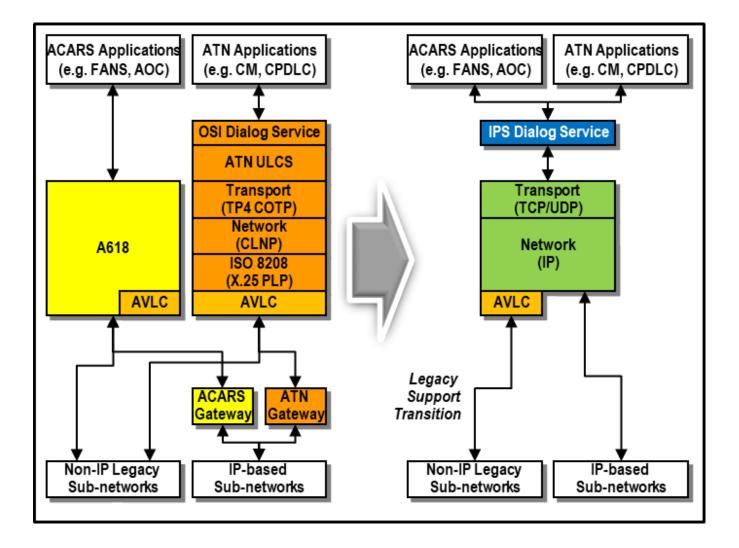

Current Air Traffic Services Datalink Situation

- Two Air Traffic Control (ATC) datalink standards in use causes issues for airframers on many levels:
 - Communication and application protocols for the two standards are technically incompatible with each other
 - OSI is a complex protocol to implement
 - OSI is not widely supported in the marketplace (supplanted many years ago by TCP/IP), so it is also very expensive to implement and maintain
 - B1 (using OSI) is *mandated* in continental Europe, and only used in Europe
 - As of 2018 for ground systems, 2020 for aircraft (slipped 5 years from original date due to technical issues – still not all ground systems are ready as of 2022)
 - Cannot fly above FL285 in Europe if not equipped
 - FANS-1/A ATC services are *mandated* in the North Atlantic
 - US uses FANS-1/A in domestic and oceanic airspace
 - FANS-1/A usage continues to grow around the world
- Aircraft that operate in Europe and North Atlantic (or other parts of the world) have to implement both protocols

What this means from a conceptual standpoint

Forced architecture support – two protocol stacks, two sets of applications

FANS = Future Air Navigation System, includes Controller Pilot Data Link Communications (CPDLC) and Automatic Dependent Surveillance Contract (ADS-C) AOC = Airline Operations Communications



CM = Context Management application CPDLC = Controller Pilot Data Link Communications application

IPS Approach

- IPS is intended to provide a migration from legacy ATN and ACARS to IP-based protocols
- Ground rule is to have <u>no changes</u> to the existing applications (e.g. CPDLC) while moving away from legacy protocols
 - Avoids having to re-do flight decks, aircraft applications and ground systems
 - Removes dependency on applications from OSI protocols
 - Starts to provide real IP-based routing as opposed to ACARS characteroriented routing
 - Creates a logical transition path to future IP-based communication links
 - Can support AOC, FANS-1/A, B1 and B2 applications
 - Can provide a common security framework (e.g. Datagram Transport Layer Security, DTLS)
- IPS is being specified to support extensibility for other uses (e.g. UAS/UAM)
 - Acceptable means of compliance for UAS C2 per DO-377A

IPS Protocol Transition

Benefits of moving to IPS

- Commonality with mainstream communication protocols
 - Greater availability of commercial off-the-shelf (COTS) solutions
 - Greater access to technical expertise
- Protocol stack simplification, which supports movement toward simplified, unified aircraft architectures
- Compatibility with broadband IP-based sub-networks for safety services
 - Inmarsat Swift Broadband (SBB)
 - Iridium NEXT
 - Aeronautical Mobile Airport Communications System (AeroMACS)
 - L-band Digital Aeronautical Communication System (LDACS) future
- Cybersecurity features absent from existing ACARS and ATN

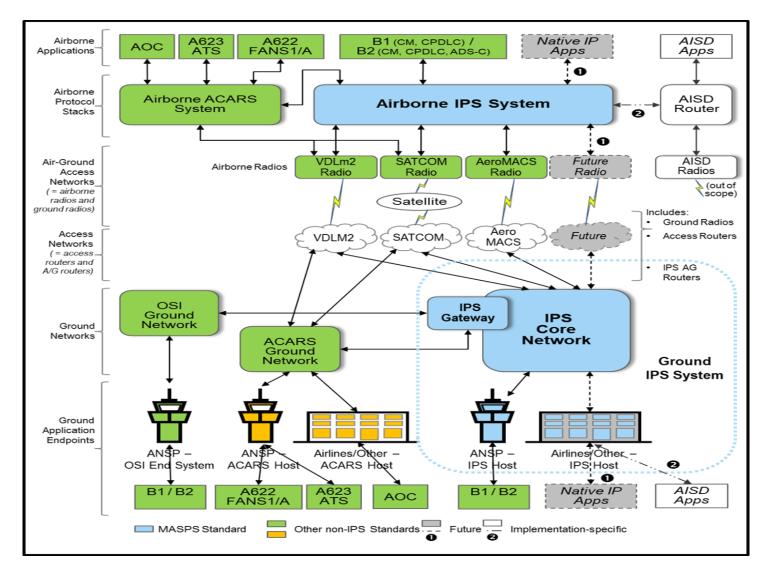
Source: "Internet Protocol Suite for Safety Services: Progress Towards a Validated Standard", ICNS 2017

I© 2017 by Honeywell International Inc. All rights reserved

IPS enables cost, performance, and security improvements

0 0

S


A N C

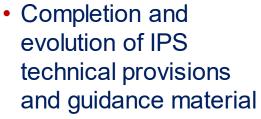
What is IPS?

- Commercial Internet is already on the aircraft!! Is that good enough?
 - NO, because it has too many security vulnerabilities and options that will affect performance & interoperability required for Safety Services
 - Internet is not secure. Why?
 - Is the protocol deficient? Yes, leaves too many penetration points, if not implemented carefully
 - Is commercial software not adequate permitting exploitation? Possible. Same rational why DO-178B process is needed
 - Open Internet: Anyone can reach anything on aircraft addressing, web-crawler, bored kids, terrorists!!
- Is IPS so unique (like OSI) that OEMs and vendors must build it from scratch, which adds Complexity, cost, obsolescence, maintainability....
 - NO. Commercial IP stack available for DO-178B implementation
- Internet Protocol Suite (IPS) for aviation
 - Characteristics:
 - <u>Commercial IP RFCs</u>, <u>Profiled and architected correctly</u> to protect flight-safety equipment, applications and services from intentional AND unintentional unauthorized access
 - IETF RFCs are Profiled to restrict protocol elements that introduces vulnerabilities while maintains lower cost, upgrade flexibility, compatibility with commercial Internet
 - Strong Security Meets all C2 SERs plus offers Domain isolation, interface control, firewall, port filtering, etc. to prevent exploitation
 - <u>Meets requirements</u> for safety services and accommodates use of commercial data links
 - Meets operator goals for flexibility, growth, agility, maintainability
 - Assures performance through effective and consistent use of QoS through intermediate public/private networks

Honeywell

IPS System Architecture End-End Perspective

IPS Harmonization & Industry Standardization


The US and Europe are developing a joint data communications strategy to align respective implementations to facilitate interoperability

US-EU Harmonization Efforts

While still a work in progress, there is agreement on IPS as the endstate network technology

Deliverables

- Doc 9896 IPS Manual
- Docs 10090, 10094, 10095, 10145 -Security

- IPS Protocol Profiles
 - RFCs per Doc 9896 plus RFCs that address mobility, security, etc.
- MASPS
 - Allocate performance / QoS requirements from SC-214/ SC-206
 - Define test scenarios

- Phase 1: Aircraft architecture & roadmap
 - Completed A658
- Phase 2: Specifications
 - Core IPS protocol stack
 - Domain isolation, port filtering, firewall
 - System & security Mgmt.
 - First ed A858 published, 2021

Source: "Internet Protocol Suite for Safety Services: Progress Towards a Validated Standard". ICNS 2017

I© 2017 by Honeywell International Inc. All rights reserved.

Recognized need for globally harmonized IPS standards

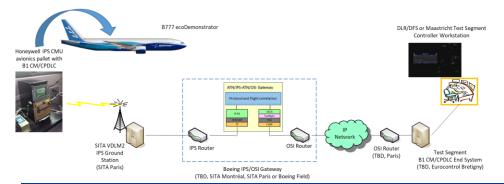
ATN/IPS A/G Standardization Roadmap (rev. 2021-11-12)

SDO & Committee	STANDARD	2016	2017	2018	2019	2020	2021	2022	2023	2024	COMMENTS
AEEC IPS	ARINC 658	IPS Roadmap			IPS R	loadmap			Ongoing IPS Stand Roadmap maintena	ards	APIM 15-004 (complete)
	ARINC 858			IPS Speci	fication Part 1 – Part 2 –	Airborne IPS System IPS Gateway A-G Inter	Part 1 Sup Part 2 Sup		*		APIM 15-004A (complete) APIM 15-004B (in-progress)
AEEC DLK	ARINC 631-9						IPS-over-VD	Lm2	☆ ★		APIM 17-002B (in-progress)
RTCA SC-214/ EUROCAE WG-92	DO-224E						VDLm2 MASPS		Final decision on li		TOR V13, 9/2020
	DO-281D / ED-92D	VDLm2 MOPS driven by Security Risk Assessment								TOR V13, 9/2020	
RTCA SC-223/ EUROCAE WG-108	DO-379/ED-262		IPS Profile	es	*		IPS Profile	es Rev A.	🔶 May slip by one qu	arter - TBC	TOR V6, 12/2020
	DO-xxx/ED-yyy				PS MASPS / GM				*		TOR V6, 12/2020
RTCA SC-228	DO-377	C2 Lin	k Systems M	ASPS	<u>}</u> №	IASPS Rev A.	N	ASPS Rev B.	informa	dardization effort is for ation purposes as there	TOR V11, 3/2021
	DO-362	MOPS	C2 L	ink Systems MO	PS (Terrestrial)	Rev A.	**		E.g., IPS	synergies with IPS. S identified as an able MOC in DO-377A.	TOR V11, 3/2021
ICAO DCIWG / WG-I	Doc. 9896 Ed.2										Complete
	Doc. 9896 Ed.3		IPS Te	echnical Manual	and Guidance N	laterial	Adv	Ed.3 Ed.3 anced Marine Interim	Ed.3 Unedited	Doc 9896 Ed.3 Publication	Job Card CP-DCIWG.006.04
	Annex 10, Vol II Annex 10, Vol III		SARPS – Com	nm Procedures & Sy	stems	SARPS	Validation	nitial 太 🔪	Final Report	Applicability Nov-2024	Job Card CP-DCIWG.006.04
	Doc. 10090			Securit	y Services for A	eronautical Com	munications _{Adv}	Ed.1 🛧	Ed 1	Doc 10090 Ed.1 Publication	Job Card CP-DCIWG.007.05
	Doc. 10094	Secure Dialog S		lanual / ConOps	/ Guidance 🕇	Ed 1 Advanced				Doc 10094 Ed.1 Publication	Job Card CP-DCIWG.007.05
	Doc. 10095	DTLS selected in lieu sDS for OSI only.	otsDS for IPS;	Coordination with ICAO TFSG DIWG	PI	(I Security Policy	/ Adv	Ed.1 📩 Ed.1 anced 📩 Interim	Ed.1	Doc 10095 Ed.1 Publication	Job Card CP-DCIWG.007.05
	Doc. 10145					Security Risk A	ssessment _{Adv}	Ed.1 Ed.1. anced Interim	Ed. 1	Doc 10145 Ed.1 Publication	Job Card CP-DCIWG.007.05
ICAO DCIWG / WG-M	Doc. 9776						Į	VDLm2 Tech	Manual 🖖 do work	UROCAE and AEEC to jointly, and provide dy material to ICAO.	Planned
	Doc. 9880					ATN TM/GM			*		In-progress
Legend: In Progress Planned Proposed TBD Predecessor Successor Celiverable							Key TDeliverable ▼Meeting ▼Meeting				
							Time	e Now			

Engineering, Operations & Technology

IPS Lab and Flight Test Activities

- Initial application-level compatibility proven with Honeywell prototype IPS CMU
 - Inmarsat and SITA provided SATCOM and VHF connectivity, respectively
 - Tested in a standard Boeing 737 avionics bench at Boeing lab facilities
 - No changes to ATS functionality from the flight crew and avionics perspective
 - B1 and FANS-1/A exchanges over IPS using VDLM2, SwiftBroadband
- Initial flight trials in Honeywell KingAir test aircraft
- Lots of lessons learned
- Additional partners Airtel ATN and Collins Aerospace added



Validation of IPS specifications and interoperability demonstrated

2019 ecoDemonstrator IPS Activities

- Test FANS-1/A messaging over IPS using VDLM2 on continental US flights, connected to FANS-1/A over IPS ground end system
- Test B1 messaging over IPS using VDLM2 on continental US flights, connected to B1 over IPS ground end system
- Test B1 messaging over IPS using VDLM2 on European continental flight, using an OSI/IPS Gateway connected to B1 over ATN/OSI ground end system

B1/IPS aircraft connected to OSI End System via VDLM2 and IPS/OSI gateway

Further validation and testing of IPS viability in a live flight environment along with the IPS Gateway concept

2021 ecoDemonstrator IPS Activities

• Two suppliers provided CMUs:

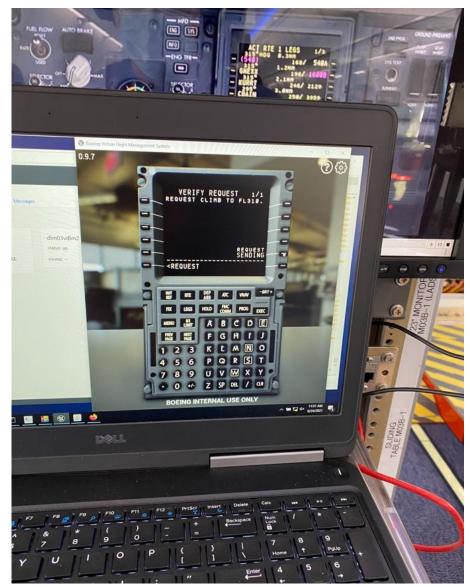
- Collins red label IPS CMU, including security, multilink
- Honeywell soft CMU and IPS router, including mobility and multilink
- ARINC (Collins) and SITA provided VHF Ground Stations
 - Collins also provided IPS-ACARS Gateway
- Inmarsat and Cobham provided SATCOM broadband IPS connectivity service and hardware
- Boeing and Collins provided FANS-1/A, B1, and AOC ground end systems
- FAA FANS/CPDLC Ground Test Tool inclusion from the FAA Tech Center via IPS-ACARS Gateway
 - Typical FANS-1/A Messaging scenarios
- Alaska Airlines AOC center inclusion for AOC messaging via IPS-ACARS Gateway

All results and lessons learned fed back into standards and validation reports

Engineering, Operations & Technology

Collins Flight Test Summary

- Two flights total within CONUS using both SATCOM and VDLM2
- Datagram Transport Layer Security (DTLS) authentication, protecting VDLM2 communications.
- FAA Test Facility and crew exchanged FANS 1/A CPDLC messages over UI connectionless VDLM2 via IPS Gateway
- ADS-C periodic and waypoint contracts established with aircraft; reports downlinked via IPS throughout the flights
- Using connectionless VDLM2, Baseline 1 (B1) CM logon and CPDLC messages were exchanged over IPS between aircraft crew and a Collins IPS end system.
- AOC messages over IPS were exchanged between the aircraft and Alaska Airline OPS center as well as AOC host in the Collins lab
- Still crunching performance data, but initial results very good



Honeywell Flight Test Summary

- Four flights total
 - Two CONUS, VHF and SATCOM
 - Two Europe, SATCOM only
- Messaging controlled by simulated FMS at the instrumentation rack
 - Both FANS-1/A and B1 messaging
 - Scripting technology employed

Very good performance for IPS

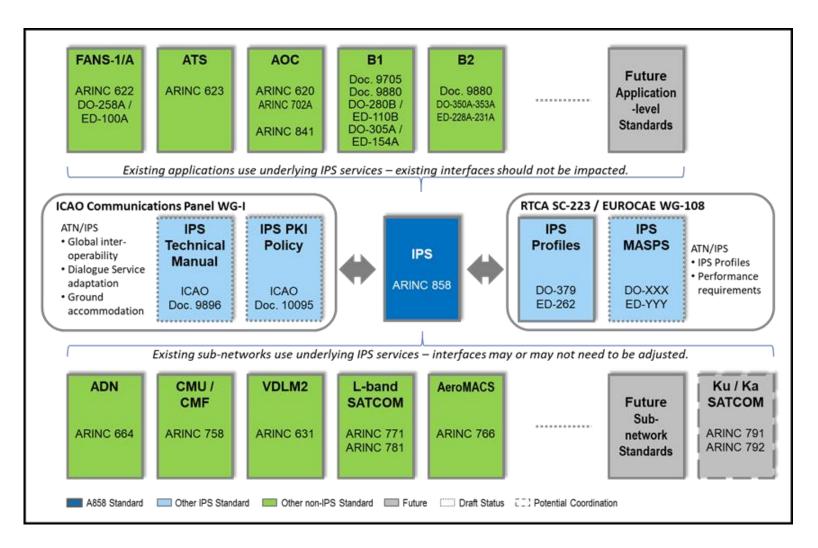
- Mobility tested; quick switchover
- End-end times similar to existing technologies
- SATCOM interface worked well; proposing as potential standard
- Still crunching data

Engineering, Operations & Technology

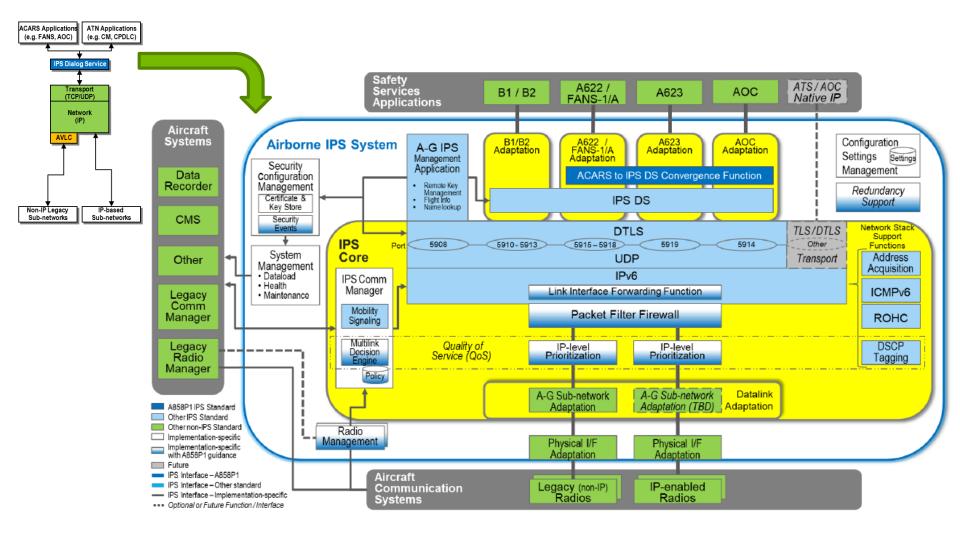
Next Steps

- Attended Glasgow Innovation/Sustainability Event
 - Lots of positive press for IPS as enabler for advanced ATM
- In discussions with partners for follow-on with future ecoDemonstrators

Questions?



Thank you!


Backup

IPS Relationship to other Standards Bodies

Diving into more detail...IPS architecture

