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Abstract 

Military aircraft require more electrical power than they used to do. The increased power consumption is due 
to a transition from pneumatic and hydraulic systems to electrical and the introduction of new, more power 
consuming equipment. This paper summarizes an engine performance study, performed with a modeled low 
bypass ratio mixed flow turbofan engine, where power is extracted from the low-pressure shaft, the high-
pressure shaft or a combination of the two. High-pressure shaft power extraction results in a considerable 
turbine inlet temperature increase. If the operating point has sufficient margin to the maximum turbine inlet 
temperature limit and if the power extraction is acceptable from an operability point of view, power can be 
extracted from the high-pressure shaft without causing much penalty on engine thrust. If the engine is running 
close to its maximum turbine inlet temperature, which is typically the case at low altitude and high aircraft 
speed, power extraction from the low-pressure shaft could be a better alternative due to the lower turbine inlet 
temperature increase. This gives a higher margin to the maximum turbine inlet temperature limit. However, if 
the full potential of low-pressure shaft power extraction is to be utilized, the high-pressure compressor must 
have some aerodynamic overspeed margin for the low-pressure shaft power extraction case. At part power, 
the lower specific thrust of the low-pressure shaft extraction case compared to the high-pressure shaft power 
extraction case, is favorable from a propulsive efficiency and fuel consumption perspective. 

Keywords: low bypass ratio mixed flow turbofan, engine performance, power extraction, combined shaft power 
extraction, fighter aircraft 
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1. Introduction 
Electrical power is traditionally consumed by aircraft components such as pumps and systems used for 
hydraulic, pneumatic and control [1,2], but the amount of electric power consumed by military aircraft is 
continuously increasing [3]. Advanced radars and mission systems require more and more power and 
systems that used to be hydraulic are being replaced by electric machinery [4-7]. A development to drastically 
reduce centralized hydraulic equipment of military aircraft started in the late 80’s and early 90’s [5,8,9]. The 
main objectives of this shift were improved reliability, maintainability and supportability of the introduced 
electrical systems, but also to reduce volume and weight compared to hydraulic systems [9,10]. Weight and 
volume reductions of the fighter aircraft fuselage may also be accomplished by integrating the 
starter/generator with the aircraft engine, thereby eliminating the engine´s accessory gearbox [9,10], such 
solutions have been evaluated for at least forty years [11]. 
 

As higher amounts of power extraction are required by the fighter aircraft, the impact of power extraction on 
engine performance is a topic of increasing interest. A two-shaft low bypass ratio mixed flow turbofan engine 
has been the subject for this investigation. For this engine type, power can be extracted from the low-pressure 
(LP) shaft or the high-pressure (HP) shaft. Power is normally extracted from one of the shafts, but if power 
extraction from both shafts is an option and if the power extraction can be distributed arbitrary between the 
shafts, benefits can be achieved, both from a performance perspective [12-14] and from an operability point of 
view [12-15]. The purpose of the performed investigation was to evaluate how power extraction from the high-
pressure and low-pressure shaft, or a combination of both, affect engine performance. Similar investigations 
have previously been performed for high bypass ratio turbofan engines [12-14,16] and alternative cycles for 
military engines [17,18]. This work complements an earlier investigation that focused solely on high pressure 
shaft power extraction on a low bypass ratio mixed flow turbofan engine [19]. It will be shown that the 
performance impact of low-pressure shaft power extraction is different from high-pressure shaft power 
extraction and that power extraction from either the high-pressure shaft or the low-pressure shaft can be 
favorable in different circumstances. 

 

The paper is divided into three main sections. The methods applied are presented in the Methods section, 
describing the aircraft conceptual design, engine model, the design point and key parts of the fighter mission. 
The research results are presented in the Results section, which is subdivided into two main parts. The first 
sub part evaluates engine performance at the key points of the fighter mission. The second sub part is a 
performance analysis of the engine running at its maximum power, with and without the use of afterburner at a 
constant altitude but at different Mach numbers. Each case is evaluated with power extraction from the low-
pressure shaft, the high-pressure shaft and without power extraction. The paper is summed up in a final 
conclusions section. 
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2. Method 

2.1 Aircraft conceptual design 
Conceptual design is a procedure, in which important aircraft characteristics such as weight, aerodynamics, 
configuration, size and performance are first estimated to achieve a balanced aircraft design. In this section, a 
brief summary of fighter conceptual design is presented. The design requirements for new fighter aircraft involve 
defining threats, targets and scenarios for the future. Current fighter requirements emphasize the need for close-
in-combat and beyond visual range combat capability to achieve superiority in the air-to-air role. High sortie 
rates and the ability to perform air-to-surface missions are also a primary requirement [20]. Some design 
requirements and objectives include:  

 Short take-off and landing distances for quick military operation. 

 High Thrust-to-Weight (T/W) ratio, as it helps in low altitude maneuverability in order to quickly ingress 
and egress from the combat area.  

 High weapons load capacity, as it enables engagement of a large number of targets. 

 Reduced RCS, as it decreases the distance at which the enemy can detect the aircraft using radar. 

 Ruggedness, as the aircraft should be able to take some amount of punishment and return to base 
station. 

 High range and endurance on target, as the ground troops may require support for an extended period 
of time, with corresponding weapons load. 

 High supersonic speed for quick escape dash and evasion [21-24].  

For this preliminary characterization of the generic fighter aircraft, it shall be capable of performing the 
following specific mission (Figure 1): 

 

Figure 1 – Typical mission profile of a fighter aircraft (derived from [24]). 
 

Based on the mission profile, the first step of the conceptual design study was to define the operational 
requirements related, for example, to payload weight, flight endurance and flight velocities. The selected 
values are presented in Table 1 and correspond to a typical fighter aircraft. Considering the presizing 
calculations, an in-house tool was employed, which has been developed in the Laboratory of Experimental 
Aerodynamics (LAE), at the Department of Aeronautical Engineering, at the São Carlos School of Engineering 
- University of São Paulo (EESC-USP), Brazil. Based on aircraft design methods, such as the ones described 
in [25,26], it also includes particular aspects of fighter aircraft design, combining analytical and low-fidelity 
methods. It can be used to carry out a complete layout design study and aerodynamic analysis, and has been 
implemented on other fighter aircraft configurations as well [27]. In particular, first-order mass estimation 
methods are used to calculate the weight of both systems and structural components.  

The process starts with the maximum take-off weight estimation, which is the sum of the crew weight, empty 
weight, payload, and fuel weight. The empty weight is estimated using historical trends and statistical data set 
derived from operating aircraft with similar requirements. The fuel weight is calculated by estimating the fuel 
consumption for each flight segment of the mission profile, using complete semi-empirical aerodynamic 
analysis. Furthermore, the application of the constraint analysis allowed to calculate the main performance 
characteristics of the aircraft in relation to each phase of flight, obtaining functional relationships between the 
minimum thrust-to-weight (T/W) and wing loading (W/S). Other modules include engine selection and intake 
sizing based on external losses, fuselage sizing in function of the take-off gross weight, and aerodynamic 
analyzes involving a complete parasite drag buildup and supersonic drag due to lift from the supersonic linear 
theory. Finally, the performance of the aircraft based on block fuel calculations and discretization of the 
mission profile was estimated. Warm-up, taxi, take-off and landing segments are estimated using fixed fuel 
fractions for fighter aircraft [26]. Phases such as climb, descent, and combat are discretized into many 
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segments (time, range, and altitude steps). Therefore, at each time step, the flight dynamics equations are 
solved with the use of aerodynamic and engine characteristics. The block fuel is then calculated with the 
product of fuel consumption, dependent on a preliminary estimate of engine SFC, thrust, and time of each 
phase. The Breguet range equation is used to calculate the fuel consumption in cruise phases.  
The preliminary characteristics of the aircraft include: MTOW = 21920 kg; Empty weight = 12620 kg; Payload 
= 4500 kg; W/S = 3360 Pa; T/W = 1.1; Range 1500 nm; whereas a 3D representation is presented in Figure 2. 

 

Table 1 – Mission requirements. 

Phase Description 

1-2 Warm-up and takeoff, field is at 610 m pressure altitude with air temperature of 284K. Fuel 
allowance is 5 min at idle power for taxi and 1 min at military power for warm-up. Takeoff 
ground roll plus 3 seg rotation distance must be < 450 m on wet, hard surface runway with 
friction 0.05. Takeoff velocity = 1.2 (stall velocity) 

2-3 Acceleration and climb 

Initial velocity 64 m/s 

Final velocity 247 m/s 

Climb 1, from 610 m to 4876 m 

Climb 2, from 4876 m to 9144 m 

3-4 Subsonic cruise at Mach 0.9, Range = 540 km 

4-5 Deliver missiles/bombs. Payload delivered = 30000 N 

5-6 Combat is modeled by the following characteristics: 
Perform one 360 deg, 5g sustained turn at 9144 m. Mach 1.6 

Perform two 360 deg, 5g sustained turns at 9144 m. Mach 0.9 

Fire ½ of ammunition 

No range credit is given for combat maneuvers 

6-7 Escape dash = Accelerate from Mach 0.9 to Mach 2.0 at 9144 m at enough power 

7-8 Subsonic cruise at Mach 0.9, Range = 555 km 

8-9 Fuel reserves. 1200 seg 

9-10 Descend to land. Initial velocity = 158 m/s. Final velocity = 68 m/s. 

 

Figure 2 – Four views of the fighter aircraft concept, dimensions in meters. 
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2.2 Engine performance model 
The performance analysis covers engine maximum power and part load operation with and without the use of 
afterburner at various altitudes and aircraft speeds. The mission thrust requirements per engine, as shown in 
Table 2, represent key parts of the fighter aircraft mission described in section 2.1 and Table 1. Cases where 
the afterburner is in operation are referred to as “augmented”. 

Table 2 – Thrust required for each engine for key parts of the fighter aircraft mission. 
No Mission Phase Required Net Thrust Altitude Mach Number 
1 1-2 Warm up non-augmented 66.0 kN 610 m 0.0 
2 1-2 Runway acceleration augmented 110.7 kN 610 m 0.1 
3 1-2 Runway acceleration augmented 112.9 kN 610 m 0.18 
4 2-3 Flight acceleration augmented 127.3 kN 610 m  0.44 
5 2-3 Climb and acceleration augmented 127.8 kN 2743 m 0.775 
6 2-3 Climb and acceleration augmented 78.9 kN 7010 m 0.9 
7 3-4 Subsonic cruise non-augmented 12.4 kN 9144 m 0.9 
8 5-6 Sustained turn augmented 100.6 kN 9144 m 1.6 
9 5-6 Sustained turn augmented 53.2 kN 9144 m 0.9 

10 6-7 Escape dash augmented 113.9 kN 9144 m 2.0 
 

A low bypass ratio mixed flow turbofan engine has been modeled with the Chalmers in-house tool GESTPAN. 
A graphical presentation of the engine is given in Figure 3. Figure 3 is a slightly modified version of Figure 1 in 
[19]. 

 

 

Figure 3 – Overview of the modeled low bypass ratio mixed flow turbofan engine. Based on Figure 1 in [19]. 

The engine cycle is defined by the design point. Some important cycle parameters of the design point are 
presented in Table 3. The cycle parameter values are based on information from public sources [28-30]. 

Table 3 – Cycle parameters of the design point. 

Parameter Value 
Altitude 0 m 

Mach number 0 
Fan pressure ratio 5.4 

High pressure compressor pressure ratio 5.1 
Inlet mass flow 90 kg/s 

Turbine inlet blade temperature 1030 K 
Bypass ratio 0.5 

Turbine inlet gas temperature 2000 K 
Bleed flow 0 kg/s 

LPT power extraction 0 kW 
HPT power extraction 0 kW 

 
All flight cases are calculated as off design points. Calculations are performed to meet the thrust requirements 
and the solutions are constrained by either the maximum overall pressure ratio (OPR) or the maximum 
allowed turbine inlet gas temperature (T4), applying an engine control methodology described in [24]. The 
maximum OPR is set to 28 [24] and the maximum allowed T4 is set to 2260 K, which is the maximum inlet 
temperature of the F135 jet engine according to [30]. Other limiters of the engine controller, as described in 
[28,31,32], are not considered. 
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The study performed herein focuses on engine performance. Engine operability issues associated with large 
power extraction are not considered. The mission points shown in Table 2 have been simulated with and 
without power extraction [19]. The following three cases were simulated: 

1. The reference run with no power extraction (black color in figures below) 
2. Power extracted (900 kW) from the high-pressure shaft (red color) 
3. Power extracted (900 kW) from the low-pressure shaft (blue color) 
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3. Results 
Figure 4 shows engine net thrust for the reference case (black), the HP power extraction case (red) and the 
LP power extraction case (blue) referred to in section 2, together with the thrust requirement (green) of Table 
2. It can be observed that, with the engine cycle selected, all thrust requirements are met with both HP and LP 
power extraction, except point 5 (climb and acceleration) and point 10 (escape dash). Point 5 and 10 illustrate 
two extremes in the fighter aircraft mission, both are challenging, but for different reasons: 

 Point 5 is the aerodynamic design point of the mission and the engine performance is limited by the 
maximum OPR restriction. Figure 4 illustrates that the thrust requirement is not achieved for the LP 
power extraction case. In the performed calculations, it was assumed that the HPC could operate at a 
slightly higher corrected mass flow and pressure ratio compared to the design point, i.e., that the HPC 
has some aerodynamic overspeed capacity. Otherwise, the LP power extraction case would be 
limited by the controller and the thrust would be decreased further. 

 Point 10 illustrates the other extreme of the aircraft fighter mission in Table 2. In this case, the engine 
is operating at, and is limited by, its maximum inlet temperature. None of the power extraction cases 
meet the thrust requirement, but the thrust drop is larger for the HP power extraction case than for the 
LP power extraction case.  

Figure 5 shows that the turbine inlet temperature T4, increases when power is extracted and that the required 
temperature increase is significantly higher in the case of HP power extraction compared to the LP power 
extraction case. The higher temperature increase of the HP power extraction case increases the specific net 
thrust of the engine, which helps to meet thrust requirements when the engine is operating near or at its max 
OPR limit [19]. However, the higher temperature increase will also make the engine run into its maximum 
turbine inlet temperature limitation for more flight cases.  

 

Figure 4 – Net thrust. 
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Figure 5 – Turbine inlet gas temperature. 

 

The higher turbine inlet temperature (T4) increase of the HP power extraction case is also reflected in specific 
fuel consumption, as illustrated in Figure 6. When specific thrust increases, the amount of air mass flow is 
reduced. This requires a higher nozzle jet speed to produce the same thrust, which in turn reduces propulsive 
efficiency when the engine is running non-augmented. The reduced propulsive efficiency has a negative 
impact on SFC. When the engine is running augmented, a higher turbine inlet temperature of the core engine 
is desirable, as it increases LPT output temperature, thereby reducing the required amount of afterburner fuel 
flow [19]. This is favorable from an SFC perspective as the thermal efficiency of the core engine is higher than 
the thermal efficiency of the afterburner [30]. 

 

Figure 6 – SFC difference compared to no power extraction. 
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A parameter study has been performed to evaluate maximum non-augmented power and maximum 
augmented power when the engine is running, either at its maximum OPR limit or maximum T4 limit. 

 
Figure 7 through 14 illustrate some key engine parameters plotted as a function of non-dimensional stagnation 
temperature, θ0  (θ0 = T0/288.15). Figure 7 shows OPR for the non-augmented case and Figure 8 shows OPR 
for the augmented case. The engine is controlled by either the maximum OPR limit or the maximum T4 limit 
[24]. The engine is limited by maximum OPR up to the θ0 break [24,31,33] (θ0 =1.13 in Figure 7 and Figure 8 
for the case with no power extraction). At stagnation temperatures beyond the θ0 break, the engine power is 
limited by the maximum T4. As soon as the θ0 break is reached (T4 reaches its limit value), the engine 
controller must limit the fuel flow not to exceed the maximum allowed turbine inlet temperature and OPR will 
be reduced. Figure 7 and Figure 8 illustrate how the engine, when power is extracted from the HP, reaches 
the turbine inlet temperature limit (the θ0 break) at a lower θ0 value compared to the reference case [19] and 
the LP power extraction case. This is shown explicitly in Figure 9 for the non-augmented case and in Figure 
10 for the augmented case. If some of the power is extracted from the HP and some power is extracted from 
the LP the θ0 break will be reached somewhere in between the illustrated HP and LP power extraction case. 
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Figure 7 – Maximum non-augmented power at 9144 m. OPR vs θ0. 

 

Figure 8 – Maximum augmented power at 9144 m. OPR vs θ0. 
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Figure 9 – Maximum non-augmented power at 9144 m. T4 vs θ0. 

 

Figure 10 – Maximum augmented power at 9144 m. T4 vs θ0. 
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Figure 11 – Maximum non-augmented power at 9144 m. Net thrust vs θ0. 

 

Figure 12 – Maximum augmented power at 9144 m. Net thrust vs θ0. 

 

The net thrust of the non-augmented and augmented cases, shown in Figure 11 and Figure 12, increases 
rapidly with increased θ0 until the θ0 break is reached. For θ0 values beyond the θ0 break, the rate of net thrust 
increase is reduced and eventually replaced by a net thrust reduction. As the HP power extraction case 
reaches the θ0 break for lower θ0 values, this net thrust reduction occurs at lower θ0 compared to the 
reference run and the LP power extraction case. The T4 increase with LP power extraction compared to the 
reference case is small, causing a thrust reduction for θ0 values below the θ0 break. However, the θ0 break is 
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located more to the right compared to the HP power extraction case due to the modest T4 increase. This 
allows the engine to operate at higher OPR and net thrust levels at higher θ0 values when power is extracted 
from the LP shaft compared to power extraction from the HP shaft. If power is extracted from both the HP 
shaft and the LP shaft, the T4 increase will be higher compared to the LP power extraction case but lower than 
the HP power extraction. A curve illustrating net thrust and SFC of a combined LP and HP power extraction 
case would then fall in between the lines illustrating LP and HP power extraction in Figure 11 through 14. 

 

Figure 13 – Maximum non-augmented power at 9144 m. SFC vs θ0. 

 

Figure 14 – Maximum augmented power at 9144 m. SFC vs θ0. 
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4. Conclusions 
The investigation shows that turbine inlet temperature increases when power is extracted, whether it is 
extracted from the HP shaft or the LP shaft. However, the temperature increase is more significant when 
power is extracted from the HP shaft. This may be both favorable and unfavorable from an engine 
performance point of view, depending on the flight conditions and engine power settings. Higher temperature 
increases specific thrust, which allows the engine to meet the thrust requirements of aerodynamically 
challenging operating conditions, provided that sufficient surge margin of the engine can be maintained. If the 
engine is running augmented, the temperature increase of the core engine helps to reduce the amount of fuel 
burn in the afterburner. This is desirable, since afterburning is a thermodynamically less efficient process 
compared to the core engine. However, at non-augmented conditions, high specific thrust reduces air mass 
flow and impairs propulsive efficiency, which increases SFC. Moreover, the turbine inlet temperature increase 
associated with HP power extraction will make the engine run into the maximum turbine inlet temperature limit 
at more flight cases, thereby reducing the net thrust. Extracting power from the LP shaft does not raise turbine 
inlet temperature as much as HP power extraction. The lower specific thrust makes it harder to reach the net 
thrust requirements at aerodynamically challenging cases (high OPR required) and the aerodynamic 
overspeed capacity of the HPC will determine the net thrust reduction. However, lower turbine inlet 
temperatures of the LP power extraction case improve SFC at part load operation compared to the HP power 
extraction case, due to the better propulsive efficiency. The lower turbine inlet temperature compared to the 
HP extraction case increases the margin to the turbine inlet temperature limit, which allows the engine to run 
at higher net thrust when the turbine inlet temperature is high. Such operating conditions typically occur at low 
altitude and high aircraft speed. 
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Nomenclature 
BPR  Bypass ratio 

FPR  Fan pressure ratio 

GESTPAN Generic stationary and transient propulsion analysis 

HP  High pressure / high pressure shaft 
HPC  High pressure compressor 

HPCPR High pressure compressor pressure ratio 

HPT  High pressure turbine 

LAE  Laboratory of experiment 

LP  Low pressure / low pressure shaft 

LPC  Low pressure compressor 
LPT  Low pressure turbine  

OPR  Overall pressure ratio 

SFC  Thrust specific fuel consumption 

T  Stagnation temperature 

T0  Free stream stagnation temperature 

T4  Turbine inlet gas temperature 

T/W  Thrust-to-weight ratio 

W/S  Wing loading 

θ0  Non-dimensional stagnation temperature (T0/288.15) 
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