Potential impacts of the occurrence of blooms of Blackfordia virginica in the Mira estuary, SW Portugal

Maria Manuel Angélico¹, Filipa Marques^{1,2*}, Paula Chainho², Isabel Domingos^{2,3}, Alexandra Teodósio⁴ & José Lino Costa^{2,3}

- ¹ Instituto Português do Mar e da Atmosfera IPMA, Lisboa, Portugal
- ² Centro de Oceanografia, FCUL, Universidade de Lisboa, Portugal
- ³ Departamento de Biologia Animal, FCUL, Universidade de Lisboa, Portugal ⁴ Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal

10

Jellyfish species have been accidentally introduced worldwide and some have caused tremendous ecosystem disruptions and economic losses.

Blackfordia virginica >>

Atlantic

Ocean

Blackfordia virginica is a small hydrozoan with sessile polyps and planktonic medusae (max. bell size ~ 20 mm) which are produced during the warmer period of the year and may cause blooms. Feeds on plankton.

An established population of this non-indigenous species has been observed in the Mira estuary since 1984 but impacts over fish and zooplankton communities have not been reported.

Surveying

• Sept 2012 - Dec 2013: plankton tows (200 μ m mesh) and environmental variables

• Quarterly along the estuarine gradient - spatial distribution, environment, diet

- Monthly at a fixed location (Casa Branca) - temporal distribution, environment, diet

Abundances Distribution Size Composition Environment

-8.79W, 37.72N Medusae present in summer and autumn (quarterly surveying results)

- · Higher abundances during May-August (monthly surveying results)
- More abundant in mid-estuary

· Abundances much higher than in other estuaries >> high potential impact (maximum abundances: this study - 1689 indiv/m³; Guadiana, Portugal - 31.7/m³, Chícharo et al., 2009; Petaluma, USA - 232/m³, Wintzer et al., 2013)

· Size distribution pattern distinct in summer and autumn >> environmental conditions (salinity) and food availability (plankton)

· Small medusae associated to rock and oyster shells >> polyps locations - medusae

emission more likely to occur in the middle and lower estuary

Ordination using medusae size distribution data during summer and autumn (PERMANOVA factor season, summer vs autumn, p=0.03)

34.0

33.0

medusae

6 Casa Branca

Diet & Predation Impact

- Preys were only registered in 6% of the medusae observed (4884) >> possible discontinuous feeding rhythm or potential feeding on smaller microorganisms and/or suspended organic matter.
- · The diet included copepods, cirriped nauplii, decapod larvae and anchovy eggs (Engraulis encrasicolus)
- · Copepods, mainly copepodite developmental stages, were the dominant prey (>97%)
- · 1 to 12 preys were counted per individual
- · Potential predation impact (copepod mortality rate) estimated between June and October higher than estimations for San Francisco estuary (0.7 day-1, J. Donald, pers. comm..)

Blackfordia virginica induced copepod mortality rate

Autumn

□ Summer

Sampling	Day-1
28May13	0.02
04Jun13	4.66
12Jun13	4.90
10Sep13	2.44
080ct13	1.47
07Nov13	0.82
16Dec13	0.09

Predation Impact: $\mu = D \times F$ D = Density of medusae (indiv/litre) F = Clearance rate (litre/indiv/day) (Hasson *et al*, 2005, digeston time from A. Wintzer *pers com*)