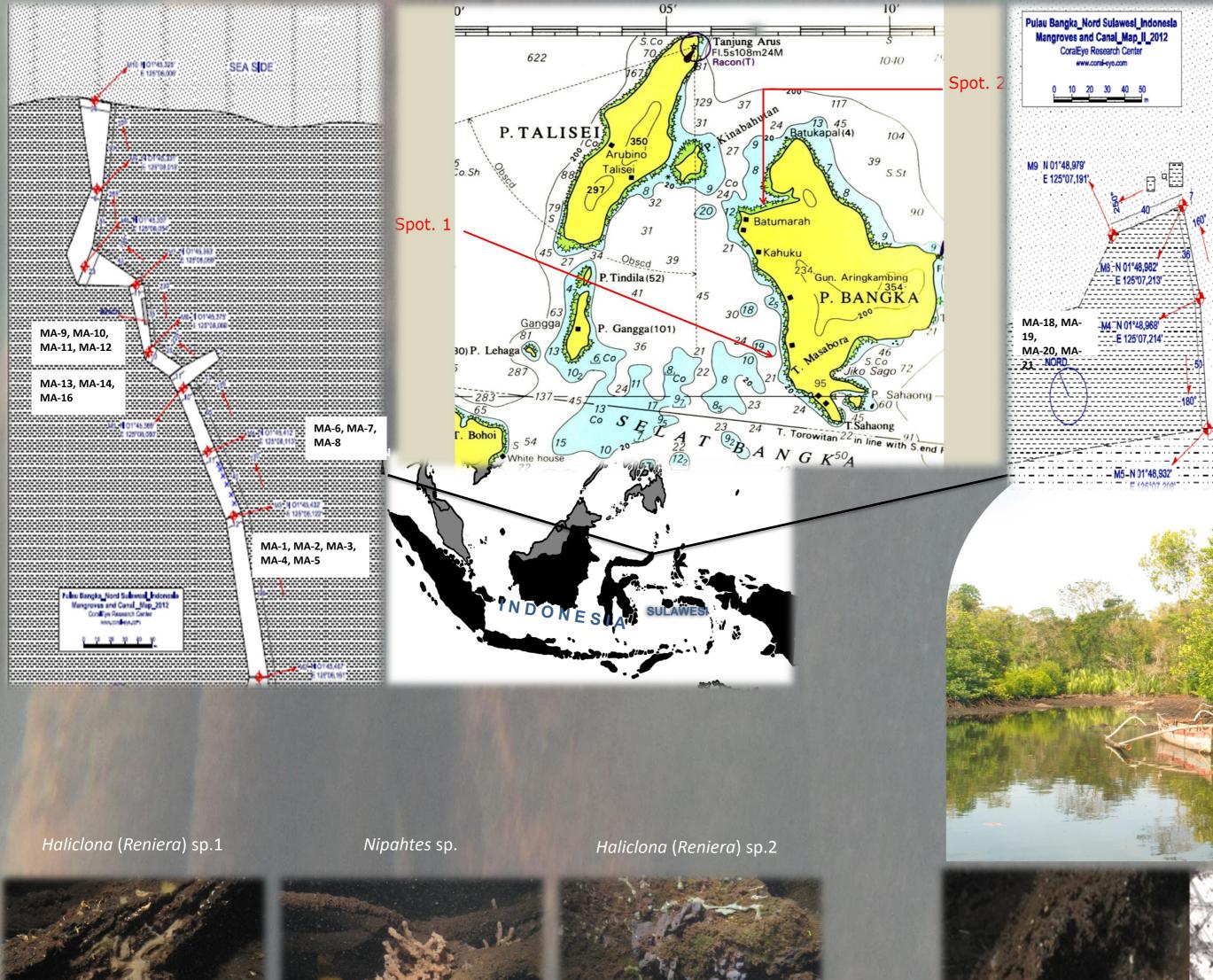
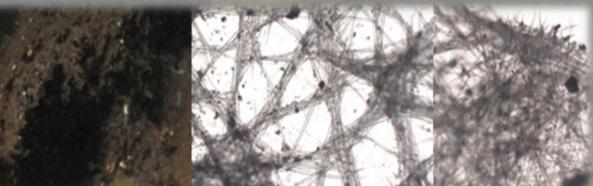


Mangrove sponges from Bangka Island (North Sulawesi, Indonesia)

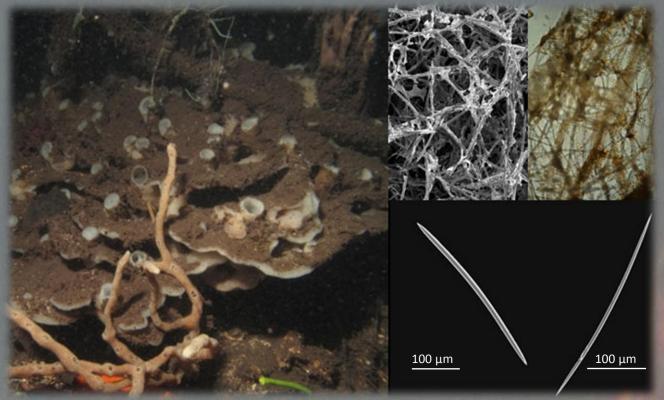
Barbara Calcinai¹, Azzurra Bastari¹, Mira Curin¹, Giorgio Bavestrello², Laurentius Theodorus Xaverius Lalamentik³, Marco Segre-Reinach⁴, Carlo Cerrano¹


¹Di.S.V.A., Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; ²Di.S.T.A.V., Università di Genova, C.so Europa 26, 16126, Genova, Italy; ³Fakultas Perikanan, Sam Ratulangi University, Manado, Indonesia; ⁴Coral Eye, Bangka Island, North Sulawesi, Indonesia

Despite their key ecological, economical and social role in subtropical and tropical areas, mangroves are among the most imperilled marine ecosystems since they are subjected to extreme anthropogenic environmental pressures, such as organic run-off from land, disturbances from suspended sediment, and damages from clear-cutting.


The mangroves of Indo-Malayan region are particularly extended in the Indonesian Archipelago (Tomascik et al., 1997). Mangroves create habitats for numerous species; in particular the proproots and pneumatophores create a complex hard bottom habitat on a soft sediment environment (Ellison and Farnsworth, 1992). The great majority of published information on mangrove sponge communities comes from the Caribbean, and the taxonomic knowledge on sponge associate to mangroves, from Indo-Pacific and, in particular from Indonesian Archipelago is very poor.

Studied material come from two different mangrove forests around Bangka Island (North Sulawesi). The first spot is an artificial, narrow channel cutting a Rhizophora forest. The second spot is a wide inlet, characterized by *Rhozophora* and *Bruguiera* trees. Specimens were collected by snorkelling during high tide period; the collections meant to be qualitative and all the specimens detected were collected from the inner to the outer side of the mangrove forest.



SEA SIDE

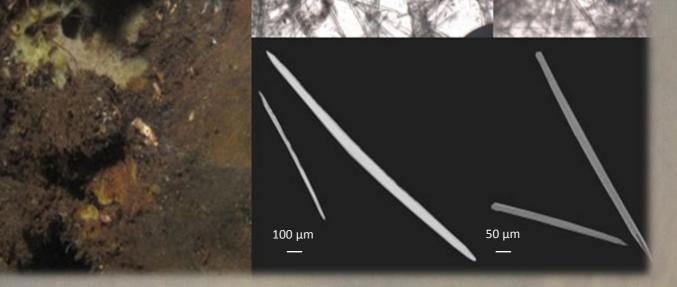
_M1-N 01°49,020'

--- E 125°07,230

Cladocroce sp.

100 µm

Dercistus (Stoeba) sp.


Spongia cf. matamata

Clathria (Microciona) sp.

Topsentia halicondroides

Cladocroce burapha

Amorphinopsis excavans

nces

s, 1981

t study

t study t study t study

t study

1902

t study

t study

t study

enfelds, 1954

benfelds, 1954

, 1897; Ridley, 1884

1905; Hooper et al

nel, 1912

study

akarn et al., 2004

s, 1973; Hooper et al.

Ciocalypta sp.

Sample	Species	Habitat	Depth	Distribution	Refere
MA-1, MA20	Amorphinopsis excavans Carter, 1887	coral reef	0 to 54 m	Indo-west Pacific Ocean, Australia	Thoma 1997
MA-15	Amphimedon sp.	mangroves	shallow water	Bangka Is.	preser
MA-11	<i>Biemna fortis</i> (Topsent, 1897)	buried in sand	shallow water	Red Sea, Indonesia, East Africa, Seychelles	Thoma
MA-6, MA19a, MA-19e	Cladocroce burapha Putchakarn et al., 2004	rocky shore	2-15 m	Thailand	Putcha
MA-14	Cladocroce sp.	mangroves	shallow water	Bangka Is.	preser
MA-13	Clathria (Microciona) sp.	mangroves	shallow water	Bangka Is.	preser
MA-5	<i>Ciocalypta</i> sp.	mangroves	shallow water	Bangka Is.	preser
MA-16	Dercitus (Stoeba) sp.	mangroves	shallow water	Bangka Is.	preser
MA-10	Haliclona (Gellius) sp.	mangroves	shallow water	Bangka Is.	preser
MA-4	Haliclona (Halicoclona) centrangulata (Sollas, 1902)	not stated	shallow water	Malaysia	Sollas,
MA-2	Haliclona (Reniera) sp. 1	mangroves	shallow water	Bangka Is.	preser
MA-7	Haliclona (Reniera) sp. 2	mangroves	shallow water	Bangka Is.	preser
MA-12	<i>Hyrtios</i> cf. <i>eubamma</i> (de Laubenfels, 1954)	lagoon near mangroves	shallow water	East Caroline Is.	de Lau
MA-3	Niphates sp.	mangroves	shallow water	Bangka Is.	preser
MA-10	Scalarispongia sp.	mangroves	shallow water	Bangka Is.	preser
MA-9	<i>Spongia (Spongia</i>) cf. <i>matamata</i> de Laubenfels, 1954	lagoon	low tide, 6 m	Marshall Is.	de Lau
MA-21	<i>Tedania (Tedania</i>) cf. <i>dirhaphis</i> Hentschel, 1912	bottom with sand and coral fragments	low tide, 4-18 m	Indonesia	Hentso
MA-17	<i>Tetilla</i> cf. <i>ridleyi</i> Sollas, 1888	coral reef	shallow water	Madagascar, Indonesia	Topser
MA-16	Timea sp.	mangroves	shallow water	Bangka Is.	preser
MA-18	Topsentia halichondroides (Dendy, 1905)	coral reef slope	5-35 m	Indian Ocean, Philippines, Great Barrier Reef	Dendy 1997

This preliminary survey has shown the presence of 20 species, the majority of them already known from coral reefs (e.g. Biemna fortis, Amorphinospis excavans), while only two (Spongia cf. matamata and Hyrtios cf. eubamma) have been found exclusively in lagoon or in mangrove habitat; three species are new to science (Dercitus (S.) sp., Ciocalypta sp. and Cladocroce sp.).

Here, the two surveyed mangrove forests, host sponges of small size and light or dull colored. In this study Haplosclerid sponges are the most common (mainly Haliclona) with the record of a species of Tedania and Biemna conforming to the previous survey (Nagelkerken et al., 2008).

Our surveys suggest the importance to increase the study on Indonesian sponge mangroves, whose diversity seems, in this case, lower respect Caribbean counterpart, likely in relation to the low depth of the explored mangroves, with roots exposed to air during low tide.

Ellison A. M., Farnsworth E. J. 1992. The ecology of Belizean mangrove-root fouling communities: patterns of epibiont distribution and abundance, and effects on root growth. Hydrobiologia 247:87–98.

Nagelkerken I., Blaber S., Bouillon S., Green P., Haywood M., Kirton L.G., Meynecke J.O, Pawlik J., Penrose H.M., Sasekumar A., Somerfield P.J. 2008. The habitat function of mangroves for terrestrial and marina fauna: a review. Aquatic

Botany 89(2): 155-185.

Tomascik T., Mah A. J., Nontji A. &. Moosa M. K, 1997. The Ecology of the Indonesia Seas. Part II. Periplus, Singapore.