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Response to Selection 

•  Selection can change the distribution of 
phenotypes, and we typically measure this by 
changes in mean 
–  This is a within-generation change 

•  Selection can also change the distribution of 
breeding values 
–  This is the response to selection, the change in 

the trait in the next generation (the between-
generation change) 
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The Selection Differential and the 
Response to Selection 

•  The selection differential S measures the 
within-generation change in the mean 
– S = µ* - µ 

•  The response R is the between-generation 
change in the mean 
– R(t) = µ(t+1) - µ(t) 
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The Breeders’ Equation:  Translating S into R 
Recall the regression of offspring value on midparent value 

Averaging over the selected midparents, 
        E[ (Pf + Pm)/2 ] = µ*,  

E[ yo - µ ] = h2 ( µ� - µ ) = h2 S 

Likewise, averaging over the regression gives 

Since E[ yo - µ ] is the change in the offspring mean, it  
represents the response to selection, giving: 

R = h2 S The Breeders’ Equation (Jay Lush) 
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•  Note that no matter how strong S, if h2 is 
small, the response is small  

•  S is a measure of selection, R the actual 
response.  One can get lots of selection but 
no response 

•  If offspring are asexual clones of their 
parents, the breeders’ equation becomes  
–   R = H2 S 

•  If males and females subjected to differing 
amounts of selection, 
–   S = (Sf + Sm)/2 
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Pollen control 
•  Recall that S = (Sf + Sm)/2 
•  An issue that arises in plant breeding is pollen 

control --- is the pollen from plants that have also 
been selected? 

•  Not the case for traits (i.e., yield) scored after 
pollination.  In this case, Sm = 0, so response only 
half that with pollen control 

•  Tradeoff:  with an additional generation, a number of 
schemes can give pollen control, and hence twice 
the response 
–  However, takes  twice as many generations, so 

response per generation the same  
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Selection on clones 
•  Although we have framed response in an outcrossed 

population, we can also consider selecting the best 
individual clones from a large population of different 
clones (e.g., inbred lines) 

•  R = H2S, now a function of the board sense 
heritability.  Since H2 > h2, the single-generation 
response using clones exceeds that using outcrossed 
individuals 

•  However, the genetic variation in the next 
generation is significantly reduced, reducing 
response in subsequent generations 
–  In contrast, expect an almost continual response for several 

generations in an outcrossed population. 



9 

Price-Robertson identity 
•  S = cov(w,z) 
•  The covariance between trait value z and 

relative fitness (w = W/Wbar, scaled to have 
mean fitness = 1) 

•  VERY! Useful result 
•  R = cov(w,Az), as response = within 

generation change in BV 
–  This is called Robertson’s secondary theorem of 

natural selection 
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Response over multiple generations 
•  Strictly speaking, the breeders’ equation only holds 

for predicting a single generation of response from 
an unselected base population 

•  Practically speaking, the breeders’ equation is usually 
pretty good for 5-10 generations 

•  The validity for an initial h2 predicting response over 
several generations depends on: 
–  The reliability of the initial h2  estimate 
–  Absence of environmental change between 

generations 
–  The absence of genetic change between the 

generation in which h2 was estimated and the 
generation in which selection is applied 
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(A)

S S

(B)

(C)

S

50% selected 
Vp = 4, S =
 1.6 

20% selected 
Vp = 4, S = 2.8 

20% selected 
Vp = 1, S =
 1.4 

The selection differential is a function of both 
the phenotypic variance and the fraction selected 
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The Selection Intensity, i 
As the previous example shows, populations with the 
same selection differential (S) may experience very 
different amounts of selection 

The selection intensity i provides a suitable measure 
for comparisons between populations, 
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Truncation selection 
•  A common method of artificial selection is truncation 

selection --- all individuals whose trait value is above 
some threshold (T) are chosen. 

•  Equivalent to only choosing the uppermost fraction p 
of the population 

14 

Selection Differential Under 
Truncation Selection 

R code for i:  dnorm(qnorm(1-p))/p!

Likewise,      

S =µ*- µ!
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Truncation selection 
•  The fraction p saved can be translated into an 

expected selection intensity (assuming the trait is 
normally distributed),  
–   allows a breeder (by setting p in advance) to 

chose an expected value of i before selection, and 
hence set the expected response 

p 0.5 0.2 0.1 0.05 0.01 0.005 

i 0.798 1.400 1.755 2.063 2.665 2.892 

 Height of a unit normal at the  
threshold value corresponding to p 

R code for i:  dnorm(qnorm(1-p))/p!
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Selection Intensity Version of the Breeders’ 
Equation 

Since h = correlation between phenotypic and breeding 
values, h = rPA 

R = i rPAσA 

Response =  Intensity * Accuracy * spread in Va  

When we select an individual solely on their phenotype, 
the accuracy (correlation) between BV and phenotype is h 
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Accuracy of selection 
More generally, we can express the breeders 
equation as 

R = i ruA σA 

Where we select individuals based on the
 index u (for example, the mean of n of their
 sibs). 

ruA = the accuracy of using the measure u to 
predict an individual's breeding value =  
correlation between u and an individual's BV, A 

18 



19 

Overlapping Generations 

Ry = 
im + if 

Lm + Lf 

h2σp 

Lx = Generation interval for sex x  
    = Average age of parents when progeny are born 

The yearly rate of response is 

Trade-offs:  Generation interval vs. selection intensity: 
If younger animals are used (decreasing L), i is also lower, 
as more of the newborn animals are needed as replacements 
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Computing generation intervals 

OFFSPRING Year 2 Year 3 Year 4 Year 5 total 

Number 
(sires) 

60 30 0 0 90 

Number 
(dams) 

400 600 100 40 1140 
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Generalized Breeder’s Equation 

Ry = 
im + if 

Lm + Lf 

ruAσA 

Tradeoff between generation length L and  
accuracy r 

The longer we wait to replace an individual, the more 
accurate the selection (i.e., we have time for progeny 
testing and using the values of its relatives) 
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Changes in the Variance under Selection 
The infinitesimal model --- each locus has a very small 
effect on the trait. 

Under the infinitesimal, require many generations  
for significant change in allele frequencies 

However, can have significant change in genetic 
variances due to selection creating linkage disequilibrium 

Under linkage equilibrium, freq(AB gamete) =
 freq(A)freq(B) 

With positive linkage disequilibrium, f(AB) > f(A)f(B), so
 that AB gametes are more frequent 

With negative linkage disequilibrium, f(AB) < f(A)f(B),
 so that AB gametes are less frequent 
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Additive variance with LD: 

Additive variance is the variance of the sum of allelic effects, 

Additive variance 

Genic variance: value of Var(A) 
in the absence of disequilibrium 
function of allele frequencies 

Disequilibrium contribution. Requires covariances
 between allelic effects at different loci 
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Key:  Under the infinitesimal model, no  
(selection-induced) changes in genic 
variance  σ2

a  

Selection-induced changes in d change σ2
A, σ2

z , h2 

Dynamics of d:  With unlinked loci, d loses half its value each  
generation (i.e, d in offspring is 1/2  d of their parents, 
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Dynamics of d:  Computing the effect of selection in  generating d 

Consider the parent-offspring regression 

Taking the variance of the offspring given the selected parents gives 

Change in variance from selection 
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Change in d = change from recombination plus 
change from selection 

Recombination Selection 

+ = 

In terms of change in d, 

This is the Bulmer Equation (Michael Bulmer), and it is 
akin to a breeder’s equation for the change in variance 

At the selection-recombination  
equilibrium, 
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Application:  Egg Weight in Ducks 
Rendel (1943) observed that while the change  
mean weight weight (in all vs. hatched) as 
negligible, but their was a significance decrease 
in the variance, suggesting stabilizing selection 

Before selection, variance = 52.7, reducing to 
43.9 after selection. Heritability was h2 = 0.6 

= 0.62 (43.9 - 52.7) = -3.2 

Var(A) = 0.6*52.7= 31.6.  If selection stops, Var(A) 
is expected to increase to 31.6+3.2= 34.8 

Var(z) should increase to 55.9, giving h2 = 0.62 
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Specific models of selection-induced 
changes in variances 

Proportional reduction model: 
constant fraction k of  

variance removed 

Bulmer equation simplifies 
to 

Closed-form solution 
to equilibrium h2 
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Equilibrium h2 under direction 
truncation selection 
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Directional truncation selection 
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Changes in the variance = changes in h2 
and even S (under truncation selection) 

R(t) = h2(t) S(t) 

Multivariate Selection 
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Genetic vs. Phenotypic correlations 
•  Within an individual, trait values can be 

positively or negatively correlated, 
–  height and weight -- positively correlated 
–  Weight and lifespan  -- negatively correlated 

•  Such phenotypic correlations can be directly 
measured,  
–  rP denotes the  phenotypic correlation 

•  Phenotypic correlations arise because 
genetic and/or environmental values within 
an individual are correlated. 
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r  P 

P x P y 

The phenotypic values between traits x and y 
within an individual are correlated 

x y 

A r 

A A 

Correlations between the
 breeding values of x and y
 within the individual can

 generate a 
phenotypic correlation 

Likewise, the
 environmental values

 for the two traits within
 the individual could also

 be correlated 

y 

r E 

E x E 
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Genetic & Environmental Correlations 

•  rA = correlation in breeding values (the 
genetic correlation) can arise from 
–  pleiotropic effects of loci on both traits 
–  linkage disequilibrium, which decays over time 

•  rE = correlation in environmental values 
–  includes non-additive genetic effects (e.g., D, I) 
–  arises from exposure of the two traits to the same 

individual environment 
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The relative contributions of genetic and environmental correlations 
to the phenotypic correlation 

If heritability values are high for both traits, then 
the correlation in breeding values dominates the 
phenotypic corrrelation 

If heritability values in EITHER trait are low, then 
the correlation in environmental values dominates the 
phenotypic correlation 

In practice, phenotypic and genetic correlations often  
have the same sign and are of  similar magnitude, but   
this is not always the case 
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Estimating Genetic Correlations 
Recall that we estimated VA from the regression of 
trait x in the parent on trait x in the offspring, 

Trait x in parent 

Trait x in 
offspring 

       Slope =  
(1/2) VA(x)/VP(x) 

VA(x) = 2 *slope * VP(x) 
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Estimating Genetic Correlations 
Similarly, we can estimate VA(x,y), the covariance in the 
breeding values for traits x and y, by the regression of 
trait x in the parent and trait y in the offspring 

Trait x in parent 

Trait y in 
offspring 

       Slope =  
(1/2) VA(x,y)/VP(x) 

VA(x,y) = 2 *slope * VP(x) 
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Thus, one estimator of VA(x,y) is 

VA(x,y)  =  by|x VP(x) + bx|y VP(y) 

2 *by|x * VP(x) + 2 *bx|y * VP(y)  

2 
VA(x,y) = 

Put another way,  
            Cov(xO,yP) = Cov(yO,xP) = (1/2)Cov(Ax,Ay) 

   Cov(xO,xP) = (1/2) VA (x) = (1/2)Cov(Ax, Ax) 
   Cov(yO,yP) = (1/2) VA (y) = (1/2)Cov(Ay, Ay) 

Likewise, for half-sibs, 
 Cov(xHS,yHS) = (1/4) Cov(Ax,Ay) 
 Cov(xHS,xHS) = (1/4) Cov(Ax,Ax) = (1/4) VA (x)  
 Cov(yHS,yHS) = (1/4) Cov(Ay,Ay) = (1/4) VA (y)  

giving 
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Correlated Response to Selection 
Direct selection of a character can cause a within- 
generation change in the mean of a phenotypically 
correlated character. 

Direct selection on 
x also changes the 
mean of y 

* 
+ 

Select All 

X 

Y 

S X 

S Y 
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Phenotypic correlations induce within-generation 
changes  

For there to be a between-generation change, the 
breeding values must be correlated.  Such a change 
is called a correlated response to selection 

Trait y 

Trait x 

Phenotypic values 

Sy 

Sx 

Example 
•  Suppose h2 trait x = 0.5, h2 trait y = 0.3 
•  Select on trait one to give Sx = 10 

– Expected  response is Rx = 5 

•  Suppose Cov(tx,ty) = 0.5, then Sy = 5 
• What is the response in trait 2? 

–  is it CRy = 0.3*5 = 1.5.  NO! 
– Could be positive, negative, or zero 
– Depends on the Genetic correlation

 between traits x and y.  Why?? 
44 
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Trait y 

Trait x 

Phenotypic values 

Rx 

Ry = 0 
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Trait y 

Trait x 

Breeding values 

Rx 

Ry = 0 

Phenotypic values are misleading, what we want are the
 breeding values for each of the selected individuals.  Each  
arrow takes an individual’s phenotypic value into its actual 
breeding value. 
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Trait y 

Trait x 

Breeding values 

Rx 

Ry = 0 
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Predicting the correlated response 

bAy|Ax  = 
Cov(Ax,Ay) 

Var(Ax) 
= rA 

σ(Ax) 

σ(Ay) 

The change in character y  in response to selection 
on x  is the regression of the breeding  value of y  
on the breeding value of x, 

  Ay = bAy|Ax Ax 

where 

 If Rx denotes the direct response to selection on x, 
CRy denotes the correlated response in y, with 

CRy = bAy|Ax Rx  
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We can rewrite CRy = bAy|Ax Rx as follows 

First, note that Rx = h2
xSx = ixhx σA (x)  

Recall that ix = Sx/σP
 (x) is the selection

 intensity on x 

Since bAy|Ax  = rA σA(x) / σA(y),  

We have CRy = bAy|Ax Rx = rA σA (y) hxix  

Substituting σA (y)= hy σP (y) gives our final result:  

CRy =  ix hx hy rA σP (y) 
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CRy =  ix hx hy rA σP (y) 

Noting that we can also express the direct response as 
Rx = ixhx

2 σp (x) 

shows that hx hy rA in the corrected response plays the 
same role as hx

2 does in the direct response.  As a result, 
hx hy rA  is often called the co-heritability 
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Direct vs. Indirect Response 
We can change the mean of x via a direct response Rx 
or an indirect response CRx due to selection on y 

Hence, indirect selection gives a large response when 

• Character y  has a greater heritability than x, and the genetic 
correlation between x  and y is high. This could occur if x is difficult to 
measure with precison but y is not.   

• The selection intensity is much greater for y  than x.  This would be true 
 if y were measurable in both sexes but x  measurable in only one sex. 
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Dimensions given by rows x columns (r x c) 
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Matrix Multiplication 

In order to multiply two matrices, they must conform 

A r x c  B c x k  = C r x k 
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Matrix Multiplication 
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56 
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The Multivariate Breeders’ 
Equation 

Suppose we are interested in the vector R of  
Responses when selection occurs on n correlated traits 

Let S be the vector of selection differentials. 

In the univariate case, the relationship between R 
and S was the Breeders’ Equation, R = h2S 

What is the multivariate version of this? 

58 



59 

The multivariate breeder’s equation 

R = G P-1 S 

R= h2S = (VA/VP) S 
Natural parallels 
with univariate 

breeder’s equation 

 P-1 S = β is called the selection gradient and measures the
 amount of direct selection on a character 

The gradient version of the breeder’s equation is given by R = G β. 
This is often called the Lande Equation (after Russ Lande) 
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Sources of within-generation change in the mean 

Since β = P-1 S, S  = P β,!
giving the j-th element as 

Change in mean from
 phenotypically 

correlated characters
 under direct selection 

 Within-generation
 change in trait j 
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Within-generation change in the mean 

Between-generation
 change (response) 

 in trait j 

Indirect response
 from genetically 

correlated
 characters under
 direct selection 

Response in the mean 
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Example in R!

Suppose you observed a within-generation change of 
-10 for oil, 10  for protein, and 100 for yield. 

What is R?  What is the nature of selection on each 
trait? 
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Enter G, P, and S 

R = G P-1S 
13.6  decrease in oil 
12.3 increase in protein 
65.1 increase in yield 
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S versus β :  Observed change versus targets of 
Selection, β = P-1 S, S  = P β,!

 β: targets of selection S: observed within-generation 
change 

Observe a within-generation increase in protein, but the 
actual selection was to decrease it. 
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Quantifying Multivariate Constraints to Response 

Is there genetic variation in the direction of selection? 

Consider the following G and β: 

Taken one trait at a time, we might expect Ri = Giiβi 

Giving R1 = 20, R2 = -40. 
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Constraints Imposed by 
Genetic Correlations 

While β is the directional optimally favored by 
selection, the actual response is dragged off 
this direction, with R = G β. 

What is the true nature of selection on the two traits? 



67 

What does the actual response look like? 

68 

Extra stuff 
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Time for a short diversion: 
The Geometry of a matrix 

A vector is a geometric object, leading from the 
origin to a specific point in n-space. 

We can thus change a vector by both rotation and scaling 

Hence, a vector has a length and a direction. 

The length (or norm) of a vector x is denoted by ||x|| 
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The (Euclidean) distance between two vectors x and y 
(of the same dimension) is 

The angle θ between two vectors provides a measure 
for how they differ. 

If two vectors satisfy x = ay (for a constant a), then 
they point in the same direction, i.e., θ = 0 (Note that  
a  < 0 simply reflects the vector about the origin) 

Vectors at right angles to each other, θ = 90o or 270o 

are said to be orthogonal.  If they have unit length as 
well, they are further said to be orthonormal. 



71 

Matrices Describe Vector transformations 

The action of multiplying a vector x by a matrix A 
generates a new vector y = Ax, that has different 
dimension from x unless A is square.  

Matrix multiplication results in a rotation and a scaling of 
a vector 

Thus A describes a transformation of the
 original 
coordinate system of x into a new coordinate
 system. Example:  Consider the following G and β: 
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The resulting angle between R and β is given by 

For an angle of θ = 45 o 
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Eigenvalues and Eigenvectors 
The eigenvalues and their associated eigenvectors 
fully describe the geometry of a matrix. 

Eigenvalues describe how the original coordinate 
axes are scaled in the new coordinate systems 

Eigenvectors describe how the original coordinate 
axes are rotated in the new coordinate systems 

For a square matrix A, any vector y that satisfies 
Ay = λy for some scaler λ is said to be an eigenvector 
of A and λ its associated eigenvalue. 
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Note that if  y is an eigenvector, then so is a*y 
for any scaler a, as Ay = λy.  

Because of this, we typically take eigenvectors to 
be scaled to have unit length (their norm = 1) 

An eigenvalue λ of A satisfies the equation 
det(A - λI) = 0, where det = determinant 

For an n-dimensional square matrix, this yields an 
n-degree polynomial in λ and hence up to n unique roots. 

Two nice features: 

det(A) = Πi λi. The determinant is the product of the eigenvalues 

trace(A) = Σi λi. The trace (sum of the diagonal elements) is 
 is the sum of the eigenvalues 
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Note that det(A) = 0 if any only if at least one 
eigenvalue = 0 

For symmetric matrices (such as covariance matrices) 
the resulting n eigenvectors are mutually orthogonal, 
and we can factor A into its spectral decomposition,  

Hence, we can write the product of any vector x and A as 
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Example:  Let’s reconsider a previous G matrix 
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Even though β points in a direction very close of e2, 
because most of the variation is accounted for by e1, 
its projection is this dimension yields a much longer 
vector.  The sum of these two projections yields the 
selection response R. 
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Realized Selection Gradients 

Suppose we observe a difference in the vector of means 
for two populations, R =  µ1 - µ2. 

If we are willing to assume they both have a common 
G matrix that has remained constant over time, then 
we can estimate the nature and amount of selection 
generating this difference by 

β = G-1 R 

Example:  You are looking at oil content (z1) and yield (z2)  
in two populations of soybeans. Population a 
has µ1 = 20 and µ2 = 30, while for Pop 2, µ1 = 10 and 
µ2 = 35.  



79 

Suppose the variance-covariance matrix has been 
stable and equal in both populations, with 

The amount of selection on both traits to obtain this 
response is 
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More extra stuff 
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Improving accuracy 
•  Predicting either the breeding or genotypic 

value from a single individual often has low 
accuracy --- h2 and/or H2 (based on a single 
individuals)  is small  
– Especially true for many plant traits with 

high G x E 
– Need to replicate either clones or relatives 

(such as sibs) over regions and years to 
reduce the impact of G x E 

–  Likewise, information from a set of relatives 
can give much higher accuracy than the 
measurement of a single individual 
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Stratified mass selection 
•  In order to accommodate the high 

environmental variance with individual plant 
values, Gardner (1961) proposed the method 
of stratified mass selection 
–  Population stratified into a number of different 

blocks (i.e., sections within a field) 
–  The best fraction p within each block are chosen 
–  Idea is that environmental values are more similar 

among individuals within each block, increasing 
trait heritability. 


