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Abstract
In this paper we address the problem of static scheduling of

real-time systems that include both hard and soft tasks. We
consider that hard as well as soft tasks are periodic and that
there exist data dependencies among tasks. In order to cap-
ture the relative importance of soft tasks and how the quality
of results is affected when missing a soft deadline, we use
utility functions associated to soft tasks. Thus our objective
is to find an execution order for tasks that maximizes the
total utility and at the same time guarantees hard deadlines.
We use the expected duration of tasks for evaluating utility
functions whereas we use the maximum duration of tasks for
ensuring that hard deadlines are always met. We present an
algorithm for finding the optimal schedule and also different
heuristics that find near-optimal solutions at reasonable com-
putational cost. The proposed algorithms are evaluated using
a large number of synthetic examples.

1. Introduction

There exist classes of real-time systems that require the
execution of tasks which have distinct types of timing con-
straints. Such systems include activities whose completion
before a given deadline is critical to the overall behavior of
the system. Missing one such deadline has severe or catas-
trophic consequences, hence these tasks are referred to as
hard. At the same time, these real-time systems include ac-
tivities that have looser timing constraints and a deadline
miss can be tolerated though the quality of results might
degrade. Such tasks are referred to as soft.

The problem of jointly scheduling hard and soft tasks has
been studied, for example, in the frame of integrating mul-
timedia applications into hard real-time systems [5], [1].

Most of the approaches consider that hard tasks are pe-
riodic whereas soft tasks are aperiodic. Both dynamic [2],
[8] and fixed priority systems [4], [6] have been considered,
aiming to minimize in both cases the response time of soft
aperiodic tasks. These, as well as most of previous work,
assume that the sooner a soft task is served the better but
make no distinction among soft tasks, that is, there is no
relative importance of soft tasks.

In this paper we address the problem of static scheduling
(at design-time) of real time-systems made up of hard and
soft tasks. We consider that both hard and soft tasks are
periodic and, in order to capture the significance of soft tasks,
we make use of utility functions (value or utility functions
were first suggested by Locke [7] to represent importance
and criticality of tasks). As opposed to the approaches cited
above where tasks are assumed independent, we take into
account the precedence relation among tasks.

Most of earlier work uses only the worst case execution
time (WCET) for scheduling both hard and soft tasks (Abeni
and Buttazzo’s approach [1] does use WCET for guarantee-
ing hard deadlines and mean values for serving soft tasks
though). We consider the fact that the actual execution
time of a task is rarely its WCET. Thus we use the expected

duration of tasks when evaluating the utility functions asso-
ciated to soft tasks (we aim to find the schedule for which
the total utility is maximum) and we use the maximum du-
ration of tasks for ensuring that all hard deadlines are met
in every possible scenario.

2. Preliminaries

We consider that the system is represented by a directed
acyclic graph G = (T, E) where its nodes correspond to tasks
and their data dependencies are given by the graph edges.
Throughout this paper we assume that all the tasks of the
system are mapped into a single processor.

We use ◦t to denote set of the predecessors of task t, that
is, ◦t = {t′ ∈ T | 〈t′, t〉 ∈ E}. Similarly, t◦ = {t′ ∈ T |
〈t, t′〉 ∈ E} denotes the set of successors of task t.

The actual execution time of every task t ∈ T at a cer-
tain activation of the system, denoted |t|, lies in the interval
bounded by the minimum duration l(t) and the maximum
duration m(t) of the task, i.e. l(t) ≤ |t| ≤ m(t). In our anal-
ysis we take into consideration the expected duration e(t)
of every task t ∈ T , which is the mean value of the pos-
sible execution times of the task. In the simple case that
the execution time is uniformly distributed over the interval
[l(t),m(t)], we have e(t) = (l(t) +m(t))/2. For an arbitrary
continuous probability distribution f(τ ), the expected dura-

tion is e(t) =
� m(t)

l(t)
τf(τ )dτ .

We define a schedule as the execution order for the tasks in
the system. We assume a single-rate semantics, that is, each
task is executed exactly once for every activation of the sys-
tem. Thus a schedule is a bijection σ : T → {1, 2, . . . , |T |}.
We use σ = t1t2 . . . tn as shorthand for σ(t1) = 1, σ(t2) =
2, . . . , σ(tn) = |T |. We assume that the system is activated
periodically. Handling tasks with different periods is possible
by generating several instances of the tasks and building a
graph that corresponds to a set of tasks as they occur within
a time period that is equal the least common multiple of the
periods of the involved tasks.

In this context, a schedule does not provide the starting
time for tasks, only their execution sequence. Thus, for the
schedule σ = t1t2 . . . tn, task t1 will start when the system
is activated and task ti+1, 1 ≤ i < n, will start executing
as soon as task ti has finished. For a given schedule, the
completion time of a task ti is denoted τi. In the sequel, the
starting and completion times that we use are relative to the
system activation instant. For example, for the schedule σ =
t1t2 . . . tn, t1 starts executing at time 0 and its completion
time is τ1 = |t1|, the completion time of t2 is τ2 = τ1 + |t2|,
and so forth.

The tasks that make up a system can be classified as
non-real-time, hard, or soft. Non-real-time tasks are neither
hard nor soft, and have no timing constraints, though they
may influence other hard or soft tasks through precedence
constraints as defined by the task graph G = (T, E). Both
hard and soft tasks have deadlines. A hard deadline d(h) is
the time by which a hard task h ∈ T must be completed,



otherwise the integrity of the system is jeopardized. A soft
deadline d(s) is the time by which a soft task s ∈ T should
be completed. Lateness of soft tasks is acceptable though
it decreases the quality of results. In order to capture the
relative importance among soft tasks and how the quality
of results is affected when missing a soft deadline, we use a
non-increasing utility function uj(τj) for each soft task sj .
Typical utility functions are depicted in Fig. 1.
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Fig. 1. Typical utility functions for soft tasks

In this paper we address the problem of finding a schedule
that maximizes the sum of individual utilities of soft tasks
when considering expected execution times, yet guaranteeing
that hard deadlines are always met. Such a sum is called
total utility and denoted U (U = � sj∈S uj(τj), where S is

the set of soft tasks).

3. Motivational Example

Let us consider a system that has five tasks t1, t2, t3, t4,
and t5, with data dependencies as shown in the graph of
Fig. 2. The expected and maximum duration of every task
are given in Fig. 2 in the form ei = e(ti) and mi = m(ti)
respectively. The only hard task in the system is t4 and
its deadline is d(t4) = 30. Tasks t2 and t3 are soft, their
deadlines are d(t2) = 9 and d(t3) = 21, and their utility
functions are given in Fig. 2.
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Fig. 2. Motivational example

When we consider the expected duration for every task,
that is |t| = e(t) for each t ∈ T , the schedule σa = t1t2t3t4t5
is the one that maximizes the total utility: the completion
times for tasks t2 and t3 are τ2 = 10 and τ3 = 16, and the
total utility is Ua = u2(10)+u3(16) = 17/6+2 ≈ 4.83. How-
ever, σa does not guarantee the satisfaction of hard deadlines
(take the possible scenario where |t1| = 7, |t2| = |t3| = 10,
|t4| = 8: in such a case τ4 = 35 and therefore t4 misses its
deadline).

We aim to find the schedule that maximizes the total
utility (sum of individual contributions by soft tasks), while
guaranteeing that hard deadlines are met in all possible sce-
narios. When we consider only the upper bounds of execu-
tion time for every task, that is |t| = m(t) for each t ∈ T , we
obtain the schedule σb = t1t3t4t2t5 which maximizes the to-
tal utility when every task takes its maximum duration and,
at the same time, guarantees no hard deadline miss.

Although σb ensures that hard deadlines are always sat-
isfied, it gives the maximum utility in the particular case of

WCET for all tasks, a situation that, though possible, sel-
dom occurs. It is better to find the schedule that yields the
maximum utility in the more likely case of expected dura-
tion for all tasks, yet guaranteeing no hard deadline miss.
Thus we must obtain the schedule that guarantees meet-
ing all hard deadlines, when maximum duration is consid-
ered, and maximizes the total utility, when expected du-
ration is considered. Such a schedule for the example of
Fig. 2 is σc = t1t2t4t3t5. When every task lasts its ex-
pected duration, following σc, t2 completes at τ2 = 10
and t3 completes at τ3 = 22, and thus the total utility is
Uc = u2(10) + u3(22) = 17/6 + 4/3 ≈ 4.17. Note that in the
same case (expected duration for all tasks) σb = t1t3t4t2t5
yields a utility Ub = u2(22) + u3(10) = 5/6 + 2 ≈ 2.83.

4. Problem Formulation

We have informally described the problem of scheduling
real-time systems that have both soft and hard tasks. We
want to find the schedule (an execution sequence for tasks)
that, among all schedules that respect the hard constraints
in the worst-case, maximizes the total utility when tasks last
their expected duration.

The formulation of Scheduling with Soft and Hard
Tasks to Maximize Utility (SSHMU) is as follows. Given
· a set T of tasks,
· a directed acyclic graph G = (T,E) defining precedence
constraints for the tasks,
· a maximum duration m(t) ∈ � for each task t ∈ T ,
· an expected duration e(t) ∈ � for each task t ∈ T
(e(t) ≤ m(t)),
· a subset H ⊆ T of hard tasks,
· a deadline d(h) ∈ � for each hard task h ∈ H,
· a subset S ⊆ T of soft tasks (S ∩H = ∅), and
· a non-increasing utility function uj(τj) for each soft task
sj ∈ S (τj is the completion time of sj);
find a one-processor schedule σ (a bijection σ : T →
{1, 2, . . . , |T |}) that maximizes� sj∈S uj(τ

e
j )

where τ ej is the expected completion time1 of task sj , subject
to:
· σ(t) < σ(t′) for all 〈t, t′〉 ∈ E, and
· τmi ≤ d(hi) for all hi ∈ H, where τmi is the maximum
completion time2 of task hi.

5. Exact Algorithm

It has been proved that Scheduling with Soft and
Hard Tasks to Maximize Utility is an NP-complete
problem [3]. Therefore, unless NP = P, there is no algo-
rithm that solves every instance of the problem in polynomial
time. This section presents an exact algorithm for SSHMU
whose time complexity is O(|T |3|H||S|!).

The algorithm presented in Fig. 3 computes the schedule
that maximizes the total utility when tasks last their ex-
pected duration, while guaranteeing that all hard deadlines

1τej is given by

τej = � e(tj ) if σ(tj ) = 1,

τek + e(tj) if σ(tj ) = σ(tk) + 1.

2τmi is given by

τmi = � m(ti) if σ(ti) = 1,

τmk +m(ti) if σ(ti) = σ(tk) + 1.



are met even when all tasks last their maximum duration.
Initially we check, by using the algorithm IsSchedulable,
whether there exists at all a schedule that satisfies the hard
time constraints. For each one of the possible permutations
Sk of soft tasks, the algorithm first checks whether Sk is valid
(that is, the order given by Sk does not violate data depen-
dencies) through the procedure IsValidPerm(S) which just
checks whether there exists a path from the soft task S[j] to
the soft task S[i], for j > i: if so, S is not valid. If Sk is
valid, the algorithm OptimalSchedule computes the best
schedule σk (the one that yields the highest total utility) for
the particular order for soft tasks as expressed by Sk. The
schedule σ that, among all σk, provides the highest total
utility when considering the expected duration for all tasks
is the optimal one.

Algorithm OptimalSchedule()
output: The optimal schedule σ

begin
σ := ε
util := −∞
if IsSchedulable(ε) then

for k ← 1, 2, . . . , |S|! do
if IsValidPerm(Sk) then
σk := BestSchedule(Sk)
utilk := � sj∈S uj (τ

e
j )

if utilk > util then
σ := σk
util := utilk

end if
end if

end for
end if

end

Fig. 3. Algorithm OptimalSchedule

The algorithm that computes the best schedule, for a
given permutation of soft tasks S, is presented in Fig. 4. The
rationale is that the maximum total utility for the particular
permutation S is obtained when the soft tasks are set in the
schedule as early as possible respecting the order given by S.
Let us consider again the example given in Fig. 2. There are
two permutations of soft tasks S1 = [t2, t3] and S2 = [t3, t2].
The schedules that obey the order for soft tasks given by the
permutation S1 (and also the precedence constraints imposed
by the task graph) are σ1 = t1t2t4t3t5, σ′1 = t1t4t2t3t5, and
σ′′1 = t1t2t3t4t5. Note, first of all, that σ′′1 implies potential
hard deadlines misses and therefore cannot be considered.
Both σ1 and σ′1 guarantee that hard deadlines are always
met but σ1 is better from the perspective of higher total
utility. σ1 = t1t2t4t3t5 is the schedule that sets soft tasks
as early as possible (guaranteeing hard deadlines) respecting
the order given by S1 = [t2, t3].

A simple proof of the fact that by setting soft tasks as
early as possible according to the order given by S we get
the maximum total utility for S is as follows: let σ be the
schedule that respects the order of soft tasks given by S (that
is, 1 ≤ i < j ≤ |S| ⇒ σ(S[i]) < σ(S[j])) and such that soft
tasks are set as early as possible (that is, for every sched-
ule σ′, different from σ, that obeys the order of soft tasks
given by S and respects all hard deadlines in the worst-case,
σ′(S[i]) > σ(S[i]) for some 1 ≤ i ≤ |S|). Take one such σ′.
For at least one soft task sj ∈ S it holds σ′(sj) > σ(sj),
therefore τ ′ej > τ ej (τ ′ej is the completion time of sj when we
use σ′ as schedule while τ ej is the completion time of sj when
σ is used as schedule, considering in both cases expected du-

ration for all tasks). Thus uj(τ
′e
j) ≤ uj(τ

e
j ) because utility

functions for soft tasks are non-increasing. Consequently
U ′ ≤ U , where U ′ and U are the total utility when using,
respectively, σ′ and σ as schedules. Hence we conclude that
no schedule σ′, which respects the order for soft tasks given
by S, will yield a total utility greater than the one by σ.

Algorithm BestSchedule(S)
input: A vector S containing a permutation of soft tasks
output: The best schedule σ for which soft tasks obey the
order given by the permutation S

begin
Ready := {t ∈ T | ◦t = ∅}
σ := ε
cnt := 1
while Ready 6= ∅ do
A := {t ∈ Ready | IsSchedulable(σt)}
B := {t ∈ Ready | (t, S[cnt]) ∈ P}
if A ∩ B = ∅ then

select t̄ ∈ A
else

select t̄ ∈ A ∩ B
end if
if t̄ = S[cnt] then
cnt := cnt+ 1

end if
σ := σt̄
Ready := Ready \ {t̄} ∪ {t ∈ t̄◦ | all q ∈ ◦t are in σ}

end while
end

Fig. 4. Algorithm BestSchedule

The algorithm BestSchedule(S) first tries to schedule
the soft task S[1] as early as possible. In order to do so, it
will set in first place all tasks from which there exists a path
leading to S[1], taking care of not incurring potential dead-
lines misses by the hard tasks. Then, a similar procedure is
followed for S[2], S[3], . . . , S[|S|].

The algorithm BestSchedule(S) keeps a list Ready of
tasks that are available at every step and constructs the
schedule by progressively concatenating tasks to the string
σ (initially σ = ε). In Fig. 4, A is the set of available
tasks that, at that step, can be added to σ without pos-
ing the risk of hard deadline misses. In other words, if
we added a task t ∈ Ready \A to σ we could no longer
guarantee that all hard constraints are met. B is the
set of available tasks that have a path to the next soft
task S[cnt] to be scheduled. P denotes the path relation
(P = {(t, t′) ∈ T ×T | there is a path leading from t to t′})
and corresponds to the reflexive transitive closure of the re-
lation E (set of edges in the task graph), and it is computed
only once for a given system. Once an available task t̄ is
selected, it is concatenated to σ (σ := σt̄), t̄ is removed from
Ready, and all its successors that become available are added
to Ready.

At every iteration of the while loop of the algorithm
given in Fig. 4, we construct the set A by checking, for every
t ∈ Ready, whether concatenating t to the schedule prefix
σ would imply a possible hard deadline miss. For this pur-
pose we use the algorithm IsSchedulable(ς), which returns
a boolean indicating whether there is a schedule that agrees
with the prefix ς and such that hard deadlines are met.

6. Heuristics
In this section we present several heuristic procedures for

finding a near-optimal solution to the problem of scheduling
with soft and hard tasks to maximize utility as formulated
in Section 4.



The algorithms progressively construct the schedule σ by
concatenating tasks to the string σ that at the end will con-
tain the final schedule. All the heuristics that we propose in
this section make use of the list Ready of available tasks at
every step. The heuristics differ in how the next task, among
those in Ready, is selected as the one to be concatenated to
σ. Note that the algorithms presented in this section are ap-
plicable only if the system is schedulable in first place (there
exists a schedule that satisfies the hard time constraints).

The algorithms make use of a list scheduling heuristic.
The basic algorithm is shown in Fig. 5. Initially, σ = ε (the
empty string) and the list Ready contains those tasks that
have no predecessor. The set A contains the tasks that are
in σ (initially A := ∅). The while loop is executed exactly
|T | times. At every iteration we compute the set B of ready
tasks that do not pose risk of hard deadline misses by being
concatenated to the schedule prefix σ. If all soft tasks have
already been set in σ we select any t̄ ∈ B, else we compute
a priority for soft tasks (SP := Priority(σ)). The way such
priorities are calculated is what differentiates the heuristics
proposed in this paper. Among those soft tasks that are not
in σ, we select sk as the one with the highest priority. Then,
we compute the set C of tasks that cause no hard deadline
miss and that have a path leading to sk. We select any t̄ ∈ C
if C 6= ∅, else we choose any t̄ ∈ B. Once an available task
t̄ is selected as described above, it is concatenated to σ, t̄
is added to A, t̄ is removed from the list Ready, and those
successors of t̄ that become available are added to Ready.

Algorithm BasicHeuristic()
output: A near-optimal schedule σ

begin
Ready := {t ∈ T | ◦t = ∅}
σ := ε
A := ∅
while Ready 6= ∅ do
B := {t ∈ Ready | IsSchedulable(σt)}
if S\A = ∅ then

select t̄ ∈ B
else

SP := Priority(σ)
select sk ∈ S\A such that SP[k] ≥ SP[i] for all si ∈ S\A
C := {t ∈ B | (t, sk) ∈ P}
if C 6= ∅ then

select t̄ ∈ C
else

select t̄ ∈ B
end if

end if
σ := σt̄
A := A ∪ {t̄}
Ready := Ready \ {t̄} ∪ {t ∈ t̄◦ | all q ∈ ◦t are in σ}

end while
end

Fig. 5. Basic heuristic

The first of the proposed heuristics makes use of the ba-
sic algorithm presented in Fig. 5 and the algorithm given in
Fig. 6 for computing the priorities of soft tasks. The pro-
cedure PriorityMaxUtility(ς) assigns a priority to soft
tasks, for a given schedule prefix ς, as follows: if si is in ς,
its priority is SP[i] := −∞; if si is not in ς, we compute the

earliest completion time τ e
′
i when considering expected dura-

tion for all tasks. Then we make use of the maximum utility

Mi (see Fig. 1) for si in order to calculate SP[i] := Mi/τ
e′
i .

The algorithm PriorityMaxUtility makes use of Mi =
ui(0) for every soft task si ∈ S but does not exploit the tran-
sition functions ui(τi) themselves. Our second heuristic pro-

cedure relies on the algorithm PrioritySingleUtility(ς)
(Fig. 7) for computing the priorities of soft tasks. If si is in

ς, SP[i] := −∞, else we compute τ e
′
i (it corresponds to the

completion time, considering expected durations, of si in a
schedule that agrees with the prefix ς and for which si is set
the earliest). Then we assign the priority SP[i] as the single

utility of si evaluated at τ e
′
i .

Algorithm PriorityMaxUtility(ς)
input: A schedule prefix ς
output: A vector SP containing the priority for soft tasks

begin
A := {t ∈ T | t is in ς}
for i← 1, 2, . . . , |S| do

if si ∈ A then
SP[i] := −∞

else
B := {t ∈ T\A | (t, si) ∈ P}
τe
′
i := � t∈A∪B e(t)

SP[i] := Mi/τ
e′
i

end if
end for

end

Fig. 6. Algorithm PriorityMaxUtility

The algorithm PriorityTotalUtility(ς) shown in
Fig. 8 also exploits the information of utility functions but, as
opposed to PrioritySingleUtility, it considers the utility
contributions of other soft tasks when computing the pri-
ority SP[i] of the soft task si. If the soft task si is not
in ς its priority is computed as follows. First, we obtain

the completion time τ e
′
i when si is earliest set in a sched-

ule that agrees with the prefix ς, using expected durations.
Second, for each soft task sj different from si that is not in

ς, we compute τ e
′
j and τ e

′′
j . The former corresponds to the

completion time when si is earliest set in a schedule that
agrees with the prefix ς. The latter corresponds to the com-
pletion time when si is latest set in a schedule that agrees
with ς. In both cases, expected duration of tasks are con-

sidered. The average of τ e
′
j and τ e

′′
j is used as argument for

the utility function uj . Thus the priority of si is given by

SP[i] := ui(τ
e′
i ) + � sj∈S\(A∪{si})uj((τ

e′
j + τ e

′′
j )/2).

Algorithm PrioritySingleUtility(ς)
input: A schedule prefix ς
output: A vector SP containing the priority for soft tasks

begin
A := {t ∈ T | t is in ς}
for i← 1, 2, . . . , |S| do

if si ∈ A then
SP[i] := −∞

else
B := {t ∈ T\A | (t, si) ∈ P}
τe
′
i := � t∈A∪B e(t)

SP[i] := ui(τ
e′
i )

end if
end for

end

Fig. 7. Algorithm PrioritySingleUtility

To sum up this section, we have presented three heuristics
that are based on the algorithm of Fig. 5 and their difference
lies in how the priorities for soft tasks are calculated. The
first heuristic uses PriorityMaxUtility (Fig. 6), the sec-
ond uses PrioritySingleUtility (Fig. 7), and the third
one uses PriorityTotalUtility (Fig. 8). We have named
the heuristics after the algorithms they use for computing



priorities: MaxUtility (MU), SingleUtility (SU), and
TotalUtility (TU), respectively. The first two have a time
complexity O(|T |3(|H| + |S|)) whereas the third has a time
complexity O(|T |3(|H|+ |S|2)).

Algorithm PriorityTotalUtility(ς)
input: A schedule prefix ς
output: A vector SP containing the priority for soft tasks

begin
A := {t ∈ T | t is in ς}
for i ← 1, 2, . . . , |S| do

if si ∈ A then
SP[i] := −∞

else
B := {t ∈ T\A | (t, si) ∈ P}
τe
′
i := � t∈A∪B e(t)

total := ui(τ
e′
i )

for j ← 1, 2, . . . , |S| do
if sj 6= si and sj 6∈ A then
C := {t ∈ T\A | (t, sj ) ∈ P}
D := {t ∈ T\{sj} | (sj , t) ∈ P}
τe
′
j := � t∈A∪C e(t)

τe
′′
j := � t∈T\De(t)

total := total+ uj((τ
e′
j + τe

′′
j )/2)

end if
end for
SP[i] := total

end if
end for

end

Fig. 8. Algorithm PriorityTotalUtility

7. Experimental Results

In this section we experimentally evaluate the heuristics
proposed in Section 6. We are initially interested in the qual-
ity of the schedules obtained by the heuristics MaxUtility
(MU), SingleUtility (SU), and TotalUtility (TU) with
respect to the optimal schedule as given by the exact algo-
rithm OptimalSchedule. We use as criterion the deviation
dev = (Uopt−Uheur)/Uopt where Uopt is the total utility given
by the optimal schedule and Uheur is the total utility corre-
sponding to the schedule obtained with a heuristic.

We have randomly generated a large number of tasks
graphs in our experiments. We initially considered graphs
with 100, 200, 300, 400, 500, and 600 tasks. For these, we
considered systems with 2, 3, 4, 5, 6, 7, and 8 soft tasks. For
the case |T |=200 tasks, we considered systems with 25, 50,
75, 100, and 125 hard tasks. We generated 500 graphs for
each graph dimension. Expected and maximum durations
of tasks were also assigned randomly. For every task graph,
hard tasks and their deadlines were selected randomly as well
as soft tasks and their utility functions. All the experiments
were run on a Sun Ultra 10 workstation.

We have plotted the average deviation as a function of the
number of tasks in Figs. 9(a) and 9(b). These correspond to
systems with 5 and 8 soft tasks respectively. All the systems
considered in Figs. 9(a) and 9(b) have 50 hard tasks. These
plots consistently show that heuristic TotalUtility (TU)
gives the best results for the considered cases.

The plot in Fig. 10(a) depicts the average deviation as a
function of the number of hard tasks. In this case, we have
considered systems with 200 tasks, out of which 5 are soft.
In this graph we observe that the number of hard tasks does
not affect significantly the quality the schedules obtained
with the proposed heuristics.

We have also studied the average deviation as a function
of the number of soft tasks and the results are plotted in
Fig. 10(b). The considered systems have 100 tasks, 50 of
them being hard. We again see that the heuristic TU con-
sistently provides the best results. We can also note that
there is a trend showing an increasing average deviation as
the number of soft tasks grows, especially for the heuristics
MU and SU.
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Fig. 9. Evaluation of the heuristics (50 hard tasks)

Note that, in the experiments we have presented so far,
the number of soft tasks is small. Recall that the time com-
plexity of the exact algorithm is O(|T |3|H||S|!) and therefore
any comparison that requires computing the optimal sched-
ule is infeasible for a large number of soft tasks.
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Fig. 10. Evaluation of the heuristics

In a second set of experiments, we have compared the
heuristics among themselves considering systems with larger
numbers of soft and hard tasks. We normalize the utility
obtained the heuristics with respect to the utility given by
the algorithm TotalUtility (TU): ‖Uheur‖ = Uheur/UTU .

We generated, for these experiments, graphs with 500



tasks and considered cases with 50, 100, 150, 200, and 250
hard tasks and 50, 100, 150, 200, and 250 soft tasks. The
results are shown in Figs. 11(a) and 11(b). We can note that
for systems with many soft tasks, the algorithm SingleU-
tility gives results very close to those of the algorithm To-
talUtility. In the particular case T=500, H=150, S=200,
SU slightly outperforms TU (‖USU‖ = 1.0014, ‖UTU‖ = 1).
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Fig. 11. Comparison among the heuristics (500 tasks)

From the extensive set of experiments that we have per-
formed and its results (Figs. 9 through 11) we conclude, that
if one of the proposed heuristics is to be chosen, TotalU-
tility is the procedure that should be used for solving the
problem of scheduling with soft and hard tasks to maximize
utility as formulated in Section 4. This does not mean that
TotalUtility gives the best results in every case, but in
average it performs better. Since the proposed heuristics are
computationally cheap, we could run all three and choose,
among their results, the schedule that yields the highest total
utility.

In Section 6 we pointed out that the worst-case time
complexity of the algorithms MaxUtility and SingleU-
tility is O(|T |3(|H|+ |S|)) and that one of TotalUtility
is O(|T |3(|H| + |S|2)). In order to give a quantitative idea
of the execution times of these heuristics and the exact algo-
rithm we used throughout this section, we present in Table 1
the average running time for these algorithms in the case of
systems containing 100 tasks out of which 50 are hard.

Num. Soft Average Execution Time [s]
Tasks Exact MU SU TU

2 0.085 0.051 0.051 0.052
3 0.237 0.053 0.052 0.053
4 0.879 0.053 0.053 0.055
5 3.623 0.055 0.055 0.058
6 20.78 0.056 0.056 0.059
7 115.36 0.057 0.058 0.061
8 896.36 0.059 0.059 0.063

Table 1. Av. execution times (100 tasks, 50 hard tasks)

8. Conclusions

We have presented an approach to the problem of static
scheduling of real-time systems that have hard and soft tasks.

Our approach considers that hard, soft, and non-real-time
tasks are periodic and they all are mapped into a single pro-
cessor.

We made use of non-increasing utility functions to repre-
sent the relevance of soft tasks and how the quality of results
is diminished when missing a soft deadline. The problem we
have addressed is thus that one of finding the execution or-
der of tasks in such a way that the sum of individual utilities
of soft tasks is maximum and, at the same time, there is
guarantee that no hard deadline will be missed. We used
maximum duration of tasks for guaranteeing hard deadlines
and expected duration of tasks for calculating the total util-
ity.

We have proposed an exact algorithm for solving the prob-
lem of static scheduling with soft and hard tasks to maximize
utility, which gives the optimal schedule in O(|T |3|H||S|!)
time. We also presented three heuristic procedures that find
near-optimal solutions in short time.

We have randomly generated 15000 task graphs for ex-
perimental evaluation. The experiments showed that the
heuristic TotalUtility is the one that gives the best re-
sults in average. Its time complexity (O(|T |3(|H| + |S|2)))
is however larger than the one of the other two heuristics
(O(|T |3(|H| + |S|))). In the cases where it was feasible to
compute the optimal schedule (up to 8 soft tasks), we ob-
tained an average deviation smaller than 2% when using the
heuristic TU.

As part of our future work, we are currently studying
the issue of quasi-static scheduling of real-time systems with
soft and hard tasks. The idea is to prepare at design-time
a number of schedules and schedule-switching points, and
let the decision of which of them to follow be taken at run-
time based on the actual execution times. Thus we can fur-
ther improve the quality of results (in terms of total utility)
by choosing a schedule that best fits the actual conditions
without incurring the expensive on-line computation of such
schedules.
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