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Abstract. Boolean combination functions in Bayesian networks, such as
noisy-or, are often credited a property stating that inactive dependences
(e.g., observed to false) do not “cause any harm” and an arc becomes
vacuous and could have been left out. However, in classic Bayesian
networks we are not able to express this property in local CPDs. By using
novel ADBNs, we formalize the innocuousness property in CPDs and
extend previous work on context-specific independencies. With an explicit
representation of innocuousness in local CPDs, we provide a higher causal
accuracy for CPD specifications and open new ways for more efficient
and less-restricted reasoning in (A)DBNs.

1 Introduction

Boolean combination functions in Bayesian networks (BNs) are often credited a
property stating that if a dependence is observed to be inactive (i.e., a precon-
dition observed to be false) it shall not “cause any harm” and its arc becomes
vacuous, i.e., could have been left out. We call such a property an “innocuousness”
property of conditional probability distributions (CPDs). We cannot specify such
an innocuousness property in CPDs, nor formalize it up to now. Notwithstanding,
vacuous dependencies have shown to be of valuable interest for efficient reasoning
in Bayesian networks, and an innocuousness property is widely associated with,
e.g., noisy-or combination functions. Further, being able to explicitly specify an
innocuousness property in CPDs would allow for more precise representations
of the world, as demanded and emphasized by Pearl [8]. Formalizing an innocu-
ousness property can almost be achieved with context-specific independencies
(CSIs) introduced by Boutilier et al. [2], but consider the following example: Say,
random variable X is conditionally dependent on Y and C and we specify a
CPD P (X|Y,C). With CSIs we can specify that X becomes independent of Y
in a specific context C = c ∈ dom(C), but X stays dependent on Y in another
context C = c′ ∈ dom(X). Boutilier et al. [2] formalize: P (X|Y, c) = P (X|c)
holds, if ∀y, y′ ∈ dom(Y ),∀x ∈ dom(X) : P (x|y, c) = P (x|y′, c), but there ex-
ists a c′ ∈ dom(C) s.t. ∃y, y′ ∈ dom(Y ),∃x ∈ dom(X) : P (x|y, c′) 6= P (x|y′, c′).
However, if we would like to formalize an innocuousness property stating that
a context C = c ∈ dom(C) “removes” itself (and not only another variable),
i.e., we would like to specify “P (X|Y, c) = P (X|Y )” in a CPD, we run into the
problem that a formal definition is neither available nor easily possible: The



allegedly irrelevant random variable C in question is in fact the one that ought
to be relevant for specifying the independence.

Motzek and Möller [7] describe a novel form of Bayesian networks, called
Activator Dynamic Bayesian Networks (ADBN). While they focus on the ex-
ploitation of activators in terms of graphical models, activators, as we will see in
this paper, allow a formal definition of an innocuousness property. Further, they
only consider activator sets when studying new possibilities in graphical models.
We show that by considering innocuousness properties in CPD specifications,
previously imposed restrictions of [7] can be significantly relaxed.

Independencies in Bayesian networks and graphical models in general have
been extensively studied for efficient inference, notably by Zhang and Poole
exploiting causal independencies [13], and have been extended with Boutilier et
al.’s contextual independencies [2] in [9]. Still, a contextual independence where
a context itself becomes independent was not considered in these works, and
this hampers ways of more efficient reasoning and representations of causalities.
Boolean combination functions have undergone notable considerations in works by
Henrion [5], Srinivas [11], and Antonucci [1] introducing extensions to cope with
imprecision. Cozman [3] provides formal definitions and specifies properties of
combination functions leading to an axiomization of the noisy-or function, where
we find an “accountability” property, which goes into the direction of defining
an innocuousness property. However, a formal definition of innocuousness itself
as “an inactive node does not cause any harm” is still missing. Although, the
counterpart “only an active node causes harm” is mentioned as an “amechanistic”
property in Heckerman and Breese [4] as well as Zagorecki and Druzdzel [12],
but their work follows a different direction focusing on easier parametrization of
CPDs.

The contribution of this paper can be summarized as follows. By formalizing a
yet unexpressed innocuousness property in CPDs, we are able to more accurately
represent causalities in CPDs, and we relax restrictions previously posed on
graphical models. Based on graph enumeration techniques we quantitatively
explore new relaxations of syntactic restrictions of graphical models for Bayesian
networks.

We discuss preliminaries on ADBNs in Section 2 and introduce novel prin-
ciples of graphical models using a running example. Afterwards, in Section 3
we introduce the innocuousness property and provide a formal definition using
activator random variables. Subsequently we exploit the innocuousness property
for relaxing restrictions posed on (A)DBNs in Section 4 and we show in Section 5
that the utility of (A)DBNs is significantly enhanced by exploiting innocuousness
properties. We conclude in Section 6.

2 Activator Dynamic Bayesian Networks (ADBN)

After initial notations and definitions used throughout this paper, we demonstrate
a running example for ADBNs. We consider an example from [7], which outlines
restrictions of classic DBNs and motivates the use of cyclic ADBNs.



Notation 1 (State Variables) Let Xt
i be the random variable for the ith state

Xi at time t, where Xt
i is assignable to a value xi ∈ dom(Xt

i ). Let Xt be the
vector of all n state variables at time t, s.t.,

Xt =
(
Xt

1, . . . , X
t
n

)ᵀ
.

Let P (Xt
i = xi) (or P (xti) for brevity) denote the probability of state Xi having

xi as a value at time t. If dom(X) = {true, false} we write +xt for the event
Xt = true and ¬xt for Xt = false as usual. If Xt

i is unspecified and not fixed
by evidence, P (Xt

i ) denotes the probability distribution of Xt
i w.r.t. all possible

values in dom(Xi).

Definition 1 (Dynamic Bayesian Network). A DBN is a tuple (B0, B→)
with B0 defining an initial Bayesian network (BN) representing time t = 0,
containing all state variables X0

i in X0, and a consecutively repeated Bayesian
network fragment B→ defining state dependencies between Xs

i and Xt
j , with

Xs
i ∈ Xs, Xt

j ∈ Xt, s ≤ t. By repeating B→ for every time step t > 0, a DBN
(B0, B→) is unfolded into a BN defining its semantics as a joint probability over
all random variables P (X0:tᵀ). Notwithstanding, for every random variable Xt

i a
local CPD, e.g., as a CPT, is defined.

State dependencies defined in B→ are limited, s.t. no cyclic dependencies are
created during unfolding.

Example 1 (Running Example & Motivation for ADBNs). Let us assume that
in a company one is concerned with regulatory compliance over time. Business
documents are exchanged and might contain manipulated information. Receiving
such documents might influence an employee becoming corrupt at time t, which,
further, might influence other employees. As an employee might indeliberately
become corrupt, we say he becomes credulous. We represent the credulousness
state of an employee, say, Claire, Don, and Earl, by respective random variables
Ct, Dt, Et. An influence can only occur if a message is passed from employee
X to Y at t. We represent a message exchange by a random variable M t

XY .We
assume messages are only passed from Claire to Don to Earl. We can model
these influences correctly in a DBN with B→ consisting of state random vari-
ables Ct, Dt, Et and message variables M t

CD,M
t
DE . Every state Xt depends on

its previous state Xt−1, and Dt conditionally depends on Ct and M t
CD, and

respectively, Et on Dt, M t
DE . For every random variable, an appropriate CPD is

defined. N

This example shows that simple influences can be correctly modeled in a DBN.
However, we would like to model that messages can potentially be passed between
every employee, which would render every state variable dependent on every other
state variable. Clearly, this would cause cycles in B→, which are syntactically
forbidden in Bayesian networks. In DBNs, cycles are usually resolved over time in
a diagonal fashion, where states of t only influence t+ 1 (Fig. 1, gray). However,
we already used “time” for our modeling perspective, and bending dependencies
over time causes conflicts with causality. The diagonal structure implies that



receiving a message does not ultimately render another person credulous, but only
in the consecutive timeslice. This immediately constrains the use of timeslices
to infinitesimally small timeslices. If our observations of passed messages are
temporally coarser, say, daily, or if high-frequency updates are too costly, then
we clash with causality as indirect influences (e.g., C influences E through D)
are not covered anymore, and we are bound to observations which do not require
the anticipation of indirect influences (see later Prop. 1).

Fortunately, Motzek and Möller [7] show that ADBNs can actually be based
on cyclic graphs completely sound with Bayesian network semantics as long as
observations (message transfers) fulfill certain restrictions, based on the following
definitions and theorems.
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Fig. 1. A correctly represented world using an ADBN (black) for Ex. 1. Syntactic
DAG constraints of BNs prevented desired cyclic intra-state dependencies and diagonal
inter-state dependencies were enforced (hinted in light gray). In the diagonal case, M t

XY

represents M t−1 t
XY , i.e., M t

XY affects the dependency of state Y t on Xt−1.

Definition 2 (Activator Random Variables). We use the notation AXY for
a so called activator random variable which activates a dependency of random
variable Y on X in a given context. Let dom(AXY ) = {true, false} (extensions
to non-boolean domains are straightforward). We define the deactivation criterion
AXY = false as

∀x, x′ ∈ dom(X),∀y ∈ dom(Y ),∀z ∈ dom(Z) :

P (y|x,¬aXY , z) = P (y|x′,¬aXY , z) = P (y|∗,¬aXY , z) ,
(1)

where ∗ represents a wildcard and Z further dependencies of Y .
The activation criterion describes a situation where Y becomes dependent on

X, i.e., the CPD entry for y is not uniquely identified by just +aXY and z, hence

∃x, x′ ∈ dom(X),∃y ∈ dom(Y ),∃z ∈ dom(Z) :

P (y|x, +aXY , z) 6= P (y|x′, +aXY , z) .
(2)



Let As t describe a matrix of activator random variables between time s and t,

As t =

A
s t
11 · · · As t

1n
...

. . .
...

As t
n1 · · · As t

nn

 .

Let As t
i denote the ith column of As t and let As t denote the corresponding

column vector of all entries of As t. For brevity, we write At for Att (excluding
Att

kk), and correspondingly for At
ij, At

i and At.

In fact, in Ex. 1 message transfers (M t
XY ) take the role of activator random

variables and we actually obtain an Activator DBN from Ex. 1.

Definition 3 (Activator Dynamic Bayesian Network). A repeated ADBN
fragment B′→ consists of dependencies between state variables Xs

i and Xt
j , t−1 ≤

s ≤ t (Markov-1) and matrices As t of activators. Let As t
ij be the activator random

variable influencing Xt
j regarding a dependency on Xs

i , such that Xt
j ’s local CPD

follows Eq. 2 and Eq. 1. Every activator is assigned a prior probability. An ADBN
is then syntactically defined by (B0, B

′
→) defining its semantics as a well-defined

joint probability over all random variables P (X0:tᵀ ,A01:ttᵀ).

Note that activators in an ADBN are classic random variables and are part of
the modeled domain (message transfers in Ex. 1), i.e., activators are no auxiliary
variables. ADBNs are restricted in order to comply with a Bayesian network:

Theorem 1 (Bayesian Network Soundness). For every combination, i.e.,
an arbitrary instantiation A∗

1:t of A1:t, an ADBN (B0, B
′
→) corresponds to a

Bayesian network, if for all t, A∗
t satisfies the acyclicity constraint:

∀x, y, z ∈Xt : A(x, z)t,A(z, y)t → A(x, y)t

¬∃q : A(q, q)t ,
(3)

with a predicate A(i, j)t defined as

A(i, j)t =

{
false if ¬atij
true otherwise

.

A proof for this theorem can be found in [7, Sec. 3].

Theorem 1 means that if a specific structure of an DBN is not known in advance or
is changing over time, an ADBN can intrinsically adapt itself to observations. Well-
defined semantics is obtained in a (cyclic) ADBN, if only certain combinations of
A1:t are instantiated, enforced by minimal sets of observations.

Example 2 (Restriction Example). Continuing Ex. 1, we observe a message trans-
fer from Claire to Don (+m1

CD) and from Don to Earl (+m1
DE), and we can

neglect all other transfers, i.e., ¬m1
DC ,¬m1

ED,¬m1
CE ,¬m1

EC . These observations
satisfy Thm. 1 and thus lead to a valid Bayesian network, even though it is



based on a cyclic graph. To fully evaluate all implications of the observations, we
have to anticipate an indirect influence from Claire to Earl through Don during
timeslice 1. A diagonal “classic” DBN (as in Fig. 1, gray) cannot anticipate this
indirection and would lead to spurious results. N

While cyclic ADBNs are syntactically restricted, Ex. 1 and Ex. 2 demonstrate
that diagonal acyclic alternatives are significantly more restricted:

Proposition 1 (Diagonal ADBN Restrictions). A classic, “diagonal” (as in
Fig. 1, gray) (A)DBN is restricted in its usage to special observation sets. Indirect
influences are spread over multiple timesteps and possible indirect influences
inside one timestep cannot be considered. This restricts a DBN to observations
where indirect influences strictly do not occur, i.e., no two activators At

∗i and
At

i∗ are allowed to be active, i.e. the set of probably active activators must form
a bipartite digraph with uniformly directed edges (cf. [7, Prop. 1]).

In the following, we introduce a novel property of CPDs, which significantly
relaxes restrictions opposed by Thm. 1.

3 Innocuousness

We introduced innocuousness informally as “an inactive node does not cause any
harm”, but were unable to give a formal definition for such a property in CPDs
of classic (D)BNs. Often “accountability”, i.e., P (+x|¬∗) = 0 [3], is confused with
the innocuousness property, but causally P (+x|¬∗) = 0 can also represent that
exactly one false-dependence is responsible for P (+x|¬∗) being 0.

As an extension to context-specific independencies (CSIs) from Boutilier et al.
[2], we define a concept of innocuousness contexts, with fewer restrictions of CSIs.
CSIs provide a formal definition for a variable X becoming independent of a
variable Y in a context C = c ∈ dom(C), where X,Y 6∈ C. This allows us to
specify properties such as P (X|Y, c) = P (X|c) in local CPDs. But, X,Y 6∈ C
prevents us from specifying that a context C = c removes one of its own random
variables C ∈ C, e.g., “P (X|Y, c) = P (X|Y )”. Using activators in ADBNs we
extend Boutilier’s work to innocuousness contexts. We formally define that in a
context C = c, a context variable C ∈ C can itself becomes irrelevant, which we
call self-reflexive independence. Let us say a context C = c ∈ dom(C), if it shall
represent that X becomes independent of C, given C = c, i.e. P (X|c, ACX ,Z) =
P (X|ACX ,Z). Using an activator-enriched CPD we define this to hold for binary
activator random variables if

∀x ∈ dom(X),∀z ∈ dom(Z) :

P (x|c, +aCX , z) = P (x|c,¬aCX , z) = P (x|∗,¬aCX , z) ,
(4)

where Z represents remaining further dependencies of X. Extensions to non-
boolean activator random variables are straightforward.

This means, given C = c, ACX becomes irrelevant for X, i.e., X becomes
independent of ACX . As ACX can be instantiated in any form now, we can



also say ¬aCX . According to the deactivation criterion of an activator, X then
becomes independent of C given ¬aCX , or rather X becomes independent of C
given ¬c, which is exactly what we intended.

Now, assume to specify a CPD P (X|C,ACX , Q,Z), where the innocuousness
property of a variable is only in place in a further context. For example, there
exists a variable Q that activates the innocuousness property of C only given
Q = q ∈ dom(X). In this case, Eq. 4 only holds for specific z ∈ dom(Z).
This means, one innocuousness context is defined by instantiations of multiple
random variables. Moreover, one random variable might stand in multiple different
innocuousness contexts.

Notation 2 (Innocuousness Contexts) Activator random variables are
marked with a dot, e.g., ȦY X , if they are subject to become irrelevant in specific
contexts. We denote a context in which Y is innocuous for X as a so called
innocuousness context as a left superscript on AY X . If a context is met and Y is
innocuous for X, we say that AY X stands in the innocuousness context. For the
first example, this would be

P (X|C,C=c
ȦCX ,Z) ,

with which we can also denote a previously discussed toggle variable Q: Only in
the context Q = q and C = c, X becomes independent of C, as ACX becomes
freely instantiable. For this situation we write

P (X|C,Q=q,C=c
ȦCX , Q,Z) ,

where Z represents further dependencies of X, but without X, Q, C and ACX .

Notation 3 (Innocuousness Context Vectors) Variables might become in-
nocuous in multiple contexts. Multiple innocuousness contexts ϕAY X

of one
activator AY X are encapsulated in a vector ϕAY X

and are delimited by ; . An
innocuousness context vector ϕAY X

can also be seen as a Boolean formula, where
all contexts are disjunctions and a context is a conjunction of instantiations.

This notation allows to mark contexts, in which an activator becomes irrelevant
and could have been chosen to be deactive, and thus modifies the topology.
Definition 4 describes the explicit specification of innocuousness in CPDs.

Definition 4 (Activator Innocuousness). Let ΦAY X
be the vector of random

variables used in a context ϕAY X
associated with AY X . Every innocuousness

context ϕAY X
∈ ϕAY X

is then defined to hold

∀x ∈ dom(X),∀z ∈ dom(Z) : P (x|ϕAY X
, +aY X , z) = P (x|ϕAY X

,¬aY X , z)

= P (x|{ϕAY X
\y ∈ dom(Y )}, y,¬aY X , z) = P (x|{ϕAY X

\y}, ∗,¬aY X , z) ,
(5)

with remaining arbitrary dependencies of X on other random variables Z and z
as an arbitrary instantiation of those, excluding AY X and ΦAY X

.



Frankly, with Def. 4 we can formulate the same CSIs as Boutilier et al.
[2], but, further, we can specify previously mentioned self-reflexive indepen-
dences.We are thus able to explicitly express P (X|{ϕAY X

\y}, y, AY X ,Z) =
P (X|{ϕAY X

\y}, AY X ,Z) as demonstrated in the following example.

Example 3 (Activator Innocuousness). Continuing Example 2, let us assume a
noisy-or combination function for each CPD of a state Xt. With a noisy-or combi-
nation, every activator random variable (a message transfer) Ṁ t

XY stands in the
innocuousness context ϕMt

XY
= ¬xt. We can now explicitly represent that Claire

is not influenced by a non-credulous Earl, i.e., P (Ct|Ct−1, Dt,¬et, At
DC , A

t
EC) =

P (Ct|Ct−1, Dt, At
DC , A

t
EC), by fixing

∀ Ct, Ct−1, Dt, At
DC , A

t
EC :

P (Ct|Ct−1, Dt,¬et, At
DC , +a

t
EC) = P (Ct|Ct−1, Dt,¬et, At

DC ,¬atEC)
(by Def. 2)

= P (Ct|Ct−1, Dt, +et, At
DC ,¬atEC)

in the respective CPD specification of Ct (likewise for non-creduluos Don). N

We see that an arc in B→ representing a dependency of X on Y can become
vacuous in a context of the variable Y itself, which was previously impossible
to formalize and impossible to define in a CPD without activators. This is
beneficial for more efficient reasoning and a higher causal accuracy of independence
declarations in all DBNs with activator random variables.

Further, Motzek and Möller [7] did not consider any properties of CPDs for
possible acyclicity constraints in ADBNs, and only focus on defined activator
sets. In the next section, we consider innocuousness properties of CPDs and relax
restrictions posed on graphical models.

4 Exploiting Innocousness

By considering properties of CPDs of state variables Xt, we relax restrictions of
Thm. 1 by supporting innocuousness contexts as further acyclicity constraints.
Note that in an ADBN, these checks and constraints are only sufficient conditions
for achieving sound results and are not required for necessary calculations, if,
e.g., observations can be trusted to fulfill these restrictions.

Theorem 2 (Bayesian Network Soundness Revised). For every set of
arbitrary instantiation of A1:t and X0:t, written A∗

1:t, X0:t
∗ , an ADBN (B0, B

′
→)

corresponds to a Bayesian network, if for all t, A∗
t and Xt

∗ satisfy the new
acyclicity constraint:

∀x, y, z ∈Xt : A(x, z)t,A(z, y)t → A(x, y)t

¬∃q : A(q, q)t ,
(6)

with a predicate A(i, j)t defined as

A(i, j)t =

{
false if ¬atij ∨ϕAt

ij

true otherwise
,



with the innocuousness context vector ϕAt
ij

seen as a disjunction of multiple
contexts ϕAt

ij
for activator At

ij , as defined in Def. 4. Given a correspondence to a
Bayesian network an ADBN’s semantics is well-defined and the complete joint
probability over all random variables is straightforwardly specified by the product
of all locally defined CPDs,

P (X0:tᵀ ,A1:tᵀ) = P (X0:t−1ᵀ ,A1:t−1ᵀ)·∏
i

P (Xt
i |Xtᵀ\Xt

i , Ȧ
t
i

ᵀ
, Xt−1

i ) · P (Atᵀ) . (7)

Theorem 2 means, every (cyclic) ADBN corresponds to a sound Bayesian network,
if only certain combinations of (X0:t,A1:t) are instantiated. Minimal sets of
observations, i.e., partial instantiations of (X0:t,A1:t), have to enforce that
during inference only valid combinations are used.

In the following, we prove Thm. 2 by showing that any instantiation of A1:t,
X0:t holding Eq. 6 is topologically equivalent to some instantiation of A1:t holding
Eq. 3, and thus is a valid Bayesian network with straightforward joint probability.

Proof (Theorem 2). According to Thm. 1 every (cyclic) ADBN is a Bayesian
network and its semantic joint probability is well-defined as the product of all
locally defined CPDs, if an instantiation of A1:t holds Eq. 3. Motzek and Möller
[7, Proof 1] show, that for every of such combinations, a topological order ≺ must
exist, s.t. by reversing Bayes’ chain rule in Eq. 7 we obtain a joint probability
distribution, which belongs to a valid Bayesian network.

Definition 5 (Topology Equivalence). Given an ADBN (B0, B→), an in-
stantiation (X0:t,A1:t)1 is topologically equivalent to an instantiation (∅,A1:t)2,
if for both the same topological order ≺ exists in (B0, B→).

Generally, in an acyclic ADBN, for every arbitrary instantiation (X0:t,A1:t)∗
the same topological order ≺∗ exists. In a cyclic ADBN, the topological order is
defined (at “runtime”) by a minimal set of deactive A1:t holding to Thm. 1. In
that case, some state variables Xt become independent of state variables Xt

E,
which previously created cycles and prohibited a topological order ≺. Note that
the set of activators A1:t only are necessary conditions for creating a topological
order and only follow a lexicographic order. However, under Def. 4, an active
activator At

+ might stand in a context ϕAt
+
, which renders At

+ innocuous or
irrelevant. It is straightforward from Def. 4 that At

+ can then be seen as deactive
from a topological perspective, which we call topologically deactive. Two sets of
instantiations (X0:t,A1:t)1, (∅,A1:t)2 then share the same topological order ≺,
if the set of topologically-deactive activators in (A1:t)1 is a superset of deactive
activators in (A1:t)2 and a topological order exists for (A1:t)2 (i.e., holds Thm. 1).

With Def. 5, every instantiation (X0:t,A1:t)1 holding Thm. 2 is topologically
equivalent to an instantiation (∅,A1:t)2 holding Thm. 1 for which a joint proba-
bility function is well-defined based on the same topological order ≺. Under this
topological order (B0, B→) is a Bayesian network and Proof 1 in [7] is analogous.

ut



Note that while the joint probability of two topologically equivalent instantiations
follows the same topological order, the results/outcomes of both must not be the
same, as we need to consider priors of A1:t.

Theorem 2 shows and it is proven that ADBNs cannot only be based on
cyclic graphs and handle acyclic activator observations, but also cyclic activator
observations can be made when considering specific CPD properties. The following
example demonstrates the observation of a cyclic activator constellation.

Example 4 (Restriction Relaxation Example). Continuing Ex. 3, we now, observe
¬e1 (in addition to previous observations), but +m1

ED. The observations +m1
ED,

+m1
DE obviously lead to a cycle, which is not allowed according to Thm. 1 and

is neither allowed in diagonal networks (Prop. 1). However, we find that the
observation ¬e1 meets the innocuousness context ϕM1

ED
(Ex. 3, noisy-or), i.e.,

E1 is innocuous for D1 given ¬e1. Therefore, this observation fixes (X0:t,A1:t)
to instantiations that an ADBN can handle (Thm. 2). In fact, observations in
this example fix all instantiations of (X0:t,A1:t) to be topologically equivalent
to the one from the previous example, i.e., both observations are topologically
equivalent.

Note that still this observation cannot be handled by a diagonal alternative,
as we need to anticipate an indirect influence: ¬e1 tells us indirectly something
about C1, e.g., that ¬c1 is now more likely than without the new observations. N

This example shows that the cyclic model can handle a larger set of observation
constellations in contrast to a diagonal alternative. The next section generalizes
these advantages for a general model.

5 Discussion and Comparison

In this section, we investigate how cyclic ADBNs compare to classic diago-
nal (A)DBNs. As discussed before, only certain combinations of (Xt,At) in a
timestep t lead to valid Bayesian networks, which means (partial) observations of
(Xt,At) have to fulfill certain restrictions. Further, we explore how the exploita-
tion of innocuousness properties can relax these restrictions. We find that this
exploitation significantly allows for more observation sets to be handled, and that
cyclic ADBNs heavily outperform their diagonal counterparts w.r.t. expressivity.

In cyclic ADBNs, instantiations of (Xt,At) during a timestep t were restricted
according to Thm. 1 and are relaxed due to Thm. 2. For diagonal ADBNs, instanti-
ations are restricted, s.t. no indirect influences can occur (Prop. 1). Notwithstand-
ing, innocuousness properties can also relax this restriction. For a comparison, let
us consider Ex. 1 consisting of N employees, i.e., state variables Xt, and likewise
N(N − 1) message exchange variables in every network fragment B→.

Without considering CPD innocuousness properties, i.e., we do not exploit
contexts from Xt, we find that the number of possible At combinations in a
cyclic ADBN corresponds the number of DAGs [10, Seq. A003024]. In a classic
diagonal ADBN no indirect effects are anticipated, and thus, no “interlocking”
(possibly active) activator combinations of At are allowed. We find this as the



number of uniformly directed bipartite graphs, where isolated nodes belong to
a fixed group [10, Seq. A001831]. For every of these combinations we have 2N

combinations of all Xt.
To emphasize the effect of exploiting innocuousness context, we consider that

q% out of all N state variables Xt in an ADBN fragment B′→ are innocuous states
XQ, meaning that every state Xt

i “is not harmed” by any of these Xt
Q ∈ XQ

t

if ¬xtQ. This implies that every activator Ȧt
ij has the context ϕAt

ij
= ¬xti, if

Xt
i ∈XQ

t. Thus, rank(XQ
t) = Q = bN · qc, for which flooring operations lead

to wavy lines in Fig. 2.
In an cyclic ADBN we obtain the total numberNON,Q of allowed combinations

(Xt,At) in a timestep t with Q innocuous nodes according to Thm. 2 as

NON,Q = 2N−Q ·
Q∑

k=0

2k(N−1+N−k) ·A003024N−k ·
(
Q

k

)
. (8)

NON,Q origins from the consideration that we can have between k = 0 to
k = Q “deactive” innocuous nodes. Thus, activators between N −k nodes are still
bound to DAG combinations, for which we have A003024N−k many with 2N−Q

instantiations of Xt. For every of those DAG combinations we have k deactive
nodes, whose N − 1 activators are free, i.e. 2k(N−1) combinations, and N − k
active nodes, whose activators with the k deactive nodes are free, i.e. 2(N−k)k
further combinations. For each combination, we have

(
Q
k

)
options to choose which

(labeled) innocuous states are deactive.
Notwithstanding, the restriction that only indirect-free combinations of At are

allowed in diagonal ADBNs (Prop. 1) is also relaxed by considering innocuousness
properties of Xt. To enumerate these, we need the number of uniformly directed
bipartite graphs with groups of size n,m, N = n+m, which is

A001831′N,n =

(
N

n

)
· (2n − 1)

N−n
. (9)

With Q innocuous-nodes we then find the total number N /
N,Q of allowed combi-

nations in diagonal (A)DBNs to be

N /
N,Q = 2N−Q ·

Q∑
k=0

N−k∑
n=0

2k(N+n−1) ·A001831′N−k,n ·
(
Q

k

)
(10)

N /
N,Q origins from the same considerations as NON,Q, but the activators of the

k deactive nodes are not completely free anymore. As (active) activators of the
second group of size m interlock with activators of the deactive nodes.

Figure 2 shows a comparison of NON,Q and N /
N,Q for 0 < N ≤ 25 and dif-

ferent Q. Note that even in a logarithmic plot, a cyclic ADBN has an exponential
advantage in favor of a classic acyclic (A)DBN.
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Number of allowed instantiations of (Xt,At) due to Thm. 2
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Fig. 2. Cyclic ADBNs (NON,Q, solid) clearly outperform classic diagonal DBNs (N /
N,Q,

dashed) in the number of allowed instantiations of (Xt,At). Note that for a full noisy-or
network (100%) all possible graph structures (At combinations) are allowed in the case
of ∀i¬xi, which draws N /

N,N near NON,N . Still, even in this extreme case a cyclic
ADBN outperforms a classic DBN by two orders of magnitude (semi-logarithmic plot).

6 Conclusion

In this paper we have formalized an innocuousness property of random variables,
which is often associated with Boolean combination functions for general CPDs.
Based on a formalization with random variables taking the role of activators, we
relax restrictions on graphical models for the use in Bayesian networks and have
given a quantitative evaluation of restrictions posed on such networks. This is
beneficial for working with graphical models representing a process over time
requiring the anticipation of indirect influences under a free choice of temporal
granularity. Further, by providing a formal definition for innocuousness in CPDs,
we gain the ability to formally represent that in specific contexts a dependency
is causally irrelevant, opening new ways for more efficient inference and a higher
causal accuracy in specifying CPDs.

Still, like in any other DBN, operations remain computationally intractable
with respect to dimension complexity (number of state variables), and this
demands approximate inference techniques. Considering our formalization that
certain dependencies, i.e. arcs, are irrelevant in specific situations and an resulting
BN might turn out to be singly connected, approximate inference techniques can
heavily benefit from ADBNs and, here newly defined, innocuousness properties.
Future work is dedicated to new inference techniques and extensions to relational
Bayesian networks [6].
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