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Chapter 1

Introduction

1.1 Atomic electric dipole moments(EDM)

The three discrete symmetry operations under which the laws of physics were thought to
be invariant till the year 1957 are parity (P), time-reversal (T') and the charge conjugation
(C). The search for violations of these symmetries could have profound implications for
our understanding of particle physics. Of the three symmetries, P violation was observed
by Wu.et.al.[1] in 1957. Some years later, CP violation was observed in the neutral kaon
system [2]. The three symmtries are linked by the CPT theorem ! from which it can be
inferred that CP-violation implies 7" violation.

The origin of parity violation can be discerned within the frame work of the Standard
Model (SM) of particle physics through the weak interactions, but there is no clear
understanding of the origin of time-reversal violation in nature. The presence of a non-
zero electric dipole moment on a non-degenerate physical system is a direct signature of
parity (P) and time-reversal (T') symmetry violations [3]. The total angular momentum
of a physical system is related to it’s intrinsic EDM given by, D = d J, where J is the
total angular momentum and D the intrinsic EDM and d is the proportionality constant.
It will be shown at a later stage in the thesis that d is actually the coupling constant
of the P and T violating interaction in question. Table.1.1 illustrates the consequences
of P and T violations on the intrinsic EDMs. Under a parity transformation D being a

vector changes sign and J being pseudo vector doesn’t change sign, whereas under a time-

'While a physical system described by a local field theory may violate any of these symmetries
independently, it is invariant under the combined operation of all three of them
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Chapter 1. Introduction

Quantity Parity Time-reversal
D D =-D D=D
J J =7 J =-7J

Table 1.1: ﬁ,T violation for a non-zero EDM

reversal tranformation J changes sign and D does not. The above table demonstrates
in a simple way that for a system to have a non-zero EDM, both P and 7" have to be
simulataneously violated. This can be rigorously proved for a non-degenerate physical
system using some important ideas of quantum mechanics and is presented in Appendix
A. Hence, it follows that atoms being non-degenerate physical systems can possess
a non-zero intrinsic EDM if there are violations of P and T symmetries. They offer
advantages from an experimental point of view, of being electrically neutral and hence
can be subjected to external electric fields. In addition, atoms are rich sources of EDMs
as we shall explain later in this chapter. They allow studies of C'P or T violations in the
leptonic, semi-leptonic and hadronic sectors. Searches for an atomic EDM can be broadly
classified into the following catagories - EDM of paramagnetic atoms (atoms having open-
shell structure) and EDMs of dia-magnetic atoms (atoms with closed electronic structure)
and EDMs of nucleons, particularly that of the neutron. In this thesis, we discuss only
the EDMs of diamagnetic atoms. Theoretical studies involve the parameterization of
the atomic EDMs in terms of the CP-violating coupling constants at various levels as
shown in Fig.1.1 [4]. Some of the extensions of the Standard Model, like the Multi-
higgs, Super Symmetry (SUSY) and Left-right symmetric models, predict CP-violation
at the level of elementary particles. The atomic EDMs can hence be expressed in terms
of these coupling constants, with the knowledge of the CP-violating parameters of the

intermediate - nuclear, nucleon and elementary particle sectors as shown in Fig.1.1.

2
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Figure 1.1: Origin of atomic EDM (Steve Barr, 1993).

1.1.1 Closed and open-shell atomic EDMs - their implications

The permanent EDM of a physical system is aligned along it’s total angular momentum.
This can be demonstrated by using the Wigner-Eckart theorem?. Since the EDM of
a closed-shell atom has zero total angular momentum from the electronic sector, the
atomic EDM must lie along the nuclear spin. This EDM arises primarily from the
CP-violating electron-nuclear interactions and the Nuclear Schiff moment(NSM, S). The
electron-nuclear interaction, which violate T" and P are the tensor-pseudo tensor (T-PT)3
or the scalar-pseudo scalar (S-PS)interactions, the NSM and the Magnetic Quadrupole
Moment (MQM). In this thesis, we study atomic EDMs of closed-shell atoms which arise
mainly from the T-PT electron-nuclear interactions and the Nuclear Schiff Moment. At
the elementary particle level, the origin of closed-shell atomic EDMs is attributed to the

Pand T violating electron-quark interactions and quark-quark interactions which are

2Essentially which states that any vector pertaining to a system, must align with respect to the
direction of the internal property of the system

3In ee — NN interaction, we treat the electron and the nuclear currents as the tensor and pseudo
tensor currents respectively, given by ¥.0,, ¥, and ¥no,,7 Ty

3



Chapter 1. Introduction

predicted by the lepto-quark models [4]. The limits on the T-PT coupling constant (C7)
has been obtained from the comparison of the most recent experimental result of 1% Hg

atomic EDM [5, 6],
d(*Hg) = (—1.06 4 0.49 £ 0.40) x 10~ *ecm

and the enhancement factor calculated by [7], using the Coupled-perturbed Hartree-Fock
theory,

d(*Hg) = —6.0 x 107*Croye — m

which gives the limit on Cf7,
Cr = (1.77 +0.82+ ().67) x 10 %y

A non-zero value of Cr would imply physics beyond the Standard Model. The accuracy
of the calculations of enhancement factors would lead to a more stringent limit on Cr.
Coupled-perturbed Hartree-Fock theory accounts for two-particle, two-hole kind of elec-
tron correlations to all orders in perturbation. In addition to these correlation effects,
it is important to include a lot more effects which have not been accounted for by the
Coupled-perturbed Hartree-Fock theory to all orders. A more accurate atomic theory
should be able to treat all kinds of electron correlation to all orders in perturbation, which
includes four-particle, four-hole, three-particle - one-hole, etc effects. It is a challenge for
many-body atomic theorists to be able to account for these important correlation effects
and in this thesis, we have attempted to address this problem.

As shown in the chart, Fig.1.1, the NSM(denoted by operator S) can be caused by
the nucleon-nucleon interactions or a nucleon EDM, which at the elementary level could
arise from the interaction between the quarks and the chromo electric dipole moments of
the quarks. The coupling constants associated with these interactions can be predicted
by Multi-higgs, SUSY [4, 8]. The dependence of the T-PT and NSM interactions on
the nuclear spin makes closed-shell atoms, in particular, those having non-zero nuclear

spin the best candidates to look for EDMs sensitive to the nuclear sector. Closed shell

4



Chapter 1. Introduction

atoms can also give information on the electron EDM and scalar-pseudo scalar electron-
nuclear interaction by considering the hyperfine interaction as a perturbation [9], but
the the limits on the corresponding coupling constants would not be as sensitive as those
obtained from the paramagnetic atomic EDMs. For % Hg, the EDM induced by the
NSM is calculated and parameterized in terms of the Schiff moment operator S. The

most recent calculation by [10, 11], gives,

dpg = —2.8 X 10717 (ﬁ> ecm

efm?
At the nucleon level, the operator S can be obtained in terms of the pion-nucleon coupling
constants; pions being the dominant mediators of the nucleon-nucleon interactions (more

detailed analysis is presented in Section.6.6 with results) [12, 13]:
dry = 3.92 x 107%7,,, ecm
This calculation involves non-trivial nuclear-many body physics, and it gives [14],

G 2
dpgg = —3.92 X 1072 x ( f/%mr)gwmv grNN €CM

From the above, the observable atomic EDM can be expressed interms of the chromo

EDMs of quarks by,

Gpm2 ~ ~
dyo = —3.92 x 107 x ( ”) - x2<du—d>ecm
Hg \/5 gdrNN d

where d; and d, are chromo EDMs of the d and the u quarks respectively which are

predicted by SUSY and the left-right symmetric models. The constant g,y is also
related to 0qcn, the QCD vacuum angle,

grNN ~ —0.027 HQCD

This allows us to constrain the value of fgcp through the % Hg atomic EDM.

1.2 Experiments on Atomic EDMs

The atomic calculations involve the calculation of ’enhancement factor’ which is the

atomic EDM parameterized in terms of the P and T violating coupling constants (R

5



Chapter 1. Introduction

= datom/C). Comparing with the measured value of the atomic EDM, the value of C
can be extracted. Atoms are very good candidates for the search for atomic EDMs.
In particular, heavy atoms are preferred choices as the EDM scales as Z2? or Z3. If a
physical system has an intrinsic EDM d, then it’s interaction with the external field, in

analogy with the interaction of the magnetic dipole moment p is,

=

Hiy = — (dﬁ + u§> §

where J is the total angular momentum of the system. In the presence of an external
electric and magnetic fields, the EDM d and the magnetic dipole moment y precess about
the field axes. This precession is referred to as the Larmor precession. The basic idea
in an EDM experiment is to measure the difference in the Larmor precession frequency

corresponding to the parallel and anti-parallel configurations of E with respect to B (3],

_ 2u|B| + 2d|E]
N h
2u|B| — 2d|E]|
Wy = 7
2d|E|
) = — e
w w1 W9 3
Therefore,
_ héw
2| E|

Owing to the precision to which the frequency is to be measured, the EDM experiments
are susceptible to a number of systematic effects like the motional magnetic fields, which
is one of the most important sources of error. Atoms moving in an external electric field
experience magnetic field in their rest frame, known as the motional magnetic field, given
by, Bm = v x E/c. This field is odd in E and can mimic an EDM signal. The second
important systematic effect comes from the leakage currents induced by the electric field.
The leakage currents caused by high voltage are difficult to control and account for. Laser
cooled atoms are excellent candidates for an EDM experiment. They offer the following

advantages over the conventional beam and cell apparatus :

1. The environment is relatively perturbation free due to extremely low temperatures.

6
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2. The velocities of the atoms in the sample is zero and hence there is zero, or negligible

motional magnetic field effect.

3. They allow high coherence times as the atoms can maintain spin coherence for a

relatively long time.
4. Low leakage curents

5. It is possible to apply high electric fields as high as 100 kV/cm, as the sample

region is small.

They offer many more advantages, than the conventional cell and beam apparatus for

measuring the atomic EDM.

1.3 Present status of the »? Hg EDM experiment and

other closed-shell atoms

To date, the EDM experiment on %*Hg gives the most sensitive limits on P and T
violating coupling constants [5, 6]. ®Hg has a non-zero nuclear spin, I = 1/2 and
hence is very sensitive to the P and T violating interactions in the nuclear sector as
both the Nuclear Schiff moment, and the tensor-pseudo tensor interactions, depend on
the nuclear spin. Also, with Z = 80 it is sufficiently heavy which would enhance the
relativistic effects, in turn enhancing the EDM. Any non-zero result for the ' Hg EDM
would indicate physics beyond the Standard Model. To set limits on specific models of
CP violation, using atomic theory, the atomic EDM must be related to the CP violating
parameters at the level of elementary particles. Our aim in this work is to improve the
present limits for T-PT coupling constant and the Schiff moment which would in turn
help in obtaining more accurate limits for the Pand T violating coupling constants at
the level of quarks and electrons. Limits on S can also be used to set further limits on
the nucleon EDMs [15]. The Table.1.3 summarizes the on-going EDM experiments on

closed-shell atoms. For experiments on various other atomic systems, see [16].

7
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Atomic system | Present limit of EDM measured Laboratory
—(dagom)—(e cm)
199Hg <21x107%8 Univ. of Washington, Seattle
Xenon Princeton University
Radium Argonne National Laboratory
Ytterbium Kyoto University
Radon isotopes University of Michigan

Table 1.2: On-going experiments on closed-shell atoms

Using apparatus consisting of two cells, the EDM of '"”Hg was measured to be [5, 6]
d(*Hg) = (~1.06 £0.49 £ 0.40) x 10 *ecm

There is further scope of improving the above result, using 4 cells, which could improve

the sensitivity of the measurement by a factor of 4.



Chapter 2

Closed-shell Atomic Electric Dipole

moments

Atomic EDM can arise from one/many of the following sources :

EDM of an electron d,.

e P T-odd electron-nucleon interactions which could be ‘scalar’ (scalar-pseudoscalar),

‘tensor’ (tensor-pseudotensor) or ‘pseudo-scalar’ (pseudoscalar-scalar) couplings.

e P T-odd electron-electron couplings(is negligible in contribution due to the strength

of the interaction).

e EDMs originating in the nucleus (nuclear Schiff moment (NSM))due to the presence

of Pand T violating interactions at the level of quarks.

Electric dipole moments of closed shell atoms arise predominantly from the 'tensor’ kind
of the electron-nucleus interaction and the NSM produced by the nucleus [4]. Though
the other sources listed above also contribute to the atomic EDM of closed-shell atoms,
they are not dominant owing to the electronic and nuclear structure and related effects
in closed shell atomic systems, which will be discussed in subsequent sections, which

make the closed-shell atoms less sensitive to other P and 71" -odd interactions.

9



Chapter 2. Closed-shell Atomic Electric Dipole moments

2.1 Atomic EDM induced by a tensor-pseudo tensor
kind of electron-nuclear interaction

Consider the atomic EDM arising from P,T-odd electron-nucleon interactions and treat

the nucleus non-relativistically. The interaction Hamiltonian has the form,

1GpC
H) = \%T ZUN - Yipn (1) (2.1)

where, Gy is the Fermi’s coupling constant, Cr represents the T-PT coupling constant,

pn(r) is the nuclear density and § and -5 represent Dirac matrices. The operator oy
is the nuclear spin which sometimes denoted by I in this thesis. This interaction is re-
sponsible for the mixing of opposite parity electronic states producing a non-zero atomic
EDM and it is this dependence of the H f: ?VM’T on the nuclear spin that makes closed-shell
atoms having non-zero nuclear spin to be more sensitive to this interaction. The above

form can be arrived at, starting from the second quantised form of the Hgpy operator,

1CrG
Hepy = %

Consider the term, (¥y0,,¥y). We have, ¥y = Wl vo. Hence,

[@No'/w \IIN] [‘Ile’yso-uu‘lle]

1
YoOuw = 705 [f)/,u%/ - 71/’7#]
= 0ifp=v
= iYW if pFV (2.2)
Using {v,, 7.} = 0, we have,
Yo Oy = VOZ’YIJ,’YV(M# V)
LYY = 1 [0% + VNl
= 1% + 17w

= (7 + o)

10



Chapter 2. Closed-shell Atomic Electric Dipole moments

Hence,

Heow = =77 [Z U (1 + ) ip ‘I’N] [Ty’ 0 V]

Consider,

Ue’ou¥e = Wiveys (ivum) Ye
= i U577 Ve
= — i V077 P
= iUl (s + W) (2.4)

where [1/ =0,% = =Y = — NNV = —%’]

1CrGp

Hgpy = NG [‘I’jv(% + ai%j)(#u)\PN] [‘1’1% (vi + a) ]
CrG
= ZTTF [T (v + o + @) On] [Thys (v + aivo + i) ]
1CrG
= \T@F [‘I’R Oéﬂj‘I’N} [Ulys ain; O]
1CrG
= % (UL, By On] [¥hys By O]
CrG
= ZTTF I:\I/;rv azﬂaj\IlN] [\Ifl’)/g, oz,ﬂozj\Ile]
CrG
= ! \:’)iF [\P}Lvﬁaiaj\IfN] [\Iflfyg,ﬁoziozjllle}
(2.5)
Consider
0 ag; 0
ay = (g, §) % (o )
<Oi0j 0 )
- 0 0i0;
= O'Z'O'jI (26)

11



Chapter 2. Closed-shell Atomic Electric Dipole moments

Consider,
5 k 0 -1 0 o
vt = (01 0) < (o T)
-0 0
= ( Ok —O'k>
_ <O’k 0
- \O0 O
= 1€k o o”
= i(21) (2.7)
Treating the nucleus non-relativistically,
1CrGr
H = 21][0! o ¥e] p (7
EDM \/5 [ He%ﬁ% k ]PN()
2iCrGrV2
= % Balpx(r)
= (CrGr) (V2)(Ba-1) px(r) (2.8)

For an N-electron system, the above equation becomes,

Hepw = (i Or Gr) (V2) 32 (%-1) px (1) (2:9)

i

From the above expression, it can be noted that the nuclear density py (r) is pro-
portional to the atomic number Z. The product of the Dirac matrices, ( 8 «) is an
off-diagonal matrix and hence the matrix element of the Hgpy between the spinors
which are proportional to v/Z, and the dependence of the § matrix on Z, finally results
in the scaling of the enhancement factor as Z3 1. This suggests that heavy atoms are

preferred candidates for EDM experiments.

2.2 Atomic EDMs arising from the Nuclear Schiff
Moment

According to Schiff’s theorem, the EDM of a point like nucleus is completely screened

by the atomic electrons and hence it cannot be measured[sandars]. If a set of charged

1See Appendix D for Hgpym matrix elements

12



Chapter 2. Closed-shell Atomic Electric Dipole moments

particles with edms, are in equilibrium under their mutual electrostatic forces, the first
order correction to the energy due to the interaction of EDM with external field is zero.
Consider an atom as a set of quantum mechanical charged particles, placed in an external
field. The atom gets polarized and hence this induced charge distribution produces an
internal field to cancel the external field. Hence, there can be no nett force on the atom
or the nucleus. This cancellation of the internal and external fields is exact for a point
nucleus, but not for a finite one. A nucleus with a structure means the [ = 0 and [ = 1
electron wavefunctions have a non-zero density inside the nucleus. The nuclear Schiff
moment arises due to the P and T odd nuclear interations and is responsible for the
mixing of the opposite parity electronic wavefunctions, particularly the states having
[ =0 and [ = 1 and resulting in an atomic EDM.

The electrostatic potential produced by the Schiff moment is of the form [12]
®(R) = 475 - Vé(R)

for non-relativistic electrons. Now the contact interaction —e® mixes the ’s’ and ’p’
orbitals and produces EDMs in atoms. Using integration by parts and property of Dirac

delta function, the matrix element

<S‘—e¢>

is finite. The general P, T - odd electrostatic potential inside the nucleus, is derived by

P> = 4reS - (V\I!I\IIP)RZO = const.

[17] and a detailed derivation is presented in the ChapterF'.
According to the most recent work by [17] a more convenient expression for the

nuclear potential arising from the nuclear Schiff moment is given by :

=L

O(R) = — 3§' p(R) (2.10)

i

where B = [ R*p(R)dR and R is the electron coordinate. The Hamiltonian of the

interaction of electrons with this potential is

p(R) (2.11)
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—

If p(R) is consider as the normalised density function, which is 1 for R < Ry — ¢ and
R > Ry + d,then the dimension of B is L°. Substituting in Eq.2.11, we obtain the
dimension of S as QL3. If p(R) is considered as the usual nuclear density (dimension

L3), then the dimension of B becomes = R* x R? x R = L8. Substituting the dimensions
g

of all quantities in Eq.2.11, the dimension of S becomes = %2 X f—i = (Q L3. Further,

considering the quantisation direction as z, the Eq.2.11 can be reduced to

Sz

=— 15 —= p(R)
Ry

We retain the quantity p(R) throughout our calculation.

S R cosf

:—3Tp(ﬁ)

in spherical polar coordinates. R is the electron coordinate and p(ﬁ) is the nuclear

density at the sight of the electron inside the nucleus. The matrix elements of Hgy are

given by?,
<‘I’ksl/2 Hsy ‘Pmpl/2> —(—38e) (%)
70|:Pa (r) Ppy(r) + Qa(r) Qb (r)} %é) R dR (2.12)

The matrix element of the Schiff moment operator between the states |mpy/2) and |ksy/2)

can be derived in similarly and is given by,

<‘1>mp1/2 Hgy <I>ksl/2> —(=35e) (%)
7{& (r) Py(r) + Qa(r) Qs (r)} @ R dR (2.13)

2See AppendixFE for derivation

14



Chapter 2. Closed-shell Atomic Electric Dipole moments

Consider the interaction of the Schiff potential with an electron, Hgy, = —e ®(R). The

atomic EDM induced by the Schiff moment is given by,

<\If§)°) D \Ir§°)> <\If§°) Hsu ‘wg°>>
Diiom = ] > (2.14)
2 HY - &

where D and Ei(o) are the induced electric dipole operator and the atomic state energies

respectively. We now derive the units of the Schiff operator S. Noting that from the

(5 o

must have the dimensions of energy, we have,
(s

Expanding Hgyy = Se RCTOSG p(ﬁ), neglecting the constants. The units of energy in

Eq.2.14, the quantity

Hgnr

Hon ‘ o >
= dimensionless

the context of electrostatics is given by %2, where (Q=units of charge in Coulombs and

L=unit of length. The nuclear density is normalised, [ 47r® p(r) dr = 1 and hence is
0
dimensionless, then, Hgyy = Se R;—g‘“g. Expanding the terms on the RHS of Hgj, in
N

units, we get S @ (L/L°). The units of S are hence,

15



Chapter 3

Coupled Cluster Theory and it’s
application to Atomic EDMs

Calculation of physical properties of many-body quantum systems primarily involves
the calculation of many-body wavefunctions. The accuracy of such a calculation hence
depends upon the accuracy of the many-body wavefunctions. Consider a system of
N particles. Let |¥y) be the ground state exact wavefunction of the system and FE
be the total exact energy. The exact state and the exact energy can be determined
starting from the reference state of the physical system, constructed from the single
particle wavefunctions of the NV contituents. The best choice of a many-particle reference
state is the Slater determinant, |®¢). For an atom, the slater determinant describes the
Fermi sea, constructed from the set of occupied orbitals which are determined from the
Hartree-Fock equation under the independent particle model approximation and satisfy
the Pauli’s exclusion principle, described in [18]. The more realistic picture is that
the particles are not moving independently due to their mutual interactions, termed as
electron-electron correlation. Coupled-cluster theory (CCT) [19, 20, 21, 22| is a way
to treat these correlations systematically, where the exact atomic state is realized as
the state of the atom where all possible electron correlations to all orders in terms of
exciting clusters are accounted for. The operators describing these excitations are known
as the cluster operators. It can be imagined that two electrons in the occupied space,
interact with each other and get excited to unoccupied space. This can be described
mathematically where an operator 75 acts on the Fermi sea wavefunction |®), to produce

a wavefunction T5|®,), describing a double excitation giving rise to two ’holes’ in the

16



Chapter 3. Coupled Cluster Theory and it’s application to Atomic EDMs

Fermi sea and consequently two 'particles’ outside the Fermi sea. A similar process can
occur where two pairs of particles excite themselves independently. This can be achieved
by acting 75 twice on the reference state |®q), with the inclusion of a statistical weighing

factor of (%) to avoid counting pairs twice. The resulting contribution to the exact state

1

2!) T2|®,). This process of excitation of independent pair of particles from the

is now (
Fermi sea can be obtained by (=) 73"|®o) which describes the amplitude of excitation
of m independent pairs. All the double excitation amplitudes can be superposed to give
the total amplitude Y o_; (=) T5"|®o) = exp(T»)|®o). Similarly, the amplitudes for
the simultaneous excitation of three particles can be described by T3|®,) and the total
contribution for all triple excitations can be obtained by summing all the independent

triplets, > o7 o () 74| ®o). Also, the simultaneous independent excitation of 7 pairs and

1
n'm!

n triplets is given by ——75"T3|®o). Summing over n and m, the total amplitude is given
by exp(T5; + T3)|®y). Proceeding as above, for an N electron system, all possible single,
double, triple,.... ntuple excitations can be obtained from the wavefunction exp(7; +
To+ T35+ ..... + Tn)|®o). The operator exp(71) produces single particle excitations and
hence the total exact atomic wavefunction can be described by the wavefunction |¥) =
erp (ij:l Tn) |®g). This is the exact atomic state in the coupled-cluster formulation.
Throughout the thesis we consider only the correlations giving rise to single and double

excitations, to all orders and the exact atomic Hamiltonian is the approximate relativistic

Dirac-Coulomb Hamiltonian described in the next section. Also, the above formulation

@ o (b) © |.. @) | .o

Figure 3.1: Physical realisation of the Coupled-cluster wavefunction - (a) represents Fermi
vacuum, (b),(c),(d) represent single (71), double (T2/2!,T») and triple (T3 /3!, 1T, T3) exci-
tations respectively (Reference-Physics Today, March 1987).

of the many-body exact state is precisely valid for a closed-shell atomic system. The
exact wavefunction of an atom having open-shell structure is obtained by partitioning

the excitations into three parts - excitations from the core to virtual, core to valence

17



Chapter 3. Coupled Cluster Theory and it’s application to Atomic EDMs

and valence to virtual shells. This is described by an additional operator S. The many-
body state now becomes, |¥) = el'e”|®;). This thesis deals only with the coupled-cluster
theory applied to closed-shell atomic systems. See Ref.[23] for CCT applied to open-shell

atomic systems.

3.1 CCT for closed-shell systems

3.1.1 Unperturbed CC equations

The starting point of setting up the coupled-cluster equations is the relativistic atomic

Hamiltonian in the Dirac-Coulomb approximation is,
_ 2 1

H 2; [caz i + <ﬁ1 1>c + V(n)} + ; o (3.1)
where, ¢ is velocity of light, o and § are the Dirac matrices, r;; is the Coulomb poten-
tial energy between two electrons, in atomic units (m, = 1, |[ef = 1 and A = 1). In
the above Hamiltonian, the rest mass energy is subtracted from the total energy eigen
values. This is the Hamiltonian of an atomic system considering only the inter electron
electrostatic interactions. The single particle equations are obtained by approximat-

ing the two-electron term in Eq.3.1 by a central field potential Upg(r), known as the

Dirac-Fock potential, then
N N
HDC = Z [cai - Pi + (ﬁl - 1) 02 + V(T,) + UDF(’L):| + (Z - — UDF(Z)> (32)
i i<j 'Y
Define the residual Coulomb interaction V4 as,
Ves = i — Upr(4)
— T3
1<J J
The non-central (or) correlation effects are included by treating Vs as a perturbation.

The single electron wavefunctions satisfy the Schroedinger equation [18, 24]

wa> = €q

[cai - .pi + (B — 1) c+V(r) + UDF(i)]

wa> (33)

18



Chapter 3. Coupled Cluster Theory and it’s application to Atomic EDMs

where |¢),) are the single electron wavefunctions in terms of the two component relativis-

tic wavefunctions, given by

oy -t(aentdy) e

where P, and (), are the large and small components of the single electron wavefunc-
tion and the angular part is a product of the orbital and spin angular momenta of the

electrons, given by

Xayma (0, @) = Z |la>mz> x |5aamz><laamfv5aamZ|JaaMa>
m, M,
l, and s, are the orbital angular momenta, m!,, m?, their respective projections, J,, M,,
the total angular momentum and it’s projection and a denotes the quantum numbers
needed to specify the electron. The quantity (l,, m!,s,, m:|J,, M,) are the Clebsch-
Gordan coefficients, the orbital part are the spherical harmonics and the terms involving
spin are the Dirac spinors. These wavefunctions are simultaneous eigen functions of J, J,,
L and §S. k is the relativistic quantum number, given in terms of j and [, k = — (j + %) a,
where @ = 41 for [ = (j—3) and a = —1 for | = (j+ 1) [25, 26]. The many-
electron wavefunctions of an atomic system with the above Hamiltonian are the Slater

determinants obtained by constructing the linear combinations of the single particle

wavefunctions respecting the Pauli’s exclusion principle, given by

SR
“I’>= M| (3.5)

Un(1) Pn(2) ---Pu(N)
where the coefficient \/W is the normalisation constant, and a single particle orbital
i (7) represents the wavefunction of electron with the space coordinate j and specified by
the set of quantum numbers 7. Throughout the thesis, we denote a, b, c, - - - for occupied
orbitals (holes) and p,q,r,s,--- for unoccupied orbitals (particles). The challenging
problem in atomic many-body theory is to solve the Hamiltonian Eq.3.2 with V as

perturbation to all orders. Solving Eq. 3.2 variationally by minimising the energy
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Chapter 3. Coupled Cluster Theory and it’s application to Atomic EDMs

functional with respect to the form of orbitals and by imposing orthonormality condition

[18], we get Hartree-Fock equation

(ho N — 62)

where h° and ¢° are the single and two-particle operators respectively in Eq.3.2 , together

¢2> = 0; (3.6)

termed as the Fock operator f°. The operator ¢° is the central field approximation of

w2 )2 ) — (uslolut )]t )

where v = 1/r;; = 1/ry2 is the two-electron operator and the sum runs over all occupied
orbitals. Substituting for ¢°, the Eq.3.6 becomes

¢2>\w2> - <w2 ¢2> ¢2>} e

Eq.3.7 is the Hartree-Fock equation. The perturbed equations are obtained by intro-

the two-electron Coulomb interaction

) =5

b=1

0

g v

I v v

w2> + NZ sz?

b=1

wy=o 6D

ducing the CP violating tensor-pseudo tensor interaction Hamiltonian in addition to the

residual Coulomb interaction
HT,pT:\/iCT GFﬁCk . Ip(T)@U,Q (38)

where Cr, G and p(r) are the tensor-pseudo tensor coupling constant, Fermi coupling
constant and nuclear density respectively, 5 and « are the Dirac matrices and I is the
nuclear spin. The wavefunctions and the Hamiltonian are perturbed by this interaction
thereby giving the perturbed Hartree-Fock equations demonstrated in in the next few
pages.

The many-body Schroedinger equation of the Dirac-Coulomb Hamiltonian for an

)

atomic system, in a state |¥) is given by

HF>:EP>¢HJ

%>:EJ
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Chapter 3. Coupled Cluster Theory and it’s application to Atomic EDMs

Operating from left side by e="

e THe"

% ) = |20

Expressing H in normal ordered form,H = Hy + Egp, where Egp = ($o|H|Py) —
(Po| Hy| Do) is the Dirac-Fock energy. Then,
q)o> = E

Projecting Eq.3.9 with singly and doubly excited states (®7| and (®75| and restricting

e*T (HN + EHF) €T

q>0> (3.9)

T to T = T, + T3, the single and double excitation cluster amplitude equations are

obtained. The second quantized form of these operators is
¢0>

1

— t 4,1 Pq

T, = E o Qy, G Qp Qg tyy,
a,p,bg

T, = Z a;; aq th
a,p

and

)

Expanding (e‘TH NeT) using Campbell-Baker-Hausdorf expansion,

2 3!

il

Examining the Eq.3.10, the first term Hpy is a connected term as it contains only one

vertex of Hy. The second term [Hy,T] is also connected!, using [Hy,T] = {H'_'NT} -

e T Hy el = Hy + {HN,T] + %HHN,T],T} + l[HHN,T},T],T] (3.10)

{T_'HN}. Considering a general term, [Hy, T|™ = [[HN,T]("_I) ,T]. Any nth com-
mutator would consist of all connected terms, provided the (n — 1)th commutator is

connected. Hence the term (e‘T Hy eT) is built from only connected terms. Using

=~ A~
1For any two objects A, B we have AB = AB — {AB}
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{FHN} =0, we get,

— — 1
e THye' = Hy+ {HNT} + {HNTT} + { NTTT}{ NTTTT} (3.11)

- ()

where, the curly brackets in the above equation represent normal ordering ! of the op-
erators within the brackets and the symbol of contraction is a special symbol. Two
operators, under this symbol are said to be contracted if their respective creation and
annihilation operators contract with each other, always in pairs of one creation and
one annihilation operator, in all possible ways. Substituting the above in Eq.3.9 and

projecting from LHS by singly and doubly excited determinantal states,
(2 {(7) }
(s{ (7))

<I>0> =0 (3.12)

<1>0> =0 (3.13)

Expanding (H'_'NT)

)
C

| Y E— |

<<I>; {}TNT +HyTT + HyTTT —i—H'_'NTTTT} <1>0> = —<q>;; Hy <1>0>
— — —
<q>;§ {H'_'NT +HNTT + HNTTT +H'_'NTTTT} q>0> = —<q>gg Hy ¢0>3.14)

Note that the maximum number os 1" operators contributing to the contraction in the
above equation is four. This is because the operator Hx has a maximu level of excitation

equal to 2. Since we use the approximation 7' =T} + T5, Eq.3.14 can be recast as

(e o) = —(a;/Hy00)
<cI)7(;z q>0> - _<<1>g; <I>0> (3.15)

! Two operators A and B in second quantisation form are said to be normal ordered if the creation
operator associated with a core (af,,.) or the annihilation operator associated with the virtual (ayirtuat)

appears on the right side of the rest of the operators in the product AB.
22

{ (T, + FisCri) |

Hy

Hy

{(HN(T)'Tl + HN(T)'TQ)}
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The above equations can be written in the form,

Hll(T)T1+H12(T)T2 = —H10 (316)
Hgl(T)T1+H22(T)T2 = _H20 (317)

where the terms on the RHS are independent of 7" and the Hamiltonian matrix elements

are dependent on 7. Combining the above equations,
A(T)T=C (3.18)

where A is dependent on 7" and C is independent of T. This is a non-linear matrix
equation which should be solved in a self-consistent way to obtain the unperturbed

cluster amplitudes.

3.1.2 Hgpy perturbed CC equations

Consider the Hgpjs perturbed Schroedinger equation for the atomic Hamiltonian H.

(Hun) |7} = (£) ‘q;> (319)

where Hyery = H + AHppy and [¥) = €7|®g) = 7”37V |@g). Since terms of one order

in A are taken, this gives,

Hperpe™"” (1 + )\T(l)) ‘<p0> = Ee™” (1 + )\T(l)) ‘<I>O>

Substituting Hpery = H + AHgpu,

— (H + /\HEDM) eI (1 + /\T(l)) ‘q>0> — EeT? (1 + /\T(l))

)

Comparing A\° and ! terms on both sides,

(HeT(O)) ‘(D0> — EeT(O)

23
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and

¢>O> (3.21)

Multiplying Eq.3.20 by T(l),

TOHT

(I)O> - ET(I)eT(O)

<I>o> (3.22)

Using the normal-ordered form of H = Hy + Epr, Eq.3.21 becomes,

‘I>0> N (AEcoweT(O)T(l))

_7(0)
7

<HN€T(O)T(1) + HEDMeT(O)>

c1>0> (3.23)
since T and T commute. Now operate Eq.3.23 by e

<ﬁNT(1) + FEDM)

(I)o> = AEcorr,T(l)

<I>o> (3.24)

Operating by e T on Eq.3.20 and converting H into normal form,

Hy

(DO > = AEﬂcorr

<I>o> (3.25)

subtracting Eq.3.24 from Eq.3.25,

[FN,T“} ‘<I>0> = —Hgpu

<I>o> (3.26)

where O = e T20eT©® where O is any operator. The equation for the coupled-cluster
perturbed singles and doubles can be derived from the basic equation, Eq.3.26 by pro-

jecting on both sides of the equation with singly and doubly excited determinantal states.

(o) = (o)
<q>gg <1>0> = —<q>;g <I>0> (3.27)

which are equivalent to
‘I’0> = _<(I)Z

g
o) - -{n

<<1>:;z
24

HEDM

o)

o)

HEDM

HEDM

V)
()

)

<I>o> (3.28)
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Expanding T above, these equations can be cast in the form of a system of linear

matrix equations,

H11T1(1) + H12T2(1) = —Hy— HloTl(O) - Hlng(O)

H21T1(1) —+ H22T2(1) = —H20 - HQOTI(O) - H20T2(0) (329)

which can be expressed in the form AT = C, where the matrices A and C are T() -
independent. These equations are termed as coupled-cluster EDM (CCEDM) equations
in this thesis and are classified into four blocks, T1-T1, T1-T2, T2-T1 and T2-T2, where
T1-T1 and T1-T2 contain the diagrams contributing to the 7(\) equation through singles
and doubles respectively, and T2-T1 and T2-T2 contain the diagrams contributing to
the T equation through singles and doubles respectively. The diagrams contributing
to the CCEDM equations with zero orders in 7(® are shown in Fig.3.3, 3.5, 3.4, 3.6, 3.7,

3.8. The diagrammatic representation of the operators is shown in Fig.3.2.

— 0 fN ““““ Vi
(0) (0)

T, v T

1 I
"\ "\ NN T](- ) \ : : / 2

4&' HEDM 4@ D

Figure 3.2: Notation. fy and Vy denote the one- and two- electron parts of Hpy respectively.

D a aX " p 0
F F
q b q b
a p

Figure 3.3: Diagrams contributing to T1-T1 block.
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CD1. CD2.

Figure 3.4: Diagrams contributing to T2-T1 block

CSs5. Cs6.

Csy. CSs8.

CSso. Csl10.

Figure 3.5: Diagrams contributing to T1-T2 block
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cDs. CD4.

CD5. CDS.
a
p ,,,,,,
N F e b
I | 5
Ko
CD7. cDs.
p a
O
.
. b/
Iy | 5
ko
cDo. CD10.

Figure 3.6: Diagrams contributing to T2-T2 block

BS1. BS2. a BS3. p
b
o a4

B4. BS5. BS6.
NN TA L N T
a p a p a
Figure 3.7: Diagrams contributing to the RHS of the singles CCEDM equation.
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BD3.

3
b b
a r c p q p*fcr; 1a\%q

Figure 3.8: The diagrams contributing to the RHS of the doubles CCEDM equation.

BDA4.
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3.1.3 Non-Linear CC equations

Consider the Hppy perturbed singles and doubles cluster amplitudes equation (the
prime denotes that the reference state and the excited slater determinants are opposite

in parity due to the parity odd perturbation)

(o) = ~(a
(e|{ao}e) = (o

<1>0> (3.30)

Expanding H y,

(o

— 1, =

[ 1
Hy + HyTO + o HyT© 70 +§ HyT© 7© 0 % (1)

-

This equation can be written as

(

o)
{HEDMH@O> (3.31)

0, 1 (0) r(0) , 1 ©0) 7 (0) (0) { (1)
Hy + HyT® 45 HyTO 7O 4 HyTO 70 70 4 17

—

| — 1 | — 1 | — 1
+{ Hy 4+ HyT® +5; HyT© 7O +3 HyTO 7@ 70 % 7

(1)

)

)

Similarly the double excitations satisfy the equation

<q>;;' Hy + HyT© +5 HyTO 7O +3 HyT© 7O 70 % 7 (3.32)
]

0 4 1 (0) p0) 4 L (0) (0) 7(0) \ (1)
+§ Hy + HyTO 45 HyTO TO 42 HyTO 1O 7O b 13

o) )
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writing the equation for singles in terms of matrix elements,

A (TOYTE + Ap(TOYTY = —(Hgpu)g (3.33)

( )

1 © ) 1 ©) (0) (0) L (1)
§ Hy + HyT© + 5 HyTO TO 42 HyTO 7O 7O b 17

)
)

\ /

( )

,—'—||

(1) 1 1 (1)
A (TNYT,Y = <<1>;;' { Hy + HyT® +5 HyTO 7O +3 HyTO 7O 7O & 77

\ 7
Similarly for the double-excitations,

Ao (TOYTY + Ay (TOYTY = —(Hgpur)? (3.34)

where the matrices Ay (T©®) and Ay (T©) are the coefficients of T\") and T." operators
in the doubles Eq.3.32 respectively. The Eq.3.33, Eq.3.34 are non-linear in 7(®)| but linear

in T and can be combined as

Ay Ap || T B
Ay Ay T2(1) B,
where
B, = —(Hppwm),
and
B, = —(Hgpum),
These equations can be recast as,
A(TOHTH =B (3.35)

which can be solved iteratively, to get the perturbed cluster amplitudes, where the 7
amplitudes are known. Splitting the matrix A(7(%) in the above equation into diagonal

and off-diagonal parts,

Adiag(T(O))T(l) + Aoffdiag(T(O))T(l) =B
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gives an equation of the form

1

7O — -
Agiag(T)

B — Atiag (1) (3.36)

This equation has is solved self-consistently for the unknown 7) amplitudes.

3.1.4 Selection rules for cluster operators

The tensor-pseudotensor electron-nucleus interaction Hamiltonian has the form 2.1,

HEDMT _ iGrCr Z on - Yipn(r) (3.37)

Vi 2
The operator in the electron space is a vector of rank 1. The perturbed cluster amplitudes
are associated with the electron space, which can be noted from the second quantization
representation of the cluster operators. The rank of the interaction Hamiltonian must be
incorporated into the cluster amplitudes and the diagrams representing them. Consider
the diagrammatic representation of Tl(l) shown in Fig.3.9(a) . In terms of the multipole

components

1
70 =>"(1,), (3.38)

q

Algebraically, Tl(l) can be written as

T =" afaat? (3.39)

where, p is a particle, hence represented by an out-going line, and a is a hole represented
by an incoming line, and 2 is the corresponding cluster amplitude. The rank of T() is
ko = 1.

The vertex formed by the orbital lines (a,p, ko) in the Tl(l) diagram, satisfies the
triangular condition 2,

|Jo — 1| < J, < J, + 1,

2as dictated by the Wigner Eckart theorem for the matrix element of Tl(l)
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@ (o))

Figure 3.9: Diagram representing T(!) - (a) Tl(l) (b) TQ(I)
and the magnetic quantum numbers satisfy,
mg +my+q=0,

where the J;’s and m;’s represent the total angular momenta and their projections re-

spectively. The operator 7™ is odd under parity therefore,
(_1)la + lp — _1

where [ is the orbital angular momentum. Consider the diagram representing TQ(I) opera-
tor. The vertices formed by the orbital indices (a,p, A1), (b, ¢, A2) and (A1, Ao, ko) satisfy
the triangular conditions

|Jo— Jp| <M < Jo+Jp
|y — Jg| < Ao < Jp+ J,
A= Ag| < ka < A+ Ao

and the vertices satisfy,

(1) = (=) (-1)*

Note that the T© operator preserves parity and hence for TQ(O) we have,
(_1)la+lp — (_1)lb+lq

which is the same condition satisfied by the residual Coulomb operator diagram.

3.2 Calculation of Atomic Electric Dipole Moment

The EDM of the atom in an exact state |¥’) is
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it o0

G

where D is the induced dipole operator and |U’) is given by,

-

where |¥) is the unperturbed state, A is the perturbation parameter and |\I'(()1)) is

\I’0>+)\

the first order correction to the unperturbed state due to the EDM perturbation. The

total wave function is written in terms of the cluster operators as

)

where |®¢) is the reference state. Retaining only the terms of order A,

(0) (1)
‘\I’,> — eT +AT

‘\II'> — I (1 n T(1))‘(I)O>

Substituting the above expression for |¥’') in Eqn.3.40 and simplifying, we obtain the
[ﬁ?m + TT)T} ‘¢0>

o
oDy

where D = eT(O)TDeT(O), using the fact that 7 and D are odd and T® is even under

expression for EDM 3,

(3.41)

parity, the bra and the ket vectors have same parity and |¥o) = e7”|®o). The T
operators are the Hgpyr perturbed cluster amplitudes. To simplify calculations, expand

D in the form
701

2!

E:(1+T(0)T+ _|_...>D6T(O)

3The symbol of contraction appears using DT'1) = {ETU)} + {ET(”} and the expectation value

of normal ordered operator is zero
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This can be written as
— o 1 n
D =D+ — (T®)" D (3.42)
n=1""

(This was originally formulated by Dr. Angom Dilip Kumar Singh, Phys-
ical Research Laboratory, Ahmedabad, India, in the year 2005).

The diagrams representing the induced dipole operators are shown in Fig.3.10.

R A A

Figure 3.10: Diagrams representing induced dipole operator

The Campbell-Baker-Housdorf expansion cannot be applied to the effective dipole
operator D. In the above expression, the one-body nature of the dipole operator D

restricts the maximum possible contractions with 7® to two. Define

‘<I>1> =7 <1>0> - (Tl(l) +T2(1)) ‘@0>,

<q>1 5‘@0> n <q>0 @1> <q>1 ¢0>
D, = 2 (3.43)
OO
The last step follows as the two terms are complex conjugates of each other and give
equal contributions. Substituting the expanded form of D
o0 1 n
[DeT(O) +30 - (TO7) Der® ‘CI)O> / <x1r0 \1;0>
n!
n=1
= 2 [<¢1 (I)0> + <(I)1 Z ﬁ (T(O) ) DeT(O) ©0> /<\I]0

n=1
This expression of D, reduces the complexity of the infinite order summation as not all
©F

then

D

D

Da = 2<(I)1

DeT(O)

q:0>(3.44)

TOF operators contribute. In this scheme, the zeroth order D, is terms without 7’
operator, first order D, is terms having one order of T(O)T, and so on. The unlinked
terms of the numerator cancel with the denominator and only linked terms contribute

in the numerator.
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3.2.1 Zeroth order EDM

Consider the numerator of the zeroth order contribution

D° = <c1>1 <1>0>

<I>o> - <¢0\T§1”DeT(”

-~ -~

z1 zZ2

DeT(O)

Expanding (®,|

(@[per|an) - §¢0

The level of excitation (l.o.e) is defined as the excitation number, assigned to a diagram

De’® 7O per®

<I>0> . (3.45)

i

based on the number of excitations versus the number of de-excitations, the orbitals are
participating in. Hence, the operators, 7} and 75 have l.o.e = 1 and 2 respectively. Then,
Tf and TQT have l.o.e equal to —1 and —2 respectively. Since the operators Tl(l) and TQ(I)
have fixed levels of excitation of +1 and +2 respectively. This restricts the possible terms
contributing to the dressed dipole operator in Eq.3.45. In other words, the term Z1 is
non-zero only when the coefficient (DeT(O))1 has l.o.e = 1 (indicated by the subscript).
Similarly, for non-zero Z2 contribution (DeT(O))2 must have a l.o.e = 2. Hence the terms

finally contributing to Zeroth order can be read off as,

1
(D) = Lpr® 4 D10 4 DI® 4 D (3.46)

1 1
(D), = o1 + 11 + Z01" + DI + DT (3.47)
2 : :

The diagrams of (De””), and (De), are shown in Fig.3.11 and Fig.3.12 respectively.
The linked diagrams of (DeT™); are connected, but for (DeT™®),s,, disconnected dia-
grams also contribute.

The diagrams in Fig.3.11 are identical to the diagrams contributing to the RHS of
the singles CCEDM equations with the single particle operator Hgpy replaced by D (see
Fig.3.7).

In Fig.3.12, among the (De? ), diagrams, (a), (c), (g) and (j) are connected and the

remaining are disconnected, that is

conn discon
(De™), = (DeT(O)) +(DeT“”) , (3.48)

2 2
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1.
a b. C. > ~( /
\ %@ N\ 2 \ %@ (D eff ) 79

T()

Figure 3.11: Diagrams contributing to (De 1 The diagram named (D), is the effec-
tive operator obtained by summing the dlagrams (a,b,c,d,e,f). All diagrams are connected.
where the first and second terms represented the connected and disconnected terms.
The connected terms resemble the diagrams contributing to the doubles on the RHS of
the CCEDM equation, again with the Hgpy operator replaced by D (see Fig.3.8). The
topology of the diagrams shows that diagrams of (DeT(O))2 arise from (DeT(O))1 X TI(O)
and (DeT(O))Conn diagrams. That is

discon
(DeT(0)> = (DeT(O)) x TO (3.49)
2 1

All the diagrams having same number of free lines and components are grouped together
to obtain effective diagrams shown in Fig.3.13(II). The diagrams contributing to EDM
Eq.3.40 are shown in Fig.3.14 and are obtained from the contraction of the effective

dressed induced dipole operator with the perturbed cluster operator.

3.2.2 First order EDM
Next, consider the n = 1 term in Eq.3.44, it is the first order in 7O

<¢1 ¢0> = <¢O‘ |:T1(1)T +T2(1)Ti| T( ) De 7(0) d >
T'TO Dt

= <<I>0 7O 7O per®

o)+ (3] J

We now determine the terms contributing to F1 and F2, expanding 7O in F1

<c1>0 q>0> — <<1>0‘T1(1>T (TfO)TDeT(O)) ‘CD >+ <<1>0 ol (7 )TDeT(O)>
1

-~ -~

F1(A) F1(B)
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2' NVAVEVERVAVAVIRVAVES,
AVAVAY IR VAVARRGZ NS

g \X/ h\T[@\Z i.$®\f j-\i/
VAV

(Dat ), x Tio) = (D )ZZ(A) (D )ZZ(B)

Figure 3.12: Diagrams contributing to (DeT(O))Q.

7(0)

Further, expanding De” " in the first term

(Tl(O)TDeT(O)) = Tl(o)]L (DeT(O)>

1
11 3 1 2
= 7O [gDTfO) +D1"T}" + DT + D" + DT}"
! ! ,

= 7' [(De" ) 4+ (D), x T (3.50)
2

2

As discussed in the zeroth order case, the (DeT(O))g diagrams arise from (DeT(O))l X
Tl(o) and the actual (De””)™ diagrams. We saw that the effective diagrams listed
in Fig.3.13 are sum of all the diagrams arising from (DeT”); x Tl(o) and (DeT™”),.
Hence, the effective diagrams of (TI(O)TDeT(O))l are contraction of the effective diagrams

in Fig.3.13 and Tl(O)T, these are shown in Fig.3.15. To calculate the contribution from
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NN

D 1
‘ (Der )z (Dt ) z2(a) (Dat ) 28)

Effective diagram | |
for singles Effective diagrams
for doubles

Figure 3.13: Effective diagrams for singles and doubles for zeroth order

the F1(B), we require

@) _ 1ozt 1 o2 1 @200 1 403
(De )3 - [EDTl + 5 DT + DT T + DT+
1 2
DTI(O)TQ(O)—FEDTI(O) +DT2(°)] (3.51)
: 3
conn conn 1 2
_ (DeT“”) —f—(DeT(O)) ><T1(0)+(DeT(0)) [ETF’) +T2(°)(]3.52)
3 2 1 .

2
Similar to the previous cases, (De”)3 is the sum of (De”®); x T, (De™™), x T
and (DeT)gonn Tl(o). In the present calculation, we do not include the (DeT®)gomn,
which are true three body diagrams. That is, we define

conn 1 2
(D) = (Der™) ™ x " + (D) [ngO) +Tr§°)}- (3.53)
3 2 1 .

The diagrams in Fig.3.16 represent the sum of all the diagrams arising from these terms.
The effective diagrams at first order can be obtained by the action of TQ(O)Jr on the
diagrams listed in Fig.3.16, then
conn 1 2
(TQ(O)TDeT(O)) _ o [(DeT“”) x TO 4+ (DeT(O)) (ETfO) + T§°))] . (3.54)
1 2 1\ 2!
The contribution to EDM are then the contraction of these terms with Tl(l)T. These

terms are topologically equivalent to the non-linear EDM cluster amplitude diagrams

for singles arising from the (particle-hole , particle hole) form of the Coulomb operator,
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EDM EDM b EDM
1. @Z} 2@ 3. é@
Deff Deff Deff
EDM % EDM
4. o) 5. )
Detf L Dest L

Figure 3.14: Diagrams contributing to EDM from the effective diagrams at zeroth order

— N

( Dt JFL(A)

Figure 3.15: Effective diagrams at first order contributing to F1(A)

where Tl(l) replaces the dipole operator, D. Adding Eq. (3.50) and Eq.(3.54), define an
effective operator of D as

D = (TfO)TDeT(O)) -I—(TQ(O)TDGT(O)) , (3.55)
1 1

where the subscript represents the one-body character of the operator and superscript
indicates the order of TO'.

Similar to F1, expanding F2

<<I>0 ®0> _ <<I>0 T2(1)T (TI(O)TDeT(O)> ¢0> n <‘1>o T2(1)T (TZ(O)TDGT(0)> ‘1>0>
2 2

- A -
'

F2(A) F2‘(rB)

7O 7O pet®

(3.56)
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. T NS NS
o, NS N R
c.\/é\/ v

Figure 3.16: Open diagrams at first order for the term (DeT(O) )3. Multiplication of TQ(O)Jr with
these diagrams gives the effective diagrams contributing to F1(B)

Consider F2(A), expanding the term within the parenthesis

( %) = (a

From the definition of (DGT(O)):.; in Eq. (3.53)

- <<1>0

As mentioned earlier, the open diagrams contributing to (D@T(O))g are listed in Fig.3.16.

Tz(l)]L <T1(0)1‘D6T(0)> T2(1)TT1(0)T (DeT(O))

<I>0>. (3.57)

2 3

conn 1 2
OO [(DeT(O))2 ><Tf°)+(DeT“”)1 <5T1‘°) +T2(O)>H‘I>o>- (3.58)

- . LI .
The D diagrams are then the contraction of T\ with (De’)s, these are shown in

Fig.3.17. Fig.3.18 shows the effective F2(A) diagrams.
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03@/\1 W NN N

Figure 3.17: Diagrams contributing to effective diagrams at first order for F2(A) -
t
7 (D)3
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VA VRV I VA VEY

I VS

Figure 3.18: Effective diagrams at first order for F2(A) - Tl(O)T(DeT(O))g
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Fig.3.19 shows the effective diagrams arising from summing the diagrams listed in

3.17. Now, consider the F2(B),

AR

Figure 3.19: Effective diagrams at first order for F2(A) - Tl(O)T(DeT(O))g,

(o 0 o)~
2

Similar to (De'”)s, we can define

comn [ 1 1 3
(DeT(0)>4 _ (DeT(O))2 [QVT(O) + T )] 4 (DeT(O))1 [ngO) +T2(0)T1(0)} . (3.60)

1070 (Der®)
4

<1>0>. (3.59)

We can define effective D diagrams of (TI(O)TDeT(O))Q and (Tz(O)TDeT(O))Q. However, unlike

-1 : .
D, these terms have connected as well as disconnected diagrams

D _ chonn D;discon _ <T1(0)1'D6T(0)> 4 (TQ(O)TDGT(O)) , (361)
2 2

<~ lconn <~ 1discon . . .
where D, and D, are the connected and disconnected contributions.

The EDM contribution from second order 7O can be calculated from Ef and Eﬁ.
Substituting n = 2 in Eq.3.42, we get the second order contributin to EDM from the

terms,
2
., TOf
D = S De™

12 (O)T2
" 1 Ot 1| 1y 7

where T = T 4+ T Diagrammatically, the effective diagrams of F2(B) are ob-

tained by the multiplication of Tz(o) by diagrams of (DeT(O)) as shown in Fig.3.20.
4

The resultant diagrams have the same topology as the diagrams arising from the terms

(VNTf(’)T( T “)) (V 7O7M ) (v TOTOTO 7 ) (V 7O )T‘”), where the resid-
ual Coulomb operator has a PH-PH form and is hence replaced by the operator TQ(O) T.
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o
Actionof T, on

1. 2.
e upey
VARV VAV AV IRV

1.

Figure 3.20: Effective diagrams at first order for F2(B) - T2(0) (DeT(O))4. The diagrams

labelled 1 to 4 in the above diagram, when multiplied by TQ(O)T, give rise to the effective
diagrams of F2(B).

3.3 Comparison of CPHF and Coupled-cluster the-

ories

3.3.0.1 CPHF equations

In this section, we give an outline of CPHF equations and explain how the diagrams
arising from the CPHF theory can be related to the diagrams present in coupled-cluster
theory. The results of the numerical comparison are presented in Chapter.6. Consider

the Hartree-Fock equation Eq.3.6,

(1)

The introduction of CP-violating interaction, hgpy, as a perturbation, modifies the

w2> =0 (3.62)

Hamiltonian and wavefunctions

w2> —

where ) is the perturbation parameter and [¢}) is the first order correction to wavefunc-

%>+A

w;>, and hY = hY + Ahgpm

tion. There is no first order energy correction as the perturbation Hamiltonian hgpy is
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parity odd. Then we get the perturbed Hartree-Fock equation

Nocc
(0 + amone) ([u2) Y )+ 2o [ (o4 awi oo + 30 o2+ 302
=1
Nocc
-y [<w8 + My |v[1hg + Aw;> vy + w;>] — eoltn + Awi> =0 (3.63)
b=1

Selecting only the terms linear in A,
NOCC

(ho 1/Jcll> + hepum ¢’2>> + Z<¢2
b=1

~(utlolor)fue) + (uiolue)

Rearranging

v v v

%>+<%
¢1>

w£>

o))

(3.64)

¢;> ¢2> i <¢;
¢,9> n <w2 w2>

¢2>
wé>) @

) ) ) 0

(ho +4¢°— 62) ¢;> = <_hEDM — 91>

where the perturbed two-particle operator
o)+ (ufolus ) v - (wifolue) lus)

o) = 35 [(utfefot o)~ (oo o) )
3.66

b=1
The Eq.(3.65) is the CPHF equation. Expanding the perturbed orbitals as a linear

o) (3.65)

v v v v

gl

combination of the opposite parity unperturbed orbitals

¢i> = Zcpa 7/);2>
p

where C,, are the mixing coefficients, then

Z (ho +4°— 62) Cha ¢2> = <_hEDM - 91>

p

)

Projecting the above equation by (2 |,

(eg - 62) Cpa = <7,/)2

<_hEDM - gl>
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Similarly, expanding |¢}) = > ‘ Ce|®?) in ¢', the mixing coefficients are solutions of the

linear alegebraic equations

(- 8) 4 3 [P+ o] + (v
bg

hEDM

a> =0 (3.67)

where Vygas = ((pq|v\ab> - (pq|v\ba>) and Vypaq = ((pb lv| ag) — (pb|v| qa)).
The wavefunctions [¢]), |49), 1) and [i0) are represented by the orbital indices

(p, a, b, q) respectively and hereafter we follow this notation for the single particle orbitals.

hEDM

The zeroth order contribution to the coefficients is
o1 — _

O = <I()00;> (3.68)

The superscripts on the coefficient denotes the order of the residual Coulomb interac-
tion and that of the hgpys perturbation respectively. The diagrammatic representation

of this term is given in Fig.3.21(a).

Figure 3.21: CPHF diagrams at zero and one order residual Coulomb interaction. The
diagrams (d,e) are called normal CPHF diagrams and (b,c) are the pseudo CPHF diagrams.
The dotted line is the residual Coulomb interaction and the line attached with X is the EDM
interaction.

The Eq.3.67 is expressed in the form of a linear matrix equation,

> Apa 4Cop = —Bpa (3.69)
gb
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where Ay o = Vigas + Vopag + (€5 — €0) bpg0ap and By, = (plhepmla). This equation
is solved iteratively starting with the initial guess for the mixing coefficients given by

Eq.3.68. The coefficients of the kth iteration are obtained from,

(k_l’]-)*
B - C
(k1) _ __Ppa qb
Cpa’ = 0 _ 0 Z [(V;’qab> 0 _ (0 +
P “a bq P a
otk-11)
- b
<V;Jbaq> 62 _ 62 ] (370)
With one order in residual Coulomb interaction, we get,
B . C(Oal)*
Ly - __Zpe “ab
Coa’ = 0 _ 0 Z (V}’qab) 0 _ 0 +
P o T p~ Ca
_ 0(251)
Vrba) 2 3.71
( pbag 62 — 62 ( )
The diagrams arising from the above equation are shown in Fig.3.21.
Substituting the expression of Cég’l)
B - (Bg)'
oWy — __DPpa (V b) a n
" a-g o | ) g gia—a
- B
Vi ) 4 ] (3.72)
( ) (ep — ) (ep — €2)

The contribution of the normal CPHF diagrams for one order in residual Coulomb in-

teraction is,

(CS) normal = — D [(f/pbaq) <eg_e§‘éig_eg>] (3.73)

bq
This expression is used later to compare with similar expression arising in CCEDM.
Consider the two pseudo diagrams of CPHF. Writing only the pseudo diagrams,
- By)'
) - _ (V ab) (Bgb +
(" )pseudo Z P9 ) (€9 — €9)(ed — €9)

bg

(3.74)

These terms are diagrammatically represented by Fig.3.21(b,c). This point is dis-

cussed in detail later in the paper.
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3.3.0.2 CCEDM equations

Consider the EDM perturbed singles and doubles cluster amplitude equations (CCEDM),

<c1>g' [FNT(”] <1>0> = —<<1>g'
(| [ o) = (o

Consider the CCEDM equation for singles by setting Hy = Hy and Hgpy = Hgpur

HEDM

<I>o> (3.75)

and ignore the doubles for the present.

(i)

using [FNT(D] = {FNT(I)}. Introducing a complete set of singly excited states,

| —

HyTY Hppu

<I>o> (3.77)

Z<q>g' HN‘®2'> <<1>g’ T <1>0> = —<<I>g Hgpu <I>0> (3.78)
bg
we get
> (HN )y (), = = (Hipi), (3.79)
bg
where (Hn),, 40 = Vobag = Vobyga + fpg — foa considering only the terms of Hy which have

a CPHF counterpart. The operator, Hy = fy + Vy, where fy and Vy are the normal
ordered one- and two-body operators respectively. The one-body terms contribute to the

single particle orbital energies. In terms of single-particle wavefunctions, the CCEDM
equation becomes

Ao~ (oivfon) = o) + Gle)] > (o) = Gl

bgq
= Z %b,aq tz(l):| + (611 - %)tﬁ(l) = <p‘_hEDM
bg -

The perturbed cluster amplitudes are hence given by,

) = <—Bap = f/,,b,aqtg(”) / <e,, - ea> (3.80)
bq
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Where the matrix B,, is given by,

b= (s

Expressing the above equation in an iterative form,

gt = <_Bap - Z %b,aqtz(k_l’l)> / (610 - ea) (3.81)
bg

The perturbed cluster amplitudes are solutions of the Eq.3.81, where the initial guess is

~(ofteone)
tP(O,l) _

For one order in residual Coulomb interaction, £ = 1 and get,

()
200 = (=B Y Taat®) /(5 52
bq

1)

hEDM

given by,

hEDM

Substituting for tz(o’ , we get,

v

D <p<6hED€M)a> _ qu:<<pb aq> _ <pb‘V qa>> <6<q6;EgeMb>€ ) (3.83)

The second term of the above equation is exactly equivalent to the equation for the CPHF
mixing coefficient, Eq.3.73. The diagrammatic representation of the terms in Eq.3.73 are
shown in Fig.3.21 (d-e). This establishes the equivalence of normal CPHF diagrams and
the corresponding diagrams arising in the coupled-cluster theory. A detailed comparison
of the mixing coefficients of CPHF and the cluster amplitudes from coupled-cluster theory
is performed and is demonstrated numerically for atomic mercury results are summarized

in Chapter.6. Now consider the contribution of the atomic EDM in terms of the CPHF

o)

mixing coefficients,

EDM =) <¢g

D D

wg> Cleet) + cpa*“"””<¢2
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The zeroth order contribution to EDM is,

D

HEDM

erme
EDM =2 Z

¢2>
=

since Cp, = Cpe. The diagrams contributing to atomic EDM in CPHF theory are shown
in Fig.3.22. The atomic EDM in terms of the cluster operators is

EDM = <<1>0 TOD + DT

<I>o> (3.84)

where D = ¢ De™. The same diagrams in coupled-cluster theory (Fig.3.23(III))

arise from the term D (Tl(l)> i at the level of the final EDM matrix element. The
e

effective operator (Tf”) i results from the contraction of singles cluster amplitude
e

operator (Tl(l)f) and the residual Coulomb interaction.

Figure 3.22: CPHF diagrams contributing to EDM

As shown in Fig.3.23, the CPHF diagrams of the kind shown in 3.22 (b,c) are obtained
by summing the two MBPT diagrams Fig.3.23(I(a,b) & II(a,b)). These diagrams seem
to be arising from the terms (D(Tl(l))eﬁ' +T1(1)TDT2(O)) where (Tl(l))eff is the effective
diagram arising from the contraction of the cluster amplitude Tl(l)lr and the residual
coulomb interaction. The diagrams listed under (III) are directly present in the coupled-
cluster theory, but (I) and (IT) can be shown to be present only indirectly.

As shown in Fig.3.23, the CPHF diagrams at one order residual Coulomb interac-
tion can arise by summing two coupled-cluster diagrams corresponding to the terms
(D(Tl(l))eff + Tl(l)TDTQ(O)) where (Tl(l))eff is the effective diagram arising from the con-
traction of the cluster amplitude Tl(l)T and the residual coulomb interaction. The dia-

grams listed under (III) are directly present in the coupled-cluster theory. The CPHF
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(1) b - @ b T(0)
D(T.7),, b) Ty 2
_|_ a p
q b
(1)+ (0)

(b) T, bT,

)

D(Tl)eﬁ

Figure 3.23: Diagrams contributing to EDM - Solid interaction lines in I(a)&(b), I1I(a)&(b)

and ITI(a)&(b) represent the Coulomb interaction treated to all orders. The operator Tl(l) off 18

. LA . . .
a result of the contraction TQ(O) Tl(l) , which, when contracted with the induced dipole operator

(D), gives the diagram contributing to D,. Here, the diagrams (I) and (II) are the pseudo
diagrams of CPHF. We try to pick out the corresponding terms in coupled- cluster theory.

coefficients computed during the first iteration of the CPHF equation contain one or-
der residual Coulomb iteraction. The EDM computed using these coefficients can be

compared with the coupled-cluster terms as indicated above.
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Chapter 3. Coupled Cluster Theory and it’s application to Atomic EDMs

3.4 Comparison of Coupled-cluster theory with Con-
figuration Interaction

Before we move on the the calculation of atomic EDMs using CCT, we make a theoretical
comparison between the Coupled-cluster, the Configuration Interaction (CI) and the
Many-body perturbation methods. The exact atomic wave function in coupled-cluster

theory is expressed as

[Toc) = Q|@o) = €| @)

where 2 is the wave operator, |®y) is the reference state and T is the hole-particle
excitation operator and |We(¢) is the exact atomic state. In the present discussion let

Tr=T=3%,, alaqt?. This gives
[Wee) = [1 + T+ o+ e ] @) (3.85)

and

Ti|®o) = ) _alaq|®o).th =) |20)E7
a,p a,p

t? is the probability amplitude for the excitation from ’a’ to 'p’. Consider the CI wave-

function,

[Ter) = Col®o) + > Col®s) + Ca Y [®a) + ... (3.86)

where |®g), |®;) (set of all single excitations), |®4) (set of all double excitations)... form

a complete set of basis vectors in Hilbert space. Comparing Eq.3.85 and Eq.3.86,

Ti|@o) = ) _|@0)th = ) | Cil@y)
ap s
Hence, T} is equivalent to the set of all the single excitations as given by the CI wave-
function. From Eq.3.85 and Eq.3.86 it can also be noted that for double excitations, it
is necessary to include them explicitly in the CI wavefunction, but the CC wavefunction
can give the same through 7?2 term at a lower level of truncation of the exponential. The

|®;) of the CI is identical to |®2) of CCT. Now consider the wavefunction as described
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Chapter 3. Coupled Cluster Theory and it’s application to Atomic EDMs

in the many-body perturbation theory in terms of the unperturbed state,
[T) = [®g) + [Bg) + |DF) + ...... (3.87)

where |®¢) is the unperturbed wavefunction and others are the higher order corrections
to |®p). We have,

(®r|H'[®0)
o) =Y |®r)
[20) [@1) E, — E;
I£0

|®;) can be expanded in terms of the complete set,

Similarly,
®5) = _C2D,) + > Ci|®g) + .....
s d

where for |®), ‘I’ stands for all the single excited intermediate states. The exact wave-

function |¥) can now be written as
[B) = Do) + > [Cr+C2+ ] [@)+ Y [Ch+C+....] [Ba) + ... (3.88)
s d

|®;) has one order residual coulomb interaction(perturbation), |®3) has two orders, and
so on. This implies that there are infinite no. of residual coulomb interactions giving rise
to a single excitation, infinite Couplomb interactions giving rise to double excitations
and so on, where C!, C? etc represent 1 order in Coulomb with 1 intermediate state(I),
2 orders in Coulomb with 2 intermediate states (I,J) respectively. Comparing Eq.3.85
and Eq.3.88, we get

Ty|®o) = Y [Ch+C2+ ..] |®,) (3.89)

S

which indicates that 7} contains infinite orders of Coulomb interaction corresponding
to all possible single excitations. The above T} refers to the unperturbed cluster opera-
tor Tl(o). The Hpgpy perturbed operator Tl(l) contains, in addition to infinite orders in

Coulomb perturbation, one order in Hgpjys. The above equations also demostrate that
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Chapter 3. Coupled Cluster Theory and it’s application to Atomic EDMs

under a given approximation of singles and doubles, the summation over the correspond-
ing mixing coefficients is equivalent to treating the perturbation to all orders. Hence, an
all order calculation of the cluster amplitudes 2 and 7 is equivalent to calculation of

the mixing coefficients to all orders using many-body perturbation theory.

3.5 Size consistency and Size extensivity

Size consistency : A method is ’size consistent’ if the corresponding energy of two well-
separated (in the limit of infinite separation) subsystems A and B is equal to (E4 + Ej),
the sum of the energies of the two systems computed independently.

Consder a CI wavefunction |¥¢;), which is expanded in terms of a linear excitation

operator, unlike the CC wavefunction,
Ver) = (14 C) @)
where C' is a linear combination of various excitation operators,
C=Cs+Cy+C+

which can be represented in a second quantized form as,

C= Zc al a; + = anb aTaba,a] (3.90)
zg,ab

Truncation of the operator C' to singles and double excitations (CISD) leads to a
wavefunction with exactly same number of amplitudes ¢} and cg‘]”, as that needed for the
CCSD, t¢ and t?. However, the CCSD theory implicitly includes the higher excitations
like triples, quadruples, through the inclusion of higher powers of 7" which arise inher-
ently due to the CC exponential ansatz. Both the full CI and full CC produce exact
wavefunctions. Consider the structure of the CC and CI wavefunctions for a system in-

volving two non-interacting and infinitely separated components, A and B. It is possible

to disssociate the cluster operators for the two components, assuming that the orbitals
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Chapter 3. Coupled Cluster Theory and it’s application to Atomic EDMs

used to define T and C are localized on each of the two components,
T:TA+TB and C:CA+CB

Hence,

‘\chc> = eT‘(b(]) = €TA€TB|(I)()>

Under the localized orbital description, the reference determinant |®g) is factorizable into
independent determinants of each fragment, the total CC wavefunction can be written
as a product of CC wavefunctions of each fragment. The resulting energies would then
be a sum of energies of each of the fragments and is would be the same as that computed

for the system as a whole. In other words,
Eco = Ege + Eéc

This property is known as size extensivity. Since for CI, multiplicative separability is
not possible,

|Wer) = (14 C) @) = (1 4+ Ca + Cp) |Pp)

the sum of the energies of the separate fragments is not equal to the energy of the system

computed as a whole,
Eor # Egr + Eg;

If CI is non-trucated, then it is possible to write the full CI wavefunction as a product
of wavefunctions for separate fragments by transforming the linear operator into an
exponential. For a Hydrogen molecule, there are only two electrons to be correlated and
hence CCSD and CISD are exact for this system. But the CCSD gives correct total
energy and CISD doesn’t due to the inseparability of the CI wavefunction.

Size extensivity : A method is said to be ’size extensive’, if the energy calculated
thereby scales linearly with the number of particles. The SCF and the CC methods
are both ’size extensive’. Size consistency applies only to non-interacting molecular
fragments, but size extensivity is a more general mathematical concept that applies
to any point on the potential energy surface. We now show that exponential ansatz

guarantees size extensivity, whereas truncated CI does not.
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Consider the structure of the CI Shroedinger equation,

%)= (For— o) (14t Cot ) o0

where Hy is the normal ordered Hamiltonian and intermediate normalization?® is as-

Hy (1 +Cy+Cy+ )

sumed. Projecting by reference state from the left,
(Ecr — Eg) = (®o|Hy (C1 + C2) |®o)

where CI expansion is truncated using Slater rules. By the application of Wick’s theorem,

this equation can be written in the algebraic form as,

(Ecr — Ey) = Z fiaCi + % Z(ij\v\ab)c%’-’
ia ij,ab
For HF choice of the single particle orbitals, the first term is zero due to Brillouin’s
theorem. Assuming a localized orbital basis, for a given orbital |¢;), the two-electron
integral will be zero, unless the orbitals |¢;),|¢,) and |¢;) are reasonably close to |¢;)
due to the relatively short range nature of the inter-electronic potential.
Full CI is a size extensive and size consistent theory, but most truncated CI methods

are neither.

4{< ®g|T) >= 1, where |T) > is the exact state.
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Chapter 4

Implementation of CCEDM

In this chapter some of important issues in the implementation of the CCEDM program
are discussed. The program is written in FORTRAN-77. Refer to Appendix C for the
basic program skeleton. The number of diagrams contributing to CCEDM Eq.3.28 are
Niotal = 154 with ngn, = 42 and ngy = 102 where ng,; and ngy are the number of dia-
grams contributing through the singles and the doubles CCEDM equations respectively
and 10 diagrams arise from the RHS from singles and doubles. The program is composed
of 54 subroutines. Deatils of diagrams, the angular factors, description of the program

etc. can be obtained from [27].

4.1 Conventions and Symbols

The matrix elements present in the coupled cluster equations are calculated by separating
them into the radial and the angular parts. The angular part is manually calculated by
representing each diagram by a corresponding angular momentum diagram. The closed
part of an angular momentum diagram is evaluated using the JLV theorems [28]. The
radial integrals are programmed and calculated with the existing integration subroutines.
The convention used for the angular factor calculation is shown in Fig.4.1. In addition
to these rules, the arrow on the incoming free hole line is removed and the sign at the
vertex formed by the three multipoles of the T2(1) operator, (see Fig. 3.9) (A1, Ao, Kb)
is given a '+’ sign by our convention. For the complete details of the angular factor

calculations, see [27].
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Incoming hole line Sign of the vertex

) ) ) mcomi ng
Incoming particle line

Outgoing particle line

N

Outgoing hole line

% out90| ng Rank

S S

Figure 4.1: Notation for orbital lines
4.2 Implementation of the iterative scheme

The CCEDM equations are,

<(I>Z {FNT(I)} (I)0> == —<(b£ HEDM
(ol{fmaoble) = (o

Introducing a complete set of orbitals and expanding T = T + TV,

Z<‘1’Z_ <1>1><<1>1 T @0>+;<@2 J><<1>J q>O> - —<<1>g—

>

<1>0> (4.1)

HE‘DM

Hyl|® e

=)

1

Z<q>gg Hy <1>I><<1>I T <1>0> + Z<q>gg Hy <1>J><c1>J T <1>0> = —<c1>;g FEDM‘<1>0>
I J
which can be written in the form of a set of matrix linear equations,
ZlTl(l) + ZQT2(1) = El (42)
Z3T1(1) —+ Z4T2(1) = EQ (43)

where A; are identified as the dressed Coulomb Hamiltonian which is a rectangular matrix

and B;, the dressed EDM Hamiltonian operator, and the cluster amplitude matrix Tl(l)

(1)

is a column vector. The first Eqn.4.2 is solved for 7}/, with an initial guess for T2(1), and

is used in 4.3 to obtain a new set of TQ(I). The TQ(I) amplitudes are then used in Eqn.4.2
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Chapter 4. Implementation of CCEDM

to obtain a new set of Tl(l) amplitudes. This procedure is repeated until convergence is

achieved for both Tl(l) and TQ(I) amplitudes. In other words, we have,

<B1 _ A2T2(1,k—1))

T(]-’k) —
1 A]_
<32 - A3T,§1”“))
Lk
Y = i

where k£ = 1,2, 3, .... is the iteration count.
Usage of fresh iterates each time could help speed up the convergence of CCEDM

equations.

4.3 Complementary and Equivalent diagrams

Complementary diagrams arise due to the contraction of an asymmetric operator eg.,
TQ(I) and a symmetric operator eg., Vy, TQ(O). The asymmetricity of TQ(I) arises due to
the opposite vertex parity at it’s two vertices which gives rise to two distinct diagrams
from one contraction with any symmetrix operator. While it is necessary to calculate the
contributions from complementary diagrams, it is important to avoid repetition of such
diagrams which are generated whenever the complementary diagrams are topologically
equivalent to normal diagrams. One example of the diagram for which the actual and it’s
complementary are not the same is shown in Fig.B.2 (CD4). The cluster amplitudes dia-
grams are calculated in the subroutines, named after the form of the two-body Coulomb
operator they arise from and called in the driver routine. The complementary diagrams
are calculated by calling the routines of the cluster amplitudes twice, where the first and
the second call to the routine differs in the arguments of the routine. The arguments,
which are the actual orbital indices, corresponding to the open lines are flipped leaving

the internal orbital indices (which hence are summed) fixed. As an example consider the

diagrams CD4 of Fig.B.2. The 'normal’ and the ’complementary’ calls are :

call dpphh(ia, ip, ib, iq, ir, ic, 11, 12, ..... ) (Normal)
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call dpphh(ib, iq, ia, ip, ir, ic, 12, 11, ..... ) (Complementary)

It is important to note that the parity of the vertices (a,p, A1) is fized to be odd and
that of (b, ¢, A2) to be even. The calculation of complementary diagrams this way can
give rise to equivalent diagrams when the normal and the complementary diagrams
are not distinct. Equivalent diagrams in unperturbed and perturbed coupled-cluster
diagrams originate due to the presence of diagrams of symmetric topology, which results
in the repeated calculation of same cluster diagrams. In this thesis, we discuss only the
equivalent diagrams arising from CCEDM implementation. These diagrams particularly
arise from the contraction of the diagrams of the kind where the Coulomb operator and
a cluster amplitude operator are involved (VNTQ(I)). The cluster diagrams arising from
the contraction of the four-particle, (two-particle, two-hole) and four-hole forms of the

), generate equivalent diagrams. In

Coulomb operator and the clusterm amplitude T2(1
the next few sections, we explain in detail, the diagrams that contribute to the double
counting of cluster amplitudes in LCCEDM and the numerical factors associated with

them to account for it. For the T2(1) diagrams, the outermost loops correspond to the

orbital indices (a, p, b, ¢, A1, A2). Due to the parity condition at the two vertices of the TQ(U
diagram, the simultaneous flip of (a, b) and (p, ¢) is not allowed during the loop execution.
But, the flip of (a,b) or (p,q) is possible. In the following sections, we consider these
issues separately for the cluster diagrams arising from the (four-particle), (four-hole),
(two-particle, two-hole), (three-particle, one-hole) form of the Coulomb operator and
deduce the factors associated with them. For the cluster diagrams arising from the (four-
particle) and (four-hole) form of the Coulomb operator, calculation of the equivalent

diagrams means the calculation of the diagram obtained by the mirror reflection of the

original diagram.

4.3.1 Four particle form of Coulomb operator

Consider the diagram shown in Fig.4.2. The normal and the complementary diagrams
are equivalent for the cluster diagram with the bare Coulomb operator, but not for

the diagram with the dressed Coulomb operator, which contributes through LCCEDM.
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Therefore, the complementary diagrams need to be calculated with a factor (1/2) for the

diagram Fig.4.2 (I).

Complementary

Figure 4.2: Equivalent diagrams - Diagram (I) shows the contraction between the bare-

Coulomb and TQ(I) operators and Diagram (IT), the dressed Coulomb (H NTI(O)) and Tl(l) oper-
ator.

Exactly the same arguments given above are valid for the cluster diagrams arising
from the (four-hole) form of the Coulomb operator. Hence, these diagrams are calculated
along with the complementary diagrams, including a numerical factor (1/2) for the cluster
diagram arising from the bare Coulomb operator and no factor associated with the cluster

diagrams arising from the dressed Coulomb operator.

4.3.2 Two-particle, two-hole form of Coulomb operator

The cluster diagrams arising from the (two-particle, two-hole) form of the Coulomb
operator contributing to LCCEDM is shown in Fig.4.3. Note that there are no equivalent

diagrams as the normal and complementary diagrams are distinct.
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(& Normal (b) complementary

Figure 4.3: The normal and complementary diagrams are all distinct and hence there are
no numerical factor associated with these diagrams.

4.3.3 Three-particle (three-hole) - one-hole (one-particle) form
of the Coulomb operator

The cluster diagrams arising from the (three-particle, one-hole) and (one-particle, three-

hole) form of the Coulomb operator are shown in Fig.4.4. The complementary diagrams
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are distinct from the normal diagrams and hence there is no numerical factor associated

with the diagrams.
@ Normal (b)  Ccomplementary

ax\ r b r

a

p\xc

Figure 4.4: The normal and complementary diagrams are all distinct and hence there are
no numerical factor associated with these diagrams.

4.4 Intermediate Storage Scheme

Consider a diagram contributing to CCEDM equations shown in Fig.C.8(a). This dia-
gram contains four particle and four holelines. To calculate this diagram, the total num-
ber of operations required is = nj x nﬁ. For a reasonable basis, with number of occupied
(holes) and unoccupied (particles) orbitals given by n, = 22 and n, = 40, the number
of operations would be ~ 6 x 10*!. Such diagrams demand a large amount of computa-
tional time. Using the Intermediate Storage scheme, it is possible to reduce the number
of computations, **by calculating a portion of such diagrams which are common to a set
of actual amplitude diagrams**. The diagram in Fig.C'.8(a) is termed as an 'EDM-IMS’
diagram, where the the operators formed by the portion, 1'/]\;_7"2(1) and ‘m’fo) are cal-
culated and stored to give an EDM-IMS diagram as shown in Fig.C.8(b). The number
of operations now become = nj x n3 +nj x n = 2n; x nd = 6 x 10" which is reduced by
a factor (1/2)nZn, = 10*. The CCEDM diagrams arising from the (2-particle, 2-hole)
form of the Coulomb operator have been classified into EDM-IMS and Coulomb-IMS

diagrams based on the topology of the diagram and the number of orbital lines con-
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nected to TQ(O) and TQ(I) respectively. The IMS diagrams are calculated only once and
are used for further calculation of the complete cluster amplitude diagrams arising from
the particular kind of IMS diagrams. At present, this scheme has been implemented
only for the (2-particle, 2-hole), but in general can be used for the diagrams involving
orbital lines as large as 6 - 8 because such diagrams consume a large amount of CPU
time due to the execution of loops corresponding to the orbital lines. The Fig.4.5 shows
the cluster diagrams calculated using EDM IMS diagrams. The diagrams contributing
to EDM-IMS diagrams are shown in Fig.4.6, 4.7 and those contributing to the Coulomb
IMS are shown in Figs.4.8. These diagrams are of (hole - hole) or (particle - particle)
form. The actual cluster amplitudes are then obtained by the contraction of the effective
IMS diagrams with the corresponding cluster operator diagrams - the Tz(l) diagram for
Coulomb IMS and T2(0) for EDM IMS diagrams. The possible cluster diagrams in terms
of the IMS diagrams are shown in Fig.4.9. For details on the cluster diagrams calculated
using Coulomb IMS diagrams, refer to the documentation [27]. The pseudo code can be

found in Appendix C.

From the topology of the EDM IMS diagrams it is interesting to note that the rotation
of the free lines of the Coulomb vertices generates a diagram which is topologically
identical to the cluster diagrams arising from the singles CCEDM equations. This is a
very useful observation which enabled us to use our program where the singles cluster
amplitude diagrams are calculated (in particular, the cluster diagrams arising from the
(3 particle - 1 hole) and (3 hole- 1 particle) form of Coulomb diagrams).

The EDM IMS diagrams are only a one-body kind, whereas the Coulomb IMS dia-
grams are both One- and two - body kind. The two-body Coulomb IMS diagrams are
shown in Fig.4.10. The angular factors of the IMS diagrams can be obtained from [27].
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——
—_—

Figure 4.5: EDM IMS diagrams - They arise from the terms VNTQ(I) and VNTI(O)TI(I).

Figure 4.6: Hgpy perturbed hole-hole one-body IMS diagrams.
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Figure 4.7: Hgpy perturbed particle-particle one-body IMS diagrams.
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Figure 4.8: One-body Vy effective diagrams

(a) %& (b) %& © % (@ %
N NV \jﬁ/ \jﬁ/

Figure 4.9: (a)& (b) - Cluster diagrams arising from hole-hole and particle-particle Hgpm

perturbed IMS diagrams, (c)& (d) - cluster diagrams arising from hole-hole and particle-particle
Coulomb IMS diagrams.
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Figure 4.10: Two-body Vi effective diagrams - ph-hp(I), hh-hh(IT), pp-pp(III), ph-ph(IV)
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Figure 4.11: Cluster diagrams arising from the two-body Coulomb IMS diagrams - contraction
of IMS diagrams with Tz(l).
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a b. C
vl vl
N NN

Figure 4.12: Cluster diagrams arising from the two-body Coulomb IMS diagrams - contraction
of IMS diagrams with Tl(O)Tl(l).
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4.5 Calculation of Atomic EDM
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Chapter 5

Application of CC theory to
polarizability

5.1 Static polarizability

The concept of polarizability arises from the effects of electric field on matter. In the
presence of an external electric field, a nuetral atom gets polarized, where the positive
and negative charge clouds shift from their original positions and reach an equilibrium.
This gives rise to an induced dipole moment on the atom Dj,q which points in the same
direction as E and proportional to it : D;,q = aE. The constant of proportionality « is
called the atomic polarizability. When the external field is time dependent, it is known as
the dynamic polarizability. We now derive a quantum mechanical way of identifying the
polarizability as arising from treating the induced dipole operator as the perturbation to
first order. (derivation of @ done later).

Consider the expression for the static atomic polarizability,

g2 > <\1;§°) 7 >
(5.1)

(-

—

Dind Dind

<\1ré°)
a=2 Z
I

Let

Dind

‘Ijgo) ‘11,(10)>
(5.2)

()

where |U®) and |¥M)) are the unperturbed and perturbed atomic wavefunctions re-

\pg°>> <

spectively. E© are the unperturbed energy eigen values. The unperturbed atomic
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Hamiltonian Hj satisfies the Schroedinger equation,

(s

In the presence of the interaction H', we have the perturbed Schroedinger equation,

()

Assuming H' to be an odd-parity operator, the first order corrections to the energy do

not contribute. Act (Ho — E,SO)) on Eq.5.2,

(HO - Eg@)

q;g°>> (5.3)

<\I,(o>
I
w) =30 (- £0) 9f?)
I
\pg°>>

= \1;§°)><\IJ§°)
I

since \\Iigo)) is an eigen function of Hy. Since Diyq is an odd parity operator, |\Il§0)) must

D ind

be opposite in parity to \\Il((lo)). Using this we have,

(1 20)o0) = .

—

Comparing Eq.5.4 and Eq.5.3, we identify Dj,q as the perturbation H'. The sample

\ng>> (5.4)

calculation of polarizability for atomic % Hg is shown in Section.6.4.3.

5.2 Polarizability of atomic Xe using linear CCEDM
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Chapter 6

Analysis of Hg EDM results

The single particle orbitals for all the calculations in the subsequent sections are gen-
erated using the Gaussian basis set expansion for the many-body atomic state, whose

large and small components are expanded as [29]
Pog(r) = ZC pgK,p
an(r) = ZCS gnp( )
P

where the summation over the index p runs over the number basis functions NV, gfp(r)
and g,fp(r) correspond to the large and small components, whcih are expanded as linear

combinations of Gaussian Type Orbitals (GTOs) as
s = N

where a;, = ap BP7!, where o and 8 are input parameters and n, =1 for s, 2 for p and
so on and NPL is the normalisation factor for the large component. The large and small

components are related by

where

N;:\/Zna”_l{4(m2+/€+nn)—l}

6.1 Results for the CCEDM-CPHF comparison

The details of the basis used are as shown in Table.6.1.
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Table 6.1: No. of basis functions used to generate the even tempered Dirac-Fock orbitals and
the corresponding value of ap and S8 used. The total number of active orbitals are shown in
the brackets of "Active holes’.

51/2 P12 P32 d3/2 d5/2 f5/2 f7/2 gr/2 99/2
Number of basis 31 32 32 20 20 20 20 10 10

ap(x1079) 725 715 715 700 700 695 695 655 655
B 2.725 2715 2.715 2.700 2.700 2.695 2.695 2.655 2.655
Active holes 6 6 6 4 4 4 4 3 3
Active particles 6 4 4 3 3 1 1 0 0

The calculated 7Y amplitudes are in excellent agreement with the CPHF mixing
coefficients to an accuracy of 99%. The zeroth order contribution is —0.46 x 10 *!Cron
which compares with the previous calculation of Martensson as —0.38 x 10" Cron a.u
[7]. We attribute this difference to the type of orbitals used. We have used a Gaussian
basis set expansion for generating single particle orbitals, while Martensson et.al.[7] has
used the solutions of the differential equation derived from the CPHF equations as the
saingle particle orbitals. The variation of Dy, with normal diagrams for the chosen basis,
with the inclusion of higher angular momentum virtual states shows the following trend

with the inclusion of normal diagrams : The Table.6.2 indicates that the higher angular

S.No. nsym EDM ( X107 e-m )
Normal (Normal+Pseudo)

1 3 -6.30 -5.48
2 ) -6.31 -5.53
3 7 -6.16 -5.81
4 9 -6.16 -5.81

Table 6.2: Variation of Dyg with the inclusion of higher angular momentum virtual states.

momentum states give a positive contribution. The dominant contribution arises from
the 651/2-p1/2 and 6s1/9-p3/2 intermediate states, whose matrix elements are tabulated in
Table.6.3. Total contribution (normal + pseudo) from 6s;/o-np = —225.030 converting

into atomic units, Dyg is = —1.413 x 10 "'Creagoy. This compares with the CPHF
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Table 6.3: Dominant contributions to Dyg(in units of 24/(2)GrCreas) from normal and

pseudo diagrams for np intermediate states.
Occ. np Tlgflf) D Tlgf) x D

Normal Pseudo Normal Pseudo Normal Pseudo

6s12  2p1e  111.753 95.739 0.872 0.835 —32.485 6.033
6512 3pie -269.402 -233.805 —1.821 —1.734 —163.518 29.396
6s12  4pie  270.725  242.544 1.388 1.311 —125.286 20.034
6s12  dpie -198.267 -189.975 —0.344 —0.319  —22.748 2.629
6s12  6pi2 -106.923 -108.978 0.068 0.059 2.424  -0.276
6s12  2p3/e 20.542 15.054 0.995 0.904 6.814  -2.442
6512 3pse  -54.653  -39.743 —2.372 —2.109 43.218 -16.581
6s12  4p3e  -58.035 -41.318 —2.311 —1.876 42.779 -18.803
6512 dp3/o 30.418 20.049 0.771 0.513 7.816  -5.282
Total —239.655 14.624

value of Martensson’s result —1.8 x 10 '*Creagoy. The discrepancy in the zeroth order
results of Martensson’s and our calculation is also present at the all all-order level and can
be attributed to the numerical differences arising primarily from the generation of single
particle orbitals. From the present study, it is evident that the contribution from pseudo
diagrams though important is 6 % of the normal diagram contribution and opposite in
phase. An increase in the number of virtual orbitals, results in deviation from the values
listed in Table.6.3. For example, with the basis (1-14)s1/2, (2-14)p1/2,3/2,(3-12)d3/2,5/2,
(4-8) f5/2,7/2 and (5-9)g7/2,0/2, the results are shown in Table.6.4.

SNo. HF EDM ( x10~% e-m )
Normal (Normal+Pseudo)
1 -2.39 -6.31 -6.54

Table 6.4: Variation of the normal and pseudo diagram contributions with increase in the
basis for nsym = 9. Note that pseudo diagram contribution is 3.5 %.
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6.2 Calculation of unperturbed cluster amplitudes

In the absence of an external perturbation, e.g., Hgpm, the perturbed CC equations
reduce to the unperturbed CC equations. Hence, the unperturbed cluster amplitudes
take the role of the perturbed cluster amplitudes and the CC equation can be solved to
obtain the unperturbed cluster amplitudes. This exercise can serve as a good check for
the CCEDM code. This can be implemented at two stages, linear and non-linear. In the
next section, the calculation of the unperturbed amplitudes from CCEDM equations in

the limit Hgpy — 0 at the linear level is discussed.

6.2.0.1 Calculation of unperturbed cluster amplitudes at the linear level

Consider the linearised CC equations,

(o
<<1>z;z

(For derivation, refer to Section.3.1.1. Note that in the present section, we have renamed

{HN + HNT(O)}

{HN + HNT(O)}

<1>0> = 0 (6.1)
<1>0> =0 (6.2)

T in Eq.3.14 as T(©.) Since we use the approximation 7 = Tl(o) + TQ(O),

<<1>:; Hy <1>0> + <<1>; {HNTfO) +HNT2(O)H@0> =0 (6.3)
<<1>;g Hy <I>0> + <<I>;;; {HNTfO) +HNT2(°)H<I>0> =0 (6.4)

The above equations can be written in the form,

HiTO + HL,TV = —Hy (6.5)

HuT® + Hpy LY = —Hy, (6.6)
where the RHS of the above equations is independent of 7(®). Combining the equations,

ATO = C (6.7)
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where A and C are independent of T. This is a linear matrix equation. Consider the

CCEDM equation,
(| [ fan) =~

where |®*) is a singly or doubly excited slater determinant. (Refer to Section.3.1.2 for

<1>0> (6.8)

derivation.) The linearised CCEDM equations are obtained by approximating, H y ~ Hy
where T takes the place of 7. This gives, for singles,

(o) = (o

In the absence of perturbation the RHS of the Eq.6.9, Hgpy is replaced by Hy. Hence

HEDM

<I>0> (6.9)

the singles equation becomes, becomes,

(o=~

In the LHS of the Eq.6.10 equation, the terms of {HyT®@} contributing to the sin-

Hy

<I>o> (6.10)

gles and linear in T arise only from the (2-hole, 2-particle)(diagrams CS3, CS4),
(3-particle, 1-hole)(diagrams CS7, CS8), (3-hole, 1-particle)(diagrams CS9, CS10) and
particle-particle (CS1) and hole-hole (CS2) form of the residual Coulomb operator (See
Appendix B Fig.B.2). With the inclusion of only these diagrams listed in the brackets,
under a linear approximation and in the absence of Hgpjs perturbation, Eq.6.10 become
mathematically equivalent to the unperturbed CC equations, Eq.6.4.

Similarly, consider from the CCEDM equation for doubles,

(e 3o -

Replacing the Hgpy terms on the RHS of the Eq.6.11, by Hy and taking only the terms

linear in T on the LHS,
(o)
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The diagrams contributing to the LHS are (4-hole) (diagram CDG6), (4-particle) (diagram
CD3), (3-particle, 1-hole) (diagrams CD1, CD2), (2-particle, 2-hole) (diagrams CDA4,
CD5, CD9, CD10) and particle-particle (CS1) and hole-hole (CS2) (See Appendix B
Fig.B.2). Consider the Egs.6.10,Eq.6.12,

<q>; <I>0> = —<<1>; <I>0> (6.13)
(o) - (i)

These equations are termed as the 'unperturbed’ CCEDM equations and can be repre-

HyxT© Hy

HyTO Hy

sented in terms of elements of a matrix as

H.TO + 7,7 = H| (6.14)

H£1T1(0)+H§2T2(0) = Héo

These are equivalent to the Coupled-cluster equations Eq.6.6. The term (@7 |Hy|®o) =
0 on the RHS of Eq. 6.14, due to Brillouin’s theorem. The singles equation after
substituting 7© = T + T becomes,

<<1>g c1>0> =0

For the initial guess, set the matrix elements of TQ(O) = 0 and hence

<q>z <1>0> _ zj:<<1>; c1>1><<1>1 @0> _0

For a given value of I, the matrix elements of TI(O) = 0. The initial guess values for the

HyT? + HyT

HyTO Hy TV

doubles cluster amplitudes are then obtained from the doubles equation,

(o T @0 ) = (o3

The matrix elements on the RHS of Eq.6.15 reduce to

(][0 = (rofofab) = (s

7

HyTO Hx

d>o> (6.15)

Hy v v

o)
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and the initial guess for TQ(O) becomes,

(G )

The Eqns.6.14 are then solved for the unknown 7®) amplitudes.

v v

)= (rs

€t € — € — €

6.3 Calculation of correlation energy

The details of the Gaussian basis set calculation are discussed in the next few sections.
Table.6.5 shows the details of the number of basis functions used to generate the Gaussian
basis set and the active orbitals used in the present calculation. Four sets of calculations
are performed with inputs of increasing basis size whose details are given in the next few
sections.

Table 6.5: No. of basis functions used to generate the even tempered Dirac-Fock orbitals and

the corresponding value of ap and 8 used. The total number of active orbitals are shown in
the brackets of ’Active holes’.

$1/2 P1/2 P3/2 d3/2 ds)2 f5/2 f7/2 gr/2 9o/2
Number of basis 31 32 32 20 20 20 20 10 10

ap(x107°) 725 715 715 700 700 695 695 655 655
B 2,725 27715 27715 2.700 2.700 2.695 2.695 2.655 2.655
Active holes (36) 2 2 2 2 2 1 1 1 1
Active holes (39) 3 3 3 2 2 1 1 1 1
Active holes (43) 3 3 3 3 3 2 2 1 1
Active holes (45) 3 3 3 3 3 3 3 1 1
Active particles 6 4 4 3 3 1 1 0 0

The correlation energy is calculated using the Eq.3.9,

q>o> - E @0>
e T (HN + EHF> el <I>0> = E<<I>0
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Projecting the equation by the reference state,

(a

<I>o> (6.16)
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Hence,
Hy

Ecorr - <(I)0 (I)O >

where E.o; = E — Egp. In linear CCT, the diagrams contributing to the correlation

energy are shown in Fig.6.1.

(a) (b)

Figure 6.1: Correlation energy diagrams in linear coupled-cluster theory.

The comparison of the correlation energy calculated using the CCEDM program and
the linear unperturbed coupled-cluster singles and doubles program in the limit of the

perturbation Higpy — 0 is shown in Table.6.6.

Table 6.6: Correlation energies calculated with converged unperturbed cluster amplitudes

Basis Eeom (LCCSD) Eeory (LCCEDM)

36 -2.86 x1073 -2.01 x1073
39 -2.01 x1072 -1.64 x1072
43 -2.21 x1072 -1.85 x1072
45 -2.26 x1072 -1.91 x1072

6.4 LCCEDM for atomic Hg

The calculation presented in this chapter is for a test basis with only few virtuals orbitals.
The results presented here, are hence preliminary. A summary of the results obtained
by gradually increasing the basis set is presented towards the end of this ’ chapter. The
details of the single particle orbitals and other inputs are presented briefly :

The single particle wavefunctions are calculated using GTOs. The input for the

present calculation is shown in Table 6.5.
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Table 6.7: No. of basis functions used to generate the even tempered Dirac-Fock orbitals and
the corresponding value of ap and S8 used. The total number of active orbitals are shown in
the brackets of "Active holes’.

S1/2 P12 P32 d3/2 d5/2 f5/2 f7/2 gr/2 99/2
Number of basis 31 32 32 20 20 20 20 10 10

ao(x107°) 725 715 715 700 700 695 695 655 655
B 2.725 2715 2.715 2.700 2.700 2.695 2.695 2.655 2.655
Active holes (36) 2 2 2 2 2 1 1 1 1
Active holes (39) 3 3 3 2 2 1 1 1 1
Active holes (43) 3 3 3 3 3 2 2 1 1
Active holes (45) 3 3 3 3 3 3 3 1 1
Active particles 6 4 4 3 3 1 1 0 0

In the next step the unperturbed cluster amplitudes (7®) are generated with the
active holes (36) and active particles as shown in Table.6.5. Then, the perturbd cluster
amplitudes are calculated using the CCEDM program. The program converged in 7
iterations and the Hartree-Fock contribution is Dy, = —0.35 x 107" Croyag. Following

are the terms contributing to the EDM expectation value at the linear level :

Datom = <(I)0

DTO + T<1>*E‘<I>0>

where

— T7OT 5 70
D=e De

t
= (1 + T“”) D (1 + T(O))

—D+DT® +TO'D=p+DT® + D+ DT +TO' D+ TO'D

. At the linear level,

Now the EDM expectation value becomes,

Datom :2<(I)0 )T

[Tf”*pwfl DTl(O)+T1(1)TDT2(O)+T2(1)TDT2(O)+T2(1)TDT1(O)}‘(I)O> (617

It must be noted that the operators D and Hgpy are both single particle operators

and have the same rank (K, = 1). Also, diagrammatically both the operators have same
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representations. Hence the atomic EDM calculated by considering Hgpy as a perturba-
tion and subsequently calculating the expectation value of the induced dipole operator
between the perturbed states or treating the induced dipole operator as the perturbation
and taking the expectation value of the Hgpy operator, is identical. This is particularly
true for the EDM property as it is an expectation value, unlike for PNC amplitudes,
for which it is necessary to preserve the order of perturbation. Computatonally, it is a
very efficient way to calculate the EDMs induced by T-PT, NSM and also properties
like the polarizability, by using the cluster amplitudes perturbed by the induced dipole
operator. Hence, the calculation of the single particle wavefunctions, the unperturbed

and the perturbed amplitudes is performed only once.

6.4.1 Results for Hg EDM induced by the Pand T violating

T-PT interaction

Contributions from each of the terms in Eq.6.17 is shown in Table.6.8. The final result

Table 6.8: Individual contributions

Contributions in atomic units

T™'p -85.93
7O pr© -17.98
T p7© 42.96
' pr® -15.45
7 pr© 40.019

Total -116.37

can be translated in units of e — m,

Dpy = —3.87 x 10 *Cre —m
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6.4.2 Results for Hg EDM induced by the Pand T violating

Nuclear Schiff moment

The 9 Hg atomic EDM induced by the nuclear Schiff moment is calculated for the same
input given in the previous section 6.4.1. The method of generation of the perturbed and

the unperturbed cluster amplitudes is the same as described above. The Hartree-Fock

S

el Contributions from each of the above

contribution is Dy, = —0.22 x 10~7ecm

terms is shown in Table.6.9.

Table 6.9: Individual contributions

Contributions in units of 10 17e ¢cm ( S )

e fm3
TM'p -0.113
7O pr© 20,024
7O 7O 0.0039
' pr© -0.023
7 pr© 0.252 x10~*
Total -0.156

The final result is,

_ ~16
Dy, =—2.08 x 10 ecm P

6.4.3 Sample Calculation of polarizability

Polarizability of a closed shell atomic system is calculated by replacing the Hgpyr operator
by the induced dipole operator (see Section.5.1). With the same input given in Table.6.5,
the individual contributions of terms in Eq.6.17 are given n Table.6.10 :

The experimental value of the polarizability in atomic units [30] is 34.45ea3 (50 %).

6.4.4 Summary of the results
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Table 6.10: Individual contributions

Contributions in (—) eaj

.'.

™' D -14.16
7O p7© -0.096
7' pr® -0.040
7O 0.056
7' pr© 0.006

Total -14.24

Table 6.11: Summary of the preliminary results. More realistic calculations must involve
basis functions as large as 90.

Basis size In units of In units of Polarizability
1002Crem 1077 ecm cja5 ine ag

36 -3.88 -0.156 14.24

39 -5.69 -0.227 21.11

43 -4.10 -0.158 21.52

45 -7.71 -0.309 21.88

6.5 Implications of the tensor-pseudotensor coupling
constant for physics beyond the Standard Model

The Standard Model of particle physics does not accommodate the tensor-pseudo tensor
P and T violating electron-nuclear interaction. Any non-zero value of Cr would mean
physics beyond the Standard Model. The present limit on C'r = 0 is obtained from
the comparison of the ratio R = daom/Cr using Coupled-perturbed Hartree-Fock theory
[7] and the latest experimental result [5]. More details of this theory are presented in
Section.3.3. The diagrams arising in the CPHF theory Fig.3.21 form only a subset of

the correlation effects shown in Fig.B.2. This comparison gives,

Cr= (1.77 +0.82 + 0.67> x 10 %oy
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An improved accuracy of the calculation of the quantity R would give an improved es-
timate of Cr. From the Fig.1.1, the contribution to the closed atomic EDMs induced
by the tensor-pseudo tensor electron-nucleus interaction arises from the electron-nucleon
interactions which originates from the electron-quark interactions. The interaction in-

volves the nuclear spin oy and hence C7r is weighted by the neutron and proton spins

CT = <CTpZUp + CTnZUn>
p

n

where o, and o, are the proton and neutron spins respectively. The nucleus of *° Hg has
an unpaired neutron with [ = % The underlying CP-violation models indirectly predict

the coupling constants associated with the electron-quark interactions.

6.6 Implications of the Nuclear Schiff Moment for
physics beyond the Standard Model

It has already been explained in earlier sections that the EDM of atomic ' Hg could
arise from the P and T violating nuclear interactions. These interactions NSMproduce
the . In this chapter we discuss the connection between the NSM with the P and T
violating quark interactions.

The contribution to the nuclear Schiff moment (NSM) can arise from

1. The nucleon EDM : The nuclei which consist of unpaired nucleons can induce an

EDM due to the EDMs of the lone nucleons.

2. Pand T violating nucleon-nucleon interactions : The presence of CP violation
at the quark level can induce nucleon-nucleon interactions which are Pand T

violating, in addition to the nucleon EDMs of the form

G . _
HPT = —FT]ab (Na’L")/g,Na) (NbNb) (618)

V2

In the non-relativistic limit, Eq.6.18, reduces to,

— & Tab
V2 2my,
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This interaction can be written as an interaction of a single valence nucleon N, and the

nuclear core with the density distribution p as,

_Gp 1

an - T =45
V2 2my,

NaCa - Vp (6.19)

where
N = MipZ +nin (A—Z)] /A

For 12 Xe and ' Hg, the unpaired nucleon is a neutron. The NSM caused by the
internal proton excitations is parameterized in terms of the constant 7,,. It was later
understood that the contributions of the internal nucleons to the T-odd nuclear moments

is as important as the contribution of external ones. The most accurate measurement of

the 1% Hg atomic EDM is [5],
dig = —(1.06 £ 0.49 £ 0.40) x 107> e — cm (6.20)

and the numerical calculations of the ' Hg atomic EDM induced by the nuclear Schiff

moment yielded the latest value [10]

—17
dyg = —2.8 x 10 (W) e cm (6.21)
The NSM, @ is related to the parameter 7,, by [12],
Q 8
From Eq.6.21 and 6.22, we get,
dgg = —2.8x 1077 x (—1.4) x 107® p,,e em
= 3.92 x 10 *ne cm (6.23)
From 6.20, we obtain,
—(1.06 + 0.49 & 0.40) x 107 = 3.92 x 10~ *°n, (6.24)
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Hence,

(1.06 + 0.49 & 0.40) x 10~
3.92 x 10~
= —(27+£1.3+£1.0) x 107" (6.25)

Thp = —

(see Ref.[10], Table.VIIL.)
To estimate the 7,, parameter, it is assumed that the terms (G r/ \/5) nnpN ivsN NN
arise from a one pion exchange. The lowest intermediate state contributing to 7, is the

7Y meson, which is related to the pion-nucleon coupling constant by,

& _ _GrnnN grNN
L) m2

where, Gg = 1.17 x 107! (MeV)~? is the Fermi’s coupling constant, m, = 140MeV is

(6.26)

the pion mass, g,yy =~ 13.5 is the usual pion-nucleon coupling constant, and g,y is the

P and T violating pion-nucleon coupling constant. For 1% Hg, we have,

Grm?
— GxNN GxNN = Tlnp X % (6.27)
where Gpm2 = 2.29 x 10~7. Substituting,
_ 4 229%x10°7
— gann Gany = —(2.7£1.3+£1.0) x 107* x —
2.29

gony = (27+£1.3+£1.0) x 10" x ———
g ( ) 13.5 x /2
= (27£13+1.0) x0.11x 107"

= (3.0+14£11)x 107" (6.28)

(see Ref.[10], Table.VIIL.)
According to [31], the above value of g,y for ' Hg can be used to set limits on the

QCD vacuum angle fgcp using,
ngN ~ —0.027 OQCD

which gives,
fqcp = (1.1 +£0.5+£0.4) x 107"° (6.29)
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(See [10] Table.VIII).
Apart from the limits on fqcp, it is possible to set limits on the linear combination of
quark chromo EDMs using,

1 3grpymy
 4rGp  fym2

T x (dg — d,, — 0.012dy)

where f; is the pion decay constant, gpp is the CP conserving coupling constant. Also,
the I = 1 component of g,yny is related to the chromo electric EDM of the light
quarks[14],

gy = 2(d, — dy) x 10"
where the terms on the RHS are all expressed in centimeters. From the limit on gy,

we obtain the limit for the linear combination of the quark chromo EDMs,

e(d, —dg) = (3.0+1.4+1.1) x 10 20ver2 x 10

= (1.5£0.7£0.6) x 10 *°ccm

(See [10] Table.VIIT).
It is also possible to obtain a limit on the neutron and proton EDMs from the **Hg
EDM. The neutron EDM dpy is estimated in terms of the the CP-odd 6 terms in the
QCD Lagrangian [32],

dn = (5.2 x 10 "ecm) 6

Using Eq.6.29,
dy = (5.2 x 107"%ecm) x (1.140.540.4) x 107" (6.30)

we get,

dy = (5.74+ 2.6 +2.1) x 10" *ecm

which can be used to set limit on the proton EDMs [15],
Q= s, dy, + s, dy (6.31)

where the NSM () is presented as the sum of proton and neutron EDMs and s, =
0.240.02fm? and s, = 1.895 4 0.035fm?. It is possible from the above relations, to get
a limit for the proton EDM from *° Hg EDM.
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6.7 Conclusions and Future directions

The results shown in Section.6.4 correspond to a linearised Coupled-cluster theory ap-
plied to the calculations of closed-shell atomic EDMs. The LCCEDM calculations with
larger basis sets are critical for these calculations and are in progress. Also, the inclusion
of non-linear terms in the coupled-cluster equations would mean a highly accurate calcu-
lation of the P and T violating coupling constants. The high accuracy calculations of the
coupling constants are underway and it should be possible to obtain the results of the
non-linear CCEDM calculation in very near future considering the present status of the
CCEDM program, and the accessibility of the techniques of parallelisation. The stage is
now all set for further research on atomic EDMs, given the status of the experimental
accuracy, there is a clearly necessity for accurate calculations of R. The inclusion of the
non-linear effects would improve the limits set on the coupling constants by the earlier
calculations. The accurate calculations of the coupling constants would help in providing

important insights into many models of particle physics that predict them.
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Appendix A

P and T violation and electric dipole

moments

Implications of P and 7' symmetries on intrinsic electric dipole moments

The permanent electric dipole moment(EDM) is defined as the expectation value of

the electric dipole operator between non-degenerate atomic states. Let D;,; denote the

intrinsic or the permanent EDM of a non-degenerate physical system in a state |¥).
Then, it’s EDM is given by,

Dint = (¥ [Dina| V) (A.1)

where D;,4 is the induced dipole operator. Consider the above quantity in a parity

transformed corrdinate system,
Ding = (V' | Ding| ¥')
where | U) = P| U). Since P = P! = P~!, the above can be modified into,

Dy = (V' |(P PV)Dyq (PP )
)

(A.2)
Since, (P! Dina P) = — D, we have,
Ding = — (¥ [Dina |¥) (A.3)
<\I" |Dmd| \I"> = - <\I’ |Dind |\I’>
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The state |¥) is a stationary state and hence if the Hamiltonian determining the system
is #, then, #|¥) = £|W). Assuming the Hamiltonian to be invariant under P, we have
P~19{P = . Hence,

(PHP—l) PlU) = £P|T)
HY = &)

This implies, both |¥) and ¥') = P|¥) describe stationary states with same eigen value
E. If this energy level is non-degenerate, then the two states cannot be independent and

hence P|¥) = ¢|W), where ¢ = +1. From A.1 and A.3,

(U |Ding [¥) = — (¥ |Djpa| ")
= — (VU |Dyq |¥)

= - <‘I’ ‘Dind \‘I’>
In other words,
<\I/ ‘Dind |\I/> == O

It is hence proved that
If the Hamiltonian is invariant under a P transformation, and if the state is non-

degenerate, then there can be no permanent electric dipole moment in that state
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Appendix B

Classification of CCEDM diagrams

Diagrammatic representation of Coulomb operator and classification of

diagrams with respect to the form of Coulomb operator

F PP
CSL % CD7. \_O N A
F_HH
cS2 »\T@ CDS. —o
N N
F_PH

/YO CD5. CD®. \1;/(

Figure B.1: CCEDM diagrams listed according to the form of V.
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V_PPPP

/F L i CD3 -
V_HHHH

iﬁ . i CD®6. SN
V_PPHH

$ i CS3. </ CD4. o CD5.

V_PPPH
- /A\ Cs7. T CS8.
V_HHPH
$ - /A\ CS0. CSsL10.
V_PPHP
/E \/ CD1. xiww \/
V_HHHP

Figure B.2: CCEDM diagrams listed according to the form of Vi - contd.
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Technical details of the CCEDM

program

Flow chart for the CCEDM program is shown in Fig.C.1.
The program consists of routines to calculate various parameter/quantities necessary
for setting up the CCEDM equations. The routines important for the actual EDM

calculation are described below briefly :*

e Subroutine readinp: Reads the input containing the number of basis, number

of occupied orbitals and the ranks of the EDM and induced dipole operators.

e Subroutine symm: This routine sets up the equation indices for retrieving 7
amplitudes and also the skip information necessary for the locations of the Coulomb

integrals.

e Subroutine symm-edm: This routine sets up the equation indices for the 7()

amplitudes.

e Subroutine findlam: This routine calculates the multipoles (A, Az) of the T}

operator, stores them in an array and also defines the locations for storing them.

e Subroutine coulims: This routine calculates the bare Coulomb integrals - (4-
particle), (4-hole), (2 particle, 2 hole), (3 particle, 1 hole) diagrams and stores

them in memory.

'For a detailed description of the program refer to the documentation to be put up in our webpage
: http://www.ilap.res.in/research/NAPP /main.html
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Subroutine aimshhph: This routine calculates the (particle - particle) EDM
IMS contributions.

Subroutine aimsppph: This routine calculates the (hole - hole) EDM IMS con-

tributions.
Subroutine edmtp: This routine calculates the T-PT EDM matrix element.
Subroutine edmtp: This routine calculates the induced dipole matrix element.

Subroutine schiff: This routine calculates the EDM matrix element arising from

NSM.

Subroutine vdriver: This routine solves the CCEDM equations for the unknown
T amplitudes. The method employed to solve them is based on the Gauss-Seidel
iterative scheme. Then the amplitudes are saved in a binary file for property

calculations.

Subroutine vimsloc: This routine sets up the equation indices for storing the

Coulomb integrals (ij|V'|kl).

Subroutine sppph: This routine calculates the perturbed cluster amplitudes
arising from the (3 particle - 1 hole) form of Coulomb diagrams, contributing to

singles CCEDM equations (See Fig.B.2).

Subroutine shhph: This routine calculates the perturbed cluster amplitudes
arising from the (3 hole - 1 particle ) form of Coulomb diagrams, contributing to

singles CCEDM equations (See Fig.B.2).

Subroutine sphph: This routine calculates the perturbed cluster amplitudes
arising from the (2 hole - 2 particle ) form of Coulomb diagrams, contributing to

singles CCEDM equations (See Fig.B.2).

Subroutine dpphp: This routine calculates the perturbed cluster amplitudes
arising from the (3 particle - 1 hole) form of Coulomb diagrams, contributing to

the doubles CCEDM equations (See Fig.B.2).
94



Chapter C. Technical details of the CCEDM program

e Subroutine dhhhp: This routine calculates the perturbed cluster amplitudes
arising from the (1 particle - 3 hole) form of Coulomb diagrams, contributing to

the doubles CCEDM equations (See Fig.B.2).

e Subroutine dpphh: This routine calculates the perturbed cluster amplitudes
arising from the (2 hole - 2 particle ) form of Coulomb diagrams, contributing to

the doubles CCEDM equations (See Fig.B.2).

e Subroutine dpppp: This routine calculates the perturbed cluster amplitudes
arising from the (4 particle ) form of Coulomb diagrams, contributing to the doubles

CCEDM equations (See Fig.B.2).

e Subroutine dhhhh: This routine calculates the perturbed cluster amplitudes
arising from the (4 hole ) form of Coulomb diagrams, contributing to the doubles

CCEDM equations (See Fig.B.2).

e Subroutine dppph: This routine calculates the perturbed cluster amplitudes
arising from the (3 particle - 1 hole ) form of Coulomb diagrams, contributing to

the doubles CCEDM equations (See Fig.B.2).

e Subroutine dhhph: This routine calculates the perturbed cluster amplitudes
arising from the (1 particle - 3 hole ) form of Coulomb diagrams, contributing to

the doubles CCEDM equations (See Fig.B.2).

e Subroutine compute-edm: This routine calculates the EDM expectation value

arising from the T-PT and NSM and also the polarizabilities.

e Subroutine edm-lin: This routines is particularly written for calculating the
contribution to the EDM expectation value from linear CCEDM calculation. In the
Appendix 6.4.1, a sample calculation is given, listing the specific terms contributing

to the EDM calculation at the linear CC level.

In this Appendix, I describe some of the milestones in the project of the implementation

of the CCEDM theory program.
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Figure C.1: Flow-chart for the non-linear CCEDM code - The driver routine calls the routines
sppph, sphph, shhph, where the cluster diagrams arising from PPPH, PHPH, HHPH form of
the coulomb operator (V) respectively, contributing to singles are calculated. Similarly the
routines, dpphp, dppph, dpppp, dppph, dhhhp, dhhhh are called where the diagrams arising
from corresponding form of the coulomb operator contributing to doubles are calculated.The
driver routine also calculates the diagrams contributing to the RHS -(B matrix) of the CCEDM
equation.
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Loop over two holes & two particles

Loop over ’ic’
Loop over "ir’
Loop over ’id’
Loop over ’is’

Hole—hole H ,,, IMS diagrams

=

Loop over ’ia’

End ’ia’

Diagrams CS3 & CS4 — T1-T1 block

Particle—particle H_,,, IMS diagrams

Loop over ’ip’
p i
. r
End ’ip’
End ’is’
End ’id’
End ’ir’
End ’ic’
Loop over open lines

Loop over’ia’
Loop over’ ip’
Begin singles

Compute B—matrix diagrams
for singles

Loop over ’ib’
Loop over ’iq’

Loop over ’ir’

Singles clusters arising from

V_PPPH

Loop over ’ic’

Singles clusters arising from

V_PHPH

End ’ic’
End ’ir’
Loop over ’ic’

Singles clusters arising from
V_HHPH

End ’ic’
End ’iq’
End ’ib’

Compute Tl(l) for iteration

End singles
Begin doubles
Loop over ’ib’
Loop over ’iq’

Compute B—matrix diagrams
for doubles

Loop over " ir’

Doubles clusters arising from
V_PPHP

Figure C.2: Loop structure for the driver routine
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V_PPHH

End ’ic’
Loop over ’is’

Doubles cluster arising from
V_PPPP

Loop over ’ic’

Doubles cluster arising from

V_PPPH
End ’ic’
End ’is’
End ’ir’
Loop over ’ic’

Doubles cluster arising from
V_HHHP

Loop over ’id’

Doubles cluster arising from
V_HHHH

Loop over 'ir

Doubles cluster arising from
V_HHPH
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Particle—particle V
IMS diagrams
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1
Compute T ;  for
iteration
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End ’ib’
End ’iq’

End ip’
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Figure C.3: Loop structure for the driver routine
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SETO0 = .TRUE.
Loop over ’id

Loop over’'ib’

SET1=.TRUE.

Loop over’'ip’

Loop over'iq’

End’iq
End’ip’

End’ib’

End’ia

Loop over'ir’

One-body particle—particle IMS diagrams

Loop over’ic’

Two body (two—hole, two—particle) IMS

diagrams

End’ic’
Loop over ’is’

Two—-body four—particle IMS diagrams

if(SETO)then

Calculate bare—Coulomb integral <pq !l Virs>

endif
End’is
End’ir’

Calculate bare—Coulomb integral

<pblVliaq> & <pb|ViIqa>

Loop over'ic’

One-body hole-hole IMS diagrams

Loopover ’id’
Two-body four—hole IMS diagrams

if(SET1)then

Calculate bare—Coulomb integral <cdIViab>

endif
End’id’
End’ic’

SET1 = .FALSE.

SETO = .FALSE.
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Loop over '’ia
Loop over 'ip’

Loop over ’icC
Loop over ir

Loop over 'id
Loop over 1

is
a
Compute >
r,sd c
c P
ompute >
d,c,s r

End 'is

End 'id
End ’ir
End ’ic

End of singles loop

Loop over 'ib’
Loop over 'iq

Loop over ’ic éé a
2

Compute

C c
End ’ic p\ b>~_"7"q

Loop over 'ir’ p
Compute 2 @%
r r
é\ﬂ q

End ir

End of doubles loop

End ’iq’
End 'ib’
End ’ip’
End 'ia

Figure C.5: Loop structure for inclusion of IMS diagrams in driver routine and computing
the cluster amplitudes using the IMS
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b

Loop over ’ia
Loop over ’ip
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Loop over ’ib’
Loop over ’iq’

Loop over ’ir’

(0)

Loop over ’ic’

End ’ic’

Loop over ’is

End ’is’ r/# ﬁ\s
End ’ir’

Loop over ’ic’

Loop over ’id’

at¥ Vb

(0)
VT
End ’id’ c+ +d
End ’ic’
End ’iq’
End ’ib’
End ’ip’
End ’ia’

Figure C.6: Loop structure for one-body and two-body Coulomb IMS diagrams in the routine
coulims.f.
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Loop over ’ip’
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Loop over ’iq’
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No. of diagrams= 22
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end 'ir

end 'iq’

end ’ib’
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Effective diagrams of F2(B)
Cal "coulims.f’ routine

Figure C.7: F2(A) and F2(B) diagrams in the routine compute.dm.f

(a)

Figure C.8: EDM IMS diagram (particle-particle type) contracted with T2(0).
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Appendix D

The tensor-pseudotensor Hppj,

matrix element

Consider the general matrix element of Hgpys between |®,) and [®,), (Pu|Hrpu|Ps)
where Hgp,s has the form given in Eq.2.8. Keeping the constants aside for the moment,

consider

(| Hepum|®y) = (RaliBaLpn(r)|Ps)

Consider the Z-axis as the axis of quantisation.
(Po|Hepum|Py) = i1,(@q|iBa, pn (1) | Ds) (D.1)

The wavefunctions |®,) and |®,) can be represented in terms of the two-component Dirac

wavefunctions given by,

_ 1 Pa(r) Ka,Mq (0’ ¢)
0= 7 (i bhe )

and

1Qb(T) X =k ,ms (0,

@)= (.va)xn,,,m,,(o, ¢>))

The Dirac matrices, § and « are given by

o=(o )= (> 9)

Substituting for £, a, in Eq.D.1, we get
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Chapter D. The tensor-pseudotensor Hgpyr matrix element

(®o|Hppu|Py) =

/7«_2 [ P“(T)Xft»a,ma (evd)) —iQa(T)XT_M,ma(Ha (b) ] (_%'z UOZ) |: 2&8;;?::;(50’9?) }

X pn (1)rdrdQ(il,)
= / [ Pa(r)xhm, (0:0) —iQu(r)x sy m, (6, 0) ] [ “z(i)gg&)x—nb,mbgga ﬁ% }
pn (r)drdQ(il},)

Simplifying further,
(@o|HED M | D) =

_ / [Pu(r) XL e (8, )02 Q6(r)X ey (6, 8) ()] +

[Qu)X sy 0, 8)0- Py () Xy, (6, 6) ()] ()L

Separating the integrals for radial and angular parts,

[ PAIQon)r [l (0.0)00x (6,000 GL)  (D2)

- v
-~

I1

+ [ QORI I [ XL, 0,000 (0.6)420) )

~

12

To calculate the specific angular matrix elements corresponding to <(I)Ksl/2 \HEDM|<I>K/p1/2)
and (<I>K51/2 \HEDM\CI)K%N) we evaluate the respective angular parts, I1 and 12 in Eq.D.2.

Consider the first integral, I1 for (¢K51/2|HEDM|<I>K:,,3/2):

= / X (0, )0 Xy, (6, 6)d

X};a,ma(ﬁ, ®) : kg = -1 J, = 1/2 This angular wave function is for the upper component

of ®,). Hence, I, = (J, + Sign(k,) X 1/2) = 0. =;m’, = 0 and s, = 1/2. Choose the

projection of the total angular momentumi to be the highest value. M, =1/2=0+1/2.
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Chapter D. The tensor-pseudotensor Hgpyr matrix element

The state |J,, M,) = |5,3) = [0,0}|3,3) in the L-S basis. Writing x[_ .. (6, ¢) in the

uncoupled basis,

Xeama (0, 8) = Y |laymh) X [50, m3) (L, mby, 50, m5| Ja, My)

m;mg,
= [0,0)/0,0) = Yg'|ax)

where |a) represents the wavefunction of a spin-up particle and Yy, the spherical har-
monics.

Consider X_, m, (0, #) : This corresponds to the lower component of |®). The orbital
angular momenta of the upper and lower components 1 and I’ respectively are related
as ' = 2J — . We now have, k, = —2 J, = 3/2 The kappa for the lower component,
—kp = 2. Therefore, l; = 2J, — [, and [, = 1. Hence, [; = 2. From Wigner-Eckart
theorem, the multipole moments, M,, M, and ¢ satisfy —M, + ¢ + M, = 0. Hence,
M, = M,. Hence choose M, = 1/2. Therefore,

Now,
O-Z:X—m,,mb(ea QS) = }/20‘0‘/)(27 07 %7 % %a %) - Y21|6><2a 17 %a _%‘%a %)

The integral I1 becomes,

n- / X (6 )Xy (6, 8D = 0

Consider 12:
an,mb (0’ ¢) :

kp=—2,Jy=3 1=

N[

=1— mé:—l, 0, 1. Fix M, = %
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Chapter D. The tensor-pseudotensor Hgpyr matrix element

UZXNb,mb(eﬂ ¢) = Y10|a><1’0; %’ %‘%a %> - Yll‘ﬁ><1a 1; %a —%‘%, %)
X_’ia,ma (07 ¢):
ko =—1, —ka =1, Jo =1/2,1, =2J, — |, = 1. Hence, m;, = —1,0,1. Fix M, = 1.

X—lﬁa,ma(eaqs) = }/10|OZ><1,0, %7 %|%7 %) + }/11|/8><1’ ]-a %a _%|%7 %)

Using the orthogonality property(??) of the Spherical tensors ¥;™ and Clebsch-Gordan
coefficients, we get 12=—21/2. The EDM matrix element,

<¢K$1/2

HEDM

Vi) = (0 (-3V2) [ QOB (D3)
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Appendix E

Radial Matrix elements of the

Nuclear Schiff moment

Consider the matrix element of the Schiff moment interaction Hgy between two states,
(®o|Hsm|®y). The wavefunctions |®,) and |®;) can be represented in terms of the

two-component Dirac wavefunctions given by,

_1 Py (T)XNa,ma (05 (!5)
®R) = ( i Qu(r) X (6, 9) ) (E.1)

r

Expressing |<I>b> in a similar form and setting up of the matrix element of Hgy gives,

(e

Hosl ) = [ | B0l = 1 Q) x wome 0001 | (- 35)

b r Kp,Mp 9, (ﬁ)
[ B m @0 T 20 g g 2

where dQ = sinf df d¢ and B = [ R*p(R)dR. Multiplying the matrices,

/ [Pa (/r) Pb (T) Xj;,ayma an,mb + E\?a (7‘) Qb (T) X‘I;K,a’ma Xﬁbﬁ"ﬂ]
O v v

A B

1 -
(— 3Se E) p(R) R cosf dR d2 (E.3)

Consider,

A=(—3Se) / [Pa (r) Py(r) XLa,ma an,mb] @ R cosf dR dS)
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and )
R
B=(-3Se) / [Qa (r) Qo (1) Xina,ma X—ry,my % R cosf dR dS2
We now evaluate the angular parts of the specific integrals between s;/, and p;/; orbitals.

First consider the angular part of,
<®k51/2‘HSM|<I)mP1/2>

given by,

/ X:ta,ma €050 X, m, sinf db d¢o
Ko = —1;J, = 1/2= 1, = (J, +sign(k,) X 1/2) = 0
Using the above expression for /;, the values of k; are calculated by fixing the projection
of the total angular momentum J, =1/2 and J, = 1/2 as M, =1/2 and M, = 1/2 and
tabulated in Table.E.

Ko | MY | Ky | mi

1001101

Table E.1: P, T violation for a non-zero EDM

The angular part X, m, is expressed in terms of the spherical harmonics and the spin

functions a(up-spin) and (down-spin) as,

Xkama = Z la mf) ® |Sa mig) X (la mfl Sa Mg | Ja Ma)

= W |a) (E.4)
Now consider, k, = land J, = 1/2, =1, = landm), = —-1,0,1. Fix
M, =1/2, and using m; + m. = M,, the possible values of m{ = =+1/2. Hence,
Xepm, = V118115 —5]55)+Wa)(10535]53)
= V1) (V2f3) - W) (VI3) (E5)
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after substituting for the Clebsch-Gordon coefficients. Combining F.4 and FE.5, the

angular part of (A) becomes,
[ X 00 Xy sint d a6 = [ 930 l] (cost)
(91 18) (v273) = Y9 @) (V1/3)] sin o ds

= /— RN <\/1/3> cosf sinf df d¢

S (%) (E.6)

The integral (LA) becomes,

A=(=35¢) (%)/P()P,,() (é%)RdR

We now evaluate the angular part of (B) given by,

/XTna,ma cost X —_x,,m, Sind do do

Consider, k, = —1 = —k, = land J, =1/2. Hence, [, = 1 and m}, = -1, 0, 1.
Fixing M —a =1/2, m{ = £1/2. Therefore,
Xorama = W) (1055550 + N |BAT5 —5153)
= Wia) (-vV173) + ¥ 18 (v273) (E.7)
Consider, —kp = —1, Jp = 1/2 =0L=0 = mé = 0. Fix M, = 1/2 = m,‘j = 1/2.
Hence,
X—kpymp = y(()) )

We now obtain the angular part of (B),

_ /[ (o (— 173) + V(8| (v/273) | cost [38 |a)] sind db do
= /y 1/3 )cos& sinf df d¢

_ ( . ) (E.8)
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Substituting in (B),

B=(-35¢) (—é) [a.o Qbm@fzm

Combining (A) and (B),

—1
<(I>k51/2‘HSM|(I>mIJ1/2> = (_ 35 6) (?)

[P0 P + @) @) 252 R v (£.9)

The matrix element of the Schiff moment operator between the states |mpy/2) and |ksy/2)

can be derived in similarly and is given by,

<<1>m,,1/2 <I>k51/2> =(—3Se) (%)

?{Pa (r) Py(r) + Qo (r) Qs (r)} %{i) R dR (E.10)

(I)mpl/2>'

Hgy

Hgy

which is exactly same as for <<I>ksl/2
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Appendix F

Matrix elements of the P and T

violating nuclear potential

We start with the derivation of a general P,T - odd electrostatic potential inside the
nucleus, take the electronic matrix element of this potential and show that it is related
to the nuclear Schiff moment.

The nuclear electrostatic potential is

o0

®(R) = |§pfl‘d3r+%(d.w/‘If(f)ﬂd% (F.1)

where ep(r) is the nuclear charge density, [ p(r)d*r = Z, d = e [ p(r)d*r = e(r) is the
nuclear EDM. The definitions of the vectors R and r are given in fig.1.

Surface of the nucleus

Note that both R and r are lying within the nucleus and Ry is the nuclear radius.
The second term cancels the dipole long range electric field in the multipole expansion
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of ®(R). Consider the multipole expansion of ®(R) around R = R,

(R — Ry)?

ol ®"(Rg) + ......

®(R) = ®(Ro) + (R — Ro)®'(Ro) +

which is equivalent to Eq.F.1 at R = R except that the second term in Eq.F'.1 is defined

per nucleon. Expanding ﬁ

1 rl<
= 3 i

1 >

where 6 is the angle between R and r and P)(cosf) are the Legendre Polynomials. Con-

sider the first term of Eq.F.1.

|R—r\ \R—r\ dr R 1|
R

Only odd multipoles of 1 give rise to P,T-odd potential. All values beyond 1=1 give
negligible contribution. Hence, in the ), only 1=1 is retained for the first term. Using
Py(cos ) = cos 6 we get

R [e9)
/ 6080d37' + R / 'i(;‘) cosOd®r
0

R

oo

R
|;p(_ 1] dr RE /erp )dPr + R /erp d°r. (F.2)
0

Consider the second term in Eq.F.1. Retaining only the 1=0 term

o] v 3) o

Consider the first term in the Eq.F.2 in the limit R — inf

epy /Oorp(r) d’r = e—(r)
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Similarly in the limit R — inf first term in Eq.F.3 becomes

—sete) [ ot = ~m.

These two terms cancell each other. Hence the integral limits in the first terms of Eq.F.2

and Eq.F.3 can be changed using

[

Eq.F.1 becomes

R3 ZR3

_ o0 (o] 3 o0
S(R) = —R [ pm)dtr + R / p(“gdu‘f“) R / p(x)dPr
R R R

Rewriting the above equation

3(R) = ¢R ]o (ﬂ -4 3) p(r)dr (F.4)

This nuclear potential goes to zero when p(r) becomes zero for R > Ry.

Physical significance of the different terms in Eq.F'.4:

e Counsider the first term

Rearranging,

This term represents the interaction of the average nuclear electric dipole moment
per nucleon due to a charge distribution at a distance of r between R and Ry
with the electric field due to a point charge at a distance R from the centre of the

nucleus.
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Consider the second term -

/ er - %p(r)d?’r

R
This term is the interaction of the nuclear electric dipole moment produced due to

a charge distribution p(r) in the region between R and Ry with the electric field

due to a unit charge at a distance R from the centre of the nucleus.

[

represents an interaction of an electrlc field produced due to a charge distribution

The third term

between R to Ry with the nuclear dipole moment produced at a distance R from
the centre of the nucleus.  The nuclear electrostatic potential, Eq. F.4 mixes
the electron wavefunctions of opposite parity. We consider only the s;/; and p; /s
electron wavefunctions as only these have a non-zero probability density inside the

nucleus. We are interested in the matrix element
(Vs — e®(R)[Vp).

Using the relativistic form of the electron wavefunctions

(s
v®) = (/SR ) ()

in the above matrix element and simplifying

/ (fsfo + 959,) (UnQ,) [®(R)] R?dRsin 0dfde
0

Using
/dR/dr:/dr/dR
0 R 0 0

and Usp = f5fp + 959y, the above term reduces to

2 (r) _r  r s 7 e
= —e (s\n\p)o/ {—ZR?’ I + 7"3] p(r)d T/O R°Us,dR



Chapter F. Matrix elements of the PandT violating nuclear potential

o0 T T

= —e*(s|n|p) / (%{r) —r) /Usde+:—3/UspR3dR p(r)dr
0 0 0

Now expand Uy, = fsfp + gsgp = >, b R* and substituting in the above equation

3 Tk+1 r ,r,k+4 5
= |1’1|p / (( )bkk—{—l +T_3—k‘—{—4bk> p(r)d r
0

~e(sinln) 3 2 { | et - ||

k
where (s|n|p) = [ QInQ,d¢ sin 6d6.

In the non-relativistic case, (Za — 0), only b; # 0. Hence,

2b1

(1 = e0lp) = =<2 sl - | 0267 - 2477

= dreS - (VUID,)

R—0
where the Schiff moment S is defined as
G= 2 |2y - 2oy = st (F.6)
10 37

where I is the nuclear spin. The above form of the Schiff moment defines the
non-relativistic expression for the Pand T violating nuclear potential arising due
to the Schiff moment. Note that the quantities defining S refer to the nuclear

coordinates.
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Appendix G

Additional Notes

G.1 Matrix elements of the Coulomb operator

The term representing the two-body Coulomb interaction can be expanded as [25,

26]

1
— = D UR1,2)) (-1)ICE(1)CE,(2) (G.1)
12 k q
where
k rt
Ut(1,2) = .55,
r>

C¥ = /47 /2k + 1Y} (6, ¢)

The two-electron matrix element is given by,

1
(ab\r—\cd> = 6(mg + my, me + my) E dk(jama;jcmc)dk(jbmb;jdmd)Rk(a, b,c,d, k)
12
k

The ’d*’ coefficients are the angular factors and R*(a,b,c,d, k) is a two-electron
radial integral dependent on the large and small components of the orbitals a,b,c,d

and the multipole k. This can written as,

(o

12

. . . . 'af a jd— . k .
Cd> = E X(f (Jaa]ba.?ca]d) (_1)0 ectamma) ( _jﬁla q gf"cc )
( Jasicsibrid )
ma,Mmc,Mp,Mmg,k,q

( jd k ]b) (G?)

—Mg q My
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Chapter G. Additional Notes

where

L _ S I | o k  Je k9
XE (s dos Ges ja) = (=1) 0 (=1)emgte=g) (o & J o
2 O 2 O 2

1

2
|:jaa jcajba ]d:| Rk (CI/, ba c, da k)

and
oo o0 k
RF (a,b,c,d, k) //[Pa(rl)Pc(m) +Qa(T1)Qc(r1)] X %
0 0

X |:Pb(7”2)Pd(7'2) + Qb(Tg)Qd(?"g):| dry dry

With the selection rules,

(_1)la+lc+k — (_1)lb+ld+k5 -1

G.2 Matrix elements of the Induced Dipole Op-

erator

Consider the angular matrix element of the induced dipole operator between the

states of angular momenta (J,, M,) and (J,, M),

M [0k Jy
<\IIJ“’M“ \IJJ”’M"> N (_1> Moo M) <J“
—ivlg b

where the reduced matrix element is

<Ja J,,> - (—1)Jd+% [(2Ja+1) (2J,,+1)] ( { (1) jb )x<\lfa(r)

1 1
2 2
and Dind = €r.

k k
Dy 4 Dipa

)

k
Dind

Dind

20y
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