Tracking Radar

I

S

Tracking Functions and Parameter Estimation

S

Tracking Radar: Functions & Parameter Estimation

- A tracking radar has a pencil beam to receive echoes from target.
- A tracking-radar system
 - measures the coordinates (r, θ, ϕ) of a target
 - provides data(f_{d_i} , v_r) which used to determine the target path
 - predict its future position.
 - used to measure the trajectory of the moving target [Ex: missile] and to predict future position.

• Types:

- STT Radar
- MTT Radar
 - ADT
 - Phased Array Radar Tracking
 - TWS Radar

• STT [Single Target Tracker] Radar designed to

- Continuously track a single target at a high data rate
- Ex: Weapon control radar [guided missile targets]
- ADT[Automatic Detection and Track] Radar
 - Lower data rate
 - Ex: Air Surveillance Radar [Military and Civilian]
- Phased Array Radar
 - High data rate
 - Electronically steered phase array antenna
 - Used on time sharing basis
 - Ex: Air-defense weapon radar system [MOTR]
- TWS [Track while Scan] Radar
 - Moderate data rate
 - Ex: Aircraft Landing Radar (Airborne Radar)

TRADEX

MOTR Courtesy of Lockheed Martin.

TRADEX MTT Radar System

- Multl-Target Tracker (MTT), Target Resolution and Discrimination Experiment (TRADEX) is a
 - high-power,

S

- high-sensitivity instrumentation radar system
- is unique because it utilizes a large, steered, pencil-beam antenna.
- designed to detect and track [≈> 63 targets] within the beam of the radar.
- It provides data necessary for determining the angular locations and ranges of all of these targets, as well as signature data necessary for target identification.
- It automatically processes received signals, reports targets, initiates and maintains target track files, and presents target information to the radar operators through real-time interactive graphical displays.

C-band monopulse precision tracking radar [NASA Wallops Island Station]

It has a 29-ft-diameter antenna with capable of 0.01 mil tracking accuracy.

Operating frequency (deep-space mode)	UHF (422 MHz)
Dish	Steerable 150-ft dish
Beamwidth	1.1° (UHF)
Peak power output	5 MW
Average power output	120 kW
Pulse-repetition frequency	300 Hz
Pulse length	80µsec
Signal-to-noise ratio (per pulse)	38 dB @ 1000 km (0-dBsm target)
Accuracy	
Range resolution	20 m
Range-rate resolution	15 mm/sec
Azimuth and elevation angle	0.03°

ARPA [Marshall Islands] Long-Range Tracking and Instrumentation Radar (ALTAIR)

Angle Tracking

• A tracking radar has a pencil beam to receive echoes from target.

- Methods to extract error signal may be classified as
 - Sequential lobing
 - Conical scan
 - Simultaneous lobing or monopulse

Single beam on time sharing basis.

Multiple beam.

- Sequential lobing Radar and
- Conical scan Radar

S

- Simpler
- One antenna
- Less equipment
- Not accurate
 - RCS scintillation
 - Angle scintillation
- No of pulses are required to extract the error signal

- Simultaneous lobing or monopulse Radar]
 - Complex
 - Multiple antennas
 - More equipments
 - Accurate
 - Single pulse is used to determine the angular error.
 - Amplitude comparison
 - Phase comparison

Sequential Lobing [switching the antenna beam between two positions]

S

Conical Scan Tracking

 θ_{T} (Target angle): angle between the axis of rotation and the direction to the target.

 θ_q (Squint angle): angle between the antenna-beam axis and the axis of rotation

 θ_{B} (Beamwidth): angular separation two half power points

I

S

- Phase of modulation gives the angle error
- Amplitude of modulation gives the beam displacement

Block diagram of conical-scan tracking radar

Why AGC is required

The echo-signal amplitude at the tracking-radar receiver will not be constant but will vary with time.

The three major causes of variation in amplitude are due to

- (1) target cross section (P_r $\propto \sigma)$
- (2) range i.e. $P_r \propto (1/R^4)$
- (3) the conical scan modulation (angle-error signal), and

Function of AGC

- to maintain the d-c level of the receiver output constant
- to smooth or eliminate as much of the noise like amplitude fluctuations as possible without disturbing the extraction of the desired error signal at the conical-scan frequency.
 - Results in an error signal that is a true indication of the angular pointing error
- to prevent saturation by large signals.
 - Scanning modulation and the error signal would be lost if the receiver were to saturate

AGC

I

S

Т

Block diagram of the AGC portion of a tracking- radar receiver

The angle-error signal voltage vs function (θ_T / θ_B)

 θ_{T} (Target angle):angle between the axis of rotation and the direction to the target. θ_{q} (Squint angle):angle between the antenna-beam axis and the axis of rotation θ_{B} (Beamwidth):angular separation two half power points

I S T

Observation:

S

- Greater the slope of the error signal, More accurate will be the tracking of the target.
- The maximum slope occurs for a value θ_T / θ_B slightly greater than 0.4 that corresponds to a point on the antenna pattern (the antenna crossover) about 2 dB down from the peak.
- It is the optimum crossover for maximizing the accuracy of angle tracking.
- It has been suggested that the compromise value of θ_T / θ_B be about 0.28, corresponding to a point on the antenna pattern about 1.0 dB below the peak.

Monopulse Radar

S

Limitations in conical scan radar:

- The conical scanning radar compares the return from two directions to directly measure the location of the target.
- It creates confusion by rapid changes in signal strength.

- Monopulse radar is a radar system that compares the received signal from a single radar pulse against itself in order to compare the signal as seen in multiple directions, polarizations, or other differences.
- In this technique,

S

- The RF signals received from two offset antenna beams are combined so that both the sum and the difference signals are obtained simultaneously.
- The sum and difference signals are multiplied in a phase-sensitive detector to obtain both the magnitude and the direction of the error signal.
- To determine the angular error is obtained on the basis of a single pulse; hence the name monopulse is quite appropriate.

Amplitude-Comparison Monopulse Radar

Block diagram of amplitude-comparison monopulse radar (one angular coordinate)

Block diagram of amplitude-comparison monopulse radar (Two angular coordinate)

S

Т

(a) Angle error information contained in the envelope of the received pulses in a conical-scan radar. (b) Reference signal derived from the drive of the conical-scan feed.

Phase-Comparison Monopulse Radar

S

(b) Block diagram of a phase comparison monopulse radar (one angle coordinate).

Limitations to Tracking Accuracy

- Major effects that determine the accuracy of a tracking radar:
 - Glint or angle noise or angular scintillation: which affects all tracking radars especially at short range.
 - Receiver noise: affects all radars and mainly determines tracking accuracy at long range.
 - RCS scintillation or Amplitude fluctuations of the target echo that bother conical scan and sequential lobing trackers but not monopulse.
 - Servo noise

S

TRACKING ANTENNAS

- Most popularly used antennas are:
 - Parabolic Reflector Antennas
 - Planar Phased Arrays
 - Electronically steered Phased array antennas

Dish Radar	Passive Array Radar	Active Array Radar
		V V V V B B B B B C A B B B B B B B B B B B B B

Advantages of Beam Forming

- Increases coverage and reduces the number of antennas.
- Improves SNR

Arrays

Improves signal quality **ELECTRONIC BEAMFORMING** Increase in system capacity SCANNING ADAPTIVE SWITCHED/FIXED Multi Beam

Butler Matrix

Fixed

Selector

Components of Beam Forming Systems

- •<u>Element Array</u>: Consist of antennas. Efficient transmission through the array of elements is the primary design aim.
- •<u>Phase Shifters:</u> An electronic phase shifter feeds each element and each value is set so that the array radiates a plane wave of wavelength λ_0 .
- •<u>Feed System</u>: It collects or distributes the energy from the elements and phase shifters.

Methods for Beam Steering

- Time delay delay lines/buffers
- Phase Shifts phase shifters
- *The Butler Matrix* hybrid junctions and static phase shifters
- Digital Beam Forming use of signal processing to form beams

I

Parabolic Reflector Antennas / Dish Antennas

- Demands of reflectors for use in
 - Radar Application
 - Radio astronomy,
 - Wireless communication
 - deep-space communication, such as in the space program and especially their deployment on the surface of the moon.
- Reflector antennas take many geometrical configurations, some of the most popular shapes are the
 - plane,

S

- corner, and
- curved reflectors (especially the paraboloid).
- It provides pencil beam optimizing illumination over their apertures so as to maximize the gain.

Parabolic Reflector Antennas / Dish Antennas

• It generates pencil beam.

S

Surface Geometry

S

Т

Two-dimensional configuration of a paraboloidal reflector

where z₀ is the distance along the axis of the reflector from focal point to the edge of the rim

$$r' + r' \cos \theta' = 2f$$

$$\sqrt{(x')^2 + (y')^2 + (z')^2} + z' = 2f$$

$$(x')^2 + (y')^2 + (z')^2 = (2f - z')^2 = 4f^2 - 4fz' + z'^2$$

$$(x')^2 + (y')^2 = 4f(f - z')$$

$$\Rightarrow z' = f - \frac{(x')^2 + (y')^2}{4f}$$

$$(x')^2 + (y')^2 \le (d/2)^2$$

S

Another form

 $f = \frac{d}{4}\cot\left(\frac{\theta_0}{2}\right)$

$$\frac{f}{d} = \frac{1}{4} \cot\left(\frac{\theta_0}{2}\right)$$

<u>}_(</u>	degree	es)	<u>f/d</u>
	10°		2.857
	20°		1.418
	30°		0.933
	40°		0.687
	50°		0.536
	60°		0.433
	70°		0.357
	80°		0.298
	90°		0.250
	100°		0.210
	120°		0.144

- polarization uniformity of the field over the aperture plane (generally known as polarization efficiency \mathcal{E}_{x}
- blockage efficiency \mathcal{E}_{h}

S

• random error efficiency over the reflector surface \mathcal{E}_r

Axial or front feed –

- Feed antenna located in front of the dish at the focus, on the beam axis, pointed back toward the dish.
- A disadvantage: Block some of the beam,
 - Aperture efficiency : 55–60%.

Off-axis or offset feed -

I

S

- The reflector is an asymmetrical segment of a paraboloid, so the focus, and the feed antenna, are located to one side of the dish.
 - Purpose of this design: does not block the beam
- Widely used in home <u>satellite television</u> dishes.

Cassegrain Reflector Antenna by Hannan

S

- Larger (main) reflector is parabola
- Secondary reflector is hyperboloid (Convex)
- Aperture efficiency: 65–70%

- Primary reflector is parabola
- Secondary reflector is ellipsoidal (Concave)
- Over 70%

(diameter is a larger number of wavelengths)

S

ALTAIR 45.7 m diameter

MMW 13.7 m diameter

Operating frequency: 162 MHz (VHF) Wavelength λ: 1.85 m Diameter electrical size: 25 λ Gain: 34 dB Beamwidth: 2.8 deg Operating frequency: 35 GHz (Ka) Wavelength λ: 0.0086 m Diameter electrical size: 1598 λ Gain: 70 dB Beamwidth: 0.00076 deg

Operating frequency (deep-space mode)	UHF (422 MHz)
Dish	Steerable 150-ft dish
Beamwidth	1.1° (UHF)
Peak power output	5 MW
Average power output	120 kW
Pulse-repetition frequency	300 Hz
Pulse length	80µsec
Signal-to-noise ratio (per pulse)	38 dB @ 1000 km (0-dBsm target)
Accuracy	
Range resolution	20 m
Range-rate resolution	15 mm/sec
Azimuth and elevation angle	0.03°

ARPA [Marshall Islands] Long-Range Tracking and Instrumentation Radar (ALTAIR)

Array Controls

Α

Ν

Т

Ε

Ν

Ν

Α

Т

Η

Ε

0

R

Y

&

D

Ε

S

G

Ν

- Geometrical configuration
 - Linear, rectangular, triangular, circular grids
- Element separation
 - Phase shifts
 - Excitation amplitudes
 - For sidelobe control
 - Pattern of individual elements
 - Isotropic, dipoles, etc.

Α

Ν

Т

Ε

Ν

Ν

Α

Τ

Η

Ε

0

R

Y

&

D

Ε

S

G

Ν

Α

Ν

Т

Ε

Ν

Ν

Α

Т

Η

Ε

0

R

Y

&

D

Ε

S

G

Ν

High Gain Antenna- Structures

Gain increases with increase in superstrate resonant height and number of superstrate layers.

Low efficiency due to dielectric and line losses High cross-polar radiation due to the feed-line network.

- 1. M.I. Skolnik, Introduction to Radar Systems, McGraw hill, 2000.
- 2. M.I. Skolnik, Radar Handbook, McGraw hill, 2nd edition, 1990.
- 3. A.K. Sen and A.B. Battacharya, Radar Systems and Radar Aids to Naviation, Khanna Publications, 1988.

