# Morphological Study of Loganiaceae Diversities in West Africa

Olusola Thomas Oduoye<sup>1\*,</sup> Oluwatoyin T. Ogundipe<sup>2</sup>. and James D. Olowokudejo<sup>2</sup>. <sup>1</sup>National Centre for Genetic Resources and Biotechnology (NACGRAB), PMB 5382, Moor plantation, Apata, Ibadan.

<sup>2</sup>Molecular Systematic Laboratory, Department of Botany, Faculty of Science, University of Lagos, Nigeria. \*E-mail: <u>solaoduoye@gmail.com</u>

The authors want to sincerely acknowledge:

- i. The conservator general, officials and rangers of National Parks and Foresters in all Forests visited.
- ii. The NCF / Chevron Chief S. L. Edu. (2011) award for this work.
- iii. STEPB IOT, Research and Technology Development Grant, 2011.

#### Abstract

Loganiaceae belongs to the Order Gentianales which consists of the families Apocynaceae, Gelsemiaceae, Loganiaceae, Gentianaceae and Rubiaceae. Several Herbaria samples were studied prior to collection from Forest Reserves and National Parks in Nigeria, Republic of Benin and Ghana – with the aid of collection bags, cutlass, secateurs and ropes. Plants parts, both vegetative and reproductive were assessed with the aid of meter rule and tape rule in their natural environment and in the laboratory. *Strychnos* species collected were 47 individuals; 35 species were adequately identified. *Anthocleista* genus consists of nine species, *Mostuea* - three species while *Nuxia, Spigelia* and *Usteria* were monotypic genera. The leaf surfaces within the family are: hirsute, pilose, pubescent, tomentose and glabrous as found in *Mostuea hirsuta, Strychnos phaeotricha, Strychnos spinosa* and members of *Anthocleista species* respectively. Morphological characters show 10 clusters at threshold of 47 % similarity. Clusters 1, 2 and 4 revealed how *Anthocleista* and *Mostuea* species separated out from other species of Loganiaceae. West African diversities have not been fully explored, there are yet novel plant species in the wild to be conserved before they slip out of our hand and sight. **Keywords:** Morphology, Loganiaceae, West Africa, cluster Analysis, dendrogram.

## 1.0 INTRODUCTION AND LITERATURE REVIEW

The family Loganiaceae was first suggested by Robert Brown in 1814 and validly published by Von Martius in 1827 (Leeuwenberg and Leenhouts, 1980; Frasier, 2008). The family belongs to the Order Gentianales which consists of the families Apocynaceae, Gelsemiaceae, Loganiaceae, Gentianaceae and Rubiaceae (Frasier, 2008). Among these, Loganiaceae was considered to occupy a central evolutionary position (Bisset, 1980; Leeuwenberg and Leenhouts, 1980; Backlund et al., 2000). Earlier treatments of the family have included up to 30 genera, 600 species (Leeuwenberg and Leenhouts, 1980; Mabberley, 1997) but were later reduced to 400 species in 15 genera, with some species extending into temperate Australia and North America (Struwe et al., 1994; Backlund and Bremer, 1998). Molecular phylogenetic studies have demonstrated that this broadly defined Loganiaceae was a polyphyletic assemblage and numerous genera will have to be removed from it to other families or placed in other orders as the case may be (Backlund et al., 2000). In the circumscription of Leeuwenberg and Leenhouts (1980), Loganiaceae consists of 600 species in 30 genera and included predominantly tropical, woody plants (Bendre, 1975; Mabberley, 1997). Cronquist (1981) reduced the circumscription of Leewenberg and Leenhouts to 21 genera in one tribe, grouped other six tribes to two families but removed three tribes completely from Gentianales. Thorne (1983) recognized 22 genera in five tribes, raised other five tribes to family level but did not accept the removal of three families from Order Gentianales. Struwe et al., (1994) recognized from Leewenberg and Leenhouts circumscription three genera, raised other 15 genera to family level and commented that the remaining twelve genera were not certain where to be placed. Takhtajan (1987) recognized only one genus from the same Leewenberg and Leenhouts circumscription but raised the remaining 29 genera to nine different families and removed two completely from Gentianales. The most recent studies (Backlund et al., 2000; Frasier, 2008) recognized 13 genera from Leewenberg and Leenhouts circumscription, the remaining genera were raised to nine different families but seven of them were completely excluded from Gentianales. However, Hutchinson and Dalziel (1972), in the Flora of West Tropical Africa, Loganiaceae consists of six genera which include: Anthocleista, Spigelia, Mostuea, Strychnos, Nuxia and Usteria. Anthocleista comprises nine species, Mostuea has five species, Strychnos has 35 species, while Spigelia, Nuxia and Usteria genera are represented by a single species each in West Africa. The aim of the study is to utilize morphological motifs for the elucidation and delimitation of genera and species in the family Loganiaceae in West Africa based on the record of Hutchinson and Dalziel, (1972).

#### 2.0 MATERIALS AND METHODS

Specimens of Loganiaceae were studied in several Herbaria and samples were collected from several Forest Reserves and National Parks in Nigeria, Republic of Benin and Ghana with the aid of collection bags, cutlass, secateurs and ropes. The samples were authenticated at Forestry Herbarium Ibadan (FHI) and deposited in FHI and University of Lagos Herbarium (LUH). The material collected includes young mature leaves with short stem cut, (for further studies and herbarium preservation), fruits and/or seeds and/or inflorescence when available (Hutchinson and Dalziel, 1958). Photographs of samples were taken with digital camera at their natural environment. On-field evaluation of vegetative and reproductive parts (leaves, stem, inflorescence and fruits) was carried out on each sample in their natural environment prior to sample collection or immediately after collection for tangled climbers. The qualitative features such as leaf apex, leaf base, leaf shape, surfaces indumentums, stem colour, inflorescence type and flower colour were visually assessed. Aided magnifying lens (x10) was sometimes used for minute organs. Quantitative features such as leaf size, petiole length, leaf blade length, plant height, corolla tube length and width were determined using thread and meter rule (Radford et al., 1974). Descriptive statistics of mean, standard deviation, standard error and Principal Component Analysis (PCA) extraction method was used and the rotation Method was Varimax with Kaiser Normalization. Pair wise distance (similarity) matrices were computed using sequential, hierarchical and nested (SAHN) clustering option of the NTSYS-pc version 2.02j software package (Rohlf, 1993). The program generated dendrograms which grouped the Strychnos species according to their morphological characters using unweighted pair group method with arithmetic average (UPGMA) cluster analysis (Sneath and Sokal, 1973).

### 3.0 RESULTS

The exploration carried out revealed that *Strychnos* species were more than the number recorded in the Flora. Additional 12 samples of *Strychnos* were collected in their sterile state and are completely found to be different from the previously authenticated species based on their morphological features. They are termed *Strychnos* Indeterminate (SID) in this study. Some of the understory species like, *Mostuea* have depleted from the forests because of the indiscriminate, illegal and uncurbed penetration of the restricted areas. Table 1.0 represents some of the species encountered on the field with their common names and the genera they belong in the family. Table 2.0 represents some of the morphological motifs scored for the species of the family.

Habit wise; *Spigelia anthelmia* (SAT 19 – Table 1.0) is an annual herb (Plate 1.2 d); *Mostuea* genus contains perennial shrubs (Plate 1.2 a – b); species of *Anthocleista* are either trees or climbers (Plate 1.1 a-d) while most members of *Strychnos* are woody climbers and the rest are trees (Plates 1.3, a-d and 1.4, a-c). Members of the family have simple, opposite leaves, entire margin and leaf shape varies among the genera (Plates 1.1 to 1.4). The leaf surfaces encountered within the family are: hirsute, pilose, pubescent, tomentose and glabrous as found in *Mostuea hirsuta, Strychnos phaeotricha, Strychnos innocua, Strychnos spinosa* and members of *Anthocleista species* respectively (Plate 1.1 - Plate 1.4). The inflorescence type within the family is either racemose or cymose. When racemose, it would be corymb as found in *Anthocleista, Mostuea* and *Nuxia* genera (Plate 1.1 - Plate 1.2). The cymose type however, is usually axillary and is common among *Strychnos* (Plate 1.3). The leaf characters assessed quantitatively were subjected to Principal Component Analysis (PCA) which revealed that two components contributed about 64 % in the analysis (Table 3). When several inflorescence leaves were assessed, Loganiaceae shows a considerable variation in their leaf shapes and sizes.

#### 4.0 DISCUSSION and CONCLUSION

Cluster analysis for 25 morphological characters (Figure 4.0) revealed the similarity among the species of Loganiaceae. The morphological evidence of 25 characters shows 10 clusters when working with a threshold of 47 % similarity (Figure 4.0). Cluster 1 and 2 clearly revealed the *Anthocleista* species separated from other species of Loganiaceae. Cluster 3 is *Spigelia anthelmia*, ungrouped within the threshold among the family. Although, Cluster 8 - *Mostuea* species were nested with *Strychnos* species but they have their root completely separated from *Strychnos* at about 31 % similarity, indicating that they are distantly related. The arid species of *Strychnos* are found nested together with *Nuxia* and *Usteria* species. This is because they are tree species and have several features in common (Figure 4.0).

In Table 3, the communality – extraction revealed that leaf length, width and petiole length have the highest value and thus the most significant characters that are useful for delimitation of Loganiaceae during field exploration. The scatter plots (Figure 2 and 3, group centroids) revealed that some genera are grouped together around the centre; example is *Strychnos* while one to nine (*Anthocleista* genus – Table 1.0) are scattered apart; outliers. This is due to unique features found in *Anthocleista* as revealed by the PCA; broad and large leaves with varying petiole length in the entire genus and massive garth when compared with strangling or liana *Strychnos*. Figure 1 is a scree plot showing the degree of significance when variance of the characters used are represented

on a plot as revealed by PCA. The Eigen values of Component 1 and 2 were high enough to significantly delimit the entire population of Loganiaceae as revealed by the studies.

In conclusion, this study has revealed that *Anthocleista* and *Mostuea* have very low affinity with other members of the family. Hence, they are to be removed from the family and regrouped with other family or families. Therefore, this morphological studies support the molecular findings of Backlund *et al.*, (2000) and Frasier, (2008). The SIDs have been sent to the Royal Botanic Garden, KEW, for further analysis and complete identification. Furthermore, West African diversities have not been totally explored, there are yet novel plant species in the wild which need attention for conservation before they slip out of our hand and sight due to increase population and attended deforestation.

#### REFERENCES

Backlund, A. and Bremer, K. (1998). To be or not to be principles of classification and monotypic plant families. *Taxon* 47, 391–400.

Backlund, M., Oxelman, B. and Bremer, B. (2000). Phylogenetic relationships within the Genianales based on *ndh*F and *rbc*L sequences, with particular reference to the Loganiaceae. *American Journal of Botany* 87, 1029-1043.

Bendre, A. M. (1975). Studies in the family Loganiaceae; Embryology of *Buddleja* and *Strychnos. Journal of the Indian Botanical Society* 54, 272–279.

Bisset, N. G. (1980). Phytochemistry. In: Leeuwenberg, A. J. M. (ed.). Engler and Prantl's Die natürlichen Pflanzenfamilien, Duncker & Humblot, Berlin, Germany. *Family Loganiaceae* 28b (1), 211–237

Cronquist, A. (1981). An integrated system of classification of flowering plants. Columbia University Press, London 1262 pp.

Frasier C. L. (2008). Evolution and Systematics of the Angiosperm Order Gentianales with an in-depth focus on Loganiaceae and its species-rich and toxic genus Strychnos. An Unpublished Ph.D Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey 132pp.

Hutchinson, J. and Dalziel, J. M. (1958). *Loganiaceae* In: Hepper, F. N. (ed). Flora of West Tropical Africa. Whitstable Litho Printers Ltd, Kent, 828pp.

Hutchinson, J. and Dalziel, J. M. (1972). Loganiaceae In: Hepper, F. N. (ed). Flora of West Tropical Africa. Whitstable Litho Printers Ltd, Kent. 828pp.

Leeuwenberg, A. J. M. and Leenhouts, P. W. (1980).*In*: Leeuwenberg, A. J. M. (ed.), Engler and Prantl's Die natürlichenPflanzenfamilien. Duncker&Humblot, Berlin, Germany. *Family Loganiaceae* 28b (1), 211–237.

Mabberley, D. J. (1997). The plant-book. Cambridge University Press, Cambridge, UK, 858 pp.

Rohlf, F. J. (1993). NTSYS-pc. Numerical taxonomy and multivariate analysis version 2.02j. Applied Biostatistics, New York, 158 pp.

Sneath P. H. A and Sokal, R. R. (1973). Numerical Taxonomy. *Theory and Application of Genetics* 93, 613-617. Struwe, L., Albert, V. A. and Bremer, B. (1994). Cladistics and family level classification of the Gentianales. *Cladistics* 10, 175–205.

Takhtajan, A. (1997). *Diversity and classification of flowering plants*. Columbia University Press, New York. 643 pp.

Thorne, R. F. (1983). Proposed new realignments in the angiosperms. Nordic Journal of Botany 3, 85–117.

| Genera | Species | Scientific name                                | CODE NAMES | Common        |
|--------|---------|------------------------------------------------|------------|---------------|
|        |         |                                                |            | name          |
| 1      | 1       | Anthocleista djalonensis A. Chev.              | ADJ1       | Cabbage tree  |
|        | 2       | Anthocleista liebrechtsiana De Wild & Th. Dur. | ALI2       | Cabbage tree  |
|        | 3       | Anthocleista microphyla Wernham                | AMI3       | Cabbage tree  |
|        | 4       | Anthocleista nobilis G. Don.                   | ANO4       | Cabbage tree  |
|        | 5       | Anthocleista obanensis Wernham                 | AOB5       | Cabbage tree  |
|        | 6       | Anthocleista procera Lepr. Ex Bureau           | APR6       | Cabbage tree  |
|        | 7       | Anthocleista scandens Hook.                    | ASD7       | Cabbage tree  |
|        | 8       | Anthocleista schweinfurthii Gilg               | ASF8       | Cabbage tree  |
|        | 9       | Anthocleista vogelli Planch.                   | AVO9       | Cabbage tree  |
| 2      | 1       | Mostuea batesii <b>Bak.</b>                    | MBA14      | N/A           |
|        | 2       | Mostuea brunonis <b>Didr</b> .                 | MBR15      | N/A           |
|        | 3       | Mostuea hirsuta T. Anders. Ex Benth.           | MHI16      | N/A           |
| 3      | 1       | Nuxia congesta R. Br. Ex Fresen.               | NCO18      | Brittle-wood  |
| 4      | 1       | Spigelia anthelmia Linn.                       | SAT19      | Worm weed     |
| 5      | 1       | Strychnos aculeata Solered                     | SAC20      | Monkey orange |
|        | 2       | Strychnos afzeli Gilg.                         | SAF21      | Monkey orange |
|        | 3       | Strychnos angolensis Gilg.                     | SAG22      | Monkey orange |
|        | 4       | Strychnos asteranta Leeuwenberg                | SAS23      | Monkey orange |
|        | 5       | Strychnos barteri Solered                      | SBA24      | Monkey orange |
|        | 6       | Strychnos boonei De Wild.                      | SBO25      | Monkey orange |
|        | 7       | Strychnos campicola Gilg.                      | SCP26      | Monkey orange |
|        | 8       | Strychnos camptoneura Gilg. et Busse.          | SCT27      | Monkey orange |
|        | 9       | Strychnos chromatoxylon Gilg.                  | SCH28      | Monkey orange |
|        | 10      | Strychnos congolana C.H. Wright                | SCO29      | Monkey orange |
|        | 11      | Strychnos cuminodora De Wild.                  | SCU30      | Monkey orange |
|        | 12      | Strychnos densiflora Bail.                     | SDE31      | Monkey orange |
|        | 13      | Strychnos dinklagei Gilg.                      | SDI32      | Monkey orange |
|        | 14      | Strychnos floribunda Gilg.                     | SFL33      | Monkey orange |
|        | 15      | Strychnos gossweileri Exell                    | SGO34      | Monkey orange |
|        | 16      | Strychnos icaja Bail.                          | SIC35      | Monkey orange |
|        | 17      | Strychnos innocua Del.                         | SIN36      | Monkey orange |
|        | 18      | Strychnos johnsonii Hutch. et M. B. Moss.      | SJO37      | Monkey orange |
|        | 19      | Strychnos longicaudata Gilg.                   | SLO38      | Monkey orange |
|        | 20      | Strychnos lucens Bak.                          | SLU39      | Monkey orange |
|        | 21      | Strychnos malacoclados C.H. Wright             | SMA40      | Monkey orange |
|        | 22      | Strychnos memecyloides S.Moore                 | SME41      | Monkey orange |
|        | 23      | Strychnos nigritana Bak.                       | SNI42      | Monkey orange |
|        | 24      | Strvchnos nux-vomica Linn.                     | SNU43      | Monkey orange |

| Table 1.0 | The code | names and the o | common names | given to | field collect | ions |
|-----------|----------|-----------------|--------------|----------|---------------|------|
|           |          |                 |              |          |               |      |

| Genera | Species | Scientific name                                  | CODE NAMES | Common name   |
|--------|---------|--------------------------------------------------|------------|---------------|
|        | 25      | Strychnos phaeotricha Gilg.                      | SPH44      | Monkey orange |
|        | 26      | Strychnos soubrensis Hutch. et Dalz.             | SSO45      | Monkey orange |
|        | 27      | Strychnos spinosa Lam.                           | SSN46      | Monkey orange |
|        | 28      | Strychnos splendens C.H. Wright                  | SSD47      | Monkey orange |
|        | 29      | Strychnos staudtii Gilg.                         | SST48      | Monkey orange |
|        | 30      | Strychnos talbotiae S.Moore                      | STA49      | Monkey orange |
|        | 31      | Strychnos tricalysioides Hutch.                  | STR50      | Monkey orange |
|        | 32      | Strychnos urceolata Leeuwenberg                  | SUR51      | Monkey orange |
|        | 33      | Strychnos usambarensis Gilg.                     | SUS52      | Monkey orange |
|        | 34      | Strycnos chrysophylla Gilg.                      | SCR53      | Monkey orange |
|        | 35      | Strychnos ndengensis Pellegr.                    | SND54      | Monkey orange |
|        | 36      | Strychnos indeterminate Edondon -2               | SID55      | Monkey orange |
|        | 37      | Strychnos indeterminate Edondon -3               | SID56      | Monkey orange |
|        | 38      | Strychnos indeterminate Erokut station -2        | SID57      | Monkey orange |
|        | 39      | Strychnos indeterminate Erokut station -3        | SID58      | Monkey orange |
|        | 40      | Strychnos indeterminate Edondon -1               | SID59      | Monkey orange |
|        | 41      | Strychnos indeterminate Edondon -8               | SID60      | Monkey orange |
|        | 42      | Strychnos indeterminate Edondon -4               | SID61      | Monkey orange |
|        | 43      | Strychnos indeterminate Ipetu- Ijesha            | SID62      | Monkey orange |
|        | 44      | <i>Strychnos</i> indeterminate J <sub>4</sub> -3 | SID63      | Monkey orange |
|        | 45      | Strychnos indeterminate Erokut station -6        | SID64      | Monkey orange |
|        | 46      | Strychnos indeterminate Edondon -6               | SID65      | Monkey orange |
|        | 47      | Strychnos indeterminate ENUGU                    | SID66      | Monkey orange |
| 6      | 1       | Usteria guineensis Willd.                        | UGU67      | N/A           |

N/A = Not Available

#### Table 2.0: Morphological Assessment of some species of Loganiaceae

|       |                |        |                                 |            |                     | -              |            |             |             |
|-------|----------------|--------|---------------------------------|------------|---------------------|----------------|------------|-------------|-------------|
| CODE  | inflourensence | Flower | Leaf shape                      | Leaf apex  | Leaf margin         | Leaf hairiness | Petiolate/ | Leaf base   | Leaf        |
|       | type           | fresh  |                                 |            |                     | (indumentum)   | sessile    |             | arrangement |
|       |                | colour |                                 |            |                     |                |            |             |             |
| ADJ1  | corymb         | white  | obovate                         | rounded    | revolute & undulate | coriaceous     | petiolate  | rounded     | opposite    |
| ALI2  | corymb         | creamy | oblanceolate                    | rounded    | entire              | coriaceous     | petiolate  | cuneate     | opposite    |
| AMI3  | corymb         | white  | oblong, elliptic, obovate       | acuminate  | entire              | coriaceous     | petiolate  | cuneate,    | opposite    |
|       |                |        |                                 |            |                     |                |            | cuneate.    |             |
| ANO4  | corymb         | white  | obovate, oblanceolate           | rounded    | revolute & undulate | coriaceous     | petiolate  | rounded     | opposite    |
| AOB5  | corymb         | Yellow | lanceolate                      | acuminate  | entire              | coriaceous     | petiolate  | attenuate   | opposite    |
| APR6  | corymb         | white  | oblong, obovate to oblanceolate | rounded    | entire              | coriaceous     | petiolate  | attenuate   | opposite    |
| ASD7  | corymb         | white  | obovate                         | acuminate  | entire              | coriaceous     | petiolate  | attenuate   | opposite    |
| ASF8  | corymb         | creamy | oblong, obovate to oblanceolate | rounded    | entire              | coriaceous     | petiolate  | attenuate   | opposite    |
| AVO9  | corymb         | creamy | obovate                         | rounded    | revolute & undulate | coriaceous     | sessile    | cuneate,    | opposite    |
|       |                | or     |                                 |            |                     |                |            | auriculate. |             |
|       |                | yellow |                                 |            |                     |                |            |             |             |
| MBR15 | cymose         | white  | obovate                         | acute      | entire              | pilose         | petiolate  | rounded     | opposite    |
| MHI16 | terminal cyme  | white  | ovate                           | acute      | entire              | hirsute        | petiolate  | rounded     | opposite    |
| NCO18 | corymb         | white  | elliptic                        | acute      | entire              | glabrous       | petiolate  | attenuate   | opposite    |
| SAT19 | corymb         | white  | lanceolate                      | acuminate  | entire              | glabrous       | sessile    | attenuate   | opposite    |
| SAC20 | cymose         | white  | elliptic, oblong, lanceolate    | acuminate, | entire              | glabrous       | petiolate  | attenuate   | opposite    |
| 1     |                |        |                                 | obtuse     |                     |                |            |             |             |

The data were collected on the field as much as possible while the plant materials were still fresh.

#### Table 2.0: Morphological Assessment of some species cont'd

| COD   | Inflorescen       | Flower fresh | Leaf shape         | Leaf apex     | Leaf    | Leaf hairiness | Petiolate/ | Leaf base           | Leaf        |
|-------|-------------------|--------------|--------------------|---------------|---------|----------------|------------|---------------------|-------------|
| E     | ce type           | colour       |                    |               | margin  | (indumentums)  | sessile    |                     | arrangement |
| SFL3  | cymose;           | white        | oblanceolate       | acuminate     | entire  | glabrous       | petiolate  | attenuate           | opposite    |
| 3     | axillary          |              |                    |               |         |                |            |                     |             |
| SGO   | cymose;           | white        | ovate, elliptic    | acuminate     | entire  | glabrous       | petiolate  | attenuate           | opposite    |
| 34    | axillary          |              |                    |               |         |                |            |                     |             |
| SIC3  | raceme;           | white        | elliptic           | acuminate,    | entire  | glabrous       | petiolate  | attenuate           | opposite    |
| 5     | axillary          |              |                    | acute         |         |                |            |                     |             |
| 01310 | panicle           |              |                    |               |         |                |            |                     |             |
| SIN3  | raceme;           | Yellow       | elliptic, obovate. | round,        | entire  | pubescent      | petiolate  | attenuate           | opposite    |
| 0     | panicie           | 1.1          |                    | obtuse        |         | 1.1            |            | 1.                  |             |
| 6102  | cymose;           | white        | ovate, elliptic    | acuminate     | entire  | glabrous       | petiolate  | obtuse              | opposite    |
| 5303  | axillary          |              |                    |               |         |                |            |                     |             |
| SLO   | ovillory          | white        | allintia           | acuminata     | ontiro  | glabroug       | patialata  | attonuato           | opposito    |
| 38    | axinary<br>cymose | winte        | emptic             | caudate       | entile  | giabious       | periorate  | attenuate           | opposite    |
| SLU3  | avillary          | Vellow       | ovate              | acute         | entire  | glabrous       | netiolate  | rounded             | onnosite    |
| 9     | cymose            | 10100        | ovate              | ucute         | cintite | giaorous       | periolate  | Tounded             | opposite    |
| SMA   | axillary          | orange       | ovate elliptic     | acuminate     | entire  | glabrous       | petiolate  | attenuate curneate  | opposite    |
| 40    | cymose            | 8-           | oblanceolate       | obtuse, acute |         | 8              | F          |                     | opposite    |
| SME   | axillary          | white        | elliptic, oblong   | acuminate,    | entire  | glabrous       | petiolate  | attenuate, curneate | opposite    |
| 41    | cymose            |              |                    | acute         |         | -              | -          |                     |             |
| SNI4  | axillary          | Yellow       | elliptic, ovate,   | acuminate,    | entire  | glabrous       | petiolate  | rounded, attenuate, | opposite    |
| 2     | cymose            |              | obovate            | acute,        |         | -              | -          | obtuse              |             |
|       |                   |              |                    | mucronate     |         |                |            |                     |             |
| SNU   | raceme;           | Yellow       | ovate, elliptic,   | mucronate,    | entire  | glabrous       | petiolate  | rounded, obtuse     | opposite    |
| 43    | panicle           |              | oblanceolate       | acuminate     |         |                |            |                     |             |



**Plate 1.1:** Photographs of *Anthocleista* species (a) *Anthocleista schweinfurthii* tree (b) *A. procera* inflorescence(c) *A. vogelli* tree (d) *A. vogelli* young inflorescence and fruit.



**Plate 1.2:** Photographs of *Mostuea and Spigelia anthelmia* species (a) *Mostuea brunonis* plant (b) *Mostuea hirsuta* inflorescence (c - d) the colonial growth and inflorescence of *S. anthelmia*.



**Plate 1.3:** Photographs of *Strychnos* in high forest. (a) *Strychnos afzeli* (b - c) *Strychnos densiflora* and *S. dinklagei* inflorescence (d) *S. spinosa* fruit



**Plate 1.4:** Photographs of *Strychnos* tendril called Hook and *Usteria guineensis*. (a) Single hook in *Strychnos floribunda* (b) Paired hook in *S. camptoneura* (c) *S. nux-vomica* seed (d - e) *Usteria guineensis* tree, inflorescence and fruit.

**Plate 1.1 - 1.4:** Vegetative, flora and seed morphology of Loganiaceae species. All photographs – Magnification x 0.05

Table 3.0: Principal component analysis (PCA) showing communalities and Component Matrix for Loganiaceae Morphology

| Communalities    |         |            | <b>Component Matrix</b> |             |
|------------------|---------|------------|-------------------------|-------------|
|                  |         |            |                         |             |
|                  | Initial | Extraction | Component 1             | Component 2 |
| Leaf length      | 1.000   | .914       | .936                    | .194        |
| Leaf width       | 1.000   | .891       | .944                    | 016         |
| Leaf width ratio | 1.000   | .308       | .295                    | .470        |
| Plant Height     | 1.000   | .353       | .306                    | .510        |
| Petiole length   | 1.000   | .802       | .820                    | 361         |
| Apex length      | 1.000   | .677       | 086                     | .818        |
| Internode length | 1.000   | .527       | .714                    | 134         |





Figure 1: Principal Component analysis for Scree Plot of Eigen values for Loganiaceae Morphology.



Figure 2: Scatter plot of Leaf length (LL), Leaf width (LW) and Plant height (PH) of first component obtained from PCA (group centroids).



**leaf width Figure 3:** The scatter diagram for Leaf length (LL) and Leaf width (LW) of first component obtained from PCA (group centroids).



www.iiste.org IISTE

(R = reference line).

|                       |                        |                        | ат I I I I               |
|-----------------------|------------------------|------------------------|--------------------------|
| Annendix 1 · Some mor | nhological descriptor  | s and their codes used | for Loganiaceae analysis |
| rependix 1. Some mor  | photogreat accertiptor | s and then coues used  | Ior Bogamaccae analysis  |

| FF F                        |                     |              |                         | 8    |             |            |      |
|-----------------------------|---------------------|--------------|-------------------------|------|-------------|------------|------|
| <b>HB</b> = habit; based on | Vegetation Zone     | VZ: from the | Bark texture <b>B</b> T | •    | Flower fres | h colour F | C:   |
| their height from the soil  | sea level to the de | esert.       | Smooth or roug          | gh.  | Based       | on t       | heir |
| surface                     |                     |              |                         |      | warmness.   |            |      |
| Herb = 1                    | Mangrove =          | 1            | Smooth =                | 1    | White =     | 1          |      |
| Shrub = 2                   | Swamp =             | 2            | Rough =                 | 2.   | Creamy =    | 2          |      |
| Tree = $3$                  | Secondary forest    | = 3          | S: present or ab        | sent | Creamy yel  | low = 3    |      |
| Epiphyte =4                 | High forest =       | 4            | Present =               | 1    | Yellow =    | 4          |      |
| Liana = 5                   | Savanna =           | 5            | Absent =                | 2    | Orange =    | 5          |      |
|                             | Mountain veg. =     | 6            |                         |      | Lemon =     | 6          |      |

| Appendix 2: Some morphological descriptors and their codes used for analysis contra | Appendix 2: Some mor | phological descriptor | s and their codes used | l for analysis contn'd |
|-------------------------------------------------------------------------------------|----------------------|-----------------------|------------------------|------------------------|
|-------------------------------------------------------------------------------------|----------------------|-----------------------|------------------------|------------------------|

| Leaf apex = LA     | Leaf shape $=$ LS        | Branch <b>B</b> : smooth or spiny | Leaf hairiness = LH    | Leaf base = $LB$         |
|--------------------|--------------------------|-----------------------------------|------------------------|--------------------------|
| Acute = 1          | Elliptic = 1             | Smooth = $1$                      | Glabrous = 1           | Rounded =1               |
| Acuminate =2       | Oblong = 2               | Spiny = 2                         | Coriaceous = 2         | Cuneate = 2              |
| Apiculate =3       | Ovate = 3                | Hook <b>HK</b> : number present   | Pubescent = 3          | Attenuate = 3            |
| Caudate = 4        | Obovate = 4              | Nil = 1                           | Hirsute = $4$          | Obtuse = 4               |
| Cuspidate = 5      | Lanceolate = 5           | Single = 2                        | Pilose = 5             | 2  or  3  character = 5  |
| Obtuse =6          | Oblanceolate = 6         | Paired = 3                        | Others = 6             | Leaf veins $=$ <b>LV</b> |
| Round = 7          | 2 character = $7$        | Leaf margin = LM                  | Petiole = $\mathbf{P}$ | Bold = 1                 |
| 2 characters $= 8$ | 3 or more charact. $= 8$ | Entire = 1                        | Petiolate = 1          | Faint = 2                |
| 3 or more =9       |                          | Revolute & undulate = 2           | Sessile = $2$          |                          |

## Appendix 3: The herbaria collections assessed for this study

| Name of plant specimens | Place of Collection             | Accession no | Collector             |
|-------------------------|---------------------------------|--------------|-----------------------|
| Anthocleista            | Republic of Benin               | FHI 30254    | Onochie, C.F.A        |
| liebrechtsiana          |                                 |              |                       |
| A. obanensis            | Iyekorhiomwon, Sapoba Forest    | FHI 61734    | Emwiogbon, J.A        |
|                         | R.                              |              |                       |
| A. procera              | Abidjan, Ivory coast            | FHI 30679    | Leeuwenberg, A.J.M.   |
| A. schweinfurthii       | Republic of Benin               | FHI 95075    | Onochie, C.F.A        |
| A. scandens             | Cameroun                        | FHI 40516    | Daramola, B.O         |
| A. nobilis              | Abidjan, Ivory coast            | FHI 13655    | Leeuwenberg, A.J.M.   |
| A. vogelli              | Forestry garden                 | FHI 107911   | Daramola, B.O         |
| Mostuea brunonis        | Awi Forest                      | FHI 101156   | Daramola, B.O         |
| M. hirsuta              | Zaria, Jamaa Nimbia             | FHI 104567   | Anders, T.            |
| M. batesii              | Yaoundé                         | FHI 69486    | Leeuwenberg, A.J.M.   |
| Mostuea thomsonii       | West of Premises town, steep    | GCH 1802     | Monton, J.K           |
|                         | forest floor.                   |              |                       |
| Nuxia congesta          | Victoria, cameroun mt.          | FHI 40507    | Daramola, B.O         |
| N. congesta             | Amed yote, Togo.                | GCH 2871     | Dewit and Morta.      |
| Strychnos aculeata      | Omo Sawmil, Ijebu-Ode           | FHI 50221    | Leeuwenberg, A.J.M.   |
| S. afzeli               | Owena river edge, Ondo state.   | FHI 23012    | Olorunfemi J.         |
| S. angolensis           | Oban F.R. Calabar               | FHI 37221    | Daramola, B.O         |
| S. asterantha           | Nigritana game Reserve, Plateau | FHI 10674    | Gbile & Daramola      |
| S. barteri              | Nigritana game Reserve, Plateau | FHI 25601    | Daramola, B.O         |
| S. boonei               | Benin city                      | FHI 25554    | Olorunfemi J.         |
| S. campicola            | N/A                             | FHI 22110    | Daramola, B.O         |
| S. chrysophyla          | Oban, CRNP                      | FHI 33768    | Olorunfemi J.         |
| S. congolana            | Okeigbo, ondo state             | FHI 15388    | Onochie, C.F.G        |
| S. densiflora           | Ankasa Forest Reserve           | GCH 3912     | Enti, A.A             |
| S. dinklagei            | Abijan, Ivory Coast             | FHI 13564    | Leeuwenberg, A.J.M.   |
| S. innocua              | Igbeti- Ilorin road             | FHI 89699    | Ibhanesebhor, Adejimi |
| S. melacoclados         | Ukpe-sobo Forest reserve        | FHI 34792    | Imwinogbon, J.A       |

This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE's homepage: <u>http://www.iiste.org</u>

# CALL FOR JOURNAL PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There's no deadline for submission. **Prospective authors of IISTE journals can find the submission instruction on the following page:** <u>http://www.iiste.org/journals/</u> The IISTE editorial team promises to the review and publish all the qualified submissions in a **fast** manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

## **MORE RESOURCES**

Book publication information: <u>http://www.iiste.org/book/</u>

Recent conferences: <u>http://www.iiste.org/conference/</u>

# **IISTE Knowledge Sharing Partners**

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

