
VHDL Implementation of Arithmetic Logic Unit

1
Saumyakanta Sarangi

Associate Professor

Electronics & Telecommunication Engg

Eastern Academy of Science & Technology

Bhubaneswar, India

3
Swagatika Dash

Assistant Professor

Electronics & Telecommunication Engg

Eastern Academy of Science & Technology

Bhubaneswar, India

2
Sangita Swain

Associate Professor

Electronics & Telecommunication Engg

Eastern Academy of Science & Technology

Bhubaneswar, India

4
Manas Ranjan Mohanta

Assistant Professor

Electronics & Telecommunication Engg

Eastern Academy of Science & Technology

Bhubaneswar, India

Abstract—Digital design is an amazing and very broad

field. The applications of digital design are present in our

daily life, including computers, calculators, video cameras

etc. The VHDL (VHSIC Hardware Description Language)

has become an essential tool for designers in the world of

digital design. This paper presents implementation of a 4-

bit Arithmetic Logic Unit (ALU) using VHDL. ALU of

digital computers is an aspect of logic design with the

objective of developing appropriate algorithms in order to

achieve an efficient utilization of the available hardware.

Here the mixed VHDL model of ALU is designed to

perform 11 operations which includes both logical and

arithmetic operations. The VHDL implementation and

functionality test of the 4-bit ALU is done by using the

Xilinx ISE 9.2i tool.

Keywords—ALU, VHDL, XILINX

I. INTRODUCTION

An arithmetic logic unit (ALU) is a multi operation,
combinational-logic digital function. It can perform a set of
basic arithmetic operations and a set of logic operations. The
ALU has a number of selection lines to select a particular
operation in the unit. The selection lines are decoded within the
ALU so that K selection variables can specify up to 2^k
distinct operations.

Figure:1. (Block diagram of a 4-bit ALU)

Figure 1 shows the block diagram of a 4-bit ALU. The four
data inputs from A are combined with the four inputs from B to
generate an operation at the F outputs. The mode-select input
s2 distinguishes between arithmetic and logic operations. The
two function-select input s1 and s0 specify the particular
arithmetic or logic operation to be generated. With three
selection variables, it is possible to specify four arithmetic
operations (with s2 in one state) and four logic operations (with
s2 in the other state). The input and output carries have
meaning only during an arithmetic operation. The input carry
in the least significant position of an ALU is quite often used as
a fourth selection variable that can double the number of
arithmetic operations. In this way, it is possible to generate four
more operations, for a total of eight arithmetic operations.

 The design of a typical ALU will be
carried out in three stages. First, the design of arithmetic
section will be undertaken. Second, the design of logic section
will be considered. Finally, the arithmetic section will be
modified so that it can perform both arithmetic and logic
operations.

II. DESIGN OF ALU

 We design an ALU with seven arithmetic
operations and four logic operations. Three selection variables
s2, s1, and s0 select eight different operations, and the input
carry Cin is used to select four additional arithmetic operations.
With s2=0, selection variables s1 and s0 together with Cin will
select eight arithmetic operations in arithmetic table above.
With s2 = 1 variables s1 and s0 will select the four logic
operations OR, XOR, AND, and NOT.

 The design of an ALU is a combinational
logic. Because the unit has a regular pattern, it can be broken
into identical stages connected in cascade through the carries.
We can design one stage of ALU and then duplicate it for the
number of stages required. There are six inputs to each stage:
Ai, Bi, Ci, s2, s1, and s0. There are two outputs in each stage:
output Fi and the carry out Ci+1. One can formulate a truth
table with 64 entries and simplify the two output function.Here
we choose to employ an alternative procedure that uses the

1214

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041585

International Journal of Engineering Research & Technology (IJERT)

availability of a parallel adder. The steps involved in the design
of an ALU are as follows:

Design the arithmetic section independent of the logic
section.Determine the logic operations obtained from the
arithmetic circuit in step 1, assuming that the input carries to all
stages are 0.Modify the arithmetic circuit to obtain the required
logic operations. The final ALU is shown below. The inputs to
each full-adder circuit are specified by the Boolean function:

Xi = Ai + s2.s1.’s0.’Bi + s2.s1.s0’.Bi’
Yi = s0.Bi + s1.Bi’

Zi = s2’.Ci
When s2 = 0, three functions reduce to:

 Xi = Ai
 Yi = s0.Bi + s1.Bi’
 Zi = Ci

Which are the functions for the arithmetic circuit of above
figure. The logic operations are generated when s2 = 1. For
s2s1s0 = 101 or 111, the functions reduce to:

Xi = Ai
Yi = s0.Bi + s1.Bi’

Ci = 0
Output Fi is then equal to Xi (+) Yi and produces the

exclusive-OR and complement operations as specified in above
table. When s2s1s0 = 110, each Ai is ORed with Bi’ to provide
the AND operation as explained previously.

The 12 operations generated in the ALU are summarized in
below truth table. The particular function is selected through
s2, s1, s0, and Cin. The arithmetic operations are identical to
the ones listed for the arithmetic circuit. The value of Cin for
the four logic functions has no effect on the operation of the
unit and those entries are marked with don’t-care X’s.

Table:1 [FUNCTION TABLE OF ALU]

Selection Output Function

s2 s1 s0 cin

0 0 0 0 F = A Transfer A

0 0 0 1 F = A+1 Increment A

0 0 1 0 F = A+B Addition

0 0 1 1 F= A+B+1 Add with carry

0 1 0 0 F = A-B-1 Subtract with borrow

0 1 0 1 F= A-B Subtraction

0 1 1 0 F = A-1 Decrement A

0 1 1 1 F = A Transfer A

1 0 0 x F = A V B OR

1 0 1 x F = AΘ B XOR

1 1 0 x F = A Ʌ B AND

1 1 1 x F = A’ Complement A

Figure:2 [LOGIC DIAGRAM OF ARITHMETIC LOGIC UNIT (ALU)
]

 Design of Arithmetic Unit

 The basic component of the arithmetic section of
an ALU is a parallel adder. A parallel adder is constructed with
a number of a full-adder circuits connected in cascade. By
controlling the data inputs to the parallel adder, it is possible to
obtain different types of arithmetic operations. Figure 3
demonstrates the arithmetic operations obtained when one set
of inputs to a parallel adder is controlled externally. The
number of bits in the parallel adder may be of any value. The
input carry Cin goes to the full-adder circuit in the least
significant bit position. The output carry Cout comes from the
full-adder circuit in the most significant bit position.

The arithmetic addition is achieved when one set of inputs
receives a binary number A, the other set of inputs receives a
binary number B, and the input carry is maintained at 0. This is
shown in (a). By making Cin = 1 as in (b), it is possible to add
1 to the sum in F. Now let us consider the effect of
complementing all the bits of input B. With Cin = 0, the output
produces F = A + (comp B), which is the sum of A plus the 1’s
complement of B.

1215

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041585

International Journal of Engineering Research & Technology (IJERT)

Figure:3 [Parallel Adder Arithmetic Operations]

 Adding 1 to this sum by making Cin = 1, we obtain F = A+
(comp B) + 1, which produces the sum of A plus the 2’s
complement of B. This operation is similar to a subtraction
operation if the output carry is discarded. If we force all 0’s
into the B terminals, we obtain F = A + 0 = A, which transfers
input A into output F. Adding 1 through Cin as in (f), we
obtain F = A + 1, which is the increment operation.

The condition illustrated in (g) inserts all 1’s into the B
terminals. This produces the decrement operation F = A – 1. To
show this condition is indeed a decrement operation, consider a
parallel adder with n full-adder circuits. When the output carry
is 1, it represents the number 2^n because 2^n in binary
consists of a 1 followed n 0’s. Subtracting 1 from 2^n, we
obtain 2^n – 1, which in binary is a number of n 1’s. Adding
2^n – 1 to A, we obtain F =A + 2^n + A – 1. If the output carry
2^n is removed, we obtain F = A – 1.

The circuit that controls input B to provide the functions i.e.
true/complement, one/zero element. The circuit is illustrated in
above diagram. The two selection lines s1 and s0 control the
input of each B terminal. The diagram shows one typical input
designated by Bi and an output designated by Yi. In typical
application, there are n such circuits for i= 1, 2, 3…….n. As
shown in the table below, when both s1 and s0 are equal to 0,

the output Yi = 0, regardless of the value of Bi. When s1s0 =
01, the top AND gate generates the value of Bi while the
bottom gate output is 0; so Yi = Bi. With s1s0 = 10, the bottom
AND gate generates the complement of Bi to give Yi = Bi`.
When s1s0 = 11, both gates are active and Yi = Bi + Bi` = 1.

S1 S0 Y1

0 0 0

0 1 Bi

1 0 Bi’

1 1 1

A 4-bit arithmetic circuit that performs eight arithmetic
operations is shown in figure below. The four full-adder (FA)
circuits constitute the parallel adder. The carry into the first
stage is the input carry .The carry out of the forth stage is the
output carry. All other carries Are connected internally from
one stage to the next. The selection variables are S1, S0 and
Cin. Variables S1 and S0 control all of the B inputs to the full-
adder circuits as in figure. The A inputs go directly to the other
inputs of the full-adders.

Figure:4.a [Logic Diagram Of Arithmetic Circuit]

1216

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041585

International Journal of Engineering Research & Technology (IJERT)

 The arithmetic operations implemented in the
arithmetic circuit are listed in below table 2.

The values of the Y inputs to the full-adder circuits are a
function of selection variables S1 and S0.

Table:2 [Function Table Of Arithmetic Unit]

Function select
Y Output Function

s2 s1 s0

0 0 0 0 F = A Transfer A

0 0 1 0 F = A+1 Increment A

0 1 0 B F = A+B Addition

0 1 1 B F = A+B+1 Add with carry

1 0 0 B’ F = A-B-1
Subtract with
borrow

1 0 1 B’ F= A-B Subtraction

1 1 0 All 1’s F = A-1 Decrement A

1 1 1 All 1’s F = A Transfer A

Adding the value of Y in each case to the value of A plus
the Cin value gives the arithmetic operation in each entry. The
eight operations listed in the table follow directly from the
function diagrams illustrated.

This example demonstrates the feasibility of constructing
an arithmetic circuit by means of a parallel adder. The
combinational circuit that must be inserted in each stage
between the external inputs Ai and Bi and the inputs of the
parallel adder Xi and Yi is a function of the arithmetic
operations that are to be implemented. The arithmetic circuit of
fig needs a combinational circuit in each stage specified by the
Boolean functions:

Xi = Ai

Yi = Bi S0 + Bi’S1 i = 1,2,…., n

Where n is the number of bits in the arithmetic circuit. In
each stage i, we use the same common selection variables S1
and S0. The combinational circuit will be different if the circuit
generates different arithmetic operations.

A. Design of Logic Unit

 The logic micro operations manipulate the bits of the
operands separately and treat each bit as a binary variable.
There are 16 operations that can be performed with two binary
variables. The 16 logic operations can be generated in one
circuit and selected by means of four selection lines. Since all
logic operations can be obtained by means of AND, OR, and
NOT (complement) operations, it may be more convenient to
employ a logic circuit with just these operations. For three
operations, we need two selection variables. But two selection
lines can select among four logic operations, so we choose also
the exclusive-OR (XOR) function for the logic circuit to be
designed in this part. The diagram shown below shows a
typical stage designated by subscript i. The four gates generate
the four logic operations OR, XOR, AND, and NOT. The two

selection variables in the multiplexer select one of the gates for
the output. The table above shows output logic generated as a
function of the two selection variables.

 Figure:4.b [Logic Diagram Of Logic Circuit]

 The logic circuit can be
combined with the arithmetic circuit to produce one arithmetic
logic unit. Selection variables s1 and s0 can be made common
to both sections provided we use a third selection variable, s2,
to differentiate between the two.

This configuration is shown below. The outputs of the logic
and arithmetic circuits in each stage goes through a multiplexer
with selection variable s2. When s2 = 0, the arithmetic output
is selected, but when s2 = 1, the logic output is selected.

Figure:4.c [Combining logic and arithmetic circuit]

A more efficient ALU can be obtained if we investigate the
possibility of generating logic operations in an already
available arithmetic circuit. This can be done by inhibiting all
input carries into the full-adder circuits of the parallel adder.
Let we consider the Boolean function that generates the output
sum in a full-adder circuit:

 Fi=Xi (+) Yi (+) Ci

 The input carry Ci in each stage can be made to be
equal to 0 when a selection variable s2 is equal to 1. The result
would be:

 Fi = Xi (+) Yi

1217

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041585

International Journal of Engineering Research & Technology (IJERT)

 This expression is valid because of the property of the
exclusive-OR operation X (+) 0 = X. Thus, with the input carry
to each stage equal to 0, the full-adder circuits generate the
exclusive-OR operation. Now consider the arithmetic circuit,
the value of Yi can be selected by means of the two selection
variables to be equal to either 0, Bi, Bi’, or 1. The value of Xi
is always equal to input Ai. The below table shows the four
logic operations obtained when a third selection variable s2 =
1. This selection variable forces Ci to be equal to 0 while s1
and s0 choose a particular value for Yi. The four logic
operations obtained by this configuration are transfer,
exclusive-OR, equivalence, and complement. The third entry is
the equivalence operation because:

 Ai (+) Bi’ = AiBi + Ai’Bi’ = Ai (.) Bi

 The last entry in the table is the NOT or complement
operation because:

 Ai (+) 1 = Ai’

III. RESULT

It is needed to test whether the design works to meet the

given specification to ensure that designed entity is correct.
This is verified by the process of simulation. The process of
simulation uses a test bench to test the design whether it
behaves correctly by stimulating it with artificial input and
monitoring the output. The simulation is carried out by using
the Xilinx ISE 9.2i tool l and having the test bench and the
behavioral design code for 4-bit ALU in the same project
folder. We observed from the simulation results that the 4-bit
ALU implemented by the above described method and code,
worked successfully for all the input combinations and the
select codes according to the given specification in Table 1.

The simulation results and RTL Schematics are shown
below in Fig.7 and Fig .8 respectively

A. Simulation Results

Figure:7. a (S2 S1 S0=000, Cin=0 : Transfer A)

Figure:7. b (S2 S1 S0=000, Cin=1 :Increment A i.e. A + 1)

Figure:7. c (S2 S1 S0=001, Cin=0 : A + B)

Figure:7. d (S2 S1 S0=001, Cin=1 : A + B+1)

1218

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041585

International Journal of Engineering Research & Technology (IJERT)

Figure:7. e (S2 S1 S0=010, Cin=0 : A – B–1)

Figure:7. f (S2 S1 S0=010, Cin=1 : A - B)

Figure:7.g (S2 S1 S0=011, Cin=0 : Decrement A i.e. A – 1)

Figure:7.h (S2 S1 S0=011, Cin=1 : Transfer A)

Figure:7. i (S2 S1 S0=100, Cin=x : A OR B)

Figure:7. j (S2 S1 S0=101, Cin=x : A XOR B)

1219

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041585

International Journal of Engineering Research & Technology (IJERT)

Figure:7. k (S2 S1 S0=110, Cin=x : A AND B)

Figure:7. l (S2 S1 S0=111, Cin=x : Complement of A)

B. RTL SCEMATIC OF ALU:

Figure:8.a

Figure:8.b

Figure:8. c

Figure:8. d

IV. CONCLUSION & FUTURE WORKS

This study helped to understand the complete flow of RTL
design, starting from designing a top level RTL module for 4-
bit ALU using hardware description language, VHDL.
Verification of the designed RTL code using simulation
techniques, synthesis of RTL code to obtain gate level net list
using Xilinx ISE tool and Arithmetic Logic Unit was
successfully designed and simulated using Xilinx ISE 9.2i
package. The ALU model is designed in such a manner that the
whole module can be used as component to design 8,16,32 bit
ALU using structural model.

1220

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041585

International Journal of Engineering Research & Technology (IJERT)

REFERENCES

[1] D. Gajski and R. Khun, “Introduction: New VLSI Tools,”IEEE
Computer, Vol. 16, No. 12, pp. 11-14, Dec. 1983.

[2] http://www.forteds.com/behavioralsynthesis/index.asp
 Douglas L. Perry, VHDL, third edition, McGraw-Hill, pp.60-63, 238,

July 1999.
[3] S.Yalamanchali, “Introductory VHDL: From simulation to synthesis”,

Prentice Hall, United States, 2002.
[4] http://www.xilinx.com
[5] B.Stephen Brown, V.Zvonko, “Fundamentals of digital logic with VHDL

Design” 2nd Edition , Mc Graw Hill International Edition, 2005.
[6] Charles H.Roth, Jr., “Digital System Design using VHDL”, PWS

Publishing Company, 2006.
[7] Mark Zwolinski, “Digital System Design with VHDL”, Prentice Hall,

2000.Pedroni, “Digital Logic Design using VHDL”.
[8] S.Kaliamurthy, R.Muralidharan, “VHDL Design of FPGA Arithmetic

Processor” International Conference on Engineering and ICT, 2007.
[9] Xilinx Technologies, Xilinx Data Sheet for XC3S100E. http:// direct.

xilinx.com/bvdocs/ publications/ ds312.pdf.
[10] http://www.forteds.com/behavioralsynthesis/index.asp
[11] Prof. S. Kaliamurthy & Ms. U. Sowmmiya,“VHDL design of arithmetic

processor” ,Global Journals Inc.(USA) , November 2011.
[12] Geetanjali and Nishant Tripathi “VHDL Implementation of 32-Bit

Arithmetic Logic Unit (Alu)”
[13] Shikha Khurana, Kanika Kaur “Implementation of ALU using FPGA”
[14] Mr. Abhishek Gupta , Mr. Utsav Malviya , Prof. Vinod Kapse “A

Novel Approach to Design High Speed Arithmetic Logic Unit Based On
Ancient Vedic Multiplication Technique” International Journal of
Modern Engineering Research (IJMER) www.ijmer.com. Vol.2, Issue.4,
July-Aug 2012 pp-2695-2698. ISSN: 2249-6645 www.ijmer.com

1221

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041585

International Journal of Engineering Research & Technology (IJERT)

